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Deciphering is, in my opinion, one of the most fascinating of arts,
and I fear I have wasted upon it more time than it deserves.

— Charles Babbage






Abstract

The advent of the Digital Age has brought upon us a world where information is a
primary commodity. Thanks to the near omnipresence of computing devices, the
collection and exchange of information is easier and more frequent than ever before.
Soon, almost all electrically powered devices will contain a computer, and furthermore
they will all be communicating with each other. The consequence is that a wealth of
information about each of us is being recorded and transmitted around the world —
information that most people will likely prefer to keep as private as possible. Thus,
the trends of the modern age also bring with them an increasing focus on — and
importance of — cryptography in order to provide secure communications.

A core research area of cryptography is the construction of secure block ciphers — a
so-called cryptographic primitive, their importance arise from the fact that a plethora
of other cryptographic algorithms can be constructed from a block cipher. Clearly,
it is crucial to have a high level of confidence in the security of such a building
block. However, it is not known how to construct a block cipher which can be proven
secure, and so instead, the security is evaluated by trying to mount every known
attack against the cipher. A deep understanding of the different attack techniques is
therefore essential in order to get an accurate assessment of a block cipher’s strength.

This thesis explores one such attack technique: linear cryptanalysis. Being a central
technique in the cryptanalyst’s tool kit, every new block cipher has to demonstrate
resistance against this attack. Nevertheless, our understanding of this statistical
attack is not complete, especially so for advanced variants where the stochastic
variables we need to analyse are quite complex. Therefore, the following work is
part of an effort to build advanced tools and models with the aim of providing more
accurate analysis of advanced linear attacks.

The first part of this thesis introduces block ciphers and notions of their security,
followed by an introduction to linear cryptanalysis. The second part contains four
publications that advance the field of linear cryptanalysis in several ways. They
present new tools that help the cryptanalyst discover new linear attacks, and facil-
itated by these tools, new statistical models are presented. These models aim to
remove many simplifying assumptions that have previously been made when evaluat-
ing linear attacks. We present new attacks on the block ciphers DES and PRESENT
using these models, and the statistical behaviour of linear attacks is examined for a
number of other block ciphers. It is shown that the type of probability distribution
involved in a linear attack can vary wildly between ciphers, demonstrating that when
we evaluate the effectiveness of such an attack, great care must be taken. Thus, while
the work of this thesis does advance the frontier of linear cryptanalysis, it also shows
that there is much unknown land yet to discover.






Resumeé

Den digitale tidsalder har uden tvivl haft stor indflydelse verden over, og har med-
virket, at information er en eftertragtet handelsvare. Takket veere computerens
allestedsneerveerelse er indsamling og udveksling af information lettere og mere hyp-
pig end nogensinde fgr. Inden leenge vil naesten alle elektroniske apparater indeholde
en computer, og de vil ydermere alle kommunikere med hinanden. Resultatet er,
at store meengder information bliver indsamlet om os alle og sendt verden rundt —
information som de fleste sandsynligvis ville foretrackke var privat. Den moderne
tidsalder har siledes forarsaget en stigende interesse i — og fokus pa vigtigheden af —
kryptologi som led i sikring af vores indbyrdes kommunikation.

Et vigtigt forskningsomrade inden for kryptologi er konstruktionen af sikre block
ciphers — et sakaldt kryptografisk primitiv hvis vigtighed stammer fra det faktum,
at de kan bruges til at konstruere et veeld af andre kryptografiske algoritmer. Det
er tydeligt, at det er afggrende at have stor tillid til sddan en byggeklods. Der er
imidlertid ingen made, hvorpa vi kan konstruere en block cipher, som kan bevises
sikker, og sikkerheden evalueres derfor ved at forsgge at angribe cipheren med
alle kendte midler. Det er derfor vigtigt at have en dyb forstaelse af de forskellige
angrebsteknikker for ngjagtigt at kunne vurdere en block ciphers styrke.

Denne afhandling fokuserer pa én sadan angrebsteknik: lineer kryptoanalyse. Da
dette er et primeert redskab i kryptoanalytikerens veerktgjskasse, er det pakraevet
at enhver ny block cipher kan modsta et sadan angreb. P4 trods af dette er vores
forstaelse af denne type statistiske angreb ikke fuldkommen, isser ikke nar det
geelder avancerede varianter, hvor de stokastiske variable, der er involveret, er meget
komplekse. Denne afhandling er derfor en del af et forsgg pa at udvikle avancerede
vaerktgjer og modeller for at opné mere praecis analyse af avancerede linesere angreb.

Den fgrste del af denne afhandling introducerer block ciphers og relaterede sikker-
hedsbegreber, efterfulgt af en introduktion til lineser kryptoanalyse. Den anden del
indeholder fire udgivelser, der fremmer lineser kryptoanalyse pa forskellige méder. De
preesenterer nye veerktgjer, der hjslper kryptoanalytikeren til at finde nye linesere
angreb, og ved hjzlp af disse veerktgjer gives ogsa nye statistiske modeller. Disse
modeller har til formal at fjerne mange forenklende antagelser, der tidligere har vaeret
anvendt. Ved brug af disse modeller praesenterer vi nye angreb pa to block ciphers,
DES og PRESENT, og vi undersgger linesere angreb pa flere andre ciphers med fokus
pa deres statistiske egenskaber. Vi demonstrerer, at den type sandsynlighedsfordeling,
der indgér i et linesert angreb, kan variere voldsomt mellem ciphers, og at man derfor
skal veaere papasselig nar man analysere disse angreb. Resultaterne praesenteret i
denne athandling flytter sdledes greensen for vores viden om lineser kryptoanalyse,
men de viser ogsa, at der endnu er meget vi ikke forstar.
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1 Introduction

Cryptography was born out of a desire for humans to communicate securely with each
other, but the field has evolved greatly since Julius Caesar used simple encryption to
communicate with his generals. Today, the facets of cryptography are numerous, and
many of them are ubiquitous in most people’s lives, often times without them even
realising. Indeed, while most people have learned to feel a sense of security when
the green lock icon shows up in their browser during online purchases, few of them
grasp the large number of moving cryptographic parts required to establish a TLS
connection, even though as much as 75% of all web pages visited are protected by
this protocol [53].

Certainly, humanity’s reliance on secure communications will only increase with
time. The expanding interest in the Internet of Things definitely illustrates this. An
ever growing number of “smart devices” are connected to the Internet in order to
automate, coordinate, and optimise our lives. Phones, cars, watches, fridges, alarm
clocks, even lamps, already are or will soon communicate with each other and with
the rest of the world. In fact, it was estimated that already in 2008 there were more
devices connected to the Internet than people [54]. Clearly, all the information that
these devices record and transmit has to be protected, lest we completely forfeit any
dream of privacy.

But modern cryptography is used for so much more than just secure communication
between Alice and Bob. Encryption is also used for secure storage of data at rest.
Digital signatures make it possible for a receiver of a message to verify the identify of
the sender. Advanced algorithms for fully homomorphic encryption allow for example
medical institutions to derive statistics from encrypted medical data, ensuring patient
privacy and confidentiality. Similarly, protocols for secure multiparty computation
allow several people to compute functions of private data, without revealing this
data to each other. Cryptographic proof-of-work algorithms have been widely used
in the recent development of various block chain protocols. The list of applications
for cryptography is long and keeps growing.

While the motivation for developing cryptographic algorithms and protocols is
clear, achieving these goals is a non-trivial task. Ideally, we would like to have some
sort of guarantee that the algorithms we use are secure, but proving such security
can be extremely difficult for large complicated systems. Thus, it is common wisdom
in the field to start with a few simple and secure building blocks, and then build
more advanced systems from these components. The core idea here is that if we trust
the building blocks to be secure, we can often prove that the bigger system also is.
We call such building blocks cryptographic primitives.

One such primitive is the block cipher. This type of algorithm provides very
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basic encryption functionality, yet many other cryptographic systems can be built
from such a function. Thus, design and analysis of block ciphers are core topics of
cryptographic research. Interestingly, we do not know how to construct block ciphers
that can be proven secure. Instead, a trial by fire approach is used, in which the
cipher is subjected to every known attack in the cryptanalyst’s arsenal. If the cipher
manages to survive this scrutiny, it is assumed to be sufficiently secure for use as a
building block.

For the above approach to work, we need to develop a deep understanding of
each different attack technique. Therefore, this thesis thoroughly investigates one
particular technique, namely linear cryptanalysis. Chapter 2 gives an introduction to
block ciphers and briefly presents a range of different attacks against these primitives.
Chapter 3 introduces the fundamentals of linear cryptanalysis as well as some
advanced variants of this attack. Finally, Chapter 4 gives a summary of the four
publications presented in Part IT of this thesis. These four publications aim to further
our understanding of linear cryptanalysis. They do so by both presenting new tools
that aid with analysis of block ciphers in this regard, as well as proposing new models
for analysis and evaluation of linear attacks.



2 Block Ciphers and Their
Cryptanalysis

In this chapter we consider a fundamental cryptographic primitive, the block cipher.
After defining what a block cipher is, we describe various aspects of the security of
such a cipher and give some examples of its applications. We then consider some
general ways to construct a practical block cipher. We finish by explaining some of
the more prominent cryptanalysis techniques used against block ciphers.

2.1 The Block Cipher

Informally, a block cipher is a function which, given a fixed length key, transforms
(encrypts) an input string of fixed length (the plaintext) to an output string of the
same length (the ciphertext), such that for each choice of the key, the transformation
is a permutation [69]. As a consequence, the transformation is invertible (decryption).
A formal definition follows.

Definition 2.1 (Block Cipher [81, Chapter 7]). Let F} be the space of vectors of
length n over the field of two elements, Fq, and likewise let 5 be the space of vectors
of length k over Fy. A block cipher is a function

E(x, k) : Fy x F5 — Fy,

such that for every choice of the key k € F5, &;(z) := E(x, k) is a permutation on
F%. Moreover, for each k, we denote the inverse of & (z) by & ' (z).

The concept is illustrated in Figure 2.1. Typical values of n used in practice
are 64 and 128, while « is usually 128 or 256. Ultimately, we would like to use a
block cipher as a building block for other cryptographic primitives. However, not
every construction that fits Definition 2.1 is particularly interesting or useful for
cryptographic purposes, or even efficiently computable, limiting practical use. Indeed,
we are mainly interested in the design and analysis of practical and secure block
ciphers.

Inherent Properties In order to understand what we expect from a secure block
cipher, and what constitutes a valid attack on such a cipher, we first point out some
inherent properties which are consequences of Definition 2.1.
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“Hello, World!” “Hello, World!”

key —» “911fb6155¢c291” —»4— key

Figure 2.1: Illustration of a block cipher. A plaintext block of thirteen characters
is encrypted to a ciphertext block of the same length. The same key is
used for encryption and decryption.

Assume that we are given black box access to an instance of a block cipher, that
is, we can query &, for some unknown k, with inputs and get the corresponding
output. Then, given a ciphertext y it is always possible to find an input = such that
Er(x) = y by querying the black box at most 2™ times. Indeed, it is possible to get
a complete description of & by storing the answer to all 2™ queries, although this
requires 2" storage as well. Similarly, if we are given z and y = & (x), we can find
some k such that this relation holds by using at most 2% queries. Note that we will
likely need more than one plaintext-ciphertext pair to find a unique value of k [95].

We call the above approach to inverting &, or finding the key k, brute force search.
We consider a block cipher insecure if some method exists whereby we can e.g. find
the key faster than the equivalent brute force search. We will go into more details
about these methods, called attacks, in the following. First, however, it will be useful
to introduce the notion of an ideal cipher.

Definition 2.2 (Ideal Block Cipher). An ideal block cipher is a block cipher such
that for each key, the permutation is drawn uniformly at random from the space of
all permutations on Fy.

Constructing such a cipher is clearly infeasible even for small values of n, but we
would like a secure block cipher to look like an ideal cipher from the perspective of
the adversary.

General Attack Goals Informally, we expect that if the key k is drawn uniformly at
random, the resulting permutation & will look like a randomly drawn permutation
to an adversary who knows the description of the cipher, but does not know the key
(a concept commonly known as Kerckhoffs’s principle [66]). More specifically, we give
an adversary black box access to the block cipher, using one or more unknown keys,
and the security of the cipher is then judged by whether a set of general attacks can
be mounted against it [69]:

e Deduction: Given y, the adversary tries to find = such that & (z) = y, or vice
versa, in time less than 2", e.g. by finding an algorithm &” which is functionally
equivalent to & or Ek_l.
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“Hello, World!” —»| & “5d4de598a1521”
Ideal

“Hello, World?” —»| & “7Tfe197441fef9” ———| "

Not ideal

“hello, world.” —»| & “436987fac8687”

ofal

Figure 2.2: Illustration of a distinguishing attack. The distinguisher tries to determine
whether £ is an ideal cipher or not.

e Key recovery: The adversary tries to recover the encryption key k in time
less than 2*.

e Distinguishing: Given black box access to either an ideal cipher or a concrete
block cipher instance (and/or its inverse), the adversary tries to determine
which of these two she is interacting with.

Since we assume that the only secret part of the block cipher is the key, key
recovery implies deduction. The distinguishing attack is illustrated in Figure 2.2.
While distinguishing might not immediately appear very useful in practice, for many
practical cipher designs a good distinguisher often leads to a key recovery attack.
Indeed, the works presented in Part II of this thesis are all concerned with finding
such distinguishers.

Attack Settings Finally, it is natural to define different types of attack settings by
what kind of information the adversary has available when performing the mentioned
attacks, i.e. how she is allowed to interact with the black box. The typical types are
as follows [69]:

e Ciphertext only: The adversary can query the black box for the encryption
of randomly drawn, unknown, plaintexts.

e Known plaintext: The adversary can query the black box for randomly
drawn plaintext-ciphertext pairs.

e Chosen plaintext (ciphertext): The adversary can query the black box for
the encryption (decryption) of plaintexts (ciphertexts) of her choosing.

Other attack settings, such as adaptively chosen text, related key [11], and weak key
attacks [84], have also been discussed in the literature, but we will not consider these
in the following.

It is not known how to construct a block cipher whose security can be reduced to
known hard problems, in the way that popular asymmetric encryption algorithms can.
For typical block cipher designs we therefore do not know how to prove resistance to
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all the general attacks mentioned here. Thus, a block cipher’s security is commonly
demonstrated by showing resistance to all known attacks. If no attack can be found,
we have some confidence that the block cipher is secure, and under this assumption,
other constructions that use the block cipher as a building block can be proven secure.
We discuss a number of prominent attack techniques in Section 2.3, but we first
mention some general ways in which we can construct block ciphers, as well as uses
of these as part of other cryptographic primitives.

2.2 Block Cipher Constructions

In practice, we would like a block cipher to not only be secure but also efficient.
Thus, it is common for block cipher designs to consist of relatively simple and fast
components which are then applied repeatedly in order to increase complexity. This
idea gives rise to the concept of an iterative block cipher.

Definition 2.3 (Iterative Block Cipher [47]). Consider a block cipher as in Defini-
tion 2.1. Let k;, e = 1,...,r, be a set of round keys derived from the key k. Let fi]”
be key-dependent permutations on Fy. We call fik"' the i** round function. If the
block cipher can be written as

Ek:ff"o...o fl,
we call it an iterative block cipher.

One common type of iterative block cipher is the class of Feistel ciphers. For
these ciphers, the i*" round function consists of splitting the input into two halves,
say (zr,xR), and then outputting (zg,zr @ gfl (zR)), where gi“ is a key-dependent
function [69]. Another prominent type of iterative block cipher is the so-called key-
alternating block cipher [47]. For this type of construction, the round function consists
of applying a key-independent permutation to the input followed by a bitwise XOR
with a round key. A common way to construct this key-independent permutation is
according to the substitution-permutation network (SPN) approach.

Definition 2.4 (Substitution-Permutation Network [40, 41]). Consider an iterative
block cipher & as in Definition 2.3. Let s : F3 — F3 be a permutation such that b
divides n, and let S : F3 — F3 denote the parallel application of s to the 3 b-bit
chunks of the input. Let P : F} — FZ be an affine function. If the i*" round function
of & is given by

(@) = P(S(2) & ki,

and the first round function is preceded by the addition of a whitening key kg, then
&k is called a substitution-permutation network.

The concept is illustrated in Figure 2.3. The core idea of this design strategy is
that the b-bit s permutations, called S-boxes, provide strong local confusion which
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ko k1 k,
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Figure 2.3: Mlustration of a substitution-permutation network. The input to the
block cipher is transformed by parallel S-boxes, mixed with an affine
function P, and finally a round key is added. The processes is repeated r
times.

is then diffused throughout the entire state by P [94]. Since the S-boxes can be
expressed as small look-up tables, and the affine function P is often relatively simple,
this approach can lead to very efficient block ciphers.

Block ciphers as building blocks From Definition 2.1 it is clear that the usefulness
of a block cipher in isolation is limited: we can essentially only encrypt and decrypt a
small amount of information. Thus, block ciphers are almost never used by themselves,
but instead as components in other primitives. A basic example is using a block
cipher in a mode of operation which allows for encryption/decryption of arbitrary
length messages. Examples of basic modes of operation are the cipher block chaining
(CBC) [52] and counter (CTR) [48] modes. Interestingly, the latter can be viewed as
using a block cipher to construct a secure pseudorandom number generator, and then
using this to construct a stream cipher.

In most cases, encryption alone is not enough, and we also require some form of
authentication, which a block cipher alone does not supply. However, a message
authentication code can be created from a block cipher using e.g. the CBC-MAC [1]
or PMAC [19] constructions. If we want to combine encryption and authentication
into one algorithm — a so-called authenticated encryption scheme — a block cipher
can be used in e.g. Galois/Counter mode (GCM) [51], Offset Codebook Mode (OCB)
[91], or Counter with CBC-MAC mode (CCM) [102]. Alternatively, several of the
recent entries to the CAESAR competition for authenticated encryption schemes use
a secure block cipher as their central component [2, 61, 83, 104].

Another important cryptographic primitive, namely a cryptographic hash function,
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can also be constructed from a block cipher. This can for example be done by first
turning the block cipher into a one-way function using the Davies-Meyer construction
[103], and then using this one-way function as the compression function of a Merkle-
Damgérd hash [82]. Cryptographic hash functions themselves appear in almost every
aspect of cryptography.

Lastly, we note that an area closely related to that of block ciphers has garnered
increased attention in recent years, namely that of permutation based cryptography.
Instead of using a keyed block cipher to build other primitives, this area instead
focuses on building primitives from a fized cryptographic permutation. However,
many of the security rationales used for block ciphers carry over to this setting. While
several specific primitives based on permutations have been proposed, e.g. the hash
function Grgstl [56] and the stream cipher Salsa [6], there has also been research into
more general constructions. These are for example the sponge [10], duplex [9], and
Farfalle [8] constructions, which can be viewed as different modes of operation for
permutations. These modes are very versatile, and can be used to construct stream
ciphers, hash functions, message authentication codes, authenticated encryption
schemes, and more. In light of this, efficient cryptographic permutations have been
designed, e.g. Gimli [7] and Xoodoo [43].

2.3 Attacks on Block Ciphers

The wide range of different use cases for block ciphers demonstrate immense their
usefulness. More importantly, it emphasises the importance of having a high confi-
dence in the security of any block cipher we may use as part of a bigger construction,
in order to have any confidence in the security of said construction. It is little wonder
then that the design and analysis of secure block ciphers is a highly active research
area, and many different cryptanalysis techniques have been developed in order to
attack a wide range of block cipher designs. In the following, we briefly describe
some prominent attack techniques which can be used against block ciphers. This is
by no means an exhaustive list of techniques, but any new block cipher design should
at least demonstrate resistance to the following attacks.

1) Algebraic Attacks Any block cipher can be represented as a set of multivariate
equations in the plaintext and key bits; by choosing some plaintexts, we obtain
equations in the unknown key bits. Solving a general system of multivariate equations
is hard, but if a cipher can be described by a simple equation system, solving this
system immediately leads to a key recovery attack [95]. A sufficiently sparse set
of quadratic equations can for example be solved with existing techniques such as
linearisation or Grébner basis methods [74]. Other more dedicated algorithms have
also been proposed, such as the XL and XSL algorithms [38, 39].

A different way to exploit the algebraic structure of a block cipher is the cube attack
[50]. In this attack, non-linear terms of the equations are eliminated by summing
the equations for different values of the plaintext, resulting in linear equations in the

10
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key bits. If the number of plaintexts required is not too large, and we can generate
enough such equations, the key can be recovered with simple Gaussian elimination.
Alternatively, the cube attack can be viewed as a higher-order differential attack —
these are described in more detail later in this section.

2) Meet-in-the-middle Attack This type of attack applies to block ciphers where
the key can be split into two independent parts k1 and ks, such that the block cipher
can be written as E(x, k1||k2) = b(f(x, k1), k2) [49]. In this case, a time-memory
trade-off can be made in which a table containing f(z, k1) for a fixed = and all values
of kq is stored. Then, during the attack, y = £ (z) is obtained, ko is guessed, and k
is found by computing b= (y, k2) and finding this value in the table. Many extensions
to this basic technique have been explored in the literature, such as MITM with
partial matching [32], 3-subset MITM [27], MITM with splice and cut techniques [3,
101], and the biclique attack [24].

3) Integral Cryptanalysis This type of attack (also known as the square, saturation,
or multiset attack) [18, 44, 71, 77] utilises sets of plaintexts where e.g. one byte
varies over all possible values, while the rest of the plaintext is fixed. Clearly, the
sum of the texts in such a set is zero, also called balanced. An integral attack can be
mounted if it is possible to predict that (part of) the corresponding encrypted set
will also be balanced.

An interesting generalisation of the integral attack is the division property attack
[98]. In this attack, more general conditions than balancedness are used as a
distinguisher, e.g. whether the sum of any polynomial expression of the plaintexts
of at most degree k is even. This generalisation yields better results for some block
ciphers where the basic integral attack is not very effective.

4) Invariant Subspace Attack As the name suggests, this attack tries to find a
subspace of Iy such that for some keys the ciphertext corresponding to a plaintext in
this subspace is also part of the subspace [76]. Clearly, for such a key, the cipher can
immediately be distinguished from an ideal cipher. For some ciphers, this property
has been shown to also facilitate efficient key recovery. While the original version of
the attack uses affine subspaces, a version using non-linear invariants has also been
proposed [99]. A related idea can also be found in the yoyo attack [92] in which texts
are chosen in such a way that specific differences between them are independent of
the key, providing a distinguisher.

5) Differential Cryptanalysis While the attacks mentioned so far are essentially
deterministic, differential cryptanalysis exploits probabilistic behaviour of the block
cipher. This technique uses pairs of plaintexts which have a specific difference, and
then considers the probability that the corresponding pair of ciphertexts also has
some given difference. If we can find such a differential which occurs with sufficiently

11
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high probability, this can be used as a distinguisher. Such a distinguisher can usually
be used as part of a key recovery attack [16].

A multitude of extensions have been proposed to the simple differential attack.
Truncated differentials [68] relax the requirement of specific input and output differ-
ences, and instead only partially define these, e.g. we allow any type of difference
in the first two bytes of the input and output, but all other bytes must have no
difference. In this way, we essentially consider many differentials simultaneously,
hopefully increasing the total probability. Another generalisation is higher order
differential cryptanalysis [68, 72]; the normal differentials can be viewed as first order
discrete derivatives, and so it is natural to take higher order derivatives. Taking
the d*® order derivative reduces the degree of the function by at least d, and so this
might facilitate easier cryptanalysis. Examples of second order differential attacks
are the boomerang attack [100] and its extension the rectangle attack [14]. Finally,
we note that differentials that have exactly zero probability of occurring can also be
used in a so-called impossible differential attack [12, 67].

6) Linear Cryptanalysis Another prominent type of probabilistic attack is linear
cryptanalysis [78, 80]. In this attack, we try to find a linear expression in the bits
of the plaintext and a (potentially different) linear expression in the bits of the
ciphertext which correlate strongly with each other. As for differential cryptanalysis,
such a connection between plaintext and ciphertext can be used as a distinguisher,
and ultimately as part of a key recovery attack.

The rest of this thesis will be concerned with linear cryptanalysis. Chapter 3 will
cover the basics of the topic and discuss various extensions to the simple attack.
Part II contains several publications that advance the field in various ways. The
contributions of these works are summarised in Chapter 4.

12
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This chapter will give an introduction to linear cryptanalysis. Section 3.1 introduces
the basic ideas and notation. Section 3.2 presents useful tools for analysing linear
approximations of practical block ciphers, while Section 3.3 explains how linear
distinguishing and key recovery attacks work. Section 3.4 explains various ways to
use more than one approximation for an attack, and finally some other extensions
are discussed in Section 3.5.

3.1 Fundamentals of Linear Cryptanalysis

Consider a block cipher as defined in Definition 2.1, and recall the distinguishing
attack described in Section 2.1. The motivation behind this attack is that if we
can tell a given block cipher apart from a completely randomly drawn permutation,
the cipher must exhibit some non-random behaviour which indicates a flaw in the
design — something which can often be used in e.g. a key recovery attack. For linear
cryptanalysis [78, 80], this non-randomness is indicated by linear expressions in the
plaintext and ciphertext bits that are biased towards 0 or 1.

In order to formalise the above idea, we first introduce the concept of a linear
approximation. The approximation essentially defines the linear expression of bits we
will use in the attack.

Definition 3.1 (Linear approximation [78]). For a block cipher as given in Defini-
tion 2.1, a linear approzimation is a tuple (o, 5) € F} x Fy. We call « the input
mask and S the output mask.

To go from the two masks to a linear function, we use an inner product. Let a be
as in Definition 3.1 and = be an element of F%. Let z[i] be the i*" component (bit)
of x. We define the canonical inner product on F5 as

n

(o, )y = Za[i] ~zfi], for a,x € Fy,

i=1

i.e. the sum of the bitwise products of o and z. For a fixed z, {«, ) is a linear
boolean function of z which simply expresses the sum of the bits of = as indicated
by «. If z is drawn randomly, the probability that (o, x) = 0 is % But if z is not
completely random, this probability can be smaller or larger than % For a block
cipher, we therefore associate a linear correlation to an approximation as follows.
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« = 00100100110000 01100010000110 = 3 (T, ) 2z (yi, B
k
Cloap <0
x; = 00100001100101 01010100110010 = ¥, 0=0
ro = 01011111100001 11000110010101 = yo 0#1 E
. L) _l;
x3 = 10100000110101 01010111110001 = y3 140 ".é
— 8
TN = 11111001101010 11011110110111 = yyn 0=0 = #*

Figure 3.1: Illustration of a linear approximation («, 3) and its linear correlation. In
the left box, it is shown how « and g indicate bits of the plaintexts and
ciphertexts, respectively. In the middle box, the parity of the indicated
plaintext bits are compared to the parity of the indicated ciphertext
bits. In the right box, the histogram shows that the plaintext parity is
more likely to be unequal to the ciphertext parity, resulting in a negative
correlation.

Definition 3.2 (Linear Correlation [42]). The linear correlation of an approximation
(a, B) of a block cipher € is given by

Clapy =2+ Pr ((z,0) @ (&(2), B) = 0) — 1,

z€Fy
for a fixed key k € IF5.

The concept is illustrated in Figure 3.1. We say that an approximation is non-
trivial if both o and g are non-zero. For any non-trivial approximation, since each
key k is likely to correspond to a different permutation on F5, the linear correlation
will in general take on different values over the key space. Indeed, we are often not
interested in C for any fixed k, but the distribution of C¥ w,8) Over the space of all
keys. This dlstrlbutlon highly depends on the block cipher. However the following
result can be shown for the ideal cipher.

Theorem 3.3 ([46, 88]). For any non-trivial approximation (o, ) of an ideal block
cipher, the discrete probability distribution of the linear correlation over keys is given

by
gn-1 2
k _ 92-n _ (2"_2+$)
Pr (C(Oé,ﬁ) = 2 x) =

(o2™)

which can be approximated by a normal distribution with zero mean and variance
27" e C(a 8) ~N(0,27™).
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Figure 3.2: An illustration of the linear hull of a linear approximation («, 3). Many
different linear trails connect o and S through the round functions ff’
Each intermediate linear mask u; is a value in Fy.

Thus, if we want to build a distinguisher from a linear approximation, we need to
find an approximation whose correlation distribution over keys is sufficiently different
from N(0,27"). Alas, for a concrete cipher design, it is less clear how one determines
the distribution of C’(km ), O even the linear correlation for any fixed key. We explore
this topic next.

3.2 Linear Trails and the Linear Hull

In general, determining the linear correlation of a block cipher is a hard problem. If
we wanted to measure the correlation directly, even for a single key, we would have to
query the cipher about 2" times. However, for the specific block cipher constructions
presented in Section 2.2, there exist results that allow us to at least approximate the
linear correlation.

For an iterative block cipher, the functions fiki are usually relatively simple,
allowing us to directly calculate the correlation of any approximation of one of these
functions. Now, in order to calculate the correlation over the whole function &, we
first introduce to notion of a linear trail.

Definition 3.4 (Linear Trail [42]). Given a linear approximation («, 3) of an iterative
block cipher, a linear trail is an r 4+ 1 tuple

U= (ug,...,ur) withwuy=a, u.=24.

Let C¥ be the correlation of the approximation (u;_1,u;) of the i*! round function
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fiki. We define the correlation contribution of the trail U as

ok = f[cf.
i=1

We call the collection of all trails of an approximation the linear hull [86], and
the concept is illustrated in Figure 3.2. The definition of a linear trail is primarily
useful due to the following result, which states that the linear hull fully determines
the correlation of an approximation.

Theorem 3.5 ([40, 42]). Given a linear approximation (a, 8) of an iterative block
cipher, the linear correlation is equal to the sum of correlation contributions for all
linear trails of (a, B):

Choa= > Ct. (3.1)

ug=a
ur=p4
While we could use Theorem 3.5 to calculate the linear correlation, applying it in
practice is quite challenging, as the number of trails in the linear hull is extremely
large even for moderate values of n and r. Additionally, the terms of the sum
in Equation 3.1 are not necessarily independent, complicating any analysis of the
distribution of C’k ) over the key space. The study of techniques for approximating
Equation 3.1 is essentlal to linear cryptanalysis, and a large part of research on this
topic is dedicated to this problem. Indeed, it is central to all the works presented in
Part II of this thesis.

3.3 Linear Distinguishers and Key Recovery

Let us for a moment assume that we know the distribution of C’k ) for some non-
trivial approximation (¢, 8) and some block cipher €. In the followmg, we describe
how to build a known plaintext distinguisher from this knowledge, and how to use
such a distinguisher as part of a key recovery attack.

We first introduce the notion of the undersampled correlation: an adversary is
often not interested in obtaining the full codebook in order to measure C¥ . 8) exactly,
as this naturally increases the computational complexity of the attack Thus, she
will obtain from & some set 7 of N < 2™ randomly drawn plaintext-ciphertext pairs
and calculate an undersampled correlation value:

chT o =2. Pr ((z,a)® (y,8) =0) —1, 3.2
(B) (w’y)g(( ) ® (y,B) =0) (3.2)

Note that CZCO’L is a random variable over both the key space and the text space. The
distribution of C has been studied extensively, and in most cases it is possible to

derive this dlstrlbutlon from the distribution of C over keys [21, 85]. Therefore,
we assume this to be known to the adversary. Ab an example, the undersampled
distribution of an ideal cipher is N'(0,27" + ).
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Figure 3.3: An illustration of a statistical distinguisher based on the linear correlation
of a linear approximation. A value (C(ko’t;) )2 drawn from the undersampled
squared correlation distribution over keys and texts is compared to the
threshold 7. Based on this comparison, it is decided whether (Cé’y;))z
was drawn from the ideal distribution or not.

Linear Distinguishing Recall that the goal of a distinguishing attack is for the
adversary to determine whether she is interacting with an ideal or a non-ideal block
cipher. For linear cryptanalysis, this boils down to determining whether a correlation
value was drawn from the distribution N (0,27™) or the distribution of C’(km g (or
their undersampled equivalents). To simplify the exposition, we will instead use
the squared correlation, in which case the ideal distribution is 27" x?2, and assume
that E(27"x?) < E((Cé‘aﬁ))z), where E denotes the mean of the distributions. The
following is a simple way to perform a linear distinguishing attack [64].

e Fix a threshold value 7.

e Obtain a set 7 of N random plaintext-ciphertext pairs from the block cipher,
and calculate the undersampled linear correlation C(ko?ﬁ) as in Equation 3.2.

o If (C(k(;Tﬁ))2 < 7, assume that the block cipher is ideal. If (C’(ko’j;))2 > 7 assume
otherwise.

For a statistical distinguishing attack like the above, we are primarily interested in
two things: how often we correctly classify a non-ideal cipher as such (true positive),
and how often we erroneously classify an ideal cipher as non-ideal (false positive).
Clearly, this depends on 7 and the distribution of Cé’j;;). We express these rates, and
thus the effectiveness of the distinguisher, using the notions of success probability
and advantage.
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Definition 3.6 (Success Probability and Advantage [93]). For a linear distinguisher
as described above, we define the success probability as

ps = Pr ((Ckaz)) > 7| & is not ideal) ,

and the advantage as

—log, (Pr ((C( ﬁ)) >7|€&is 1deal))

These concepts are illustrated in Figure 3.3. Typically, an attacker will fix the
success probability and calculate the corresponding threshold value and advantage.
While the motivation for the definition of the success probability is clear in the
distinguishing setting, the advantage primarily plays a role when we want to use the
distinguisher as part of a key recovery attack.

Linear Key Recovery Consider an iterative block cipher with r rounds as given in
Definition 2.3. We now define a reduced version of the cipher with » — 1 rounds, i.e.

r—1 k1
gk_frlo -0 J1 -

Let gk~ denote the inverse of f** and let (a, 3) be a linear approximation of &;. By
guessing the last round key and applying the distinguishing attack to &, we obtain a
key recovery attack [78]. In more detail, the attack works by using the distinguisher
to filter out bad key guesses as follows.

e Lix a threshold value T.

e Obtain a set 7 of N random plaintext-ciphertext pairs from the block cipher
Ek.

For each guess of k., apply gk to each ciphertext in order to obtain sets 7, of
potential plaintext-ciphertext pairs of the cipher &;.

For each set of plaintext-ciphertext pairs, calculate C( ’ g) as in Equation 3.2.

If (C’IC 7;;;) < 7, discard the corresponding guess of k,.. If (C(k(j;’;g)z > T save

the key guess.

In practice, it is usually sufficient to only partially guess k, in order to calculate

() Moreover, it is often possible to calculate the encryption key k if one or more
of the round keys are known. Once we have a number of candidates for k, the correct
key can be identified e.g. through trial encryption.

This type of key recovery attack relies on the following hypothesis: if we make a
wrong guess of the last round key, the resulting ciphertext will look random. This
hypothesis formalises the idea that if we decrypt the last round with a wrong key,
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(Key Recovery . R
Low squared correlation

High squared correlation

x—>zr<—y—>zw

) Right guess of k.. Wrong guess of krr

:@ J
J

& J

k

Figure 3.4: Illustration of a key recovery attack against an iterative block cipher &
using linear cryptanalysis. Plaintext-ciphertext pairs (z,y) are obtained
and the last round key k, is guessed. For a correct guess, we obtain a set
of pairs (z, z,), whereas for a wrong guess we obtain a set of pairs (z, zy,).
A high resulting squared linear correlation indicates a correct guess.

we are essentially adding one round to the cipher. In this case, we are considering an
approximation over 7 + 1 rounds, instead of r — 1 rounds, which should have a much
weaker correlation. The idea is illustrated in Figure 3.4.

Hypothesis 1 (Wrong-Key Randomisation [29, 57, 63]). Consider a key recovery

attack as described above. If the last round key k, is incorrectly guessed, then Cé:rg)r

will be distributed as for an ideal cipher, namely N'(0,27" + %)

Under this hypothesis, the advantage relates to the number of candidates we get
for the encryption key k. Assume that we guess k bits during the key recovery attack.
By definition of the advantage we expect 2% - 27¢ key guesses to survive the filtering
described in the attack above. If we assume that guessing the remaining x — K bits
allows us to determine a candidate for k, then the number of candidates we get is

zk . 2—(1 X 2R—R — 2&—(1,.

Thus, the attack effectively reduces the size of the key space by a bits [93]. Since, for
a given threshold value, the advantage is entirely determined by the distribution of
C(k(fﬁ), determining this distribution, or at least obtaining a good estimate of it, is
essential to linear cryptanalysis.

Note that the above exposition is only one way of performing and analysing a linear
key recovery attack. One alternative way of performing the attack is to rank each
key candidate by the magnitude of (Cfa%)r )2, and then search the list of candidates
from highest to lowest correlation. This approach was originally taken in [79] and

analysed in [64, 93], amongst others. Alternatively, if the linear approximation has a

19



3 Linear Cryptanalysis

single trail whose correlation contribution is much larger than that of any other trail,

the sign of C'(ka%)r can also be used to deduce some bits of the key [78].

3.4 Using Multiple Approximations

Many extensions to the basic linear cryptanalysis described above have been proposed,
but we will focus on those using several approximations simultaneously. Attacks that
exploit several approximations at the same time are usually split into two categories:
multiple linear attacks and multidimensional linear attacks. In short, the difference
between these two types lies mainly in the assumptions made about the statistical
behaviour of the linear correlations, and the type of sets of approximations they use.

3.4.1 Multiple Linear Cryptanalysis

The idea of using multiple linear approximations simultaneously to improve linear
attacks was first proposed in [62] and was later extended in [17]. These works propose
using a set of linear approximations

A={(a1,b1),.--,(an, Bm)}s

and its corresponding vector of linear correlations

k _ k k
C.A - (C(a1,51)7 .o "C(QM,ﬁJVI))'

The goal is then essentially to distinguish the M-variate distribution of C’ﬁ over keys
from the corresponding M-variate distribution for an ideal block cipher. While [17]
did describe how the location of a correlation measurement (Ck’T L, oRT )
(ce1,81) (anr,Bmr)
in an M-dimensional space can be used to reveal some information about the key, it
is more common to calculate some univariate distribution from the distribution of
C*. Indeed, [17] introduced the notion of capacity as a measure of the “combined

correlation” of the M approximations, defined as the sum of squared correlations:

M

k k
ck = Z(C(aiyﬁi))%

i=1

Note that it is straightforward to generalise the attack description of Section 3.3 to the
case of multiple approximations by simply replacing (C?Q’L)F with a measurement of
the capacity. However, in general it is highly non-trivial to determine the distribution
of Cf‘ over keys, and thus also the distribution of C*, making it difficult to evaluate
the effectiveness of such an attack. Therefore, both [62] and [17] assume that the
approximations in A are statistically independent, facilitating their analysis. For
this reason, the term multiple linear cryptanalysis is usually associated with this
independence assumption.
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3.4.2 Multidimensional Linear Cryptanalysis

In order to eliminate the assumption of statistical independence made for multiple
linear cryptanalysis, an alternative approach was proposed in [35, 59]. This approach,
called multidimensional linear cryptanalysis, builds on the earlier work [4]. Instead
of considering linear approximations directly, multidimensional linear cryptanalysis
considers the value of x|/ (z) € F3", where | denotes concatenation, restricted to
some subspace of F2". Specifically, let A be a d4 x n matrix whose rows are linearly
independent and have Hamming weight 1, and B a dg X n matrix with identical
constraints. Then the function

h(A,B)(-ngk(-r)) = A . QTHB . 5k(x)7

maps z||Ex(7) to a d = da + dp dimensional subspace of F3" by selecting da
components of x and dg components of & (x). We now consider the probability
that ha p)(z||€k(z)) takes on a specific value in F§, that is, we define a d-variate
probability distribution n* = (nf, ... 777§d_1) by

nt = Pr (hap(all(z) =) for i € F.
rEly

We say that (A, B) is a d-dimensional linear approximation, and the rows of A and
B are called basis approximations. It can be shown that this multidimensional
approximation is equivalent to the set of 2¢ — 1 non-zero, one-dimensional linear
approximations spanned by the basis approximations [59]. In particular, the capacity
of these 2¢ — 1 approximations can be calculated as

241

C]i} — 2d Z (nfr _ 2—d)2.
i=1

Since the n¥ are independent, with the restriction that they sum to 1 for any
k, this potentially allows us to determine the distribution of C* over keys without
assuming independence of the involved approximations. Indeed, since its introduction,
multidimensional linear cryptanalysis has given rise to a number of attacks on block
ciphers [34, 36].

3.5 Other Extensions

Some other flavours of linear cryptanalysis have been proposed. As an analogue
to impossible differentials, zero-correlation linear cryptanalysis [28] uses linear ap-
proximations that have correlation exactly zero for all keys. While the basic variant
requires a high data complexity in order to measure the correlation of such an
approximation exactly, a variant that uses multiple zero-correlation approximations
is able to decrease the amount of plaintext-ciphertext pairs needed [30].
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A related-key variant of linear cryptanalysis, the key difference invariant bias
attack [23], has also been developed. This variant uses approximations which have
the same correlation value between two keys that exhibit a specific difference.

While most work on linear cryptanalysis assumes that plaintexts are drawn ran-
domly with replacement from Ffy, some works have considered settings where the
plaintexts a drawn without replacement [21, 26]. Additionally, a recent publication
suggests filtering the plaintexts in order to achieve a higher correlation [15].

A number of different generalisations of linear cryptanalysis have been considered.
In particular, several ways of replacing the linear expressions in the input and output
bits with non-linear expressions in these bits have been proposed [37, 57, 58, 70, 96].
In a similar vein, the idea of using expressions over groups or fields other than Fy
has also been explored [5, 45, 65, 90].

Combining linear approximations with differentials in the so-called differential-
linear attack has also proven useful in some cases [13, 73]. Finally, several connections
to other attacks have been made, such as differential cryptanalysis [22, 31], integral
cryptanalysis [97], and statistical saturation attacks [75].
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Part IT of this thesis presents four papers that further the field of linear cryptanalysis.
In the following, we give an overview of the contributions of these works. As
explained in Chapter 3, determining the distribution of the linear correlation of an
approximation is essential in order to estimate the effectiveness of a linear attack.
In principle, Theorem 3.5 solves this problem, however applying it is infeasible in
practically every interesting scenario. Thus, various simplifying assumptions have
been made throughout the history of linear cryptanalysis.

As a starting point, it was often assumed that a linear approximation had a
dominating trail, meaning a trail with a much larger correlation contribution than
all other trails. Thus, Equation 3.1 could be estimated just from this trail. While
this assumption simplifies analysis, it is not strictly true in practice, and it has
been shown that the effect of multiple trails can be very strong for some ciphers [75,
89]. Other common assumptions in early linear cryptanalysis were that the linear
correlation was virtually the same for all values of the key, and that the round keys
were independent. These assumptions greatly simplify analysis, especially in the case
of multiple/multidimensional linear cryptanalysis. In recent years, much work has
been done on removing these types of simplifying assumptions [20, 21, 29, 60, 87].
The papers presented in Part I are part of this effort.

Building Tools The starting point of our work is essentially the signal/noise de-
composition proposed in [29] and used in e.g. [20]. In this model, we assume that
we know a set S (the signal) of linear trails of the approximation that have a large
correlation contribution. We then define the signal correlation as

Ce=> Cf.
UeS

The distribution of Cé“a gy s then approximated by assuming that the remaining
trails behave like noise. That is, we make the approximation

Clogy = CE+N(0,277).

Ideally, we want to know as large a set of signal trails as possible. This motivates the
work done in the paper Generating Graphs Packed with Paths (Publication 3), where
we present a new algorithm for linear trail search. While many other algorithms with
this purpose have been presented in the literature, their complexity is almost always
linear in the number of trails, which quickly becomes a problem if a good signal set

23



4 Contributions of Publications

is very large. In contrast, our algorithm is specifically designed to avoid this problem,
which we demonstrate by finding as much a 2''2 trails for the block cipher PUFFIN
[33]. In addition, we also present an efficient algorithm for sampling from the signal
distribution, directly facilitating the use of the signal/noise decomposition model.
This algorithm also allows for sampling of correlations for multiple approximations
simultaneously, without any assumptions on the round keys.

Refining Models The aforementioned algorithms make it easier to take a more
computational approach to linear cryptanalysis. We can now draw observations from
the distribution of C(ka g) OF from the distribution of its multivariate equivalent

k _ k k
Ca=(Clarpy > Clan )

without making any assumptions about statistical independence of approximations,
trails, or round keys. In Multivariate Profiling of Hulls for Linear Cryptanalysis
(Publication 2) we build a model for multiple linear cryptanalysis in this framework,
called the multivariate profiling model. The big advantage of this model is that it
makes no a priori assumptions about the shape or dependence structure of the signal
distribution. In principle, it is therefore able to express any distribution Cff‘ might
have, with the single limitation that the approximations are linearly independent.
We analyse the block cipher PRESENT [25] in this new model, and demonstrate that
the key-schedule of the cipher does have an effect on the shape of the multivariate
distribution of C’j. Then, we present a new attack on 27 out of 31 rounds of the
cipher.

Exploring Correlations While the linear approximations of PRESENT are somewhat
well behaved, meaning that they are approximately jointly normally distributed,
we revisit linear cryptanalysis of DES [55] in Linear Cryptanalysis of DES with
Asymmetries (Publication 1) and find that the situation here is more complicated.
Indeed, we show that the signal distribution can be expressed as a multivariate
normal mixture, leading to a special case of the multivariate profiling model. More
surprisingly, we find sets of approximations for which the correlation distributions are
not symmetric around zero, as one would expect if assuming statistical independence
of the approximations. We propose using a likelihood-ratio approach in order to fully
exploit these asymmetries during an attack, and as a result we present a multiple
linear attack on full DES which improves both time and data complexity of previous
attacks.

Inspired by the above observations, the paper On Linear Correlation Distributions:
More Instructive Examples (Publication 4) takes a closer look at how the shape of
correlation distributions impacts our ability to attack a cipher. We compare the
advantage obtained using multiple approximations under various standard indepen-
dence assumptions against the advantage obtained using the multivariate profiling
model. Interestingly, we find that for ciphers that fit in the normal mixture model,
the exact configuration of the mixture components has a significant impact on the
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advantage. Specifically, we find both cases where the advantage in the profiling model
is significantly higher than when using independence assumptions, and cases where
it is significantly lower. We also find one case, the block cipher RECTANGLE [105],
for which the correlation distribution is highly non-normal, severely decreasing the
advantage.

In conclusion, the papers presented in the following provide new tools and mod-
els for accurately assessing the effectiveness of linear cryptanalysis using multiple
approximations. They furthermore demonstrate that the cryptanalyst should take
care when creating a new attack, as the behaviour of linear correlations seems to be
highly dependent on the cipher. Indeed, there is still much work to be done before
we fully understand these attacks.

Future Challenges While the publications presented in the following are a good
step in the direction of a deeper understanding of linear cryptanalysis, there are also
many open questions left to answer. Chief amongst these is perhaps the problem of
an appropriate wrong-key randomisation hypothesis in the multiple/multidimensional
case. While it is clear that the marginal correlation distributions of C’ff over keys
are normal, following Theorem 3.3, it is an open problem exactly how the joint
distribution looks. Indeed, it is currently unknown whether two linearly independent
approximations of an ideal cipher are also statistically independent. The question of
what the dependence structure of two linearly dependent approximations looks like
seems even harder to tackle. Solving this problem would effectively bridge the gap
between multiple and multidimensional linear cryptanalysis, allowing for the use of
completely arbitrary sets of approximations.

In a similar vein, it is unclear what exactly causes the sometimes large deviation
from normality of the multivariate correlation distributions observed for some ciphers,
as demonstrated in e.g. Publication 4. In particular, it would be interesting to
explore how different design decisions influence these distributions. A first target
for this type of research could be to examine the effect of the of key schedule on
multiple linear cryptanalysis more closely. A more complex task would be to examine
exactly how the choice of linear layer in an SPN cipher affects the clustering of linear
trails and ultimately the shape of the joint correlation distribution. Related to such
work, new attack techniques that more directly exploit the shape of the correlation
distributions could be investigated.

Lastly, seeing that Theorem 3.5 in large part enables the work we have done on
correlation distributions for SPN ciphers, it would be interesting to develop a similar
result for differential cryptanalysis. For that type of attack, it is largely unknown
exactly how the key influences the statistical behaviour of differentials. Thus, it
would be interesting to attempt to reduce the number of assumptions in this setting
as well, and then reevaluate old attacks.
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Linear Cryptanalysis of DES with Asymmetries

Andrey Bogdanov and Philip S. Vejre

Technical University of Denmark

Abstract. Linear cryptanalysis of DES, proposed by Matsui in 1993,
has had a seminal impact on symmetric-key cryptography, having seen
massive research efforts over the past two decades. It has spawned
many variants, including multidimensional and zero-correlation linear
cryptanalysis. These variants can claim best attacks on several ciphers,
including PRESENT, Serpent, and CLEFIA. For DES, none of these
variants have improved upon Matsui’s original linear cryptanalysis,
which has been the best known-plaintext key-recovery attack on the
cipher ever since. In a revisit, Junod concluded that when using 243
known plaintexts, this attack has a complexity of 24! DES evaluations.
His analysis relies on the standard assumptions of right-key equivalence
and wrong-key randomisation.

In this paper, we first investigate the validity of these fundamental
assumptions when applied to DES. For the right key, we observe that
strong linear approximations of DES have more than just one dominant
trail and, thus, that the right keys are in fact inequivalent with respect
to linear correlation. We therefore develop a new right-key model using
Gaussian mixtures for approximations with several dominant trails. For
the wrong key, we observe that the correlation of a strong approximation
after the partial decryption with a wrong key still shows much non-
randomness. To remedy this, we propose a novel wrong-key model
that expresses the wrong-key linear correlation using a version of DES
with more rounds. We extend the two models to the general case of
multiple approximations, propose a likelihood-ratio classifier based on
this generalisation, and show that it performs better than the classical
Bayesian classifier.

On the practical side, we find that the distributions of right-key corre-
lations for multiple linear approximations of DES exhibit exploitable
asymmetries. In particular, not all sign combinations in the correlation
values are possible. This results in our improved multiple linear attack
on DES using 4 linear approximations at a time. The lowest compu-
tational complexity of 23886 DES evaluations is achieved when using
24278 known plaintexts. Alternatively, using 24! plaintexts results in
a computational complexity of 2497 DES evaluations. We perform
practical experiments to confirm our model. To our knowledge, this is
the best attack on DES.
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Publication 1 Linear Cryptanalysis of DES with Asymmetries

1 Introduction

Accepted as a standard in 1976 by the National Bureau of Standards (later NIST),
DES can now celebrate its fortieth birthday. Being a highly influential cipher, it has
inspired much cryptanalysis. Triple-DES is still massively deployed in conservative
industries such as banking. Moreover, it is used to secure about 3% of Internet
traffic [26].

The first attack on the full DES came in 1992, where Biham and Shamir demon-
strated that differential cryptanalysis enabled a key recovery using 247 chosen plain-
texts in time 237 [1]. The year after, in 1993, Matsui introduced a new cryptanalytic
technique, linear cryptanalysis, which DES proved especially susceptible to. While
the first iteration of the attack required 247 known plaintexts [20], Matsui soon
improved his attack to only require 243 known texts, taking 243 time to recover the
key. This complexity estimate was lowered to 24! by Junod in 2001 [16]. In [17],
Knudsen and Mathiassen lower the complexity to 242 plaintexts, however this attack
uses chosen plaintexts.

In this paper we present the first successful attack on full DES using multiple
linear approximations. By developing new models for the correlation distributions,
and by exploiting asymmetries in the right-key distribution, we obtain an improved
key-recovery attack. Using 24278 known plaintexts, the attack recovers the key in
time equal to 23886 DES encryptions.

1.1 Previous Work and Problems

Linear cryptanalysis has proven to be widely applicable, and has spawned many
variants and generalisations. Amongst them are differential-linear cryptanalysis [18],
multiple linear cryptanalysis [2, 15], multidimensional linear cryptanalysis [13, 14],
zero-correlation linear cryptanalysis [4, 5], multivariate linear cryptanalysis [7], etc.
These techniques have successfully been applied to a wide range of ciphers, including
Serpent [14, 22], PRESENT [7, 8], Camellia and CLEFIA [3], and CAST-256 [27].

Matsui first introduced the concept of a linear approximation of a block cipher in
[20]. If we denote the encryption of a plaintext P using key K by C = Ek (P), then
a linear approximation of this cipher is a pair of masks, (a, ), which indicate some
bits of the plaintext and ciphertext. The idea is to find a and § such that the sum
of plaintext bits indicated by « is strongly correlated to the sum of ciphertext bits
indicated by 5. A measure of the strength of a linear approximation is the linear
correlation, defined by

Ck(a,B) =2 -Pr({o,x) @ (B, Ex(x)) =0) — 1,

where (-, -) is the canonical inner product. Matsui showed how an approximation
with linear correlation that deviates significantly from zero can be used to attack
the cipher, and found such approximations for DES. The attack procedure was
formalised as Algorithm 2, in which an attacker obtains plaintext-ciphertext pairs
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over r rounds of a cipher. The attacker then guesses the outer round keys in order
to encrypt/decrypt the outer rounds, and compute the correlation over r — 2 rounds.

Standard assumptions for linear cryptanalysis on DES

In [16] Junod revisited Matsui’s attack, and concluded that Matsui’s original com-
plexity was slightly overestimated. Junod instead estimated that the attack could be
performed in time 24! using the same number of known plaintexts. Central to both
Matui’s and Junod’s analysis are two assumptions.

Assumption A (Right-Key Equivalence). For a linear approzimation (a, 3), the
magnitude of the correlation, |Ck(a,B)|, does not deviate significantly from its
expected value over all keys, that is, |Ck («, B)| = E(|Ck (e, B)]).

Problem 1: Insufficient Right-Key Distribution: The assumption of right-key
equivalence is usually the result of assuming that the magnitude of the linear
correlation is determined by a single dominant trail. This further implies that
the linear correlation only takes on two values over the key space. However, in [23],
Nyberg first introduced the concept of a linear hull, i.e. the collection of all trails of
a linear approximation, and showed that Assumption A is not true in general. In
[6], Bogdanov and Tischhauser gave a refined version of Assumption A, which takes
a larger part of the hull into account. However, to the best of our knowledge, no
thorough exploration of the right-key distribution for DES has been conducted, and
it is unclear how accurate Assumption A is in this context.

Assumption B (Wrong-Key Randomisation). In the context of Algorithm 2, the
correlation of a linear approzimation («, ) is equal to 0 for all wrong guesses of the
outer round keys.

Problem 2: Unrealistic Wrong-Key Distribution: The assumption of wrong-key
randomisation implies that if an attacker guesses the wrong outer round keys in
Algorithm 2, the resulting texts pairs behave in a completely random way, i.e. the
linear correlation will be equal to zero. A refined version of this assumption was given
by Bogdanov and Tischhauser in [6], where the wrong-key distribution was given as
the Gaussian distribution A/(0,27™), where n is the block size. This distribution
matches that of an ideal permutation. Neither of these assumptions have been verified
for DES. Indeed, DES exhibits very strong linear approximations, and it is not clear
if a wrong key guess is sufficient to make the linear correlation close to that of an
ideal permutation.

Linear cryptanalysis of DES with multiple approximations

While several models for using multiple approximations for linear cryptanalysis have
been proposed, see e.g. [2, 7, 13, 14, 15, 25], the application to DES has been very
limited. In [15], Kaliski and Robshaw specifically note that their approach is limited
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when applied to DES. In [25], Semaev presents an alternative approach, but does
not obtain better results than Matsui’s original attack.

The most promising attempt was given in [2] by Biryukov et al. Under Assump-
tion A, when using M approximations, the key space can be partitioned into at
most 2M key classes based on the signs of the M linear correlations. This allowed
Biyukov et al. to describe the correlation of each key class as an M-variate normal
distribution Nys(p;,1/N -I), where I is an M x M identity matrix, and the mean
vector is given by

w; = (5i1|Cx (T, sim|Cr(Tar)|) T

where s; ; € {—1,1} describes the sign combination of the i’th key class. Based on
this, they developed a Bayesian classifier, in order to decide between a correct or
incorrect guess of the round keys in Algorithm 2.

Problem 3: Applying Multiple Linear Cryptanalysis to DES: While Biryukov et
al. demonstrate that their method of using multiple approximations can potentially
reduce the complexity of Matsui’s attack, they also note that the structure of DES
makes it difficult to arbitrarily use a large number of approximations. As such, they
did not present a new attack on DES. Similar observations were made by Kaliski
and Robshaw in [15]. To the best of our knowledge, no other variants of linear
cryptanalysis which uses multiple approximations have been able to outperform
Matsui’s original attack.

1.2 Our Contributions
More Accurate Right-Key Model for DES.

In Section 3 we consider Problem 1, i.e. the fundamental problem of the DES
right-key distribution. We enumerated over 1000 trails for the linear approximation
used by Matsui, and calculated the resulting correlation distribution for 1 million
keys. We demonstrate in Section 3.2 that while this distribution does have two modes
symmetric around zero, each mode does not consist of a single value, as predicted
by Assumption A. Indeed, it is not even the case that each mode takes on a simple
Gaussian distribution. As such, one cannot consider different keys to have equivalent
behaviour.

We therefore develop a new model for the right-key distribution in Section 3.3.
This model is given below, and expresses the distribution as a mixture of Gaussian
components. An example of this model applied to DES is shown in Figure 1.

Model A (Right-Key Equivalence for One Approximation). Consider a linear
approzimation (a, B) of r rounds of DES. The distribution of the linear correlation
Ck (o, B) over the key space is approzimately given by a Gaussian mizture for some
weights \; and components N (i, 02),i=1,... 1.

Applying this model to the approximations used by Matsui, we show that it is able
to accurately describe the observed distribution. Moreover, it is interesting to note
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Right-key model Wrong-key model
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Figure 1: Our new models for the distributions of linear correlation over the key space
for DES. The distributions are expressed as Gaussian mixtures. The model
shows a deviation from the standard assumptions of right-key equivalence
and wrong-key randomisation.

that the component associated with the dominant trail only accounts for 30% of the
correlation, contrasting Assumption A. We furthermore apply the mixture model to
describe the full correlation distribution observed during an attack. We note that
when the number of texts used in the attack is small, the right-key distribution
originally given by Matsui is a good approximation. However, we stress that the
cryptanalyst should carefully examine the right-key distribution when this is not the
case.

New Wrong-Key Model for DES.

In Section 4 we consider Problem 2. In order to obtain a wrong-key model that more
accurately describes the case of a wrong key guess in Algorithm 2, we propose the
following new approach.

Model B (Non-Random Wrong-Key Distribution). Consider an Algorithm 2 style
attack on r rounds of DES using a linear approzimation («, ) over r — 2 rounds. Let
Ry be the keyed round function of DES, and let E} denote the r-round encryption
function. For a wrong guess of the outer round keys, the correlation will be distributed
as for the cipher

By (z) = Ry, (B (R, (2))), (1)
where K, and Ky are chosen uniformly at random.

This model accurately matches the situation of guessing the wrong outer round keys
in an Algorithm 2 attack. We enumerated over 900 trails for the linear approximation
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used by Matsui for the cipher E’, and calculated the resulting correlation distribution
for 1 million keys. The result is shown in Figure 1. While the distribution has
mean zero, the shape of the distribution does not match Assumption B, nor that
of the revised version by Bogdanov and Tischhauser, as its variance is much larger
than 27", As is the case for the right-key distribution, the wrong-key distribution
is also not a simple Gaussian, but rather some Gaussian mixture. Again, for low
data complexities, we demonstrate that a Gaussian model is sufficient to describe
the wrong-key distribution observed during an attack, but advise caution when the
data complexity is close to full codebook.

Multiple Linear Cryptanalysis with Asymmetries.

In Sections 5 and 6 we remedy Problem 3. We develop a classifier for M approxi-
mations based on the likelihood-ratio of the right-key and wrong-key distributions
developed in Section 3 and Section 4. This classifier is given by

Zle Aidar (x5 g, 3y + (27" 4+ 1/N)I)

where ¢ is the probability density function (PDF) of the Gaussian distribution. The
wrong-key distribution is a simple M-variate Gaussian. The right-key distribution
is a mixture of at most 2™, M-variate components based on the signs of the M
correlations. In contracts to the work in [2], we do not partition the key space, but
express the correlation distribution over the entire key space. Also in contrast to
this work, our classifier directly takes the wrong-key distribution into account. We
demonstrate how this improves the classifier.

We make the interesting observation that if the right-key distribution is asymmetric,
that is, if the number of components is less than 2™, we obtain a stronger classifier.
This situation is demonstrated in Figure 2. From this example, one can get an intuitive
understanding of how an asymmetric distribution makes it easier to distinguish
between right-key and wrong-key. We therefore propose the term symmetry factor,
namely the ratio between number of components and 2™, and conjecture that a
lower symmetry factor will result in a stronger attack.

Alx) =

First Successful Multiple Linear Cryptanalysis of DES.

By using the asymmetric classifier in Section 6, we give the first attack on full DES
using multiple linear approximations which improves Matsui’s original attack. We
use two sets of four linear approximations. Using 2427 known plaintexts, the attack
recovers the key in time equal to 23886 encryptions, with a success probability of
85%. This is 4.4 times faster than Junod’s estimate of Matsui’s attack, and uses
2402 fewer texts. We confirm these results by measuring the actual correlation
distributions using this number of texts for 1300 random keys, and computing the
resulting advantage of our classifier. We find that the model fits our practical results
very well. Alternatively, we can lower the data complexity to 2*!, and recover the
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Symmetric right-key distribution Asymmetric right-key distribution

’//lllll’l"%

M

Figure 2: An illustration of the difference between a symmetric and an asymmetric
joint distribution of linear correlation for two approximations over the key
space. The right-key distribution is blue, while the wrong-key distribution

is red.
Technique Data Time Success Attack Source
q complexity | complexity | probability | scenario

Differential 247.00 23700 58% CP [1]
Linear 243.00 24300 85% KP [21]
Linear 243.00 241.00 85% KP [16]
Multiple Linear 21278 238.86 85% KP Sec. 6
Multiple Linear 241.00 249.76 80% KP Sec. 6

Table 1: Comparison of key-recovery attacks on full DES. Kown plaintext and chosen
plaintext attacks are referred to as KP and CP, respectively.

key in time 24976 with a success probability of 80%. Our attack is compared to

previous attacks on full DES in Table 1.

2 Linear Cryptanalysis of DES

In 1993, Matsui introduced the concept of linear cryptanalysis and applied it to
derive a key-recovery attack on the full 16-round DES [20, 21]. In this section, we
briefly outline the attack. We then give an overview of the assumptions Matsui made
in his analysis, and show the resulting complexity of the attack. Moreover, we show
a variant of linear cryptanalysis due to Biryukov, de Canniére, and Quisquater [2],
which will be important for the remaining part of this work.
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2.1 Basics of Linear Cryptanalysis

We consider a block cipher with block length n and key length k. We denote the
encryption of plaintext P € Fy under key K € F5 by Ex(P). The idea of linear
cryptanalysis is to find a linear approximation (a,f) € F§ x FL such that the
magnitude of its linear correlation, defined by

Ck(a,B) =2-Pr({e,z) & (B, Bk (x)) = 0) — 1,

is large. Here, (-,-) denotes the canonical inner product on F4. Thus, the correlation
is a measure of how often the parity bit («, P) of the plaintext is equal to the parity bit
(B,C) of the ciphertext. We expect a strong cipher to only have approximations with
linear correlation close to 0, and hence a correlation value that deviates significantly
from 0 indicates a weakness of the cipher.

For Feistel ciphers, such as DES, the linear correlation of an approximation («, 3)
can be calculated by considering so called linear trails of the cipher. We define a
single-round linear trail of DES as the triple (u,t,v) € Fy x F§* x F2_ where m is
the size of a single round key. The linear correlation of this single-round trail is then
defined as

Cr, (u,t,v) = 2- Pr((u,2) ® (v, Rk, (2)) = (¢, Kr)) = 1,

where Ry, is the DES round-function using the 7’th round key K,. We now define
a linear trail T over r rounds as a collection of single-round trails (u;,t;,u;4+1),

i=0,...,7 — 1, as well as the correlation contribution of the trail T as [10, 12]
r—1
Ck(T) = H Cre, (wis tis i)
i=0

We will also make use of the concept of an associated key trail T of a trail T. The
key trail is defined as the concatenation of the t;, i =0,...,r — 1.

Daemen and Rijmen demonstrated that the correlation contribution of a trail can
be written as [10, 12]

O (T) = (=17 B (1)), (2)

where sy is a sign bit specific to the trail T, and K denotes the concatenation of the
round keys K. Moreover, under the assumption of independent round keys, |Ck (T)|
is independent of the key. Thus, the correlation contribution of a trail T" has a fixed
magnitude for all keys, but the sign is determined by the round key bits indicated by
the key trail T. Finally, Daemen and Rijmen give the correlation over all 7 rounds
for some approximation («, 3) as [10, 12]

Cilonf)= >, Cx(M= > (-1 TR)Ck(T), (3)
B

U=, Up= up=o,ur=p

i.e. the sum of the correlation contributions of all trails from « to .
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2.2 Matsui’s approach

Matsui’s key observation was that DES exhibits linear trails where the correlation
contribution deviates significantly from zero. Consider the full 16-round DES, let P
be the plaintext, and let C be the ciphertext. Let [ig, ..., %] denote an element in FY
whose 7;’th components are 1, j =0, ..., ¢, while all other components are 0. Then,
over 14 rounds of DES, the approximations

m = ([7,18,24],[7,18,24,29,47]) and d3 = ([15, 39,50, 56,61], [39, 50, 56]),

both have trails with correlation contribution Cg (T') = £2719-7® [21]. From Equa-
tion 2 we can determine one bit of information if we know the sign of Cx (T'), namely
the parity <T, K ) of the round key bits indicated by the key trail T. Let ks denote
the key-bits of round key K| required to partially encrypt a plaintext P one round
and calculate (o, Rg, (P)), and let k denote the key-bits of round key K,_; required
to partially decrypt the ciphertext C one round and calculate {3, RI_<1_1 (C)). Matsui
developed the following general approach in order to determine |k¢| + |kp| + 1 key
bits, formalised as Algorithm 2.

Algorithm 2
1. Obtain N plaintext-ciphertext pairs.

2. For each guess of the key-bits (ky, ky), partially encrypt, respectively decrypt,
each plaintext-ciphertext pair (P,C) and calculate the number of times L; the
input parity («, Rg,(P)) is equal to the output partiy (6,R§}ﬂ(€)) for the
i’th guess, i = 1,...,2lksl+lkel

3. For each counter L;, if L; > N/2, guess that the sign bit (T,K) = s, otherwise
guess that (T, K) = sp @ 1.

4. For any counter L; with |T; — N/2| > T, for a predetermined value I, guess
the remaining xk — (|k¢| 4 |ks| + 1) bits of the master key K, and determine the
correct value of K through trial encryption.

For his attack on DES, Matsui performed Algorithm 2 once for v; and once for
03, determining 26 bits before guessing the remaining 30 bits of K. In his analysis
of the success rate and complexity of the attack, Matsui assumed that the linear
correlation of the approximations ; and d3 were only determined by a single trail
T. The idea is that the correlation contribution of T is much larger than that of all
other trails — a so called dominant trail. We will call the associated key trail T of
such a trail a dominant key trail. In the presence of such a dominant trail, Ck («, 3)
only takes on two values over the key space. This can be seen from Equation 3, as
the case of a dominant trail implies that this sum only has one term. Under this
assumption, Matsui concluded that when using 2*3 texts, there is an 85% probability
of recovering the key at a time complexity of 243 DES encryptions. In a later analysis
of Matsui’s attack [16], Junod concluded that the actual computational complexity
is closer to 24! DES encryptions.
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2.3 Biryukov et al. — Multiple Approximations

A natural extension of Matsui’s linear cryptanalysis is to attempt to use multiple linear
approximations simultaneously. The first attempt at developing such a framework
was by Kaliski and Robshaw in [15]. This work has the limitation that all linear
approximations must have the same dominant key trail, and the approximations were
assumed to be statistically independent. Moreover, as Kaliski and Robshaw note,
the application of this method to DES is very limited.

Another approach was undertaken by Biryukov et al. in [2]. Here, the approxi-
mations can in principle be picked arbitrarily, but the framework still requires the
assumption of one dominant trail for each approximation, and independence between
approximations. Due to these restrictions, the foundations of multidimensional linear
cryptanalysis was developed in e.g. [13, 14]. While this approach has been applied
with great success to a large range of ciphers, no results have been shown on DES.
Thus, Matsui’s single linear cryptanalysis still provides the best results on this cipher.

Let us briefly reconsider the method by Biryukov et al., assuming the use of M
linear approximations. The idea is to partition the key space into at most 2™ classes
based on the parity of the (Ti,l_( ), where T; is the dominant key trail of the 7’th
approximation. An Algorithm 2 type attack is then performed: For each guess of the
key-bits (ks, k), the vector (L; 1,. .., L; am) is calculated, and the likelihood of that
vector belonging to each of the key classes is computed. The right guess of (ky, k)
should yield one class with high likelihood, and the class then indicates at most M
parity bits, (T;, K). Central to the analysis of [2] are the following two assumptions:

Assumption 1 (Right-Key Equivalence). For a linear approxzimation («, 3), the
magnitude of the correlation, |Ck(a, )|, does not deviate significantly from its
expected value over all keys, that is, |Ck(«, 8)| = E(|Ck («, 8)])-

Assumption 2 (Wrong-Key Randomisation). For Algorithm 2, the correlation of a
linear approzimation (e, ) is 0 for all wrong guesses of (ky, ky).

The assumption of right-key equivalence implies that the linear approximation
has one dominant trail, say T, and consequently the distribution of the correlation
over the key space only takes on two values, namely +|Ck (T)|. Thus, the natural
partitioning of the key space for M approximations is the partitioning induced by
the sign of the correlations, i.e. the vector ((—1){Tv5) . (=1)T™K)) In practice
however, the correlations are calculated from the counters L; ;. The joint distribution
of the resulting measured correlations, for some specific key class, is given in [2] as
an M-variate normal distribution, described in the following model.

Model 1 (Right-Key Partitioning for Multiple Approximations [2]). Consider a
set of linear approzimations (o, 1), .., (s, Bu) of v rounds of DES. Then, the
key space can be partitioned into at most 2™ key classes based on the signs of the
correlations. The undersampled distribution of the linear correlation vector, using
N texts and restricted to the i’th key class, denoted by CN(a, B), is an M-variate
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normal distribution

The mean vector of the i’th key class is given by p,;[j] = s; ;|Cr (T;)|, where s; ; €
{—1,1} describes the sign combination of the i’th key class, j =1,..., M.

Based on this model, a Bayesian classifier is constructed. We refer to Section 5 for
the details. While the approach presented by Biryukov et al. seems promising, it
has yet to result in an improved attack on DES. To the best of our knowledge, no
other variants of linear cryptanalysis which uses multiple approximations have been
able to outperform Matsui’s original attack. Moreover, while updated versions of
Assumption 1 and Assumption 2 have been applied to other ciphers, no such work
exists for DES. In the following, we address these concerns. We consider the right-key
distribution in Section 3, and the wrong-key distribution in Section 4. Using the
results obtained in these sections, we develop an improved linear attack on DES in
Sections 5 and 6.

3 Right-Key Correlation for DES: Key Inequivalence

In this section, we consider the correlation distribution of DES approximations over
the key space. In Section 3.1, we consider current models for this distribution, as
well as the undersampled distribution. In Section 3.2, we enumerate a large number
of trails for DES, and show that, contrary to Assumption 1, the absolute value of
the correlation does vary significantly as the key changes. In fact, the correlation
distribution has a complicated structure. In Section 3.3, we develop a new model
for this correlation based on Gaussian mixtures, which is able to accurately describe
this structure. Moreover, we extend the model to describe the full undersampled
correlation distribution over keys for multiple approximations.

3.1 The Correlation Distribution of a Single Approximation

As mentioned, most linear cryptanalysis of DES assumes that each linear approxima-
tion has one dominant trail, determining the magnitude of the absolute correlation.
This idea is effectively expressed by Assumption 1. Consider, for example, one of
the approximations used by Matsui, ;. This approximation has a primary trail T4
over 14 rounds of DES with correlation contribution Cx (T4) = £271975. In [23],
Nyberg first introduced the concept of a linear hull, i.e. the collection of all trails
of a linear approximation, and showed that Assumption 1 is not true in general.
For 7, the trail with second largest correlation contribution, 7”7, has contribution
Ck(T') = £2725-86_ While the contribution from this trail is not large enough to
change the sign of the linear correlation Ck (1), or increase/decrease the magnitude
of the correlation much, it does not match the model given in Assumption 1. When
including the second trail, the correlation distribution does not take on only two
distinct values, but four.
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Signal /noise decomposition.

In order to refine Assumption 1, Bogdanov and Tischhauser considered a signal/noise
decomposition of the hull in [6]. Consider a situation in which d dominant trails of
an approximation («a, 8) are known. We call this collection of trails the signal, and
define the signal correlation as the sum of their correlation contributions

d — —
Cicla, ) = Y _(=1)"m IO (T5).

i=1

The remaining part of the hull is unknown, and is modelled as moise, with the
distribution N (0,27 ™). Then, the refined right-key equivalence assumption of [6]
states that the correlation of («, 5) is given by the sum of the signal correlation and
the noise:

Ck(a, ) = Ci(a, f) + N(0,277).

Since the approximations we will typically consider in the context of DES have quite
high correlation, the addition of the noise term will not make a significant difference.
However, we include it for completeness.

Undersampling.

The cryptanalyst is most often not interested in having to obtain the full codebook
to exactly measure the linear correlation Ck (a, 8). Therefore, the undersampled
distribution is of great interest. Let

N, B) = %#{xi,i — 1, Nl{ezi) @ (8, Exc(z:)) = 0} — 1

be the empirical value of C'x (v, ) measured using N text pairs. Here, we assume that
x; is drawn uniformly at random with replacement from 5. Matsui first considered
the distribution of C¥ (a, 8) over the key space under Assumption 1. In this case,
Matsui used the Gaussian distribution C¥ (o, 8) ~ N(Ck (e, 8),1/N). While no
proof is given in [20], one can show this result via a Gaussian approximation to the
binomial distribution, assuming that |Ck («, 8)| is small.

3.2 Exploring the Signal Distribution of DES

On the basis of the signal/noise model, we now turn our attention to the signal
distribution of DES approximations. By computing the signal correlation C% for a
large number of trails, we are able to get a good idea of the actual distribution of
the correlation C'x. We first describe how the signal trails were enumerated.
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Our trail enumeration algorithm.

We implemented a bounded breadth-first search in order to enumerate trails of DES
approximations over 14 rounds. The algorithm consists of two search phases and a
matching phase. Consider an approximation (a, 3). The first search phase searches
for trails in the forward direction, from round one to round seven. The search starts
with a as an input mask to the first round, and then finds ¢ and v such that the
single round trails («, ¢, v) has non-zero correlation. This process is then repeated for
each trail with v as input mask to the second round, etc. The second search phase is
similar, but searches backwards from f.

The searches are bounded in two ways. First, we only consider trails that activate
at most three S-Boxes in each round. Second, we limit the number of trails which
are kept in each round. This is done in such a way that only the trails with largest
absolute correlation contribution are kept. This ensures a locally optimal choice,
although no such guarantee can be made globally. The number of trails kept is
determined by the branching factor B, such that in the i’th round of the search, i - B
trails are kept.

After the two search phases, each trail found in the forward direction is matched
to any trail in the backwards direction which shares the same mask in the middle.
In this way, we obtain a number of trails of («, 8) over 14 rounds. Globally optimal
trails will have a good chance of being enumerated if the branching factor B is chosen
sufficiently large. In the following, we set B = 1 million, which means that we can
find at most 7 million trails in each search direction. Note that the number of trails
eventually discovered by the algorithm highly depends on the number of rounds and
the approximation under consideration. We performed the enumeration for the eight
approximations given in Table 2 using 20 Intel Xeon Processor E5-2680 cores. The
enumeration took about 8 CPU hours.

Computing the Signal Distribution.

Using the algorithm described above, we enumerated 1126 trails of the approximation
~1 over 14 rounds, and calculated the signal correlation

1126
Cic(n) = Y (1) mOTR) 10k (Ty)],

=1

for 1 million randomly drawn keys. The trails we found have an absolute correlation
contribution between 274361 and 271975 and include the dominant trail used by
Matsui in [21]. The resulting distribution can be seen in Figure 3.

The left part of the figure shows the full distribution over the key space. At this
scale, the distribution resembles the one described in Section 2; there are two very
prominent modes symmetric around zero, with peaks around #2773 corresponding
to the correlation contribution of the dominant trail. However, the right part of the
plot, showing the positive half of the distribution, largely contradicts Assumption 1
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Figure 3: The signal distribution of linear correlation for the approximation v; over
14 rounds of DES. The signal correlation was calculated using 1126 trails
and 1 million randomly drawn keys. The trails had an absolute correlation
contribution between 274361 and 271975, The left plot shows the two main
modes, symmetric around zero. The right plot shows only the positive half
of the distribution.

of key equivalence. While the mean of the distribution is 27%75, it also has a non-
negligible standard deviation of 272471, Moreover, the distribution is not Gaussian.
The correlations cluster around three values, namely 271979 271975 apnd 271968,
Interestingly, the probability density is larger around the cluster with the lowest
correlation value.

Under the signal /noise model, adding the noise distribution N'(0,27™) gives us a
good estimate of the actual distribution of the correlation Ck (y1). However, due to
the large variance of the signal distribution, the effect of the noise term is negligible
in this case. Thus, the distribution in Figure 3 should be quite close to the actual
distribution. This poses a fundamental problem, as none of the analysis of linear
cryptanalysis applied to DES accounts for this type of distribution. Indeed, it is
not clear how the distribution of the undersampled correlation, Cﬁ , looks, which is
essential to know when determining the complexity of linear attacks.

3.3 A New Mixture Model for Single and Multiple Approximations

To relieve the problems discussed in Section 3.2, we now propose a model for the
correlation distribution based on Gaussian miztures. Consider a distribution in which
each sample is drawn from one of ¢ Gaussian distributions. Each Gaussian is called
a component. The probability of the sample being drawn from the i’th component
is A;, usually called the weights, with >_ \; = 1. The probability density function
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Figure 4: A Gaussian mixture fitted to the correlation distribution of the linear
approximation 7; over 14 rounds of DES. The individual components are
shown in red, the mixture density is shown in green, and the measured
distribution is shown in blue. Under this model, only 30% of the distribution
is attributed to the Gaussian component associated with the dominant
trail.

(PDF) of such a distribution is given by
‘
flx) = ZAiéf)(x;ﬂiyUz‘Q),
i=1

where ¢(x; pi, 0?) is the PDF of the i’th Gaussian distribution, having mean p; and

variance o2 [19]. We will denote the distribution itself by M(\;, pi, 02, £). We then
propose the following model.

Model 2 (Right-Key Inequivalence for One Approximation). Consider a linear
approzimation (a, B) of r rounds of DES. The distribution of the linear correlation
Ck (o, B) over the key space is approzimately given by a Gaussian mizture for some
weights \; and components N (u;, U?), i=1,...,¢. That is,

CK(OK,B) ~ M()‘i7/j/i7o-i27€)'

We note that the signal/noise decomposition easily applies to this model. If we
determine that the signal correlation follows a Gaussian mixture, i.e. C (o, ) ~
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M, 0% 0") for some appropriate parameters, then we can approximate the
actual correlation distribution by adding the noise distribution:

Cr (e, ) ~ M(X,, i, 07, ) + N(0,277).

We apply Model 2 to the distribution obtained in Section 3.2. The result of fitting
a Gaussian mixture model with three components to the positive part of the signal
distribution is shown in Figure 4. We first note that the mixture model fits the
measured signal distribution quite well. The parameters are

A =045, g =279 52 = 975240
Ao =0.30, pg=27197 52=275237

A3 =025, puz=2"1908 529752068

The second mixture component has mean equal to the correlation contribution of the
dominant trail, but this component only contributes to 30% of the full distribution. In
fact, the main part of the contribution, 45%, can be attributed to the first component,
which has a slightly lower mean. This demonstrates that considering only the
contribution of the dominant trail can be misleading, even when the remaining trails
have a far lower correlation contribution. In general, one should consider as large
a part of the hull as possible. Nevertheless, for attacks with relatively low data
complexity, the actual distribution can easily be hidden, as we shall see next.

The undersampled mixture.

In Section 3.2, we recalled that under the assumption of a dominant trail, the distri-
bution of the undersampled correlation C¥ is given by the Gaussian N (Ck, 1/N).
We state the following equivalent result in the setting of Model 2 and give an outline
of the proof.

Theorem 1 (Undersampled distribution). Assuming Model 2, the undersampled
correlation distribution of an approximation («, ) obtained using N random text
pairs is given by

C%(Oé,ﬁ) ~ M()\“ /u'i,aizvg) +N(0, 1/N)
Proof. For any fixed key k, C is distributed as Bin(N, Cy) over the random text
sample, which can be approximated by N(Cj,1/N) if Cy is small. That is, C¥ |

K =k ~ N(Cg,1/N). The PDF of the compound distribution C¥, i.e. without the
conditioning on K, is given by

L
pep @) = [ 6 1/N) - 3 Niolas s, o)
=1
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Figure 5: The distribution of the undersampled linear correlation of 7y, C% +
N(0,27™) + N(0,1/N), over 14 rounds of DES, with N = 243, C%. was
measured using 1126 trails over 1 million randomly drawn keys. A Gaussian
mixture with two components have been fitted to the distribution. The
components are shown in red, while the full distribution is shown in green.

which can be shown to be equal to

14
pen(y) =D Nid(y; iy o7 + 1/N).
=1

This is a Gaussian mixture where each component can be written as N (u;,0?) +
N(0,1/N). But since we add the second distribution with probability one, the same
distribution can be obtained by first drawing from the original mixture, and then
adding the distribution A/(0,1/N), finishing the proof. O

If the number of texts N is relatively large, the model can be somewhat simplified.
If we wanted to apply Model 2 and Theorem 1 directly to the case of 1, we would
model the measured correlation as

CR (1) = M(Xi, pi, 07,6) + N(0,27") + N(0,1/N), (4)

using six components for the Gaussian mixture. However, the details of the mixture
are easily lost at high levels of undersampling, as can be seen in Figure 5. Here, we
have shown the distribution

Che(y1) + N(0,27) + N(0,1/N),

where N = 243, The resulting distribution can be described as a Gaussian mixture
with two components, instead of six. Each component has variance roughly equal to
1/N, and the means are +2719-75 i.e. the correlation contribution of the dominant
trail. This agrees with the models used by e.g. Matsui and Biryukov, et al., but
we stress that this is only true when N is relatively small compared to the linear
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correlation. In particular, for ciphers with strong dominant trails, 1/N needs to
be larger than the variance of the positive/negative part of the distributions. For
values of N close to the full codebook, this is not true (unless the approximation
is extremely weak), and the distribution of Cx cannot be ignored. However, this
simplification will help greatly when we consider the joint distribution of multiple
approximations in the next subsection.

The Gaussian mixture of multiple approximations.

Model 2 and the results of Section 3.3 can be generalised to consider the case of
multiple linear approximations. Let Ck (a, 8) denote the vector of correlations of
M linear approximations, (Cx (a1, B1),...,Cx(anr, Bar)) T In the following, we will
restrict ourselves to the case where the signal distributions, C’ (o, 8;), each have
two distinct modes: one positive and one negative. This allows us to split the joint
signal distribution, C' (v, B), into at most 2™ components determined by the signs
of Ck(a, B). In the case of relatively low values of N, we propose the following
model.

Model 3 (Right-Key Mixture for Multiple Approximations). Consider a set of linear
approzimations (a1, 1), ..., (an, Bar) of v rounds of DES. The undersampled distri-
bution of the linear correlation vector over the key space, C¥ (e, B), is approzimately
given by an M -variate Gaussian mizture, namely

CR (e, B) ~ Mur(1/6, 1, B + 1/N - L 1),
where £ < 2M . Moreover, the parameters of the mizture components are given by

M = 5<CK(a7/8)|sl,] . CK(O&i,/Bi) > 07] = 17"'aM)a
3= COV(CK((I,,B”SL]' . CK(Ck“ﬂZ) > 0,] = ]., .. .,M),

where s; ; € {—1,1} describes the sign combination of the i’th component.

As for the case of a single approximation, the signal/noise decomposition applies
to this model, resulting in an undersampled distribution of the form

CR (o, B) ~ Mar(1/€, i}, =5 + (27" + 1/N)L ().

The signal parameters, p; and X, can be estimated by enumerating an appropriate
number of trails and then calculating C (e, 8) for a large number of keys.

This model bears some resemblance to the one given by Biryukov et al. in [2].
While both models use the signs of the correlation vector to split the distribution
into several Gaussians, our model captures the entire key space in one distribution,
whereas the model in [2] partitions the key space into at most 2 parts which
are considered separately. Additionally, we do not make any assumption about
the independence of the linear approximations. As such, ¥; need not be diagonal
matrices, and not all 2M sign combinations need to be present. While the possibility
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of £ < 2M is briefly mentioned in [2], all experiments were done such that £ = 2. As
we shall see in Section 5, the case of £ < 2M allows for stronger attacks. Moreover,
an improved attack on full DES was not presented in [2] . We apply our model to
obtain a key-recovery attack on full DES in Section 6. First, however, we turn our
attention to the wrong-key distribution.

4 Wrong-Key Correlation for DES: Non-Random
Behaviour

In this section, we consider the correlation distribution of DES approximations in
the case of a wrong key guess in Algorithm 2. This distribution is essential, as
the effectiveness of the algorithm is determined by how different the right-key and
wrong-key distributions are. In Section 4.1, we consider the current models for the
wrong-key distribution. In Section 4.2, we develop a new model for the wrong-key
distribution of DES, and show that the distribution obtained under this model
deviates significantly from that considered in Section 4.1. Nevertheless, as for the
right-key in Section 3, we show that the deviation has little impact when the number
of texts used in the attack is relatively small.

4.1 The Current Ideal Wrong-Key Distribution

The assumption of wrong-key randomisation, Assumption 2, used by Matsui in [21]
and by Biryukov et al. in [2], predicts that a wrong guess of the outer round keys
in Algorithm 2 should result in an approximation with correlation zero. This is
motivated by the idea that if we encrypt/decrypt using the wrong key, we are doing
something equivalent to encrypting two extra rounds. This should result in a linear
correlation much closer to zero, as we are essentially considering the correlation over
r + 4 rounds instead of r rounds. However, as shown by Daemen and Rijmen in [11],
even a linear approximation of an ideal permutation will approximately have the
correlation distribution

Crk(a, ) ~N(0,277),

where n is the blocksize. Since we intuitively cannot do "worse" than an ideal cipher,
the correlation of a wrong guess should follow this distribution. This consideration
led Bogdanov and Tischhauser to present an updated wrong-key randomisation
hypothesis in [6], in which the wrong key correlation follows this ideal Gaussian
distribution. However, if we consider the case of DES where, even over 14 rounds,
strong linear approximations exist, the wrong-key correlation might not be close to
the ideal distribution. We consider this problem next.
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4.2 A New Non-Random Wrong-Key Distribution

Consider the scenario in which an attacker obtains a plaintext-ciphertext pair com-
puted over r rounds of a cipher, and attempts to encrypt the plaintext one round,
and decrypt the ciphertext one round, in order to calculate the correlation of an
approximation over r — 2 rounds. If the attacker uses the wrong round keys for
the encryption/decryption, she essentially obtains a plaintext/ciphertext pair of
some related cipher with r 4+ 2 rounds. Motivated by this, we propose the following
wrong-key model for linear cryptanalysis on DES.

Model 4 (Non-Random Wrong-Key Distribution). Consider an Algorithm 2 style
attack on r rounds of DES using a linear approzimation (o, ) over r — 2 rounds. Let
Ry be the keyed round function of DES, and let E}. denote the r-round encryption
function. For a wrong guess of the outer round keys, the correlation will be distributed
as for the cipher

By (z) = Ry, (B (R, (2))), (5)
where K, and Ky are chosen uniformly at random.

For DES, where encryption and decryption are similar, this can reasonably be
simplified to E(z) = E’I}“, where the outer round keys are randomly chosen.

In light of this, we considered the approximation 7; over 18 rounds of DES, with
randomly chosen outer round keys. Using the algorithm described in Section 3.2,
with B = 1 million, we enumerated 954 trails of this approximation. Using 20 Intel
Xeon Processor E5-2680 cores, the enumeration took about 15 CPU hours. We
then calculated the resulting signal correlation for 1 million keys. The trails had an
absolute correlation contribution between 274584 and 272875, The distribution is
shown in Figure 6. We note that the result is similar for the other approximations
given in Table 2.

As was the case for the right-key distribution, this wrong-key distribution appears
to be approximately a Gaussian mixture. More importantly, while the distribution is
symmetric around zero, the variance is much larger than that of an ideal permutation:
2756-08 compared to 2764, This shows that, while the added four rounds make the
correlation weaker, the assumption of a resulting ideal distribution is optimistic.
For attacks that use a data complexity close to the full codebook, this assumption
could result in a overestimate of success probability or an underestimate of attack
complexity. Moreover, if the cryptanalyst only appends/prepends one round to the
approximation, this effect could be significant.

The undersampled distribution.

While the distribution in Figure 6 is far from ideal, the actual distribution of
the correlation matters little if the level of undersampling is significant. If we
apply signal/noise decomposition and Theorem 1 to our estimate of the wrong-key
distribution, with the number of texts N = 243, we obtain the result shown in Figure 7.
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Figure 6: The distribution of linear correlation for the approximation ~; over 18
rounds of DES with randomly chosen outer round keys. The correlation
was calculated using 954 trails and 1 million randomly drawn keys. The
distribution is close to zero, but the variance is 27°6-9%, To the right, the
distribution is compared to that of an ideal permutation, i.e the Gaussian
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Figure 7: Undersampled right-key (blue) and wrong-key (red) distributions for the
approximation vy; with N = 243, The signal distributions were measured
using 1 million randomly drawn keys. A Gaussian mixture has been fitted
to the right-key distribution (green), while a single Gaussian distribution
was fitted to the wrong-key distribution (black).

We see here that it is sufficient to use a single Gaussian distribution to approximate
the undersampled wrong-key correlation distribution. If this distribution is similar
for other approximations, it will be sufficient to model the joint wrong-key correlation
distribution of M approximations as an M-variate Gaussian distribution. Thus, if
3w is the covariance matrix of the signal correlation of the M approximations over
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E’., then the undersampled wrong-key distribution will approximately be given by
CR (e, B) ~ N(0,Bw + (27" + 1/N)I),

if 1/N is sufficiently large.
Using Model 3 for the right-key and Model 4 for the wrong-key distribution, we
develop a classifier that uses both these distributions in the following section.

5 Classifying Keys using Asymmetric Distributions

In Section 3, we developed a model for the linear correlation distribution of a
correct key-guess in Algorithm 2, namely a multivariate Gaussian mixture model. In
Section 4, we similarly developed a simple multivariate Gaussian model for the linear
correlation distribution of a wrong key-guess. Using these two distributions, we now
develop a classifier based on the likelihood-ratio, which can be used in Algorithm 2 to
decide between potential right and wrong key guesses. We first present the classifier
given in [2] in Section 5.1. We then introduce our new classifier in Section 5.2, and
compare the performance of the two in Section 5.3.

In the following, we will consider the two sets of four linear approximations over 14
rounds of DES given in Table 2. While it is difficult to visualise the joint distribution
of more than three approximations, Figure 8 shows the pairwise joint distributions
of the approximations 71, 2, v3, and 74, as well as the marginal distributions, for
N = 2%, Note that the joint distributions of 7; and 73, as well as that of v, and
74, only have two components. We will explore this phenomenon in Section 5.4, and
show that such distributions can improve our classifier.

5.1 The Bayesian Classifier of Biryukov et al.

Consider an Algorithm 2 style attack using M linear approximations. Let g denote
the space of correct guesses of the key-bits (ky, ky), and let Ky denote the space
of wrong guesses. We have to classify each key-guess as either an incorrect guess
or a potential correct guess, based on the measured linear correlation vector x. Let
fr(x) =Pr(x | (kf, ky) € Kr) be the PDF of the right-key correlation distribution.
We define the Bayesian classifier, BC', as the following decision rule

BO(x) = If B(x) > T, decide that (ky, ky) € Kk,
x)= otherwise, decide that (ky, ky) € Kw,
where B(x) = fr(x). Under Model 3, B(x) is given as the Gaussian mixture

¢
B(x) = Z i (x5 g, i + (27" + 1/N)I).

=1

This exact classifier is not described in [2], but it is essentially identical to the one
developed there. The difference is that in [2], each component of fg is considered
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\ Linear approximation | Dominant key trail | [Cx(T)] [ sz |
— ([7,18,24],[7, 18, 24, 29, 47]) Ta 51975 | 1
= ([7,18,24],[7, 18,24, 29, 44, 48)) Ty 9-2048 |
= ([7,18,24,29], [7, 18,24, 47)) T4 9-2075 |
74 = ([7,18,24,29], [7, 18,24, 44, 48]) T 52007 | 4
= ([15, 39, 50, 56], [39, 50, 56, 61]) To 9—20.75 0
= ([12, 16, 39, 50, 56], [39, 50, 56, 61]) Tp 2-20.07 1
= ([15, 39, 50, 56, 61], [39, 50, 56]) To 9—19.75 1
54 = ([12, 16, 39, 50, 56, 61], [39, 50, 56]) Tp 2-20.48 1

\ Key trail \ Non-zero key mask bits H Key trail \ Non-zero key mask bits \

B {t? t44 t22 t22 té4 7 3 22 19 423

Ta 122 t t $22 t22} Tp TA\t13 U {t13at 3}
7 10) 11’ 13

7 {t(QJ2 t t%Q T 7 22 19 423

Tc 144 ’t22 2522 t44 t 27 Tp TC\to U {to 3 10
7 100 11> 12

Table 2: The top table specifies two sets of four linear approximations over 14 rounds
of DES, and gives the correlation contribution of their dominant trail, as well
as the sign bit of that trail. The bottom table specifies the set of non-zero
bits of the associated dominant key trails, where ¢ is the j’th bit of ¢;.

separately, and so ¢ scores are produced for each key guess. The classifier BC' should
be functionally equivalent to this approach, but this representation allows for easy
comparison to the likelihood-ratio classifier we propose next.

5.2 Our Likelihood Classifier

We now propose a new classifier based in the likelihood-ratio. As opposed to the
Bayesian classifier, the likelihood classifier directly takes the wrong-key distribution
into account. To this end, let fyw (x) = Pr(x | (kf,k») € Kg) be the PDF of the
wrong-key correlation distribution. Then the likelihood-ratio is defined as A(x) =
fr(X)/fw(x). For the right-key and wrong-key distributions described in Sections 3
and 4, this is equal to

Zle )\id)]W(X; His Ei + (2—n + 1/N)I)
¢M(X;O,Ew+(2_"+1/N)I) ’

A(x) =

where x is an observed value of correlations for M approximations. A large value
of A(x) will then indicate a likely correct key guess, while a low value will indicate
a wrong key guess. Thus, we define the likelihood classifier LC as the following
decision rule

LO(x) = If A(x) > T, decide that (k;, ky) € Kk,
%)= otherwise, decide that (ks k) € Kw.
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Figure 8: Histograms and pairwise distributions of the undersampled correlations of
approximations 71, ...,v4 given in Table 2. The right-key distributions are
shown in blue, the wrong-key distributions are shown in red. The number
of texts is N = 243, Note that since v; and 3 have the same dominant key
trail, their joint distribution only has two components. Likewise for v, and

V4-

In light of this definition, two important concepts are the success probability and
advantage of the classifier. Formally, we define the success probability and advantage,
respectively, as

Ps=1-Pr(A(x) <T| (kf,kb) € Kr), (6)
0 = —logy(Pr(A(x) > T'| (ky, ) € Kuw)), ()

in accordance with the usual definition [24]. We usually choose I" such that we achieve
a certain success probability. Under our proposed model, the involved probabilities
cannot be explicitly stated. Thus, we must rely on simulations to calculate these
values. Since simulating values from a Gaussian distribution is easy, this is not a
problem. Using this approach, we now compare the performance of the likelihood
classifier and the Bayesian classifier.

5.3 Decision Boundaries

The likelihood classifier LC divides the M-dimensional cube [—1,1]™ into two
regions separated by the decision boundary, namely where A(x) = T'. On one side
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of the decision boundary, observations are classified as belonging to the right-key
distribution, while observations from the other side are classified as belonging to the
wrong-key distribution. By visualising this decision boundary, we can get a better
understanding of the classifier.

In the following, we consider the eight approximations given in Table 2, over 14
rounds of DES. We enumerated between 1100 and 1400 trails for each approximation
and calculated the signal correlations for 1 million random keys, in order to estimate
p; and ;. The same was done over EY, where between 950 and 1100 trails were
enumerated, in order to estimate Xy . For each data point, we added noise drawn from
Nu (0, (27" + 1/N)I), according to the signal/noise decomposition and Theorem 1.
This allows us to simulate A(x) and B(x) for varying values of N and calculate the
resulting decision boundary and advantage.

Consider the pair of approximations y; and §; and let N = 2*3. We simulate A(x)
and B(x) for each data point as described above, and then fix a threshold value for
each classifier such that Pg = 0.90, cf. Equation 6. The resulting decision boundaries,
as well as the related probability distributions, are shown in Figure 9. In this case,
the likelihood classifier obtains an advantage of 5.5 bits, while the Bayesian classifier
only has an advantage of 3.1 bits. By considering the decision boundary, it is clear
why this is the case. Since the Bayesian classifier only uses information about the
right-key distribution, it simply creates a decision boundary around each component
of the mixture which is large enough to obtain the desired success probability. In
view of the information that is available to the classifier, this makes sense, since
observations close to the mean of component have a larger chance of being a correct
key guess. Because of this, the parts of the right-key distribution which is farthest
away from the wrong-key distribution is also discarded as unlikely candidates. This
in turn requires the decision boundary to be wider than actually needed, and the
advantage is therefore quite low due to an increased number of false positives.

The likelihood classifier on the other hand does use information about the wrong-
key distribution. The decision boundary is created such that there is a good boundary
between each component and the wrong-key distribution. Any observation that is
sufficiently far away from the wrong-key distribution is deemed a likely correct key
guess, no matter how extreme the observation is in the right-key distribution. Thus,
extreme points in the right-key distribution are not "wasted", allowing for a tight
decision boundary around the wrong-key distribution, yielding a larger advantage.

For the approximations used here, all sign combinations of the correlation vector
are possible. In terms of the mixture model, the number of components is ¢ = 2M.
We now turn our attention to the case where ¢ < 2M.

5.4 Observations on the Asymmetric Distribution

As shown in Section 3.2, the sign of the signal correlation C (1) for a given key
is determined by the parity (T4, K), where T4 is the dominant key trail. Consider
the two approximations v; and 3 given in Table 2. Both approximations have the
same dominant key trail, and since their sign bits sy are different, the sign of their
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Figure 9: Left: The joint distribution of C¥ (1) and C¥(61), with N = 243 are
shown for both a right key guess (blue) and a wrong key guess (red).
The decision boundaries for a success probability of 90% are drawn for
the likelihood-ratio classifier (top) and the Bayesian classifier (bottom).
Right: The corresponding probability distributions of A(x) (top) and B(x)
(bottom) as well as the threshold value. The likelihood ratio classifier
obtains an advantage of 5.5 bits, while the Bayesian classifier obtains an
advantage of 3.1 bits.

correlation will therefore always be opposite. In the terminology of Section 3.3, the
number of components ¢ of the Gaussian mixture is strictly less than 2. We will
call such a distribution asymmetric. On the other hand, the two approximations ~y;
and §; have different dominant key-trails, and therefore all four sign combinations of
their correlations are possible. In this case, £ = 2™, and we call such a distribution
symmetric.

For ~; and 47, the decision boundary for the likelihood classifier was shown in
Figure 9. For ~; and 73, the decision boundary is shown in Figure 10. Here, the
"missing" components in the first and third quadrant are clearly shown, while the
wrong-key distribution is still symmetric around zero. We note that, all else being
equal, the classifier on the asymmetric distribution achieves an increased advantage
of 0.7 bits. Moreover, the comparison here is fair, since the strength of ¢; is the same
as that of 3. The reason for this increase is apparent when we compare the two
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Figure 10: Left: The joint distribution of C¥ (v1) and C¥ (y3), with N = 243 are
shown for a right key guess (blue) and a wrong key guess(red). The
decision boundaries for a success probability of 90% are drawn for the
likelihood-ratio classifier. Right: The probability distributions of A(x) as
well as the threshold value. The classifier obtains an advantage of 6.2 bits.
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Figure 11: A comparison of the advantage obtained by using the Bayesian classifier
and the likelihood ratio classifier on both symmetric and asymmetric
correlation distributions. The symmetric distribution uses the set of
approximations {71,72, 01,02} while the asymmetric distribution uses the

set {717727’73774}'

decision boundaries. For the asymmetric distribution, the decision boundary is such
that even extreme points in the wrong-key distribution towards the first and third
quadrant are easily classified as wrong key guesses. This decreases the number of
false positives, increasing the advantage.

This improvement in the classifier for asymmetric distributions generally extends
to higher dimensions, where the effect can be even more pronounced. Indeed, for
larger M, ¢ can be much smaller than 2. In the example above, we had £ = 2 while
2M = 4. Consider now the set of approximations {1, v2,73,7v4}. A shown in Table 2,
these approximations only have two distinct dominant key trails, implying that the
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set has an asymmetric distribution with ¢ = 4 < 2™ = 16. Figure 11 compares
the advantage of this set of approximations to the set {v1,72, 01,02}, which has a
symmetric distribution, i.e. £ =2M = 16. In general, we observe that the classifiers
are stronger for the asymmetric distribution, with an increase in advantage of 1.4
bits for N = 243, Additionally, the better performance of the likelihood classifier
is quite clear, consistently obtaining a larger advantage over the Bayesian classifier.
For N = 2%3, the likelihood classifier has an advantage 4.9 bits higher than the
Bayesian classifier on both the symmetric and asymmetric distribution. Due to these
observations, we propose the term symmetry factor for these types of distributions,
defined as ¢/2M. A distribution with symmetry factor one is a symmetric distribution,
while a symmetry factor less than one indicates an asymmetric distribution. We
conjecture that, all else being equal, a lower symmetry factor will result in a stronger
classifier.

6 Improved Attack on DES

Using the results from the previous sections, we now mount a key-recovery attack
on DES using eight linear approximations. We will use two sets of four linear
approximations, {71, y2,v3, 74} and {41, da, d3, 44} over 14 rounds, as given in Table 2.
The attack is mostly identical to Matsui’s Algorithm 2. As such, we obtain N
plaintext-ciphertext pairs over 16 rounds, guess the key-bits required to partially
encrypt/decrypt the texts and compute the linear correlations, and then use the
likelihood classifier to categorise each guess as a likely wrong or right key guess. For
each guess, we further gain some parity bits of the key based on the signs of the
correlations.

6.1 Attack Description

Table 3 shows the key- and text-bits relevant to the attack. For both sets of
approximations, we need to know 29 bits of the plaintext/ciphertext, designated
ts. / ty,., and we will guess 24 bits of the first/last round key, designated ky,./ks ..
Moreover, the signs of C¥ (v1), O (74), C¥(83), and C¥ (82), will allow us to deduce
the parity bits pa, pp, pc, and pp. Thus, the attacker will learn a total of 52 bits
of the master key, and will have to guess the remaining 4 bits. In the following, we
assume that the distribution parameters p,; ., 3; ., and Xy have been determined
before the attack, as described in Section 3.3. Moreover, we assume that A\; = 1/¢
for all . The attack is then given as follows:

e Distillation
1. Obtain N plaintext-ciphertext pairs.

2. Create two vectors t., and ts of size 2% each. t,[i] (similarly ts) is equal
to the number of text pairs such that the bits (¢s.,% ) are equal to i.
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Forward key bits guessed #£bits
18 23 {Kg4""7Kg5>
kf7»y {KO 7"'7K0 } kf75 K327._.,K617} 6+18
Backward key bits guessed #bits
{Ki5,... Ki3 18 23
kb’»y Kf§,7Kil57 kb’é {K15,...7K15 18+6
Plaintext bits stored #bits
tf,’y {7)117”.77316,7)39,7)50’7)56} 9
trs | {PO,PT, P, .. P2 P27 p3l pid pAT pasy 20
Ciphertext bits stored #£bits
to, | {CO,CT,CI5, ..., C?0,C77,....C3L.C™1,CT7,C™8} 20
tb,& {6117...,ClG,C?’g,CSO,C%} 9
Parity bits obtained from signs
pa | KPP K 0Ky o KP oK' o KP e K® @ Kl @ Kif © Ki3
pB | pa® Ki; ® Ki§ ® K73
pc | KPOKP oK oK o KZ oK' oK oK oKl & Kj
PD po & K2 & K & K33

Table 3: This table specifies the key/text bits involved in the attack, as well as the

parity key bits derived. X* denotes the i’th bit of X.

e Analysis

1. For each guess of (ky, ks ), calculate the vector

¢y = (CR (M) CR (12), CF (33), CF (7)) T

by partially encrypting/decrypting the data in t,. Do similarly for the
d-approximations to calculate cs.

. Calculate

4 —-n
i Zi:l dm (C'y§ Hi s Ei,’y + (2 + 1/N)I)
(ﬁ]w(c,y; 0, EW,"/ + (2_" + 1/N)I)

A(C’Y) = I
for each guess of (ks ., ks.). If A(cy) < T, discard the key guess. Likewise,
calculate A(cs) for each guess of (kys5,kps). If Alcs) < T, discard the
key guess.

. For each surviving key guess, determine the four bits p4, pp, pc, pp based

on the signs of ¢, and c;.

e Search
1. For each remaining guess of (ks ., kp. , Ky s, kb,5), guess the last 4 bits of

the master key, and verify the guess by trial encryption.
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Figure 13: Top: Combined advantage of the two likelihood classifiers using approx-
imations in Table 2. The success probabilities include the probability
of guessing the four parity bits correctly. Bottom: The computational
complexity of our key-recovery attack on DES. Each curve has a clear min-
imum where the trade-off between the data complexity and the strength
of the classifiers is optimal.

6.2 Attack Complexity

In the following, we assume that one computational unit is the time it takes to
perform one round of DES. The computational complexity of the distillation phase
is O(N), while the memory complexity is O(2 - 22). For the analysis phase, each
CF can be calculated for all key guesses in time O((|ky,.| + |kp,.|)2/Fs [FIke. [+1.6)
using the FFT method presented in [9]. In total, step 1 of the analysis phase can
be completed in time O(2 -4 - 24 - 225-6) ~ O(233:18). Step 2 requires the calculation
of £+ 1 terms for each key-guess of the type (x — ) "X 7! (x — p), to calculate the
normal probabilities. Each term can be computed in time O(2M?3). Thus, step 2
takes a total of O(2-22*.5-43) ~ 0(233-32) time. Step 3 takes O(2-22479 +2.2247as)
time, where a, and as is the advantage of the classifiers in step 2. The analysis
step requires O(2247% 4 224795) memory to store the surviving key guesses. The
search phase requires O(16 - 248=(ay+as) . 256-52) — (16 . 256—(ay+as+4)) time and
negligible memory. Dividing everything by 16 to get the total number of full DES
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encryptions, the computational complexity is approximately
O(N . 2—4 + 229.18 + 229.32 _|_ 221_0”Y + 221—0.5 + 252—(aw+a5)).

Thus, the attack complexity depends on the advantage of the two classifiers, which
in turn depends on the choice of I'y and I's. Note that step 3 of the analysis phase
is not guaranteed to succeed, so the threshold values must be chosen such that the
overall success probability of the attack is Ps. Namely, if P, and Ps is the success
probabilities of the two classifiers, and @, and @5 is the success probabilities of
determining the parity bits, then we fix Iy and I's such that P, - P5 - Q~ - Qs = Ps.
Using the data obtained in Section 5.3, we calculated the total advantage a, + as + 4
for different N and different values of the success probability Pg. The results are
shown in Figure 13, along with the corresponding attack complexities. For low data
complexities, the search phase is dominant, and so the 2°27(4v+6) term determines
the time complexity. For high data complexities, however, the N - 274 term is
dominant. This gives each complexity curve a clear minimum. In a comparison to
Matsui’s attack, we see that for Pg = 85%, the minimum is achieved at N = 24277
where the computational complexity is 23%-36 DES encryptions. This is 17.6 times
faster than Matsui’s attack estimate (or 4.4 times faster than Junod’s estimate of
the attack in [16]) using 2402 fewer texts.

6.3 Experimental Verification

While it would be possible to carry out the attack in practice, we would need to do
this for many keys to get an idea of the actual advantage, making the experiment
infeasible. Instead, we measured the actual values of ¢, and c;5 over 14 and 18 rounds
of DES (the right key and wrong key, respectively) with N = 24278 for randomly
chosen keys. This can be done in a bitsliced manner, and is therefore faster than
performing the actual attack, while giving us all the information we need to verify
our model. Using several months of CPU time, we collected 1300 data points for the
right key and wrong key distributions. We first note that the observed distributions
closely match those predicted by the model in e.g. Figure 8. Moreover, we obtain
the advantages a, = 6.72 and as = 10.31, which would give us a complexity of 238-88
— very close to that predicted by our model.
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Abstract. Extensions of linear cryptanalysis making use of multiple
approximations, such as multiple and multidimensional linear crypt-
analysis, are an important tool in symmetric-key cryptanalysis, among
others being responsible for the best known attacks on ciphers such as
Serpent and PRESENT. At CRYPTO 2015, Huang et al. provided a
refined analysis of the key-dependent capacity leading to a refined key
equivalence hypothesis, however at the cost of additional assumptions.
Their analysis was extended by Blondeau and Nyberg to also cover an
updated wrong key randomization hypothesis, using similar assump-
tions. However, a recent result by Nyberg shows the equivalence of
linear dependence and statistical dependence of linear approximations,
which essentially invalidates a crucial assumption on which all these
multidimensional models are based.

In this paper, we develop a model for linear cryptanalysis using multiple
linearly independent approximations which takes key-dependence into
account and complies with Nyberg’s result. Our model considers an
arbitrary multivariate joint distribution of the correlations, and in
particular avoids any assumptions regarding normality. The analysis
of this distribution is then tailored to concrete ciphers in a practically
feasible way by combining a signal/noise decomposition approach for
the linear hulls with a profiling of the actual multivariate distribution
of the signal correlations for a large number of keys, thereby entirely
avoiding assumptions regarding the shape of this distribution.

As an application of our model, we provide an attack on 26 rounds of
PRESENT which is faster and requires less data than previous attacks,
while using more realistic assumptions and far fewer approximations.
We successfully extend the attack to present the first 27-round attack
which takes key-dependence into account.

1 Introduction

Proposed by Matsui [34, 36] in the early 1990s, linear cryptanalysis has proven to be a
seminal cryptanalytic technique for symmetric-key cryptography. Most prominently,
linear cryptanalysis was successfully applied to the former U.S. encryption standard
DES, breaking it experimentally for the first time. Influential cipher design paradigms,
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such as the wide-trail strategy [23], were specifically developed as a response to the
advert of linear and differential cryptanalysis. Today, every newly proposed keyed
symmetric primitive is expected to be accompanied by strong evidence of resistance
against this attack.

In the last two decades, a number of advanced variants of linear cryptanalysis
have been developed, among others differential-linear cryptanalysis [31], multiple
linear cryptanalysis [5, 29], multidimensional linear cryptanalysis [25, 26, 27], zero-
correlation linear cryptanalysis [16], and key-invariant bias attacks [13]. These
extensions of linear cryptanalysis have provided the best single-key cryptanalytic
results on ciphers such as Serpent [38], PRESENT [18, 47], CLEFIA [14], CAST-256 [46],
and LBlock-s [45].

Parallel to the development of these cryptanalytic results, extensive research has
been carried out to deepen our understanding of linear cryptanalysis [2] and its
extensions [7], e.g. concerning links between differential and linear cryptanalysis [11]
and truncated differential and multidimensional linear techniques [10]. How to
provide resistance against these advanced cryptanalysis techniques has been studied
in [6, 44].

Key-dependence in Linear Cryptanalysis. Linear cryptanalysis relies on identifying
linear relations between the input and output bits of a cipher which exhibit large
linear correlations. The correlation can be viewed as a random variable over the
space of inputs as well as over the space of encryption keys. A central question in
linear cryptanalysis is therefore this: What is the stochastic behaviour of the linear
correlation?

While early analysis assumed that this behaviour was largely identical for all keys
[4, 30, 34, 36, 42, 46], and so only depends on the randomness of the plaintexts,
several works have demonstrated that this is not true in general [2, 32], and models
have been developed for the key-dependent behaviour of the correlation of a single
linear approximation [17, 22]. These models assert that the linear correlation follows
a normal distribution, both in the case of a random permutation and specific block
ciphers.

Even though we have a good understanding of the key-dependent behaviour of
single approximations, it is only recently that the key-dependent behaviour of multiple
approximations has been studied, despite the relatively large number of multiple and
multidimensional linear attacks in the literature. In this work, we consider the three
principal papers on this topic and reflect on the precise assumptions used by the
models developed by them. We then develop a new model which aims to remove
many of these assumptions in order to obtain more accurate estimates of the power
of linear attacks.

State of the Art and Problems. There are three principal works considering key-
dependence in the context of multiple and multidimensional linear cryptanalysis.
First, [28] by Huang et al. considers the key-dependent behaviour of the multiple
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and multidimensional capacity and develops a model in which this follows a gamma
distribution under the assumption that the individual correlations are independently
and identically distributed. Second, [9] by Blondeau and Nyberg relaxes the assump-
tions of [28] such that the correlation distributions need not have identical means,
which results in a model that describes the capacity as a scaled, non-central x?2-
distribution. However, this model assumes an accurate estimate of the parameters of
the correlation distributions. Blondeau and Nyberg relaxed this assumption in [8] by
incorporating the signal /noise decomposition from [17] into the model. Although the
models developed in these works are a step on the way towards accurate assessments
for multiple and multidimensional attacks, we identify the following main problems
with the approaches:

e Independence assumptions: Multidimensional linear cryptanalysis was orig-
inally introduced to solve the requirement for statistically independent approxi-
mations, but recently Nyberg showed [40] that under reasonable assumptions
about pair-wise statistical independence, linear independence and statistical
independence of approximations are equivalent concepts. Multidimensional
linear cryptanalysis uses many linearly dependent approximations, but the
models described above often assume these to be statistically independent for
a random permutation. Moreover, the models are typically derived in a setting
with independent round keys — a setting that does not strictly reflect most
actual ciphers.

e Restricted approximation choice: The models described above restrict
which approximations can be used. In the case of multiple linear cryptanalysis,
equal correlation variances are required, and so we cannot necessarily freely
choose the approximations that best facilitate an attack, as they might have
different distributions. Ideally, a cryptanalyst would like to be able to pick
the best trade-off between strong approximations and approximations that
make the attack efficient to perform. For multidimensional linear cryptanalysis,
models are given in which a set of dominant approximations are present and
the rest of the approximations are treated as noise. The advantage of the
multidimensional approach then seems to stem from the fact that the attacker
can sometimes get a few rounds for free, if the resulting approximations still
allow for efficient key guessing.

e Parameter estimation: As mentioned, the models of [9, 28] require an accu-
rate knowledge of the correlation distributions or multidimensional probability
distributions. Obtaining this is extremely difficult for most reasonable block
and key sizes. This problem is mostly solved in [8] by applying the signal/noise
decomposition, but this approach is still quite computationally expensive if
simplifying assumptions, such as independent round keys, are not used. In
general, this problem seems to be quite difficult to avoid.
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Our Results. The results of [40] poses a problem for any model of linear crypt-
analysis with multiple approximations that uses linearly dependent approximations,
including multidimensional linear attacks. This paper therefore revisits multiple
linear cryptanalysis in the case where all approximations are linearly independent.

We first investigate the joint correlation distribution of such a set of approximations.
We find that this distribution can be assumed to be jointly normal for a long-key
cipher, in accordance with theory, but that this is not the case for other key-schedules.
We therefore propose multivariate linear cryptanalysis. This model:

e Does not assume a specific key-schedule,
e Does not assume statistical independence of the correlations,

e Is able to model any arbitrary (not necessarily normal) joint correlation distri-
bution,

e Uses signal /noise decomposition to practically obtain accurate attack estimates.

The model expresses the joint correlation distribution of M approximations as a
general M-variate probability distribution. While the multivariate model relaxes
many assumptions used by previous models, it comes at the cost of a larger effort
during the off-line analysis of the cipher. In particular, the more accurate an estimate
of the signal distribution the cryptanalyst can obtain the better. This only affects
the amount of effort she has to put into the analysis, and not the effectiveness of
the resulting attack. We confirm the accuracy of our model through experiments on
32-bit SMALLPRESENT.

As a result, we are able to present new attacks on PRESENT (with an 80-bit key),
which at the same time avoid the above modeling problems. Crucially, our analysis
model is in accordance with [40]. We identify a very sparse set of 135 approximations
over 22 rounds, and use these to attack 26 rounds of PRESENT. The computational
complexity of this attack is 26%-%, while the data complexity is 263-°. Interestingly,
this attack is about 11 times faster than Cho’s original attack on the same number
of rounds, and uses half the data, all the while using far fewer approximations and
more realistic assumptions. This demonstrates that a multidimensional linear attack
is not necessarily stronger than a multiple linear attack. We extend the attack to
27 rounds, resulting in a computational complexity of 2773 and a data complexity
of 2638 This is the first attack on 27 rounds of PRESENT in a model that accounts
for key-dependence. Our attacks are compared to previous attacks on PRESENT in
Table 1.

2 Preliminaries

We consider a block cipher E(P, K) : F} x F5 — F% with a block size of n bits and
key length of x bits. For each key K € F§| Ey := E(-, K) is a permutation on F}. If
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95% 2295 2720 640 o310 N/A [18]
80% 29295 276.0 262.5 234.0 s [28]1
26 51% 2295 2720 9638 9340 | v/ [8]
95% 135 2686 263.0 948.0 | v v /| Section 6.2
o7 95% 405 270 204U 9700 N/A [47]
95% 135 2773 2638 2480 | s s |/ /| Section 6.3°

1: For 3.7% of the key space.
2: Uses distinct texts. All other attacks use non-distinct texts.
‘ Feature/Technique ‘ Explanation

F1: Key-dependent The model accounts for the fact that the linear correlation
of an approximation varies over the key space.

F2: Complies with [}0] The model does not assume that linearly dependent approx-
imations of a random permutation are statistically indepen-
dent. Doing so contradicts [40].

T1: Signal/noise The model uses the signal/noise decomposition of [17] to
S obtain accurate estimates of the correlation distributions.
T2: Profiling The model measures the actual multivariate distribution of

the signal for a large number of keys to avoid assumptions
of the shape of this distribution.

Table 1: Comparison of attacks on PRESENT. The attacks of [18] and [47] do not
take the key-dependence into account. All models, except the one presented
in this work, use assumptions that contradict the equivalence of linear
independence and statistical independence of linear correlations shown in
[40].

a block cipher picks a permutation uniformly at random from the space of all (2™)!
permutations for each key, we say that it is ideal.

Most modern block ciphers are iterative block ciphers where the encryption function
is a composition of r key-dependent round functions. If each round function can be
described as a key-independent transformation followed by an XOR of the round key,
we call the cipher a key-alternating cipher. Additionally, an initial key is XOR’ed to
the input before the first round. Usually, a key-schedule is used to expand the k-bit
master key K into the required r 4+ 1 n-bit round keys. We denote the expanded key
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by K = ko||k1]|...|kr, i.e. the concatenation of the round keys. If all round keys

are chosen uniformly and independently, i.e. kK = (r + 1)n and K = K, we call the
cipher a long-key cipher.

2.1 Linear Cryptanalysis

Linear cryptanalysis was introduced by Matsui in 1993 [34] and considers one or more
linear approximations of a cipher. A linear approximation is a pair (a, ) € F§ x

2\(0,0), where « is called the input mask and 3 the output mask. The key-dependent
linear correlation of the approximation is defined as C’fﬁ =2Pr(a-z =B -FEx(z))—1,
where “-” denotes the canonical inner product on F3, and the probability is taken
over all z € FJ. Assuming that K is drawn uniformly at random, C’g 5 1s a random
variable over the key space. If an estimate of Céf s 1s calculated using N plaintext-

ciphertext pairs, we denote this value by Cf,bN, which is a random variable over both
the key and text space, where the latter is of size N. The goal of linear cryptanalysis
is to find pairs («, 8) such that the probability distribution of the correlation for the
block cipher in question is distinguishable from the correlation distribution of an
ideal cipher.

Let (ui, uit+1), i =0,...,7—1, be a series of one round linear approximations of an
iterative block cipher. Such a series of approximations is called a linear trail. We can
also denote the trail by the concatenation of its masks, i.e. U = ug]| ... ||u,. Then
the correlation contribution of trail is defined by Cf = H:;Ol CE . ..+ The collection
of all trails with ug = o and w, = 3 is called the linear hull of (o, 3). Moreover, the
correlation of («, 5) is the sum of the correlation contributions of all trails in the hull

20, 23]:

ck,= > cf. (1)

uo=a,ur=0

A useful concept is that of the expected linear potential (ELP), defined by E((C’f ﬂ)z).
For a long-key cipher, it can be shown that ELP = " (C¥)2, and that (C%)? is
independent of the key [23].

2.2 Statistical Distinguishing

In cryptanalysis of block ciphers, a first step towards more powerful attacks is often to
build a distinguisher. A distinguisher aims to determine whether some observed data
is the output of a specific block cipher or an ideal cipher. In statistical cryptanalysis,
a distinguisher consists of performing a statistical test which distinguishes between
two probability distributions. Typically, the test computes a value from the data,
which we refer to as the test statistic T.

Note that the test statistic is a random variable. Let 77 be the random variable
if the observed data was produced by an ideal cipher, and let Tn be the random
variable if the observed data was produced by a specific block cipher. Assume that
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Tr and Ty follow univariate distributions. Then a simple and often used statistical
test is to check the value of T against some threshold value 7. Without loss of
generality, assume that £(7T7) < 7 < E(Ty). If T > 7, we conclude that T was
drawn from the distribution of Ty, otherwise we conclude that 7 was drawn from
the distribution of 77. It may be the case that we need to compare against multiple
threshold values — for a discussion of this case, we refer to [9]. Note that we can
define several different tests of the type described above, namely by calculating the
test statistic 7 in different ways. We consider a commonly used test statistic in
Section 6.1, namely the x2 test statistics.

When assessing the efficiency of a threshold test, we are mainly interested in two
parameters: the success probability and the advantage. Let F'x denote the cumulative
distribution function of the random variable X. We define the probability of success
as

Ps =1— Fr, (1),

i.e. the probability that 7n > 7. The advantage, a notion first introduced by Sel¢uk
in [42, 43] in the context of key-ranking, is in turn defined by

a = —10g2(1 — F'TI (T))7

and relates to the number of false successes that arises from the threshold test. This
number is important when we want to use a distinguisher as part of a key recovery
attack. In order to assess these quantities, we need to know the distributions of 7;
and 7, and the question of determining these is therefore central to the study of
linear cryptanalysis.

From Distinguishing to Key Recovery.

It is possible to turn a distinguisher over r rounds of an iterative block cipher into a
key recovery attack over ' > r rounds in a generic way. Consider the case r’' =7 +1
as an example. Denote by E" the r-round encryption function, and let Fj denote
the last round function such that E7 = F. o E". Let E" be the truncation of E”
such that only the bits required to calculate the test statistic 7 are output.

The attacker obtains some data from E’"'7 and guesses the parts of k required to
partially invert Fj, and calculate the output of E”. The attacker then calculates the
test statistic 7 and runs the distinguisher. If the attacker guessed the partial key k
correctly, the distinguisher should indicate that 7 was drawn from the distribution
of Ty with probability Pg. If not, the hypothesis is that the distinguisher will behave
as if 7 was drawn from the distribution of 7;. The reasoning here is that for a wrong
key guess, the attacker is basically observing data from a cipher with r 4+ 2 rounds,
which should behave more like an ideal cipher than a cipher with r rounds. This idea
was first formally stated by Harpes et al. [24] and later stated in the context of linear
cryptanalysis by Junod [30]. Once all candidates for the partial key k have been
tested, the attacker has to guess the remaining bits of the master key K, discarding
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any wrong guesses by trial encryption. By definition of the advantage, the attacker
has to try 2¢7% candidates.

2.3 PRESENT

PRESENT is an ultra-lightweight, key-alternating, block cipher. It is an SPN cipher
with 31 rounds, a block size of 64-bit, and a key size of either 80 bit or 128 bit. Each
round consists of an XOR with a round key, a layer of 16 parallel 4-bit S-boxes, and
bit permutation. An additional round key is added after the last round. The 32
round keys are derived through a key-schedule. For details on the bit permutation
and the key-schedule, we refer to [15]. Due to the choice of S-box, PRESENT exhibits
some interesting linear properties [41]. It is therefore a common target for new linear
cryptanalysis techniques. We consider new attacks on PRESENT in Section 6.

3 Survey of Previous Work

As discussed in Section 2.2, it is of primary interest to determine the distributions
of 71 and Ty for a given statistical test. For linear cryptanalysis, the test statistic
is derived from the observed correlation of one or more linear approximations. An
equivalent question in this context is therefore what the distribution of the correlation
Céx 5, for a given approximation or set of approximations, looks like, both for a specific
block cipher and for an ideal cipher. Starting with [39], this topic has been extensively
investigated in the literature. In the following, we consider a series of models that
have been proposed since the introduction of linear cryptanalysis, and reflect on
their assumptions and requirements. We divide the models into two main categories:
models that assume that Ci‘f 5 1s approximately equal for all keys, and models that
include the influence of the key.

3.1 Models Without Key Influence

Matsui introduced linear cryptanalysis in [34, 36] as a means to attack DES. The
approximations used for this attack exhibit a single dominant trail each, i.e. there
exists a trail U such that |[CE| > |C¥,| for any U’ # U. Then by Equation 1,
C(f 5~ Cf for all keys. Moreover, it can be shown that for key-alternating ciphers
(or ciphers that can be expressed as such, e.g. DES) the correlation contribution
is given by Cf = (—=1)V"K|CE|, where |C¥| is independent of the key [23]. Thus,
Matsui asserts that for DES, Cgﬁ ~ +|CE]| for all keys. This leads to the concept
of right-key equivalence:

Hypothesis 2 (Right-Key Equivalence — Matsui). If a linear approzimation (a, 3)
has a single dominant trail U, then the absolute value of the linear correlation is
approzimately equal for all keys, with |C§ﬁ| ~ |CE|.

Similarly, Matsui assumed that for a wrong key guess, the correlation would be
approximately zero for all keys, leading to the concept of wrong-key randomisation:
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Hypothesis 3 (Wrong-Key Randomisation — Matsui). During a key recovery attack,
the linear correlation of a linear approzimation («, 8) is approzimately equal to zero
for all wrong keys, i.e. Cfﬁ =0.

Under Hypotheses 2 and 3 the distribution of C’ij’ﬁN only depends on the number N
of observed plaintext-ciphertext pairs. Using a normal approximation to the binomial
distribution, it can be shown that

CEEN L N(£ICE,NTY) and Co% N ~ N(O,N7Y) (2)
where Kp and Ky represents a right and wrong key guess, respectively. This
and similar models have been used extensively in the literature, first in classical
linear cryptanalysis [4, 30, 34, 36, 42, 46], and later in its extensions multiple linear
cryptanalysis [5, 29] and multidimensional linear cryptanalysis [18, 25, 26, 27, 41, 47].
Notably, the best attacks on the block cipher PRESENT (both multidimensional), the
26-round attack by Cho [18] and the 27-round attack by Zheng and Zhang [47], both
use this model.

3.2 Models Incorporating the Key
Single Approximations

While the idea of identical behaviour for all keys simplifies analysis, it does not
reflect the behaviour of most modern ciphers. Indeed, if the number of trails with
a significant correlation contribution is large, then by Equation 1 the correlation
Coff 5 will take on many values over the key space. Dubbed the linear hull effect, this
phenomenon was first discussed by Nyberg in [39]. Ohkuma later pointed out that
for PRESENT this effect is very strong, as the number of trails with the same best
correlation contribution is large [41]. The situation is similar for most other modern
ciphers designed with resistance to linear cryptanalysis in mind. Thus, Hypothesis 2
is not true for most ciphers of interest.

Although the correlation Cif s 1s a random variable over the key space, it is not
immediately clear what distribution it follows. For a long-key cipher, it can be
shown that the distribution is normal with mean zero and variance equal to ELP
[21]. For other key-schedules, the distribution has been studied in several works [2,
17, 32], and have been found to be close to normal — however, the key-schedule can
have an impact on the parameters of the distribution, invalidating the veracity of
Hypothesis 2. This leads to the following revised right-key hypothesis, which has
been used several times in the literature [8, 9, 28].

Hypothesis 4 (Right-Key Randomisation — Single [17, 22]). The linear correlation
C’fﬁ of a linear approximation (a,B) of a block cipher, which does not have a
single dominant trail, is a random variable over the key space with distribution

Ci{aﬁ NN(,U/,0-2).
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Note that by the definition of ELP and variance, we can write 02 = ELP — 2.
Moreover, for a long-key cipher, = 0 [22, 23]. For the wrong-key, the situation is a
little simpler. In [22], Daemen and Rijmen show that the correlation distribution
of an ideal cipher is normal with mean zero and variance 27". Thus, we obtain the
following hypothesis in this case.

Hypothesis 5 (Wrong-Key Randomisation — Single). During a key recovery attack,
for a wrong key guess, the linear correlation 055 of a linear approzimation («, ) is

a random variable with distribution C’gﬂ ~N(0,27™).

While the picture seems clear in the case of a single approximation, moving to
extensions that use multiple approximations simultaneously in order to extract more
information seems to complicate matters considerably.

Multiple Linear Cryptanalysis

Kaliski and Robshaw first proposed the use of multiple approximations simultaneously
in [29]. The idea was extended by Biryukov et al. in [5], where they also defined the
capacity of a set of linear approximations as a measure of the strength of this set.
For a set of M approximations (a1, 1), ..., (an, Ba), the capacity is defined as

M

=D (Cap) (3)

i=1

Similar to the correlations, we denote an estimate of the capacity based on N
plaintext-ciphertext pairs by C**¥. The main problem with this approach is that
the linear approximations are not in general statistically independent, making the
analysis of the capacity very difficult. Indeed, statistical independence was assumed
in [5, 29]. This approach is commonly referred to as multiple linear cryptanalysis.

Multidimensional Linear Cryptanalysis

To avoid the problem of independence, Hermelin et al. proposed multidimensional
linear cryptanalysis in [25, 26], based on the work done by Baigneres et al. in [3].
It considers an m-dimensional subspace of F4 x FZ and studies the distribution
of a plaintext-ciphertext pair (z, Ex (x)) restricted to this subspace, which can be
described by the vector n = (p{S, ..., nd_,), where n& = Pr(z||Ex () = 4). n*
is a key-dependent, 2™-dimensional, discrete probability distribution. It can then be
shown that the capacity of the set of all linear approximations in the subspace can
be calculated from n’.

Theorem 1. [26] Consider an m-dimensional subspace of Fy x F%, and denote the
multidimensional probabilities by n%. The capacity of all linear approzimations in
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this subspace can be calculated as

2™ 1 2m—1 (K — 2-m)?
ck = Z (CK ) = Z 12,7,,17
i=1 i=0

The main advantage of multidimensional linear cryptanalysis is that it can be
shown that the amount of data needed for a multidimensional distinguisher (with
a fixed success probability) is inversely proportional to the capacity, regardless of
statistical dependence of the associated approximations [3].

While the influence of the key on the correlation of a single approximation has
been studied for some time, it is only recently that versions of Hypotheses 4 and 5
have been developed for multiple and multidimensional linear cryptanalysis. In the
following, we give a short summary of the contributions of the three main works in
this area, and in Section 4 we consider their results in depth.

Huang et al., CRYPTO’15 [28] To the best of our knowledge, this is the first
work to study the key-dependent distribution of the multidimensional capacity,
although the wrong-key capacity is not considered. Under some assumptions on
the one-dimensional approximations, it is shown that the capacity follows a gamma
distribution. Two cases are considered giving the following results.

Result 1 ([28], Proposition 2). Consider an m-dimensional linear approximation
where m linearly independent base approximations have dominant ELPs. Moreover,
let the correlations of these base approximations, CK ,CK be i.i.d as

a,B17 Qm,Bm?
N(0, ELP). Then CX ~T(%2 2ELP) = ELP - x2,.

Result 2 ([28], Proposition 3). Consider an m-dimensional linear approximation with

probability distribution n = (nl,... nf._1). Assume that the multidimensional

probabilities nX are i.i.d as N'(27™,02). Then C¥ ~ F(WT*I,Q’”JAJQ) = 2mg? .
2

Xom _1-

Blondeau and Nyberg, DCC’17 [9] This work improves upon [28] in several ways.
First, both the key and data dependence are included in the models, as opposed to
[28] that only consideres the exact distribution of capacity. Moreover, both sampling
of the texts with and without replacement is considered; here, we will only cover the
case without replacement, and refer to [9] and [12] for further details.

A model for the wrong-key is derived by using Hypothesis 5 and Theorem 1, under
the assumption that approximations of ideal ciphers are statistically independent.

Result 3 ([9], Theorem 6). Consider a multiple or multidimensional attack using
M approzimations and N text pairs. Then, for a wrong key guess, CN ~ (N7 +
27")Xr-

For the right-key, [9] considers a more general case where the mean of the corre-
lations is not necessarily zero. Let x7(k) be the non-central y?-distribution with ¢
degrees of freedom and non-centrality parameter k. The following result is given.
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Result 4 ([9], Theorem 7 and 8). Consider a multiple or multidimensional attack
using M approximations and N text pairs. For a multiple attack, assume that the
linear correlations of the approrimations, C ., are independently distributed as
N(pi,o?),i=1,...,M. Fora multzdzmenszonal attack, assume that the multidi-
mensional probabilities ni are normally distributed with equal variances and that
each set of M probabilities are statistically independent. Let u; be the mean of the
correlation of the related approximation, i =1,..., M. Then

K,N s (N ZM? -1 -1 2
C ~ Axy NA where A=N""+M Z(ELPi—,ui).

For the multidimensional probabilities, note that the assumption of statistical
indepedence of sets of size M arises since Y 7K = 1.

Blondeau and Nyberg, ToSC’16 [8] While [9] derives the capacity distributions
under some assumptions, Result 4 requires that the cryptanalyst can get accurate
estimates of the distribution parameters of the one-dimensional correlations or the
multidimensional probabilities. Obtaining these is left as an open problem. [8] aims
to solve this problem by utilising the signal/noise decomposition technique developed
n [17].

The idea of the signal/noise decomposition is to first get an estimate of the
correlation distribution by computing a part of the linear hull, i.e. some (significant)
terms of Equation 1. We call this set of known trails the signal, denoted by S. Then,
the unknown part of the hull, i.e. the trails not in S, are modeled as noise with
the distribution A'(0,27"). We will take a closer look at this method in Section 5.2.
Using the signal/noise decomposition, the following result is given for the right-key
distribution of capacity. Note that [8] uses the wrong-key result given in Result 3.

Result 5 ([8], Theorem 4). Given M linear approximations, assume that a signal S
s known for £ approximations, and that the noise of these £ approzimations, as well as
the correlatwns of the remazm'ng M — £ approzimations, are statistically independent.
Let Cs = ZZ 12 ves, (C K2 be the signal capacity. Then, for a long-key cipher,

E(C*)=Cs+M2™", and

2
Var(CH) = Z (Z () ) +Cs2P" 4 M2' TP

i=1 \UES

4 Limitations of Current Models

The results described in Section 3 use one or more assumptions about the linear
correlation distributions. Moreover, the results are not as general as a cryptanalyst
might want, i.e, the situations in which they can be used are restricted in some way.
In the following, we consider the validity of these assumptions and describe some of
these restrictions.
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4.1 Independence Assumptions

Dealing with statistical independence has long been a problem for linear cryptanalysis.
Indeed, the very reason for the introduction of multidimensional linear cryptanalysis
was to avoid this issue. When trying to incorporate the key-dependence in the
models, however, it seems difficult to avoid assumptions on the statistical behaviour
of the approximations. We note that Results 1 to 5 all use some assumptions on the
statistical independence of (some of) the approximations. Recently, Nyberg proved
the following theorem:

Theorem 2 ([40]). Let A be a set of pair-wise statistically independent linear approz-
imations. Then the correlations of the linear approximations in A are statistically
independent if and only if they are linearly independent.

While it is an open problem to formally prove when two approximations are
statistically independent, for all practical intents and purposes, assuming pair-wise
statistical independence seems reasonable in the case of random permutations of the
block size used in practice. With this assumption in mind, let us consider a general

set of M linear approximations, («;,[;), ¢ = 1,..., M. We denote the vector of
their correlations by CX = (C’f1 R C’fM’ M)T. Under the wrong-key hypothesis,

Hypothesis 5, C’fﬁ ~N(0,27™),4=1,..., M. In this case, if the approximations
are linearly independent, Theorem 2 asserts that C* ~ A7/(0, diag(27™)). But
this is not the case if the linear approximations are linearly dependent, which poses
an interesting problem for the multidimensional models. In particular, not all the
one-dimensional approximations are linearly independent, and so by Theorem 2,
they cannot be statistically independent. The consequence for Result 3 is that it is
unknown whether the capacity is y?-distributed in a multidimensional linear attack.
For a multiple linear attack the result still holds if the approximations are linearly
independent.

For the right-key models, Theorem 2 has the biggest impact on Result 5. When
adding noise to the model, the assumption is that the noise distributions behave
as for a random permutation and are independent, but this cannot be the case for
a multidimensional approximation. For Results 2 and 4, it is assumed that the
multidimensional probabilities are independent, and thus Theorem 2 does not affect
these models. Whether this assumption is sound is an open problem.

Finally, we note that an often used assumption when deriving these models
is that the cipher is a long-key cipher, where pair-wise statistical independence
might also be a reasonable assumption in practice. In this case, we could choose
linearly independent approximations, and then by Theorem 2 and [21], ck ~
N (0, diag(ELP;)). However, most ciphers do not actually have independent round
keys. If a key-schedule is used, we can no longer use Theorem 2 to equate linear
independence with statistical independence. Moreover, we cannot even guarantee
that the distribution is jointly normal. We take a close look at the key-schedule
influence in the following.
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Figure 1: The densities of the squared Mahalanobis distance of the joint correlation
distribution for 18 approximations over 9 rounds of 32-bit SMALLPRESENT
for three different key-schedules. The plot show a connection between depen-
dence between the round keys, and how much the correlation distribution
deviates from joint normality.

Non-Normality of Linearly Independent Approximations

In light of Theorem 2, the joint correlation distribution of multiple linear approxima-
tions of an ideal cipher is currently unknown. Since knowledge of this distribution is
crucial to linear cryptanalysis, it seems safer to consider sets of linearly independent
approximations. But how do these behave for a specific block cipher that does not
have independent round keys? To investigate this, we consider a set of 18 linearly
independent approximations over 9 rounds of 32-bit SMALLPRESENT [33]. The input
and output masks are given by

a=2%3i¢c56,7, and F=2%"iec56,7,j€23.

We note that these approximations have the same form as those we will later use to

attack PRESENT in Section 6. We consider three different key-schedules: long-key,
identical round keys, and a 40-bit key-schedule described in Section A. For each
key-schedule, we calculated the linear correlation of each approximation for the
full code-book and 2000000 randomly chosen keys. Let p and 3 be the mean
vector and covariance matrix of each of the data sets, respectively. To assess how
much the distribution of C¥ deviates from joint normality, we consider the squared
Mahalanobis distance, defined by

d* = (CK —p)'="Y(CF —p).

Note that if CK ~ Nis(p, X), then d? ~ x3g. Figure 1 shows the density of d? for
the three data sets against the density of the y2-distribution.

We make the following observations: For the long-key, the joint distribution of C¥
is very close to the multivariate normal distribution Nig(u, ). When we switch to a
key-schedule with dependent round keys, we observe a deviation from normality. The
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most drastic effect is seen in case of the strongest dependence between the round keys,
namely for identical round keys. Here, the distribution of d? is heavier towards zero,
but also has a heavier tail towards infinity, compared to the x?¢-distribution. For such
a key-schedule, it does not seem reasonable to approximate the distribution of ck
by a multivariate normal distribution. For the 40-bit key-schedule, the distribution
of d? also deviates somewhat from x?g. The 40-bit key-schedule we have used here
is a scaled down version of the 80-bit key-schedule used in PRESENT, and so it
might be natural to assume that the cipher behaves as a long-key cipher, in order to
simplify analysis. However, there is still quite some overlap of the bits in consecutive
round keys, which seems to have a non-negligible influence on the shape of the joint
correlation distribution. It would then seem that, strictly speaking, joint normality
is not a fair assumption, even for good key-schedules.

4.2 Restricted Approximation Choices

The right-key models of [9, 28] set certain requirements for the set of approximations
used. The primary requirement is on the parameters of either the correlation or
multidimensional probability distributions. For Results 1 and 2, the assumption is
that all the distributions are identical. For Result 4, the assumption is that the
distributions have identical variances. Although it might be possible to find sets of
approximations such that these assumptions are satisfied, it does restrict the ability of
the cryptanalyst to freely choose a set of approximations that can optimally facilitate
an attack. This can for example make it hard to do efficient key-guessing, and so
would result in a worse attack than if the cryptanalyst could choose approximations
freely.

While the use of the multidimensional probability distribution in Result 2 is promis-
ing, it seems that there are more works that analyse the correlation distributions
directly — perhaps because the distribution of these is more well understood. For
models that use the correlation distributions directly, it seems that these are currently
either multiple (Result 4) or multidimensional with similar restrictions to the multiple
case (Results 1 and 5). For Result 1, a set of (linearly independent) dominant base
approximations are required, and so the combined approximations derived from
these cannot by assumption contribute significantly to the attack. For Result 5,
the noise part of the ¢ known approximations are modelled as approximations of a
random permutation and must be independent, and so by Theorem 2 and Section B,
they must be linearly independent. Additionally, the remaining approximations only
contribute with noise.

4.3 Parameter Estimation

As noted by [8], one major challenge when trying to apply Results 1, 2 and 4
is to get an accurate estimate of the various distribution parameters. For single
approximations, this problem was identified in [17] and the signal /noise decomposition
was proposed. This approach was nicely applied in [8], and was shown to give more
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accurate results. However, [8] uses the long-key assumption to avoid considering the
actual distribution of the signal, instead only considering the signal ELP. Extending
the discussion of Section 4.1, this might not be accurate for other key-schedules.
In this case, the cryptanalyst would have to get an estimate of the actual signal
distribution.

To estimate the parameters of the signal, one could find a set of trails with large
correlation contribution, and calculate part of the sum in Equation 1 for a significant
number of randomly chosen keys. Doing this can be a significant challenge, especially
for PRESENT-like ciphers where the number of good trails is extremely large. Various
methods for finding good trails of a cipher have been proposed, e.g. the branch-and-
bound method [35] and sparse correlation matrices [1], but it can still be quite the
computational challenge to obtain good parameters for the signal. In Section 6, we
use a method similar to that of [1] and significant computational power to obtain
estimates for a set of PRESENT approximation.

While it might be possible to avoid the other issues discussed in this section, if
we abandon the long-key assumption, parameter estimation seems like a challenge
that is difficult to avoid. Indeed, the model we propose in Section 5 in some sense
trades assumptions for increased computational effort. As such, efficient algorithms
for computation of the signal trails seems like an increasingly important research
topic. In connection to this, note that while an estimate of the parameters of the
correlation distributions can be obtained by the above method, we are not aware
of any such method to estimate the parameters of the multidimensional probability
distributions.

5 Multivariate Linear Cryptanalysis

As argued in Section 4.1, when a cipher uses round keys that exhibit some dependence
between them, the joint distribution C¥ of linear correlations for a set of linearly
independent approximations can deviate from the joint normality we would expect
from a long-key cipher. Indeed, it seems very difficult to describe the exact joint
distribution in this case. On a lower level, the marginal distributions do not necessarily
have identical variances, as was assumed in [9, 28]. Additionally, as discussed in
Section 4.2, the current models for multidimensional linear cryptanalysis do not seem
to fully use most of the approximations in the chosen subspace of F§ x FZ, and so by
using the multidimensional approach, the attacker has to consider approximations
that only add noise. What is worse, it seems that we are not able to formulate a
wrong-key hypothesis in the multidimensional case that fully agrees with Theorem 2.
Thus, the need for a wrong-key model forces us to consider the case of multiple,
linearly independent approximations. It is therefore our aim to create a more powerful
model for this setting which: models the behaviour of any set of linearly independent
approximations; does not assume statistical independence of approximations or round
keys; does not assume the shape of the joint correlation distribution; and takes into
account the unknown part of the linear hull.
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In the following we propose multivariate linear cryptanalysis. In Section 5.1 we
present the main right- and wrong-key hypotheses the model relies on. This model in
some sense trades assumptions for computational effort during the off-line analysis.
In Section 5.2 we incorporate the signal/noise decomposition of [17] into the model,
similar to [8], in order to make the model practically usable. In Section 5.3 we
describe the model as used in a key-recovery attack where the attacker does not have
access to the full codebook.

5.1 The Main Model: Arbitrary Right-Key Distribution

The first part of our model is very general, and simply expresses the fact that the
correlations of a set of M linear approximations follow some multivariate probability
distribution. Consider the vector C¥ containing the correlations of M linear approx-
imations with linearly independent masks. We propose the following right-key and
wrong-key models.

Model 5 (Right-key — Multiple). Let (a;,5;), i =1,...,M, be M different linear
approzimations of a block cipher with linearly independent masks, and let ck =
(Cé(l,ﬁl e Cf% M)T be a vector containing the linear correlations. Then C ~ Dy,
over the key space, for some M -variate probability distribution Dy .

Hypothesis 6 (Wrong-key — Multiple). Let 0 = diag(2=™). During a key re-
covery attack, for a wrong key guess, the linear correlation vector ck of M linear

approzimations with linearly independent masks is a random vector with distribution
CH ~ Ny (0,%9).

The wrong-key hypothesis is inspired by Theorem 2 and the result of [22], and the
veracity of the hypothesis therefore relies on the assumption of pair-wise statistical
independence of linear approximations of a random permutation. We take some steps
towards validating Hypothesis 6 in Section B. For the right-key, this model allows
the attacker to pick any set of linearly independent approximations, but requires
that she can somehow estimate the shape of the distribution Dj,;. While this at first
does not seem very useful, as determining this distribution seems like a very hard
problem in general, we propose a way to do this in the following by applying the
signal/noise decomposition. We note that, interestingly, Model 5 could be extended
to any arbitrary set of approximations, but it is currently unknown how to express
Hypothesis 6 in this setting. It is therefore a very interesting open problem to derive
the distribution of linearly dependent approximations of an ideal cipher.

5.2 The Practical Model: Signal/Noise Decomposition

The model presented requires the cryptanalyst to somehow obtain the distribution
Dy for the right-key distribution. In most cases, we will be unable to calculate the
exact distribution of Cé{, s for any single approximation, and we therefore have to
estimate Djs. In order to do this, we take a similar approach to [8, 17]. Let S be
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the set of known signal trails for an approximation (a, 3). Then we define the signal
correlation as

aﬁ_ZCU (4)

UesS

The signal correlation CK 7 will itself follow some probability distribution — we denote
this by Dy, 5- We then assume that the unknown trails, the noise, behave as for a
random permutation, i.e. their correlation is distributed as N'(0,27"). Then we can
approximate the full correlation with the distribution

Coffﬁ ~ Dg,ﬁ +N(0, 2771)

However, we still have the problem that D}, . is unknown. This problem can be
solved computationally. By computing Equatlon 4 for a large number of keys, we
obtain a set of values drawn from D}, ;. Whenever we need to randomly sample
from Dy, 5, as we will need to do to estnnate the strength of an attack, we simply
sample from this data set. The same can be done for multiple approximations by
calculating the signal correlations simultaneously for all M approximations for a
randomly chosen set of keys. In this way, we trade any assumptions on the shape
of the distribution Dj, for a potentially large computational effort. However, this
computational effort is only required during the off-line analysis, and so has no
influence on the computational complexity of an attack.

Under the assumption that the noise behaves as for a random permutation, the
noise of linearly independent approximations will also be statistically independent,
by Theorem 2 and Section B. Then we can make the following generalisation of the
signal /noise decomposition to several approximations. Note that compared to [§],
we here consider the distribution of the signal over the keys, as opposed to only the
ELP of the approximations.

Model 6. Let ¥° = diag(2™™). If the distribution, D}, of the signal CciE* s
known, then the distribution of C¥ in Model 5 is closely approzimated by CK ~
D?w +N1\/[(O, 26).

Experimental Verification.

In order to verify Model 6, we again consider the set of 18 approximation over 9
rounds of 32-bit SMALLPRESENT defined in Section 4.1. We considered the version
with the 40-bit key-schedule, and enumerated part of the hull of each approximation,
by using an approach very similar to the sparse correlation matrix method in [1]. In
this way, we obtain a set of signal trails that includes all trails having intermediate
masks with hamming weight at most four in each round. We did this simultaneously
for all 18 approximations and 500000 randomly chosen keys, in order to get an
estimate of the distribution Djg. Furthermore, we measured the actual correlation
values of the cipher for 2000000 randomly chosen keys. We then applied Model 6
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Figure 2: A density of the squared Mahalanobis distance for the joint distribution of
linear correlation for 18 approximations over 9 rounds of 32-bit SMALLPRE-
SENT using a 40-bit key-schedule. The plot compares the density measured
using the full codebook to a prediction made using Model 6.

to our signal estimate, and calculated the squared Mahalanobis distance of the two
resulting data sets. The result is shown in Figure 2. The figure shows that Model 6
gives us a very close estimate of the actual distribution.

5.3 The Attack Model: Dealing with Undersampling

Even though Model 6 provides a way to get a good estimate of the multivariate
correlation distribution, we would often like to avoid using the full codebook in a
key-recovery attack. Thus, we also need to be able to express the distribution of the
undersampled correlation, C*V. Using a result due to Murphy, we develop such a
model next.

Murphy showed [37] that the joint distribution over the text space of the empirical
correlations, measured using N randomly drawn text pairs for a fizxed key K, has a
multivariate normal distribution, cloN Nar (5o, EK"’N), where ulKO = Cf:ﬁf
and

— K, . .
Ko,N _ N 100410@0417/31'@51 for ¢ 75 75
d Nt for i = j.

When taken as a random variable over the key space, we note that p%o = CK

and therefore has distribution Dj,. Indeed, 50N also has a distribution over the
key space, making the distribution over both the key and text space extremely
difficult to analyse. However, as Murphy notes, it is often the case that the com-
bined approximations (a; & «;j, 3; © §;) are extremely weak, e.g. in the case where
(e, B;) and (aj, B;) activate different S-boxes at the input and output. In this case,
N-tcKo < N~!, and we can set these covariances to zero. As Murphy says,

a;Baj,Bi BB
in this case the ﬁxed—key correlations are “approximately statistically independent”
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over the text space, in the sense that any contribution by the covariances is negligible.
Under this assumption, we obtain the following theorem.

Theorem 3. Let BV = diag(N~1). Consider a set of M approzimations as given in
Model 5. Assume that the correlation of any combination of two such approzimations is
zero. Then the empirical correlation vector of these approximations, measured with N
randomly drawn plaintext-ciphertext pairs, has distribution CEN Dy +Na (0, EN).
For the wrong-key scenario of Hypothesis 6, CN ~ Ny (0, pILINE ZN).

Proof. From [37] we have that C*oN ~ Ny (ufo, 250N) for a fixed key K. By
assumption, we further have that 350" = =V = diag(N~1), and so is independent
of the key. The distribution of C**" over keys is therefore Ny (Dys, ZV) =
Das + Nar(0, V). For the wrong-key, Das = N (0, X°), finishing the proof.

By applying Model 6 to this theorem, we obtain the following corollary.

Corollary 4. For a set of M approzimations as in Theorem 3, if the distribution,
D3y, of the signal CE* s known, then the distribution of C**N is closely approzimated
by CN ~ D+ Ny (0, 2V + 39).

As an interesting observation, this result shows how the original model by Matsui,
Equation 2, can misleadingly give accurate results when N is relatively small, as is
the case for the attack on DES. In this case, and as long as Dj; does not deviate
too much from joint normal distribution, N~! will dominate the variance terms
of Cov(Dys) and 25, making the key-variance undetectable. This also shows that
conducting experiments for a low number of rounds with low data complexity can
not necessarily confirm a model.

Corollary 4 gives us a way to estimate the distribution of the correlation vector over
the keys for a set of linearly independent approximations. In contrast to Results 1,
2, 4 and 5, no assumptions about independence or the parameters of the involved
distributions are required, and we do not assume independent round keys. This
generality of course comes with a cost: the approximations have to be linearly
independent (although we are not forced to consider weak approximations), and we
have to estimate the distribution D},. We have partially discussed the latter issue in
Section 5.2, and we will discuss how we have done this for PRESENT in Section 6.

6 Multivariate Linear Attacks on PRESENT

Different methods for distinguishing when using many approximations have been
proposed. The LLR method was proposed by Baigneéres et al. in [3] as an optimal
distinguisher and used in [26] in a multidimensional attack against the block cipher
Serpent. Both the LLR method and the x? method were studied in [25], where the
LLR method was concluded to have better performance. However, as noted by Cho in
[18], the LLR method is often not practical to use, as it requires an accurate knowledge
of the key-dependent behaviour of the multidimensional probability distribution. For
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this reason, the x? method is more commonly used. We now present a new attack on
26 and 27 rounds of PRESENT using this method and the improved multiple linear
model of Section 5.

6.1 Determining the Advantage

The x2 method has been widely used as a distinguisher in various attacks. For this
method, the test statistic is defined as

M
T =N _(Carp)™
i=1

In the following, we describe how to determine the advantage of the x? distinguisher
using the theory developed in this paper. The approximations used are chosen based
on the observations made by Ohkuma in [41]: the best approximations of PRESENT
are those that start and end with the S-boxes S; with ¢ € {5,6,7,9,10,11, 13,14, 15}.
For our attack, we consider the input and output masks

a =243 ¢ {56,7,9,10,11,13,14,15},
B =2Y%3 i € {5,6,7,9,10,11,13,14,15}, Bo =2%*2 i< {5,6,7,9,10,11}.

Taking all possible combinations of these input and output masks gives us M = 135
approximations. These approximations are chosen to facilitate efficient key-guessing
over a large number of rounds, as will become evident in Section 6.2. We note that
due to the structure of the approximations, it can be assumed that the undersampling
matrix XV is a diagonal matrix, as discussed in Section 5.3. This does not imply
independence of the approximations, but simplifies our analysis considerably.

With this choice, we obtain the advantage in the following way. By using a
signal that includes all trails having intermediate masks with hamming weight at
most four in each round, and a technique similar to that of [1], we obtain a data
set of observations from the signal distribution Djs5. We used 217100 random
master keys to generate these observations. We now simulate observations from
CEN in the following way: We fix a sample size for the simulation, say k. For the
right key, we randomly sample k observations of Djs5 (with replacement, if k is
larger than the number of observations we have collected) from our data set. We
then sample k random observations from the normal distribution ANy, (0, =V + 26).
These two samples are then added together, following Corollary 4. The wrong-key
distribution is simulated by randomly sampling & times from the normal distribution
N (0,2 4+ 39 according to Theorem 3.

We note for comparison to previous works that the expected right-key capacity
obtained from these simulations is E(CX) = 27%%-01 with a variance of Var(C¥) =

2711559 " whereas the wrong-key capacity has E(CX) = 279692 and Var(CK) =
9-119.02
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Figure 3: Advantage of the y? distinguisher using 135 approximations of 22-round
PRESENT, with Pg = 0.95. At half the codebook, N = 253, the advantage
is 14.5 bits.

We can now calculate the empirical CDFs of the simulated right-key and wrong-key
distributions. For a fixed success probability Ps, we use the right-key CDF to obtain
a threshold 7, as described in Section 2.2. The advantage is finally calculated using
the wrong-key CDF and 7, as defined in Section 2.2. Figure 3 shows the result of
applying this procedure for k = 222, Py = 0.95, and varying values of N. We note
that we need to set k fairly high to obtain sufficient resolution of the empirical CDFs.
For the chosen k, we can detect probabilities down to 2722, allowing us in turn to
detect advantages of up to 22 bits. At half the codebook, N = 253 we obtain an
advantage of 14.5 bits.

6.2 Attacking 26 rounds

Under the wrong key randomisation hypothesis, Hypothesis 6, we can turn our
multivariate linear distinguisher into a key-recovery attack, as described in Section 2.2.
That is, the attack proceeds as follows: Collect N plaintext-ciphertext pairs. Guess
the bits of the outer round keys required to (partially) encrypt/decrypt the desired
number of rounds. Apply the x? distinguisher to the resulting correlations, and save
the key guess if the distinguisher indicates a non-ideal cipher. Repeat for all guesses
of the round key bits. For each saved key we can find the master key by exhaustively
guessing the remaining bits and verifying by trial encryption.

We aim to recover the master key for r rounds of PRESENT-80 by using a multiple
linear approximation over r — 4 rounds. Because of the large number of outer
rounds we need to bypass, the approximations are chosen such that the involved
round key bits are sparse. We consider the set of 135 approximations described
above. The bit positions of the input and output masks are highlighted in Figure 4.
Figure 4 shows the S-box positions we need to encrypt/decrypt to calculate the linear
correlations of these approximations. The straightforward approach to partially
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Figure 4: An outline of the 26-round attack using 22 round approximations. The
input/output mask bits are indicated by bold lines. The dark grey squares
indicate the round key bits obtained by guessing 24 bits of the master key.
The light grey squares indicate the round key bits obtained by guessing 23
bits of the last round key. The squares indicated by ? are extra bits of the
second to last round key that need to be guessed.

encrypting/decrypting these positions would require guessing 80 key bits across the
four round keys. By considering the key-schedule, we can dramatically improve this.
We first guess the following 24 bits of the master key:

ki i €[0,2] U[15,18] U [63,79]. (5)

The round key bits we obtain from this guess are marked in dark grey in Figure 4,
as well as 42 additional bits needed by the attack. By guessing the missing 23 bits of
Ky, we also obtain 13 bits of Ks5. Finally, we only need to guess an additional 7
bits of Ko5. In total, we need to guess 54 key bits. Note that each approximation
only depends on 4 bits of Ko5 and 16 bits of K. With these considerations in mind,
the attack proceeds as follows.

Distillation phase

1. Obtain N partial text pairs (p;, ¢;), where p; is 16 bits and ¢; is 32 bits.
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2. Generate a vector t of size 248 where t[s||t] = #{i | p; = s and ¢; = t}.

Analysis phase

1. For each 24-bit guess of the partial master key, Ky, perform these steps:

a) For each input mask «, calculate two vectors t5» and t£» of size 2!,
where

tgjw [.]] = #{(pi7 Ci)‘GJE(Ci) =jand a- SKM (pi) = 0}’

where £k,,(p) is the partial two-round encryption of p under key Ky,
and G selects the bits of ¢; required to calculate the output masks of 3,
x € {1,2}.

b) For each output mask 3, fix a guess of the relevant 4 bits of Ko5. Denote
the guess K. Then calculate the 216 x 216 matrix Ag’, where

and Dk, (c) is the partial two-round decryption of the 16-bit value ¢ using
K7, but excluding the first key XOR.

c) Calculate the correlations of all 135 approximations and 26 guesses of
the partial Ksg by calculating the matrix-vector products

Cop = %AgltgtM — 1.

d) Repeat steps (b) and (c¢) for all values of K7, resulting in correlation values
for all approximations for at most 236 guesses of the last two round keys.

e) Extract the correlations of at most 220 guesses that agree with Kj;.

f) Calculate the x? test statistic 7,2 for each surviving key guess. Save all
keys (of 54 bits) with 7 < Tya.
Search phase

1. For each key candidate, perform trial encryption to find the remaining 80— 54 =
26 bits of the master key.

Attack Complexity.

We now consider the computational complexity of the attack. We consider the
number of single round encryption equivalent operations performed.

e The distillation phase requires N operations.

e For the analysis phase:
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Figure 5: Our 26 round attack: Computational complexity as a function of data
complexity for the 26-round attack on PRESENT using 135 approximations
over 22 rounds. Non-distinct random texts were used, and Pg = 0.95.
Note that the complexity reaches a lower limit close to N = 253 when the
advantage becomes sufficiently large.

— Step la can be done by iterating over t once and encrypting two rounds,
using 2 - 2*® operations.

— Steps 1b and 1c can be performed using the FFT technique given in [19].
Using this technique, we only need to compute the first column of each
Agl, at a cost of 2 - 216 operations, and then calculate C, s for a fixed 3
and all v in time (2-9+1) - 16 - 216.

— There are 2% values of K; and 15 output masks. Thus, steps 1d needs a
total of 15-2%. (22106 +(2.9+1)-16 - 216) ~ 23216 operations.

— Step le uses 23°

— Step 1f takes roughly 2 - 135 - 230 = 23808 gperations.

— In total, this phase uses 224 . (249 4-232:16 4 230 1 938.08) ~ 973.00 operations.

operations.

e Finally, the search phase requires 2~°* full encryptions of 2°4~2 candidate
keys, using a total of 26 - 2°~% operations.

From Figure 3, we obtain a plot of the computational complexity of the 26-round
attack, given in Figure 5. Here, we have fixed the success probability at 95%.
As long as the search phase dominates, we can increase the number of texts to
decrease to computational complexity. We can highlight two 26 round attacks with
different trade-offs. For N = 2630 the advantage is 14.0 bits, and the computational
complexity is 27327 /26 = 208-57 encryptions. Interestingly, this multiple attack uses
far fewer approximations than Cho’s multidimensional attack [18], but at half the
data complexity and a computational complexity that is 11 times smaller, all the
while needing far fewer assumptions. Compared to the reevaluation of Cho’s attack
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Figure 6: Our 27 round attack: Computational complexity as a function of data
complexity for the 27-round attack on PRESENT using 135 approximations
over 23 rounds. Distinct random texts were used, and Pg = 0.95.

in [8] (which has the same computational complexity as the original attack), our
attack uses less data, and has a higher success probability. Alternatively, we can
decrease the data complexity to N = 2619, giving an advantage of 4.7 bits, and a
computational complexity of 280-09 /26 = 27530 encryptions. While being slower than
Cho’s attack, to the best of our knowledge, this attack has the lowest data complexity
of any 26-round attack on PRESENT presented in the literature.

6.3 Attacking 27 rounds

The attack can be extended to 27 rounds by using the same approximations over 23
rounds. By guessing the bits of the master key given in Equation 5, we determine 41
required bits of the round keys. We then have to guess 25 bits of Ko7 and 6 bits of
Ky, for a total of 55 bits of key material. Due to the way we carry out the attack,
the complexity calculation is not affected by this — only the lower advantage has an
influence. However, if we use non-distinct random texts for the attack, the advantage
is too low. If we instead use distinct random texts, we obtain a better advantage.
This scenario is in some sense a chosen plaintext attack, and has been studied in
[9, 12]. The only change to our model is that 3V = diag(%) in Corollary 4.
The distribution of C** was again estimated using 217100 random keys as for the
26 round attack, and we obtain £(CK) = 275638 and Var(CK) = 2711873 for the
right-key. The resulting attack complexities are shown in Figure 6. Using the x?
distinguisher with Pg = 0.95 and N = 26383 we obtain an advantage of 2.73 bits
and a computational complexity of 277-27 encryptions.
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A 40-bit Key-Schedule for SmallPresent

We define a 40-bit key-schedule for 32-bit SMALLPRESENT, which is a scaled down
version of the 80-bit PRESENT key-schedule. Let K = ksgkss ... k1ko be a 40-bit
key register, initialised to the master key. At round ¢, the round key is extracted as
the 32 most significant bits of K, i.e. K; = k3gkss ... kgks. Then, K is updated as
follows:

e K is rotated 9 bits to the right,
e The PRESENT S-box is applied to k39k38k37k‘36,
e A round counter is xor’ed to the least significant bits.

The round counter starts at 1 and is incremented by 1 for each round.

B Pair-Wise Independence of Linear Correlations

The wrong-key hypothesis presented here, Hypothesis 6, follows from Theorem 2 and
[22], assuming that linear approximations of random permutations can be considered
pair-wise independent. While it seems difficult to show when this assumption is true,
we here take some steps towards verifying Hypothesis 6 experimentally. We first note
that the normality of the marginal distributions of C¥ for a random permutation is
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Table 2: Results of the Pearson x? test of independence for various permutation
sizes. A p-value larger than 0.05 indicates that the correlations of two linear
approximations are statistically independent at the 95% significance level.

. . % of Experiments with  Smallest observed
Size | Experiments p-value > 0.05 p-value
216 20000 99.995 0.021
220 20160 100.00 0.975
224 15342 100.00 1.000

proven in [22]. Moreover, it seems unlikely that the joint distribution would deviate
much from a multivariate normal distribution for most sets of approximations. Thus,
if we can demonstrate that pairs of correlation distributions are independent, we
can be confident that Hypothesis 6 is reasonable. To this end, we performed the
following experiment:

e Fix a size of the permutation, say 2",
e Pick two random linear approximations,

e Generate 10000 random permutations of the given size and measure the exact
correlation of both approximations for each permutation using the full code-
books,

o Perform Pearson’s x2 test of independence between the two correlation distri-
butions and record the p-value,

e Repeat the above process the desired number of times.

We note that when performing Pearson’s x2 test of independence, the null hypothesis
is that the two observed distributions are independent, and thus a p-value larger
than e.g. 0.05 would indicate independence at the 95% significance level.

We performed the above experiment for varying sizes of the permutations, and the
results are shown in Table 2. Here, we observe that for a 16-bit permutation, one out
of 20000 pairs of permutations had a significant p-value of 0.021. However, already
for the slightly larger 20-bit permutation, the lowest p-value was 0.975; in other
words, even in the worst case, there was only 2.5% chance that the two correlation
distributions were dependent. For a 24-bit permutation, this results are even clearer,
with the lowest p-value being extremely close to 1.

Additionally, we repeated the experiments for the 20-bit permutations, but this
time using approximations that only differed in a single bit. Even for these very
similar approximations, we observed the exact same results as for randomly chosen
pairs of approximations. In light of these experimental results, it thus seems quite
reasonable that correlations of 64- or 128-bit permutations would be independent for
all practical intents and purposes.
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Estimation of Linear Approximations and Differentials
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! University of Copenhagen, Denmark,
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Abstract. When designing a new symmetric-key primitive, the de-
signer must show resistance to known attacks. Perhaps most prominent
amongst these are linear and differential cryptanalysis. However, it is
notoriously difficult to accurately demonstrate e.g. a block cipher’s
resistance to these attacks, and thus most designers resort to deriving
bounds on the linear correlations and differential probabilities of their
design. On the other side of the spectrum, the cryptanalyst is interested
in accurately assessing the strength of a linear or differential attack.

While several tools have been developed to search for optimal linear
and differential trails, e.g. MILP and SAT based methods, only few
approaches specifically try to find as many trails of a single approxima-
tion or differential as possible. This can result in an overestimate of a
cipher’s resistance to linear and differential attacks, as was for example
the case for PRESENT.

In this work, we present a new algorithm for linear and differential trail
search. The algorithm represents the problem of estimating approxi-
mations and differentials as the problem of finding many long paths
through a multistage graph. We demonstrate that this approach allows
us to find a very large number of good trails for each approximation
or differential. Moreover, we show how the algorithm can be used
to efficiently estimate the key dependent correlation distribution of a
linear approximation, facilitating advanced linear attacks. We apply
the algorithm to 17 different ciphers, and present new and improved
results on several of these.

1 Introduction

Whenever a new design for a symmetric-key primitive is proposed, it is usually
accompanied by a design rationale. This rationale explains how the specific choice
of components ensure resistance to a set of common attack techniques. However,
thoroughly checking maybe a dozen different attacks is laborious work for the designer,
and it is therefore common to somehow make an estimate of how well a design resists
a specific attack.
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Two attack techniques that are almost always featured in the security analysis of
a new design, due to their long history and many strong results, are linear [35] and
differential [10] cryptanalysis. However, it is notoriously difficult to make an accurate
and complete analysis of a cipher’s security against these attacks, and for this reason
methods of estimating the strength of these attacks feature prominently in the initial
analysis of a new design. For block ciphers, this will often consist of lower-bounding
the number of active S-boxes in a linear or differential trail, thus showing how many
rounds the cipher needs to resist these attacks.

Nevertheless, several examples exist of this approach not giving the full picture, in
particular due to the existence of linear approximations or differentials that contain
a very large number of good trails. This effect was already recognised for differential
cryptanalysis in [34] and subsequently extended to linear cryptanalysis in [39] where
it was dubbed the linear hull effect. As an example of this phenomenon, it was
demonstrated in [40] that for the block cipher PRESENT the difference between a
single linear trail and the full linear approximation is quite significant. Thus, it
would be extremely helpful for a designer if a simple tool existed that could more
accurately find linear approximations and differentials for a given design. This would
not only save the designer time, but potentially also allow for exploration of a larger
design space as well as enabling a more informed choice of the number of rounds
needed to obtain adequate security.

1.1 Previous Work

Several approaches for finding linear and differential trails have been suggested in
the literature. Perhaps the most well known technique is Matsui’s original branch-
and-bound algorithm [36], which can essentially be viewed as a depth-first search
with pruning. While this algorithm does guarantee to return the optimal trail for any
starting value, one still needs to have some idea what a good starting value might be.
Moreover, while the algorithm can be adapted to return multiple trails, this is not
very efficient if the number of trails is extremely large.

Several other approaches for finding linear and differential trails have been proposed.
Amongst these are MILP based algorithms [28, 38, 43, 46] and SAT based algorithms
[4, 33, 37], as well as more dedicated approaches [26, 27, 42]. Both the MILP and
SAT based approaches can be extended in order to find multiple trails by removing
already known trails from the solution space, but this approach also has the problem
of scaling linearly with the number of trails. Additionally, in order to use these
algorithms, every design one wishes to analyse has to be formulated as a MILP/SAT
model.

A few approaches for finding large numbers of linear or differential trails have
been suggested. Matsui’s algorithm was generalised in [21, 22] to search for multiple
differential trails of generalised Feistel networks. A more versatile approach was
presented in [1], where the idea of using partial, sparse correlation/differential
transitions matrices to find multiple trails was proposed. While this approach
does scale well with the number of trails found, it potentially has high memory
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requirements. This problem was acknowledged in [2] where the matrix method
was combined with the MILP method to improve results for ARX designs. Still,
these works do not offer a general, design agnostic strategy for choosing the partial
matrices.

While the mentioned works focus on estimating expected differential probabilities
or expected squared correlations, we note that for linear cryptanalysis especially,
there has recently been an increased focus on the key dependent distribution of
correlations. Namely, several works developing models for the key dependent be-
haviour of correlations have been published [12, 13, 15, 31] as well as some advanced
attack techniques exploiting these correlations distributions [16, 17]. Thus, it is of
additional interest to develop algorithms that also allow for efficient estimation of
these distributions.

1.2 Contributions

In this work, we propose a new algorithm for linear and differential trail search. The
overall concept of the algorithm is to represent all linear/differential trails as paths in a
multistage graph, and then find a manageable subgraph which hopefully contains good
trails. By performing a breadth first traversal of this subgraph, we can very efficiently
counsider a larger number of trails when estimating the squared correlation/differential
probability, and even do so for many linear approximations/differentials simultane-
ously. Moreover, for linear cryptanalysis, the algorithm allows us to very efficiently
approximate the correlation distributions over the key space.

While the overall concept of this approach is related to the idea of partial correlation
and difference transition matrices, the graph representation allows a designer or
cryptanalyst to gain additional insight, e.g. one can extract the actual trails from
the graph or visualise the trail structure in order to gain deeper understanding of a
cipher’s linear and differential behaviour (see e.g. Figure 5). Moreover, we can more
easily obtain the key-dependent linear correlations without having the recompute
everything for each new key. In more detail, we achieve the following;:

e Efficient graph generation We present a heuristic approach for selecting a
subgraph of the linear/differential trail graph, i.e. we identify good approxi-
mations/differentials over a single round. For SPN ciphers, we give a highly
efficient algorithm for generating these. Moreover, we show how to remove
redundant information from the graph in order to reduce memory costs. As
opposed to the strategy for choosing partial correlation/difference matrices in
[1], our heuristic is design agnostic.

e Algorithm optimisations We present a number of optimisations to the basic
algorithm which both reduces the time it takes to generate the trail graph
and the amount of memory consumed while generating the graph. The latter
is done by removing single round approximations/differentials which are not
part of any trail before it is ever added to the graph. While the most effective
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improvements only apply to SPN ciphers, they allow us to increase the effective
size of our search space; as an example, for Midori64 [6] we were able to include
as many as 2%6-® single round approximations in our search space.

e Improved estimates of ELP and EDP Compared to algorithms that find
one trail at a time (e.g. MILP and SAT based methods), our graph represen-
tation allows us to consider a much larger number of trails when estimating
the expected squared correlation or the expected differential probability. As an
example, we are able to consider 21124 linear trails for a single approximation
of PUFFIN [23]. This ensures a more accurate estimate of these statistics.

o Extensive application We use the new algorithm to find linear approxima-
tions and differentials for 17 different SPN ciphers. The selection of ciphers
have block sizes ranging from 48 to 128 bits, use 4- and 8-bit S-boxes, and
apply a variety of different design approaches for choosing the linear layer, e.g.
from very lightweight bit permutations to heavy MDS matrices. We present
new results on several ciphers, and improve existing results for five ciphers.

e Correlation distributions We demonstrate that for SPN ciphers, the graph
representation can also be used to efficiently obtain estimates for the key
dependent correlation distribution of a linear approximation. In particular, it
takes at most a couple of minutes to generate key dependent correlation values
for 10000 randomly chosen keys. We use this fact to investigate the correlation
distributions of several ciphers, and show for example that GIFT-64 [7] exhibits
multiple approximations with asymmetries similar to those observed for DES
in [17]. In general, this feature of our algorithm facilitates easier application of
more advanced linear attacks.

e Software implementation Finally, we make our implementation of the al-
gorithm freely available at https://gitlab.com/psve/cryptagraph. This
implementation is written in Rust, and is highly optimised and parallelised.
At the time of writing, it supports analysis of SPN ciphers whose substitution
layer consists of applying S-boxes to the state, as well as Feistel ciphers with
SPN-like F-functions. Additionally, adding new ciphers to the implementation
only requires the usual implementation of the S-box and the linear layer, as
opposed to MILP and SAT based tools that require modelling of the cipher
in the relevant framework. We hope that the availability of this tool, as well
as its ease of use, will facilitate more informed design processes and improved
cryptanalysis.

The rest of this work is structured as follows: In Section 2 we introduce the basic
definitions for linear and differential cryptanalysis. Section 3 introduces the idea of
the graph framework, while Section 4 outlines the basic algorithm for trail search.
Section 5 contains several improvements to the basic algorithm. In Section 6 and
Section 7 we present the results we obtain by using the algorithm on various ciphers.
Finally, Section 8 discusses some prospects for future work.
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2 Preliminaries

2 Preliminaries

Throughout the paper we consider block ciphers, i.e. functions of the type
E(k,m) :F5 x Fy — Fy,

where £ is a permutation on the plaintext space 'y for each key k € F5. In particular,
we consider iterative block ciphers where £ is defined as a composition of several
(potentially different) round-functions, i.e.

E=fro...0f1.

We define a distinguisher as an algorithm which attempts to distinguish between
the function £ and a permutation picked uniformly at random from the space of all
permutations on F5. In particular, the cryptanalyst is interested in a distinguisher
which succeeds with high probability and uses time less than 2".

In the following, we briefly describe the main ideas of linear and differential
distinguishers as well as the problem of finding good properties of these types. While
we only describe the techniques from a distinguisher viewpoint, distinguishers of
both types can be turned into key-recovery attacks in most cases.

2.1 Linear Cryptanalysis

We define a linear approzimation of a block cipher as the pair of masks («, §) € Fy xF5.
Let (-, -) denote the canonical inner product on Fj. We say that the approximation
(a, B) has a linear correlation defined by
Cg =2 Pr ((a,m)=(B,E(k ~ 1.
b =2 Pr (avm) = (8.E(km)))

Note that the correlation is key dependent, and thus has some distribution over F%5.
For a randomly chosen permutation, the correlation is drawn from the distribution
N(0,27™) [24]. Thus, if there exists a linear approximation (c, 3) of a block cipher
such that C’(ka p) is distributed significantly differently from N(0,27™), we can use
this approximation to build a distinguisher.

2.2 Differential Cryptanalysis

We define a differential of a block cipher as the pair of differences (A, V) € Fy x F5.
Let @ denote the componentwise addition of vectors in Fy. Then we say that the
differential (A, V) has a differential probability defined by

Paw) = P1 (E(km) & E(lme A) = V).

For a randomly chosen permutation, we expect the differential probability to be close
to 27™. Thus, if there exists a differential (A, V) of a block cipher such that p’(“A v)

is significantly bigger than 27" for almost all keys, we can us this differential to build
a distinguisher.
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2.3 Finding Approximations and Differentials

Determining either Cka g) or p’(’cA ) is not feasible for the values of n and x used in
practice. Therefore, éof iterative block ciphers, the problem is usually reduced to
that of finding linear and differential trails. A linear trail of an approximation («, )
is defined as a sequence of masks U = (ug, ..., u,), with (ug, u,) = («, 8). Then, we
define the correlation contribution of this trail as

-
C6 =1 Clusuiin (0
i=0
where C(y, v, ,)(%) is the correlation of the approximation (u;, u;41) for the 7’th round
function f;. Since the f; usually have a simple form, it is easier to determine the
correlation of these functions. The set of all trails of an approximation is called the
linear hull of the approximation. It can be shown that the correlation of («, 8) is the
sum of the correlation contributions of all trails in the linear hull [25], i.e.

Clap= 2. Cb
(o ur)=(x,8)
The situation is analogous for differentials. Although the number of trails is extremely
large, it often suffices to find a set of trails with high correlation or probability contri-
bution, such that computing the partial sum over these trails is a good approximation
of the actual correlation or probability. Thus, finding a good set of trails is essential
to both linear and differential cryptanalysis, and it is this problem that we will
consider in the following.

A note on ELP and EDP As explained above, the linear correlation and differential
probability of a cipher depends on the specific key used. However, for the initial
analysis of these attacks, it is often more convenient to consider the expected linear
potential and the expected differential probability.

In the case of differentials, EDP is defined as E(p’(“A,v)) and it is often assumed

that pé“A’v) R E(pI(CA7V)) for most keys. For approximations, ELP is defined as

E((C(kaﬁ))Q), and it can be shown that E((C(kaﬁ))Q) ~ Y (CE)?, and that for key-

alternating ciphers (or Feistel ciphers with SPN-like structures) (CF)? is independent
of the key [25].

Thus, considering ELP and EDP eliminates the key and therefore greatly simplifies
the search, and usually gives a good indicator for the strength of an approximation or
differential. We will therefore initially take this approach, and then show in Section 7
how to find the key-dependent linear correlation distributions.

3 Trail Search Viewed as a Graph Problem

Although finding trails of a specific approximation or differential is already a difficult
problem, for a newly designed block cipher it might not even be clear what approxi-
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mations or differentials we should be considering. In the following, we will view the
problem of finding good approximations and differentials more abstractly as a graph
problem. This perspective will help us develop a trail search algorithm which does
not require any initial understanding of the linear or differential behaviour of the
cipher being analysed. We will describe the graph problem and the algorithm in
terms of linear cryptanalysis, but all observations are directly applicable to the case
of differential cryptanalysis.

We first introduce some graph notation. A directed graph G is a set of vertices
V and a set of directed edges E. We associate a value to each vertex. Throughout
the paper, we will not differentiate between a vertex and its value, and use the two
concepts interchangeably. We denote a directed edge from a vertex u € V' to a vertex
v €V by u — v. For a weighted graph, each edge u — v has a length, denoted by
[(u — v). We furthermore denote a path from a vertex u to a vertex v by u ~» v. If
v =w1,...,Uu = v are the vertices traversed by this path, then we define the length
of the path as:

k—1
l(u~v)= H 1(v; = vig1)-
i=1

Furthermore, we call the set of all paths u ~» v the hull of (u,v). We denote the hull
by u<>wv and associate to it a weight defined as:

w(u<v) = Zl(u ~ ),

i.e. the sum of the length of all the paths contained in the hull. We will exclusively
consider a special type of directed graph, called a multistage graph.

Definition 1 (Multistage Graph). Let G be a directed graph with vertices V' and
edges E. If the vertices in V are partitioned into £ subsets Sy, ..., Sp_1, called stages,
such that any edge in F has the form v — v with v € S; and v € S;11, for some
1 € [0,£ — 1, we call the graph a multistage graph.

By definition, a multistage graph is a directed acyclic graph (DAG). We now define
a weighted multistage graph G¢ which represents the linear hulls of all approximations
of an iterative block cipher £. Assume that £ has r rounds. Then G¢ has r + 1
stages each with 2" vertices representing the elements of F5. G¢ contains all edges
u— v for u € S; and v € S;41, i € [0,7[. The length of an edge is defined as

lu—v) = (Crup(i)? ifues,.

Note that if & € Sy and 8 € S,, then a path (a ~ () is equivalent to a linear trail
U = (a,...,) and its length is exactly (CF)2. Moreover, a < 3 corresponds exactly
to the linear hull of the approximation (a, #) and its weight is equal to the ELP
of (e, 8). Thus, the graph Gg represents the linear hulls of all approximations of
£. Finding good approximations therefore corresponds to finding pairs of vertices
(o, B) € Sp x S, such that w(a < B) is as large as possible. In the following section,
we describe an algorithm that aims to solve this problem.
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4 A New Algorithm for Trail Search

The graph G¢ defined above is exceedingly huge; it has (r + 1) - 2™ vertices and
r- 22" edges. Thus, it is completely infeasible to run even a linear time algorithm
on the graph®. We therefore have to somehow reduce the size of the graph, i.e. we
have to reduce the size of the search space. Straight away, we can remove any edges
u — v with I(u — v) = 0 as any path which includes this edge will have length zero
and therefore not contribute to the hull. Nevertheless, for most ciphers the set of
non-zero edges in G¢ is still intractable. Thus, we propose the following approach:

1. Determine an interesting subgraph Gg of Ge.
2. Calculate w(a < B) for all (a, 8) € Sy x S, in Geg.

For this approach to give a good result, would like many of the longest paths of
a < (3 to appear in Gg. How to ensure this is clearly highly dependent on the cipher
£ in question. Moreover, at first glance it seems that if we can specify Ge¢, then
we already know a good collection of trails. However, we note that finding good
approximations in some sense corresponds to finding a minimal subgraph. In contrast,
in the process of finding the subgraph Gg¢ we can start with a larger subgraph that
might contain a lot of unnecessary vertices and edges. While this graph might be too
large for us to perform Step 2 above, we can then remove any superfluous information
and hopefully arrive at a suitable subgraph Ge.

In Section 4.1, we propose a simple, generic approach to Step 1. Section 4.2 then
details how to efficiently perform Step 2 on the resulting subgraph. In Section 5 we
propose various improvements to the naive algorithm.

4.1 Choosing a Subgraph
We propose the following general, design agnostic heuristic for generating Ge.
e Selection: Select the k longest edges going out from each stage in Ge.
e Pruning: Remove any irrelevant edges and vertices from the resulting graph.

It is clear that this way of selecting edges does not guarantee that we find optimal
paths. Indeed, it could be the case that the longest paths contain a single very short
edge. However, as long as we are able to use fairly large values of k, we should
be able to cover a good fraction of the search space. Additionally, if we do find
paths using this strategy, we can at least be confident that they are quite close to
optimal. A similar heuristic was used in [1, 2] for constructing partial correlation
matrices — here, single round approximations with low hamming weight were selected.
How well this heuristic works is however heavily dependent on the cipher’s structure.
Indeed, choosing the longest edges seem like an approach that will work well in a
more general setting.

3Note that the longest path problem can be solved in linear time for DAGs.
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We now show how the selection step can be performed efficiently for ciphers with
SPN-like round-functions and then detail how the pruning step works.

Edge Selection for SPN Ciphers

For the sake of simplicity, we will initially consider substitution-permutations networks
(SPN ciphers) with identical round-functions (aside from the key addition), i.e.
Vi, fi = f @ k;, although the approach also applies to the more general case of
SPN ciphers with different round-functions. Our goal is then to find a set A of
the k approximations (each representing an edge) with largest squared correlation.
Following Section 2.3, we can ignore the key addition in the following, and hence the
SPN round-function takes on the form:

f=LoS,

where L is a linear transformation of the state and S is the parallel application of ¢
independent S-boxes to the state. Let S; be the i’th S-box, i.e.

S =8l [Se-1-

Then, in the usual way, the correlation of an approximation («, 8) of f is entirely
determined by the approximation (c, £71()) of S. This is in turn entirely determined
by the component approximations of the individual S-boxes so that

t—1
(Clapy (1) = T[(Clasc-1(8)) (8))*.
i=0
We can now reduce the problem of finding the k& best approximations over f to
the problem of finding certain classes of approximations over S. To this end, we
introduce the notion of an S-box pattern.

Definition 2 (S-box pattern). Let S = Sp| - - - ||St—1 be the parallel application of ¢
independent S-boxes to a cipher state. Then a pattern of S is a tuple p € Rt. The
pattern represents a set of approximations of S such that the squared correlation of
S; is equal to p;. We associate a value to a pattern p, namely C(p) =[] p;, i.e. the
squared correlation of any approximation represented by p.

We say that a pattern ezpands into a number of approximations, and denote this
set of approximations by Ex(p). As an example, consider an S function consisting of
five copies of a 4-bit S-box which has two approximations with squared correlation
272 namely (0x3,0xd) and (0x7,0x4). Then the pattern

p=(1,2721,1,272)

4

would have value C(p) = 27* and expands into the set of four approximations

Ex(p) = {

0x03003, 0x0d00d), (0x03007, 0x0d004),
0x07003, 0x0400d), (0x07007, 0x04004)}.

(
(
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We note that this expansion can be done in amortized linear time in the size of Ex(p),
independent of t. Moreover, if we just desire to know the input or output masks of
the approximations in Ex(p), these can also be generated in amortized linear time in
the number of inputs/outputs.

Now, if we can determine the set P of patterns with the k' largest values, then
clearly Ex(P) = A contains approximations over f with the |A4| largest correlations.
This problem can be efficiently solved using the approach of finding critical paths
presented in [45]. We briefly outline the idea of the algorithm here:

1. Compute lists L; of unique values in the LAT of each S; and sort them in
descending order.

2. Maintain a max-heap of partially determined patterns sorted by their current
value. Add a fully undetermined pattern p = (?,?,...,7?) to the heap.

3. Create an empty set P. Repeat the following until P has the desired size:
a) Pop the top pattern p off the heap. If it was fully determined, add it to P.

b) Find the last determined position of p, say p;, and generate two new
patterns:

i. Replace p; with the next value in the list L; and insert the pattern in
the heap.

ii. Replace the undetermined value p; ;1 with the first value on the list
L;y, and insert the pattern in the heap.

Note that this pattern representation, aside from making it easy to find approx-
imations sorted by their correlation, is a very useful time-memory trade-off: each
pattern can represent a large number of approximations, allowing us to select a
large number of candidate edges for the graph Gg without storing them explicitly.
However, we need to spend time expanding each pattern whenever we explicitly need
the approximations.

About Feistel constructions and other designs The process described here for
selecting edges is very efficient for SPN designs. However, it is less clear how to
perform the edge selection for other types of designs. For Feistel designs with SPN-like
F-functions, we can use the same approach with a slight modification: We let an
S-box pattern describe approximations over the F-functions of two consecutive rounds
and then derive approximations over two rounds from this pattern. The resulting
two-round approximation is shown in Figure 1. This concept can be extended to
generalised Feistel constructions.

Concerning radically different design approaches, i.e. ARX and AND-RX designs,
we note that [11] and [33] present formulas for the differential probabilities of SPECK
and SIMON-like round-functions, respectively. The latter work also gives a method
for determining linear correlations of SIMON-like round-functions. These results
could potentially be used to perform efficient edge selection for these types of designs.
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Figure 1: An illustration of how linear approximations/differentials over the F-
functions of two consecutive Feistel rounds determine a linear approxi-
mation/differential over those rounds.

i

Figure 2: Left: A graph representing parts of linear/differential trails over three
rounds of a cipher. Right: The graph after all edges and vertices which are
not part of a full trail have been removed.

Graph Pruning

By using the pattern representation introduced above, we can store a large set of
interesting edges in a space efficient way. However, not all edges in A might be
relevant when added to the graph Gg¢. Consider Figure 2. On the left we show
a graph which was generated from a set of patterns, i.e. each edge represents an
approximation over the round-function f. The vertices marked in red cannot be a
part of a path from a vertex in the first stage to a vertex in the last stage. Hence,
we can remove these vertices and all their edges, leaving us with the second, smaller
graph, which only contains the information we are interested in. In other words:

e Remove any vertex in Sy with no outgoing edges.

e Remove any vertex in S; to S,_1, if it does not have at least one incoming and
one outgoing edge, remove it.

e Remove any vertex in S, with no incoming edges.

We potentially have to repeat this process until no more vertices can be removed.
There is one major problem with naively generating the graph G¢ in this way, namely
that we have to store the initial graph before pruning (which takes roughly r - | A]
space), which can be many times larger than the pruned graph. This essentially limits
the number of single round approximations we can consider, i.e. it limits the size of
the search space we can cover. In Section 5 we present a number of improvements
that alleviate this problem.
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4.2 Finding Linear Hulls and Differentials

Once the graph G¢ has been generated, we can quite easily calculate w(a<> f) for
all pairs (a, ) € Sy x S, by essentially performing a breadth first traversal of the
graph for each « while doing some bookkeeping. The idea is the following:

1. Let H be an empty hash table. Choose an « € Sy and let H(a) = 1.

2. For each stage Sy to S,_; of G¢, do the following:
a) Create an empty hash table H'.

b) For each key of H, let u be the corresponding vertex in Gg. Let ¢ = H(u).
Then, for each edge u — v, if H'(v) does not exists, let H'(v) = ¢-l(u — v).
Otherwise, let H'(v) = H'(v) + ¢ l(u — v).

c) Let H="H'.
3. H(B) now contains w(a <> 3).
4. Repeat for a new value of «.

Note that the number of paths in any o <> can also be calculated with a bit of
extra bookkeeping in step 2.b. The time complexity of this algorithm is O(|S| - |Ge|)
and the memory complexity is O(|So|-|Sr|). The memory complexity can be reduced
to a constant by only storing the hulls with highest weight calculated so far in
Step 3. The time complexity can be reduced to O(|Gg|) by considering all a € Sy
simultaneously. However, this will increase the memory complexity, and in practice
we find that this slows down the search due to a poorer cache locality. Moreover, the
procedure outlined above is trivially parallelisable over different o values.

It is interesting to note that when the paths contained in a <> are not completely
edge disjoint, the number of paths can be many orders of magnitude larger than the
size of G¢. Thus, this way of computing w(a <> ) can be much more efficient than
explicitly finding each possible path of < 8 and adding their lengths. This graph
representation of linear hulls therefore allows us to compactly express a large number
of trails for a linear approximation, and potentially enables us to capture a much
larger part of the linear hull than if we had used a more direct trail search.

5 Improvements

The graph generation algorithm presented in Section 4.1 has two main limitations:
First, the time we spend generating the graph is proportional to the number of
single round approximations we consider, and second, we initially have to store
a much larger graph than we ultimately need. In the following, we present some
improvements to the algorithm which prevent this, as well as some additional useful
techniques.
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5.1 Vertex Generation

We first note that we can perform the pruning step of Section 4.1 without initially
storing all r - | A| edges. Let us denote by Ex;,(P) and Exout(P) the expansion of
P into only input masks and output masks, respectively. As noted in Section 4.1,
for SPN ciphers we can generate Ex;, (P) or Exoyt(P) in linear time in the number
of inputs or outputs. Moreover, observe that if a vertex in any of the stages S; to
Sr—1 does not correspond to a mask contained in Ex;,(P) N Exout(P), then it will
be removed during the pruning process. Thus, we can initially set

EXin(P) 1= 0,
Si = EXin(P) N EXOut(P) 1 < 1 <r-— 17
EXout (P) 1=

Then, when adding edges, we generate A and only add an edge if the corresponding
vertices already exists in the graph. Since usually Ex;,(P) N Exout(P) < Exin (P) U
Exout(P), the memory usage is greatly reduced. In practice, the time taken to
generate the graph is also reduced, even though we still have to generate the entire
set A, as inserting edges and vertices is much more expensive than checking set
membership. Finally, we note that we still have to prune the resulting graph to
obtain the desired Ge.

5.2 Graph Compression and Pattern Elimination

While vertex generation somewhat improves memory and running time, it still might
be the case that some patterns in P ultimately did not contribute to Ge¢, i.e. all
edges expressed by the pattern are removed during pruning. We will call such a
pattern a dead pattern. Clearly, it would be preferable if we ignored dead patterns
completely. We now present a technique for finding dead patterns quickly while using
little memory.

We first introduce the notion of a compression function g;(z) : F§ — Fg/ 7. Let
y = g;j(x). Then for 0 < i < j, y; = 1iff (z;4,...,2;.(41)-1) is non-zero. For
example,

94(0x£120000500705200) = 0b1110000100101100 = Oxel2c,

i.e. the value 0xf1a0000500705200 € F$* is compressed to the value 0Oxe12c € Fi6.
Note that this is similar to the concept of truncated differentials/approximations.
With some abuse of notation, for a graph G will say that g;(G) is the graph obtained
by applying g; to all vertices, identifying vertices in the same stage that have the
same compressed value, and then removing multiple edges. An example of this
process is shown in Figure 3.

We can use compression to find dead patterns in a space efficient way. Instead
of generating Gg, we first generate an approximation to g;(Ge), say §;(Ge), by
applying g; to all values when generating the graph. Note that this does not yield
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Figure 3: An example of graph compression using the compression function g4. The
values of the vertices are shown in hexadecimal notation. Vertices in the
same stage with non-zero nibbles in the same position are identified, and
any multiple edges are removed.

gj (Gg); any path between two vertices in G¢ is preserved in gj(ég), but there might
be some additional false paths. As a result, when applying pruning to the compressed
graph, some vertices might not be removed, although they would have been removed
in the actual graph.

Note now that if a pattern is dead when considering §;(Ge), it is also dead when
considering G (although the converse does not hold). Thus, we can use §;(Gg) to
remove some dead patterns. We propose the following approach to removing dead
patterns while conserving memory:

1. Generate a set of patterns P.

2. Pick a j > 1 such that j is a power of two, and do the following:
a) Generate the graph §;(Ge) as described above.

b) Remove any patterns from P which are dead according to §;(Gg).
c¢) If j = 2 then stop. Otherwise set j = j/2 and repeat.

The main insight here is that initially Ex(P) can be many times larger than what
we can store in memory. By gradually using a finer compression, we decrease the
size of Ex(P), while still keeping the intermediate graphs manageable and without
losing any information from the original search space. In practice, for ciphers with a
block size of 64 bits and 4-bit S-boxes, we find that starting with j = 4 works well.
How many dead patterns occur varies between different designs, but we find that in
general, if there are few dead patterns, we also rarely need to use a large set A to
get good results.

Speedup for SPN Ciphers While the above processes has the potential to greatly
reduce memory usage, we still need to calculate the initial set A at least once,
and potentially multiple times if few patterns are eliminated. For SPN ciphers we
can improve this by observing that if j is a multiple of the width of the S-box,
we can calculate the compression of an approximation («, 8) simply by calculating
L7Y(B). This is true, since if the output mask of any S-box is non-zero, then so is the
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Pruned middle rounds

@
./
So St So Ss Sy Ss Se Sy

Figure 4: An illustration of vertex anchoring. The black and red graph represents
trails built from the set of single round approximations .A. The red sub-
graph would be removed if the red/black graph was pruned. The blue
anchor vertices are added to prevent the red subgraph from being removed,
increasing the number of trails found.

corresponding input mask of that S-box, which is all we need to know to calculate
the compressed value of a. In this case we can therefore generate §;(Gg) in time
O(|Exin (P)| + |Exout (P)]) (recall that vertex generation has this time complexity for
SPN ciphers). This greatly improves the running time of the algorithm for this type
of ciphers.

5.3 Vertex Anchoring

One big limitation with the algorithm presented here is that the search space is
limited by how big a set A the available computing power allows us to consider.
While the improvements presented so far increase the possible size of A, we wont be
able to find paths that locally have very short edges. Note that such a path might
still be comparatively long, if all other edges of the path are long.

Without having cipher specific insight, it seems difficult to know when it is
beneficial to add a locally bad edge, and especially which edge to add. This problem
is exacerbated by the fact that short edges represent approximations which usually
activate many S-boxes, and so the number of short edges is usually much larger than
the number of long edges.

We propose a partial solution to this problem by introducing a technique called
vertex anchoring. Consider the example given in Figure 4. Here, the red and black
subgraph is the graph we might obtain from a set of approximations A, before pruning.
Note that all the red vertices would be removed from this graph during pruning, as
they are not part of a path from a vertex in Sy to a vertex in S7. Nevertheless, the
red paths might be quite long paths and it is therefore potentially wasteful to discard
such nearly complete paths. Instead, note that we can freely add a vertex to Sy, as
long there exists an edge between this vertex and any vertex of S;. Such an edge
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would be outside the set A, and including it will effectively increase our search space.
These edges are shown in blue in Figure 4, and they ensure that the red subgraph is
not removed during any subsequent pruning. As the result of these observations, we
propose the following approach:

1. Generate the graph G¢ for 7 — 2 rounds. Denote the stages Si,...,S,_1.

2. Add a stage Sy at the start (respectively S, at the end) of G consisting of all
vertices and edges in A which are incident to a vertex in Sy (Sy—1).

3. For any vertex in S7 (respectively S,._;) which does not have an incoming
(outgoing) edge, find the longest possible edge going into (out of) this vertex,
and add this edge and its start (end) vertex to Sp (S;).

For SPN ciphers, Step 3 can be done efficiently simply by finding the output
(input) mask to the S-box layer represented by each vertex, and then choosing the
best possible input (output) masks for each S-box. In practice, we limit the number
of anchor vertices added so as to not increase the search time too much. We find
that this method dramatically improves the results for some ciphers.

5.4 Parallelisation

As a practical improvement to the algorithm, we note that most aspects can be
parallelised. In particular, whenever we need to calculate Ex(P), P can be split into
parts and distributed across different threads. Often a main thread will have to collect
the results form each of the worker threads, e.g. when calculating Ex;, (P) N Exqut(P)
during vertex generation, but this work is quite minimal. Moreover, as mentioned in
Section 4.2, the search for hulls can easily be parallelised by distributing different «
values across threads. Thus, while the scaling is not perfect, the algorithm benefits
quite heavily from increasing the number of threads, especially when A is large,
which is often the case since we want to cover as large a search space as possible.

6 Searching for Linear Approximations and
Differentials

We applied the algorithm described here to 17 different SPN ciphers. The types of
designs vary from ciphers with very lightweight permutation layers, such as PRESENT,
to ciphers with very heavy permutation layers, such as KLEIN. While we did also
apply the algorithm to some Feistel designs (i.e. TWINE and MIBS), the main
improvements over the basic algorithm presented in Section 5 apply to strict SPN
designs, and we were unable to obtain any interesting results for these ciphers due to
the increased running time. Moreover, the current implementation of the algorithm
only supports ciphers with identical S-boxes, although adding this functionality would
not slow down the implementation noticeably.
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Table 1: Results for linear cryptanalysis obtained using the algorithm presented in
this work. A is the set of single round approximations, a is the number of
anchor vertices, a <> /3 is the set of trails found for the best approximation,
ELP is the expected squared correlation, and T,; and T is the time in hours
to generate and search through the graph, respectively. Entries annotated
by 1 indicate an improvement over a previously published result.

Cipher
(Total rounds, Rounds |.A| a |a < B ELP T, T
block size)
AES [41] 3 2299 9240 2! 275336 0.0 0.0
(10, 128) 4 2388 924.0 24 2714788 95 20.0
EPCBC-48 [44] 15 [19] 2261 - 2313 -1 0.0 0.4
(32, 48) 16 1 [19] 2261 — 2340 =677 00 0.4
EPCBC-96 [44] 31 2276 2036 9=9AT 00 0.4
(32, 96) 32 2276 2036 9=9759 00 04
FLy [32] 8 2325 26-5 27948 01 6.0
(20, 64) 9 2325 26-1 27630002 88
GIFT-64 [7] 11 2318 251 27550001 8.0
(28, 64) 12 2327 236 276400 02 415
KHAZAD [8] 2 218.3 225.0 20 2—37.97 0.0 0.0
(8, 64) 3 2301 925.0 20 276801 02 02
KLEIN [29] 5 2308 2170 20 2-%60 00 0.0
(12, 64) 6 2396 9169 20 27960 03 0.0
LED [30] 4 2247 9% 22 27186800 0.9
(32, 64)
MANTIS, [()] 2.4 234.3 224.0 215.0 2749.05 0.1 0.0
(2-8, 64)
Midori64 [0] 6 244.3 IR 219.0 2—53.02 25.9 0.8
(16, 64) 7 2165 2219 9=6288 531 55
23 1 [40] 2301 - 2550 9=6L00 91 6.8
e 241 [40] 2311 - 9579 96361 1 G
’ 25 1 [40] 23t1 - 2607 9-6621 1 6.9
PRIDE [3] 15 2271 20 27580000 0.0
(20, 64) 16 2374 23 276399 18 0.0
PRINCE [18] 2.3 218,1 _ 22.0 2754.00 0.0 0.0
(2-6, 64) 2.4 2383 208 276382 91 04
PUFFIN [23] 32 226.8 IR 2112.4 2—51.90 0.0 0.0
(32, 64)
QARMA [5] 2.3 28 2240 280 97STL 0.0 0.0
(2-8, 64)
N 12 1[4 2300 — 2150 975227 01  21.1
Rl IR ER N B S S S SR X
’ 14 1 [47] 2311 - 2183 276298 071 311
SKINNY-64 [9] 8 244 9237 93t4 =804 (07 50.7
(32, 64) 9 2414 9239 9313 9=6983 4 89
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Table 2: Results for differential cryptanalysis obtained using the algorithm presented
in this work. D is the set of single round differentials, a is the number of
anchor vertices, A<V is the set of trails found for the best differential, EDP
is the expected differential probability, and T, and 75 is the time in hours
to generate and search through the graph, respectively. Entries annotated
by 1 indicate an improvement over a previously published result.

Cipher

(Total rounds, Rounds |D| a |A <> V| EDP T, T
block size)

AES [41] 3 2187 9240 20 275400 0.0 0.0
(10, 128) 4 236:9 9240 20 2715000 07 0.3
EPCBC-48 [44] 13 2284 - 2212 2-18 01 137
(32, 48) 14 2284 220-4 274765 0.1 14.0
EPCBC-96 [44] 20 2328 216.9 2792711 21.6
(32, 96) 21 2328 219:9 279778 1.1 226
FLy [32] 8 2316 249 279576 0.1 2.6
(20, 64) 9 2332 273 276335 02 178
GIFT-64 [7] 12 f [48] 2224 - 23:3 279657 0.0 0.0
(28, 64) 13 2224 236 276042 0.0 0.0
KHAZAD [8] 2 225.8 224.8 20 2—45.42 0.0 0.0
(8, 64) 3 225-8 9250 20 278166 0.0 0.0
KLEIN [29] 5 2308 9IT.0 91.0 2-359T 00 0.0
(12, 64) 6 2307 9200 910 270900 03 6.4
LED [30] 4 237.7 224.0 21 2749.42 0.5 0.1
(32, 64)
MANTIS [9] 2-4 25T~ 2186 2749809 0.1
(2-8, 64)
Midori64 [0} 6 242.2 223.9 219.6 2—52.37 1.6 1.0
(16, 64) 7 242:2 9239 9228 276122 10 0.9
15 2303 2272 275800 01 16.2
PrRESENT l14] 161 [1] 203 9289 97680 1 g
(81, 64) 17 2303 232.9 276352 01 188
PRIDE [2} 15 235.9 223‘6 25.0 2758.00 0.5 36.5
(20, 64) 16 2359 9236 9l74 270399 05 441
PRINCE [18] 2.3 1[20] 210 209 21 27591 0.0 0.0
(2-6, 64) 2.4 2387 29:0 27673230 1.0
PUFFIN [23] 32 226.0 - 263.7 2—59.63 0.0 0.0
(32, 64)
QARMA [5] 2.3 9248 926.0 973 25617 01 0.0
(2-8, 64)
N 13 1 [47] 2311 - 2153 27956401 322
ey g e o189 pecst g1 413
' 15 1 [47] 23t - 2182 276564 01 50.2
SKINNY-64 [9} 8 239.4 224.0 231.0 2750‘72 0.2 15.0
(32, 64) 9 2417 9238 9312 276964 04 6.4
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Note that we investigate three ciphers that use a PRINCE-like design, namely
PRINCE, MANTIS, and QARMA. For these ciphers, we generate a graph for the first
half of the rounds, as described above, reverse this graph, and then stitch these two
graphs together through the central permutation layer.

6.1 Results for ELP and EDP

We ran the algorithm using an Intel Xeon E5-2650 v4 processor (24 threads at 2.2
GHz) with 256 GB of memory available. The results for linear cryptanalysis are
shown in Table 1 and the results for differential cryptanalysis in Table 2. Note that
the number of rounds stated here is the number of non-linear layers (i.e. S-box layers)
applied.

The number of single round approximations or differentials considered when
generating the graph is the smallest that gave the stated result — for most ciphers, we
investigated larger search spaces without obtaining any improvements. In general, it
is interesting to note that for the majority of ciphers, actually generating the graph is
quite fast, while searching through the graph can take considerably longer. If one has
an idea of what input/output masks/differences are good, the graph can be restricted
to paths between these interesting values, which will greatly reduce the search time.
A general strategy for using the algorithm could therefore be to find some preliminary
interesting approximations/differentials using a small search space, and then increase
the search space while restricting the graph to these approximations/differentials in
order to improve the estimates.

Entries annotated with a { indicate improvements over previous best results.
Entries that are not annotated are either new or do not improve on known results.
For many of the ciphers, the search found multiple approximations/differentials that
were equally good. It is therefore possible that multiple linear/differential attacks
could be mounted on a larger number of rounds than stated here.

We highlight a few interesting results. For RECTANGLE, the designers did take
into account multiple trails in [47], and estimated that over 14 rounds the best
differential has EDP 276283, We improve this to 276964 demonstrating that being
able to include a larger number of trails can improve estimates.

For GIFT-64, [48] used a MILP based tool to find a 12 round differential trail with
probability 270, By taking into account multiple trails, we improve this to 27°6-57
and find a 13 round differential with probability 276942, Thus, we can potentially
extend their attack by one round.

For PRESENT, we improve some results of [1]. In particular, we improve their
result for 16 round differentials from 276258 to 276180 and furthermore find a
17 round differential with probability 27352, For linear cryptanalysis, we match
the results of [1], although interestingly we find fewer trails. This shows that the
algorithm presented here can match or even improve the results obtained by the
partial correlation/difference transition matrix method, all the while being more
versatile.
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Publication 3 Generating Graphs Packed with Paths

Figure 5: Examples of linear hull graphs generated by our algorithm. Top: 23 rounds
of PRESENT using |A| = 2247 single round approximations. Middle: 14
rounds of PRIDE, also with |A| = 2247, Bottom: 5 rounds of KLEIN,
with |A| = 2268 and using 27 anchoring vertices.
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6.2 Visualising Trail Graphs

An interesting side effect of applying our new algorithm is that we can visualise the
linear/differential trails in order to get a better understanding of how the cipher’s
structure influences its resistance to linear and differential cryptanalysis. Figure 5
show the linear hull graphs that we generated for three different ciphers: PRESENT,
PRIDE, and KLEIN. The vertices in each stage are ordered by their value as integers.

While the search spaces selected for the three ciphers are comparable in size, the
resulting graphs have widely different structures. The graph for PRESENT show that
each stage is identical, and that the stages are highly connected. Thus, as observed in
[40], there exists a very large number of trails for many approximations of PRESENT
that have similar structure and therefore similar correlation contribution. PRIDE
also exhibits identical stages, and we can even observe iterative trails, but there are
only very few vertices in each stage, preventing the number of trails from exploding.
The graph for KLEIN (which has a very heavy linear layer), shows a very large
number of edges in the graph, but the structure of the stages vary, resulting in no
clustering of trails. Indeed, Table 1 shows that we only found one trail for the best
approximations over 5 and 6 rounds.

7 Correlation Distributions

Determining the ELP and EDP of the best linear approximations and differentials is
important when assessing the strength of a cipher against these attacks. However,
these summary statistics do not paint to full picture: in reality, the linear correlation
and differential probability vary over the key space, and more detailed knowledge
about the distribution of these values can lead to stronger distinguishers. As an
example, [17] demonstrated how asymmetries in the joint correlation distribution of
multiple linear approximations of DES can be used to improve attacks.

For differentials, not much is known about how the differential probabilities vary
as the key changes. For linear cryptanalysis, there has been an increased interest in
developing more accurate models for the key dependent behaviour, see e.g. [12, 13,
15, 16, 31]. This line of research is in large part facilitated by the following useful
result.

Theorem 3 ([25]). Let (o, B) be a linear approzimation of an SPN cipher and let k
denote the concatenation of the cipher’s round keys for the encryption key k. Then
the linear correlation is given by

Clagy = D (=& UM g,
U

where the sum is over trails U = («,...,[8), sy is the sign bit of U, and |CF| is
independent of k.

The above theorem indicates that for an SPN cipher we can determine the key
dependent correlation by adjusting the sign of each trail’s correlation contribution.
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Consequently, we can estimate the distribution over the key-space by doing this
for a large number of keys. A similar result holds for Feistel ciphers with SPN like
F-functions.

7.1 Finding Key-Dependent Distributions

Our algorithm for estimating ELP can easily be adapted to efficiently calculate key
dependent correlations instead. The main idea is simply to construct the graph Gg,
but using the signed correlation values instead of the squared correlation as edge
weights, and then adjust the sign of the edges for each different key. Note that we can
easily find the signs of each edge after we have generated Gg, as we know the input
and output masks each edge represents. Thus, we can find the signed correlation of
an approximation by using a slightly adapted version of the algorithm presented in
Section 4.2 (we assume that a pre-whitening key k¢ is used):

1. Choose an encryption key k.
2. Let H be an empty hash table. Choose an a € S; and let H(a) = (—1){xko),

3. For each stage Sy to S,_1 of G¢, do the following:
a) Let k; be the current round-key.
b) Create an empty hash table H’.

c¢) For each key of H, let u be the corresponding vertex in Ge. Let ¢ = H(u).
Then, for each edge u — v, if H'(v) does not exists, let H'(v) = ¢ -
(—=1)ka) (4 — v). Otherwise, let H'(v) = H'(v)+c- (—=1)VF) - I(u — v).

d) Let H="H'.
4. H(B) now contains Cé“aﬁ).

5. Repeat for as many encryption keys as desired.

Clearly, this procedure only calculates a partial sum of C(’“a 5 To obtain a better

approximation of the actual value, we use the signal/noise decomposition technique
proposed in [15]. This technique is summarised the in the following lemma.

Lemma 4 ([15]). Let S be a set of strong linear trails for an approzimation (c, 3).
Then Cé“a ) can be approximated by

Czca,ﬁ) = (Z(_1)5U®<U7k>cg> +N(0’2—n)’

ves

where N'(0,2™™) denotes the normal distribution with mean 0 and variance 27".
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Figure 6:

Figure 7:
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Shown in blue, the pairwise joint linear correlation distributions for four
linear approximations of 23 rounds of PRESENT. The correlation distribution
of an ideal cipher is shown in red. The plot shows that the joint correlation

distribution for PRESENT is close to normal.
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Shown in blue, the pairwise joint linear correlation distributions for four
linear approximations over 9 rounds of FLy. The correlation distribution
of an ideal cipher is shown in red. For each pair of approximations we
observe four distinct clusters in the distributions.
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Figure 8:

Figure 9:
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Shown in blue, the pairwise joint linear correlation distributions for four
linear approximations over 12 rounds of GIFT-64. The correlation distri-
bution of an ideal cipher is shown in red. For each pair of approximations
we observe two distinct clusters in the distributions. This indicates a

dependence between the approximations.
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Shown in blue, the pairwise joint linear correlation distributions for four
linear approximations over 14 rounds of RECTANGLE. The correlation
distribution of an ideal cipher is shown in red. For each pair of approxima-
tions we observe a significant deviation from normality, manifested by very
long tails of the distributions.



8 Future Work

7.2 Results

We have applied the above technique to some of the ciphers we investigated in
Section 6. That is, we calculated the partial sum of C’ k ) for 10 000 randomly chosen
encryption keys, and then added the noise dlstrlbutlon N(0,27™) to the resulting
data sets. We note that when doing this for only a few approximations, the process
takes at most a few minutes, depending on the cipher. In light of the results of [17]
we consider the joint distributions of four different ciphers.

Figure 6 shows the pairwise joint distributions of four linear approximations over
23 rounds of PRESENT. As a reference, the correlation distribution of an ideal cipher
is shown, i.e. a bivariate normal distribution with marginals A/(0,27™). In this case,
the correlation distributions appear to be close to normal and entirely independent,
resulting in a joint normal distribution. This matches the observations made in [16].

Figure 7 shows the same picture but for 9 rounds of Fry. However, in this
case, while the marginal correlation distributions appear the be close to normal,
when considering the joint distributions, we can see that there are four clusters of
observations for each pair of approximations. A similar situation occurs over 12
rounds of GIFT-64, as shown in Figure 8, only here we only observe two clusters for
each pair. As in [17], this would indicate that there is a heavy overlap in the trails
of the approximations, resulting in a strong dependence between the signs of the
correlations.

Finally, we consider approximations over 14 rounds of RECTANGLE in Figure 9.
Here, we observe even stranger behaviour, as the marginal distributions do not even
appear to be normal. In fact, the distributions have much longer tails than expected,
which would indicate that there is a large percentage of weak keys for which a linear
attack would work better than expected.

The last three examples show that even if the ELP is close to the value expected
from an ideal block cipher, the actual correlation distributions might exhibit additional
behaviour which can be exploited in an attack. Attacks of this type warrant further
investigation, and hopefully the algorithm presented in this work will make this line
of research easier.

8 Future Work

The algorithm presented in this work has much potential for further extensions and
improvements. First and foremost, it would be very useful to find improvements
similar to those of Section 5 that apply to other types of ciphers, in particular Feistel
designs and designs that are not based on S-boxes. This is closely related to the
strategy for selecting edges, discussed in Section 4.1. As also pointed out there, it
would be interesting to use the results of [11, 33] to develop an edge selection strategy
for ARX and AND-RX designs.

In more general terms, it would also be highly interesting to explore different
heuristics for the edge selection, as selecting the longest edges is not necessarily
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the best strategy. This consideration has two aspects: First, we might obtain
globally better results by including very bad edges locally, and second, for all the
ciphers we investigated, we end up only using a very small subset of the single round
approximations/differentials we initially consider. As such, we waste much time and
memory considering edges we are ultimately not interested in. A better heuristic that
can filter out (some) of these edges early would potentially improve the algorithm.
Finally, we entertain the possibility that the general graph framework could be
extended to other types of cryptanalysis. Indeed, we could describe any property that
propagates through the round-function of a cipher as a path through a graph. As
such, it might be possible to apply the technique to search for e.g. division properties.
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Abstract. Despite the fact that linear cryptanalysis is one of the most
prominent cryptanalysis techniques, our understanding of distinguishers
made from linear approximations is still developing. This is especially
true for advanced variants that use multiple linear approximations.
Using recent models for expressing multivariate linear correlation distri-
butions, this work takes a closer look at these distributions for a range
of different ciphers.

Our main finding is that the shapes of the correlation distributions
are very diverse, ranging from normal distributions, to mixtures of
different types, to highly non-normal distributions. A consequence of
this is that the cryptanalyst should be careful when making estimates
of distinguisher advantage. Indeed, when considering the x? and the
likelihood distinguishers, we find that estimates made solely from ELP
can be misleading.

While ELP estimates prove to be accurate for PRESENT, a cipher which
has been studied intensely in this context and has approximations with
approximately normally distributed correlations, this is not the case
for other distribution types. For normal mixtures, we observe that the
advantage is highly dependent on the configuration of the components.
For 15 rounds of PRIDE the lack of a central component results in a
higher advantage, while a dense central component for 11 rounds of GIFT
makes distinguishing very difficult. The highly non-normal correlation
distribution we observe for 13 rounds of RECTANGLE likewise results
in a lower advantage than what we would expect under assumptions of
normality. For these ciphers, we observe a discrepancy in advantage
compared to a well behaved normal distribution of about 6 bits.

We reaffirm previous work by Hermelin et al., now in a key dependent
model, and show that the x? distinguisher is not robust to the intro-
duction of noise, i.e. its advantage decreases if we add uninformative
approximations to our distinguishing set. The likelihood distinguisher
does not exhibit this behaviour, and its advantage is unaffected. Both
of these results demonstrate the importance of closely examining the
probability distributions used in a distinguisher, as variation between
ciphers can make it hard to rely on e.g. summary statistics.
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1 Introduction

New types of attacks on symmetric key primitives, such as block ciphers and hash
functions, continue to be developed. At their core, many of these attacks rely on
some kind of distinguisher; a function which determines whether the attacker is
interacting with the target primitive or a random function. However, for some of
these distinguishers, our understanding of exactly how they behave is not perfect.
Surprisingly, this is perhaps most true for some of the oldest statistical distinguishers,
namely differential [6] and linear distinguishers [22]. While theoretical results on
the statistical behaviour of these distinguishers do exist for ideal primitives [15], the
behaviour for e.g. practical block cipher designs is not as set in stone. As in example,
[3] explores the distributions of differential probabilities for different block ciphers,
and find that their distributions deviate from the expected Poisson shape.

This picture only becomes more complicated for advanced variants of these attacks,
such as truncated differential attacks and multiple linear attacks. Nevertheless, the
power of a differential or linear attack entirely depends on how well the underlying
distinguishers perform, and so if we cannot accurately assess this, we also cannot
determine how well e.g. a key recovery attack based on these distinguishers will
work. It is therefore important to keep refining our understanding of these statistical
distinguishers. To this end, this work will take a closer look at the behaviour of
linear correlation distributions.

Previous Work

Since the introduction of linear cryptanalysis by Matsui in 1993 [22], a great number
of publications have improved and expanded on the idea. Perhaps the most influential
extensions are multiple [4, 7] and multidimensional [14, 18, 19] linear cryptanalysis,
and both for the one-dimensional case and the multidimensional extensions a lot of
work has been done recently to further our understanding of how linear correlation
distributions behave [8, 9, 11, 20]. In particular, [12] proposes the multivariate profil-
ing model that in principle is able to describe arbitrary (multivariate) distributions
of linear correlations over the space of encryption keys, provided that a set of good
linear trails is known. Moreover, tools have been developed for finding such trails,
e.g. [3, 17], allowing us to efficiently sample from these distributions. In one case, an
attack improvement was facilitated by the unusual shape of correlation distributions
[13]. This begs the question if other such cases exist, facilitating more powerful
attacks, or whether our assessment of current attacks might be flawed in some cases.
This motivates us to take a closer look at correlations distributions of various different
block ciphers.

Contributions

For multiple and multidimensional linear cryptanalysis, estimates of a particular
distinguisher’s effectiveness is often made under simplifying assumptions. It is
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common practice to find a set of good trails for each approximation, and then use
the sum of squared correlation contributions of these trails to estimate the expected
capacity of the approximations. Assuming a x? shape of the capacity, an estimate
of the advantage can then be made. Indeed, this is a reasonable approach if the
distribution we are distinguishing is well behaved, i.e. it is close to a multivariate
normal distribution. This is the case for PRESENT [10], which has been analysed in
many different works, and many models have been proposed that give good results in
this case using ELP as the main estimator [8, 9, 20]. Thus, while the normal case is
well understood, little work has been done on other types of correlation distributions.

When ELP Succeeds and When it Fails In this work, we consider examples of
correlation distributions for which ELP is a not a good estimate of distinguishing
power. We utilise the multivariate profiling model of [12], in which the shape of the
correlation distribution is estimated directly from known linear trails of the cipher
using no assumptions about e.g. the key-schedule. In order to find such trails, we use
the recently published tool from [17]. This tool allows us to efficiently find a large
number of trails for each approximation, hopefully resulting in accurate estimates,
and also allows us to sample from the corresponding signal distributions, which
directly enables the use of the multivariate profiling model.

Under this model the correlation distributions we observe for different ciphers
designs vary widely in shape, and as a result, an estimate of advantage based on ELP
alone can deviate significantly from an advantage observed using this model. Indeed,
this deviation boils down to the exact shape of the correlation distribution compared
to the shape of an ideal distribution. Since the ideal distribution is concentrated
around zero, distributions that have a very low density around zero are easier to
distinguish, while distributions that have a high density around zero can be difficult
to distinguish. This is despite the fact that such distributions can have components
far away from zero, giving them a high ELP.

We explore this discrepancy for two commonly discussed distinguishers, the y?2
and the likelihood distinguishers, for a range of different types of distributions. Our
findings are summarised in Table 1 and described in more detail below.

e Mixtures of Normal Distributions We first consider correlation distribu-
tions of various ciphers which can be described by the mixture model of [13].
We demonstrate that if the distribution has a single component, estimating
the advantage solely from ELP is a sound approach. This is for example the
case for PRESENT [10]. We apply the profiling model using about 252 trails per
approximation over 22 rounds, and the observed advantage closely matches the
estimate.

For mixtures with several components, the picture is more complex. Indeed,
while the distributions for the ciphers PRIDE [2] and GIFT [5] can both be
described as mixtures, the simple advantage estimate deviates in different
directions from the one we observe. In the case of PRIDE, the approximations
have a single dominant trail over 15 rounds, causing the distribution to have a
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low density around zero. For GIFT however, several strong trails exist over 11
rounds, creating a central component in the correlation distribution, decreasing
the advantage. For PRIDE, the observed advantage is about 6 bits higher than
estimated, while for GIFT it is about 6 bits lower.

Moreover, while it was shown in [13] that asymmetric mixture distributions
can improve distinguishing advantage, we show that this is not always the case.
Indeed, GIFT exhibits both symmetric and asymmetric distributions with the
same ELP values, but the distinguisher works no better in the asymmetric
case due to the persistence of the central component. These observations
demonstrate the importance of carefully inspecting the correlation distributions
used in an attack when deriving attack complexities, as small variations in
these can have a large impact.

Non-Normal Distributions While the examples explored above have com-
ponents which are individually normal, it is not guaranteed that the correlation
distributions of a cipher can be expressed in this model. As an example of this,
we show that the block cipher RECTANGLE [28] exhibits very non-normal
correlation distributions, even in the one-dimensional case. In particular, de-
spite finding 6 million trails over 13 rounds of the cipher, the distributions we

Table 1: Summary of cases studied in this work. We considered how distinguishing

advantage estimated assuming a simple normal shape compares to the
advantage estimated using the more advanced multivariate profiling (MP)
model of [12]. The number of trails used for the MP model is shown. In
most cases, there is a significant difference in the two estimates, caused by
the more complex shape of the correlation distributions.

e . . Advantage

Cipher Rounds Trails DIStTr;t;::lon Symmetry Estimate
ELP MP

Known results
SZ?E(S)ENng 99 953 Normal  Symmetric | 5.85 5.85
New results
S(ljil)]r?li 9 15 1 Symmetric | 2.49 8.83
GIFT-64 Normal .

Section 3.2 11 34 mixture Symmetric | 7.25 0.53
sggng;g 11 34 Asymmetric | 7.25  0.52
RESCe a?i(iLE 13 223 Non-normal  Symmetric | 7.98 1.85
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observe have much longer tails than a normal distribution and show a strong
dependence structure in the case of multiple approximations. We rule out
the key-schedule as the source of this non-normality, but it remains an open
question exactly what about the structure of RECTANGLE results in this
deviation from normality.

One consequence of this complicated distribution shape is that using the
likelihood distinguisher is impractical. Moreover, for the x? distinguisher we
observe a much lower advantage than the estimate obtained from the ELP,
again due to the distribution being dense around zero. We leave it as an
open question whether the deviation from normality itself can be used as a
distinguisher.

Distinguishing with Uninformative Approximations Finally, we con-
sider the performance of the two distinguishers in a scenario where a proportion
of approximations behave like noise. The two distinguishers were previously
compared in [18] for multidimensional linear cryptanalysis, where it was shown
that for a fixed capacity, the x? advantage is inversely proportional to the num-
ber of approximations M, while the LLR advantage is inversely proportional
to log(M). However, that work does not consider how the multidimensional
probability distribution varies over the key space. Thus, we reconsider this
comparison in a key dependent model. To eliminate the factor of distribution
shape, we again consider PRESENT, and demonstrate that the x? distinguisher
is not robust, that is, its distinguishing advantage decreases dramatically when
“bad” approximations are added to a set of “good” approximations. For a
set of four approximations, adding four noisy approximations decreases the
advantage from about 11 bits to about 9 bits. We also show that the likelihood
distinguisher does not suffer from this problem, although it can be harder to
apply in practice, reaffirming the findings of [18]. This further shows that if a
cryptanalyst decides to use the unstable x? distinguisher, she must carefully
analyse the approximations used to obtain the optimal advantage.

The rest of this work is structured as follows: Section 2 describes the preliminaries
of linear distinguishers. Section 3 considers distinguishing distributions that can
be described as normal mixtures, while Section 4 describes non-normal distribu-
tions. Finally, Section 5 analyses distinguishing in the presence of uninformative
approximations.

2 Linear Distinguishers

Throughout this work, we will consider the challenge of distinguishing block ciphers.
We define a block cipher as a function

E(x, k) : Fy x F§ — Fy.
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For each key k in the key-space Ff, £ is a permutation on Fy. As such, £ is a family
of 2% permutations. To € we associate an ideal version, £. Each instance of £ is also
a permutation on F5, but the permutations are chosen uniformly at random from
the space of all permutations on Fy. Thus, we can view € as a “perfect” block cipher
with a key-space of size 2.

2.1 Distinguishers in General

Assume now that an attacker is either given or chooses a list of N inputs and is then
given the corresponding list of outputs, encrypted with either an instance of £ or an
instance of £. Let T denote the list of input Joutput pairs. The goal for the attacker
is to determine if the ideal or non-ideal block cipher was used. To this end, we define
a distinguisher:

D(T) : (F5)N x (F3)N — {Ideal, Not ideal}.

The distinguisher simply computes some function of 7, and outputs either “Ideal”
or “Not ideal”. We are mainly interested in two properties of the distinguisher: its
success probability and its advantage. We define the success probability as

ps = Pr(D(T) = Not ideal | £)
and the advantage as
a = —log, (Pr(D(T) = Not ideal | £)),

where the probabilities are taken over the respective sets of permutations, as well
as any other randomness used in the choice of inputs or by the distinguisher. The
situation is illustrated in Figure 1. We will often fix the success probability, and
consider the resulting advantage, as this value is directly associated with how well a
distinguisher can be used as part of a key recovery attack on £. For further details,
see e.g. [25].

2.2 Linear Distinguishers

The general idea of a linear distinguisher is to find linear relationships between the
bits of elements in 7 which exhibit a larger correlation than one would expect from
an ideal cipher. To this end, we define a linear approximation («, 8) € F§ x F% and
associate to it a linear correlation:

C(ka,,@) =2 zlg]%“g“aax) = <ﬁ,g($,k)>) -1,

where (-, ) denotes the canonical inner product on Fj. Note that C’(ka 5) is a random
variable over the key-space. We will denote the correlation measured for a specific
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— Non-Ideal

— Ideal

Density

— Success
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Figure 1: Illustration of success probability and advantage when applying a statistical
distinguisher. The threshold value is denoted by the dashed line.

set T as C’(ka 6)(7-)' Thus, a very simple linear distinguisher could be defined as

Not ideal if |C’(ka7ﬁ)(7')| > T

Ideal otherwise

D(T) = {

for some predetermined value of the threshold value 7. While this distinguisher
is essentially that proposed originally by Matsui [22], a variety of other linear
distinguishers have been proposed. Amongst these is the natural extension of multiple
linear cryptanalysis [4, 7] (and the related multidimensional linear cryptanalysis [14,
18, 19]). Let us denote a vector of M approximations by [a, 8], and its associated
vector of simultaneous correlations by C[’fx’ a8 The idea of multiple linear cryptanalysis

is then that the distinguisher can make a better decision based on C’[’fx’ ] 88 opposed
to just the correlation of a single approximation.

Common to all of these methods (and analogously any statistical distinguisher) is
that in order to determine the success probability and advantage, we need to know
the distribution of C(ka, g) over the key-space for both £ and &.

2.3 Correlation Distributions

The Ideal Case For the ideal cipher &, [15] shows that C(ka’ﬁ) ~ N(0,27™), i.e.

a normal distribution with mean zero and variance 27™. For a specific set of
input/output pairs 7, with inputs sampled randomly with replacement, we moreover

have that Cf,, 5 (T) ~ N(0,27" + N~'). However, in the case of multiple linear
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approximations, it seems difficult to determine the exact shape of the joint linear
correlations. Indeed, even if statistical dependencies of correlations are likely to occur,
see e.g. the discussion in [24], we take the same approach as in [12] and make the
simplifying assumption of statistical independence in the case of linearly independent
approximations. Thus, in this case, we have that C[’flﬂ] (T) ~ N (0,diag(2™™ +
N—Y).

The Non-ldeal Case For the cipher £ useful results are known in the case of
key-alternating ciphers, i.e. ciphers of the form

E=froof,

where each round function f; has the form
filz ki) = gi(x) ® ki,

and the k;’s are round keys derived deterministically from k. Usually, a pre-whitening
key ko is added to the input. For this construction, we define a linear trail as the
tuple U = (ug, - .., u,), and its associated correlation contribution as

C(’,C/ = H Cui-,'U«H—l (fl)
=0

i.e. the product of the correlations of each round function. Then the following result
can the be shown.

Theorem 1 ([16]). Let k denote the concatenation of a key-alternating cipher’s
round keys for the encryption key k. Then the linear correlation of an approzimation
(a0, B) of the cipher can be calculated as

Gy = 2 (-1 =R )
U

where the sum is over trails U = («,...,[3), sy is the sign bit of U, and |CE| is
independent of k.

While it is infeasible to calculate the full sum in Theorem 1, [11] proposed to split
the sum into a set of signal trails S and a set of noise trails. The sum for a specific
set T (with inputs sampled randomly with replacement) is then approximated by

Clap)(T) = (Z(1)5”@<U’k>|05|> +N(0,27" + N 7). (1)

ves

A generalisation of this result to the case of multiple linearly independent approx-
imations was given in [12]. In both cases, we can easily sample from C’(ka 5 (T),
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respectively O[]fxﬂ]’ by calculating the above sum for different keys k. However,
this requires that a suitable set of signal trails S is known. The work [17] gives an
algorithm both for finding good trails and for efficiently sampling from the signal
distribution. We will use this tool in the following to generate correlation distributions
and derive the corresponding success probabilities and advantages.

2.4 On ELP and Capacity

While using the above model to derive success probabilities and advantage is somewhat
involved, other methods for determining the effectiveness of a linear distinguisher
have often been used in the literature, namely using ELP and capacity. Consider
Theorem 1: It is known that if the round keys are statistically independent, then

E((Clap)?) = D_(CH)™.

U

The sum on the right is usually denoted the expected linear potential (ELP). Moreover,
under this independence assumption, and by the central limit theorem', C(km g) ™~
N (0, ELP). Thus, it is very common for works on linear cryptanalysis to find one
or more trails of a linear approximation, calculate the ELP from their correlation
contributions, and then estimate the strength of the attack from this value. Similarly,
for multiple/multidimensional attacks with M approximations, we can define the
capacity as

M

k __ k 2
¢ 72(0(%75@)) :

i=1

Under the above independence assumption for correlations of multiple linearly in-
dependent linear approximations, the expected value of the capacity is simply the
sum of the ELPs, and so this sum is often used as an estimate for the effectiveness of
a multiple linear attack. Additionally, several works present results on estimating
the variance of capacity for multidimensional distinguishers, in order to get a more
precise estimate [8, 9].

As shown in [12], the fact that round keys are not independent in most ciphers can
have an impact on the expected capacity, making it deviate from the sum of ELPs.
Moreover, if the correlation distributions exhibit statistical dependence, the shape of
the capacity distribution might make the expected value, or even the variance, a bad
indicator of distinguishing power. Indeed, in Sections 3 and 4 we explore examples
of correlation distributions where the sum of ELPs might give a misleading estimate,
both positively and negatively. As a benchmark, we will compare to an estimate
obtained using a “well behaved” correlation distribution, namely the distribution

Ck ~ Ny (0,diag(ELPy, ..., ELPy)).

I Assuming that the difference in correlation contributions is not too large.
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Indeed, this would be the best case for using the above method of summing ELPs as a
way to estimate distinguishing power, and as such represents an optimal scenario for
the cryptanalyst in terms of easy analysis. We note that when making comparisons,
we still apply the signal/noise decomposition of [11], i.e. the estimate for each ELP
value becomes

ELP, = ( > (C,’}’)?> +27" +1/N.

UeS;

2.5 The x? and LLR Distinguishers

Given the (potentially multivariate) correlation distributions of £ and &, we can
formulate many different distinguishers. In this work, we will consider two distin-
guishers that have been proposed in the literature, namely the x2 distinguisher and
the likelihood distinguisher.

The x? Distinguisher The x? distinguisher builds on the x? method for hypothesis
testing, and is perhaps the most used linear distinguisher. In the general case of M
approximations, and for a given threshold value 7, the distinguisher is defined as

Dy

) = {Not ideal if N YO0, (CF, 5 (T))? > T

| Ideal otherwise

Note that for a general multivariate distribution of C[’; g the sum computed by the
distinguisher is not x2 distributed, as the marginals need not be independent nor
normally distributed. This makes it difficult to derive closed form expressions of
the success probability and advantage. Nevertheless, as long as we can sample from
C[]fx )y We can estimate these values.

It is interesting to note that the distribution of the sum computed by D, only
depends on the distribution of C[’L A That is, if we fix 7, changing the distribution

of C[’fl 8] for £ only affects the success probability, while changing the distribution

for € only affects the advantage. On the other hand, the x? distinguisher does not
need any prior knowledge of these two distributions to work, making it very easily to
apply in practice.

The Likelihood Distinguisher The likelihood distinguisher is more involved than
the x? distinguisher, in that we need to a priori have a good estimate of the two
distributions we want to distinguish. For a given threshold value 7, it is defined as

k
Not ideal if Pr(Cla ) (TIE)

Drr(T) = Pr(cfaﬁ](mé)
Ideal otherwise
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For practical reasons, the logarithm of the likelihood ratio is often used, and so
this distinguisher is also known as the log-likelihood ratio (LLR). If we have perfect
knowledge of the two correlation distributions, this distinguisher is theoretically
optimal. However, as previously pointed out in [18], it is not often used in practice
due to the difficulty of calculating the required probabilities.

Using the models described in Section 2.3, one could e.g. use kernel density
estimates to estimate Dpr. However, this might become impractical for higher
dimensions. In [13] it was proposed to use a mixture model, when this seems
reasonable, and it is demonstrated that in this case the likelihood distinguisher
performs better than the x? distinguisher.

We finally note that the likelihood distinguisher does not have the behaviour
described for the x? distinguisher above. Namely, if we change either of the correlation
distributions both the success probability and the advantage are likely to change. In
other words, the distribution of Dy r depends both on the ideal and the non-ideal
distribution simultaneously.

3 Distinguishing Normal Mixtures

In the following, we will compare advantage estimates obtained using the sum of ELP
approach described in Section 2.4 to advantages observed under the model of [12]
described in Section 2.3, for both the x? and LLR distinguishers. We will first consider
the case of distinguishing correlation distributions whose signal can be described by
the model given in [13]. There, the signal is described as a normal mixture, i.e. a
weighted sum of normal distributions. For a mixture with ¢ components, weights \;,
mean vectors p;, and covariance matrices X;, i = 1,..., ¢, the probability density of
the distribution is given by, under the condition that > \; =1,

¢
f@) =" Nidnr(m; pi, i),

i=1

where ¢p is the PDF of the M-variate normal distribution. Combining this with
Equation 1 we can e.g. calculate the probabilities required for the likelihood distin-
guisher. Note however, that while algorithms for determining the mixture parameters
do exist, a better result will likely be obtained if the cryptanalyst defines them herself,
making the use of this model rather time consuming.

Testing Methodology In the following, we have used the tool published in [17] to
search for linear trails as well as to sample from the signal distributions. For each
set of approximations we consider, we have sampled 50 000 signal correlations using
this tool, and then approximated the linear correlation by using the signal/noise
model of [11]. Then, when calculating the advantage of each distinguisher, we split
the data set randomly into two equal parts, i.e. a training set and a testing set. We
use the training set to calculate the threshold value required for an 85% success
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PRESENT, N = 204, pg = 0.85, a,2 = 5.85, arr = 5.86
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Figure 2: In blue, the joint correlation distribution of two linear approximations over
22 rounds of PRESENT. The distribution for an ideal cipher is shown in red.
The advantage for the two distinguishers is given.

probability, and then estimate the advantage using the testing set. We repeat this
process 1000 times to get a stable estimate of the advantage. In the following, we
only consider pairs of approximations, in order to make visualisation easier. However,
our observations generalise to higher dimensions.

3.1 The Normal Case: One Component

We first consider the case of a single mixture component, ¢ = 1, i.e. a simple
multivariate normal distribution. This case can be found for the 64-bit block cipher
PRESENT [10]. PRESENT has been the target of many linear cryptanalysis publications
due to the extreme linear hull effect it exhibits. It is also this presence of many
equally good linear trails for each approximation that ensures that the correlation
distributions are quite close to normal. We consider the two approximations

(a1, 1) = (0x000000000€000000, 0x8000000080008000),
(v, B2) = (0x0000000000e00000, 0x8000000080008000),

over 22 rounds of the cipher. Using the tool of [17], we find about 2523 trails for each
approximation, for a total ELP of 275849 each. Applying the model of Equation 1
with N = 254, we obtain the correlation distribution shown in Figure 2. As previously
observed in the literature, this distribution is quite close to normal [1, 12]. In this
case, the two distinguishers perform equally well, both obtaining an advantage of
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PRIDE, N = 2615 pg — 0.85, a,> = 8.83, arz = 9.31
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Figure 3: In blue, the joint correlation distribution of two linear approximations
over 15 rounds of PRIDE. The distribution for an ideal cipher is shown
in red. The advantage for the two distinguishers is given. A bivariate
normal distribution with the same ELP values has a lower distinguishing
advantage of 2.49 bits.

about 5.85 bits. Moreover, if we consider the idealised distribution C% described in
Section 2.4, we obtain a similar advantage. Thus, in this case, we can expect the
sum of ELPs to give us a quite good estimate of our distinguishing power. Next, we
will see that this is not always the case.

3.2 Several Components: ELP Can Be Misleading

We now consider two cases with ¢ > 1 that demonstrate that the sum of ELPs
is not necessarily a good indicator of distinguishing power. We first consider the
64-bit block cipher PRIDE [2]. While several works in differential cryptanalysis of
PRIDE have been published [21, 26, 27, 29], there seems to be few results on linear
cryptanalysis. Here, we consider the two approximations

(a1, f1) = (0x0000000000000100, 0x0100000001000100),
(a2, B2) = (0x0000000000000001, 0x0001000000010001),

over 15 rounds of the cipher. In this case, we were only able to find a single trail
for each approximation, having squared correlation contribution 27°8. This matches
the initial analysis in [2]. Thus, each approximation has a single dominant trail, and
as observed in [13], if the ELP is large enough, the distribution will therefore have
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GIFT-64, N = 2% pg = 0.85, a,2 = 0.53, arp = 0.52
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Figure 4: In blue, the joint correlation distribution of two linear approximations
over 11 rounds of GIFT-64. The distribution for an ideal cipher is shown
in red. The advantage for the two distinguishers is given. A bivariate
normal distribution with the same ELP values has a higher distinguishing
advantage of 7.25 bits.

more than one component. Indeed, the correlation distribution is shown in Figure 3,
where we can clearly observe four distinct components.

If we set N = 2615 and apply the x? distinguisher, we obtain an advantage of 8.83
bits. A small improvement, i.e. about 0.5 bits, is obtained by applying the likelihood
distinguisher, matching the observations made for DES in [13]. The interesting
observation here, however, is that if we consider the benchmark distribution C%
with the same ELP values, we only obtain an advantage of 2.49 bits. Thus, if the
cryptanalyst only considered the ELP when searching for suitable approximations,
she would drastically underestimate her attack power, and maybe wrongly conclude
that no linear attack on this number of rounds could be mounted. This could for
example result in a designer choosing to use an insufficient number of rounds in the
believe that no linear attack will be successful.

While the above case shows that one can easily underestimate the power of a
distinguisher, we now consider the opposite case. The 64-bit block cipher GIFT-64 is
a recent design that revisits the ideas of PRESENT, while trying to improve efficiency
and security. For GIFT-64, we consider the two approximations

(a1, f1) = (0xe000090000600900, 0x4014008210410028),
(a2, f2) = (0xd000090000600900, 0x4014008210400028),
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GIFT-64, N = 2% pg = 0.85, a,2 = 0.52, arr = 0.52
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Figure 5: In blue, the joint correlation distribution of two linear approximations over
11 rounds of GIFT. The distribution for an ideal cipher is shown in red. The
advantage for the two distinguishers is given. Compared to the distribution
in Figure 4 we here see asymmetries, but the advantage is no better.

over 11 rounds of the cipher. For each of these approximations, we find 34 trails for
a total ELP of approximately 27%%. Setting = 20, we obtain the very interesting
correlation distribution shown in Figure 4.

While we do observe four components with non-zero mean vectors, there is also
a fifth components with mean roughly zero. This could be explained by a pair
of dominant trails which interact constructively and destructively. By inspecting
the marginal distributions, it is evident that a large part of the probability density
is contained in this central component. Indeed, when we estimate the mixture
parameters, we find that the weight, A5, for this component is 0.5, i.e. it constitutes
half the density. As a consequence, both distinguishers have a very low advantage of
about 0.5 bits. This is compared to the benchmark distribution C’]’% for which one
would get a 7.25 bit advantage. On the other hand, the shape of the distribution also
implies that half the keys are weak keys, i.e. if we lower our success probability to 0.5,
we obtain a perfect distinguisher. These two examples clearly show how important it
is to consider the actual shape of the correlation distribution, as opposed to simply
making estimates based on the sum of ELPs.
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3.3 Asymmetry Cannot Save You

In [13], it was observed that DES exhibits asymmetrical correlation distributions,
and the term asymmetry factor was proposed, defined as £/2. For DES it was
observed that a smaller asymmetry factor increased the distinguishing power, and it
was conjectured that this might be the case in general. However, we now demonstrate
that this is not the case.

We again consider 11 rounds of GIFT-64, but this time we consider the two
approximations

(a1, £1) = (0x010000e00900€000, 0x4401200011040002),
(a2, f2) = (0x010000e00900e000, 0x4401200011048002).

These approximations have the same ELP as those described previously, but their
input/output masks are chosen in a special way: their input masks are identical, and
their output masks only differ in bit 15. GIFT is designed such that only part of the
state is affected by the key addition step, and in particular only a constant is added
to bit 15. In this case, the constant is 1, and thus these two approximations will
likely always have the same absolute correlation but with opposite signs. Indeed,
this is the case, as can be observed in Figure 5. Nevertheless, these approximations
still have a central component, and even though we have an asymmetry factor of 3/4,
we obtain no improvement in advantage over the symmetric case, for either of the
distinguishers. Essentially, how well our distinguisher works is entirely determined
by the central component. This further demonstrates that direct inspection of the
correlation distributions is necessary in order to evaluate distinguishing power.

4 Distinguishing Non-Normal Distributions

The examples we have shown so far have all had correlation distributions that
could be expressed as normal mixtures. Nonetheless, this type of shape is not a
given. In particular, dependence between round-keys can influence the shape of the
distribution, as demonstrated in both [1] and [12]. Moreover, it could happen that
the structure of the linear trails is such that the resulting distribution is not normal.
We will investigate such a case next. Since it it quite difficult to apply the likelihood
distinguisher in this case, we only consider the x2 distinguisher in the following.

4.1 The Case of RECTANGLE

RECTANGLE [28] is yet another 64-bit block cipher inspired by the PRESENT design,
but with a focus on bit-slicing friendly components. Over 13 rounds of the cipher,
we found 6242 685 trails for each of the two approximations

(a1, f1) = (0x000004000000a000, 0x0000021000600084),
(a2, f2) = (0x000004000000a000, 0x0000021000610004),
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RECTANGLE, N = 2%, pg = 0.85, a,2 = 1.8
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Figure 6: In blue, the joint correlation distribution of two linear approximations over
13 rounds of RECTANGLE. The distribution for an ideal cipher is shown
in red. The advantage for the x2? distinguisher is given. The distribution
cannot be described by a normal mixture. A bivariate normal distribution
with the same ELP values has a higher distinguishing advantage of 7.98
bits.

27266
27276
o276

27266

Measured correlation quantiles

o6
-25 0.0 2.5
Theoretical normal quantiles

Figure 7: Theoretical normal quantiles compared to the observed correlation distri-
bution quantiles for the block cipher RECTANGLE and the approximation
(0x0000040000002000, 0x0000021000600084). We observe a clear devia-
tion from normality.

157



Publication 4 On Linear Correlation Distributions: More Instructive Examples

for a total ELP of 275801 The correlation distribution of these two approximations
is shown in Figure 6 for N = 264, It is immediately clear that the joint distribution
is not a normal mixture. Moreover, if we consider the marginal distributions, these
are not normal either, as demonstrated by the quantile-quantile plot in Figure 7.
Indeed, the observed distributions have much longer tails than a normal distribution
with the same variance would have. Additionally, it is interesting to observe that this
shape seems to be inherent to the structure of the round function of RECTANGLE,
as replacing the key-schedule with e.g. that of PRESENT does not affect the shape of
the distributions.

At a first glance, this extreme deviation from normality might suggest that these
distributions would be easier to distinguish, but this is not the case. Indeed, the
x? distinguisher only obtains an advantage of 1.85 bits with N = 24 whereas
distinguishing the benchmark distribution Cg would result in an advantage of 7.98
bits. The reason for this is similar to the case of GIFT discussed in Section 3.2,
namely that the majority of the distribution density is concentrated close to zero.
As such, only very few keys actually exhibit a large correlation.

While this non-normal distribution shape observed for RECTANGLE may not be
beneficial in the case of single-key distinguishers, it would be interesting to explore
in a multi-key setting. Indeed, if we could observe several points from the correlation
distribution, a simple test of normality might work very well as a distinguisher. In any
case, further exploration of these non-normal correlation distributions is warranted.

5 Distinguishing with Uninformative Approximations

In the previous sections we saw that it is essential to closely examine the correlation
distributions of the approximations one intends to use for distinguishing. In the
following, we eliminate the question of distribution shape by only considering distri-
butions that are approximately multivariate normal. However, we now consider the
composition of the set of approximations we use for distinguishing. Specifically, we
consider the case of distinguishing when using a set of M + M approximations, but
where a subset of M of the approximations are uninformative, i.e. their correlations
are distributed as A(0,27"), independently from the other approximations.

This case could for example occur if a cryptanalyst chooses to include extra
approximations in their attack with the hope of an added advantage, assuming that it
has no adverse effect on the final attack complexity, but without carefully analysing
the correlation distributions of these. Indeed, the general thinking here would be that
adding these approximations cannot worsen the attack. This case was considered
in [8, Theorem 4], where an expression of the variance of the capacity was given.
Another case would be if the cryptanalyst wants to use the multidimensional model,
in which case she needs to include all approximations in a full subspace, some of
which are likely to have low correlations. We note that a recent work proposes a
model in which some of these bad approximations can be discarded [23].

In this scenario, it is natural to expect that a distinguisher on all M + M ap-
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Figure 8: Distinguisher advantage as a function of uninformative approximations.
The top plot uses a set of 4 good approximations (N = 253-%), whereas
the bottom plot uses a set of 64 good approximations (N = 2%9-5). The
advantage of the x? distinguisher decreases as a function of the ratio of
bad approximations, whereas the likelihood distinguisher is stable.

proximations performs no better than on the M “good” approximations, as the M
approximations add no information. On the other hand, we would also hope that
adding these uninformative approximations does not have an adverse effect on our
distinguisher, that is, the distinguisher is stable. Note that for multidimensional
linear cryptanalysis, the previous work [18] shows that for a fixed capacity, the x?2
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advantage is inversely proportional to M, while the LLR advantage is only inversely
proportional to log(M). However, the analysis made there assumed that the mul-
tidimensional probabilities were largely independent of the encryption key. In the
following, we investigate whether this result also holds when the key dependence is
taken into account.

5.1 Distinguisher Stability

As mentioned above, we will eliminate the variable of distribution shape by consid-
ering a joint correlation distribution which is close to normal. As demonstrated in
Section 3.1, this is true for PRESENT. As our set of good approximations, we choose
subsets of the approximations used in [12] to mount attacks on 26 and 27 rounds
of the cipher. This set consists of 135 linearly independent approximations. We
consider two subsets of these approximations, i.e. for M = 4 (C*¥ = 27°6-87) and
M = 64 (C* = 275418) over 21 rounds of the cipher. We then investigate how the
advantage behaves when we add uninformative approximations to these sets.

Advantage measurements are performed as in Section 3, i.e. we calculate the
threshold required for an 85% success probability using a training set, and then
calculate the advantage using a testing set, averaging the result over 100 repetitions.
For both sets of approximations we consider up to M = 8 - M uninformative
approximations. The result is shown in Figure 8. Interestingly, we observe that the 2
advantage declines quite rapidly when we increase the number of bad approximations.
Moreover, comparing the two plots, the rate of decline seems to roughly be a function
of the fraction of uninformative approximations. Thus, if M is relatively small even
a quite low number M of bad approximations can have a drastic negative impact on
the advantage.

This observation is not so surprising in light of the discussion in Section 2.5;
when adding uninformative approximations to the distributions for £ and &, the
distinguishing distributions change independently of each other, and the larger the
proportion of uninformative approximations get, the more they will resemble each
other. For the likelihood distinguisher however, the ratio used for distinguishing
stays constant, and so the distinguisher is unaffected, as can be seen in Figure 8.
Thus, if it is possible to obtain a good estimate for the likelihood probabilities, e.g.
when the correlation distributions are normal mixtures, this seems like a more robust
choice for the cryptanalyst.

6 Conclusions

In this work, we have taken a closer look at different types of correlation distributions
of multiple linear approximations, and our ability to distinguish these from the
correlation distribution of an ideal cipher. We considered two types of distinguishers,
the x2? distinguisher and the likelihood distinguisher, and how well the ELPs of a
distribution can be used to predict the advantage of these distinguishers. Through-
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out, we have used the multivariate profiling model of [12] to estimate correlation
distributions.

We first considered correlation distributions which can be described using the
normal mixture model of [13]. We found that if the mixture has one component,
i.e. it is a multivariate normal distribution, the ELP values gives a good estimate
of advantage. However, we examined two examples where this is not the case: for
the cipher PRIDE, whose correlation distribution has more than one component, we
obtain a significantly larger advantage than expected from the ELP values alone due
to the shape of the distribution. On the other hand, for the block cipher GIFT, we
also observed multiple components, but the shape of the distribution is such that the
advantage is adversely affected.

Considering correlation distributions that do not fit in the mixture model, we find
that RECTANGLE exhibits distributions that are highly non-normal. As for GIFT,
this has the effect of decreasing the distinguisher advantage compared to a normal
distribution with the same expected capacity. We conclude that the cryptanalyst
should closely examine the shape of the correlations distributions instead of relying
on summary statistics in order to estimate distinguishing advantage.

Lastly, we observed that the two distinguishers behave differently if noisy approxi-
mations are added to the distinguishing set. In particular, the advantage of the 2
distinguisher decreases when the ratio of “good” to “bad” approximations decreases,
but we found that the advantage of the more complex likelihood distinguisher is
stable in this regard. We therefore urge the cryptanalyst to be careful when using
the x? distinguisher.
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