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Abstract

The implementation of a Model Predictive Controller (MPC) for a Modified Quadruple
Tank (MQT) system is addressed in this thesis. The purpose of this study is to demon-
strate the application of MPC to a multi-input-multi-output (MIMO) dynamical system
that has complicated variables interactions. The basic understanding of the system and
the controller is presented.

First, we investigate the behaviour of the dynamical system and determined the
parameters and defined the variables that govern the MQT system, and then we derived
all the formulations related to acquiring the mathematical model from the basic physical
process. Then, the dynamic model of the system that has deterministic and stochastic
components described as a linear discrete-time state space model derived is employed
for the purpose of the next study. We specify the model in a form that is appropriate
for computational operation and analysis of MPC by introducing a discrete impulse
coefficient or known as Markov parameters.

Generally, the MPC consists of a state estimator and a constrained regulator, there-
fore for state estimation, a Kalman filter is incorporated. The computation of the co-
efficients is done off-line and the Discrete-time Algebraic Ricatti Equation (DARE) is
used to obtain the stationary one-step ahead state error covariance matrix. The static
Kalman filter is utilized to estimate the current state from the filtered part while the
predictions part is used by the constrained regulator which is also known as an Optimal
Control Problem (OCP) to predict the future output trajectory given an input trajec-
tory. The objective of the OCP consists of tracking error term that penalizes deviations
of the predicted outputs from the setpoint and a regularization term that penalizes the
changes in the inputs which is the manipulated variables. The resulting OCP which is
represented as a Quadratic Programming (QP) is solved and the performance of MPC
is demonstrated through simulations using MATLAB is presented.

The study shows that the static Kalman filter is well executed and the estimation of
the current states and the prediction of the future output trajectory are accomplished.
Subsequently, the performance of the MPC is investigated. In this study, the MPC is
implemented to unconstrained and constrained MPC. The unconstrained MPC is im-
plemented to evaluate a first-hand straightforward performance of MPC and from the
demonstration, disturbances are compensated and new setpoint was tracked, except an
abrupt peak is visible in the flow of input variables indicates that it is infeasible for real
application.

The constrained MPC is formulated both for input and soft output constraints.
When input constraint is introduced, the performance of MPC is exceptional although
the transient response is slightly deprived, it is noticeable that the sharp peak in the flow
of input variables is successfully suppressed, yielding a more relaxed flow. Whereas addi-
tional soft output constraint is included in the algorithm shows that the MPC operated
as normal as the previous strategies without violating the input and output boundaries
but the flow of the input variables is affected by a slight unsteady flow.
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CHAPTER 1
Introduction

In this chapter, the description of the Modified Quadruple Tank System is presented in
detail. It illustrates the importance of the Model Predictive Control implementation for
the system. We featured the main objective of the research project and the explanation
of the thesis organization.

1.1 Modified Quadruple Tank System

The modified quadruple tank (MQT) system as shown in Figure 1.1 is a modification of
the four tank system inspired by [1]. Compared to the original four-tank system, two
unknown disturbance is added to the MQT system entering the top tanks. The MQT
system is an exemplification of a multi-input-multi-output (MIMO) system, an illustra-
tion of the real-world complex system applications which is widely used for education
in modelling and demonstrating advanced control strategies [2], [3]. Most of the real
application control tasks in the industry handle mostly non-linear systems, affected by
multiple inputs and outputs that have complicated variables interactions and significant
uncertainties. These unique and complex interactions make the MQT system a good
example to demonstrate the modelling and controller application study as discussed in
[4–6]. It has immeasurable disturbance variables, significant cross binding parameters
which cause unwanted output disturbance when defining the control input in order to
have desired output and needs linearization due to its non-linearity, which causes further
errors into the control loop [7]. Moreover, due to the modification, it is also affected
by unknown measurement noise and disturbance variables that are considered stochastic
[8]. Therefore, it is important to study the dynamic behaviour of the system and its
potentials before involving any controller.

The MQT system is a simple process, consist of four identical tanks and two pump-
ing system but yet illustrates a system that is non-linear, MIMO and complicated in-
teractions between manipulated and controlled variables. The states x of the modified
quadruple tank system are the masses of water in different tanks as the states of the
masses changes over time due to the dynamics of the water flow in and out of each
tank. The main objective of this lab-scale system is to measure and control the levels of
water in the lower tanks (Tank 1 and 2) to some desired set points by manipulating the
flow rates F1 and F2 which are distributed across all four tanks, represents the dynam-
ics of multi-variable interaction since each manipulated variables influences the outputs.
Therefore the height of the water level in these two tanks, h1 and h2 is measured and
controlled. Usually, the controlled variables is a subset of the measured variable, y. The
pumping system directs a fixed fraction of F1 and F2, denoted as γ1 that distribute the
water to Tank 1 and Tank 4, and γ2 for Tank 2 and Tank 3 at a rate of qi,in i ∈ {1, 2, 3, 4}
respectively [9]. The values for γ1 and γ2 differs for minimum phase (RHP) and non-
minimum phase (LHP). The sensors measure the height of water level in each tank,

3
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Tank 2

Tank 3 Tank 4

Tank 1

F1 F2

q1,in q2,in
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q3
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m3 m4

m1 m2

F3 F4

Figure 1.1: Schematic diagram of the modified quadruple
tank process

hi,i ∈ {1, 2, 3, 4} thus, the measured variable is affected by the noise from these sen-
sors and due to this condition, the measured variables, y consists of the actual values
of the height and sensor noise. Whereas liquid is added to Tank 3 and Tank 4 resem-
bling external disturbances d and the flows denoted F3 and F4 are unmeasured unknown
disturbances and stochastic variables that is assumed to be normally distributed, hence
cannot be controlled. However, for the modelling purposes in the following chapter, we
assumed no noise occurrence and impeccable measurements.

The MQT system will be fully utilized throughout this work to assimilate the funda-
mental theory of the MPC and further described in the following section. While [5, 6, 10]
has the opportunity to work with the actual pilot plant, this work is done in a simulation
environment. Without an actual process plant, an accurate first-principles model can be
achieved [11].

1.2 Model Predictive Control

A model-based controller is one of the advanced control strategy that is currently com-
mon and extensively recognized in industry and academic, famously known as Model
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Predictive Control (MPC). The MPC first breakthrough is from a seminal publication
of Model Predictive Heuristic Control [12] and later [13] who came out with Dynamic
Matrix Control.

Figure 1.2: Moving horizon implementation
MPC is a controller that utilizes the identified model of a system to predict its future

behaviour, given a prediction horizon. The main idea is to minimize the cost function
and taking into account the constraints. Then the first controller moves are implemented
at a sampling instants over the control horizon, by implementing only the first move the
optimal feedback is achieved and then the complete sequence will be repeated again,
which is known as moving horizon concept [11]. Figure 1.2 shows an illustration of the
concept. This flexibility is one of the important significant advantages of MPC [14].
Nowadays the applications of MPC are not limited to the process control field, but
also including other various fields such as automotive, energy management, medical and
economy.

This PhD study is emphasising on implementing the predictive control strategy on a
lab scale system that exhibits the characteristic of a complex MIMO system, the modified
quadruple tank system which is briefly described in the previous section to comprehend
the fundamental theory of MPC and develop the procedure on the application of the
control strategy by simulations.

Several strategies of controllers are implemented on the quadruple tank system such
as [15] and [16], while [17] and [18] has been extensively described the application of
MPC on the quadruple-tank system with different approaches. A comparative study
of model-based control for the four-tank system using IMC and DMC is provided by
[16] and a year later an analysis of robust control for the identical system is done [19].
The Kalman filter is incorporated for state estimation to obtain an optimal MPC as
shown in [20] and specified in detail in [21] attained from the Discrete-time Algebraic
Riccati Equation (DARE). Offset-free MPC for a single tank is explained in [22] but an
off-set free MPC caused by the model’s mismatch is proposed by [23] but for a different
orientation of quadruple tank system and by considering only the state disturbance.
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Figure 1.3: Block diagram of the control structure for the
MQT system process

One of MPCs advantages is the ability to work within certain constraints, there-
fore the main focus of this work is to demonstrate the implementation of unconstrained
and input constrained MPCs complete with the derivation of the equations, as reported
in Paper C. An addition to that, we resume the study by considering both input and
soft output constraints MPC in a single problem. To solve the Optimal Control Prob-
lem (OCP), we express the control task which is tracking of the setpoint trajectory as
a quadratic optimization problem by performing several experiments and simulations
studies for observation to demonstrate the versatility of the advanced controller.

Referring to the block diagram of the control structure for the MQT system in
Fig.1.3, the model predictive control part consists of an estimator which estimates the
current states of the system, x̂ given the previous measurement from the process, y
and a regulator which minimizes the difference between the reference values, r and the
controlled variables, z with respect to the manipulated variables, u. The output of the
regulator which is the new input variables is then fed to the MQT system thus yielding
a new state and a new measurement. This process is iteratively repeated for a specified
timespan or until a certain stopping criterion is reached in a closed loop manner. From
the diagram, it is possible to visualise the implementation of the MPC that will yield the
optimum input to the system which would result in an approach to the desired reference
values.

1.3 Thesis Objectives

The main objective of this thesis is to develop the procedure of an advanced model-based
controller implementation and to demonstrates the procedure on a lab-scale industrial
process, using linear MPC. In order to achieve the main objective of the thesis, it can be
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subdivided into several topics and multiple objectives need to be accomplished.

1. Modeling of the Modified Quadruple Tank System.

We obtain first-principles engineering model of a Modified Quadruple Tank Sys-
tem by describing the non-linear dynamics of the system in which the equations
are derived from the fundamental physical processes. The conservation of mass is
applied to develop a simple model and we simulate the system which described
by Ordinary Differential Equations (ODEs). The system is fully described and
all important variables are outlined. Then, the non-linear continuous state space
model of the system is transformed to a linear discrete-time state space model
through linearization and discretization. In order to rewrite the difference equa-
tion system representation in a more structured form, the Markov Parameters is
introduced.

2. State Estimation for the Discrete-Time Linear System.

We want to estimates all the variables which represent the internal conditions or
the status of the system at a specific given time so as to allow for future output
prediction and to design the control algorithms. A Kalman’s state estimator for a
non-linear multivariable process using a linear state-space model is solved by the
algebraic Ricatti equation to estimates the current state of the system and the
future output predictions.

3. Development and Simulation of Model Predictive Control.

We develop and demonstrate the implementation of Model Predictive Control
for the Modified Quadruple Tank System by simulation. The predictions part of
the Kalman filter is used by constrained regulator, an optimal control problem to
predict the future output trajectory, the results that are represented as a quadratic
problem is solved and the performance of the controller is demonstrated through
simulations.

1.4 Thesis Organization

This PhD thesis is written based on a number of scientific articles published in peer-
reviewed international conference proceedings and a scientific journal. The thesis is
divided into two parts, Part I and Part II.

Part I is the summary report comprised of several chapters which start with Chapter
1 outlines the background and aim of the research work followed by the detail explanation
of the modelling part of the system in Chapter 2. Chapter 3 introduces the concept of
state estimation where the Kalman filter is incorporated and provides a description of the
disturbance model. Chapter 4 demonstrates the implementation of MPC strategy while
Chapter 5 presents the results and analysis of the controller implementation. Finally,
Chapter 6 concludes the study with a summary of the method used and the results. In
Part II three research papers are included. These papers are published and submitted
during the project period.





CHAPTER 2
Modeling of a Modified Quadruple

Tank System

In this chapter we describe the modified quadruple tank system with all the impor-
tant parameters are selected and variables are defined. We want to obtain an accurate
first-principles model of the process by describing the dynamics of the system in which
the equations are derived from the fundamental physical processes. A non-linear ordi-
nary differential equation (ODE) model is obtained and we reconstruct the model in an
appropriate form for future model-based controller design, a form that is suitable for
computational operation and analysis purposes. This chapter provides a summary of the
scientific dissemination in Papers A and B.

2.1 The Control Structure

Previously in section 1.1, the dynamics of the MQT system is described and the control
structure of the system is outlined. To address the problem of controlling the tanks
system we first identify all the variables.

Let x indicates the state variables signifies the water levels in tanks, y is the measured
variables indicates the water level in the tank, u indicates the manipulated variables
(MVs) or inputs, z is the controlled variables (CVs) represents the tanks which we wish
to achieve the desired set points and d is the disturbances. This can be written as

x =
[
m1 m2 m3 m4

]T
(2.1a)

y =
[
h1 h2 h3 h4

]T
(2.1b)

u =
[
F1 F2

]T
(2.1c)

d =
[
F3 F4

]T
(2.1d)

z =
[
h1 h2

]T
(2.1e)

In the following sections, two non-linear continuous time models will be described based
on the parameters that determine the dynamics and the response of the system. All the
parameter values of the modified quadruple tanks system are shown in Table 2.1.

2.2 Non-linear Model

In this section, first, we develop a deterministic model and then followed by a stochastic
model to represent a more realistic model by including the process and measurement

9
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Table 2.1: Parameter Values

Description Symbol Value Unit

Tank cross sectional area Ai 380.1327 cm2

Pipe cross sectional area ai 1.2272 cm2

Acceleration of gravity g 981 cm/s2

Density of water ρ 1.00 g/cm3

Valve distribution constants γ1 0.45

Valve distribution constants γ2 0.40

noises. Mathematical models for the sensors and outputs are also derived and included.
Then the non-linear simulation step responses are presented to show the results and
analysis from the modelling part of the work. From the simulation results, the transfer
function is identified and the noise is estimated. Finally, a steady state analysis is
investigated to obtain the operating window for opting set points.

2.2.1 Deterministic Non-Linear Model

The complete deterministic non-linear model can be expressed by a set of first-order
differential equations in the form of

ẋ = f(x(t),u(t),d(t), p) (2.2a)

y(t) = g(x(t)) (2.2b)

z(t) = h(x(t)) (2.2c)

with p is the parameters and initial condition

x(t0) = x0 (2.3)

The measurement from the sensor is modelled as linear function is defined as y(t) and
the output function is defined as z(t). g(x(t)) and h(x(t)) are the measurement and
output functions related to the process state. Then we apply the conservation of mass
for each tank to formulate the differential equations and we simulate the system which
described by Ordinary Differential Equations (ODEs) in Matlab [24] as

d

dt
m1(t) = ρ(q1,in(t) + q3(t)− q1(t)) (2.4a)

d

dt
m2(t) = ρ(q2,in(t) + q4(t)− q2(t)) (2.4b)

d

dt
m3(t) = ρ(q3,in(t) + F3(t)− q3(t)) (2.4c)

d

dt
m4(t) = ρ(q4,in(t) + F4(t)− q4(t)) (2.4d)



2.2. Non-linear Model 11

Tank 2

Tank 3 Tank 4

Tank 1

F1 F2

q1,in q2,in

q4,inq3,in

q1 q2

q3
q4

m3 m4

m1 m2

F3 F4

Figure 2.2: Schematic diagram of the modified quadruple tank process

The mass balances (2.4) constitute the differential equations in the model describing the
states of the system. The initial values for the mass of water in each tank at time t0 are

mi(t0) = mi,0 i = 1, 2, 3, 4 (2.5)

The static mass balance of the two valves is used to obtain the inflow rates from the
valves for individual tanks. Here γ1 and γ2 are the flow distributions constants for valves
1 and 2 respectively. Besides, F1(t) and F2(t) are the input flow rates coming from these
pumps.

q1,in(t) = γ1F1(t) (2.6a)

q2,in(t) = γ2F2(t) (2.6b)

q3,in(t) = (1− γ2)F2(t) (2.6c)

q4,in(t) = (1− γ1)F1(t) (2.6d)

The height of the liquid and the flow rates out of each tank is calculated in this
section. Let the measurements and outputs be the heights, hi. The height is calculated
by the relations of mass and volume of the water in each tank where mass mi in tank i
is given by

mi = ρVi i = 1, 2, 3, 4 (2.7)

where ρ is the density of the fluid and let Vi be the volume of the water in all the four
tanks with an assumption that Ai is the cross-sectional area for each tank

Vi = Aihi i = 1, 2, 3, 4 (2.8)

the height hi of the liquid level in tank i is calculated by the relations

hi = βimi i = 1, 2, 3, 4 (2.9)
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with βi is

βi =
1

ρAi
i = 1, 2, 3, 4 (2.10)

The flow rates of the liquid qi(t) is calculated by applying Bernoulli’s Principle to
each tank which gives the following volumetric outflow rate

qi(t) = ai
√

2ghi(t) i = 1, 2, 3, 4 (2.11)

where ai is the cross section of the pipes, g is the gravity, hi is as given as (2.9) and αi is

αi = ai
√

2gβi i = 1, 2, 3, 4 (2.12)

the volumetric flow rate in the outlet pipes from the tanks are

qi(t) = αi
√
mi i = 1, 2, 3, 4 (2.13)

2.2.2 Stochastic Non-linear Model

In this section both process noise and measurement noise is included in the model of the
system, (2.2a) and measured variables, (2.2b) respectively. This is because, in practice,
the system can be affected by noise and disturbance, uncontrolled disturbance variables
change in time and the uncertainty of the measurements can’t be removed completely.
Therefore in compensation for this, we include a normally distributed measurement error
and make the disturbances vary randomly. Specifically, an additional white-noise is
introduced on the measurements and let the uncontrolled disturbance flows change as
piecewise constants between samples with a similar normally distributed disturbance.
The system in equation 2.2 have a new measurement equation and stochastic disturbance.
The new stochastic disturbance become

d(t) = dk for tk < t < tk+1 (2.14)

where d(t) is piecewise constant. In this case, equation (2.14) have the stochastic com-
ponent

dk =

[
F3

F4

]
+ wk (2.15)

where wk is the process noise that is stochastic and assumed to be normally distributed,
wk ∼ N(0, Q), due to the unknown information regarding the distribution and this
results in the non-linear model.

Let the measurement noise, v(t) signifies the occurrence of noise from the sensors
during the process of measuring in each tank and it is normally distributed, v(t) ∼
N(0, Rv). v(t) is being added to the measured variables, (2.2b) giving

y(t) = g(x(t)) + v(t) (2.16)
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2.3 Non-linear Simulation Step Responses

In this section, the non-linear system is analysed where the step responses of the non-
linear simulation are evaluated. From these responses, we will identify the continuous-
time transfer function of the MQT system and it is possible to characterise the system
for which the dynamics are unknown.

Now that the deterministic and stochastic model is obtained, we visualized the be-
haviour of the system and verify the model by simulations. This is done so to have the
basic understanding of the MQT system operation and the directions of the water flow,
step input test is applied and the output response is observed.

Then the output responses of the deterministic non-linear system are presented,
discussed and analysed. Using the non-linear deterministic model we simulate the system
with three level of input increment resulting in the step responses and normalized step
responses. The idea is to analyse the response in the measurements, y by manipulating
the inputs, u by referring them to the steady-state values, uss in order to define the step
responses. The same simulation is done for the non-linear stochastic model with not only
the input increment but including measurement error for respectively low, medium and
high variance of the noise.

In order to identify the continuous time transfer function of the MIMO system,
the normalized step responses is used by estimating the characteristic parameters. The
identified transfer function is utilized to estimate the mean and variance of the injected
noise and to run an analysis of the Markov parameters for the purpose of determining
the sampling time for further use.

2.3.1 Steady State of the MQT System

During steady state, xss the system is at a fix point where the states remain constant in
time where ẋ = 0, the root of the RHS of function 2.2a, giving

f(xss, uss, dss) = 0 (2.17)

which equations 2.4 becomes a non-linear of four equations with four unknown and let
the steady-state values for the flow rates be

uss =

[
300
300

]
dss =

[
250
250

]
(2.18)

The system which is given by function (2.17) is solved using a Matlab command, fsolve
with a wrap function since the function of the model is autonomous and can’t be inserted
directly in the fsolve command. This is because the fsolve command works with a
function whose first argument is the variable of the system i.e x instead of t. The
corresponding measurements, yss and output, zss is solved using sensor and output
functions respectively. The calculated steady state values obtained is as shown in the
matrices below

xss =




4.1068
3.6822
2.3787
2.2157


 104[g] dss =




108.0357
96.8675
62.5759
58.2863


 [cm] zss =

[
108.0357
96.8675

]
[cm] (2.19)
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2.3.2 MQT System Operations

The first part of the simulation is for the deterministic model where the response of the
system is perturbed by an input in one of the input variables, u1 = F1 and u2 = F2.
The simulation is started when t = t0 during steady state and solved using ode15, a
Matlab command up to t = tf , where the time span for the integration/iteration can be
determined. For this simulation, N = 100 points that is uniformly distributed form t0
until tf is predetermined.

The responses is exhibited in Fig.2.3 and Fig.2.4 for mass, m and outflow, Qout
respectively. On the left of the panels shows the responses for u1 input and on the
right is the responses for u2 input. The system reacts to the inputs and illustrates the
dynamic of the water flow between connected tanks. As for the first input, F1 results
in deviations of the mass of m1, m2 and m4 which represents the operation of the first
pumping system. The operation of the second pumping system can be seen as in the
right of the panels where input in F2 does not give any effects to the mass of m4 but we
can see the changes of mass accordingly in the other tanks. This dynamics can also be
seen in the outflow responses in Fig.2.4.
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Figure 2.3: Step responses of mass in each tanks for input u1 and u2
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Figure 2.4: Step responses of outflow in each tanks for input u1 and u2

2.3.3 Step Reponses for Deterministic Model

With given input of u1 and u2, we want to analyse the level of fluid in each tank with
different levels of steps increment. Fig.2.5a shows the responses of a 10% step increment
in blue, 25% in red and 50% in green. In a glimpse, the order of transfer function
for each and every output responses can be observed. Details of the transfer function
identification form the output responses are described in the following section.

As for the normalised step responses, all of the responses are computed for each
manipulated variable separately. Normalised step responses are defined as

S(t) =
x(t)− xss
u(t)− uss

(2.20)

It is important to note that in equation 2.20, the numerator gives the step response
in terms of the state variables which is the deviation from the steady state and the
denominator provides the deviation of the input variables from the steady state which is
the input step size. Thus, with a given deviation of inputs, S(t) represents the deviation
of the output from the steady state. Fig.2.5b shows the normalized step response for
10%, 25% and 50% increases in blue, red and green respectively for input F1 on the left
and input F2 on the right respectively for the deterministic model without measurement
noise. The differences between the step increases are insignificant but existent and this is
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Figure 2.5: Step responses and normalized step response for height of
the tank liquid level in 10%, 25% and 50% increment of input F1 and F2
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expected for the non-linear model, whereas the responses would be identical if the model
is linear.

2.3.4 Step Reponses for Stochastic Model

The step responses have also been evaluated for the stochastic nonlinear model including
only measurement noise (vt ∼ N(0, R)) for the same increment step sizes defined in the
previous section. The stochastic non-linear step responses obtained have been computed
for three different noise levels with variances as shown in the matrices below:

RL =




12 0 0 0
0 12 0 0
0 0 12 0
0 0 0 12


 RM =




22 0 0 0
0 22 0 0
0 0 22 0
0 0 0 22


 RH =




32 0 0 0
0 32 0 0
0 0 32 0
0 0 0 32




Fig.2.6a, Fig.2.7a and Fig.2.8a presents the results for the step responses for stochas-
tic non-linear model with 10% (blue), 25% (red) and 50% (black) increment in input steps
and one for each with different level of noise. Whilst normalized step response for three
different noise levels are presented in Fig.2.6b, Fig.2.7b and Fig.2.8b respectively. From
observation, it can be seen that the noise is damped for the normalization constant for
a bigger increment of input step. The blue line looks noisy compared to the black lines
regardless of having the same level of noise.

2.3.5 Transfer Function Identification

In order to identify the transfer functions for the MQT system, the transfer function, G
is estimated from these normalized step responses from U to Y

Y = GU (2.21)

and the MIMO system can be represented as
[
Y1

Y2

]
=

[
G11 G12

G21 G22

] [
U1

U2

]
(2.22)

Transfer function G(s) can be either first or second order SISO transfer function and the
analytical forms can be written respectively as

G(s) =
K

τ1 + s
, S(t) = K(1− e

−t
τ1 ) (2.23a)

G(s) =
K

(τ1 + s)(τ2s+ 1)
, S(t) = K(1−Ae

−t
τ1 −Be

−t
τ2 ) (2.23b)

where A and B are given as

A =
τ1

τ1 − τ2
(2.24a)

B =
τ2

τ2 − τ1
(2.24b)

and τ1 and τ2 are the time constants of each SISO system and K is the gain. To obtain
these parameters from the normalized step responses of the non-linear deterministic
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Figure 2.6: Step responses and normalized step responses for stochastic
non-linear model with 10%, 25% and 50% input increment and low noise

level (variance 1)
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Figure 2.7: Step responses and normalized step responses for stochastic
non-linear model with 10%, 25% and 50% input increment and medium

noise level (variance 2)
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Figure 2.8: Step responses and normalized step responses for stochastic
non-linear model with 10%, 25% and 50% input increment and high noise

level (variance 3)
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model, the calculated step response of each input are fitted to their appropriate transfer
functions.
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Figure 2.9: The normalized step responses of the estimated transfer
function with 10% step increment of input

In order to carry out the transfer function identifications only 10% normalised step
responses are considered. From Fig.2.9 only four step responses representing h1 and
h2 with input F1 and F2 is shown since we are interested to measure the height and
identify the transfer function only for Tank 1 and Tank 2. From estimation, the transfer
function for G11 and G22 is estimated as first order whilst G12 and G22 is estimated as
second order transfer function. These identified transfer functions as in equation (2.22)
is represented in Table 2.10 below.

Table 2.10: The identified transfer function from the normalized step
response

G11 = 0.1740
148s+1

G12 = 0.2328
(108s+1)(155s+1)

G21 = 0.2020
(104s+1)(147s+1)

G22 = 0.1465
(139s+1)

From the identified transfer functions we carried out an accuracy test by estimating
the noise levels in the step responses. Then, to obtain a discrete-linear state space model
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and Markov parameters, we utilized a linear model predictive control toolbox provided
to compute the discrete-linear model matrices and the Markov Parameters.

Noise Estimation

We estimate the measurement noise of the system by assuming that

Y = GU + E (2.25a)

E = Y −GU (2.25b)

where E represents the unknown noise (measurement noise) with unknown mean and
variance. From the normalised step responses Y , the noise is estimated using an equation
as in equation (2.25b) involving the transfer function G and compare the values with
the measured noise included in section 2.3.4. The mean and variance of the noise with a
normalized 10% step increment response are computed. The value of mean and variance
estimation is from measured data, h1 and h2 for three levels of noise and with input F1

and F2. The estimations for mean and variance averaging on the different step levels are
provided in Table 2.11 and by comparison, it shows that the values of variances identified
from the transfer functions yield accurate estimation. As for the mean values are very
close to 0, it can be concluded that the mean of the noise is approximated fairly accurate
since the measurement noise for the three different noise level cases has a zero mean.

Table 2.11: Estimation of noise mean and variance averaging the step
level from the identified transfer functions

Average Low Medium High

Mean 3.5e−3 0.0184 0.0367

Variance 1.8747 4.8858 9.8635

Markov Parameters

Next is the analysis of Markov parameters, also known as impulse response coefficients,
for a chosen sampling time. The discrete-time linear state space model is calculated
and then the error of tolerance is set to 10−4, using Markov parameters the states of
the discrete-time model can be determined. The discrete-time state space models are
represented as:

xk+1 = Adxk +Bduk + Eddk (2.26a)

yk = Cdxk +Dduk (2.26b)

From section 2.2 it is known that four states are required to describe the system but this
might not be the case in the discrete-time model. If the smallest singular value of the
discrete state space realization is larger than the error tolerance meaning it has a higher
number of states. The Hankel Singular values of the discrete-time state space model is
as shown as in Fig.2.12 with the dimension of Ad is four. In the next experiment, we
compute the approximation of the steady-state model of the system and compare the
step responses with the one that represents the actual transfer function from section
2.3.5. Referring to Fig.2.13a the comparisons of step responses between approximated
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Figure 2.12: Hankel Singular Values with N = 20

steady-state model and model from the identified transfer function is presented. Blue
dotted line is the step response for the identified transfer function and the red line is from
the approximated state space model. Through observation, both responses are identical
validating the approximated state space model.

The impulse response of the system for both approximated steady state model iden-
tified transfer function is computed for Markov parameters reinforcement. The results
of the responses can be perceived in Fig.2.13b where both of the responses shows an
identical impulse response, likewise validating the approximated state space model.

2.4 Linear Discrete-time State Space Model

A dynamic model of a system can be described in a various way. From the derivation of
the mathematical model, it is possible to obtain the underlying information of the system
and implement a control algorithm to the system. Most of the systems or processes are
usually described by a state space system and by investigating the state of a system at
a certain time and its present and future inputs, it is possible to predict the output in
the future [25]. State space models can be either non-linear or linear form and usually, a
real system or process is described by a non-linear model whereas, in order to estimate
and control the system, most mathematical tools are more accessible to a linear model.
Therefore, in this section, we demonstrate the transformation of a non-linear continuous
model of a modified quadruple tank system described as deterministic-stochastic differ-
ential equations into a linear discrete-time state space model. Several works have been
done on similar four tanks system regarding the modelling of the dynamic of the system.
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Figure 2.13: Step responses and normalized step responses for stochastic
non-linear model with 10%, 25% and 50% input increment and high noise
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A full description of linearization of the model for the four tank system is presented in
[23], [17] and in [26] the linearization is described in detail using the Jacobian matrix
formation to represent the system in state space model.

2.4.1 Linear System Realization

Linearization is required to find the linear approximation to analyze the behaviour of the
non-linear function, given a desired operating point. We apply the first-order term only
of Taylor expansion by truncation around the steady state of the non-linear differential
equations, f(x(t), u(t), d(t)) and consider the derivative of the state variable, x. This
derivative is defined as a function, f ,

f(x(t), u(t), d(t), p) =




ργ1u1(t) + α3 − α1

ργ2u2(t) + α4 − α2

ρ(1− γ2)u2(t) + ρd1(t)− α3

ρ(1− γ1)u1(t) + ρd2(t)− α4


 (2.27)

where αi is given by

αi = ρai
√
xi(t)

√
2g

ρAi
i = 1, 2, 3, 4 (2.28)

and p denote the vector containing all the parameters of the system, for the full descrip-
tion of the parameter see Table 2.1. The Jacobian of f with respect to the state-variables
are

Jx(x(t), u(t), d(t), p) =




−β1 0 β3 0
0 −β2 0 β4

0 0 −β3 0
0 0 0 −β4


 (2.29)

where βi is given by

βi =
1√
xi(t)

√
a2
i gρ

2Ai
i = 1, 2, 3, 4 (2.30)

Similarly the Jacobian of f with respect to the manipulated variables giving

Ju(x(t), u(t), d(t), p) =




ργ1 0
0 ργ2

0 ρ(1− γ2)
ρ(1− γ1) 0


 (2.31)

and lastly the Jacobian of f with respect to the disturbance variables are

Jd(x(t), u(t), d(t), p) =




0 0
0 0
ρ 0
0 ρ


 (2.32)

In this case, we introduced the deviation variables as

X(t) = x(t)− xs U(t) = u(t)− us D(t) = d(t)− ds (2.33)
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and defined the Jacobian matrices evaluated around a stationary point xs, us, ds to be

Ac = Jx(xs, us, ds, p) Bc = Ju(xs, us, ds, p) Ec = Jd(xs, us, ds, p) (2.34)

With these matrices the first order Taylor approximation around the steady state point
are given as

f(x(t), u(t), d(t), p) ≈ f(xs, us, ds, p) +AcX(t)

+BcX(t) + EcD(t)

= AcX(t) +BcX(t) + EcD(t)

(2.35)

For the measurement and controlled variables we introduced Y (t) and Z(t) respectively
and the linearized system of the modified quadruple tank system as

Ẋ(t) = AcX(t) +BcX(t) + EcD(t) X(t0) = 0 (2.36a)

Y (t) = CX(t) (2.36b)

Z(t) = CzX(t) (2.36c)

where the C matrices are defined as

C = Cz =

( 1
ρA1

0 0 0

0 1
ρA2

0 0

)
(2.37)

2.4.2 Discretization of a Linear System

The dynamics of the modified quadruple tank system is now described as (2.36) and to use
this linear continuous model of the system to be subjected to MPC, the model needs to
be discretized by assuming zero-order-hold (ZOH) of the variables at specified sampling
points, that is assuming the exogenous variables are constant between sampling points.
The aim is to have a linear discrete-time state space model with piecewise constant uk,
dk in a form of

xk+1 = Adxk +Bduk + Eddk (2.38a)

yk = Cdxk +Dduk (2.38b)

with discrete-time consideration

tk = t0 + kTs, k = 0, 1, 2...
xk = x(tk)

and assuming the inputs on the ZOH is

u(t) = uk, tk ≤ t ≤ tk+1

then the solution of (2.38) with respect to u is given as

xk+1 = x(tk+1) (2.39a)

= eA(tk+1−tk)xk +

∫ tk+1

tk

eA(tk+1−τ)Bu(τ)dτ (2.39b)

=
[
eATs

]
xk +

[∫ Ts

0

eAηBdη

]
uk (2.39c)



2.4. Linear Discrete-time State Space Model 27

By comparing both equations (2.36) and (2.39) and similar result can be obtained for
disturbances variable d(t) giving

Ad = eATs Bd =
∫ Ts

0
eAτBdτ Ed =

∫ Ts
0
eAτEdτ

Cd = C Dd = D
(2.40)

where Ad, Bd, Ed can be computed with

[
Ad Bd
0 I

]
= exp

([
A B
0 I

]
Ts

)

[
Ad Ed
0 I

]
= exp

([
A E
0 I

]
Ts

) (2.41)

For this particular work, the continuous state space representation matrices were dis-
cretized with Ts = 30s assuming ZOH.

Considering the stochastic part of the model, a piecewise constant process noise, w
measurement noise, v and uncertainty of the initial state, x0 to the process is added. The
linear discrete model from (2.38) is expanded into a stochastic version as in the equation
below

xk+1 = Adxk +Bduk + Ed(dk + wk) (2.42a)

yk = Cdxk + vk (2.42b)

zk = Cdzxk + vk (2.42c)

subject to

x0 ∼ N(x̄0, Pp), wk ∼ N(0, Q), vk ∼ N(0, R) (2.43)

where Q,R is given by

Q =

[
12.52 0

0 12.52

]
R =

[
22 0 0 0
0 22 0 0

]

and Pp is given by

Pp =




0.12 0 0 0
0 0.12 0 0
0 0 0.12 0
0 0 0 0.12




2.4.3 Linear Discrete-time State Space
Representation

In order to rewrite the difference equation system representation (2.38) in a more struc-
tured form, the Markov parameters are introduced. It is a discrete impulse coefficient
of a discrete state space model. The Markov parameters are calculated to avoid mak-
ing iterative simulations to keep only the matrix-vector multiplications. In doing so, a
significant time saving is introduced to the control algorithm and to have an observer
canonical form with minimal realization. Let Hi denote the Markov parameters at the
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i′th sampling time after an unit-impulse, then to obtain the Markov parameters from u
to y is given as

Hi =

{
0 i = 0

CAd
i−1B i = 1, 2, ...N

(2.44)

N is assigned value to be sufficiently large so that the impulse response can reach the
steady state. The Markov parameters for u to z, d to y and d to z is computed the same
way and by replacing the appropriate matrices accordingly. With all the information
being gathered, it can be rewritten in a matrix form of

Y = Φx0 + ΓU (2.45)

where Y , Φ, U are

Y =




y1

y2

y3

...
yi




Φ =




CAd
CAd

2

CAd
3

...

CAd
i




U =




u1

u2

u3

...
ui




while Γ is obtained from the calculated Markov parameters, Hi, i = 1, 2, ...N

Γ =




H1 0 0 . . . 0
H2 H1 0 . . . 0
H3 H2 H1 . . . 0
...

...
...

...

HN HN−1 HN−2

... H1




As for the system with disturbances, the state space model can be represented as

Y = Φx0 + ΓuU + ΓdD (2.46)

where
D =

[
d1 d2 d3 . . . di

]T

From equations (2.45) and (2.46), Φ and Γ can be used for the prediction part from the
Kalman filter for the model predictive control strategy in the next chapter.

2.5 Operating Window in Steady State

In this section, the operating window of the MQT system is featured. We elongate the
study and analysis around the steady state to acquire its comportment and to develop
the operating window which is sets of set points selection boundaries. These operating
windows give some basic ideas and guideline on choosing the appropriate set points in
certain specific conditions of operations.

At steady state, the outflows and inflows of each tank are identical. Therefore, (2.4)
in combination with (2.13) can be combined into

q1,s = q1,in,s + q3,s = γ1F1,s + (1− γ2)F2,s + F3,s (2.47a)

q2,s = q2,in,s + q4,s = γ2F2,s + (1− γ1)F1,s + F4,s (2.47b)

q3,s = q3,in,s + F3,s = (1− γ2)F2,s + F3,s (2.47c)

q4,s = q4,in,s + F4,s = (1− γ1)F1,s + F4,s (2.47d)
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Figure 2.15: Operating window with γi in the RHP

m1,s =

(
γ1F1,s + (1− γ2)F2,s + F3,s

α1

)2

(2.48a)

m2,s =

(
γ2F2,s + (1− γ1)F1,s + F4,s

α2

)2

(2.48b)

m3,s =

(
(1− γ2)F2,s + F3,s

α3

)2

(2.48c)

m4,s =

(
(1− γ1)F1,s + F4,s

α4

)2

(2.48d)

hi,s = βimi,s i = 1, 2, 3, 4 (2.49)

If the liquid heights in Tank 1 and Tank 2, h1,s and h2,s, are specified, the corre-
sponding masses, m1,s = h1s/β1 and m2s = h2s/β2, would also be specified and so would
the outflow rates from Tank 1 and Tank 2, q1,s = α1

√
m1,s and q2,s = α2

√
m2,s. Conse-

quently, the required steady state manipulable flow rates, F1,s and F2,s, must satisfy

[
γ1 1− γ2

1− γ1 γ2

]

︸ ︷︷ ︸
=M

[
F1,s

F2,s

]
=

[
q1,s − F3,s

q2,s − F4,s

]
(2.50)
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Figure 2.16: Operating window with γi in the LHP

The coefficient matrix, M , is singular when

detM = γ1γ2 − (1− γ1)(1− γ2) = 0 (2.51)

i.e when
γ2 = 1− γ1 (2.52)

and (2.50) does not have a unique solution. When detM 6= 0, (2.50) has a unique
solution given by [

F1,s

F2,s

]
=

[
γ1 1− γ2

1− γ1 γ2

]−1 [
q1,s − F3,s

q2,s − F4,s

]
(2.53)

For the case when detM = 0, an extra condition, e.g. F1,s = F2,s, can be used to obtain
a unique solution. In the case F1,s = F2,s, the unique solution is given by

F1,s = F2,s =
q1,s − F3,s

γ1 + (1− γ2)
=

q2,s − F4,s

(1− γ1) + γ2
(2.54)

if it exists. The solution only exists if the latter equality in (2.54) is satisfied. To solve
(2.53), temporarily let b1 = (q1,s − F3,s) and b2 = q2,s − F4,s

[
F1,s

F2,s

]
=

1

detM

[
γ2b1 − (1− γ2)b2
γ1b2 − (1− γ1)b1

]
(2.55)

With the manipulation of (2.55) the equation can be transform into two condition,
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Condition 1: det M > 0

1− γ1

γ1
≤ q2,s − F4,s

q1,s − F4,s
≤ γ2

1− γ2
(2.56)

Condition 2: det M < 0

γ2

1− γ2
≤ q2,s − F4,s

q1,s − F4,s
≤ 1− γ1

γ1
(2.57)

By inserting (2.49) into (2.13) and ηi is given by,

ηi =
αi√
βi

i = 1, 2 (2.58)

the possible feasible region of set points of the heights in Tank 2, h2,s can de determined
by

h2,lb ≤ h2,s ≤ h2,ub (2.59)

where h2,lb and h2,up is upper and lower bound of h2 respectively with

h2,lb =



(
1−γ1
γ1

)(
η1

√
h1,s − F3,s

)
+ F4,s

η2




2

h2,ub =



(
γ2

1−γ2

)(
η1

√
h1,s − F3,s

)
+ F4,s

η2




2

This corresponds to solving

f(xs, us, ds, p) = 0 (2.60a)

ys = g(xs, p) (2.60b)

zs = h(xs) (2.60c)

for xs when us, ds and p are given.
We derived and investigated the steady state to determine the possible feasible region

of set points and a suitable operating window for the modified quadruple tank system.
It is non trivial decision to choose the appropriate range of set point, h2 for certain
conditions such as the value of γi and disturbances F3 and F4 with min and max bound
of disturbances selections is 0 ≤ d ≤ 100. The simulation of the analysis shows the
possible region of setpoint selections.

The white region in Fig.2.15 and Fig.2.16 shows the operating window that is feasible
for different disturbance conditions. Referring to Fig.2.14a and Fig.2.16a, although the
feasible region to choose h2 is wide, it can be seen that it is bounded with upper and
lower limits, and if we refer to Fig.2.14c and Fig.2.16c it is almost not possible to choose
the middle set points. Comparing Fig.2.14d and Fig.2.16d, with a different selection of
the fixed fraction of the water flow γi, the modified quadruple tank system is able to
operate at the maximum value of disturbances during LHP operation.
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2.6 Summary

The first essential part of the research work which is the comprehension of the MQT
system is presented in this chapter by extracting the governing equations of the system
and expressing it in a structured mathematical model through simulation and analysis.

• The presented model which is provided in Paper A describes the modified quadru-
ple tank system as a deterministic and stochastic ordinary differential equations
(ODEs) model. In particular, it was presented how step tests can be conducted
and used to identify the transfer function from the normalized step response.

• The steady state analysis is investigated in order to develop an operating window
to determine the selection of set points since not all set points combinations are
possible for the system to attain its desired outcomes. This operating window for
the MQT system is also presented in Paper A, it is not negligible and useful for
future controller design.

• The chapter has also illustrated how linear models of MQT processes can be
obtained by linearization and discretization, and then we reconstruct the structure
of the model to make it more presentable by using Markov parameters so to have
a model that is suitable for computer control analysis, as exhibited in Paper B.



CHAPTER 3
State Estimation

This chapter focuses on the state estimation for the estimator part of the MPC by
incorporating a Kalman filter. The Kalman filter consists of two parts, the filtering part
and the predictions part. The filtered part is utilized to estimates the current state
based on the model and the measurements whilst the prediction part is used by the
constrained regulator to predict the future output trajectory, given an input trajectory.
In this chapter, a brief introduction of state estimation is presented and in the next
section description of the Kalman filter is provided. The Static Kalman filter algorithm
derived from the Discrete-time Kalman filter is considered in this study. Finally, in
assuring to have an offset-free control, a disturbance model is included in the model of
the system and the formulation is presented in the final section.

3.1 Discrete-time Linear System for State

Estimation

The block diagram in Fig.3.1 shows that the MPC implementation segment consists of
an estimator and an optimizer. The state estimation is the core of the MPC since the
estimator incorporates feedback into the MPC and provides estimation to the optimizer
or regulator to proceed in the next step for predictions.

In order to predict the future dynamic behaviour of the MQT system, it is important
to have an estimation of the current states of the process since it is unknown and cannot
be measured directly. Therefore the state of the process, xk need to be estimated and
this can be done by the measurement of the process which is somehow related to the
state.

To this end, the discrete-time linear stochastic state space model derived in section
2.4 in the form of

xk+1 = Adxk +Bduk + Eddk + Edwk (3.1a)

yk = Cdxk + vk (3.1b)

subject to
wk ∼ N(0, Q), vk ∼ (0, R) (3.2)

where the process noise wk and measurement noise vk are distributed as

[
wk
vk

]
∼ Niid

([
0
0

]
,

[
Q S
ST R

])
(3.3)

where R and Q is the covariance matrix of measurement error, wk and disturbances
variable, vk accordingly, S is the covariance matrix between disturbance variable, vk and

33
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Figure 3.1: Block diagram of the control structure for the
MQT system process

measurement error, wk. The covariance matrices Q, R, and the cross-covariance matrix
S are positive definite and symmetric. The distribution of the initial state is given by

x0|−1 ∼ N(x̂0|−1, P0|−1) (3.4)

and is independent of process and measurement noise.

3.2 Kalman Filter

Given the measurement is yk with k = 0, 1 . . . N , the discrete-time interval [0, N ] and let
YN represents the set of measurements from discrete-time k = 0 to k = N

YN = y0, y1, . . . , yN (3.5)

The main aspect in the state estimation problem is to obtain an estimation of state,
x̂k|k from the current state, xk, based on the measurement data, yk at time k and in
order to obtain this state estimation, Kalman filter is used. It is a recursive approach
based on R.E Kalman [27] where the main role of Kalman filter is to minimize the sum of
squared errors between the current state, xk and the state estimation, x̂k|k. For optimum
filtration, the estimation model is assumed identical to the real system, both process and
measurement noise is assumed white and the source of the covariances of the noise is
assumed precisely known.

There are two sets of recursions of Kalman filter for the discrete-time stochastic
model, first is the filter part (a data update) where the filtered variables is based on the
current measurement, (k|k) and the other one is a step prediction part (a time update)
where the predicted variable depends on the previous measurement, (k|k − 1).
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Given the data set Yk, the conditional expectation of the state, xk and the process
noise, wk is computed in relates to the filtered part.

x̂k|k = E {x̂k|Yk} (3.6a)

ŵk|k = E {wk|Yk} (3.6b)

associated covariances of the state estimate is

(3.6c)

Pk|k = V ar {x̂k|Yk}

Given the data set Yk, the conditional expectation of the state, xk is computed in relates
to the prediction part.

x̂k+1|k = E
{
x̂k+1|k|Yk

}
(3.7a)

Pk+1|k = V ar
{
x̂k+1|k|Yk

}
(3.7b)

3.3 Discrete-time Kalman Filter

In this section, the details of discrete-time Kalman filter implementation is presented. In
the algorithm, unknown variables are estimated from the MQT system which is defined
with disturbance and measurement noise. Assuming at stationary point t = tk and the
measurement yk = y(tk), the filtering part can be performed by calculating

ŷk|k−1 = Cx̂k|k−1 (3.8a)

ek = yk − ŷk|k−1 (3.8b)

x̂k|k = x̂k|k−1 +Kfx,kek (3.8c)

ŵk|k = Kfwek (3.8d)

x̂k+1|k = Ax̂k|k +Buk + ŵk|k (3.8e)

by using the coefficients

Re,k = CPk|k−1C
T +R (3.9a)

Kfx,k = Pk|k−1C
TR−1

e,k (3.9b)

Kfw = SR−1
e,k (3.9c)

and the following expression for one-step prediction can be achieved

Pk+1|k = APk|kA
T +Qk|k −AKfx,kS

T − SKT
fx,kA

T (3.10)

Computations of the Kalman filter

With the initial condition given by equation (3.4) and at sample k = 0, the recursive
computation of the static Kalman filter starts. New measurement of the system, yk, is
given to the state estimator for every sample of k = 0, 1, 2... where ek is the error between
the actual measurement, yk and the predicted measurement, ŷk|k−1 is computed, as
shown in equation (3.8b). From equation (3.8a) the predicted measurement is predicted
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from the actual measurement, yk at sample k but computed at sample k − 1 provided
by a set of data from yk−1 and based on the one-step prediction as in equation (3.8c).
The one-step prediction, x̂k|k−1 is the prediction from the current state, xk at sample
k which is computed at sample k − 1. The filtered state estimation, equation (3.8c) is
computed using ek and x̂k|k−1 and the filtered process noise, equation (3.8d)is estimated
by using ek. Finally the one-step prediction given by equation (3.8e) is computed for the
Kalman filter to prepare for the next process measurements.

3.4 Static Kalman Filter

The static Kalman filter follows the same structure as the discrete-time Kalman filter
but for static Kalman filter, the covariance matrix Pk|k−1 is kept constant. Moreover,
it is taken as in the limit k → ∞ and with this assumption, the computation can be
performed as Riccati equation. From equation (3.10) it can be rewritten into a difference
equation form as

Pk+1|k = APk|k−1A
T +Q− (APk|k−1C

T + S)(CPk|k−1C
T +R)−1(APk|k−1C

T + S)T

(3.11)
P signifies the stationary one-step ahead state error covariance matrix obtained from the
Discrete-time Algebraic Riccati Equation (DARE), yielding the following expression

P = APAT +Q− (APCT + S)(CPCT +R)−1(APCT + S)T (3.12)

and in the stationary condition, the coefficients in equations (3.9) can be simplified as

Re = CPCT +R (3.13a)

Kfx = PCTR−1
e (3.13b)

Kfw = SR−1
e (3.13c)

and these coefficients is computed offline.

Since by using this limit as an approximation to the one-step matrix and the Kalman
gains, Kfx and Kfw becomes constant matrices, it will lighten the complex computations
of estimating the current state, xk. From equations 3.8, the filtration and estimation
updates for the static Kalman filter are computed. By solving the Riccati equation in
equation (3.12), the stationary covariance matrix P is obtained and the computation
depends on the noise covariance matrices Q, R and S.

3.4.1 Simulation for the Static Kalman Filter

The simulation for the static Kalman filter started with equation (3.1) with given inputs
uk and dk at some random initial condition x0 and constructed forward in time states,
measurements and outputs. The stochastic variables were simulated beforehand with an
appropriate mean and covariance. The command randn in Matlab was used to produce
the stochastic realizations by using Cholesky factorization and a seed for randn was set
to always have the same realization of noises for the simulations.
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Figure 3.2: Disturbance Step Input F3 and F4 for
Condition 1 and Condition 2 respectively

For testing purposes, the step change in the disturbances of F3 and F4 is applied at
t = 50min, realized as 20 units of deviation from the steady state, as shown in Fig.3.2
individually for Condition 1 and Condition 2 respectively.

The simulation was done for 120 minutes with 30 seconds of sampling time. The
simulation results for Condition 1 and Condition 2 are presented in Fig.3.3 and
Fig.3.4 respectively. The role of the static Kalman filter is observed by comparing the
measurements responses. The blue lines (Unfiltered) represents the actual measurements
and the red lines (Filtered) represents the corresponding predicted measurements. It can
be observed that the static Kalman filter performed satisfactorily where it estimated a
prediction compatible with the simulated data with the effect of the step change in the
disturbance variables, d = [F3 F4]T . This shows that with a step change included, the
algorithm has the ability to predict both simulated measurements and outputs.

Generally, it can be clearly seen that the filter is well performed tracking the output
trajectory from the noisy measurements and also it can cope well dealing with an impact
of the unknown disturbance step. Throughout the following chapters, the static Kalman
filter will be incorporated in the MPC design and implementation for the MQT system
since the covariance matrix Pk|k−1 is kept constant and the computation of the controller
is lightened due to the fact that covariance Pk+1|k converges to equilibrium rather fast.



38 Chapter 3. State Estimation

0 20 40 60 80 100 120
105

110

115

120
h1

0 20 40 60 80 100 120

Time [min]

95

100

105

110

h2

Unfiltered Y
Filtered Y
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Figure 3.4: Kalman filter with measurement variable h1 and h2 with
input disturbance of F4
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Predictions from the Static Kalman Filter

For future output prediction, the filtered state estimation, x̂k|k is applied as the initial
value and the filtered process-noise is included in the one-step prediction as given by
equation (3.8). As for the predictions of the entire horizon, N the process noise estimate
wk+j = 0 for j > 0 since wk and vk are correlated only for the current k. Thus, the state
prediction for the next step, (j + 1) can be computed by

x̂k+1+j|k = Ax̂k+j|k +Buk+j|k, j = 1, 2, ... (3.14)

3.5 Offset-free Control

Uncertainties of parameters and hardware accuracy or limitations could lead to model
mismatch and unmeasured disturbances, consequently instigating an offset. Due to this
offset, the performance of the control system can be affected. Since model predictive
control is a model based controller which the performance is fully dependent on the
dynamic model of the system, both unmeasured disturbances and model mismatch should
be taken into account to intensify the robustness of the controller.

For simulation purposes, we can choose any inputs for the plant to produce the
desired output but at the same time, it has to be realistic. In closed-loop simulations,
the inputs are computed for the next iterations to solve the optimization problem and to
simulate the output responses of the system but the values computed by the controller
cannot be simply implemented due to the accuracy and limitation issues. This could be
considered as additional unmeasured disturbances in the existing disturbance variables
and model mismatch.

Therefore, for practical purposes and to resolve this issue, an offset-free control con-
cepts is applied where an augmented system from the original system is used. The system
can be modified in many ways depending on the augmentation of the states. One way
is to add the integration of the tracking error to the model of the system or to include
a velocity form of the state space model or to modifies the model of the system by
adding input or/and output disturbance model. Each and every approach has its own
advantages and drawbacks [23].

In this thesis, the latter approach is used to achieve an offset-free control but only
the input disturbance is included. This approach is considered due to the fact that by
abolishing the output disturbance model, it would reduce the computational time of
solving the equations of the system substantially [23].

3.5.1 Input Disturbance Model

A new stochastic model is formulated by introducing an input disturbance variable, ηk as
a separate state variable of the model which affects input, u in the form of Uk+ηk where
the matrix dimensions are similar. Hence, the model for the additional disturbances is
given by

ηk+1 = Aiηk + ξk Ai =

[
1 0
0 1

]
(3.15)

where ξk ∼ N(0, Qξ) is a stochastic variable equivalent to wk and vk and taking Qξk =
I ∗ 12.
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The offset-free model can be written by rephrasing the linearized continuous stochas-
tic description of the system from equation (2.36) by tallying the new disturbance vari-
able, giving a discrete model in the form of

Xk+1 = AXk +B(Uk + ηk) + E(Dk + wk) (3.16a)

ηk+1 = AiXk + ξk (3.16b)

Yk = CXk + vk (3.16c)

Zk = CzXk (3.16d)

Then, equation (3.16) can be rewritten in terms of the extended states and noises,

X̆k =

[
Xk

ηk

]
w̆k =

[
wk
ξk

]
(3.17)

therefore, the new stochastic model for offset-free control is

X̆k+1 = AeX̆k +BeUk + EeDk +Gew̆k (3.18a)

Yk = CeX̆k + vk (3.18b)

Zk = Cz,eX̆k (3.18c)

with the new matrices is given by

Ae =

[
A B
0 Ad

]
Be =

[
B
0

]
Ee =

[
E
0

]

Ge =

[
E 0
0 I

]
Ce =

[
C 0

]
Cz,e =

[
Cz 0

]

3.6 Summary

The concept of state estimation and the importance of estimating the current state in
contributing the output predictions are briefly described in this chapter. Besides that, a
brief description of the Kalman filter is included to have an overview of the filter as it is
incorporated for state estimation and output predictions.

• Based on the model and the measurements, the current state of the MQT system
was estimated and the algorithm from the static Kalman filter is able to compute
the output predictions.

• The static Kalman filter is incorporated in MPC design and implementation for
the MQT system since the covariance matrix, Pk|k−1 is kept constant and the
computation of the controller is lightened due to the fact that covariance Pk+1|k
converges to equilibrium faster. This can be seen in Paper B where the comparison
between the dynamic and static Kalman filter was presented.

• The stationary one-step ahead state error covariance matrix obtained from the
Discrete-time Algebraic Riccati Equation (DARE) to complement the MPC design
and implementation.

• An input disturbance model is introduced to model the impact of the immeasur-
able disturbance to achieve an offset-free control.



CHAPTER 4
Model Predictive Control

This chapter provides a demonstration of model predictive control implementation for
the modified quadruple tank system. We give an overview of the MPC theoretically
and describe the formulations mainly designed concurring with the MQT system. The
demonstration of the controller implementation complete with the derivations of the
equations including unconstrained MPC and input constrained MPC is presented in this
chapter as exhibited in Paper C. Additionally, the input with soft output constrained
MPC is included to further investigate the performance of the MPC. All results from the
simulation works are compiled in the next chapter.

4.1 Unconstrained Model Predictive

Controller

In this section, we develop unconstrained model predictive controllers based on the
discrete-time state space models as in equation (3.1). Having designed the Kalman
filter for the MQT system, the regulator will be implemented to form the complete MPC
framework in Fig.1.3.

The control task is to track the setpoint trajectory as a quadratic optimization
problem by developing an objective function that will minimize the deviation of the
predicted output trajectory from the setpoint trajectory,

min
u

1

2

N∑

k=1

||zk − rk||2Qz +
1

2

N−1∑

k=0

||∆uk||2S (4.1a)

s.t.

xk+1 = Axk +Buk + Edk k = 0, 1, . . . , N − 1 (4.1b)

zk = Cxxk k = 0, 1, . . . , N − 1 (4.1c)

From equation (2.46), Z can be expressed in a matrix form of

Zk = Φx0 + ΓuU + ΓdD (4.2)

where Zk and Rk are

Zk =




z1

z2

...
zN


 Rk =




r1

r2

...
rN




Uk, Rk and Zk are deviation variables vectors. The weight matrices Qz and S in
equation (4.1) are realised as diagonal matrices since we want to penalise the deviation of
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Tank 1 and Tank 2 from the desired targets, as well as large steps in the input variables,
respectively.

In minimizing the objective function, equation (4.1) it can be expressed in a compact
form as

min φ = φz + φ∆u (4.3)

The first term in the objective function is related to the desired target and the main part
of the least squares minimization problem. It ensures that the system reaches towards
the desired target values, r1 and r2.

φz =
1

2
||Zk −Rk||2Qz

=
1

2
(Φx0 + ΓUk + ΓdD −Rk)

2

Qz (Φx0 + ΓUk + ΓdD −Rk)

(4.4)

Let

bk = Rk − Φx0 − ΓdD (4.5)

and now we can express the problem as QP in minimizing φz, an objective function based
on the controlled variables.

φz = 1
2 (ΓUk − bk)

T
Qz (ΓUk − bk)

= 1
2U

T
k ΓTQzΓUk − (ΓTQzbk)TUk + ρ

= 1
2U

T
k HzUk + gTz Uk + ρ

(4.6)

where

Hz = ΓTQzΓ (4.7a)

gz = −ΓTQzbk (4.7b)

= −ΓTQzRk + ΓTQzΦx0 + ΓTQzΓdD

= MRRk +Mx0x0 +MdD

ρ =
1

2

(
bTQzbk

)
(4.7c)

Since using the objective function based only on the controlled variables is insufficient, we
include the input variables, φ∆u in the objective function as the second term. The second
term is the regularization term, which ensures smooth input solutions which minimize
the difference of uk from the previous input to have less error.

min φ∆u =
1

2

N−1∑

k=0

||∆uk||2S (4.8)

We want to rewrite this problem into standard QP. First, we want to derive φ∆u using
similar approach to φz but ∆u needs to be expressed in terms of uk,

∆uk =




∆u0

∆u1

∆u2

∆u3


 =




u0

u1 − u0

u2 − u1

u3 − u2


−




u−1

0
0
0


 (4.9)
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To have better formulation, we introduce Λ, Uk and I0 as

Λ =




I 0 0 0
−I I 0 0
0 −I I 0
0 0 −I I


 Uk =




u0

u1

u2

u3


 I0 =




I
0
0
0




where I denotes an identity matrix of the size of u, I0 denotes the block vector with I
in the first entry while having zero matrices fill up the rest of the rows to have the same
row-size as matrix Λ, then ∆uk can be rewritten as

∆uk = ΛUk − I0u−1 (4.10)

We expand equation (4.8) by substituting with equation (4.10) and the objective function
φ∆u yields

φ∆u = 1
2 ||ΛUk − I0u−1||2S

= 1
2U

T
k

(
ΛT S̄Λ

)
Uk +

(
−ΛT S̄I0u−1

)T
Uk + ρ

= 1
2U

T
k H∆u

Uk + gT∆u
Uk + ρ

(4.11)

where

H∆u
= ΛT S̄Λ (4.12a)

g∆u
= −ΛT S̄I0u−1 (4.12b)

= Mu−1u−1

ρ =
1

2

(
UTk I

T
0 S̄
)

(4.12c)

Combining equation (4.6) and (4.11) and ρ is disregarded as these are constant, resulting
an optimization of the deviation from the setpoint (reference trajectory) and the input
variables given as equation (4.1) becomes

min
u

1

2
UTk HUk + gTUk (4.13a)

s.t.

xk+1 = Axk +Buk + Edk , k = 0, 1, . . . , N − 1 (4.13b)

zk = Cxxk, k = 0, 1, . . . , N (4.13c)

where
H = Hz +H∆u g = gz + g∆u (4.14)

MPC computation when stated as a QP is solved by first computing

g = MRRk +Mx0x0 +MdD +Mu−1u−1 (4.15)

then solving the QP

u∗ = −H−1g

= −H−1 (MRRk +Mx0
x0 +MdD +Mu−1u−1)

= LRR+ Lx0
x0 + LdD + Lu−1u−1

(4.16)

with the first block row of LR, Lx0 , Ld, Lu−1 is given by KR,Kx0 ,Kd,Ku−1 and the
optimal control law is

u∗0 = KRR+Kx0
x0 +KdD +Ku−1u−1 (4.17)
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4.2 Constrained Model Predictive

Controller

An optimal control decision for unconstrained MPC could affect the flow of the liquid.
It could be applying negative flows into the two controllable pumps, giving an impact of
sucking the liquid out of the tanks. It also could be inviable changes in the flow rates due
to potential mechanical limitations or the rate at which the control input can be changed
is bounded. Therefore, to avoid infeasible decisions by the controller and to ensure that
the MQT system works under a secure condition without damaging any mechanical parts,
we introduced the constraints to allows the controller to decide an optimal control moves
within certain bounds. MPC is well recognized for this advantages and we will show the
implementation of MPC with constraints classified as input and soft output constraints.

4.2.1 Input Constrained MPC

To make the simulation of the model-based controller on the MQT system more realistic,
we considered two different hard constraints; first is the one that sets the upper and lower
bounds on the manipulated variables, umin 6 u 6 umax and the other one is the rate of
change in input, ∆umin 6 ∆u 6 ∆umax. The formulation of the problem is the same as
stated in equation (4.1) but subjected to constraint it becomes

min
u

1

2

N∑

k=1

||zk − rk||2Qz +
1

2

N−1∑

k=0

||∆uk||2S (4.18a)

s.t.

xk+1 = Axk +Buk + Edk k = 0, 1, . . . , N − 1 (4.18b)

zk = Cxxk k = 0, 1, . . . , N − 1 (4.18c)

umin 6 uk 6 umax k = 0, 1, . . . , N − 1 (4.18d)

∆umin 6 ∆uk 6 ∆umax k = 0, 1, . . . , N − 1 (4.18e)

In standard QP form, this can be written as (4.13) and the inequality constraints referring
to equation (4.18e) needs to be updated at each iteration since it contains the input
variables form the previous step, uk−1|k. In developing the simulation code for the input
constraint MPC, the Hessian matrix is obtained by offline computations, essentially the
same as the unconstrained MPC but the calculation of the inequality matrix and the
corresponding upper and lower bounds are set beforehand. Likewise, during the regulator
process, equation (4.18d) is supplied as upper and lower bounds to the quadratic solver
in Matlab and the 2 inequalities in equation (4.18e) are formulated in the form of




∆umin
∆umin

...
∆umin


 6




u0 − u−1

u1 − u0

...
uN − uN−1


 6




∆umax
∆umax

...
∆umax


 (4.19)

Since the first row contains u−1 this can be written as

∆umin + u−1 6 u0 6 ∆umax + u−1 (4.20a)

umin 6 u0 6 umax (4.20b)
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and the rest of the rows are arranged in the form of




∆umin
∆umin

...
∆umin


 6




−I I
−I I

. . .
. . .

−I I







u0

u1

...
uN−1


 6




∆umax
∆umax

...
∆umax


 (4.21)

which can be simplified as

∆Umin 6 ΛUk 6 ∆Umax

Therefore, an optimization of the deviation from the setpoint (reference trajectory)
and the input variables becomes

min
u

Φ =
1

2
UTk HUk + gTUk (4.22a)

s.t.

Umin 6 Uk 6 Umax (4.22b)

∆Umin 6 ΛUk 6 ∆Umax (4.22c)

where H and g is as given in (4.14). The optimised input is returned and the first two
entries obtained and applied in the next iteration, similar to the previous unconstrained
MPC.

4.2.2 Input and Soft Output Constrained MPC

Since both unconstrained and input constrained MPC is derived in the previous sections,
we also need to include the output constraint. A feasible approach to introduced any
constraints on the controlled variables is to directly add hard constraints as shown in
section 4.2.1

zmin,k 6 zk 6 zmax,k (4.23)

Generally, the output constraints should not be violated, but due to unknown distur-
bances and noises, it could be violated and the QP would have no feasible solution which
can cause an abrupt stop to the controller. The more sophisticated way of introducing
constraints on the controlled variables is to ensure that the QP is able to yield a solution
to the controller by adding a slack variable, ηk to formulate the soft constraints,

zk 6 zmax,k + ηk k = 1, 2, ...N
zk 6 zmin,k − ηk k = 1, 2, ...N
ηk > 0 k = 1, 2, ...N

significantly by introducing a penalty term in the objective function to allow the output
constraints to be violated should the physical constraints are exceeded,

min φs =
1

2

N∑

k=1

||ηk||2Sη + sTη ηk (4.24)

Therefore, the input constrained and soft output constrained MPC can be formulated as
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min
u

1

2

N∑

k=1

||zk − rk||2Qz +
1

2

N∑

k=1

||ηk||2Sη + sTη ηk +
1

2

N−1∑

k=0

||∆uk||2S (4.25a)

s.t.

xk+1 = Axk +Buk + Edk k = 0, 1, . . . , N − 1 (4.25b)

zk = Cxxk k = 0, 1, . . . , N (4.25c)

umin 6 uk 6 umax k = 0, 1, . . . , N − 1 (4.25d)

∆umin 6 ∆uk 6 ∆umax k = 0, 1, . . . , N − 1 (4.25e)

zk 6 zmax,k + ηk k = 1, 2, ...N (4.25f)

zk 6 zmin,k − ηk k = 1, 2, ...N (4.25g)

ηk > 0 k = 1, 2, ...N (4.25h)

We want to rewrite the objective function into QP form and the new term in the
objective function from equation (4.24) is formulated as

φs =
1

2
ηTHηη + gηη (4.26)

by introducing

η =




η1

η2

...
ηN


 (4.27)

where the Hessian and gradient are

Hη =



Hη

. . .

Hη


 and gη =



gη
...
gη


 (4.28)

Equation (4.25) can be augmented and rewritten into matrix notation such as

min φ =
1

2

[
U
η

]T [
H 0
0 Hη

] [
U
η

]
+

[
g
gη

]T [
U
η

]
(4.29)

subject to lower and upper bounds
[
Umin

0

]
6

[
U
η

]
6

[
Umax
∞

]
(4.30)

and subject to constraints for input rate and output in the following formulation



∆Umin
−∞
Z̄min


 6




Λ 0
Γ −I
Γ I



[
U
η

]
6




∆Umax
Z̄max
∞


 (4.31)

Then to have better formulation we simplified the system by introducing Ū , H̄ and ḡ in
the form of

H̄ =

[
H 0
0 Hη

]
Ū =

[
U
η

]
ḡ =

[
g
gη

]
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The lower and upper bound can be simplified as l 6 Ū 6 u and the contraints for input
rate and output can be simplified as bl 6 AŪ 6 bu. The standard QP is given as

min
u

Φ =
1

2
ŪT H̄Ū + ḡT Ū (4.32a)

s.t.

l 6 Ū 6 u (4.32b)

bl 6 AŪ 6 bu (4.32c)

4.3 Summary

One of the main objectives of the study is presented in this chapter. The implementation
of Model Predictive Control for the Modified Quadruple Tank system is developed and
demonstrated through simulations based on the state space model derived in the previous
chapters.

• The first part of the chapter deals with the formulation of the unconstrained MPC
based on the linear discrete-time state space model. Then the MPC regulation
problem which is formulated as a quadratic optimization problem is illustrated.
The associated quadratic optimization problem is solved explicitly and all this
explanation is disclosed in Paper C.

• The second part of the chapter includes the constraints. The formulation of dif-
ferent constrained model predictive controllers is considered and the quadratic
optimization problems resulting from the constrained MPC regulation problems.

• The results and analysis of these MPC algorithms are presented in the next section.





CHAPTER 5
Simulations and Analysis

This chapter shows the closed-loop simulation results and analysis from the MPC im-
plementation for the modified quadruple tank system. MPCs presented in the following
sections are discussed and evaluated with various test cases. The main objective is to
evaluate the performance of the MPC in terms of the behaviour of the system and to
verify should the realisations are physically feasible. The chapter is organized as follows.
The first part of the chapter presents the simulation results from the Unconstrained MPC
and the second part is followed by the constrained MPCs. As for the constrained MPCs,
the section will be divided into two parts, Input Constrained MPC and Input and Soft
Output Constrained MPC. All results from the simulation are compiled and presented
in this chapter.

5.1 Overview

MPC algorithm constructed in Chapter 4 are implemented and tested with several ex-
periments and the performances are analysed based on the capability of the algorithm
of the controller to compensates the disturbances by modifying the inputs such that the
outputs remain close to the reference. In other words, the performance of the controller
is measured based on the observation of the output responses for setpoint tracking. Each
experiment is analyzed with different level of percentage in step input change, however
by using 15% step input change resulting in a perceptible responses suitable for this
study. For simulation purposes, the linear stochastic model is utilized in which noise
is included as a normal distribution to the disturbance variables and the measurement
variables.

Fig.5.1 shows the flowchart of the simulation work for MPC implementation. Starts
with defining the parameters of the MQT system in Parameter.m and in the MPCCon-
trol.m command window, a Matlab function named MPCDesign.m, MPCInput.m and
MPCSimLin.m is developed.

Within the MPCDesign.m function, the Hessian matrices for the corresponding op-
timisation problem are built in DesignMPC Matrices by taking the discrete-time linear
model matrices, condensed LTI matrices and weights of the objective function as inputs
specified in MPCInput.m. The discrete-time linear model matrices is obtained from the
continuous-time non-linear model that has been linearized and discretized beforehand.

In addition, the filter gains of the static Kalman filter that are precomputed sepa-
rately in the function DesignKalman is pass to MPCSimLin.m through MPCDesign.m.
At every stage of the closed-loop, the main task of MPCCompute function is to look
for a solution of QP sub-problem solved with the aid of Matlab utility, QPSolver. Fi-
nally, the variables were transformed from deviation to physical variables and graphs are
illustrated in MPCPlot.m.
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START 
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Figure 5.1: Flowchart of the simulation work for MPC implementation
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Figure 5.2: 15% step input change in reference trajectory of F1 and F2

for Experiment 1 and Experiment 2
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Figure 5.3: No step input change in F3 and F4 for Experiment 1
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Figure 5.4: 15% step input change in F3 and F4 for Experiment 2
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A total of two experiments are carried out for each MPC approaches, for Exper-
iment 1 step input change in F1 and F2 is considered and as for Experiment 2,
additional step input change in the disturbances of F3 and F4 is included. Results and
analysis of the simulations for each MPCs which was run for 100 minutes of simulation
time is discussed below. The step input changes is initiate after 25 minutes as shown in
Fig.5.2 for the reference trajectory and as for the disturbances for Experiment 1 and
Experiment 2 is as shown in Fig.5.3 and Fig.5.4 respectively.

As for the Unconstrained MPC, the associated quadratic optimization problem is
solved explicitly. On the other hand, the second part of the chapter deals with the prob-
lem associated with bounds and constraints in the tanks system subject to the limitations
in the instrumentation, such as the specifications of valves, pumps performance and/or
tanks capacity. These bounds and constraints need to be assimilated and adapted to the
algorithm to have a realistic application.

In this part of the chapter, the formulation of different constrained model predictive
controllers and the quadratic optimization problems resulting from the constrained MPC
regulation problems is considered.

5.2 Closed-loop Simulation for

Unconstrained MPC

In this part of the study, the Unconstrained MPC is implemented to the MQT system
in a way to manifest the function and behaviour of an MPC. It is expected that the
implementation of MPC will drive the system to the set point and the solution to be
as smooth as possible. Moreover, the performance of a first-hand straightforward MPC
can be evaluated. These objectives can be achieved empirically by testing the algorithm
presented in section 4.1 on the above described conditions, influenced by white process
noise and measurement noise.

Fig.5.5 and Fig.5.6 depicts the results of the closed-loop simulation for the Uncon-
strained MPC for Experiment 1 and Experiment 2 respectively. The top two graphs
are the output responses and the bottom two presents the obtained inputs u1 and u2

from the MPC. The red line on the output responses indicates the target values for the
output variables and the black line illustrates the measured output.

In Experiment 2, the disturbance variables are initialised such that they contain a
15% step input change in order to evaluate the performance of the regulator in compen-
sating for the upcoming disturbance.

Primarily, from these figures, it shows that the linearized model is a good represen-
tation of the system and MPC is well demonstrated. Both output responses in Experi-
ment 1 and Experiment 2 shows that the MPCs are able to handle the changes when
a new setpoint is introduced and able to reach the new value relatively fast.

The responses show that the system is able to track the references with minimal
overshoot and small transient deviations, keeping the desired height levels h1 and h2 of
Tank 1 and Tank 2 respectively at the desired set points. The algorithm compensates
the step input change and the step change in disturbances by reducing the inputs to keep
the water levels at the desired reference values.
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Figure 5.5: Unconstrained MPC for Experiment 1
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Figure 5.6: Unconstrained MPC for Experiment 2
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Although the MPC managed to compensate the sudden change in inputs and dis-
turbances, note that in order to achieve this circumstance, an abrupt and sharp increase
in the input variables F1 and F2 occurred in both experiments which possibly would be
infeasible for real applications. This glitch can be solved by implementing the subsequent
MPC strategy in the next section.

5.3 Closed-loop Simulation for Constrained

MPC

From the previous section, the Unconstrained MPC is able to keep the desired set point
of levels of height in Tank 1 and Tank 2 and compensate for the disturbances. However, it
can be observed that even though the outputs are driven to the reference in all cases, the
inputs present a very high and steep top when there is a sudden change in the reference,
indicates that the water is injected almost instantaneously. This occasion is unacceptable
from the practical point of view and can be stifled by considering the limitations of the
tank system.

Therefore, we would like to incorporate some restrictions in both input and out-
put limits, appear as bounds and equality/inequality constraints in the objective of the
optimization problem as described in section 4.2.

In this section, the Input Constrained MPC and a combination of Input and Soft Out-
put Constrained is presented and the performance is observed from identical experiments
in the previous section. Each MPC approaches is tested with a different combination
of the boundary of the constraints. Elaboration of the details of the boundary of the
constraints is presented in the designated sections.

5.3.1 Input Constrained MPC

A similar closed loop simulation was implemented and Experiment 1 and Experiment
2 is repeated but in this section, the constraints for the input is included. In practice,
the pumps operates with maximum and minimum flow, [cm3/s] and rate of change in
the flow, [cm3/s2]. The considered constraints for Experiment 1 is given as

0 6 umin 6 350 (cm3/s)
−20 6 ∆uk 6 20 (cm3/s2)

and for Experiment 2 is given as

0 6 umin 6 310 (cm3/s)
−20 6 ∆uk 6 20 (cm3/s2)

Fig.5.7 and Fig.5.8 represents the output of the simulation in response to a set point
change with the same condition of reference trajectory and disturbances as described
earlier in Experiment 1 and Experiment 2 respectively.
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Figure 5.7: Input constrained MPC for Experiment 1
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From both experiments, it can be seen that the output responses of h1 and h2 are able
to track the new set point with satisfactory performance although the transient properties
are slightly deteriorated due to disturbance compensations from the input constraints
and the capacity of the tank system. Consequently, it is physically impossible to stream
the water to the tanks instantaneously so that the output responses able to reach the
reference trajectory momentarily.

Referring to the flow of F1 and F2 for both experiments, it is noticeable that the water
flow is within the boundaries but due to the constraints, it affects the flow by preventing
the development of the abrupt peaks and causing a plateau for smoother flow, indicating
that the rate constraints results in a more well-behaved flow characteristics with a slight
loss of transient properties and the algorithm compensates the peaks in the disturbances
by decreasing the inputs. Note that the constraints for maximum flow for Experiment
1 (350cm3/s) is higher than for Experiment 2 (310cm3/s). These values are chosen
based on the flow shown in Fig.5.5 and Fig.5.6 in order to eliminate the sharp increase
accordingly.

With input constraints, the controller is capable of operating within the limit bounds
but with an acceptable drawback of transient response in the outputs and the amount
of computation required is higher compared to the unconstrained controller. Next, we
would like to include the soft output constraint in the algorithm to have more stringent
outputs to signify the real application.

5.3.2 Input and Soft Output Constrained MPC

In real experiments, each tank has a certain limit of capacity to hold the water while
the water flows in and out of the tanks, depending on the process. The capacity of the
tanks should be taken into consideration to avoid overflow. Problems might occur should
the reference value is given to the algorithm such that the level of the water in Tank 1
and Tank 2 exceeded the maximum level. Therefore, this limitation is incorporated in
the optimization sub-problem, act as a safeguard for the algorithm to produce feasible
outputs if given any reference trajectory that drives the outputs above the threshold.

In this section, the closed-loop simulation was implemented similarly to the Input
Constrained MPC except, in this case, we want to further augment the criterion function
by introducing the soft constraints to the regulator as shown in section 4.2.2. Exper-
iment 1 and Experiment 2 is duplicated from the previous section but with rate of
change in the flow, [cm3/s2] given as

−10 6 ∆uk 6 10 (cm3/s2)

and additional soft output constraints as in equation 4.23 given as

0 6 zk 6 12

In Experiment 2, the maximum and minimum flow, [cm3/s] is given as

0 6 umin 6 300 (cm3/s)

For Experiment 1, the results is presented in Fig.5.9 and for Experiment 2, the
result is presented in Fig.5.10. It is noticeable that on the output responses, the green
dotted lines represent the soft constraints on the target values, giving rmax = 120 and
rmax = 109 for h1 and h2 respectively.



5.3. Closed-loop Simulation for Constrained MPC 57

0 50 100
90

100

110

120

130

h1
 [c

m
]

0 50 100
90

100

110

120

130

h2
 [c

m
]

Setpoint
Output

0 50 100

Time [min]

280

300

320

340

360

F
1 

[c
m

3
/s

]

0 50 100

Time [min]

280

300

320

340

360
F

2 
[c

m
3
/s

]

Input var

Figure 5.9: Input and soft output constrained MPC for Experiment 1
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From observation, the output variables stay within the boundary of the soft con-
straint, remains below the threshold set by the capacity of the tank even though the
reference is higher and able to track the setpoint changes in an acceptable performance
of transient response. This indicates that the soft output constraint utilized act as a
safeguard where it realizes a relaxation around the reference value while keeping the
system from exceeding the limits.

Additionally, referring to the first experiment in Fig.5.9, the flow of F1 is within the
boundaries and rather smoother compared to the previous approach which is the Input
Constrained MPC, but the control algorithm could not suppress the step input in the
reference trajectory for the flow of F2, resulting a sharp peak making it infeasible for real
application. This could be different should the upper boundary of the flow, umin(cm3/s)
is given with a lower value particularly for input F2 to compensate with the changes of
input without changing the upper boundary of the flow in F1. This behaviour can also
be seen in the second experiment in Fig.5.10 but since the upper boundary of the flow
is lower than the first experiment (300cm3/s), the controller managed to eliminate the
sharp peak and not violating the limit of the soft output constraint. Besides, the element
of oscillation is more noticeable in the flow of input variables, F1 and F2 in comparison to
the previous approaches but the output responses in h1 and h2 shows good performance
of transient response and very smooth output responses.

5.4 Summary

This chapter is the continuity of the MPC algorithms described in the previous chapter.
Three MPC algorithms namely Unconstrained MPC, Input Constrained MPC and Input
and Soft Output Constrained MPC is tested with two experiments, each with a different
condition of inputs and disturbances and the results is demonstrated and analysed in
this chapter.

• The overview of the closed loop simulation and analysis of the MPC demonstration
is presented in the first part of the chapter. The condition of the experiments
executed and the illustration of the Matlab simulation is explained.

• In the second part of the chapter, the results for the Unconstrained MPC is
presented and discussed.

• The final part of the chapter deals with the constrained MPC and it is divided
into two subsections. The importance of these constraints is clarified and the
boundaries of the constraints are specified. First, the Input Constrained MPC
is presented complete with results and analysis followed by the Input and Soft
Output Constrained MPC.



CHAPTER 6
Conclusion

In this chapter, the conclusion of the thesis is outlined based on the objective of the
study. We featured the conclusions from each phase of the research project which we
highlight and summarizes the important work done and significant results.

In this thesis, the Modified Quadruple Tank (MQT) system is studied and modelled
then the Model Predictive Control (MPC) strategy is implemented and demonstrated.
In that effort, we developed the deterministic and stochastic linear discrete-time state
space models for the tank system and derived the static Kalman filter algorithm for
state estimation. The filtered part of the state estimation is used to estimates the
current state whilst the prediction part is used to predict the future output trajectory.
The models of the MQT system and the state estimation from the Kalman filter were
used to facilitate the development and comparison of MPC approaches. The importance
of the constraints that represent the physical limitations of the system is described and
the comparison between unconstrained and constrained MPC is presented and discussed.
These controller strategies and the bounds of the constraints were tailored for the MQT
system for the output responses to smoothly reach the set point given a new reference
trajectory.

6.1 Modeling of Modified Quadruple Tank

System

In this first phase, the modified quadruple tank system is presented, a virtual plant of the
system is created and the dynamics of the system is modelled as in Chapter 2. A simple
first-principle model was developed which described by a non-stiff Ordinary Differential
Equations (ODE). The model comprises of deterministic and stochastic non-linear model
is simulated and then the steady state analysis is investigated in order to identify the
transfer function from the normalized step responses and to develop an operating window
for possible selection of set points.

The transfer functions are estimated from the normalized step responses with 10%
step increment of input. This is due to the fact that the responses are the closest to
the actual output responses. An accuracy test was done for noise estimation and by
comparison, the values of variances identified from the transfer functions yield accurate
estimation and the mean values are approximated as fairly accurate. These values are
tabulated for comparison purposes. Subsequently, an analysis of Markov parameters is
executed to determine the sampling time. The discrete-time linear state-space model was
calculated using an MPC toolbox and the impulse response of the system was obtained.
The results show that the step response from the identified transfer functions and the
approximated state space models are identical, validating the estimation.
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Next, the Linear Discrete-time State Space model representation was realized to
make it suitable for computer control analysis. The model was linearized and discretized
and then the structure of the model was reconstructed by introducing the Markov pa-
rameters to have an observer canonical form with minimal realization. The Jacobian
matrix formation is used by applying the first-order term only of Taylor expansion for
linearization and assuming the zero-order-hold (ZOH) of the variables at specified sam-
pling points is applied for discretization. As for the conclusion, a model that represents
the dynamic of the modified quadruple tank system in the form of Linear Discrete-time
is methodically realized and set for the next phase.

6.2 State Estimation for the Discrete-Time

Linear System

A Kalman filter algorithm for state estimation is developed in this part of the thesis.
The rationale and importance of the estimation are highlighted in Chapter 3 where the
state estimation is provided to the estimator part of the MPC and to accomplish this, a
static Kalman filter is incorporated. The filter’s algorithm is derived from the discrete-
time linear model obtained in the previous chapter. The feature of the Kalman filter
is that it minimizes the sum of squared errors between the current state and the state
estimation. Thus, the current state of the MQT system was estimated and the output
prediction was computed from the static Kalman filter’s algorithm based on the model
and the measurements.

The coefficients are computed off-line and the stationary one-step ahead state error
covariance matrix, P was obtained from the Discrete-time Algebraic Ricatti Equation
(DARE). Then a simulation was done and the measurement response was compared to
observe the role of the static Kalman filter. In conclusion, the prediction is estimated
and the simulated measurements and outputs are predicted. Therefore, the Kalman filter
is considered for MPC implementation in the next chapters.

6.3 Development and Simulation of Model

Predictive Control

The essence of the study lies in this final phase of the research project. The MPC
algorithms were developed and implemented for the MQT system. The aim is for the
controller to be able to track the setpoint trajectory as a quadratic optimization problem.
The objective function was developed in order to minimize the deviation of the predicted
output trajectory from the setpoint trajectory. The predictions part of the static Kalman
filter was utilized by the constraint regulator and the future output trajectory was pre-
dicted. The formulations for MPC is derived and presented in detail in Chapter 4 and
the results from the simulation from a number of experiments are discussed in Chapter
5. The unconstrained MPC was demonstrated to apprehend the operation MPC without
any restrictions and then followed by the constrained MPC to disclosure its versatility.

In unconstrained MPC, the changes in reference trajectory are successfully tracked
relatively fast with small transient deviations but impractical for real application due
to an instantaneous sharp increase in the flow of input variables. Hence, constraints
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were included in the objective function of the optimization problem to overcome this
issue. First, an input constraint was introduced and then a combination of input and
soft output constraints were included. With input constraint, even though the transient
response is insignificantly degraded, the MPC was well performed, the new set point
was efficiently tracked and the sharp peak in the flow of input variables was successfully
suppressed. It would be more effective if the boundaries of flow of input variables Umin
can be individually selected as Umin1 and Umin2 designated for F1 and F2 respectively
for the system to have smoother response.

Finally, to avoid overflow in the tanks, the capacity of the tanks is taken into con-
sideration and formed as a soft output constraint. As expected, the output responses
operated normally and smoothly within the output boundaries and the input constraints
were not violated, however, the flow of the input variables discloses oscillation due to the
stringent condition of operation.
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Abstract—Quadruple tank process is a non-linear system,
have multiple manipulated and controlled variables and have
significant cross binding parameters. Furthermore, the modified
system is affected by some unknown measurement noise and
stochastic disturbance variables which make it more complicated
to model and control. In this paper, a modified quadruple-tank
system has been described, all the important variables has been
outlined and a mathematical model has been presented. We
developed deterministic and stochastic models using differential
equations and simulate the models using Matlab. Subsequently,
steady state analysis is included to determine the operating
window for the set points. The purpose to have an operating
window for the system is to distinguish the range of feasible
region to select the set points for optimum operations. Therefore,
in this paper a virtual process plant is created, we investigate
the operating window and construct the model in an appropriate
form for future controller design.

Index Terms - Modified quadruple-tank process, modeling,
simulations, stochastic, steady states.

I. INTRODUCTION

Most of the industrial control tasks deals with systems
which are mostly non-linear, have multiple inputs and outputs
with complicated interactions between these manipulated and
controlled variables and significant uncertainties [1]. These
complicated interactions make the modified quadruple-tank
system a good example to demonstrate the modeling and
controller benchmarking study as discussed in [2], [3], [4].

The main purpose of this process plant is to measure
and control the levels of liquid in the tanks to some de-
sired set points. It has immeasurable disturbance variables,
significant cross binding parameters which cause unwanted
output disturbance when defining the control input in order to
have desired output and needs linearization due to its non-
linearity, which causes further errors into the control loop
[5]. Moreover, due to some modification, it is also affected
by unknown measurement noise and disturbance variables
that are considered stochastic [6]. Therefore, it is important
to have profound understanding of the underlying dynamic
behaviour of the system and its potentials before implying any
control strategies. The modeling of the system with different
approaches have been extensively described in [7], [8], [9]
whereas here it is described by deterministic and stochastic
nonlinear model.

The objective of this paper is to model the modified
system and to specify the model in a form appropriate

for computational operation and analysis. The quadruple-
tank system is based on [10] and for the modified part,
we include disturbances in the upper tanks to represents the
stochasticity. While [3], [4], [7] has the opportunity to work
with the actual pilot plant, this work is done in a simulation
environment by designing a virtual process plant. Without
an actual process plant, an accurate first-principles model
can be achieved by describing the non-linear dynamics of
system which the equations are derived from the fundamental
physical processes [11]. The conservation of mass is applied
to develop simple first-principle models and we simulate the
system which described by Ordinary Differential Equations
(ODEs) in Matlab [12]. It is a non-stiff ODE system as all
processes occurring on the same time-scale.

We elongate the study and analysis around the steady state
to acquire its comportment and to develop the operating
window which is sets of set points selection boundaries.
These operating windows gives some basic ideas and guideline
on choosing the appropriate set points in certain specific
conditions of operations.

The outline of this paper is as follows. Details of the process
system description will be discussed and the deterministic and
stochastic model will be presented in Section II followed by
the results and discussion of the simulations in Section III. It
is shown that the selection of set-points uniquely determine
the operating window of the system. Lastly, this paper is
concluded in the final section IV.

II. MATHEMATICAL MODEL

In this section we describe the modified quadruple tank
system with all the important parameters are selected and
variables are defined. Next we develop a deterministic model
as well as a stochastic model through the use of ODEs. Then
we consider the operating window for the feasible set point
region through steady state analysis.

A. System Description

The quadruple tank system comprises of four identical tanks
with an outflow at the bottom, a large basin at the lower end
and these tanks are connected via pipes and pumping systems,
as shown in Fig.1.

The pumping system directs a fixed fraction of F1 and
F2, denoted as γ1 that distribute the water to Tank 1 and
Tank 4, and γ2 for Tank 2 and Tank 3 at a rate of qi,in
i ∈ {1, 2, 3, 4} respectively [13]. The values for γ1 and γ2
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Fig. 1: Schematic diagram of the modified quadruple tank
process

differs for minimum phase (RHP) and non-minimum phase
(LHP). The sensors measures the height of water level in each
tank, hi,i ∈ {1, 2, 3, 4} thus, the measured variable is affected
by the noise from these sensors and due to this condition, the
measured variables, y consists of the actual values of the height
and sensor noise. However, for the modelling purposes, we
assumed no noise occurrence and impeccable measurements.

The main purpose of this process is to control the water
level in Tank 1 and Tank 2 to desired set points, therefore
h1 and h2 is selected to be the controlled variable (CVs), z.
Usually, the controlled variables is a subset of the measured
variable, y.

The states x of the modified quadruple tank system are the
masses of water in different tanks as the states of the masses
changes over time due to the dynamics of the water flow in
and out of each tank. Liquid is added to Tank 3 and Tank 4
resembling external disturbances which is stochastic normally
distributed. The disturbances d are the two unmeasured flows
of F3 and F4 for Tank 3 and Tank 4 accordingly.

B. Mass Balances

The non-linear model of the modified quadruple tank system
is based on mass balances for each tank and the differential
equations is formulated as

d

dt
m1(t) = ρ(q1,in(t) + q3(t)− q1(t)) (1a)

d

dt
m2(t) = ρ(q2,in(t) + q4(t)− q2(t)) (1b)

d

dt
m3(t) = ρ(q3,in(t) + F3(t)− q3(t)) (1c)

d

dt
m4(t) = ρ(q4,in(t) + F4(t)− q4(t)) (1d)

TABLE I: Selection of γi for different operating points

RHP LHP

γ1 0.45 0.65

γ2 0.40 0.55

The mass balances (1) constitute the differential equations
in the model describing the states of the system. The initial
values for the mass of water in each tanks at time t0 are

mi(t0) = mi,0 i = 1, 2, 3, 4 (2)

C. Inflows

Static mass balances of the two valves is used to obtain the
flow rates from the valves into each of the four tanks.

q1,in(t) = γ1F1(t) (3a)
q2,in(t) = γ2F2(t) (3b)
q3,in(t) = (1− γ2)F2(t) (3c)
q4,in(t) = (1− γ1)F1(t) (3d)

γ1 and γ2 are constants specifying the fixed fraction of water
flow with two operating points, as shown in Table I.

D. Outflows

The height of the liquid and the flow rates out of each tanks
is calculated in this section. Let the measurements and outputs
be the heights, hi. The height is calculated by the relations of
mass and volume of the water in each tank where mass mi in
tank i is given by

mi = ρVi i = 1, 2, 3, 4 (4)

where ρ is the density of the fluid and let Vi be the volume
of the water in all the four tanks with an assumption that Ai
is the cross sectional area for each tank

Vi = Aihi i = 1, 2, 3, 4 (5)

the height hi of the liquid level in tank i is calculated by the
relations

hi = βimi i = 1, 2, 3, 4 (6)

with βi is

βi =
1

ρAi
i = 1, 2, 3, 4 (7)

The flow rates of the liquid qi(t) is calculated by applying
Bernoulli’s Principle to each tank which gives the following
volumetric outflow rate

qi(t) = ai
√

2ghi(t) i = 1, 2, 3, 4 (8)

where ai is the cross section of the pipes, g is the gravity, hi
is as given as (6) and αi is

αi = ai
√
2gβi i = 1, 2, 3, 4 (9)

the volumetric flow rate in the outlet pipes from the tanks are

qi(t) = αi
√
mi i = 1, 2, 3, 4 (10)

All the parameter values of the modified quadruple tanks
system is shown in Table II.
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TABLE II: Parameter Values

Par Value Unit Par Value Unit

Ai 380.1327 cm2 ai 1.2272 cm2

g 981 cm/s2 ρ 1.00 g/cm3

βi 0.0026 cm2/g αi 2.788 cm3/sg(1/2)

E. Deterministic Non-linear Model

Let x indicates the state variables, y is the measured
variables, u indicates the manipulated variables (MVs), z is
the controlled variables (CVs) and d is the disturbances. This
can be written as

x =
[
m1 m2 m3 m4

]T
(11a)

y =
[
h1 h2 h3 h4

]T
(11b)

u =
[
F1 F2

]T
(11c)

d =
[
F3 F4

]T
(11d)

z =
[
h1 h2

]T
(11e)

The measurement from the sensor is modelled as linear
function, this sensor function is defined in the form of

y(t) = g(x(t)) (12)

and output function is defined as

z(t) = h(x(t)) (13)

By referring to (1), (3) and (10) the complete deterministic
non-linear model is represented by the differential equation in
the form of

dx(t)

dt
= f(x(t), u(t), d(t), p) t ∈ [t0, tf ] (14)

where the parameter vector p is defined as

p =
[
ai|4i=0 Ai|4i=0 γ1 γ2 g ρ

]T
(15)

F. Stochastic Non-linear Model

In practice, the system can be affected by noise and distur-
bance, therefore it is necessary to consider them in the model.
In this section both process noise and measurement noise
is included in the model of the system, (14) and measured
variables, (12) respectively.

Consider the stochastic system

dx(t) = f(x(t), u(t), d(t), p)dt+ σdw(t) (16)

where w(t) is the process noise that is stochastic and assumed
to be normally distributed, w(t) ∼ N(0, Rw), due to the
unknown information regarding the distribution.

Let the measurement noise, v(t) signifies the occurrence of
noise from the sensors during the process of measuring in each
tank and it is normally distributed, v(t) ∼ N(0, Rv). v(t) is
being added to the measured variables, (12) giving

y(t) = g(x(t)) + v(t) (17)

In this work, let the input flow rates be the sum of the
deterministic component and the stochastic component,

[
F1

F2

]
=

[
F1s

F2s

]
+

[
w1

w2

]
(18)

[
w1

w2

]
∼
([

0
0

]
,

[
12.52 0
0 12.52

])
(19)

and let all sensors be independent and measure the level in
each and every tanks. The measurement noise for all sensors
is assumed to have the same variance,

y =




y1
y2
y3
y4


 =




h1
h2
h3
h4


+




v1
v2
v3
v4


 , (20)

v =




v1
v2
v3
v4


 ∼ N







0
0
0
0


 ,




22 0 0 0
0 22 0 0
0 0 22 0
0 0 0 22





 (21)

The deterministic and stochastic non-linear model is presented.
The results of the simulation will be presented in the next
section.

G. Steady State Analysis
At steady state, the outflows and inflows of each tank

are identical. Therefore, (1) in combination with (10) can be
combined into

q1,s = q1,in,s + q3,s = γ1F1,s + (1− γ2)F2,s + F3,s (22a)
q2,s = q2,in,s + q4,s = γ2F2,s + (1− γ1)F1,s + F4,s (22b)
q3,s = q3,in,s + F3,s = (1− γ2)F2,s + F3,s (22c)
q4,s = q4,in,s + F4,s = (1− γ1)F1,s + F4,s (22d)

m1,s =

(
γ1F1,s + (1− γ2)F2,s + F3,s

α1

)2

(23a)

m2,s =

(
γ2F2,s + (1− γ1)F1,s + F4,s

α2

)2

(23b)

m3,s =

(
(1− γ2)F2,s + F3,s

α3

)2

(23c)

m4,s =

(
(1− γ1)F1,s + F4,s

α4

)2

(23d)

hi,s = βimi,s i = 1, 2, 3, 4 (24)

If the liquid heights in Tank 1 and Tank 2, h1,s and h2,s,
are specified, the corresponding masses, m1,s = h1s/β1 and
m2s = h2s/β2, would also be specified and so would the
outflow rates from Tank 1 and Tank 2, q1,s = α1

√
m1,s

and q2,s = α2
√
m2,s. Consequently, the required steady state

manipulable flow rates, F1,s and F2,s, must satisfy
[

γ1 1− γ2
1− γ1 γ2

]

︸ ︷︷ ︸
=M

[
F1,s

F2,s

]
=

[
q1,s − F3,s

q2,s − F4,s

]
(25)
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The coefficient matrix, M , is singular when

detM = γ1γ2 − (1− γ1)(1− γ2) = 0 (26)

i.e when
γ2 = 1− γ1 (27)

and (25) does not have a unique solution. When detM 6= 0,
(25) has a unique solution given by

[
F1,s

F2,s

]
=

[
γ1 1− γ2

1− γ1 γ2

]−1 [
q1,s − F3,s

q2,s − F4,s

]
(28)

For the case when detM = 0, an extra condition, e.g. F1,s =
F2,s, can be used to obtain a unique solution. In the case
F1,s = F2,s, the unique solution is given by

F1,s = F2,s =
q1,s − F3,s

γ1 + (1− γ2)
=

q2,s − F4,s

(1− γ1) + γ2
(29)

if it exists. The solution only exists if the latter equality in (29)
is satisfied. To solve (28), temporarily let b1 = (q1,s − F3,s)
and b2 = q2,s − F4,s

[
F1,s

F2,s

]
=

1

detM

[
γ2b1 − (1− γ2)b2
γ1b2 − (1− γ1)b1

]
(30)

With the manipulation of (30) the equation can be transform
into two condition,

Condition 1: det M > 0
1− γ1
γ1

≤ q2,s − F4,s

q1,s − F4,s
≤ γ2

1− γ2
(31)

Condition 2: det M < 0
γ2

1− γ2
≤ q2,s − F4,s

q1,s − F4,s
≤ 1− γ1

γ1
(32)

By inserting (24) into (10) and ηi is given by,

ηi =
αi√
βi

i = 1, 2 (33)

the possible feasible region of set points of the heights in Tank
2, h2,s can de determined by

h2,lb ≤ h2,s ≤ h2,ub (34)

where h2,lb and h2,up is upper and lower bound of h2
respectively with
h2,lb = 



(
1−γ1
γ1

)(
η1
√
h1,s − F3,s

)
+ F4,s

η2



2

h2,ub = 


(
γ2

1−γ2

)(
η1
√
h1,s − F3,s

)
+ F4,s

η2



2

This corresponds to solving

f(xs, us, ds, p) = 0 (35a)
ys = g(xs, p) (35b)
zs = h(xs) (35c)

for xs when us, ds and p are given.
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Fig. 2: Multiple steps input for MVs u1 and u2

III. SIMULATION OF THE SYSTEM

Now that the deterministic and stochastic model is obtained,
we visualized the behaviour of the system and verify the
model by simulations. To have the basic understanding of
the operation and the directions of the water flow, step test
response is applied and observed. To identify the model,
multiple step experiments with different step sizes and level
of noise for all input/output combinations were carried out.

A. Step Responses

The first part of the experiments is implemented to have an
overview of the water flow in the connected tanks by changing
the step inputs. Starts with applying multiple steps to the first
manipulated variable, F1 and then followed by the second one,
F2 to the deterministic model, one at a time as shown in Fig.2.
For these tests, γi is chosen to be on the RHP.

The response is exhibited in Fig.3 for u1 set point changes
and Fig.4 for u2 set point changes. The system reacts to the
changes quite rapidly and illustrates the dynamic of the water
flow between the connected tanks. Changes in F1 results in
deviations of mass of m1, m2 and m4 which represents the
operation of the first pumping system. The operation of the
second pumping system can be seen in Fig. 4 where changes
in F2 does not give any effects to the mass of m4 but we can
see the changes of mass accordingly in the other tanks.

B. Transfer Function Identification

Fig. 5 shows the normalized single step response for 10%,
25% and 50% increases in F1 and F2 respectively for the
deterministic model without measurement noise. The differ-
ences between the step increases are insignificant but existent
and this is expected for the non-linear model, whereas the
responses would be identical if the model is linear. The transfer
function, G is estimated from these normalized step responses
from U to Y ,

Y = GU (36)

From Fig.5 the transfer function for h1 and h4 is first order,
for h2 is second order and zero for h3. Subsequently, with
input of F2 it can be seen that the transfer function for h1 is
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Fig. 3: Responses of mass in Tank 1, 2 and 4 due to u1 set
point changes.
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Fig. 4: Responses of mass in Tank 1, 2 and 3 due to u2 set
point changes

second order, for h2 and h3 is first order and zero for h4. The
transfer functions identified is as follows:



Y1
Y2
Y3
Y4


 =




G11 G12

G21 G22

G31 G32

G41 G42



[
U1

U2

]
(37)

G11 = 0.11
130.2s+1

G12 = 0.14
(1185s2+171s+1)

G21 = 0.12
(15311.3s2+145.2s+1)

G22 = 0.08
148.2s+1

G31 = 0 G32 = 0.09
111.7s+1

G41 = 0.08
113.5s+1

G42 = 0

In the next simulation, to identify the noise, we include
noise to visualize the step responses with measurement noise.
Fig.6 shows three different step sizes (10%, 25% and 50%)
normalized step responses in F1 and F2 respectively with low,
medium and high noise. From the transfer function, the noise
is estimated with an assumption that

Y = GU + E (38)
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Fig. 5: Normalized step response for 10%, 25% and 50%
increases in F1 and F2
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Fig. 6: 10%, 25% and 50% normalized step increases in F1

and F2 with noise

where G is the transfer function from input U to output Y
and E is the noise. It is estimated as

E = Y −GU (39)

where Y is the noisy measurement.
Fig. 6 shows the simulation results of the stochastic part

and it can be seen that the process noise, wt is assumed to be
constant.

C. Operating Window in Steady State

In previous section, we derived and investigated the steady
state to determine the possible feasible region of set points and
suitable operating window for the modified quadruple tank
system. It is non trivial decision to choose the appropriate
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range of set point, h2 for certain conditions such as the value
of γi and disturbances F3 and F4 with min and max bound
of disturbances selections is 0 ≤ d ≤ 100. The simulation of
the analysis shows the possible region of set point selections.

The white region in Fig. 7 and 8 shows the operating
window that is feasible for different disturbance conditions.
Referring to Fig. 7a and 8a, although the feasible region to
choose h2 is wide, it can be seen that it is bounded with
upper and lower limits, and if we refer to Fig. 7c and 8c it is
almost not possible to choose the middle set points. Comparing
Fig.7d and Fig.8d, with different selection of the fixed fraction
of the water flow γi, the modified quadruple tank system is
able to operate at the maximum value of disturbances during
LHP operation.
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Fig. 7: Operating window with γi in the RHP

IV. CONCLUSION

In this paper the modified quadruple tank system is pre-
sented, a virtual plant of the system is created and the
dynamics of the system is modelled. The model comprises
of deterministic non-linear model and stochastic non-linear
model is simulated and then the steady state analysis is
investigated in order to obtained an operating window for
the set points. The verdict is not all set points combinations
are possible for the system to attain its desirable outcomes.
Therefore this operating window is not negligible and useful
for future controller design. Besides, the non-linear model is
reform prior to future implementation of computer control
system and analysis.
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Abstract. In this paper, we used the modified quadruple tank system that represents a multi-
input-multi-output (MIMO) system as an example to present the realization of a linear discrete-
time state space model and to obtain the state estimation using Kalman filter in a methodical
mannered. First, an existing dynamics of the system of stochastic differential equations is
linearized to produce the deterministic-stochastic linear transfer function. Then the linear
transfer function is discretized to produce a linear discrete-time state space model that has a
deterministic and a stochastic component. The filtered part of the Kalman filter is used to
estimates the current state, based on the model and the measurements. The static and dynamic
Kalman filter is compared and all results is demonstrated through simulations.

1. Introduction
A dynamic model of a system can be described in a various way. From the derivation of
the mathematical model it is possible to obtain the underlying information of the system and
implement a control algorithm to the system. Most of the systems or processes are usually
described by state-space system and by investigating the state of a system at certain time and
its present and future inputs, it is possible to predict the output in the future [1]. State space
models can be either non-linear or linear form and usually a real system or process is described
by a non-linear models whereas in order to estimate and control the system, most mathematical
tools are more accessible to a linear models. Therefore, in this paper we want to demonstrate the
transformation of a non-linear continuous model of a modified quadruple tank system described
as deterministic-stochastic differential equations into a linear discrete-time state space model.

Throughout this work, we will fully utilize the Modified Quadruple Tank System, based
on [2] to assimilate the fundamental theory of model realization and state estimation to an
exemplification of MIMO system, illustration of the real-world complex system applications
which is widely used for education in modeling and demonstrating advanced control strategies
[3], [4].

Several works have been done on four tanks system regarding the modeling the dynamic of
the system. A full description of linearization of the model for four tank system is presented in
[5], [6] and [7]. In [7] the linearization is described in detail using the Jacobian matrix formation
to represent the system in state space model while in [8] establishes the linearized model based
on the non-linear mechanism of the system. Another method is shown in [9]where the model is
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Figure 1. Schematic diagram of the modified quadruple tank process

developed from input and output data resulting an empirical linear state space model using a
sub-space identification and can be used effectively for a non-linear system.

As for the state estimation, we want to estimates all the variables which represents the internal
condition or the status of the system at a specific given time [1] so as to allow for future output
prediction and to design the control algorithms. A Kalman’s state estimator for a non-linear
multivariable process such as the four tanks system is shown in [10] using a linear state space
model solved by the algebraic Ricatti equation. Meanwhile the usage of the estimation of the
Kalman filter with full derivation can also be found in [11]. In this work we use the Kalman
filter in order to estimates the current state of the modified quadruple tank system and evaluate
the response of dynamic and static Kalman filter.

This paper is structured as follows. A brief description of modified quadruple tank system is
presented and the realization of the linear discrete-time state space model is shown in detail in
Section 2. Then the state estimation using Kalman filter is discussed in Section 3. The following
section is where all the results is discussed in Section 4. Finally, we conclude this work in the
last section.

2. Linear Discrete-time State Space Model Realization
The first part of this paper is to transform the non-linear continuous state space model of a
modified quadruple tank system to a linear discrete state space model through linearization
and discretization. A brief description of the system is presented below and followed by the
linearization and discretization.

2.1. The Modified Quadruple Tank System
The modified quadruple tank system is a simple process, consist of four identical tanks and
two pumping system as shown in Figure 1 but yet illustrates a system that is non-linear with
multiple inputs and outputs (MIMO) and complicated interactions between manipulated and
controlled variables.

The main objective of this system is to control the level of the water in the lower tanks (Tank
1 and 2) by manipulating the flow rates F1 and F2 which are distributed across all four tanks,
represents the dynamics of multivariable interaction since each manipulated variables influences
the outputs. The height of the water level in these two tanks, h1 and h2 is measured and
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controlled. The flows denoted F3 and F4 are unmeasured unknown disturbances.
The dynamic of the process is described in Stochastic Nonlinear Model (SDE) given as:

dx(t) = f(x(t), u(t), d(t), p)dt+ σdw(t) (1a)

y(t) = c(x(t)) + v(t) (1b)

z(t) = c(x(t)) (1c)

where w(t) is the process noise and normally distributed, w(t) ∼ N(0, Rw), due to the unknown
information regarding the distribution and v(t) is the measurement noise from the sensors in
each tank and it is normally distributed, v(t) ∼ N(0, Rv). v(t) is being added to the measured
variables, (1b). For full description of the modeling part, see [12].

2.2. Linear System Realization
Linearization is required to find the linear approximation to analyze the behaviour of the
nonlinear function, given a desired operating point. We apply the first-order term only of
Taylor expansion by truncation around the steady state of the non-linear differential equations,
f(x(t), u(t), d(t)) and consider the derivative of the state variable, x. This derivative is defined
as a function, f ,

f(x(t), u(t), d(t), p) =




ργ1u1(t) + α3 − α1

ργ2u2(t) + α4 − α2

ρ(1 − γ2)u2(t) + ρd1(t) − α3

ρ(1 − γ1)u1(t) + ρd2(t) − α4


 (2)

where αi is given by

αi = ρai
√
xi(t)

√
2g

ρAi
i = 1, 2, 3, 4 (3)

and p denote the vector containing all the parameters of the system, for full description of the
parameter see [12]. The Jacobian of f with respect to the state-variables are

Jx(x(t), u(t), d(t), p) =




−β1 0 β3 0
0 −β2 0 β4
0 0 −β3 0
0 0 0 −β4


 (4)

where βi is given by

βi =
1√
xi(t)

√
a2i gρ

2Ai
i = 1, 2, 3, 4 (5)

Similarly the Jacobian of f with respect to the manipulated variables giving

Ju(x(t), u(t), d(t), p) =




ργ1 0
0 ργ2
0 ρ(1 − γ2)

ρ(1 − γ1) 0


 (6)

and lastly the Jacobian of f with respect to the disturbance variables are

Jd(x(t), u(t), d(t), p) =




0 0
0 0
ρ 0
0 ρ


 (7)
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In this case, we introduced the deviation variables as

X(t) = x(t) − xs U(t) = u(t) − us D(t) = d(t) − ds (8)

and defined the Jacobian matrices evaluated around a stationary point xs, us, ds to be

Ac = Jx(xs, us, ds, p) Bc = Ju(xs, us, ds, p) Ec = Jd(xs, us, ds, p) (9)

With these matrices the first order Taylor approximation around the steady state point are given
as

f(x(t), u(t), d(t), p) ≈ f(xs, us, ds, p) +AcX(t)

+BcX(t) + EcD(t)

= AcX(t) +BcX(t) + EcD(t)

(10)

For the measurement and controlled variables we introduced Y (t) and Z(t) respectively and the
linearized system of the modified quadruple tank system as

Ẋ(t) = AcX(t) +BcX(t) + EcD(t) X(t0) = 0 (11a)

Y (t) = CX(t) (11b)

Z(t) = CzX(t) (11c)

where the C matrices are defined as

C = Cz =

(
1
ρA1

0 0 0

0 1
ρA2

0 0

)
(12)

2.3. Discretization of a Linear System
The dynamics of the modified quadruple tank system is now described as (11) and to use
this linear continuous model of the system to be subjected to MPC, the model needs to be
discretized by assuming zero-order-hold (ZOH) of the variables at specified sampling points,
that is assuming the exogenous variables are constant between sampling points. The aim is to
have a linear discrete-time state space model with piecewise constant uk, dk in a form of

xk+1 = Adxk +Bduk + Eddk (13a)

yk = Cdxk +Dduk (13b)

with discrete-time consideration

tk = t0 + kTs, k = 0, 1, 2...
xk = x(tk)

and assuming the inputs on the ZOH is

u(t) = uk, tk ≤ t ≤ tk+1

then the solution of (13) with respect to u is given as

xk+1 = x(tk+1) (14a)

= eA(tk+1−tk)xk +

∫ tk+1

tk

eA(tk+1−τ)Bu(τ)dτ (14b)

=
[
eATs

]
xk +

[∫ Ts

0
eAηBdη

]
uk (14c)
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By comparing both equations (11) and (14) and similar result can be obtained for disturbances
variable d(t) giving

Ad = eATs Bd =
∫ Ts
0 eAτBdτ Ed =

∫ Ts
0 eAτEdτ

Cd = C Dd = D
(15)

where Ad, Bd, Ed can be computed with

[
Ad Bd
0 I

]
= exp

([
A B
0 I

]
Ts

)

[
Ad Ed
0 I

]
= exp

([
A E
0 I

]
Ts

) (16)

For this particular work, the continuous state space representation matrices were discretized
with Ts = 30s assuming ZOH.

Considering the stochastic part of the model, a piecewise constant process noise w,
measurement noise v and uncertainty of the initial state x0 to the process is added. The linear
discrete model from (13) is expanded into stochastic version as in the equation below

xk+1 = Adxk +Bduk + Ed(dk + wk) (17a)

yk = Cdxk + vk (17b)

zk = Cdzxk + vk (17c)

subject to
x0 ∼ N(x̄0, Pp), wk ∼ N(0, Q), vk ∼ N(0, R) (18)

where Q,R is given by

Q =

[
12.52 0

0 12.52

]
R =

[
22 0 0 0
0 22 0 0

]

and Pp is given by

Pp =




0.12 0 0 0
0 0.12 0 0
0 0 0.12 0
0 0 0 0.12




2.4. Linear Discrete-time State Space Representation
In order to rewrite the difference equation system representation (13) in a more structured form,
the Markov parameters is introduced. It is a discrete impulse coefficients of a discrete state
space model. The Markov parameters are calculated to avoid making iterative simulations to
keep only the matrix-vector multiplications. In doing so, a significant time saving is introduced
to the control algorithm and to have an observer canonical form with minimal realization. Let
Hi denote the Markov parameters at the i′th sampling time after an unit-impulse, then to obtain
the Markov parameters from u to y is given as

Hi =

{
0 i = 0

CAd
i−1B i = 1, 2, ...N

(19)

N is assigned value to be sufficiently large so that the impulse response can reach the steady
state. The Markov parameters for u to z, d to y and d to z is computed the same way and by
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replacing the appropriate matrices accordingly. With all the information being gathered, it can
be re-written in a matrix form of

Y = Φx0 + ΓU (20)

where Y , Φ, U are

Y =




y1
y2
y3
...
yi




Φ =




CAd
CAd

2

CAd
3

...
CAd

i




U =




u1
u2
u3
...
ui




while Γ is obtained from the calculated Markov parameters, Hi, i = 1, 2, ...N

Γ =




H1 0 0 . . . 0
H2 H1 0 . . . 0
H3 H2 H1 . . . 0
...

...
...

...

HN HN−1 HN−2
... H1




As for the system with disturbances, the state space model can be represented as

Y = Φx0 + ΓuU + ΓdD (21)

where
D =

[
d1 d2 d3 . . . di

]T

From equations (20) and (21), Φ and Γ can be used for the prediction part from the Kalman
filter for a model predictive control strategy.

3. State Estimation for the Discrete-Time Linear System
From the previous section, the discrete-time state space model is a linearized model from the
non-linear model. We want to extract information from the measurements of the real system
in order to limit the discrepancy between the model and the real system but since the models
assume measurement error, the signals need to be filtered. This can be done by using Kalman
filter where it is used to filter the measurement [1]. The Kalman filter consists of two parts,
filtering part and prediction part. The filtered part is to estimates current state based on the
model and the measurements whilst the prediction part is used by the constrained regulator to
predict the future output trajectory, given an input trajectory. This is illustrated in the block
diagram as in Figure 2. In this paper we focus on the filtering part for the state estimation only
and design both dynamic and static filter to evaluate their estimation.

3.1. Dynamic Kalman Filter
From [12] the model is linear time invariant (LTI) discrete-time stochastic difference equations,
in the form of

xk+1 = Adxk +Bduk + Eddk + Edwk (22a)

yk = Cdxk + vk (22b)

subject to
wk ∼ N(0, Q), vk ∼ (0, R) (23)
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F4	 w	

MQTS	
plant	

x	

Op1mizer	
uk	=	ûk|k	

F1	,	F2	

Es1mator	
Kalman	Filter	

ûxk	

Z	

Sensor	

v	

yk=	
h1	
h2	

MPC	 PROCESS	

r	

Figure 2. Block diagram of MPC for modified quadruple tank process

where the process noise wk and measurement noise vk are distributed as

[
wk
vk

]
∼ Niid

([
0
0

]
,

[
Q S
ST R

])
(24)

where R and Q is the covariance matrix of measurement error and disturbances variable
accordingly, S is the covariance matrix between disturbance variable and measurement error
and the distribution of the initial state is given by

x0|−1 ∼ N(x̂0|−1, P0|−1) (25)

Assuming at stationary point t = tk and the measurement yk = y(tk), the filtering part can be
performed by calculating

ŷk|k−1 = Cx̂k|k−1 (26a)

ek = yk − ŷk|k−1 (26b)

x̂k|k = x̂k|k−1 +Kfx,kek (26c)

ŵk|k = Kfwek (26d)

x̂k+1|k = Ax̂k|k +Buk + ŵk|k (26e)

By using the coefficients

Re,k = CPk|k−1CT +R Kfx,k = Pk|k−1CTR
−1
e,k Kfw = SR−1e,k (27)

and the following expression can be achieved

Pk+1|k = APk|kA
T +Qk|k −AKfx,kS

T − SKT
fx,kA

T (28)

3.2. Static Kalman Filter
From equation (28) it can be re-written into a difference equation form as

Pk+1|k = APk|k−1A
T +Q− (APk|k−1C

T + S)(CPk|k−1C
T +R)−1(APk|k−1C

T + S)T (29)
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P signifies the stationary one-step ahead state error covariance matrix obtained from the
Discrete-time Algebraic Riccati Equation (DARE).

P = APAT +Q− (APCT + S)(CPCT +R)−1(APCT + S)T (30)

and the coefficients in equations (27) can be simplify

Re = CPCT +R Kfx = PCTR−1e Kfw = SR−1e (31)

Since by using this limit as an approximation to the one-step matrix and the Kalman gains Kfx

and Kfw becomes constant matrices, it will lighten the computations of the controller.

4. Results and Simulation of the system
The first part of this work is the linear discrete-time state space realization and computations
which is re-written in a more structured form where we introduced the use of Markov parameters.
Then the second part is the implementation of Kalman filter and the predictive controller
strategy. In this sections, all results from the computations and simulations will be shown.

4.1. Linear Discrete-time State Space Realization
The linearized continuous system matrices are obtained as in equation (11) to ensure that the
theoretical linear estimation of the system are almost identical to the non-linear system, it is
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Figure 3. Markov Parameters for the Discrete-time State Space Model Experiments
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Figure 4. Kalman filter for noisy F3 and 10% step changes

possible to compare the estimated gains and time-constants from the non linear transfer function.
Then, by assuming zero-order hold, the continuous state space representation matrices above
were discretized with Ts = 30s, hence the discrete state space system matrices is also obtained
as in equation (13).

Considering a sampling time of Ts = 30s the Markov parameters has been calculated for the
discrete-time state space model, from Figure 3 the plots can be compared to the model from the
step response experiment in our previous work [12] and shows that in most cases the plots are
very similar. Therefore, the calculated Markov parameters, Hi are reliable and usable for other
purposes such as in designing the predictive controller.

4.2. State Estimation
In this experiments, both dynamic and static Kalman filter were tested as a state estimator
where the disturbance is an unknown stochastic variable, then after approximately 450s we
introduced a 10% step changes and for this simulations, the linear model is used to create the
measurements. Figure 4 and Figure 5 were plotted to compare the estimated current states with
and without Kalman filter and between dynamic and static Kalman filter with a step change of
F3 and F4 accordingly. It can be clearly seen that in general, the filter is well performed tracking
the output trajectory from the noisy measurements and also it can cope well dealing with an
impact of the unknown disturbance step. Although the difference between dynamic and static
Kalman filter is not apparent, the dynamic filter is able to even further reduce the noise giving
a smoother and more stable response particularly in tanks h1 in figure 4 and tank h2 in figure
5, noticeable for both tanks that is directly affected by the given step disturbance.
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Figure 5. Kalman filter for noisy F4 and 10% step changes

5. Conclusion
This paper has described comprehensively an outline to obtained a discrete-time state space
model for linear system on a modified quadruple tank system in a simple and constructive
method. This lab scale system represents a MIMO system which has complicated variables
interactions and complex control problems. The dynamics of the system is described by an
existing simulation models in terms of deterministic and stochastic non-linear continuous time
models. These models were linearized and discretized in order to form a discrete-time linear
time-invariant difference equations, the form that is used in the Kalman Filter for estimations.
Based on the model and measurements, the current state of the system was estimated and in
additional, the comparison between dynamic and static Kalman filter was also presented.
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Model Based Control Implementation of a Modified Quadruple Tank
System Using a Predictive Control Strategy

Sazuan Nazrah Mohd. Azam and John Bagterp Jørgensen

Abstract—The implementation of a model based controller
for a modified quadruple tank system (MQTS) is addressed in
this paper. The purpose is to demonstrate the application of
Model Predictive Controller (MPC) to a multi input multi output
(MIMO) system that has complicated variables interactions.
An existing dynamics of the system that has deterministic and
stochastic components described as a linear discrete-time state
space model is employed for the purpose of study. The MPC
consists of a state estimator and a constrained regulator. A
Kalman filter is incorporated to estimate the current state from
the filtered part and the predictions part is used by constrained
regulator, an optimal control problem (OCP) to predict the future
output trajectory. The objective of the OCP consists of a tracking
error term that penalizes deviations of the predicted outputs
from the setpoint and a regularization term that penalizes the
changes in the inputs (manipulated variables). The resulting OCP
is represented as a QP is solved and the performance of MPC is
demonstrated through simulations using MATLAB.

I. INTRODUCTION

Model based controller is one of the advanced control strat-
egy that is currently common and extensively recognized in
industry and academic, famously known as Model Predictive
Control (MPC). The MPC first breakthrough is from a seminal
publication of Model Predictive Heuristic Control [1] and later
[2] who came out with Dynamic Matrix Control.

MPC is a controller that utilizes the identified model of
a system to predict its future behaviour, given a prediction
horizon. The main idea is to minimize the cost function and
taking into account the constraints. Then the first controller
moves is implemented at a sampling instants over the control
horizon, by implementing only the first move the optimal
feedback is achieved and then the complete sequence will be
repeated again, which is known as moving horizon concept [3].
This flexibility is one of the important significant advantages
of MPC [4]. Nowadays the application of MPC are not limited
to the process control field, but also including other various
fields.

In this paper, we focus on implementing the predictive
control strategy on a lab scale system that exhibits the charac-
teristic of a complex MIMO system. The modified quadruple
tank system (MQTS) which is inspired by [5] has been
widely used for education in demonstrating advanced control
strategies [6], [7] and will be use through out this work as an
example to assimilate the fundamental theory of MPC.

This work is supported by Faculty of Electrical Engineering, Universiti
Teknikal Malaysia Melaka, Durian Tunggal, 76100, Malaysia

S. N. Mohd. Azam and J. B. Jørgensen are from Department of Applied
Mathematics and Computer Science, Technical University of Denmark, DK-
2800 Kgs. Lyngby, Denmark, {snaz,jbjo}@dtu.dk

Several strategies of controllers is implemented on the
quadruple tank system such as [8] and [9], while [10] and
[11] has been extensively described the application of MPC
on the quadruple tank system with different approaches. A
comparative study of model based control for the four-tank
system using IMC and DMC is provided by [9] and a year later
an analysis of robust control for the identical system is done
[12]. The Kalman filter is incorporated for state estimation to
obtained an optimal MPC as shown in [13] and specified in
detail in [14] attained from the Discrete-time Algebraic Riccati
Equation.

One of MPCs advantages is the ability to work within
certain constraints, therefore the main purpose of this work
is to demonstrate the implementation of unconstrained and
input constrained MPCs complete with the derivation of the
equations. To solve the OCP, we express the control task which
is tracking of the setpoint trajectory as a quadratic optimization
problem by performing several experiments and simulations
studies for observation to demonstrate the versatility of the
advanced controller.

The outline of this paper is as follows. A brief introduction
and description of the MQTS is presented in Section II. Next,
the details of the control structure of the process and the
implementation of unconstrained and input constrained MPC
is shown in detail in Section III followed by the results and
discussion of the closed loop simulations in Section IV. Lastly,
this paper is concluded in the final section V.

II. THE MODIFIED QUADRUPLE TANK SYSTEM

The MQTS as shown in Fig. 1 consist of four identical
tanks and two pumping systems. It is a simple process that
is non-linear MIMO but demonstrates a complicated interac-
tions between these variables including the manipulated and
controlled variables. Flows through the pump F1 and F2 can
be controlled in order to achieve desired setpoints of r1 and
r2 of water levels in Tank 1 and Tank 2, respectively. Whereas
F3 and F4 are stochastic variables and assumed to be normally
distributed, hence cannot be controlled. The target is to control
the level of the water in Tank 1 and Tank 2 by adjusting the
flow rates F1 and F2 which are distributed across all four
tanks. The height of the water level in these two tanks, h1

and h2 is measured and controlled.
The variables is defined as x indicates the state variables,

y is the measured variables, u indicates the manipulated
variables (MVs), z is the controlled variables (CVs) and d
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Fig. 1: Schematic diagram of the modified quadruple tank
process

is the disturbances. The dynamic of the process is described
in Stochastic Nonlinear Model (SDE) given as:

dx(t) = f(x(t), u(t), d(t), p)dt+ σdw(t) (1a)
y(t) = c(x(t)) + v(t) (1b)
z(t) = c(x(t)) (1c)

subject to wt ∼ N(0, Rw) and vt ∼ N(0, Rv). The modeling
part of the MQTS is fully described in [15]. Considering the
stochastic part of the model, a piecewise constant process noise
w , measurement noise v and uncertainty of the initial state x0

to the process is added. The stochastic nonlinear model from
equation (1) is realized and expanded into a linear discrete
time state space model as in the equation below

xk+1 = Adxk +Bduk + Ed(dk + wk) (2a)
yk = Cdxk + vk (2b)
zk = Cdzxk + vk (2c)

subject to x0 ∼ N(x̄0, Pp), wk ∼ N(0, Q) and vk ∼ N(0, R).
In order to rewrite the difference equation system represen-
tation (2) with disturbances in a more structured form, the
Markov parameters is introduced. and the state space model
can be represented in a matrix form of

Y = Φx0 + ΓuU + ΓdD (3)

For full description of the discrete linear state space model
realization and Markov parameters description, refer [16].
From equation (3), Φ and Γ will be used for the prediction
part from the Kalman filter for the MPC.

III. MODEL PREDICTIVE CONTROL

Referring to the block diagram of the control structure for
the MQTS in Fig. 2, the model predictive control part consists
of an estimator which estimates the current states of the
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plant 
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Regulator 
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F1 , F2 

Estimator 
Kalman Filter 

û xk 
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v 
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h2 

MPC PROCESS 

r 

Fig. 2: Block diagram of the control structure for the MQTS
process

system, x̂ given the previous measurement from the process,
y and a regulator which minimizes the difference between the
reference values r1, r2 and the controlled variables z1, z2 with
respect to the manipulated variables u1, u2. The output of the
regulator which is the new input variables is then fed to the
MQTS thus yielding a new state and a new measurement. This
process is iteratively repeated for a specified timespan or until
a certain stopping criteria is reached in a closed loop manner.
From the diagram it is possible to visualise the implementation
of the MPC that will yield the optimum input to the system
which would result in an approach to the desired reference
values.

A. State Estimation for the Discrete-Time Linear System

To obtained the current state estimation and the future
output predictions, a static Kalman filter is utilised throughout
this work due to the fact that it will lighten the computations
of the controller since the covariance matrix Pk|k−1 is kept
constant [16]. From [16] the linear discrete-time stochastic
model is given as

xk+1 = Adxk +Bduk + Ed(dk + wk) (4a)
yk = Cdxk + vk (4b)

subject to where x0 is realised as a stochastic variable, in order
to achieve a full stochastic simulation. It is taken that x0 ∼
N(0, P ). The other stochastic, namely wk and vk, are realised
considering a possible correlation between them where the
process noise wk and measurement noise vk are distributed as[

wk

vk

]
∼ N

([
0
0

]
,

[
Qk Sk

ST
k Rk

])
(5)

Here, Qk and Rk are the variances of the corresponding
stochastic variables wk, vk and Sk denotes the correlation
between these variables which for the purpose of this study is
taken as 0.

By the assumption of the covariance matrix Pk|k−1 is
constant, it also allows the computation to be carried out
as Ricatti equation. The stationary one-step ahead state error
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covariance matrix obtained from the Discrete-time Algebraic
Riccati Equation (DARE) is given by

P = APAT +Q− (APCT + S)(CPCT +R)−1

(APCT + S)T
(6)

Assuming a stationary approach allows to calculate part of the
algorithm off-line,

Re = CPCT +R (7a)

Kfx = PCTR−1
e (7b)

Kfw = SR−1
e (7c)

and the remaining part of the algorithm, namely measurement
and prediction, is computed for each time step

ek = yk − ŷk|k−1 (8a)
x̂k|k = x̂k|k−1 +Kfx,kek (8b)
ŵk|k = Kfwek (8c)

x̂k+1|k = Ax̂k|k +Buk + ŵk|k (8d)

B. Unconstrained MPC

In this section we develop unconstrained model predictive
controllers based on the discrete time state space models as in
equation (4). Having designed the Kalman filter for the MQTS,
the regulator will be implemented to form the complete MPC
framework in Fig. 2.

The control task is to track the setpoint trajectory as a
quadratic optimization problem by developing an objective
function that will minimize the deviation of predicted output
trajectory from the setpoint trajectory,

min
u

1

2

N∑
k=1

||zk − rk||2Qz
+

1

2

N−1∑
k=0

||∆uk||2S (9a)

s.t.

xk+1 = Axk +Buk + Edk
k = 0, 1, . . . , N − 1 (9b)

zk = Cxxk k = 0, 1, . . . , N − 1 (9c)

From equation (3), Z can be expressed in a matrix form of

Zk = Φx0 + ΓuU + ΓdD (10)

where Zk and Rk are

Zk =


z1

z2

...
zN

 Rk =


r1

r2

...
rN


Uk, Rk and Zk are deviation variables vectors. The weight

matrices Qz and S are realised as diagonal matrices since
we want to penalise the deviation of Tank 1 and 2 from the
desired targets, as well as large steps in the input variables,
respectively.

In minimizing the objective function equation (9) it can be
expressed in a compact form as

min φ = φz + φ∆u (11)

The first term in the objective function is related to the desired
target and the main part of the least squares minimization
problem. It ensures that the system reaches towards the desired
target values r1, r2.

φz =
1

2
||Zk −Rk||2Qz

=
1

2
(Φx0 + ΓUk + ΓdD −Rk)

2

Qz (Φx0 + ΓUk + ΓdD −Rk)

(12)

Let
bk = Rk − Φx0 − ΓdD (13)

and now we can expressed the problem as QP in minimizing
φz , an objective function based on the controlled variables.

φz = 1
2 (ΓUk − bk)

T
Qz (ΓUk − bk)

= 1
2U

T
k ΓTQzΓUk − (ΓTQzbk)TUk + ρ

= 1
2U

T
k HzUk + gTz Uk + ρ

(14)

where

Hz = ΓTQzΓ (15a)

gz = −ΓTQzbk (15b)

= −ΓTQzRk + ΓTQzΦx0
+ ΓTQzΓdD

= MRRk +Mx0
x0 +MdD

ρ =
1

2

(
bTQzbk

)
(15c)

Since using the objective function based only on the controlled
variables is insufficient, we include the input variables, φ∆u in
the objective function as the second term. The second term is
the regularization term, which ensures smooth input solutions
which minimizes the difference of uk from the previous input
so that to have less error.

min φ∆u =
1

2

N−1∑
k=0

||∆uk||2S (16)

We want to rewrite this problem into standard QP. First we
want to derive φ∆u using similar approach to φz but ∆u needs
to be expressed in terms of uk,

∆uk =


∆u0

∆u1

∆u2

∆u3

 =


u0

u1 − u0

u2 − u1

u3 − u2

−

u−1

0
0
0

 (17)

To have better formulation we introduce Λ, Uk and I0 as

Λ =


I 0 0 0
−I I 0 0
0 −I I 0
0 0 −I I

 Uk =


u0

u1

u2

u3

 I0 =


I
0
0
0


where I denotes an identity matrix of the size of u, I0 denotes
the block vector with I in the first entry while having zero
matrices fill up the rest of the rows so that to have the same
row-size as matrix Λ, then ∆uk can be rewritten as

∆uk = ΛUk − I0u−1 (18)
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We expand equation (16) by substituting with equation (18)
and the objective function φ∆u yields

φ∆u = 1
2 ||ΛUk − I0u−1||2S

= 1
2U

T
k

(
ΛT S̄Λ

)
Uk +

(
−ΛT S̄I0u−1

)T
Uk + ρ

= 1
2U

T
k H∆u

Uk + gT∆u
Uk + ρ

(19)
where

H∆u
= ΛT S̄Λ (20a)

g∆u
= −ΛT S̄I0u−1 (20b)
= Mu−1u−1

ρ =
1

2

(
UT
k I

T
0 S̄
)

(20c)

Combining equation (14) and (19) and ρ is disregarded as
these are constant, resulting an optimization of the deviation
from the setpoint (reference trajectory) and the input variables
given as equation (9) becomes

min
u

1

2
UT
k HUk + gTUk (21a)

s.t.

xk+1 = Axk +Buk + Edk
, k = 0, 1, . . . , N − 1 (21b)

zk = Cxxk, k = 0, 1, . . . , N (21c)

where

H = Hz +H∆u g = gz + g∆u (22)

MPC computation when stated as a QP is solved by first
computing

g = MRRk +Mx0
x0 +MdD +Mu−1u−1 (23)

then solving the QP

u∗ = −H−1g

= −H−1 (MRRk +Mx0
x0 +MdD +Mu−1u−1)

= LRR+ Lx0
x0 + LdD + Lu−1u−1

(24)

with the first block row of LR, Lx0 , Ld, Lu−1 is given by
KR,Kx0 ,Kd,Ku−1 and the optimal control law is

u∗0 = KRR+Kx0
x0 +KdD +Ku−1u−1 (25)

C. Input Constrained MPC

To make the simulation of the model based controller on
the MQTS more realistic, we considered two different hard
constraints; first is the one that sets the upper and lower bounds
on the manipulated variables, umin 6 u 6 umax and the
other one is the rate of change in input, ∆umin 6 ∆u 6

∆umax. The formulation of the problem is the same as stated
in equation (9) but subjected to constraint it becomes

min
u

1

2

N∑
k=1

||zk − rk||2Qz
+

1

2

N−1∑
k=0

||∆uk||2S (26a)

s.t.

xk+1 = Axk +Buk + Edk
k = 0, 1, . . . , N − 1 (26b)

zk = Cxxk k = 0, 1, . . . , N − 1 (26c)
umin 6 uk 6 umax k = 0, 1, . . . , N − 1 (26d)
∆umin 6 ∆uk 6 ∆umax k = 0, 1, . . . , N − 1 (26e)

In standard QP form, this can be written as (21) and the
inequality constraints referring to equation (26e) needs to be
updated at each iteration since it contains the input variables
form the previous step, uk−1|k. In developing the simulation
code for the input constraint MPC, the Hessian matrix is
obtained by offline computations, essentially the same as
the unconstrained MPC but the calculation of the inequality
matrix and the corresponding upper and lower bounds are set
beforehand. Likewise, during the regulator process, equation
(26d) is supplied as upper and lower bounds to the quadratic
solver in Matlab and the 2 inequalities in equation (26e) are
formulated in the form of

∆umin

∆umin

...
∆umin

 6


u0 − u−1

u1 − u0

...
uN − uN−1

 6


∆umax

∆umax

...
∆umax

 (27)

Since the first row contains u−1 this can be written as

∆umin + u−1 6 u0 6 ∆umax + u−1 (28a)
umin 6 u0 6 umax (28b)

and the rest of the rows are arranged in the form of
∆umin

∆umin

...
∆umin

 6


−I I

−I I
. . . . . .

−I I




u0

u1

...
uN−1

 6


∆umax

∆umax

...
∆umax


(29)

which can be simplified as

∆Umin 6 ΛUk 6 ∆Umax

Therefore, an optimization of the deviation from the setpoint
(reference trajectory) and the input variables becomes

min
u

Φ =
1

2
UT
k HUk + gTUk (30a)

s.t.

Umin 6 Uk 6 Umax (30b)
∆Umin 6 ΛUk 6 ∆Umax (30c)

where H and g is as given in (22). The optimised input is
returned and the first two entries obtained and applied in the
next iteration, similar to the previous unconstrained MPC.
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Fig. 3: Reference Trajectory
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Fig. 4: F4 Step Input

IV. CLOSED LOOP SIMULATION

In this section the MPCs presented in previous section are
discussed and evaluated with various test cases. The main
objective is to evaluate the performance of the MPC in terms
of the behaviour of the system and to verify should the
realisations are physically feasible. For the simulation of the
MQTS, the linear stochastic model is utilised in which noise is
included as a normal distribution to the disturbance variables
and the measurement variables. For all MPC implementations,
the reference trajectory is given as a multi step input changes
as in Fig. 3 where each step input interval allows the system
to reach at certain steady state before yielding the next step
change. The disturbance variables are initialised such that they
contain a step input change as in Fig. 4 in order to evaluate
the performance of the regulator in compensating for the
upcoming disturbance. Results and analysis of the simulations
for each MPCs which was run for 200 minutes of simulation
time is discussed in the sections below.

A. Unconstrained MPC

The unconstrained MPC is simulated on the linearised
model of MQTS with the above described conditions, influ-
enced by white process noise and measurement noise. Fig. 5
and Fig.6 depicts the output and control variable for both multi
step input changes of h1 and h2 respectively. The responses
shows that the system is able to track the references with
minimal overshoot and small transient deviations, keeping the
desired height levels of Tank 1 and Tank 2 at the desired
setpoints. Although the controller managed to compensate the
disturbances, the flow rate in F1 elongated below 0 cm3.s−1

which indicates the suction of pump. This glitch can be solved
by implementing the next MPC strategy.

B. Input Constrained MPC

A similar closed loop simulation was implemented but in
this section, the constraints for the input is included. Fig.
7 represents the output of the simulation in response to a
multiple setpoint changes in h1 with the same condition of
reference trajectory and disturbances as described earlier and
Figure 8 represents the output of the simulation in response to
a multiple setpoint changes in h2. The considered constraints
is given as

0 6 umin 6 450 (cm3/s)
−20 6 ∆uk 6 20 (cm3/s)
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Fig. 5: Output of the simulation in response to a multiple
setpoint changes in h1 with a setpoint change in d2 for
Unconstrained MPC
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Fig. 6: Output of the simulation in response to a multiple
setpoint changes in h2 with a setpoint change in d2 for
Unconstrained MPC

From both of the responses it can be seen that the transient
properties is slightly deteriorated but with acceptable perfor-
mance degradation although the setpoint tracking is unable to
reach at certain points due to compensation from the input
constraints and the capacity of the plant. Referring to the
flow of F1 and F2 for both step changes of h1 and h2

simulations, it is noticeable that the water flow is within
the boundaries, indicating that the rate constraints results in
a more well behaved flow characteristics with a slight loss
of transient properties and reference tracking. With input
constraints, the controller is capable of operating within the
limit bounds but with an acceptable drawback of reaching the
target setpoint due to the capacity of the pumps and the amount
of computation required is higher.
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Fig. 7: Output of the simulation in response to a multiple
setpoint changes in h1 with a setpoint change in d2 for Input
Constrained MPC
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Fig. 8: Output of the simulation in response to a multiple
setpoint changes in h2 and a setpoint change in d2 for Input
Constrained MPC

V. CONCLUSION

This paper has described comprehensively an outline for
MPC implementation for linear system on a MQTS in a simple
and constructive method. This lab scale system represents a
MIMO system which has complicated variables interactions
and complex control problems. The dynamics of the system
is described by an existing simulation models in terms of
a discrete-time linear time-invariant difference equations, the
form that is used in the Kalman Filter for estimations and
predictions. Based on the model and measurements, the current
state of the system was estimated and the predictions part was
used to predict the future output trajectory. Given an input tra-
jectory, the constraint regulator used the predictions part from
the Kalman Filter for error tracking for set point changes and
as a regulator to compensate input changes. The QP which was

from the OCP was solved and the performance of the MPC
was demonstrated through simulations. The implementation
of unconstrained and input constrained MPC for the MQTS is
compared.
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