

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 07, 2019

Correlations Aplenty - Linear Cryptanalysis of Block Ciphers

Vejre, Philip Søgaard

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Vejre, P. S. (2018). Correlations Aplenty - Linear Cryptanalysis of Block Ciphers. Kgs. Lyngby: DTU Compute.
DTU Compute PHD-2018, Vol.. 497

https://orbit.dtu.dk/en/publications/correlations-aplenty--linear-cryptanalysis-of-block-ciphers(d0e53d36-54b0-4b30-bfc8-03fb8acf2f6c).html

Correlations Aplenty
Linear Cryptanalysis of Block Ciphers

Philip S. Vejre

Ph.D. Thesis

October 2018

Document compiled on October 16, 2018.

Supervisor: Andrey Bogdanov
Co-supervisor: Lars R. Knudsen

Technical University of Denmark
Department of Applied Mathematics and Computer Science
Section for Cyber Security

ISSN: 0909-3192
Serial no.: PHD-2018-497

Deciphering is, in my opinion, one of the most fascinating of arts,
and I fear I have wasted upon it more time than it deserves.

– Charles Babbage

Abstract
The advent of the Digital Age has brought upon us a world where information is a
primary commodity. Thanks to the near omnipresence of computing devices, the
collection and exchange of information is easier and more frequent than ever before.
Soon, almost all electrically powered devices will contain a computer, and furthermore
they will all be communicating with each other. The consequence is that a wealth of
information about each of us is being recorded and transmitted around the world –
information that most people will likely prefer to keep as private as possible. Thus,
the trends of the modern age also bring with them an increasing focus on – and
importance of – cryptography in order to provide secure communications.

A core research area of cryptography is the construction of secure block ciphers – a
so-called cryptographic primitive, their importance arise from the fact that a plethora
of other cryptographic algorithms can be constructed from a block cipher. Clearly,
it is crucial to have a high level of confidence in the security of such a building
block. However, it is not known how to construct a block cipher which can be proven
secure, and so instead, the security is evaluated by trying to mount every known
attack against the cipher. A deep understanding of the different attack techniques is
therefore essential in order to get an accurate assessment of a block cipher’s strength.

This thesis explores one such attack technique: linear cryptanalysis. Being a central
technique in the cryptanalyst’s tool kit, every new block cipher has to demonstrate
resistance against this attack. Nevertheless, our understanding of this statistical
attack is not complete, especially so for advanced variants where the stochastic
variables we need to analyse are quite complex. Therefore, the following work is
part of an effort to build advanced tools and models with the aim of providing more
accurate analysis of advanced linear attacks.

The first part of this thesis introduces block ciphers and notions of their security,
followed by an introduction to linear cryptanalysis. The second part contains four
publications that advance the field of linear cryptanalysis in several ways. They
present new tools that help the cryptanalyst discover new linear attacks, and facil-
itated by these tools, new statistical models are presented. These models aim to
remove many simplifying assumptions that have previously been made when evaluat-
ing linear attacks. We present new attacks on the block ciphers DES and present
using these models, and the statistical behaviour of linear attacks is examined for a
number of other block ciphers. It is shown that the type of probability distribution
involved in a linear attack can vary wildly between ciphers, demonstrating that when
we evaluate the effectiveness of such an attack, great care must be taken. Thus, while
the work of this thesis does advance the frontier of linear cryptanalysis, it also shows
that there is much unknown land yet to discover.

i

Resumé
Den digitale tidsalder har uden tvivl haft stor indflydelse verden over, og har med-
virket, at information er en eftertragtet handelsvare. Takket være computerens
allestedsnærværelse er indsamling og udveksling af information lettere og mere hyp-
pig end nogensinde før. Inden længe vil næsten alle elektroniske apparater indeholde
en computer, og de vil ydermere alle kommunikere med hinanden. Resultatet er,
at store mængder information bliver indsamlet om os alle og sendt verden rundt –
information som de fleste sandsynligvis ville foretrække var privat. Den moderne
tidsalder har således forårsaget en stigende interesse i – og fokus på vigtigheden af –
kryptologi som led i sikring af vores indbyrdes kommunikation.

Et vigtigt forskningsområde inden for kryptologi er konstruktionen af sikre block
ciphers – et såkaldt kryptografisk primitiv hvis vigtighed stammer fra det faktum,
at de kan bruges til at konstruere et væld af andre kryptografiske algoritmer. Det
er tydeligt, at det er afgørende at have stor tillid til sådan en byggeklods. Der er
imidlertid ingen måde, hvorpå vi kan konstruere en block cipher, som kan bevises
sikker, og sikkerheden evalueres derfor ved at forsøge at angribe cipheren med
alle kendte midler. Det er derfor vigtigt at have en dyb forståelse af de forskellige
angrebsteknikker for nøjagtigt at kunne vurdere en block ciphers styrke.
Denne afhandling fokuserer på én sådan angrebsteknik: lineær kryptoanalyse. Da

dette er et primært redskab i kryptoanalytikerens værktøjskasse, er det påkrævet
at enhver ny block cipher kan modstå et sådan angreb. På trods af dette er vores
forståelse af denne type statistiske angreb ikke fuldkommen, især ikke når det
gælder avancerede varianter, hvor de stokastiske variable, der er involveret, er meget
komplekse. Denne afhandling er derfor en del af et forsøg på at udvikle avancerede
værktøjer og modeller for at opnå mere præcis analyse af avancerede lineære angreb.

Den første del af denne afhandling introducerer block ciphers og relaterede sikker-
hedsbegreber, efterfulgt af en introduktion til lineær kryptoanalyse. Den anden del
indeholder fire udgivelser, der fremmer lineær kryptoanalyse på forskellige måder. De
præsenterer nye værktøjer, der hjælper kryptoanalytikeren til at finde nye lineære
angreb, og ved hjælp af disse værktøjer gives også nye statistiske modeller. Disse
modeller har til formål at fjerne mange forenklende antagelser, der tidligere har været
anvendt. Ved brug af disse modeller præsenterer vi nye angreb på to block ciphers,
DES og present, og vi undersøger lineære angreb på flere andre ciphers med fokus
på deres statistiske egenskaber. Vi demonstrerer, at den type sandsynlighedsfordeling,
der indgår i et lineært angreb, kan variere voldsomt mellem ciphers, og at man derfor
skal være påpasselig når man analysere disse angreb. Resultaterne præsenteret i
denne afhandling flytter således grænsen for vores viden om lineær kryptoanalyse,
men de viser også, at der endnu er meget vi ikke forstår.

iii

Acknowledgements
Doing a Ph.D. – and I think most people who have done it will agree – is not a trivial
task. It takes time, effort, dedication, and perhaps a measure of stubbornness. More
importantly, it takes a network of amazing people to inspire you, help you, encourage
you, and lead you in the right direction.

A heartfelt thank you goes to my supervisor, Andrey Bogdanov, for taking me
under his wing. He has taught me many things about research, academia, and
otherwise, and has guided my career at DTU since long before my Ph.D. studies. I
commend him for always having an open door and time to discuss whatever I needed
to get off my chest. To my co-supervisor and head of the research group during most
of my time at DTU, Lars R. Knudsen, I also extend my gratitude for providing an
excellent work environment and a sense of belonging.
Likewise, I am grateful for my current and former co-workers at the Section for

Cyber Security: Andrey Bogdanov, Christian D. Jensen, Andreas Kidmose, Lars
R. Knudsen, Stefan Kölbl, Weizhi Meng, Christian Probst, Christian Rechberger,
Arnab Roy, Rishikesh Sahay, Shizra Sultan, Tyge Tiessen, Elmar Tischhauser, and
Tine Topsøe, as well as our always helpful secretary Ann-Cathrin Dunker. A special
thanks to Stefan and Tyge, without who my coffee consumption would have been
lower, my productivity higher, and my time as a Ph.D. student much more dreary.
In the same vein, thank you to Thomas Perrett, Martin Merker, Kasper Lyngsie,
Liang Zhong, Sophie Birot, and Eva Rotenberg for many delightful hours of shared
coffee, beer, and helpful discussion.
Thank you to my co-authors and collaborators, Andrey Bogdanov, Mathias Hall-

Andersen, Martin Jepsen, Stefan Kölbl, Matthieu Rivain, Elmar Tischhauser, and
Junwei Wang, as well as anyone else from the crypto community that I have had the
pleasure of sharing coffee or beer with during conferences and summer schools.
To my amazing friends outside of DTU, Nikolaj, Jacob, Nina, and especially the

guys and girls of KoCtG (you know who you are): the last three years have been
immeasurably better because of you, and for that I am eternally grateful. A special
thanks to Nina for helping me proofread this manuscript and always having a helpful
comment regarding graphic design.

Last, but in no way least, a giant thank you to my parents: for their support, love,
hospitality, and seemingly endless supply of amazing wine and food. Truly, non of
this would have happened without you.

— Nærum, 15th October, 2018

v

Contents
Abstract i

Resumé iii

Acknowledgements v

Contents vii

I Block Ciphers and Linear Cryptanalysis 1

1 Introduction 3

2 Block Ciphers and Their Cryptanalysis 5
2.1 The Block Cipher . 5
2.2 Block Cipher Constructions . 8
2.3 Attacks on Block Ciphers . 10

3 Linear Cryptanalysis 13
3.1 Fundamentals of Linear Cryptanalysis 13
3.2 Linear Trails and the Linear Hull . 15
3.3 Linear Distinguishers and Key Recovery 16
3.4 Using Multiple Approximations . 20

3.4.1 Multiple Linear Cryptanalysis 20
3.4.2 Multidimensional Linear Cryptanalysis 21

3.5 Other Extensions . 21

4 Contributions of Publications 23

Bibliography 27

II Publications 35

1 Linear Cryptanalysis of DES with Asymmetries 37
1 Introduction . 40

1.1 Previous Work and Problems 40
1.2 Our Contributions . 42

vii

Contents

2 Linear Cryptanalysis of DES . 45
2.1 Basics of Linear Cryptanalysis 46
2.2 Matsui’s approach . 47
2.3 Biryukov et al. – Multiple Approximations 48

3 Right-Key Correlation for DES: Key Inequivalence 49
3.1 The Correlation Distribution of a Single Approximation . . . 49
3.2 Exploring the Signal Distribution of DES 50
3.3 A New Mixture Model for Single and Multiple Approximations 52

4 Wrong-Key Correlation for DES: Non-Random Behaviour 57
4.1 The Current Ideal Wrong-Key Distribution 57
4.2 A New Non-Random Wrong-Key Distribution 58

5 Classifying Keys using Asymmetric Distributions 60
5.1 The Bayesian Classifier of Biryukov et al. 60
5.2 Our Likelihood Classifier . 61
5.3 Decision Boundaries . 62
5.4 Observations on the Asymmetric Distribution 63

6 Improved Attack on DES . 66
6.1 Attack Description . 66
6.2 Attack Complexity . 68
6.3 Experimental Verification . 69

2 Multivariate Profiling of Hulls for Linear Cryptanalysis 73
1 Introduction . 75
2 Preliminaries . 78

2.1 Linear Cryptanalysis . 80
2.2 Statistical Distinguishing . 80
2.3 PRESENT . 82

3 Survey of Previous Work . 82
3.1 Models Without Key Influence 82
3.2 Models Incorporating the Key 83

4 Limitations of Current Models . 86
4.1 Independence Assumptions 87
4.2 Restricted Approximation Choices 89
4.3 Parameter Estimation . 89

5 Multivariate Linear Cryptanalysis 90
5.1 The Main Model: Arbitrary Right-Key Distribution 91
5.2 The Practical Model: Signal/Noise Decomposition 91
5.3 The Attack Model: Dealing with Undersampling 93

6 Multivariate Linear Attacks on PRESENT 94
6.1 Determining the Advantage 95
6.2 Attacking 26 rounds . 96
6.3 Attacking 27 rounds . 100

A 40-bit Key-Schedule for SmallPresent 104
B Pair-Wise Independence of Linear Correlations 104

viii

Contents

3 Generating Graphs Packed with Paths 107
1 Introduction . 109

1.1 Previous Work . 110
1.2 Contributions . 111

2 Preliminaries . 113
2.1 Linear Cryptanalysis . 113
2.2 Differential Cryptanalysis . 113
2.3 Finding Approximations and Differentials 114

3 Trail Search Viewed as a Graph Problem 114
4 A New Algorithm for Trail Search 116

4.1 Choosing a Subgraph . 116
4.2 Finding Linear Hulls and Differentials 120

5 Improvements . 120
5.1 Vertex Generation . 121
5.2 Graph Compression and Pattern Elimination 121
5.3 Vertex Anchoring . 123
5.4 Parallelisation . 124

6 Searching for Linear Approximations and Differentials 124
6.1 Results for ELP and EDP . 127
6.2 Visualising Trail Graphs . 129

7 Correlation Distributions . 129
7.1 Finding Key-Dependent Distributions 130
7.2 Results . 133

8 Future Work . 133

4 On Linear Correlation Distributions: More Instructive Examples 139
1 Introduction . 142
2 Linear Distinguishers . 145

2.1 Distinguishers in General . 146
2.2 Linear Distinguishers . 146
2.3 Correlation Distributions . 147
2.4 On ELP and Capacity . 149
2.5 The χ2 and LLR Distinguishers 150

3 Distinguishing Normal Mixtures . 151
3.1 The Normal Case: One Component 152
3.2 Several Components: ELP Can Be Misleading 153
3.3 Asymmetry Cannot Save You 156

4 Distinguishing Non-Normal Distributions 156
4.1 The Case of RECTANGLE 156

5 Distinguishing with Uninformative Approximations 158
5.1 Distinguisher Stability . 160

6 Conclusions . 160

ix

Part I

Block Ciphers and
Linear Cryptanalysis

1

1 Introduction
Cryptography was born out of a desire for humans to communicate securely with each
other, but the field has evolved greatly since Julius Caesar used simple encryption to
communicate with his generals. Today, the facets of cryptography are numerous, and
many of them are ubiquitous in most people’s lives, often times without them even
realising. Indeed, while most people have learned to feel a sense of security when
the green lock icon shows up in their browser during online purchases, few of them
grasp the large number of moving cryptographic parts required to establish a TLS
connection, even though as much as 75% of all web pages visited are protected by
this protocol [53].
Certainly, humanity’s reliance on secure communications will only increase with

time. The expanding interest in the Internet of Things definitely illustrates this. An
ever growing number of “smart devices” are connected to the Internet in order to
automate, coordinate, and optimise our lives. Phones, cars, watches, fridges, alarm
clocks, even lamps, already are or will soon communicate with each other and with
the rest of the world. In fact, it was estimated that already in 2008 there were more
devices connected to the Internet than people [54]. Clearly, all the information that
these devices record and transmit has to be protected, lest we completely forfeit any
dream of privacy.

But modern cryptography is used for so much more than just secure communication
between Alice and Bob. Encryption is also used for secure storage of data at rest.
Digital signatures make it possible for a receiver of a message to verify the identify of
the sender. Advanced algorithms for fully homomorphic encryption allow for example
medical institutions to derive statistics from encrypted medical data, ensuring patient
privacy and confidentiality. Similarly, protocols for secure multiparty computation
allow several people to compute functions of private data, without revealing this
data to each other. Cryptographic proof-of-work algorithms have been widely used
in the recent development of various block chain protocols. The list of applications
for cryptography is long and keeps growing.
While the motivation for developing cryptographic algorithms and protocols is

clear, achieving these goals is a non-trivial task. Ideally, we would like to have some
sort of guarantee that the algorithms we use are secure, but proving such security
can be extremely difficult for large complicated systems. Thus, it is common wisdom
in the field to start with a few simple and secure building blocks, and then build
more advanced systems from these components. The core idea here is that if we trust
the building blocks to be secure, we can often prove that the bigger system also is.
We call such building blocks cryptographic primitives.

One such primitive is the block cipher. This type of algorithm provides very

3

1 Introduction

basic encryption functionality, yet many other cryptographic systems can be built
from such a function. Thus, design and analysis of block ciphers are core topics of
cryptographic research. Interestingly, we do not know how to construct block ciphers
that can be proven secure. Instead, a trial by fire approach is used, in which the
cipher is subjected to every known attack in the cryptanalyst’s arsenal. If the cipher
manages to survive this scrutiny, it is assumed to be sufficiently secure for use as a
building block.
For the above approach to work, we need to develop a deep understanding of

each different attack technique. Therefore, this thesis thoroughly investigates one
particular technique, namely linear cryptanalysis. Chapter 2 gives an introduction to
block ciphers and briefly presents a range of different attacks against these primitives.
Chapter 3 introduces the fundamentals of linear cryptanalysis as well as some
advanced variants of this attack. Finally, Chapter 4 gives a summary of the four
publications presented in Part II of this thesis. These four publications aim to further
our understanding of linear cryptanalysis. They do so by both presenting new tools
that aid with analysis of block ciphers in this regard, as well as proposing new models
for analysis and evaluation of linear attacks.

4

2 Block Ciphers and Their
Cryptanalysis

In this chapter we consider a fundamental cryptographic primitive, the block cipher.
After defining what a block cipher is, we describe various aspects of the security of
such a cipher and give some examples of its applications. We then consider some
general ways to construct a practical block cipher. We finish by explaining some of
the more prominent cryptanalysis techniques used against block ciphers.

2.1 The Block Cipher
Informally, a block cipher is a function which, given a fixed length key, transforms
(encrypts) an input string of fixed length (the plaintext) to an output string of the
same length (the ciphertext), such that for each choice of the key, the transformation
is a permutation [69]. As a consequence, the transformation is invertible (decryption).
A formal definition follows.

Definition 2.1 (Block Cipher [81, Chapter 7]). Let Fn2 be the space of vectors of
length n over the field of two elements, F2, and likewise let Fκ2 be the space of vectors
of length κ over F2. A block cipher is a function

E(x, k) : Fn2 × Fκ2 → Fn2 ,

such that for every choice of the key k ∈ Fκ2 , Ek(x) := E(x, k) is a permutation on
Fn2 . Moreover, for each k, we denote the inverse of Ek(x) by E−1

k (x).

The concept is illustrated in Figure 2.1. Typical values of n used in practice
are 64 and 128, while κ is usually 128 or 256. Ultimately, we would like to use a
block cipher as a building block for other cryptographic primitives. However, not
every construction that fits Definition 2.1 is particularly interesting or useful for
cryptographic purposes, or even efficiently computable, limiting practical use. Indeed,
we are mainly interested in the design and analysis of practical and secure block
ciphers.

Inherent Properties In order to understand what we expect from a secure block
cipher, and what constitutes a valid attack on such a cipher, we first point out some
inherent properties which are consequences of Definition 2.1.

5

2 Block Ciphers and Their Cryptanalysis

Ekey

“Hello, World!”

“911fb6155c291” E−1 key

“Hello, World!”

Figure 2.1: Illustration of a block cipher. A plaintext block of thirteen characters
is encrypted to a ciphertext block of the same length. The same key is
used for encryption and decryption.

Assume that we are given black box access to an instance of a block cipher, that
is, we can query Ek, for some unknown k, with inputs and get the corresponding
output. Then, given a ciphertext y it is always possible to find an input x such that
Ek(x) = y by querying the black box at most 2n times. Indeed, it is possible to get
a complete description of Ek by storing the answer to all 2n queries, although this
requires 2n storage as well. Similarly, if we are given x and y = Ek(x), we can find
some k such that this relation holds by using at most 2κ queries. Note that we will
likely need more than one plaintext-ciphertext pair to find a unique value of k [95].

We call the above approach to inverting Ek, or finding the key k, brute force search.
We consider a block cipher insecure if some method exists whereby we can e.g. find
the key faster than the equivalent brute force search. We will go into more details
about these methods, called attacks, in the following. First, however, it will be useful
to introduce the notion of an ideal cipher.

Definition 2.2 (Ideal Block Cipher). An ideal block cipher is a block cipher such
that for each key, the permutation is drawn uniformly at random from the space of
all permutations on Fn2 .

Constructing such a cipher is clearly infeasible even for small values of n, but we
would like a secure block cipher to look like an ideal cipher from the perspective of
the adversary.

General Attack Goals Informally, we expect that if the key k is drawn uniformly at
random, the resulting permutation Ek will look like a randomly drawn permutation
to an adversary who knows the description of the cipher, but does not know the key
(a concept commonly known as Kerckhoffs’s principle [66]). More specifically, we give
an adversary black box access to the block cipher, using one or more unknown keys,
and the security of the cipher is then judged by whether a set of general attacks can
be mounted against it [69]:

• Deduction: Given y, the adversary tries to find x such that Ek(x) = y, or vice
versa, in time less than 2n, e.g. by finding an algorithm E ′ which is functionally
equivalent to Ek or E−1

k .

6

2.1 The Block Cipher

Ek

Ek
...

Ek

“Hello, World!” “5d4de598a1521”

“Hello, World?” “7fe197441fef9”

“hello, world.” “436987fac8687”

D

Ideal

Not ideal

?

Figure 2.2: Illustration of a distinguishing attack. The distinguisher tries to determine
whether E is an ideal cipher or not.

• Key recovery: The adversary tries to recover the encryption key k in time
less than 2κ.

• Distinguishing: Given black box access to either an ideal cipher or a concrete
block cipher instance (and/or its inverse), the adversary tries to determine
which of these two she is interacting with.

Since we assume that the only secret part of the block cipher is the key, key
recovery implies deduction. The distinguishing attack is illustrated in Figure 2.2.
While distinguishing might not immediately appear very useful in practice, for many
practical cipher designs a good distinguisher often leads to a key recovery attack.
Indeed, the works presented in Part II of this thesis are all concerned with finding
such distinguishers.

Attack Settings Finally, it is natural to define different types of attack settings by
what kind of information the adversary has available when performing the mentioned
attacks, i.e. how she is allowed to interact with the black box. The typical types are
as follows [69]:

• Ciphertext only: The adversary can query the black box for the encryption
of randomly drawn, unknown, plaintexts.

• Known plaintext: The adversary can query the black box for randomly
drawn plaintext-ciphertext pairs.

• Chosen plaintext (ciphertext): The adversary can query the black box for
the encryption (decryption) of plaintexts (ciphertexts) of her choosing.

Other attack settings, such as adaptively chosen text, related key [11], and weak key
attacks [84], have also been discussed in the literature, but we will not consider these
in the following.

It is not known how to construct a block cipher whose security can be reduced to
known hard problems, in the way that popular asymmetric encryption algorithms can.
For typical block cipher designs we therefore do not know how to prove resistance to

7

2 Block Ciphers and Their Cryptanalysis

all the general attacks mentioned here. Thus, a block cipher’s security is commonly
demonstrated by showing resistance to all known attacks. If no attack can be found,
we have some confidence that the block cipher is secure, and under this assumption,
other constructions that use the block cipher as a building block can be proven secure.
We discuss a number of prominent attack techniques in Section 2.3, but we first
mention some general ways in which we can construct block ciphers, as well as uses
of these as part of other cryptographic primitives.

2.2 Block Cipher Constructions
In practice, we would like a block cipher to not only be secure but also efficient.
Thus, it is common for block cipher designs to consist of relatively simple and fast
components which are then applied repeatedly in order to increase complexity. This
idea gives rise to the concept of an iterative block cipher.

Definition 2.3 (Iterative Block Cipher [47]). Consider a block cipher as in Defini-
tion 2.1. Let ki, i = 1, . . . , r, be a set of round keys derived from the key k. Let fkii
be key-dependent permutations on Fn2 . We call fkii the ith round function. If the
block cipher can be written as

Ek = fkrr ◦ . . . ◦ f
k1
1 ,

we call it an iterative block cipher.

One common type of iterative block cipher is the class of Feistel ciphers. For
these ciphers, the ith round function consists of splitting the input into two halves,
say (xL, xR), and then outputting (xR, xL ⊕ gkii (xR)), where gkii is a key-dependent
function [69]. Another prominent type of iterative block cipher is the so-called key-
alternating block cipher [47]. For this type of construction, the round function consists
of applying a key-independent permutation to the input followed by a bitwise XOR
with a round key. A common way to construct this key-independent permutation is
according to the substitution-permutation network (SPN) approach.

Definition 2.4 (Substitution-Permutation Network [40, 41]). Consider an iterative
block cipher Ek as in Definition 2.3. Let s : Fb2 → Fb2 be a permutation such that b
divides n, and let S : Fn2 → Fn2 denote the parallel application of s to the n

b b-bit
chunks of the input. Let P : Fn2 → Fn2 be an affine function. If the ith round function
of Ek is given by

fkii (x) = P (S(x))⊕ ki,

and the first round function is preceded by the addition of a whitening key k0, then
Ek is called a substitution-permutation network.

The concept is illustrated in Figure 2.3. The core idea of this design strategy is
that the b-bit s permutations, called S-boxes, provide strong local confusion which

8

2.2 Block Cipher Constructions

s

s
...
s

P ⊕

k1

fk1
1

s

s
...
s

P ⊕

kr

fkrr

⊕

k0

x1

x2

xn
b

· · ·

· · ·

· · ·

y1

y2

yn
b

Figure 2.3: Illustration of a substitution-permutation network. The input to the
block cipher is transformed by parallel S-boxes, mixed with an affine
function P , and finally a round key is added. The processes is repeated r
times.

is then diffused throughout the entire state by P [94]. Since the S-boxes can be
expressed as small look-up tables, and the affine function P is often relatively simple,
this approach can lead to very efficient block ciphers.

Block ciphers as building blocks From Definition 2.1 it is clear that the usefulness
of a block cipher in isolation is limited: we can essentially only encrypt and decrypt a
small amount of information. Thus, block ciphers are almost never used by themselves,
but instead as components in other primitives. A basic example is using a block
cipher in a mode of operation which allows for encryption/decryption of arbitrary
length messages. Examples of basic modes of operation are the cipher block chaining
(CBC) [52] and counter (CTR) [48] modes. Interestingly, the latter can be viewed as
using a block cipher to construct a secure pseudorandom number generator, and then
using this to construct a stream cipher.
In most cases, encryption alone is not enough, and we also require some form of

authentication, which a block cipher alone does not supply. However, a message
authentication code can be created from a block cipher using e.g. the CBC-MAC [1]
or PMAC [19] constructions. If we want to combine encryption and authentication
into one algorithm – a so-called authenticated encryption scheme – a block cipher
can be used in e.g. Galois/Counter mode (GCM) [51], Offset Codebook Mode (OCB)
[91], or Counter with CBC-MAC mode (CCM) [102]. Alternatively, several of the
recent entries to the CAESAR competition for authenticated encryption schemes use
a secure block cipher as their central component [2, 61, 83, 104].

Another important cryptographic primitive, namely a cryptographic hash function,

9

2 Block Ciphers and Their Cryptanalysis

can also be constructed from a block cipher. This can for example be done by first
turning the block cipher into a one-way function using the Davies-Meyer construction
[103], and then using this one-way function as the compression function of a Merkle-
Damgård hash [82]. Cryptographic hash functions themselves appear in almost every
aspect of cryptography.
Lastly, we note that an area closely related to that of block ciphers has garnered

increased attention in recent years, namely that of permutation based cryptography.
Instead of using a keyed block cipher to build other primitives, this area instead
focuses on building primitives from a fixed cryptographic permutation. However,
many of the security rationales used for block ciphers carry over to this setting. While
several specific primitives based on permutations have been proposed, e.g. the hash
function Grøstl [56] and the stream cipher Salsa [6], there has also been research into
more general constructions. These are for example the sponge [10], duplex [9], and
Farfalle [8] constructions, which can be viewed as different modes of operation for
permutations. These modes are very versatile, and can be used to construct stream
ciphers, hash functions, message authentication codes, authenticated encryption
schemes, and more. In light of this, efficient cryptographic permutations have been
designed, e.g. Gimli [7] and Xoodoo [43].

2.3 Attacks on Block Ciphers
The wide range of different use cases for block ciphers demonstrate immense their
usefulness. More importantly, it emphasises the importance of having a high confi-
dence in the security of any block cipher we may use as part of a bigger construction,
in order to have any confidence in the security of said construction. It is little wonder
then that the design and analysis of secure block ciphers is a highly active research
area, and many different cryptanalysis techniques have been developed in order to
attack a wide range of block cipher designs. In the following, we briefly describe
some prominent attack techniques which can be used against block ciphers. This is
by no means an exhaustive list of techniques, but any new block cipher design should
at least demonstrate resistance to the following attacks.

1) Algebraic Attacks Any block cipher can be represented as a set of multivariate
equations in the plaintext and key bits; by choosing some plaintexts, we obtain
equations in the unknown key bits. Solving a general system of multivariate equations
is hard, but if a cipher can be described by a simple equation system, solving this
system immediately leads to a key recovery attack [95]. A sufficiently sparse set
of quadratic equations can for example be solved with existing techniques such as
linearisation or Gröbner basis methods [74]. Other more dedicated algorithms have
also been proposed, such as the XL and XSL algorithms [38, 39].

A different way to exploit the algebraic structure of a block cipher is the cube attack
[50]. In this attack, non-linear terms of the equations are eliminated by summing
the equations for different values of the plaintext, resulting in linear equations in the

10

2.3 Attacks on Block Ciphers

key bits. If the number of plaintexts required is not too large, and we can generate
enough such equations, the key can be recovered with simple Gaussian elimination.
Alternatively, the cube attack can be viewed as a higher-order differential attack –
these are described in more detail later in this section.

2) Meet-in-the-middle Attack This type of attack applies to block ciphers where
the key can be split into two independent parts k1 and k2, such that the block cipher
can be written as E(x, k1‖k2) = b(f(x, k1), k2) [49]. In this case, a time-memory
trade-off can be made in which a table containing f(x, k1) for a fixed x and all values
of k1 is stored. Then, during the attack, y = Ek(x) is obtained, k2 is guessed, and k1
is found by computing b−1(y, k2) and finding this value in the table. Many extensions
to this basic technique have been explored in the literature, such as MITM with
partial matching [32], 3-subset MITM [27], MITM with splice and cut techniques [3,
101], and the biclique attack [24].

3) Integral Cryptanalysis This type of attack (also known as the square, saturation,
or multiset attack) [18, 44, 71, 77] utilises sets of plaintexts where e.g. one byte
varies over all possible values, while the rest of the plaintext is fixed. Clearly, the
sum of the texts in such a set is zero, also called balanced. An integral attack can be
mounted if it is possible to predict that (part of) the corresponding encrypted set
will also be balanced.

An interesting generalisation of the integral attack is the division property attack
[98]. In this attack, more general conditions than balancedness are used as a
distinguisher, e.g. whether the sum of any polynomial expression of the plaintexts
of at most degree k is even. This generalisation yields better results for some block
ciphers where the basic integral attack is not very effective.

4) Invariant Subspace Attack As the name suggests, this attack tries to find a
subspace of Fn2 such that for some keys the ciphertext corresponding to a plaintext in
this subspace is also part of the subspace [76]. Clearly, for such a key, the cipher can
immediately be distinguished from an ideal cipher. For some ciphers, this property
has been shown to also facilitate efficient key recovery. While the original version of
the attack uses affine subspaces, a version using non-linear invariants has also been
proposed [99]. A related idea can also be found in the yoyo attack [92] in which texts
are chosen in such a way that specific differences between them are independent of
the key, providing a distinguisher.

5) Differential Cryptanalysis While the attacks mentioned so far are essentially
deterministic, differential cryptanalysis exploits probabilistic behaviour of the block
cipher. This technique uses pairs of plaintexts which have a specific difference, and
then considers the probability that the corresponding pair of ciphertexts also has
some given difference. If we can find such a differential which occurs with sufficiently

11

2 Block Ciphers and Their Cryptanalysis

high probability, this can be used as a distinguisher. Such a distinguisher can usually
be used as part of a key recovery attack [16].
A multitude of extensions have been proposed to the simple differential attack.

Truncated differentials [68] relax the requirement of specific input and output differ-
ences, and instead only partially define these, e.g. we allow any type of difference
in the first two bytes of the input and output, but all other bytes must have no
difference. In this way, we essentially consider many differentials simultaneously,
hopefully increasing the total probability. Another generalisation is higher order
differential cryptanalysis [68, 72]; the normal differentials can be viewed as first order
discrete derivatives, and so it is natural to take higher order derivatives. Taking
the dth order derivative reduces the degree of the function by at least d, and so this
might facilitate easier cryptanalysis. Examples of second order differential attacks
are the boomerang attack [100] and its extension the rectangle attack [14]. Finally,
we note that differentials that have exactly zero probability of occurring can also be
used in a so-called impossible differential attack [12, 67].

6) Linear Cryptanalysis Another prominent type of probabilistic attack is linear
cryptanalysis [78, 80]. In this attack, we try to find a linear expression in the bits
of the plaintext and a (potentially different) linear expression in the bits of the
ciphertext which correlate strongly with each other. As for differential cryptanalysis,
such a connection between plaintext and ciphertext can be used as a distinguisher,
and ultimately as part of a key recovery attack.

The rest of this thesis will be concerned with linear cryptanalysis. Chapter 3 will
cover the basics of the topic and discuss various extensions to the simple attack.
Part II contains several publications that advance the field in various ways. The
contributions of these works are summarised in Chapter 4.

12

3 Linear Cryptanalysis
This chapter will give an introduction to linear cryptanalysis. Section 3.1 introduces
the basic ideas and notation. Section 3.2 presents useful tools for analysing linear
approximations of practical block ciphers, while Section 3.3 explains how linear
distinguishing and key recovery attacks work. Section 3.4 explains various ways to
use more than one approximation for an attack, and finally some other extensions
are discussed in Section 3.5.

3.1 Fundamentals of Linear Cryptanalysis
Consider a block cipher as defined in Definition 2.1, and recall the distinguishing
attack described in Section 2.1. The motivation behind this attack is that if we
can tell a given block cipher apart from a completely randomly drawn permutation,
the cipher must exhibit some non-random behaviour which indicates a flaw in the
design – something which can often be used in e.g. a key recovery attack. For linear
cryptanalysis [78, 80], this non-randomness is indicated by linear expressions in the
plaintext and ciphertext bits that are biased towards 0 or 1.
In order to formalise the above idea, we first introduce the concept of a linear

approximation. The approximation essentially defines the linear expression of bits we
will use in the attack.

Definition 3.1 (Linear approximation [78]). For a block cipher as given in Defini-
tion 2.1, a linear approximation is a tuple (α, β) ∈ Fn2 × Fn2 . We call α the input
mask and β the output mask.

To go from the two masks to a linear function, we use an inner product. Let α be
as in Definition 3.1 and x be an element of Fn2 . Let x[i] be the ith component (bit)
of x. We define the canonical inner product on Fn2 as

〈α, x〉 =
n∑
i=1

α[i] · x[i], for α, x ∈ Fn2 ,

i.e. the sum of the bitwise products of α and x. For a fixed x, 〈α, x〉 is a linear
boolean function of x which simply expresses the sum of the bits of x as indicated
by α. If x is drawn randomly, the probability that 〈α, x〉 = 0 is 1

2 . But if x is not
completely random, this probability can be smaller or larger than 1

2 . For a block
cipher, we therefore associate a linear correlation to an approximation as follows.

13

3 Linear Cryptanalysis

Ek

Ek

Ek
...

Ek

x1 = 00100001100101

x2 = 01011111100001

x3 = 10100000110101

xN = 11111001101010

01010100110010 = y1

11000110010101 = y2

01010111110001 = y3

11011110110111 = yN

α = 00100100110000 01100010000110 = β

0 = 0

0 6= 1

1 6= 0
...

0 = 0

〈xi, α〉
?= 〈yi, β〉

pr
ob

ab
ili
ty

= 6=

Ck(α,β) < 0

Figure 3.1: Illustration of a linear approximation (α, β) and its linear correlation. In
the left box, it is shown how α and β indicate bits of the plaintexts and
ciphertexts, respectively. In the middle box, the parity of the indicated
plaintext bits are compared to the parity of the indicated ciphertext
bits. In the right box, the histogram shows that the plaintext parity is
more likely to be unequal to the ciphertext parity, resulting in a negative
correlation.

Definition 3.2 (Linear Correlation [42]). The linear correlation of an approximation
(α, β) of a block cipher E is given by

Ck(α,β) = 2 · Pr
x∈Fn2

(〈x, α〉 ⊕ 〈Ek(x), β〉 = 0)− 1,

for a fixed key k ∈ Fκ2 .

The concept is illustrated in Figure 3.1. We say that an approximation is non-
trivial if both α and β are non-zero. For any non-trivial approximation, since each
key k is likely to correspond to a different permutation on Fn2 , the linear correlation
will in general take on different values over the key space. Indeed, we are often not
interested in Ck(α,β) for any fixed k, but the distribution of Ck(α,β) over the space of all
keys. This distribution highly depends on the block cipher. However, the following
result can be shown for the ideal cipher.

Theorem 3.3 ([46, 88]). For any non-trivial approximation (α, β) of an ideal block
cipher, the discrete probability distribution of the linear correlation over keys is given
by

Pr
(
Ck(α,β) = 22−nx

)
=
(2n−1

2n−2+x
)2(2n

2n−1

) ,

which can be approximated by a normal distribution with zero mean and variance
2−n, i.e. Ck(α,β) ∼ N (0, 2−n).

14

3.2 Linear Trails and the Linear Hull

α

β

u0

fk1
1

u1

fk2
2

u2

fk3
3

u3

fk4
4

u4

fk5
5

u5

fk6
6

u6

fk7
7

u7

fk8
8

u8

fk9
9

u9

fk10
10

u10

0

2n

Figure 3.2: An illustration of the linear hull of a linear approximation (α, β). Many
different linear trails connect α and β through the round functions fkii .
Each intermediate linear mask ui is a value in Fn2 .

Thus, if we want to build a distinguisher from a linear approximation, we need to
find an approximation whose correlation distribution over keys is sufficiently different
from N (0, 2−n). Alas, for a concrete cipher design, it is less clear how one determines
the distribution of Ck(α,β), or even the linear correlation for any fixed key. We explore
this topic next.

3.2 Linear Trails and the Linear Hull
In general, determining the linear correlation of a block cipher is a hard problem. If
we wanted to measure the correlation directly, even for a single key, we would have to
query the cipher about 2n times. However, for the specific block cipher constructions
presented in Section 2.2, there exist results that allow us to at least approximate the
linear correlation.
For an iterative block cipher, the functions fkii are usually relatively simple,

allowing us to directly calculate the correlation of any approximation of one of these
functions. Now, in order to calculate the correlation over the whole function Ek, we
first introduce to notion of a linear trail.

Definition 3.4 (Linear Trail [42]). Given a linear approximation (α, β) of an iterative
block cipher, a linear trail is an r + 1 tuple

U = (u0, . . . , ur) with u0 = α, ur = β.

Let Cki be the correlation of the approximation (ui−1, ui) of the ith round function

15

3 Linear Cryptanalysis

fkii . We define the correlation contribution of the trail U as

CkU =
r∏
i=1

Cki .

We call the collection of all trails of an approximation the linear hull [86], and
the concept is illustrated in Figure 3.2. The definition of a linear trail is primarily
useful due to the following result, which states that the linear hull fully determines
the correlation of an approximation.
Theorem 3.5 ([40, 42]). Given a linear approximation (α, β) of an iterative block
cipher, the linear correlation is equal to the sum of correlation contributions for all
linear trails of (α, β):

Ck(α,β) =
∑
u0=α
ur=β

CkU . (3.1)

While we could use Theorem 3.5 to calculate the linear correlation, applying it in
practice is quite challenging, as the number of trails in the linear hull is extremely
large even for moderate values of n and r. Additionally, the terms of the sum
in Equation 3.1 are not necessarily independent, complicating any analysis of the
distribution of Ck(α,β) over the key space. The study of techniques for approximating
Equation 3.1 is essential to linear cryptanalysis, and a large part of research on this
topic is dedicated to this problem. Indeed, it is central to all the works presented in
Part II of this thesis.

3.3 Linear Distinguishers and Key Recovery
Let us for a moment assume that we know the distribution of Ck(α,β) for some non-
trivial approximation (α, β) and some block cipher E . In the following, we describe
how to build a known plaintext distinguisher from this knowledge, and how to use
such a distinguisher as part of a key recovery attack.
We first introduce the notion of the undersampled correlation: an adversary is

often not interested in obtaining the full codebook in order to measure Ck(α,β) exactly,
as this naturally increases the computational complexity of the attack. Thus, she
will obtain from Ek some set T of N < 2n randomly drawn plaintext-ciphertext pairs
and calculate an undersampled correlation value:

Ck,T(α,β) = 2 · Pr
(x,y)∈T

(〈x, α〉 ⊕ 〈y, β〉 = 0)− 1, (3.2)

Note that Ck,T(α,β) is a random variable over both the key space and the text space. The
distribution of Ck,T(α,β) has been studied extensively, and in most cases it is possible to
derive this distribution from the distribution of Ck(α,β) over keys [21, 85]. Therefore,
we assume this to be known to the adversary. As an example, the undersampled
distribution of an ideal cipher is N (0, 2−n + 1

N).

16

3.3 Linear Distinguishers and Key Recovery

τ
Ideal Not ideal

1 − Success
probability 2−Advantage

(
Ck,T(α,β)

)2

D
en

sit
y

Figure 3.3: An illustration of a statistical distinguisher based on the linear correlation
of a linear approximation. A value (Ck,T(α,β))

2 drawn from the undersampled
squared correlation distribution over keys and texts is compared to the
threshold τ . Based on this comparison, it is decided whether (Ck,T(α,β))

2

was drawn from the ideal distribution or not.

Linear Distinguishing Recall that the goal of a distinguishing attack is for the
adversary to determine whether she is interacting with an ideal or a non-ideal block
cipher. For linear cryptanalysis, this boils down to determining whether a correlation
value was drawn from the distribution N (0, 2−n) or the distribution of Ck(α,β) (or
their undersampled equivalents). To simplify the exposition, we will instead use
the squared correlation, in which case the ideal distribution is 2−nχ2, and assume
that E(2−nχ2) ≤ E((Ck(α,β))2), where E denotes the mean of the distributions. The
following is a simple way to perform a linear distinguishing attack [64].

• Fix a threshold value τ .

• Obtain a set T of N random plaintext-ciphertext pairs from the block cipher,
and calculate the undersampled linear correlation Ck,T(α,β) as in Equation 3.2.

• If (Ck,T(α,β))
2 < τ , assume that the block cipher is ideal. If (Ck,T(α,β))

2 ≥ τ assume
otherwise.

For a statistical distinguishing attack like the above, we are primarily interested in
two things: how often we correctly classify a non-ideal cipher as such (true positive),
and how often we erroneously classify an ideal cipher as non-ideal (false positive).
Clearly, this depends on τ and the distribution of Ck,T(α,β). We express these rates, and
thus the effectiveness of the distinguisher, using the notions of success probability
and advantage.

17

3 Linear Cryptanalysis

Definition 3.6 (Success Probability and Advantage [93]). For a linear distinguisher
as described above, we define the success probability as

pS = Pr
(

(Ck,T(α,β))
2 ≥ τ | E is not ideal

)
,

and the advantage as

a = − log2

(
Pr
(

(Ck,T(α,β))
2 ≥ τ | E is ideal

))
.

These concepts are illustrated in Figure 3.3. Typically, an attacker will fix the
success probability and calculate the corresponding threshold value and advantage.
While the motivation for the definition of the success probability is clear in the
distinguishing setting, the advantage primarily plays a role when we want to use the
distinguisher as part of a key recovery attack.

Linear Key Recovery Consider an iterative block cipher with r rounds as given in
Definition 2.3. We now define a reduced version of the cipher with r − 1 rounds, i.e.

E ′k = f
kr−1
r−1 ◦ . . . ◦ f

k1
1 .

Let gkrr denote the inverse of fkrr and let (α, β) be a linear approximation of E ′k. By
guessing the last round key and applying the distinguishing attack to E ′k, we obtain a
key recovery attack [78]. In more detail, the attack works by using the distinguisher
to filter out bad key guesses as follows.

• Fix a threshold value τ .

• Obtain a set T of N random plaintext-ciphertext pairs from the block cipher
Ek.

• For each guess of kr, apply gkrr to each ciphertext in order to obtain sets Tkr of
potential plaintext-ciphertext pairs of the cipher E ′k.

• For each set of plaintext-ciphertext pairs, calculate Ck,Tkr(α,β) as in Equation 3.2.

• If (Ck,Tkr(α,β))2 < τ , discard the corresponding guess of kr. If (Ck,Tkr(α,β))2 ≥ τ save
the key guess.

In practice, it is usually sufficient to only partially guess kr in order to calculate
C
k,Tkr
(α,β) . Moreover, it is often possible to calculate the encryption key k if one or more

of the round keys are known. Once we have a number of candidates for k, the correct
key can be identified e.g. through trial encryption.
This type of key recovery attack relies on the following hypothesis: if we make a

wrong guess of the last round key, the resulting ciphertext will look random. This
hypothesis formalises the idea that if we decrypt the last round with a wrong key,

18

3.3 Linear Distinguishers and Key Recovery

Key Recovery

x E ′k zr gkrr y gkrr zw

Ek

Right guess of kr Wrong guess of kr

High squared correlation

Low squared correlation

Figure 3.4: Illustration of a key recovery attack against an iterative block cipher Ek
using linear cryptanalysis. Plaintext-ciphertext pairs (x, y) are obtained
and the last round key kr is guessed. For a correct guess, we obtain a set
of pairs (x, zr), whereas for a wrong guess we obtain a set of pairs (x, zw).
A high resulting squared linear correlation indicates a correct guess.

we are essentially adding one round to the cipher. In this case, we are considering an
approximation over r + 1 rounds, instead of r − 1 rounds, which should have a much
weaker correlation. The idea is illustrated in Figure 3.4.

Hypothesis 1 (Wrong-Key Randomisation [29, 57, 63]). Consider a key recovery
attack as described above. If the last round key kr is incorrectly guessed, then Ck,Tkr(α,β)
will be distributed as for an ideal cipher, namely N (0, 2−n + 1

N).

Under this hypothesis, the advantage relates to the number of candidates we get
for the encryption key k. Assume that we guess κ̄ bits during the key recovery attack.
By definition of the advantage we expect 2κ̄ · 2−a key guesses to survive the filtering
described in the attack above. If we assume that guessing the remaining κ− κ̄ bits
allows us to determine a candidate for k, then the number of candidates we get is

2κ̄ · 2−a · 2κ−κ̄ = 2κ−a.

Thus, the attack effectively reduces the size of the key space by a bits [93]. Since, for
a given threshold value, the advantage is entirely determined by the distribution of
Ck,T(α,β), determining this distribution, or at least obtaining a good estimate of it, is
essential to linear cryptanalysis.

Note that the above exposition is only one way of performing and analysing a linear
key recovery attack. One alternative way of performing the attack is to rank each
key candidate by the magnitude of (Ck,Tkr(α,β))2, and then search the list of candidates
from highest to lowest correlation. This approach was originally taken in [79] and
analysed in [64, 93], amongst others. Alternatively, if the linear approximation has a

19

3 Linear Cryptanalysis

single trail whose correlation contribution is much larger than that of any other trail,
the sign of Ck,Tkr(α,β) can also be used to deduce some bits of the key [78].

3.4 Using Multiple Approximations
Many extensions to the basic linear cryptanalysis described above have been proposed,
but we will focus on those using several approximations simultaneously. Attacks that
exploit several approximations at the same time are usually split into two categories:
multiple linear attacks and multidimensional linear attacks. In short, the difference
between these two types lies mainly in the assumptions made about the statistical
behaviour of the linear correlations, and the type of sets of approximations they use.

3.4.1 Multiple Linear Cryptanalysis
The idea of using multiple linear approximations simultaneously to improve linear
attacks was first proposed in [62] and was later extended in [17]. These works propose
using a set of linear approximations

A = {(α1, β1), . . . , (αM , βM)},

and its corresponding vector of linear correlations

CkA = (Ck(α1,β1), . . . , C
k
(αM ,βM)).

The goal is then essentially to distinguish the M -variate distribution of CkA over keys
from the corresponding M -variate distribution for an ideal block cipher. While [17]
did describe how the location of a correlation measurement (Ck,T(α1,β1), . . . , C

k,T
(αM ,βM))

in an M -dimensional space can be used to reveal some information about the key, it
is more common to calculate some univariate distribution from the distribution of
CkA. Indeed, [17] introduced the notion of capacity as a measure of the “combined
correlation” of the M approximations, defined as the sum of squared correlations:

Ck =
M∑
i=1

(Ck(αi,βi))
2.

Note that it is straightforward to generalise the attack description of Section 3.3 to the
case of multiple approximations by simply replacing (Ck,T(α,β))

2 with a measurement of
the capacity. However, in general it is highly non-trivial to determine the distribution
of CkA over keys, and thus also the distribution of Ck, making it difficult to evaluate
the effectiveness of such an attack. Therefore, both [62] and [17] assume that the
approximations in A are statistically independent, facilitating their analysis. For
this reason, the term multiple linear cryptanalysis is usually associated with this
independence assumption.

20

3.5 Other Extensions

3.4.2 Multidimensional Linear Cryptanalysis
In order to eliminate the assumption of statistical independence made for multiple
linear cryptanalysis, an alternative approach was proposed in [35, 59]. This approach,
called multidimensional linear cryptanalysis, builds on the earlier work [4]. Instead
of considering linear approximations directly, multidimensional linear cryptanalysis
considers the value of x‖Ek(x) ∈ F2n

2 , where ‖ denotes concatenation, restricted to
some subspace of F2n

2 . Specifically, let A be a dA × n matrix whose rows are linearly
independent and have Hamming weight 1, and B a dB × n matrix with identical
constraints. Then the function

h(A,B)(x‖Ek(x)) = A · x‖B · Ek(x),

maps x‖Ek(x) to a d = dA + dB dimensional subspace of F2n
2 by selecting dA

components of x and dB components of Ek(x). We now consider the probability
that h(A,B)(x‖Ek(x)) takes on a specific value in Fd2, that is, we define a d-variate
probability distribution ηk = (ηk0 , . . . , ηk2d−1) by

ηki = Pr
x∈Fn2

(
h(A,B)(x‖Ek(x)) = i

)
for i ∈ Fd2.

We say that (A,B) is a d-dimensional linear approximation, and the rows of A and
B are called basis approximations. It can be shown that this multidimensional
approximation is equivalent to the set of 2d − 1 non-zero, one-dimensional linear
approximations spanned by the basis approximations [59]. In particular, the capacity
of these 2d − 1 approximations can be calculated as

Ck = 2d
2d−1∑
i=1

(ηki − 2−d)2.

Since the ηki are independent, with the restriction that they sum to 1 for any
k, this potentially allows us to determine the distribution of Ck over keys without
assuming independence of the involved approximations. Indeed, since its introduction,
multidimensional linear cryptanalysis has given rise to a number of attacks on block
ciphers [34, 36].

3.5 Other Extensions
Some other flavours of linear cryptanalysis have been proposed. As an analogue
to impossible differentials, zero-correlation linear cryptanalysis [28] uses linear ap-
proximations that have correlation exactly zero for all keys. While the basic variant
requires a high data complexity in order to measure the correlation of such an
approximation exactly, a variant that uses multiple zero-correlation approximations
is able to decrease the amount of plaintext-ciphertext pairs needed [30].

21

3 Linear Cryptanalysis

A related-key variant of linear cryptanalysis, the key difference invariant bias
attack [23], has also been developed. This variant uses approximations which have
the same correlation value between two keys that exhibit a specific difference.
While most work on linear cryptanalysis assumes that plaintexts are drawn ran-

domly with replacement from Fn2 , some works have considered settings where the
plaintexts a drawn without replacement [21, 26]. Additionally, a recent publication
suggests filtering the plaintexts in order to achieve a higher correlation [15].

A number of different generalisations of linear cryptanalysis have been considered.
In particular, several ways of replacing the linear expressions in the input and output
bits with non-linear expressions in these bits have been proposed [37, 57, 58, 70, 96].
In a similar vein, the idea of using expressions over groups or fields other than F2
has also been explored [5, 45, 65, 90].
Combining linear approximations with differentials in the so-called differential-

linear attack has also proven useful in some cases [13, 73]. Finally, several connections
to other attacks have been made, such as differential cryptanalysis [22, 31], integral
cryptanalysis [97], and statistical saturation attacks [75].

22

4 Contributions of Publications
Part II of this thesis presents four papers that further the field of linear cryptanalysis.
In the following, we give an overview of the contributions of these works. As
explained in Chapter 3, determining the distribution of the linear correlation of an
approximation is essential in order to estimate the effectiveness of a linear attack.
In principle, Theorem 3.5 solves this problem, however applying it is infeasible in
practically every interesting scenario. Thus, various simplifying assumptions have
been made throughout the history of linear cryptanalysis.
As a starting point, it was often assumed that a linear approximation had a

dominating trail, meaning a trail with a much larger correlation contribution than
all other trails. Thus, Equation 3.1 could be estimated just from this trail. While
this assumption simplifies analysis, it is not strictly true in practice, and it has
been shown that the effect of multiple trails can be very strong for some ciphers [75,
89]. Other common assumptions in early linear cryptanalysis were that the linear
correlation was virtually the same for all values of the key, and that the round keys
were independent. These assumptions greatly simplify analysis, especially in the case
of multiple/multidimensional linear cryptanalysis. In recent years, much work has
been done on removing these types of simplifying assumptions [20, 21, 29, 60, 87].
The papers presented in Part II are part of this effort.

Building Tools The starting point of our work is essentially the signal/noise de-
composition proposed in [29] and used in e.g. [20]. In this model, we assume that
we know a set S (the signal) of linear trails of the approximation that have a large
correlation contribution. We then define the signal correlation as

CkS =
∑
U∈S

CkU .

The distribution of Ck(α,β) is then approximated by assuming that the remaining
trails behave like noise. That is, we make the approximation

Ck(α,β) ≈ C
k
S +N (0, 2−n).

Ideally, we want to know as large a set of signal trails as possible. This motivates the
work done in the paper Generating Graphs Packed with Paths (Publication 3), where
we present a new algorithm for linear trail search. While many other algorithms with
this purpose have been presented in the literature, their complexity is almost always
linear in the number of trails, which quickly becomes a problem if a good signal set

23

4 Contributions of Publications

is very large. In contrast, our algorithm is specifically designed to avoid this problem,
which we demonstrate by finding as much a 2112 trails for the block cipher PUFFIN
[33]. In addition, we also present an efficient algorithm for sampling from the signal
distribution, directly facilitating the use of the signal/noise decomposition model.
This algorithm also allows for sampling of correlations for multiple approximations
simultaneously, without any assumptions on the round keys.

Refining Models The aforementioned algorithms make it easier to take a more
computational approach to linear cryptanalysis. We can now draw observations from
the distribution of Ck(α,β) or from the distribution of its multivariate equivalent

Ck
A = (Ck(α1,β1), . . . , C

k
(αM ,βM)),

without making any assumptions about statistical independence of approximations,
trails, or round keys. In Multivariate Profiling of Hulls for Linear Cryptanalysis
(Publication 2) we build a model for multiple linear cryptanalysis in this framework,
called the multivariate profiling model. The big advantage of this model is that it
makes no a priori assumptions about the shape or dependence structure of the signal
distribution. In principle, it is therefore able to express any distribution Ck

A might
have, with the single limitation that the approximations are linearly independent.
We analyse the block cipher present [25] in this new model, and demonstrate that
the key-schedule of the cipher does have an effect on the shape of the multivariate
distribution of Ck

A. Then, we present a new attack on 27 out of 31 rounds of the
cipher.

Exploring Correlations While the linear approximations of present are somewhat
well behaved, meaning that they are approximately jointly normally distributed,
we revisit linear cryptanalysis of DES [55] in Linear Cryptanalysis of DES with
Asymmetries (Publication 1) and find that the situation here is more complicated.
Indeed, we show that the signal distribution can be expressed as a multivariate
normal mixture, leading to a special case of the multivariate profiling model. More
surprisingly, we find sets of approximations for which the correlation distributions are
not symmetric around zero, as one would expect if assuming statistical independence
of the approximations. We propose using a likelihood-ratio approach in order to fully
exploit these asymmetries during an attack, and as a result we present a multiple
linear attack on full DES which improves both time and data complexity of previous
attacks.

Inspired by the above observations, the paper On Linear Correlation Distributions:
More Instructive Examples (Publication 4) takes a closer look at how the shape of
correlation distributions impacts our ability to attack a cipher. We compare the
advantage obtained using multiple approximations under various standard indepen-
dence assumptions against the advantage obtained using the multivariate profiling
model. Interestingly, we find that for ciphers that fit in the normal mixture model,
the exact configuration of the mixture components has a significant impact on the

24

advantage. Specifically, we find both cases where the advantage in the profiling model
is significantly higher than when using independence assumptions, and cases where
it is significantly lower. We also find one case, the block cipher RECTANGLE [105],
for which the correlation distribution is highly non-normal, severely decreasing the
advantage.
In conclusion, the papers presented in the following provide new tools and mod-

els for accurately assessing the effectiveness of linear cryptanalysis using multiple
approximations. They furthermore demonstrate that the cryptanalyst should take
care when creating a new attack, as the behaviour of linear correlations seems to be
highly dependent on the cipher. Indeed, there is still much work to be done before
we fully understand these attacks.

Future Challenges While the publications presented in the following are a good
step in the direction of a deeper understanding of linear cryptanalysis, there are also
many open questions left to answer. Chief amongst these is perhaps the problem of
an appropriate wrong-key randomisation hypothesis in the multiple/multidimensional
case. While it is clear that the marginal correlation distributions of CKA over keys
are normal, following Theorem 3.3, it is an open problem exactly how the joint
distribution looks. Indeed, it is currently unknown whether two linearly independent
approximations of an ideal cipher are also statistically independent. The question of
what the dependence structure of two linearly dependent approximations looks like
seems even harder to tackle. Solving this problem would effectively bridge the gap
between multiple and multidimensional linear cryptanalysis, allowing for the use of
completely arbitrary sets of approximations.
In a similar vein, it is unclear what exactly causes the sometimes large deviation

from normality of the multivariate correlation distributions observed for some ciphers,
as demonstrated in e.g. Publication 4. In particular, it would be interesting to
explore how different design decisions influence these distributions. A first target
for this type of research could be to examine the effect of the of key schedule on
multiple linear cryptanalysis more closely. A more complex task would be to examine
exactly how the choice of linear layer in an SPN cipher affects the clustering of linear
trails and ultimately the shape of the joint correlation distribution. Related to such
work, new attack techniques that more directly exploit the shape of the correlation
distributions could be investigated.
Lastly, seeing that Theorem 3.5 in large part enables the work we have done on

correlation distributions for SPN ciphers, it would be interesting to develop a similar
result for differential cryptanalysis. For that type of attack, it is largely unknown
exactly how the key influences the statistical behaviour of differentials. Thus, it
would be interesting to attempt to reduce the number of assumptions in this setting
as well, and then reevaluate old attacks.

25

Bibliography
[1] ISO/IEC 9797-1:2011. “Information technology – Security techniques – Mes-

sage Authentication Codes (MACs) – Part 1: Mechanisms using a block
cipher”. In: (1999).

[2] Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx, Bart Men-
nink, Mridul Nandi, Elmar Tischhauser, and Kan Yasuda. “COLM v1”. In:
Submission to the CAESAR competition (2016).

[3] Kazumaro Aoki and Yu Sasaki. “Preimage Attacks on One-Block MD4, 63-
Step MD5 and More”. In: Selected Areas in Cryptography, SAC 2008. 2008,
pp. 103–119.

[4] Thomas Baignères, Pascal Junod, and Serge Vaudenay. “How Far Can We Go
Beyond Linear Cryptanalysis?” In: Advances in Cryptology - ASIACRYPT
2004. 2004, pp. 432–450.

[5] Thomas Baignères, Jacques Stern, and Serge Vaudenay. “Linear Cryptanalysis
of Non Binary Ciphers”. In: Selected Areas in Cryptography, SAC 2007. 2007,
pp. 184–211.

[6] Daniel J. Bernstein. “The Salsa20 Family of Stream Ciphers”. In: New Stream
Cipher Designs - The eSTREAM Finalists. 2008, pp. 84–97.

[7] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa Massolino,
Florian Mendel, Kashif Nawaz, Tobias Schneider, Peter Schwabe, François-
Xavier Standaert, Yosuke Todo, and Benoît Viguier. “Gimli : A Cross-Platform
Permutation”. In: Cryptographic Hardware and Embedded Systems - CHES
2017. 2017, pp. 299–320.

[8] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. “Farfalle: Parallel Permutation-Based Cryptography”.
In: IACR Trans. Symmetric Cryptol. 2017.4 (2017), pp. 1–38.

[9] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “Du-
plexing the Sponge: Single-Pass Authenticated Encryption and Other Ap-
plications”. In: Selected Areas in Cryptography, SAC 2011. 2011, pp. 320–
337.

[10] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. “Sponge
Functions”. In: ECRYPT Hash Workshop. Vol. 2007. 9. 2007.

[11] Eli Biham. “New Types of Cryptanalytic Attacks Using Related Keys”. In:
Journal of Cryptology 7.4 (1994), pp. 229–246.

27

Bibliography

[12] Eli Biham, Alex Biryukov, and Adi Shamir. “Cryptanalysis of Skipjack Re-
duced to 31 Rounds Using Impossible Differentials”. In: Advances in Cryptology
- EUROCRYPT ’99. 1999, pp. 12–23.

[13] Eli Biham, Orr Dunkelman, and Nathan Keller. “Enhancing Differential-
Linear Cryptanalysis”. In: Advances in Cryptology - ASIACRYPT 2002. 2002,
pp. 254–266.

[14] Eli Biham, Orr Dunkelman, and Nathan Keller. “The Rectangle Attack -
Rectangling the Serpent”. In: Advances in Cryptology - EUROCRYPT 2001.
2001, pp. 340–357.

[15] Eli Biham and Stav Perle. “Conditional Linear Cryptanalysis – Cryptanalysis
of DES with Less Than 242 Complexity”. In: IACR Transactions on Symmetric
Cryptology 2018.3 (2018), pp. 215–264.

[16] Eli Biham and Adi Shamir. “Differential Cryptanalysis of DES-like Cryptosys-
tems”. In: Advances in Cryptology - CRYPTO ’90. 1990, pp. 2–21.

[17] Alex Biryukov, Christophe De Cannière, and Michaël Quisquater. “On Multiple
Linear Approximations”. In: Advances in Cryptology - CRYPTO 2004. 2004,
pp. 1–22.

[18] Alex Biryukov and Adi Shamir. “Structural Cryptanalysis of SASAS”. In:
Advances in Cryptology - EUROCRYPT 2001. 2001, pp. 394–405.

[19] John Black and Phillip Rogaway. “A Block-Cipher Mode of Operation for
Parallelizable Message Authentication”. In: Advances in Cryptology - EURO-
CRYPT 2002. 2002, pp. 384–397.

[20] Céline Blondeau and Kaisa Nyberg. “Improved Parameter Estimates for Corre-
lation and Capacity Deviates in Linear Cryptanalysis”. In: IACR Transactions
on Symmetric Cryptology 2016.2 (2016), pp. 162–191.

[21] Céline Blondeau and Kaisa Nyberg. “Joint Data and Key Distribution of
Simple, Multiple, and Multidimensional Linear Cryptanalysis Test Statistic
and its Impact to Data Complexity”. In: Designs, Codes and Cryptography
82.1-2 (2017), pp. 319–349.

[22] Céline Blondeau and Kaisa Nyberg. “New Links between Differential and
Linear Cryptanalysis”. In: Advances in Cryptology - EUROCRYPT 2013. 2013,
pp. 388–404.

[23] Andrey Bogdanov, Christina Boura, Vincent Rijmen, Meiqin Wang, Long
Wen, and Jingyuan Zhao. “Key Difference Invariant Bias in Block Ciphers”.
In: Advances in Cryptology - ASIACRYPT 2013. 2013, pp. 357–376.

[24] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. “Biclique
Cryptanalysis of the Full AES”. In: Advances in Cryptology - ASIACRYPT
2011. 2011, pp. 344–371.

28

Bibliography

[25] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
“PRESENT: An Ultra-Lightweight Block Cipher”. In: Cryptographic Hardware
and Embedded Systems - CHES 2007. 2007, pp. 450–466.

[26] Andrey Bogdanov, Gregor Leander, Kaisa Nyberg, and Meiqin Wang. “Inte-
gral and Multidimensional Linear Distinguishers with Correlation Zero”. In:
Advances in Cryptology - ASIACRYPT 2012. 2012, pp. 244–261.

[27] Andrey Bogdanov and Christian Rechberger. “A 3-Subset Meet-in-the-Middle
Attack: Cryptanalysis of the Lightweight Block Cipher KTANTAN”. In:
Selected Areas in Cryptography, SAC 2010. 2010, pp. 229–240.

[28] Andrey Bogdanov and Vincent Rijmen. “Linear Hulls with Correlation Zero
and Linear Cryptanalysis of Block Ciphers”. In: Designs, Codes and Cryptog-
raphy 70.3 (2014), pp. 369–383.

[29] Andrey Bogdanov and Elmar Tischhauser. “On the Wrong Key Randomisation
and Key Equivalence Hypotheses in Matsui’s Algorithm 2”. In: Fast Software
Encryption, FSE 2013. 2013, pp. 19–38.

[30] Andrey Bogdanov and Meiqin Wang. “Zero Correlation Linear Cryptanalysis
with Reduced Data Complexity”. In: Fast Software Encryption, FSE 2012.
2012, pp. 29–48.

[31] Florent Chabaud and Serge Vaudenay. “Links Between Differential and Linear
Cryptanalysis”. In: Advances in Cryptology - EUROCRYPT ’94. 1994, pp. 356–
365.

[32] David Chaum and Jan-Hendrik Evertse. “Crytanalysis of DES with a Re-
duced Number of Rounds: Sequences of Linear Factors in Block Ciphers”. In:
Advances in Cryptology - CRYPTO ’85. 1985, pp. 192–211.

[33] Huiju Cheng, Howard M. Heys, and Cheng Wang. “PUFFIN: A Novel Compact
Block Cipher Targeted to Embedded Digital Systems”. In: 11th Euromicro
Conference on Digital System Design: Architectures, Methods and Tools, DSD
2008. 2008, pp. 383–390.

[34] Joo Yeon Cho. “Linear Cryptanalysis of Reduced-Round PRESENT”. In:
Topics in Cryptology - CT-RSA 2010. 2010, pp. 302–317.

[35] Joo Yeon Cho, Miia Hermelin, and Kaisa Nyberg. “A New Technique for
Multidimensional Linear Cryptanalysis with Applications on Reduced Round
Serpent”. In: Information Security and Cryptology - ICISC 2008. 2008, pp. 383–
398.

[36] Joo Yeon Cho and Kaisa Nyberg. “Improved Linear Cryptanalysis of SMS4
Block Cipher”. In: Symmetric Key Encryption Workshop. 2011, pp. 1–14.

[37] Nicolas Courtois. “Feistel Schemes and Bi-Linear Cryptanalysis”. In: Advances
in Cryptology - CRYPTO 2004. 2004, pp. 23–40.

29

Bibliography

[38] Nicolas Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir. “Effi-
cient Algorithms for Solving Overdefined Systems of Multivariate Polynomial
Equations”. In: Advances in Cryptology - EUROCRYPT 2000. 2000, pp. 392–
407.

[39] Nicolas Courtois and Josef Pieprzyk. “Cryptanalysis of Block Ciphers with
Overdefined Systems of Equations”. In: Advances in Cryptology - ASIACRYPT
2002. 2002, pp. 267–287.

[40] Joan Daemen. Cipher and Hash Function Design, Strategies Based on Linear
and Differential Cryptanalysis, PhD Thesis. http://jda.noekeon.org/.
K.U.Leuven, 1995.

[41] Joan Daemen, René Govaerts, and Joos Vandewalle. “A New Approach to
Block Cipher Design”. In: Fast Software Encryption, 1993. 1993, pp. 18–32.

[42] Joan Daemen, René Govaerts, and Joos Vandewalle. “Correlation Matrices”.
In: Fast Software Encryption, 1994. 1994, pp. 275–285.

[43] Joan Daemen, Seth Hoffert, Gilles Van Assche, and Ronny Van Keer. “Xoodoo
Cookbook”. In: IACR Cryptology ePrint Archive 2018 (2018), p. 767.

[44] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. “The Block Cipher
Square”. In: Fast Software Encryption, FSE ’97. 1997, pp. 149–165.

[45] Joan Daemen and Vincent Rijmen. “Correlation Analysis in GF(2n)”. In:
Advanced Linear Cryptanalysis of Block and Stream Ciphers. 2011, pp. 115–
131.

[46] Joan Daemen and Vincent Rijmen. “Probability Distributions of Correlation
and Differentials in Block Ciphers”. In: Journal of Mathematical Cryptology
1.3 (2007), pp. 221–242.

[47] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002. isbn: 3-540-42580-2.

[48] Whitfield Diffie and Martin E Hellman. “Privacy and Authentication: An
Introduction to Cryptography”. In: Proceedings of the IEEE 67.3 (1979),
pp. 397–427.

[49] Whitfield Diffie and Martin E. Hellman. “Special Feature Exhaustive Crypt-
analysis of the NBS Data Encryption Standard”. In: IEEE Computer 10.6
(1977), pp. 74–84.

[50] Itai Dinur and Adi Shamir. “Cube Attacks on Tweakable Black Box Poly-
nomials”. In: Advances in Cryptology - EUROCRYPT 2009. 2009, pp. 278–
299.

[51] Morris J Dworkin. Recommendation for Block Cipher Modes of Operation:
Galois/Counter Mode (GCM) and GMAC. Tech. rep. 2007.

30

http://jda.noekeon.org/

Bibliography

[52] William F Ehrsam, Carl HW Meyer, John L Smith, and Walter L Tuchman.
Message Verification and Transmission Error Detection by Block Chaining.
US Patent 4,074,066. 1978.

[53] Let’s Encrypt. Percentage of Web Pages Loaded by Firefox Using HTTPS.
https://letsencrypt.org/stats/. Retrived on 21/09/2018.

[54] Dave Evans. “The Internet of Things: How the Next Evolution of the Internet
is Changing Everything”. In: CISCO white paper 1.2011 (2011), pp. 1–11.

[55] PUB FIPS. “46-3: Data Encryption Standard (DES)”. In: National Institute
of Standards and Technology 25.10 (1999), pp. 1–22.

[56] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel,
Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. “Grøstl - A
SHA-3 Candidate”. In: Symmetric Cryptography, 11.01. - 16.01.2009. 2009.

[57] Carlo Harpes, Gerhard G. Kramer, and James L. Massey. “A Generalization
of Linear Cryptanalysis and the Applicability of Matsui’s Piling-Up Lemma”.
In: Advances in Cryptology - EUROCRYPT ’95. 1995, pp. 24–38.

[58] Carlo Harpes and James L. Massey. “Partitioning Cryptanalysis”. In: Fast
Software Encryption, FSE ’97. 1997, pp. 13–27.

[59] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. “Multidimensional Linear
Cryptanalysis of Reduced Round Serpent”. In: Information Security and
Privacy, ACISP 2008. 2008, pp. 203–215.

[60] Jialin Huang, Serge Vaudenay, Xuejia Lai, and Kaisa Nyberg. “Capacity
and Data Complexity in Multidimensional Linear Attack”. In: Advances in
Cryptology - CRYPTO 2015. 2015, pp. 141–160.

[61] Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and E Kobayashi.
CLOC and SILC v3. 2016.

[62] Burton S. Kaliski Jr. and Matthew J. B. Robshaw. “Linear Cryptanalysis
Using Multiple Approximations”. In: Advances in Cryptology - CRYPTO ’94.
1994, pp. 26–39.

[63] Pascal Junod. “On the Complexity of Matsui’s Attack”. In: Selected Areas in
Cryptography, SAC 2001. 2001, pp. 199–211.

[64] Pascal Junod and Serge Vaudenay. “Optimal Key Ranking Procedures in
a Statistical Cryptanalysis”. In: Fast Software Encryption, FSE 2003. 2003,
pp. 235–246.

[65] John Kelsey, Bruce Schneier, and David A. Wagner. “Mod n Cryptanalysis,
with Applications Against RC5P and M6”. In: Fast Software Encryption, FSE
’99. 1999, pp. 139–155.

[66] Auguste Kerckhoffs. “La Cryptographie Militaire”. In: Journal des Sciences
Militaires IX (1883).

31

https://letsencrypt.org/stats/

Bibliography

[67] Lars Knudsen. “DEAL – A 128-bit Block Cipher”. In: complexity 258.2 (1998),
p. 216.

[68] Lars R. Knudsen. “Truncated and Higher Order Differentials”. In: Fast Soft-
ware Encryption, 1994. 1994, pp. 196–211.

[69] Lars R. Knudsen and Matthew Robshaw. The Block Cipher Companion.
Information Security and Cryptography. Springer, 2011.

[70] Lars R. Knudsen and Matthew J. B. Robshaw. “Non-Linear Approximations
in Linear Cryptanalysis”. In: Advances in Cryptology - EUROCRYPT ’96.
1996, pp. 224–236.

[71] Lars R. Knudsen and David A. Wagner. “Integral Cryptanalysis”. In: Fast
Software Encryption, FSE 2002. 2002, pp. 112–127.

[72] Xuejia Lai. “Higher Order Derivatives and Differential Cryptanalysis”. In:
Communications and Cryptography. Springer, 1994, pp. 227–233.

[73] Susan K. Langford and Martin E. Hellman. “Differential-Linear Cryptanalysis”.
In: Advances in Cryptology - CRYPTO ’94. 1994, pp. 17–25.

[74] Daniel Lazard. “Gröbner-Bases, Gaussian Elimination and Resolution of
Systems of Algebraic Equations”. In: Computer Algebra, EUROCAL ’83. 1983,
pp. 146–156.

[75] Gregor Leander. “On Linear Hulls, Statistical Saturation Attacks, PRESENT
and a Cryptanalysis of PUFFIN”. In: Advances in Cryptology - EUROCRYPT
2011. 2011, pp. 303–322.

[76] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik
Zenner. “A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack”.
In: Advances in Cryptology - CRYPTO 2011. 2011, pp. 206–221.

[77] Stefan Lucks. “The Saturation Attack - A Bait for Twofish”. In: Fast Software
Encryption, FSE 2001. 2001, pp. 1–15.

[78] Mitsuru Matsui. “Linear Cryptanalysis Method for DES Cipher”. In: Advances
in Cryptology - EUROCRYPT ’93. 1993, pp. 386–397.

[79] Mitsuru Matsui. “The First Experimental Cryptanalysis of the Data Encryp-
tion Standard”. In: Advances in Cryptology - CRYPTO ’94. 1994, pp. 1–
11.

[80] Mitsuru Matsui and Atsuhiro Yamagishi. “A New Method for Known Plaintext
Attack of FEAL Cipher”. In: Advances in Cryptology - EUROCRYPT ’92.
1992, pp. 81–91.

[81] Alfred Menezes, Paul C. van Oorschot, and Scott A. Vanstone. Handbook of
Applied Cryptography. CRC Press, 1996. isbn: 0-8493-8523-7.

[82] Ralph Merkle. “Secrecy, Authentication, and Public Key Systems”. In: Ph. D.
Thesis, Stanford University (1979).

32

Bibliography

[83] Kazuhiko Minematsu. “AES-OTR v3. 1”. In: NEC Corporation, Japan. Sub-
mission to CAESAR (2016).

[84] Judy H. Moore and Gustavus J. Simmons. “Cycle Structures of the DES
with Weak and Semi-Weak Keys”. In: Advances in Cryptology - CRYPTO ’86.
1986, pp. 9–32.

[85] S. Murphy. “The Independence of Linear Approximations in Symmetric
Cryptanalysis”. In: IEEE Transactions on Information Theory 52.12 (2006),
pp. 5510–5518.

[86] Kaisa Nyberg. “Linear Approximation of Block Ciphers”. In: Advances in
Cryptology - EUROCRYPT ’94. 1994, pp. 439–444.

[87] Kaisa Nyberg. “Statistical and Linear Independence of Binary Random Vari-
ables”. In: IACR Cryptology ePrint Archive 2017 (2017), p. 432.

[88] Luke O’Connor. “Properties of Linear Approximation Tables”. In: Fast Soft-
ware Encryption 1994. 1994, pp. 131–136.

[89] Kenji Ohkuma. “Weak Keys of Reduced-Round PRESENT for Linear Crypt-
analysis”. In: Selected Areas in Cryptography, SAC 2009. 2009, pp. 249–265.

[90] Matthew G Parker. “Generalised S-box Nonlinearity”. In: NESSIE Public
Document-NES/DOC/UIB/WP5/020/A (2003).

[91] Phillip Rogaway, Mihir Bellare, and John Black. “OCB: A Block-Cipher Mode
of Operation for Efficient Authenticated Encryption”. In: ACM Transactions
on Information and System Security 6.3 (2003), pp. 365–403.

[92] Sondre Rønjom, Navid Ghaedi Bardeh, and Tor Helleseth. “Yoyo Tricks with
AES”. In: Advances in Cryptology - ASIACRYPT 2017. 2017, pp. 217–243.

[93] Ali Aydin Selçuk. “On Probability of Success in Linear and Differential
Cryptanalysis”. In: Journal of Cryptology 21.1 (2008), pp. 131–147.

[94] Claude E Shannon. A Mathematical Theory of Cryptography. https://www.
iacr.org/museum/shannon45.html. 1945.

[95] Claude E Shannon. “Communication Theory of Secrecy Systems”. In: Bell
System Technical Journal 28.4 (1949), pp. 656–715.

[96] Takeshi Shimoyama and Toshinobu Kaneko. “Quadratic Relation of S-box
and Its Application to the Linear Attack of Full Round DES”. In: Advances
in Cryptology - CRYPTO ’98. 1998, pp. 200–211.

[97] Bing Sun, Zhiqiang Liu, Vincent Rijmen, Ruilin Li, Lei Cheng, Qingju Wang,
Hoda AlKhzaimi, and Chao Li. “Links Among Impossible Differential, Integral
and Zero Correlation Linear Cryptanalysis”. In: Advances in Cryptology -
CRYPTO 2015. 2015, pp. 95–115.

[98] Yosuke Todo. “Structural Evaluation by Generalized Integral Property”. In:
Advances in Cryptology - EUROCRYPT 2015. 2015, pp. 287–314.

33

https://www.iacr.org/museum/shannon45.html
https://www.iacr.org/museum/shannon45.html

Bibliography

[99] Yosuke Todo, Gregor Leander, and Yu Sasaki. “Nonlinear Invariant Attack -
Practical Attack on Full SCREAM, iSCREAM, and Midori64”. In: Advances
in Cryptology - ASIACRYPT 2016. 2016, pp. 3–33.

[100] David A. Wagner. “The Boomerang Attack”. In: Fast Software Encryption,
FSE ’99. 1999, pp. 156–170.

[101] Lei Wei, Christian Rechberger, Jian Guo, Hongjun Wu, Huaxiong Wang, and
San Ling. “Improved Meet-in-the-Middle Cryptanalysis of KTANTAN”. In:
Information Security and Privacy, ACISP 2011. 2011, pp. 433–438.

[102] D Whiting, R Housley, and N Ferguson. “RFC 3610, Counter with CBC-MAC
(CCM)”. In: Internet Engineering Task Force (2003).

[103] Robert S. Winternitz. “A Secure One-Way Hash Function Built from DES”.
In: Proceedings of the 1984 IEEE Symposium on Security and Privacy. 1984,
pp. 88–90.

[104] Hongjun Wu and Tao Huang. “The JAMBU Lightweight Authentication En-
cryption Mode (v2. 1)”. In: Submitted to the CAESAR competition (September
2016) (2016).

[105] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang,
and Ingrid Verbauwhede. “RECTANGLE: A Bit-Slice Lightweight Block
Cipher Suitable for Multiple Platforms”. In: SCIENCE CHINA Information
Sciences 58.12 (2015), pp. 1–15.

34

Part II

Publications

35

Publication 1

Linear Cryptanalysis of DES with
Asymmetries

Publication Information
Andrey Bogdanov and Philip S. Vejre. “Linear Cryptanalysis of DES with
Asymmetries”. In: Advances in Cryptology - ASIACRYPT 2017. Ed. by Tsuyoshi
Takagi and Thomas Peyrin. Vol. 10624. Lecture Notes in Computer Science.
Springer, 2017, pp. 187–216. isbn: 978-3-319-70693-1

Contribution
• Main author.

Remarks
This publication has been slightly edited to fit the format.

37

Linear Cryptanalysis of DES with Asymmetries

Andrey Bogdanov and Philip S. Vejre

Technical University of Denmark

Abstract. Linear cryptanalysis of DES, proposed by Matsui in 1993,
has had a seminal impact on symmetric-key cryptography, having seen
massive research efforts over the past two decades. It has spawned
many variants, including multidimensional and zero-correlation linear
cryptanalysis. These variants can claim best attacks on several ciphers,
including present, Serpent, and CLEFIA. For DES, none of these
variants have improved upon Matsui’s original linear cryptanalysis,
which has been the best known-plaintext key-recovery attack on the
cipher ever since. In a revisit, Junod concluded that when using 243

known plaintexts, this attack has a complexity of 241 DES evaluations.
His analysis relies on the standard assumptions of right-key equivalence
and wrong-key randomisation.
In this paper, we first investigate the validity of these fundamental
assumptions when applied to DES. For the right key, we observe that
strong linear approximations of DES have more than just one dominant
trail and, thus, that the right keys are in fact inequivalent with respect
to linear correlation. We therefore develop a new right-key model using
Gaussian mixtures for approximations with several dominant trails. For
the wrong key, we observe that the correlation of a strong approximation
after the partial decryption with a wrong key still shows much non-
randomness. To remedy this, we propose a novel wrong-key model
that expresses the wrong-key linear correlation using a version of DES
with more rounds. We extend the two models to the general case of
multiple approximations, propose a likelihood-ratio classifier based on
this generalisation, and show that it performs better than the classical
Bayesian classifier.
On the practical side, we find that the distributions of right-key corre-
lations for multiple linear approximations of DES exhibit exploitable
asymmetries. In particular, not all sign combinations in the correlation
values are possible. This results in our improved multiple linear attack
on DES using 4 linear approximations at a time. The lowest compu-
tational complexity of 238.86 DES evaluations is achieved when using
242.78 known plaintexts. Alternatively, using 241 plaintexts results in
a computational complexity of 249.75 DES evaluations. We perform
practical experiments to confirm our model. To our knowledge, this is
the best attack on DES.

39

Publication 1 Linear Cryptanalysis of DES with Asymmetries

1 Introduction
Accepted as a standard in 1976 by the National Bureau of Standards (later NIST),
DES can now celebrate its fortieth birthday. Being a highly influential cipher, it has
inspired much cryptanalysis. Triple-DES is still massively deployed in conservative
industries such as banking. Moreover, it is used to secure about 3% of Internet
traffic [26].
The first attack on the full DES came in 1992, where Biham and Shamir demon-

strated that differential cryptanalysis enabled a key recovery using 247 chosen plain-
texts in time 237 [1]. The year after, in 1993, Matsui introduced a new cryptanalytic
technique, linear cryptanalysis, which DES proved especially susceptible to. While
the first iteration of the attack required 247 known plaintexts [20], Matsui soon
improved his attack to only require 243 known texts, taking 243 time to recover the
key. This complexity estimate was lowered to 241 by Junod in 2001 [16]. In [17],
Knudsen and Mathiassen lower the complexity to 242 plaintexts, however this attack
uses chosen plaintexts.
In this paper we present the first successful attack on full DES using multiple

linear approximations. By developing new models for the correlation distributions,
and by exploiting asymmetries in the right-key distribution, we obtain an improved
key-recovery attack. Using 242.78 known plaintexts, the attack recovers the key in
time equal to 238.86 DES encryptions.

1.1 Previous Work and Problems
Linear cryptanalysis has proven to be widely applicable, and has spawned many
variants and generalisations. Amongst them are differential-linear cryptanalysis [18],
multiple linear cryptanalysis [2, 15], multidimensional linear cryptanalysis [13, 14],
zero-correlation linear cryptanalysis [4, 5], multivariate linear cryptanalysis [7], etc.
These techniques have successfully been applied to a wide range of ciphers, including
Serpent [14, 22], present [7, 8], Camellia and CLEFIA [3], and CAST-256 [27].

Matsui first introduced the concept of a linear approximation of a block cipher in
[20]. If we denote the encryption of a plaintext P using key K by C = EK(P), then
a linear approximation of this cipher is a pair of masks, (α, β), which indicate some
bits of the plaintext and ciphertext. The idea is to find α and β such that the sum
of plaintext bits indicated by α is strongly correlated to the sum of ciphertext bits
indicated by β. A measure of the strength of a linear approximation is the linear
correlation, defined by

CK(α, β) = 2 · Pr(〈α, x〉 ⊕ 〈β,EK(x)〉 = 0)− 1,

where 〈·, ·〉 is the canonical inner product. Matsui showed how an approximation
with linear correlation that deviates significantly from zero can be used to attack
the cipher, and found such approximations for DES. The attack procedure was
formalised as Algorithm 2, in which an attacker obtains plaintext-ciphertext pairs

40

1 Introduction

over r rounds of a cipher. The attacker then guesses the outer round keys in order
to encrypt/decrypt the outer rounds, and compute the correlation over r − 2 rounds.

Standard assumptions for linear cryptanalysis on DES

In [16] Junod revisited Matsui’s attack, and concluded that Matsui’s original com-
plexity was slightly overestimated. Junod instead estimated that the attack could be
performed in time 241 using the same number of known plaintexts. Central to both
Matui’s and Junod’s analysis are two assumptions.

Assumption A (Right-Key Equivalence). For a linear approximation (α, β), the
magnitude of the correlation, |CK(α, β)|, does not deviate significantly from its
expected value over all keys, that is, |CK(α, β)| = E(|CK(α, β)|).

Problem 1: Insufficient Right-Key Distribution: The assumption of right-key
equivalence is usually the result of assuming that the magnitude of the linear
correlation is determined by a single dominant trail. This further implies that
the linear correlation only takes on two values over the key space. However, in [23],
Nyberg first introduced the concept of a linear hull, i.e. the collection of all trails of
a linear approximation, and showed that Assumption A is not true in general. In
[6], Bogdanov and Tischhauser gave a refined version of Assumption A, which takes
a larger part of the hull into account. However, to the best of our knowledge, no
thorough exploration of the right-key distribution for DES has been conducted, and
it is unclear how accurate Assumption A is in this context.

Assumption B (Wrong-Key Randomisation). In the context of Algorithm 2, the
correlation of a linear approximation (α, β) is equal to 0 for all wrong guesses of the
outer round keys.

Problem 2: Unrealistic Wrong-Key Distribution: The assumption of wrong-key
randomisation implies that if an attacker guesses the wrong outer round keys in
Algorithm 2, the resulting texts pairs behave in a completely random way, i.e. the
linear correlation will be equal to zero. A refined version of this assumption was given
by Bogdanov and Tischhauser in [6], where the wrong-key distribution was given as
the Gaussian distribution N (0, 2−n), where n is the block size. This distribution
matches that of an ideal permutation. Neither of these assumptions have been verified
for DES. Indeed, DES exhibits very strong linear approximations, and it is not clear
if a wrong key guess is sufficient to make the linear correlation close to that of an
ideal permutation.

Linear cryptanalysis of DES with multiple approximations

While several models for using multiple approximations for linear cryptanalysis have
been proposed, see e.g. [2, 7, 13, 14, 15, 25], the application to DES has been very
limited. In [15], Kaliski and Robshaw specifically note that their approach is limited

41

Publication 1 Linear Cryptanalysis of DES with Asymmetries

when applied to DES. In [25], Semaev presents an alternative approach, but does
not obtain better results than Matsui’s original attack.
The most promising attempt was given in [2] by Biryukov et al. Under Assump-

tion A, when using M approximations, the key space can be partitioned into at
most 2M key classes based on the signs of the M linear correlations. This allowed
Biyukov et al. to describe the correlation of each key class as an M -variate normal
distribution NM (µi, 1/N · I), where I is an M ×M identity matrix, and the mean
vector is given by

µi = (si,1|CK(T1)|, . . . , si,M |CK(TM)|)>,

where si,j ∈ {−1, 1} describes the sign combination of the i’th key class. Based on
this, they developed a Bayesian classifier, in order to decide between a correct or
incorrect guess of the round keys in Algorithm 2.
Problem 3: Applying Multiple Linear Cryptanalysis to DES: While Biryukov et

al. demonstrate that their method of using multiple approximations can potentially
reduce the complexity of Matsui’s attack, they also note that the structure of DES
makes it difficult to arbitrarily use a large number of approximations. As such, they
did not present a new attack on DES. Similar observations were made by Kaliski
and Robshaw in [15]. To the best of our knowledge, no other variants of linear
cryptanalysis which uses multiple approximations have been able to outperform
Matsui’s original attack.

1.2 Our Contributions
More Accurate Right-Key Model for DES.

In Section 3 we consider Problem 1, i.e. the fundamental problem of the DES
right-key distribution. We enumerated over 1000 trails for the linear approximation
used by Matsui, and calculated the resulting correlation distribution for 1 million
keys. We demonstrate in Section 3.2 that while this distribution does have two modes
symmetric around zero, each mode does not consist of a single value, as predicted
by Assumption A. Indeed, it is not even the case that each mode takes on a simple
Gaussian distribution. As such, one cannot consider different keys to have equivalent
behaviour.
We therefore develop a new model for the right-key distribution in Section 3.3.

This model is given below, and expresses the distribution as a mixture of Gaussian
components. An example of this model applied to DES is shown in Figure 1.

Model A (Right-Key Equivalence for One Approximation). Consider a linear
approximation (α, β) of r rounds of DES. The distribution of the linear correlation
CK(α, β) over the key space is approximately given by a Gaussian mixture for some
weights λi and components N (µi, σ2

i), i = 1, . . . , `.

Applying this model to the approximations used by Matsui, we show that it is able
to accurately describe the observed distribution. Moreover, it is interesting to note

42

1 Introduction

Right-key model
(dominant trails)

D
en

si
ty

Linear Correlation

Wrong-key model
(dominant trails)

D
en

si
ty

Linear Correlation

Figure 1: Our new models for the distributions of linear correlation over the key space
for DES. The distributions are expressed as Gaussian mixtures. The model
shows a deviation from the standard assumptions of right-key equivalence
and wrong-key randomisation.

that the component associated with the dominant trail only accounts for 30% of the
correlation, contrasting Assumption A. We furthermore apply the mixture model to
describe the full correlation distribution observed during an attack. We note that
when the number of texts used in the attack is small, the right-key distribution
originally given by Matsui is a good approximation. However, we stress that the
cryptanalyst should carefully examine the right-key distribution when this is not the
case.

New Wrong-Key Model for DES.

In Section 4 we consider Problem 2. In order to obtain a wrong-key model that more
accurately describes the case of a wrong key guess in Algorithm 2, we propose the
following new approach.

Model B (Non-Random Wrong-Key Distribution). Consider an Algorithm 2 style
attack on r rounds of DES using a linear approximation (α, β) over r− 2 rounds. Let
RK be the keyed round function of DES, and let E?K denote the r-round encryption
function. For a wrong guess of the outer round keys, the correlation will be distributed
as for the cipher

E′K(x) = R−1
Ka

(E?K(R−1
Kb

(x))), (1)

where Ka and Kb are chosen uniformly at random.

This model accurately matches the situation of guessing the wrong outer round keys
in an Algorithm 2 attack. We enumerated over 900 trails for the linear approximation

43

Publication 1 Linear Cryptanalysis of DES with Asymmetries

used by Matsui for the cipher E′, and calculated the resulting correlation distribution
for 1 million keys. The result is shown in Figure 1. While the distribution has
mean zero, the shape of the distribution does not match Assumption B, nor that
of the revised version by Bogdanov and Tischhauser, as its variance is much larger
than 2−n. As is the case for the right-key distribution, the wrong-key distribution
is also not a simple Gaussian, but rather some Gaussian mixture. Again, for low
data complexities, we demonstrate that a Gaussian model is sufficient to describe
the wrong-key distribution observed during an attack, but advise caution when the
data complexity is close to full codebook.

Multiple Linear Cryptanalysis with Asymmetries.

In Sections 5 and 6 we remedy Problem 3. We develop a classifier for M approxi-
mations based on the likelihood-ratio of the right-key and wrong-key distributions
developed in Section 3 and Section 4. This classifier is given by

Λ(x) =
∑`
i=1 λiφM (x;µi,Σi + (2−n + 1/N)I)
φM (x; 0,ΣW + (2−n + 1/N)I) ,

where φ is the probability density function (PDF) of the Gaussian distribution. The
wrong-key distribution is a simple M -variate Gaussian. The right-key distribution
is a mixture of at most 2M , M -variate components based on the signs of the M
correlations. In contracts to the work in [2], we do not partition the key space, but
express the correlation distribution over the entire key space. Also in contrast to
this work, our classifier directly takes the wrong-key distribution into account. We
demonstrate how this improves the classifier.

We make the interesting observation that if the right-key distribution is asymmetric,
that is, if the number of components is less than 2M , we obtain a stronger classifier.
This situation is demonstrated in Figure 2. From this example, one can get an intuitive
understanding of how an asymmetric distribution makes it easier to distinguish
between right-key and wrong-key. We therefore propose the term symmetry factor,
namely the ratio between number of components and 2M , and conjecture that a
lower symmetry factor will result in a stronger attack.

First Successful Multiple Linear Cryptanalysis of DES.

By using the asymmetric classifier in Section 6, we give the first attack on full DES
using multiple linear approximations which improves Matsui’s original attack. We
use two sets of four linear approximations. Using 242.78 known plaintexts, the attack
recovers the key in time equal to 238.86 encryptions, with a success probability of
85%. This is 4.4 times faster than Junod’s estimate of Matsui’s attack, and uses
240.2 fewer texts. We confirm these results by measuring the actual correlation
distributions using this number of texts for 1300 random keys, and computing the
resulting advantage of our classifier. We find that the model fits our practical results
very well. Alternatively, we can lower the data complexity to 241, and recover the

44

2 Linear Cryptanalysis of DES

Symmetric right-key distribution Asymmetric right-key distribution

Figure 2: An illustration of the difference between a symmetric and an asymmetric
joint distribution of linear correlation for two approximations over the key
space. The right-key distribution is blue, while the wrong-key distribution
is red.

Technique Data
complexity

Time
complexity

Success
probability

Attack
scenario Source

Differential 247.00 237.00 58% CP [1]
Linear 243.00 243.00 85% KP [21]
Linear 243.00 241.00 85% KP [16]
Multiple Linear 242.78 238.86 85% KP Sec. 6
Multiple Linear 241.00 249.76 80% KP Sec. 6

Table 1: Comparison of key-recovery attacks on full DES. Kown plaintext and chosen
plaintext attacks are referred to as KP and CP, respectively.

key in time 249.76, with a success probability of 80%. Our attack is compared to
previous attacks on full DES in Table 1.

2 Linear Cryptanalysis of DES

In 1993, Matsui introduced the concept of linear cryptanalysis and applied it to
derive a key-recovery attack on the full 16-round DES [20, 21]. In this section, we
briefly outline the attack. We then give an overview of the assumptions Matsui made
in his analysis, and show the resulting complexity of the attack. Moreover, we show
a variant of linear cryptanalysis due to Biryukov, de Cannière, and Quisquater [2],
which will be important for the remaining part of this work.

45

Publication 1 Linear Cryptanalysis of DES with Asymmetries

2.1 Basics of Linear Cryptanalysis
We consider a block cipher with block length n and key length κ. We denote the
encryption of plaintext P ∈ Fn2 under key K ∈ Fκ2 by EK(P). The idea of linear
cryptanalysis is to find a linear approximation (α, β) ∈ Fn2 × Fn2 such that the
magnitude of its linear correlation, defined by

CK(α, β) = 2 · Pr(〈α, x〉 ⊕ 〈β,EK(x)〉 = 0)− 1,

is large. Here, 〈·, ·〉 denotes the canonical inner product on Fn2 . Thus, the correlation
is a measure of how often the parity bit 〈α,P〉 of the plaintext is equal to the parity bit
〈β, C〉 of the ciphertext. We expect a strong cipher to only have approximations with
linear correlation close to 0, and hence a correlation value that deviates significantly
from 0 indicates a weakness of the cipher.

For Feistel ciphers, such as DES, the linear correlation of an approximation (α, β)
can be calculated by considering so called linear trails of the cipher. We define a
single-round linear trail of DES as the triple (u, t, v) ∈ Fn2 × Fm2 × Fn2 , where m is
the size of a single round key. The linear correlation of this single-round trail is then
defined as

CKr (u, t, v) = 2 · Pr(〈u, x〉 ⊕ 〈v,RKr (x)〉 = 〈t,Kr〉)− 1,

where RKr is the DES round-function using the r’th round key Kr. We now define
a linear trail T over r rounds as a collection of single-round trails (ui, ti, ui+1),
i = 0, . . . , r − 1, as well as the correlation contribution of the trail T as [10, 12]

CK(T) =
r−1∏
i=0

CKi(ui, ti, ui+1).

We will also make use of the concept of an associated key trail T̄ of a trail T . The
key trail is defined as the concatenation of the ti, i = 0, . . . , r − 1.

Daemen and Rijmen demonstrated that the correlation contribution of a trail can
be written as [10, 12]

CK(T) = (−1)sT⊕〈T̄ ,K̄〉|CK(T)|, (2)

where sT is a sign bit specific to the trail T , and K̄ denotes the concatenation of the
round keys Ki. Moreover, under the assumption of independent round keys, |CK(T)|
is independent of the key. Thus, the correlation contribution of a trail T has a fixed
magnitude for all keys, but the sign is determined by the round key bits indicated by
the key trail T̄ . Finally, Daemen and Rijmen give the correlation over all r rounds
for some approximation (α, β) as [10, 12]

CK(α, β) =
∑

u0=α,ur=β
CK(T) =

∑
u0=α,ur=β

(−1)sT⊕〈T̄ ,K̄〉|CK(T)|, (3)

i.e. the sum of the correlation contributions of all trails from α to β.

46

2 Linear Cryptanalysis of DES

2.2 Matsui’s approach
Matsui’s key observation was that DES exhibits linear trails where the correlation
contribution deviates significantly from zero. Consider the full 16-round DES, let P
be the plaintext, and let C be the ciphertext. Let [i0, . . . , i`] denote an element in Fn2
whose ij ’th components are 1, j = 0, . . . , `, while all other components are 0. Then,
over 14 rounds of DES, the approximations

γ1 = ([7, 18, 24], [7, 18, 24, 29, 47]) and δ3 = ([15, 39, 50, 56, 61], [39, 50, 56]),
both have trails with correlation contribution CK(T) = ±2−19.75 [21]. From Equa-
tion 2 we can determine one bit of information if we know the sign of CK(T), namely
the parity 〈T̄ , K̄〉 of the round key bits indicated by the key trail T̄ . Let kf denote
the key-bits of round key K0 required to partially encrypt a plaintext P one round
and calculate 〈α,RK0(P)〉, and let kb denote the key-bits of round key Kr−1 required
to partially decrypt the ciphertext C one round and calculate 〈β,R−1

Kr−1
(C)〉. Matsui

developed the following general approach in order to determine |kf |+ |kb|+ 1 key
bits, formalised as Algorithm 2.

Algorithm 2
1. Obtain N plaintext-ciphertext pairs.

2. For each guess of the key-bits (kf , kb), partially encrypt, respectively decrypt,
each plaintext-ciphertext pair (P, C) and calculate the number of times Li the
input parity 〈α,RR0(P)〉 is equal to the output partiy 〈β,R−1

Rr−1
(C)〉 for the

i’th guess, i = 1, . . . , 2|kf |+|kb|.

3. For each counter Li, if Li > N/2, guess that the sign bit 〈T̄ , K̄〉 = sT , otherwise
guess that 〈T̄ , K̄〉 = sT ⊕ 1.

4. For any counter Li with |Ti −N/2| > Γ, for a predetermined value Γ, guess
the remaining κ− (|kf |+ |kb|+ 1) bits of the master key K, and determine the
correct value of K through trial encryption.

For his attack on DES, Matsui performed Algorithm 2 once for γ1 and once for
δ3, determining 26 bits before guessing the remaining 30 bits of K. In his analysis
of the success rate and complexity of the attack, Matsui assumed that the linear
correlation of the approximations γ1 and δ3 were only determined by a single trail
T . The idea is that the correlation contribution of T is much larger than that of all
other trails – a so called dominant trail. We will call the associated key trail T̄ of
such a trail a dominant key trail. In the presence of such a dominant trail, CK(α, β)
only takes on two values over the key space. This can be seen from Equation 3, as
the case of a dominant trail implies that this sum only has one term. Under this
assumption, Matsui concluded that when using 243 texts, there is an 85% probability
of recovering the key at a time complexity of 243 DES encryptions. In a later analysis
of Matsui’s attack [16], Junod concluded that the actual computational complexity
is closer to 241 DES encryptions.

47

Publication 1 Linear Cryptanalysis of DES with Asymmetries

2.3 Biryukov et al. – Multiple Approximations
A natural extension of Matsui’s linear cryptanalysis is to attempt to use multiple linear
approximations simultaneously. The first attempt at developing such a framework
was by Kaliski and Robshaw in [15]. This work has the limitation that all linear
approximations must have the same dominant key trail, and the approximations were
assumed to be statistically independent. Moreover, as Kaliski and Robshaw note,
the application of this method to DES is very limited.
Another approach was undertaken by Biryukov et al. in [2]. Here, the approxi-

mations can in principle be picked arbitrarily, but the framework still requires the
assumption of one dominant trail for each approximation, and independence between
approximations. Due to these restrictions, the foundations of multidimensional linear
cryptanalysis was developed in e.g. [13, 14]. While this approach has been applied
with great success to a large range of ciphers, no results have been shown on DES.
Thus, Matsui’s single linear cryptanalysis still provides the best results on this cipher.

Let us briefly reconsider the method by Biryukov et al., assuming the use of M
linear approximations. The idea is to partition the key space into at most 2M classes
based on the parity of the 〈T̄i, K̄〉, where T̄i is the dominant key trail of the i’th
approximation. An Algorithm 2 type attack is then performed: For each guess of the
key-bits (kf , kb), the vector (Li,1, . . . , Li,M) is calculated, and the likelihood of that
vector belonging to each of the key classes is computed. The right guess of (kf , kb)
should yield one class with high likelihood, and the class then indicates at most M
parity bits, 〈T̄i, K̄〉. Central to the analysis of [2] are the following two assumptions:

Assumption 1 (Right-Key Equivalence). For a linear approximation (α, β), the
magnitude of the correlation, |CK(α, β)|, does not deviate significantly from its
expected value over all keys, that is, |CK(α, β)| = E(|CK(α, β)|).

Assumption 2 (Wrong-Key Randomisation). For Algorithm 2, the correlation of a
linear approximation (α, β) is 0 for all wrong guesses of (kf , kb).

The assumption of right-key equivalence implies that the linear approximation
has one dominant trail, say T , and consequently the distribution of the correlation
over the key space only takes on two values, namely ±|CK(T)|. Thus, the natural
partitioning of the key space for M approximations is the partitioning induced by
the sign of the correlations, i.e. the vector ((−1)〈T̄1,K̄〉, . . . , (−1)〈T̄M ,K̄〉). In practice
however, the correlations are calculated from the counters Li,j . The joint distribution
of the resulting measured correlations, for some specific key class, is given in [2] as
an M -variate normal distribution, described in the following model.

Model 1 (Right-Key Partitioning for Multiple Approximations [2]). Consider a
set of linear approximations (α1, β1), . . . , (αM , βM) of r rounds of DES. Then, the
key space can be partitioned into at most 2M key classes based on the signs of the
correlations. The undersampled distribution of the linear correlation vector, using
N texts and restricted to the i’th key class, denoted by CNi (α,β), is an M-variate

48

3 Right-Key Correlation for DES: Key Inequivalence

normal distribution

CNi (α,β) ∼ NM (µi, 1/N · I).

The mean vector of the i’th key class is given by µi[j] = si,j |CK(Ti)|, where si,j ∈
{−1, 1} describes the sign combination of the i’th key class, j = 1, . . . ,M .

Based on this model, a Bayesian classifier is constructed. We refer to Section 5 for
the details. While the approach presented by Biryukov et al. seems promising, it
has yet to result in an improved attack on DES. To the best of our knowledge, no
other variants of linear cryptanalysis which uses multiple approximations have been
able to outperform Matsui’s original attack. Moreover, while updated versions of
Assumption 1 and Assumption 2 have been applied to other ciphers, no such work
exists for DES. In the following, we address these concerns. We consider the right-key
distribution in Section 3, and the wrong-key distribution in Section 4. Using the
results obtained in these sections, we develop an improved linear attack on DES in
Sections 5 and 6.

3 Right-Key Correlation for DES: Key Inequivalence
In this section, we consider the correlation distribution of DES approximations over
the key space. In Section 3.1, we consider current models for this distribution, as
well as the undersampled distribution. In Section 3.2, we enumerate a large number
of trails for DES, and show that, contrary to Assumption 1, the absolute value of
the correlation does vary significantly as the key changes. In fact, the correlation
distribution has a complicated structure. In Section 3.3, we develop a new model
for this correlation based on Gaussian mixtures, which is able to accurately describe
this structure. Moreover, we extend the model to describe the full undersampled
correlation distribution over keys for multiple approximations.

3.1 The Correlation Distribution of a Single Approximation
As mentioned, most linear cryptanalysis of DES assumes that each linear approxima-
tion has one dominant trail, determining the magnitude of the absolute correlation.
This idea is effectively expressed by Assumption 1. Consider, for example, one of
the approximations used by Matsui, γ1. This approximation has a primary trail TA
over 14 rounds of DES with correlation contribution CK(TA) = ±2−19.75. In [23],
Nyberg first introduced the concept of a linear hull, i.e. the collection of all trails
of a linear approximation, and showed that Assumption 1 is not true in general.
For γ1, the trail with second largest correlation contribution, T ′, has contribution
CK(T ′) = ±2−25.86. While the contribution from this trail is not large enough to
change the sign of the linear correlation CK(γ1), or increase/decrease the magnitude
of the correlation much, it does not match the model given in Assumption 1. When
including the second trail, the correlation distribution does not take on only two
distinct values, but four.

49

Publication 1 Linear Cryptanalysis of DES with Asymmetries

Signal/noise decomposition.

In order to refine Assumption 1, Bogdanov and Tischhauser considered a signal/noise
decomposition of the hull in [6]. Consider a situation in which d dominant trails of
an approximation (α, β) are known. We call this collection of trails the signal, and
define the signal correlation as the sum of their correlation contributions

C ′K(α, β) =
d∑
i=1

(−1)sTi⊕〈T̄i,K̄〉|CK(Ti)|.

The remaining part of the hull is unknown, and is modelled as noise, with the
distribution N (0, 2−n). Then, the refined right-key equivalence assumption of [6]
states that the correlation of (α, β) is given by the sum of the signal correlation and
the noise:

CK(α, β) = C ′K(α, β) +N (0, 2−n).

Since the approximations we will typically consider in the context of DES have quite
high correlation, the addition of the noise term will not make a significant difference.
However, we include it for completeness.

Undersampling.

The cryptanalyst is most often not interested in having to obtain the full codebook
to exactly measure the linear correlation CK(α, β). Therefore, the undersampled
distribution is of great interest. Let

CNK (α, β) = 2
N

#{xi, i = 1, . . . , N |〈α, xi〉 ⊕ 〈β,EK(xi)〉 = 0} − 1

be the empirical value of CK(α, β) measured using N text pairs. Here, we assume that
xi is drawn uniformly at random with replacement from Fn2 . Matsui first considered
the distribution of CNK (α, β) over the key space under Assumption 1. In this case,
Matsui used the Gaussian distribution CNK (α, β) ∼ N (CK(α, β), 1/N). While no
proof is given in [20], one can show this result via a Gaussian approximation to the
binomial distribution, assuming that |CK(α, β)| is small.

3.2 Exploring the Signal Distribution of DES
On the basis of the signal/noise model, we now turn our attention to the signal
distribution of DES approximations. By computing the signal correlation C ′K for a
large number of trails, we are able to get a good idea of the actual distribution of
the correlation CK . We first describe how the signal trails were enumerated.

50

3 Right-Key Correlation for DES: Key Inequivalence

Our trail enumeration algorithm.

We implemented a bounded breadth-first search in order to enumerate trails of DES
approximations over 14 rounds. The algorithm consists of two search phases and a
matching phase. Consider an approximation (α, β). The first search phase searches
for trails in the forward direction, from round one to round seven. The search starts
with α as an input mask to the first round, and then finds t and v such that the
single round trails (α, t, v) has non-zero correlation. This process is then repeated for
each trail with v as input mask to the second round, etc. The second search phase is
similar, but searches backwards from β.

The searches are bounded in two ways. First, we only consider trails that activate
at most three S-Boxes in each round. Second, we limit the number of trails which
are kept in each round. This is done in such a way that only the trails with largest
absolute correlation contribution are kept. This ensures a locally optimal choice,
although no such guarantee can be made globally. The number of trails kept is
determined by the branching factor B, such that in the i’th round of the search, i ·B
trails are kept.
After the two search phases, each trail found in the forward direction is matched

to any trail in the backwards direction which shares the same mask in the middle.
In this way, we obtain a number of trails of (α, β) over 14 rounds. Globally optimal
trails will have a good chance of being enumerated if the branching factor B is chosen
sufficiently large. In the following, we set B = 1 million, which means that we can
find at most 7 million trails in each search direction. Note that the number of trails
eventually discovered by the algorithm highly depends on the number of rounds and
the approximation under consideration. We performed the enumeration for the eight
approximations given in Table 2 using 20 Intel Xeon Processor E5-2680 cores. The
enumeration took about 8 CPU hours.

Computing the Signal Distribution.

Using the algorithm described above, we enumerated 1126 trails of the approximation
γ1 over 14 rounds, and calculated the signal correlation

C ′K(γ1) =
1126∑
i=1

(−1)sTi⊕〈T̄i,K̄〉|CK(Ti)|,

for 1 million randomly drawn keys. The trails we found have an absolute correlation
contribution between 2−43.61 and 2−19.75, and include the dominant trail used by
Matsui in [21]. The resulting distribution can be seen in Figure 3.
The left part of the figure shows the full distribution over the key space. At this

scale, the distribution resembles the one described in Section 2; there are two very
prominent modes symmetric around zero, with peaks around ±2−19.75, corresponding
to the correlation contribution of the dominant trail. However, the right part of the
plot, showing the positive half of the distribution, largely contradicts Assumption 1

51

Publication 1 Linear Cryptanalysis of DES with Asymmetries

Linear Correlation

D
en

si
ty

− 2−19.62 − 2−20.36 − 2−21.94 2−21.95 2−20.36 2−19.62

20
220

.4
3

221
.4

3
222

.0
2

222
.4

3
222

.7
5

Linear Correlation

D
en

si
ty

2−19.85 2−19.8 2−19.75 2−19.71 2−19.67 2−19.62

20
221

.4
9

222
.4

9
223

.0
8

223
.4

9
223

.8
1

Figure 3: The signal distribution of linear correlation for the approximation γ1 over
14 rounds of DES. The signal correlation was calculated using 1126 trails
and 1 million randomly drawn keys. The trails had an absolute correlation
contribution between 2−43.61 and 2−19.75. The left plot shows the two main
modes, symmetric around zero. The right plot shows only the positive half
of the distribution.

of key equivalence. While the mean of the distribution is 2−19.75, it also has a non-
negligible standard deviation of 2−24.71. Moreover, the distribution is not Gaussian.
The correlations cluster around three values, namely 2−19.79, 2−19.75, and 2−19.68.
Interestingly, the probability density is larger around the cluster with the lowest
correlation value.
Under the signal/noise model, adding the noise distribution N (0, 2−n) gives us a

good estimate of the actual distribution of the correlation CK(γ1). However, due to
the large variance of the signal distribution, the effect of the noise term is negligible
in this case. Thus, the distribution in Figure 3 should be quite close to the actual
distribution. This poses a fundamental problem, as none of the analysis of linear
cryptanalysis applied to DES accounts for this type of distribution. Indeed, it is
not clear how the distribution of the undersampled correlation, CNK , looks, which is
essential to know when determining the complexity of linear attacks.

3.3 A New Mixture Model for Single and Multiple Approximations

To relieve the problems discussed in Section 3.2, we now propose a model for the
correlation distribution based on Gaussian mixtures. Consider a distribution in which
each sample is drawn from one of ` Gaussian distributions. Each Gaussian is called
a component. The probability of the sample being drawn from the i’th component
is λi, usually called the weights, with

∑
λi = 1. The probability density function

52

3 Right-Key Correlation for DES: Key Inequivalence

Linear Correlation

D
en

si
ty

2−19.85 2−19.8 2−19.75 2−19.71 2−19.67 2−19.62

20
221

.4
9

222
.4

9
223

.0
8

223
.4

9
223

.8
1

Figure 4: A Gaussian mixture fitted to the correlation distribution of the linear
approximation γ1 over 14 rounds of DES. The individual components are
shown in red, the mixture density is shown in green, and the measured
distribution is shown in blue. Under this model, only 30% of the distribution
is attributed to the Gaussian component associated with the dominant
trail.

(PDF) of such a distribution is given by

f(x) =
∑̀
i=1

λiφ(x;µi, σ2
i),

where φ(x;µi, σ2
i) is the PDF of the i’th Gaussian distribution, having mean µi and

variance σ2
i [19]. We will denote the distribution itself byM(λi, µi, σ2

i , `). We then
propose the following model.

Model 2 (Right-Key Inequivalence for One Approximation). Consider a linear
approximation (α, β) of r rounds of DES. The distribution of the linear correlation
CK(α, β) over the key space is approximately given by a Gaussian mixture for some
weights λi and components N (µi, σ2

i), i = 1, . . . , `. That is,

CK(α, β) ∼M(λi, µi, σ2
i , `).

We note that the signal/noise decomposition easily applies to this model. If we
determine that the signal correlation follows a Gaussian mixture, i.e. C ′K(α, β) ∼

53

Publication 1 Linear Cryptanalysis of DES with Asymmetries

M(λ′i, µ′i, σ2′
i , `
′) for some appropriate parameters, then we can approximate the

actual correlation distribution by adding the noise distribution:

CK(α, β) ∼M(λ′i, µ′i, σ2′
i , `
′) +N (0, 2−n).

We apply Model 2 to the distribution obtained in Section 3.2. The result of fitting
a Gaussian mixture model with three components to the positive part of the signal
distribution is shown in Figure 4. We first note that the mixture model fits the
measured signal distribution quite well. The parameters are

λ1 = 0.45, µ1 = 2−19.79, σ2
1 = 2−52.40,

λ2 = 0.30, µ2 = 2−19.75, σ2
2 = 2−52.37,

λ3 = 0.25, µ3 = 2−19.68, σ2
3 = 2−52.68.

The second mixture component has mean equal to the correlation contribution of the
dominant trail, but this component only contributes to 30% of the full distribution. In
fact, the main part of the contribution, 45%, can be attributed to the first component,
which has a slightly lower mean. This demonstrates that considering only the
contribution of the dominant trail can be misleading, even when the remaining trails
have a far lower correlation contribution. In general, one should consider as large
a part of the hull as possible. Nevertheless, for attacks with relatively low data
complexity, the actual distribution can easily be hidden, as we shall see next.

The undersampled mixture.

In Section 3.2, we recalled that under the assumption of a dominant trail, the distri-
bution of the undersampled correlation CNK is given by the Gaussian N (CK , 1/N).
We state the following equivalent result in the setting of Model 2 and give an outline
of the proof.

Theorem 1 (Undersampled distribution). Assuming Model 2, the undersampled
correlation distribution of an approximation (α, β) obtained using N random text
pairs is given by

CNK (α, β) ∼M(λi, µi, σ2
i , `) +N (0, 1/N).

Proof. For any fixed key k, CNk is distributed as Bin(N,Ck) over the random text
sample, which can be approximated by N (Ck, 1/N) if Ck is small. That is, CNK |
K = k ∼ N (Ck, 1/N). The PDF of the compound distribution CNK , i.e. without the
conditioning on K, is given by

pCN
K

(y) =
∫
φ(y;x, 1/N) ·

∑̀
i=1

λiφ(x;µi, σ2
i)dx,

54

3 Right-Key Correlation for DES: Key Inequivalence

Linear Correlation

D
en

si
ty

− 2−18.51 − 2−18.99 − 2−19.73 − 2−21.3 2−21.33 2−19.74 2−19 2−18.51

20
217

.6
2

218
.6

2
219

.2

Figure 5: The distribution of the undersampled linear correlation of γ1, C ′K +
N (0, 2−n) +N (0, 1/N), over 14 rounds of DES, with N = 243. C ′K was
measured using 1126 trails over 1 million randomly drawn keys. A Gaussian
mixture with two components have been fitted to the distribution. The
components are shown in red, while the full distribution is shown in green.

which can be shown to be equal to

pCN
K

(y) =
∑̀
i=1

λiφ(y;µi, σ2
i + 1/N).

This is a Gaussian mixture where each component can be written as N (µi, σ2
i) +

N (0, 1/N). But since we add the second distribution with probability one, the same
distribution can be obtained by first drawing from the original mixture, and then
adding the distribution N (0, 1/N), finishing the proof.

If the number of texts N is relatively large, the model can be somewhat simplified.
If we wanted to apply Model 2 and Theorem 1 directly to the case of γ1, we would
model the measured correlation as

CNK (γ1) =M(λi, µi, σ2
i , 6) +N (0, 2−n) +N (0, 1/N), (4)

using six components for the Gaussian mixture. However, the details of the mixture
are easily lost at high levels of undersampling, as can be seen in Figure 5. Here, we
have shown the distribution

C ′K(γ1) +N (0, 2−n) +N (0, 1/N),

where N = 243. The resulting distribution can be described as a Gaussian mixture
with two components, instead of six. Each component has variance roughly equal to
1/N , and the means are ±2−19.75, i.e. the correlation contribution of the dominant
trail. This agrees with the models used by e.g. Matsui and Biryukov, et al., but
we stress that this is only true when N is relatively small compared to the linear

55

Publication 1 Linear Cryptanalysis of DES with Asymmetries

correlation. In particular, for ciphers with strong dominant trails, 1/N needs to
be larger than the variance of the positive/negative part of the distributions. For
values of N close to the full codebook, this is not true (unless the approximation
is extremely weak), and the distribution of CK cannot be ignored. However, this
simplification will help greatly when we consider the joint distribution of multiple
approximations in the next subsection.

The Gaussian mixture of multiple approximations.

Model 2 and the results of Section 3.3 can be generalised to consider the case of
multiple linear approximations. Let CK(α,β) denote the vector of correlations of
M linear approximations, (CK(α1, β1), . . . , CK(αM , βM))>. In the following, we will
restrict ourselves to the case where the signal distributions, C ′K(αi, βi), each have
two distinct modes: one positive and one negative. This allows us to split the joint
signal distribution, C ′K(α,β), into at most 2M components determined by the signs
of C ′K(α,β). In the case of relatively low values of N , we propose the following
model.

Model 3 (Right-Key Mixture for Multiple Approximations). Consider a set of linear
approximations (α1, β1), . . . , (αM , βM) of r rounds of DES. The undersampled distri-
bution of the linear correlation vector over the key space, CNK (α,β), is approximately
given by an M -variate Gaussian mixture, namely

CNK (α,β) ∼MM (1/`,µi,Σi + 1/N · I, `),

where ` ≤ 2M . Moreover, the parameters of the mixture components are given by

µi = E(CK(α,β)|si,j · CK(αi, βi) > 0, j = 1, . . . ,M),
Σi = Cov(CK(α,β)|si,j · CK(αi, βi) > 0, j = 1, . . . ,M),

where si,j ∈ {−1, 1} describes the sign combination of the i’th component.

As for the case of a single approximation, the signal/noise decomposition applies
to this model, resulting in an undersampled distribution of the form

CNK (α,β) ∼MM (1/`,µ′i,Σ′i + (2−n + 1/N)I, `).

The signal parameters, µ′i and Σ′i, can be estimated by enumerating an appropriate
number of trails and then calculating C ′K(α,β) for a large number of keys.
This model bears some resemblance to the one given by Biryukov et al. in [2].

While both models use the signs of the correlation vector to split the distribution
into several Gaussians, our model captures the entire key space in one distribution,
whereas the model in [2] partitions the key space into at most 2M parts which
are considered separately. Additionally, we do not make any assumption about
the independence of the linear approximations. As such, Σi need not be diagonal
matrices, and not all 2M sign combinations need to be present. While the possibility

56

4 Wrong-Key Correlation for DES: Non-Random Behaviour

of ` < 2M is briefly mentioned in [2], all experiments were done such that ` = 2M . As
we shall see in Section 5, the case of ` < 2M allows for stronger attacks. Moreover,
an improved attack on full DES was not presented in [2] . We apply our model to
obtain a key-recovery attack on full DES in Section 6. First, however, we turn our
attention to the wrong-key distribution.

4 Wrong-Key Correlation for DES: Non-Random
Behaviour

In this section, we consider the correlation distribution of DES approximations in
the case of a wrong key guess in Algorithm 2. This distribution is essential, as
the effectiveness of the algorithm is determined by how different the right-key and
wrong-key distributions are. In Section 4.1, we consider the current models for the
wrong-key distribution. In Section 4.2, we develop a new model for the wrong-key
distribution of DES, and show that the distribution obtained under this model
deviates significantly from that considered in Section 4.1. Nevertheless, as for the
right-key in Section 3, we show that the deviation has little impact when the number
of texts used in the attack is relatively small.

4.1 The Current Ideal Wrong-Key Distribution

The assumption of wrong-key randomisation, Assumption 2, used by Matsui in [21]
and by Biryukov et al. in [2], predicts that a wrong guess of the outer round keys
in Algorithm 2 should result in an approximation with correlation zero. This is
motivated by the idea that if we encrypt/decrypt using the wrong key, we are doing
something equivalent to encrypting two extra rounds. This should result in a linear
correlation much closer to zero, as we are essentially considering the correlation over
r + 4 rounds instead of r rounds. However, as shown by Daemen and Rijmen in [11],
even a linear approximation of an ideal permutation will approximately have the
correlation distribution

CK(α, β) ∼ N (0, 2−n),

where n is the blocksize. Since we intuitively cannot do "worse" than an ideal cipher,
the correlation of a wrong guess should follow this distribution. This consideration
led Bogdanov and Tischhauser to present an updated wrong-key randomisation
hypothesis in [6], in which the wrong key correlation follows this ideal Gaussian
distribution. However, if we consider the case of DES where, even over 14 rounds,
strong linear approximations exist, the wrong-key correlation might not be close to
the ideal distribution. We consider this problem next.

57

Publication 1 Linear Cryptanalysis of DES with Asymmetries

4.2 A New Non-Random Wrong-Key Distribution
Consider the scenario in which an attacker obtains a plaintext-ciphertext pair com-
puted over r rounds of a cipher, and attempts to encrypt the plaintext one round,
and decrypt the ciphertext one round, in order to calculate the correlation of an
approximation over r − 2 rounds. If the attacker uses the wrong round keys for
the encryption/decryption, she essentially obtains a plaintext/ciphertext pair of
some related cipher with r + 2 rounds. Motivated by this, we propose the following
wrong-key model for linear cryptanalysis on DES.

Model 4 (Non-Random Wrong-Key Distribution). Consider an Algorithm 2 style
attack on r rounds of DES using a linear approximation (α, β) over r− 2 rounds. Let
RK be the keyed round function of DES, and let E?K denote the r-round encryption
function. For a wrong guess of the outer round keys, the correlation will be distributed
as for the cipher

E′K(x) = R−1
Ka

(E?K(R−1
Kb

(x))), (5)

where Ka and Kb are chosen uniformly at random.

For DES, where encryption and decryption are similar, this can reasonably be
simplified to E′K(x) = Er+2

K , where the outer round keys are randomly chosen.
In light of this, we considered the approximation γ1 over 18 rounds of DES, with

randomly chosen outer round keys. Using the algorithm described in Section 3.2,
with B = 1 million, we enumerated 954 trails of this approximation. Using 20 Intel
Xeon Processor E5-2680 cores, the enumeration took about 15 CPU hours. We
then calculated the resulting signal correlation for 1 million keys. The trails had an
absolute correlation contribution between 2−45.84 and 2−28.75. The distribution is
shown in Figure 6. We note that the result is similar for the other approximations
given in Table 2.

As was the case for the right-key distribution, this wrong-key distribution appears
to be approximately a Gaussian mixture. More importantly, while the distribution is
symmetric around zero, the variance is much larger than that of an ideal permutation:
2−56.08 compared to 2−64. This shows that, while the added four rounds make the
correlation weaker, the assumption of a resulting ideal distribution is optimistic.
For attacks that use a data complexity close to the full codebook, this assumption
could result in a overestimate of success probability or an underestimate of attack
complexity. Moreover, if the cryptanalyst only appends/prepends one round to the
approximation, this effect could be significant.

The undersampled distribution.

While the distribution in Figure 6 is far from ideal, the actual distribution of
the correlation matters little if the level of undersampling is significant. If we
apply signal/noise decomposition and Theorem 1 to our estimate of the wrong-key
distribution, with the number of texts N = 243, we obtain the result shown in Figure 7.

58

4 Wrong-Key Correlation for DES: Non-Random Behaviour

Linear Correlation

D
en

si
ty

− 2−26.88 − 2−27.37 − 2−28.1 − 2−29.68 2−29.71 2−28.11 2−27.37 2−26.89

20
225

.5
2

226
.5

2
227

.1
227

.5
2

227
.8

4

Linear Correlation

D
en

si
ty

− 2−26.88 − 2−27.37 − 2−28.1 − 2−29.68 2−29.71 2−28.11 2−27.37 2−26.89

20
228

.3
5

229
.3

5
229

.9
4

230
.3

5
230

.6
7

Figure 6: The distribution of linear correlation for the approximation γ1 over 18
rounds of DES with randomly chosen outer round keys. The correlation
was calculated using 954 trails and 1 million randomly drawn keys. The
distribution is close to zero, but the variance is 2−56.08. To the right, the
distribution is compared to that of an ideal permutation, i.e the Gaussian
N (0, 2−64).

Linear Correlation

D
en

si
ty

− 2−18.51 − 2−18.99 − 2−19.73 − 2−21.3 2−21.33 2−19.74 2−19 2−18.51

20
218

.6
1

219
.6

1
220

.2

Wrong−key
Right−key Right−key

Figure 7: Undersampled right-key (blue) and wrong-key (red) distributions for the
approximation γ1 with N = 243. The signal distributions were measured
using 1 million randomly drawn keys. A Gaussian mixture has been fitted
to the right-key distribution (green), while a single Gaussian distribution
was fitted to the wrong-key distribution (black).

We see here that it is sufficient to use a single Gaussian distribution to approximate
the undersampled wrong-key correlation distribution. If this distribution is similar
for other approximations, it will be sufficient to model the joint wrong-key correlation
distribution of M approximations as an M -variate Gaussian distribution. Thus, if
ΣW is the covariance matrix of the signal correlation of the M approximations over

59

Publication 1 Linear Cryptanalysis of DES with Asymmetries

E′K , then the undersampled wrong-key distribution will approximately be given by

CNK (α,β) ∼ N (0,ΣW + (2−n + 1/N)I),

if 1/N is sufficiently large.
Using Model 3 for the right-key and Model 4 for the wrong-key distribution, we

develop a classifier that uses both these distributions in the following section.

5 Classifying Keys using Asymmetric Distributions
In Section 3, we developed a model for the linear correlation distribution of a
correct key-guess in Algorithm 2, namely a multivariate Gaussian mixture model. In
Section 4, we similarly developed a simple multivariate Gaussian model for the linear
correlation distribution of a wrong key-guess. Using these two distributions, we now
develop a classifier based on the likelihood-ratio, which can be used in Algorithm 2 to
decide between potential right and wrong key guesses. We first present the classifier
given in [2] in Section 5.1. We then introduce our new classifier in Section 5.2, and
compare the performance of the two in Section 5.3.

In the following, we will consider the two sets of four linear approximations over 14
rounds of DES given in Table 2. While it is difficult to visualise the joint distribution
of more than three approximations, Figure 8 shows the pairwise joint distributions
of the approximations γ1, γ2, γ3, and γ4, as well as the marginal distributions, for
N = 243. Note that the joint distributions of γ1 and γ3, as well as that of γ2 and
γ4, only have two components. We will explore this phenomenon in Section 5.4, and
show that such distributions can improve our classifier.

5.1 The Bayesian Classifier of Biryukov et al.
Consider an Algorithm 2 style attack using M linear approximations. Let KR denote
the space of correct guesses of the key-bits (kf , kb), and let KW denote the space
of wrong guesses. We have to classify each key-guess as either an incorrect guess
or a potential correct guess, based on the measured linear correlation vector x. Let
fR(x) = Pr(x | (kf , kb) ∈ KR) be the PDF of the right-key correlation distribution.
We define the Bayesian classifier, BC, as the following decision rule

BC(x) =
{
If B(x) > Γ, decide that (kf , kb) ∈ KR,
otherwise, decide that (kf , kb) ∈ KW ,

where B(x) = fR(x). Under Model 3, B(x) is given as the Gaussian mixture

B(x) =
∑̀
i=1

λiφM (x;µi,Σi + (2−n + 1/N)I).

This exact classifier is not described in [2], but it is essentially identical to the one
developed there. The difference is that in [2], each component of fR is considered

60

5 Classifying Keys using Asymmetric Distributions

Linear approximation Dominant key trail |CK(T·)| sT·

γ1 = ([7, 18, 24], [7, 18, 24, 29, 47]) T̄A 2−19.75 1
γ2 = ([7, 18, 24], [7, 18, 24, 29, 44, 48]) T̄B 2−20.48 1
γ3 = ([7, 18, 24, 29], [7, 18, 24, 47]) T̄A 2−20.75 0
γ4 = ([7, 18, 24, 29], [7, 18, 24, 44, 48]) T̄B 2−20.07 1
δ1 = ([15, 39, 50, 56], [39, 50, 56, 61]) T̄C 2−20.75 0
δ2 = ([12, 16, 39, 50, 56], [39, 50, 56, 61]) T̄D 2−20.07 1
δ3 = ([15, 39, 50, 56, 61], [39, 50, 56]) T̄C 2−19.75 1
δ4 = ([12, 16, 39, 50, 56, 61], [39, 50, 56]) T̄D 2−20.48 1
Key trail Non-zero key mask bits Key trail Non-zero key mask bits

T̄A
{t22

1 , t
44
2 , t

22
3 , t

22
5 , t

44
6 ,

t22
7 , t

22
9 , t

44
10, t

22
11, t

22
13}

T̄B T̄A\t22
13 ∪ {t19

13, t
23
13}

T̄C
{t22

0 , t
22
2 , t

44
3 , t

22
4 , t

22
6 ,

t44
7 , t

22
8 , t

22
10, t

44
11, t

22
12}

T̄D T̄C\t22
0 ∪ {t19

0 , t
23
0 }

Table 2: The top table specifies two sets of four linear approximations over 14 rounds
of DES, and gives the correlation contribution of their dominant trail, as well
as the sign bit of that trail. The bottom table specifies the set of non-zero
bits of the associated dominant key trails, where tji is the j’th bit of ti.

separately, and so ` scores are produced for each key guess. The classifier BC should
be functionally equivalent to this approach, but this representation allows for easy
comparison to the likelihood-ratio classifier we propose next.

5.2 Our Likelihood Classifier
We now propose a new classifier based in the likelihood-ratio. As opposed to the
Bayesian classifier, the likelihood classifier directly takes the wrong-key distribution
into account. To this end, let fW (x) = Pr(x | (kf , kb) ∈ KR) be the PDF of the
wrong-key correlation distribution. Then the likelihood-ratio is defined as Λ(x) =
fR(x)/fW (x). For the right-key and wrong-key distributions described in Sections 3
and 4, this is equal to

Λ(x) =
∑`
i=1 λiφM (x;µi,Σi + (2−n + 1/N)I)
φM (x; 0,ΣW + (2−n + 1/N)I) ,

where x is an observed value of correlations for M approximations. A large value
of Λ(x) will then indicate a likely correct key guess, while a low value will indicate
a wrong key guess. Thus, we define the likelihood classifier LC as the following
decision rule

LC(x) =
{
If Λ(x) > Γ, decide that (kf , kb) ∈ KR,
otherwise, decide that (kf , kb) ∈ KW .

61

Publication 1 Linear Cryptanalysis of DES with Asymmetries

−2e−06 0e+00 2e−06

−
2e

−
06

1e
−

06 γ1

−1.5e−06 0.0e+00 1.5e−06−1.5e−06 0.0e+00 1.5e−06−2e−06 0e+00 2e−06

−
2e

−
06

1e
−

06

γ2

−
1.

5e
−

06
1.

0e
−

06

γ3

−
1.

5e
−

06
1.

0e
−

06

−2e−06 0e+00 2e−06

−
2e

−
06

1e
−

06γ4

Figure 8: Histograms and pairwise distributions of the undersampled correlations of
approximations γ1, . . . , γ4 given in Table 2. The right-key distributions are
shown in blue, the wrong-key distributions are shown in red. The number
of texts is N = 243. Note that since γ1 and γ3 have the same dominant key
trail, their joint distribution only has two components. Likewise for γ2 and
γ4.

In light of this definition, two important concepts are the success probability and
advantage of the classifier. Formally, we define the success probability and advantage,
respectively, as

PS = 1− Pr(Λ(x) < Γ | (kf , kb) ∈ KR), (6)
a = − log2(Pr(Λ(x) ≥ Γ | (kf , kb) ∈ KW)), (7)

in accordance with the usual definition [24]. We usually choose Γ such that we achieve
a certain success probability. Under our proposed model, the involved probabilities
cannot be explicitly stated. Thus, we must rely on simulations to calculate these
values. Since simulating values from a Gaussian distribution is easy, this is not a
problem. Using this approach, we now compare the performance of the likelihood
classifier and the Bayesian classifier.

5.3 Decision Boundaries
The likelihood classifier LC divides the M -dimensional cube [−1, 1]M into two
regions separated by the decision boundary, namely where Λ(x) = Γ. On one side

62

5 Classifying Keys using Asymmetric Distributions

of the decision boundary, observations are classified as belonging to the right-key
distribution, while observations from the other side are classified as belonging to the
wrong-key distribution. By visualising this decision boundary, we can get a better
understanding of the classifier.
In the following, we consider the eight approximations given in Table 2, over 14

rounds of DES. We enumerated between 1100 and 1400 trails for each approximation
and calculated the signal correlations for 1 million random keys, in order to estimate
µi and Σi. The same was done over E′K , where between 950 and 1100 trails were
enumerated, in order to estimate ΣW . For each data point, we added noise drawn from
NM (0, (2−n + 1/N)I), according to the signal/noise decomposition and Theorem 1.
This allows us to simulate Λ(x) and B(x) for varying values of N and calculate the
resulting decision boundary and advantage.

Consider the pair of approximations γ1 and δ1 and let N = 243. We simulate Λ(x)
and B(x) for each data point as described above, and then fix a threshold value for
each classifier such that PS = 0.90, cf. Equation 6. The resulting decision boundaries,
as well as the related probability distributions, are shown in Figure 9. In this case,
the likelihood classifier obtains an advantage of 5.5 bits, while the Bayesian classifier
only has an advantage of 3.1 bits. By considering the decision boundary, it is clear
why this is the case. Since the Bayesian classifier only uses information about the
right-key distribution, it simply creates a decision boundary around each component
of the mixture which is large enough to obtain the desired success probability. In
view of the information that is available to the classifier, this makes sense, since
observations close to the mean of component have a larger chance of being a correct
key guess. Because of this, the parts of the right-key distribution which is farthest
away from the wrong-key distribution is also discarded as unlikely candidates. This
in turn requires the decision boundary to be wider than actually needed, and the
advantage is therefore quite low due to an increased number of false positives.

The likelihood classifier on the other hand does use information about the wrong-
key distribution. The decision boundary is created such that there is a good boundary
between each component and the wrong-key distribution. Any observation that is
sufficiently far away from the wrong-key distribution is deemed a likely correct key
guess, no matter how extreme the observation is in the right-key distribution. Thus,
extreme points in the right-key distribution are not "wasted", allowing for a tight
decision boundary around the wrong-key distribution, yielding a larger advantage.
For the approximations used here, all sign combinations of the correlation vector

are possible. In terms of the mixture model, the number of components is ` = 2M .
We now turn our attention to the case where ` < 2M .

5.4 Observations on the Asymmetric Distribution
As shown in Section 3.2, the sign of the signal correlation C ′K(γ1) for a given key
is determined by the parity 〈T̄A, K̄〉, where T̄A is the dominant key trail. Consider
the two approximations γ1 and γ3 given in Table 2. Both approximations have the
same dominant key trail, and since their sign bits sT are different, the sign of their

63

Publication 1 Linear Cryptanalysis of DES with Asymmetries

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

− 2−19.18

− 2−19.91

− 2−21.49

2−21.52

2−19.92

2−19.18

− 2−18.99 − 2−19.74 − 2−21.4 2−21.2 2−19.68 2−18.96

CK
N(γ1)

C
KN
(δ

1)

log(Λ(x))

P
r(l

og
(Λ

(x
))

)
0.

00
0.

05
0.

10
0.

15
0.

20

− 7.05 − 2.61 1.82 6.26 10.7 15.13 19.57 24

Right key
Wrong key
Threshold

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

− 2−19.18

− 2−19.91

− 2−21.49

2−21.52

2−19.92

2−19.18

− 2−18.99 − 2−19.74 − 2−21.4 2−21.2 2−19.68 2−18.96

CK
N(γ1)

C
KN
(δ

1)

log(Β(x))

P
r(l

og
(Β

(x
))

)
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

21 22.8 24.7 26.6

Right key
Wrong key
Threshold

Figure 9: Left: The joint distribution of CNK (γ1) and CNK (δ1), with N = 243, are
shown for both a right key guess (blue) and a wrong key guess (red).
The decision boundaries for a success probability of 90% are drawn for
the likelihood-ratio classifier (top) and the Bayesian classifier (bottom).
Right: The corresponding probability distributions of Λ(x) (top) and B(x)
(bottom) as well as the threshold value. The likelihood ratio classifier
obtains an advantage of 5.5 bits, while the Bayesian classifier obtains an
advantage of 3.1 bits.

correlation will therefore always be opposite. In the terminology of Section 3.3, the
number of components ` of the Gaussian mixture is strictly less than 2M . We will
call such a distribution asymmetric. On the other hand, the two approximations γ1
and δ1 have different dominant key-trails, and therefore all four sign combinations of
their correlations are possible. In this case, ` = 2M , and we call such a distribution
symmetric.

For γ1 and δ1, the decision boundary for the likelihood classifier was shown in
Figure 9. For γ1 and γ3, the decision boundary is shown in Figure 10. Here, the
"missing" components in the first and third quadrant are clearly shown, while the
wrong-key distribution is still symmetric around zero. We note that, all else being
equal, the classifier on the asymmetric distribution achieves an increased advantage
of 0.7 bits. Moreover, the comparison here is fair, since the strength of δ1 is the same
as that of γ3. The reason for this increase is apparent when we compare the two

64

5 Classifying Keys using Asymmetric Distributions

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

− 2−19.2

− 2−19.92

− 2−21.4

2−21.74

2−20.03

2−19.27

− 2−18.91 − 2−19.61 − 2−21 2−21.68 2−19.83 2−19.05

CK
N(γ1)

C
KN
(γ

3)

log(Λ(x))

P
r(l

og
(Λ

(x
))

)
0.

00
0.

05
0.

10
0.

15
0.

20
0.

25
0.

30

− 7.03 − 2.39 2.24 6.88 11.51 16.15 20.79 25.42

Right key
Wrong key
Threshold

Figure 10: Left: The joint distribution of CNK (γ1) and CNK (γ3), with N = 243, are
shown for a right key guess (blue) and a wrong key guess(red). The
decision boundaries for a success probability of 90% are drawn for the
likelihood-ratio classifier. Right: The probability distributions of Λ(x) as
well as the threshold value. The classifier obtains an advantage of 6.2 bits.

Data complexity

A
dv

an
ta

ge

241 241.43 241.86 242.29 242.71 243.14 243.57

 0
 6

12
18 Bayes − Symmetric

Bayes − Asymmetric
Likelihood−ratio − Symmetric
Likelihood−ratio − Asymmetric

Figure 11: A comparison of the advantage obtained by using the Bayesian classifier
and the likelihood ratio classifier on both symmetric and asymmetric
correlation distributions. The symmetric distribution uses the set of
approximations {γ1, γ2, δ1, δ2} while the asymmetric distribution uses the
set {γ1, γ2, γ3, γ4}.

decision boundaries. For the asymmetric distribution, the decision boundary is such
that even extreme points in the wrong-key distribution towards the first and third
quadrant are easily classified as wrong key guesses. This decreases the number of
false positives, increasing the advantage.

This improvement in the classifier for asymmetric distributions generally extends
to higher dimensions, where the effect can be even more pronounced. Indeed, for
larger M , ` can be much smaller than 2M . In the example above, we had ` = 2 while
2M = 4. Consider now the set of approximations {γ1, γ2, γ3, γ4}. A shown in Table 2,
these approximations only have two distinct dominant key trails, implying that the

65

Publication 1 Linear Cryptanalysis of DES with Asymmetries

set has an asymmetric distribution with ` = 4 < 2M = 16. Figure 11 compares
the advantage of this set of approximations to the set {γ1, γ2, δ1, δ2}, which has a
symmetric distribution, i.e. ` = 2M = 16. In general, we observe that the classifiers
are stronger for the asymmetric distribution, with an increase in advantage of 1.4
bits for N = 243. Additionally, the better performance of the likelihood classifier
is quite clear, consistently obtaining a larger advantage over the Bayesian classifier.
For N = 243, the likelihood classifier has an advantage 4.9 bits higher than the
Bayesian classifier on both the symmetric and asymmetric distribution. Due to these
observations, we propose the term symmetry factor for these types of distributions,
defined as `/2M . A distribution with symmetry factor one is a symmetric distribution,
while a symmetry factor less than one indicates an asymmetric distribution. We
conjecture that, all else being equal, a lower symmetry factor will result in a stronger
classifier.

6 Improved Attack on DES
Using the results from the previous sections, we now mount a key-recovery attack
on DES using eight linear approximations. We will use two sets of four linear
approximations, {γ1, γ2, γ3, γ4} and {δ1, δ2, δ3, δ4} over 14 rounds, as given in Table 2.
The attack is mostly identical to Matsui’s Algorithm 2. As such, we obtain N
plaintext-ciphertext pairs over 16 rounds, guess the key-bits required to partially
encrypt/decrypt the texts and compute the linear correlations, and then use the
likelihood classifier to categorise each guess as a likely wrong or right key guess. For
each guess, we further gain some parity bits of the key based on the signs of the
correlations.

6.1 Attack Description
Table 3 shows the key- and text-bits relevant to the attack. For both sets of
approximations, we need to know 29 bits of the plaintext/ciphertext, designated
tf,· / tb,·, and we will guess 24 bits of the first/last round key, designated kf,·/kb,·.
Moreover, the signs of CNK (γ1), CNK (γ4), CNK (δ3), and CNK (δ2), will allow us to deduce
the parity bits pA, pB, pC , and pD. Thus, the attacker will learn a total of 52 bits
of the master key, and will have to guess the remaining 4 bits. In the following, we
assume that the distribution parameters µi,·, Σi,·, and ΣW,· have been determined
before the attack, as described in Section 3.3. Moreover, we assume that λi = 1/`
for all i. The attack is then given as follows:

• Distillation
1. Obtain N plaintext-ciphertext pairs.
2. Create two vectors tγ and tδ of size 229 each. tγ [i] (similarly tδ) is equal

to the number of text pairs such that the bits (tf,γ , tb,γ) are equal to i.

66

6 Improved Attack on DES

Forward key bits guessed #bits

kf,γ {K18
0 , . . . ,K23

0 } kf,δ
{K24

0 , . . . ,K35
0 ,

K42
0 , . . . ,K47

0 }
6+18

Backward key bits guessed #bits

kb,γ
{K24

15 , . . . ,K
35
15 ,

K42
15 , . . . ,K

47
15}

kb,δ {K18
15 , . . . ,K

23
15} 18+6

Plaintext bits stored #bits
tf,γ {P11, . . . ,P16,P39,P50,P56} 9
tf,δ {P0,P7,P15, . . . ,P24,P27, . . . ,P31,P44,P47,P48} 20

Ciphertext bits stored #bits
tb,γ {C0, C7, C15, . . . , C24, C27, . . . , C31, C44, C47, C48} 20
tb,δ {C11, . . . , C16, C39, C50, C56} 9

Parity bits obtained from signs
pA K22

1 ⊕K44
2 ⊕K22

3 ⊕K22
5 ⊕K44

6 ⊕K22
7 ⊕K22

9 ⊕K44
10 ⊕K22

11 ⊕K22
13

pB pA ⊕K22
13 ⊕K19

13 ⊕K23
13

pC K22
0 ⊕K22

2 ⊕K44
3 ⊕K22

4 ⊕K22
6 ⊕K44

7 ⊕K22
8 ⊕K22

10 ⊕K44
11 ⊕K22

12
pD pC ⊕K22

0 ⊕K19
0 ⊕K23

0

Table 3: This table specifies the key/text bits involved in the attack, as well as the
parity key bits derived. Xi denotes the i’th bit of X.

• Analysis
1. For each guess of (kf,γ , kb,γ), calculate the vector

cγ = (CNK (γ1), CNK (γ2), CNK (γ3), CNK (γ4))>,

by partially encrypting/decrypting the data in tγ . Do similarly for the
δ-approximations to calculate cδ.

2. Calculate

Λ(cγ) =
1
4
∑4
i=1 φM (cγ ;µi,γ ,Σi,γ + (2−n + 1/N)I)
φM (cγ ; 0,ΣW,γ + (2−n + 1/N)I) ,

for each guess of (kf,γ , kb,γ). If Λ(cγ) ≤ Γγ , discard the key guess. Likewise,
calculate Λ(cδ) for each guess of (kf,δ, kb,δ). If Λ(cδ) ≤ Γδ, discard the
key guess.

3. For each surviving key guess, determine the four bits pA, pB , pC , pD based
on the signs of cγ and cδ.

• Search
1. For each remaining guess of (kf,γ , kbγ , kf,δ, kb,δ), guess the last 4 bits of

the master key, and verify the guess by trial encryption.

67

Publication 1 Linear Cryptanalysis of DES with Asymmetries

Data complexity

A
dv

an
ta

ge

241.3 241.75 242.2 242.65 243.1 243.55 244

10
21

31
42

52 PS = 0.80
Ps = 0.85
PS = 0.90
PS = 0.95

Data complexity

C
om

pu
ta

tio
na

l c
om

pl
ex

ity

241.3 241.75 242.2 242.65 243.1 243.55 244

240
244

.3
3
248

.6
7

253

PS = 0.80
Ps = 0.85
PS = 0.90
PS = 0.95

Figure 13: Top: Combined advantage of the two likelihood classifiers using approx-
imations in Table 2. The success probabilities include the probability
of guessing the four parity bits correctly. Bottom: The computational
complexity of our key-recovery attack on DES. Each curve has a clear min-
imum where the trade-off between the data complexity and the strength
of the classifiers is optimal.

6.2 Attack Complexity
In the following, we assume that one computational unit is the time it takes to
perform one round of DES. The computational complexity of the distillation phase
is O(N), while the memory complexity is O(2 · 229). For the analysis phase, each
CNK can be calculated for all key guesses in time O((|kf,·| + |kb,·|)2|kf,·|+|kb,·|+1.6)
using the FFT method presented in [9]. In total, step 1 of the analysis phase can
be completed in time O(2 · 4 · 24 · 225.6) ≈ O(233.18). Step 2 requires the calculation
of `+ 1 terms for each key-guess of the type (x− µ)>Σ−1(x− µ), to calculate the
normal probabilities. Each term can be computed in time O(2M3). Thus, step 2
takes a total of O(2 ·224 ·5 ·43) ≈ O(233.32) time. Step 3 takes O(2 ·224−aγ +2 ·224−aδ)
time, where aγ and aδ is the advantage of the classifiers in step 2. The analysis
step requires O(224−aγ + 224−aδ) memory to store the surviving key guesses. The
search phase requires O(16 · 248−(aγ+aδ) · 256−52) = O(16 · 256−(aγ+aδ+4)) time and
negligible memory. Dividing everything by 16 to get the total number of full DES

68

REFERENCES

encryptions, the computational complexity is approximately

O(N · 2−4 + 229.18 + 229.32 + 221−aγ + 221−aδ + 252−(aγ+aδ)).

Thus, the attack complexity depends on the advantage of the two classifiers, which
in turn depends on the choice of Γγ and Γδ. Note that step 3 of the analysis phase
is not guaranteed to succeed, so the threshold values must be chosen such that the
overall success probability of the attack is PS . Namely, if Pγ and Pδ is the success
probabilities of the two classifiers, and Qγ and Qδ is the success probabilities of
determining the parity bits, then we fix Γγ and Γδ such that Pγ · Pδ ·Qγ ·Qδ = PS .
Using the data obtained in Section 5.3, we calculated the total advantage aγ + aδ + 4
for different N and different values of the success probability PS . The results are
shown in Figure 13, along with the corresponding attack complexities. For low data
complexities, the search phase is dominant, and so the 252−(aγ+aδ) term determines
the time complexity. For high data complexities, however, the N · 2−4 term is
dominant. This gives each complexity curve a clear minimum. In a comparison to
Matsui’s attack, we see that for PS = 85%, the minimum is achieved at N = 242.775

where the computational complexity is 238.86 DES encryptions. This is 17.6 times
faster than Matsui’s attack estimate (or 4.4 times faster than Junod’s estimate of
the attack in [16]) using 240.2 fewer texts.

6.3 Experimental Verification
While it would be possible to carry out the attack in practice, we would need to do
this for many keys to get an idea of the actual advantage, making the experiment
infeasible. Instead, we measured the actual values of cγ and cδ over 14 and 18 rounds
of DES (the right key and wrong key, respectively) with N = 242.78 for randomly
chosen keys. This can be done in a bitsliced manner, and is therefore faster than
performing the actual attack, while giving us all the information we need to verify
our model. Using several months of CPU time, we collected 1300 data points for the
right key and wrong key distributions. We first note that the observed distributions
closely match those predicted by the model in e.g. Figure 8. Moreover, we obtain
the advantages aγ = 6.72 and aδ = 10.31, which would give us a complexity of 238.88

– very close to that predicted by our model.

References
[1] Eli Biham and Adi Shamir. “Differential Cryptanalysis of the Full 16-Round

DES”. In: Advances in Cryptology - CRYPTO ’92. 1992, pp. 487–496.
[2] Alex Biryukov, Christophe De Cannière, and Michaël Quisquater. “On Multiple

Linear Approximations”. In: Advances in Cryptology - CRYPTO 2004. 2004,
pp. 1–22.

69

Publication 1 Linear Cryptanalysis of DES with Asymmetries

[3] Andrey Bogdanov, Huizheng Geng, Meiqin Wang, Long Wen, and Baudoin
Collard. “Zero-Correlation Linear Cryptanalysis with FFT and Improved
Attacks on ISO Standards Camellia and CLEFIA”. In: Selected Areas in
Cryptography - SAC 2013. 2013, pp. 306–323.

[4] Andrey Bogdanov and Vincent Rijmen. “Linear Hulls with Correlation Zero
and Linear Cryptanalysis of Block Ciphers”. In: Des. Codes Cryptography
70.3 (2014), pp. 369–383.

[5] Andrey Bogdanov and Vincent Rijmen. “Zero-Correlation Linear Cryptanal-
ysis of Block Ciphers”. In: IACR Cryptology ePrint Archive 2011 (2011),
p. 123.

[6] Andrey Bogdanov and Elmar Tischhauser. “On the Wrong Key Randomisation
and Key Equivalence Hypotheses in Matsui’s Algorithm 2”. In: Fast Software
Encryption - FSE 2013. 2013, pp. 19–38.

[7] Andrey Bogdanov, Elmar Tischhauser, and Philip S. Vejre. “Multivariate
Profiling of Hulls for Linear Cryptanalysis”. In: IACR Trans. Symmetric
Cryptol. 2018.1 (2018), pp. 101–125.

[8] Joo Yeon Cho. “Linear Cryptanalysis of Reduced-Round PRESENT”. In:
Topics in Cryptology - CT-RSA 2010. 2010, pp. 302–317.

[9] Baudoin Collard, François-Xavier Standaert, and Jean-Jacques Quisquater.
“Improving the Time Complexity of Matsui’s Linear Cryptanalysis”. In: In-
formation Security and Cryptology - ICISC 2007. 2007, pp. 77–88.

[10] Joan Daemen. “Cipher and Hash Function Design Strategies Based on Linear
and Differential Cryptanalysis”. PhD thesis. KU Leuven, 1995.

[11] Joan Daemen and Vincent Rijmen. “Probability Distributions of Correlation
and Differentials in Block Ciphers”. In: J. Mathematical Cryptology 1.3 (2007),
pp. 221–242.

[12] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002. isbn: 3-540-42580-2.

[13] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. “Multidimensional Extension
of Matsui’s Algorithm 2”. In: Fast Software Encryption, FSE 2009. 2009,
pp. 209–227.

[14] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. “Multidimensional Linear
Cryptanalysis of Reduced Round Serpent”. In: Information Security and
Privacy, ACISP 2008. 2008, pp. 203–215.

[15] Burton S. Kaliski Jr. and Matthew J. B. Robshaw. “Linear Cryptanalysis
Using Multiple Approximations”. In: Advances in Cryptology - CRYPTO ’94.
1994, pp. 26–39.

[16] Pascal Junod. “On the Complexity of Matsui’s Attack”. In: Selected Areas in
Cryptography. 2001, pp. 199–211.

70

REFERENCES

[17] Lars R. Knudsen and John Erik Mathiassen. “A Chosen-Plaintext Linear
Attack on DES”. In: Fast Software Encryption, FSE 2000. 2000, pp. 262–272.

[18] Susan K. Langford and Martin E. Hellman. “Differential-Linear Cryptanalysis”.
In: Advances in Cryptology - CRYPTO ’94. 1994, pp. 17–25.

[19] Bruce G Lindsay. “Mixture Models: Theory, Geometry and Applications”. In:
NSF-CBMS Regional Conference Series in Probability and Statistics. JSTOR.
1995, pp. i–163.

[20] Mitsuru Matsui. “Linear Cryptanalysis Method for DES Cipher”. In: Advances
in Cryptology - EUROCRYPT ’93. 1993, pp. 386–397.

[21] Mitsuru Matsui. “The First Experimental Cryptanalysis of the Data Encryp-
tion Standard”. In: Advances in Cryptology - CRYPTO ’94. 1994, pp. 1–
11.

[22] Phuong Ha Nguyen, Hongjun Wu, and Huaxiong Wang. “Improving the
Algorithm 2 in Multidimensional Linear Cryptanalysis”. In: Information
Security and Privacy, ACISP 2011. 2011, pp. 61–74.

[23] Kaisa Nyberg. “Linear Approximation of Block Ciphers”. In: Advances in
Cryptology - EUROCRYPT ’94. 1994, pp. 439–444.

[24] Ali Aydin Selçuk. “On Probability of Success in Linear and Differential
Cryptanalysis”. In: Journal of Cryptology 21.1 (2008), pp. 131–147.

[25] Igor A. Semaev. “New Results in the Linear Cryptanalysis of DES”. In: IACR
Cryptology ePrint Archive 2014 (2014), p. 361.

[26] TLS stats from 1.6 billion connections to mozilla.org. https://jve.linuxwall.
info/blog/index.php?post/2016/08/04/TLS-stats-from-1.6-billion-
connections-to-mozilla.org. Accessed: 07-09-2017.

[27] Jingyuan Zhao, Meiqin Wang, and Long Wen. “Improved Linear Cryptanalysis
of CAST-256”. In: Journal of Computer Science and Technology 29.6 (2014),
pp. 1134–1139.

71

https://jve.linuxwall.info/blog/index.php?post/2016/08/04/TLS-stats-from-1.6-billion-connections-to-mozilla.org
https://jve.linuxwall.info/blog/index.php?post/2016/08/04/TLS-stats-from-1.6-billion-connections-to-mozilla.org
https://jve.linuxwall.info/blog/index.php?post/2016/08/04/TLS-stats-from-1.6-billion-connections-to-mozilla.org

Publication 2

Multivariate Profiling of Hulls for
Linear Cryptanalysis

Publication Information
Andrey Bogdanov, Elmar Tischhauser, and Philip S. Vejre. “Multivariate Pro-
filing of Hulls for Linear Cryptanalysis”. In: IACR Transactions on Symmetric
Cryptology 2018.1 (2018), pp. 101–125

Contribution
• Main author.

Remarks
This publication has been slightly edited to fit the format.

73

Multivariate Profiling of Hulls for Linear Cryptanalysis

Andrey Bogdanov, Elmar Tischhauser, and Philip S. Vejre

Technical University of Denmark

Abstract. Extensions of linear cryptanalysis making use of multiple
approximations, such as multiple and multidimensional linear crypt-
analysis, are an important tool in symmetric-key cryptanalysis, among
others being responsible for the best known attacks on ciphers such as
Serpent and present. At CRYPTO 2015, Huang et al. provided a
refined analysis of the key-dependent capacity leading to a refined key
equivalence hypothesis, however at the cost of additional assumptions.
Their analysis was extended by Blondeau and Nyberg to also cover an
updated wrong key randomization hypothesis, using similar assump-
tions. However, a recent result by Nyberg shows the equivalence of
linear dependence and statistical dependence of linear approximations,
which essentially invalidates a crucial assumption on which all these
multidimensional models are based.
In this paper, we develop a model for linear cryptanalysis using multiple
linearly independent approximations which takes key-dependence into
account and complies with Nyberg’s result. Our model considers an
arbitrary multivariate joint distribution of the correlations, and in
particular avoids any assumptions regarding normality. The analysis
of this distribution is then tailored to concrete ciphers in a practically
feasible way by combining a signal/noise decomposition approach for
the linear hulls with a profiling of the actual multivariate distribution
of the signal correlations for a large number of keys, thereby entirely
avoiding assumptions regarding the shape of this distribution.
As an application of our model, we provide an attack on 26 rounds of
present which is faster and requires less data than previous attacks,
while using more realistic assumptions and far fewer approximations.
We successfully extend the attack to present the first 27-round attack
which takes key-dependence into account.

1 Introduction
Proposed by Matsui [34, 36] in the early 1990s, linear cryptanalysis has proven to be a
seminal cryptanalytic technique for symmetric-key cryptography. Most prominently,
linear cryptanalysis was successfully applied to the former U.S. encryption standard
DES, breaking it experimentally for the first time. Influential cipher design paradigms,

75

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

such as the wide-trail strategy [23], were specifically developed as a response to the
advert of linear and differential cryptanalysis. Today, every newly proposed keyed
symmetric primitive is expected to be accompanied by strong evidence of resistance
against this attack.
In the last two decades, a number of advanced variants of linear cryptanalysis

have been developed, among others differential-linear cryptanalysis [31], multiple
linear cryptanalysis [5, 29], multidimensional linear cryptanalysis [25, 26, 27], zero-
correlation linear cryptanalysis [16], and key-invariant bias attacks [13]. These
extensions of linear cryptanalysis have provided the best single-key cryptanalytic
results on ciphers such as Serpent [38], present [18, 47], CLEFIA [14], CAST-256 [46],
and LBlock-s [45].
Parallel to the development of these cryptanalytic results, extensive research has

been carried out to deepen our understanding of linear cryptanalysis [2] and its
extensions [7], e.g. concerning links between differential and linear cryptanalysis [11]
and truncated differential and multidimensional linear techniques [10]. How to
provide resistance against these advanced cryptanalysis techniques has been studied
in [6, 44].

Key-dependence in Linear Cryptanalysis. Linear cryptanalysis relies on identifying
linear relations between the input and output bits of a cipher which exhibit large
linear correlations. The correlation can be viewed as a random variable over the
space of inputs as well as over the space of encryption keys. A central question in
linear cryptanalysis is therefore this: What is the stochastic behaviour of the linear
correlation?

While early analysis assumed that this behaviour was largely identical for all keys
[4, 30, 34, 36, 42, 46], and so only depends on the randomness of the plaintexts,
several works have demonstrated that this is not true in general [2, 32], and models
have been developed for the key-dependent behaviour of the correlation of a single
linear approximation [17, 22]. These models assert that the linear correlation follows
a normal distribution, both in the case of a random permutation and specific block
ciphers.
Even though we have a good understanding of the key-dependent behaviour of

single approximations, it is only recently that the key-dependent behaviour of multiple
approximations has been studied, despite the relatively large number of multiple and
multidimensional linear attacks in the literature. In this work, we consider the three
principal papers on this topic and reflect on the precise assumptions used by the
models developed by them. We then develop a new model which aims to remove
many of these assumptions in order to obtain more accurate estimates of the power
of linear attacks.

State of the Art and Problems. There are three principal works considering key-
dependence in the context of multiple and multidimensional linear cryptanalysis.
First, [28] by Huang et al. considers the key-dependent behaviour of the multiple

76

1 Introduction

and multidimensional capacity and develops a model in which this follows a gamma
distribution under the assumption that the individual correlations are independently
and identically distributed. Second, [9] by Blondeau and Nyberg relaxes the assump-
tions of [28] such that the correlation distributions need not have identical means,
which results in a model that describes the capacity as a scaled, non-central χ2-
distribution. However, this model assumes an accurate estimate of the parameters of
the correlation distributions. Blondeau and Nyberg relaxed this assumption in [8] by
incorporating the signal/noise decomposition from [17] into the model. Although the
models developed in these works are a step on the way towards accurate assessments
for multiple and multidimensional attacks, we identify the following main problems
with the approaches:

• Independence assumptions: Multidimensional linear cryptanalysis was orig-
inally introduced to solve the requirement for statistically independent approxi-
mations, but recently Nyberg showed [40] that under reasonable assumptions
about pair-wise statistical independence, linear independence and statistical
independence of approximations are equivalent concepts. Multidimensional
linear cryptanalysis uses many linearly dependent approximations, but the
models described above often assume these to be statistically independent for
a random permutation. Moreover, the models are typically derived in a setting
with independent round keys – a setting that does not strictly reflect most
actual ciphers.

• Restricted approximation choice: The models described above restrict
which approximations can be used. In the case of multiple linear cryptanalysis,
equal correlation variances are required, and so we cannot necessarily freely
choose the approximations that best facilitate an attack, as they might have
different distributions. Ideally, a cryptanalyst would like to be able to pick
the best trade-off between strong approximations and approximations that
make the attack efficient to perform. For multidimensional linear cryptanalysis,
models are given in which a set of dominant approximations are present and
the rest of the approximations are treated as noise. The advantage of the
multidimensional approach then seems to stem from the fact that the attacker
can sometimes get a few rounds for free, if the resulting approximations still
allow for efficient key guessing.

• Parameter estimation: As mentioned, the models of [9, 28] require an accu-
rate knowledge of the correlation distributions or multidimensional probability
distributions. Obtaining this is extremely difficult for most reasonable block
and key sizes. This problem is mostly solved in [8] by applying the signal/noise
decomposition, but this approach is still quite computationally expensive if
simplifying assumptions, such as independent round keys, are not used. In
general, this problem seems to be quite difficult to avoid.

77

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

Our Results. The results of [40] poses a problem for any model of linear crypt-
analysis with multiple approximations that uses linearly dependent approximations,
including multidimensional linear attacks. This paper therefore revisits multiple
linear cryptanalysis in the case where all approximations are linearly independent.

We first investigate the joint correlation distribution of such a set of approximations.
We find that this distribution can be assumed to be jointly normal for a long-key
cipher, in accordance with theory, but that this is not the case for other key-schedules.
We therefore propose multivariate linear cryptanalysis. This model:

• Does not assume a specific key-schedule,

• Does not assume statistical independence of the correlations,

• Is able to model any arbitrary (not necessarily normal) joint correlation distri-
bution,

• Uses signal/noise decomposition to practically obtain accurate attack estimates.

The model expresses the joint correlation distribution of M approximations as a
general M -variate probability distribution. While the multivariate model relaxes
many assumptions used by previous models, it comes at the cost of a larger effort
during the off-line analysis of the cipher. In particular, the more accurate an estimate
of the signal distribution the cryptanalyst can obtain the better. This only affects
the amount of effort she has to put into the analysis, and not the effectiveness of
the resulting attack. We confirm the accuracy of our model through experiments on
32-bit SmallPresent.

As a result, we are able to present new attacks on present (with an 80-bit key),
which at the same time avoid the above modeling problems. Crucially, our analysis
model is in accordance with [40]. We identify a very sparse set of 135 approximations
over 22 rounds, and use these to attack 26 rounds of present. The computational
complexity of this attack is 268.6, while the data complexity is 263.0. Interestingly,
this attack is about 11 times faster than Cho’s original attack on the same number
of rounds, and uses half the data, all the while using far fewer approximations and
more realistic assumptions. This demonstrates that a multidimensional linear attack
is not necessarily stronger than a multiple linear attack. We extend the attack to
27 rounds, resulting in a computational complexity of 277.3 and a data complexity
of 263.8. This is the first attack on 27 rounds of present in a model that accounts
for key-dependence. Our attacks are compared to previous attacks on present in
Table 1.

2 Preliminaries
We consider a block cipher E(P,K) : Fn2 × Fκ2 → Fn2 with a block size of n bits and
key length of κ bits. For each key K ∈ Fκ2 , EK := E(·,K) is a permutation on Fn2 . If

78

2 Preliminaries

Rounds Su
cce

ss
pr
ob
ab
ili
ty

#A
pp
ro
xim

at
ion

s
Ti
me

co
mp

lex
ity

Da
ta
co
mp

lex
ity

M
em

or
y
co
mp

lex
ity

F1
: K

ey
-d
ep
en
de
nt

F2
: Com

pl
ie

s with

[4
0] T1
: S

ign
al/

no
ise

T2
: P

ro
fili
ng

Reference

25
95% 2295 265.0 262.4 234.0 n/a [18]
95% 2295 265.0 261.6 234.0 3 [28]
74% 2295 272.0 261.0 234.0 3 [8]

26

95% 2295 272.0 264.0 234.0 n/a [18]
80% 2295 276.0 262.5 234.0 3 [28]1
51% 2295 272.0 263.8 234.0 3 3 [8]
95% 135 268.6 263.0 248.0 3 3 3 3 Section 6.2

27 95% 405 274.0 264.0 270.0 n/a [47]
95% 135 277.3 263.8 248.0 3 3 3 3 Section 6.32

1: For 3.7% of the key space.
2: Uses distinct texts. All other attacks use non-distinct texts.

Feature/Technique Explanation
F1: Key-dependent The model accounts for the fact that the linear correlation

of an approximation varies over the key space.
F2: Complies with [40] The model does not assume that linearly dependent approx-

imations of a random permutation are statistically indepen-
dent. Doing so contradicts [40].

T1: Signal/noise The model uses the signal/noise decomposition of [17] to
obtain accurate estimates of the correlation distributions.

T2: Profiling The model measures the actual multivariate distribution of
the signal for a large number of keys to avoid assumptions
of the shape of this distribution.

Table 1: Comparison of attacks on present. The attacks of [18] and [47] do not
take the key-dependence into account. All models, except the one presented
in this work, use assumptions that contradict the equivalence of linear
independence and statistical independence of linear correlations shown in
[40].

a block cipher picks a permutation uniformly at random from the space of all (2n)!
permutations for each key, we say that it is ideal.

Most modern block ciphers are iterative block ciphers where the encryption function
is a composition of r key-dependent round functions. If each round function can be
described as a key-independent transformation followed by an XOR of the round key,
we call the cipher a key-alternating cipher. Additionally, an initial key is XOR’ed to
the input before the first round. Usually, a key-schedule is used to expand the κ-bit
master key K into the required r + 1 n-bit round keys. We denote the expanded key

79

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

by K̄ = k0‖k1‖ . . . ‖kr, i.e. the concatenation of the round keys. If all round keys
are chosen uniformly and independently, i.e. κ = (r + 1)n and K = K̄, we call the
cipher a long-key cipher.

2.1 Linear Cryptanalysis
Linear cryptanalysis was introduced by Matsui in 1993 [34] and considers one or more
linear approximations of a cipher. A linear approximation is a pair (α, β) ∈ Fn2 ×
Fn2\(0, 0), where α is called the input mask and β the output mask. The key-dependent
linear correlation of the approximation is defined as CKα,β = 2Pr(α ·x = β ·EK(x))−1,
where “·” denotes the canonical inner product on Fn2 , and the probability is taken
over all x ∈ Fn2 . Assuming that K is drawn uniformly at random, CKα,β is a random
variable over the key space. If an estimate of CKα,β is calculated using N plaintext-
ciphertext pairs, we denote this value by CK,Nα,β , which is a random variable over both
the key and text space, where the latter is of size N . The goal of linear cryptanalysis
is to find pairs (α, β) such that the probability distribution of the correlation for the
block cipher in question is distinguishable from the correlation distribution of an
ideal cipher.

Let (ui, ui+1), i = 0, . . . , r− 1, be a series of one round linear approximations of an
iterative block cipher. Such a series of approximations is called a linear trail. We can
also denote the trail by the concatenation of its masks, i.e. U = u0‖ . . . ‖ur. Then
the correlation contribution of trail is defined by CKU =

∏r−1
i=0 C

K
ui,ui+1

. The collection
of all trails with u0 = α and ur = β is called the linear hull of (α, β). Moreover, the
correlation of (α, β) is the sum of the correlation contributions of all trails in the hull
[20, 23]:

CKα,β =
∑

u0=α,ur=β
CKU . (1)

A useful concept is that of the expected linear potential (ELP), defined by E((CKα,β)2).
For a long-key cipher, it can be shown that ELP =

∑
(CKU)2, and that (CKU)2 is

independent of the key [23].

2.2 Statistical Distinguishing
In cryptanalysis of block ciphers, a first step towards more powerful attacks is often to
build a distinguisher. A distinguisher aims to determine whether some observed data
is the output of a specific block cipher or an ideal cipher. In statistical cryptanalysis,
a distinguisher consists of performing a statistical test which distinguishes between
two probability distributions. Typically, the test computes a value from the data,
which we refer to as the test statistic T .

Note that the test statistic is a random variable. Let TI be the random variable
if the observed data was produced by an ideal cipher, and let TN be the random
variable if the observed data was produced by a specific block cipher. Assume that

80

2 Preliminaries

TI and TN follow univariate distributions. Then a simple and often used statistical
test is to check the value of T against some threshold value τ . Without loss of
generality, assume that E(TI) ≤ τ ≤ E(TN). If T ≥ τ , we conclude that T was
drawn from the distribution of TN , otherwise we conclude that T was drawn from
the distribution of TI . It may be the case that we need to compare against multiple
threshold values – for a discussion of this case, we refer to [9]. Note that we can
define several different tests of the type described above, namely by calculating the
test statistic T in different ways. We consider a commonly used test statistic in
Section 6.1, namely the χ2 test statistics.

When assessing the efficiency of a threshold test, we are mainly interested in two
parameters: the success probability and the advantage. Let FX denote the cumulative
distribution function of the random variable X. We define the probability of success
as

PS = 1− FTN (τ),

i.e. the probability that TN ≥ τ . The advantage, a notion first introduced by Selçuk
in [42, 43] in the context of key-ranking, is in turn defined by

a = − log2(1− FTI (τ)),

and relates to the number of false successes that arises from the threshold test. This
number is important when we want to use a distinguisher as part of a key recovery
attack. In order to assess these quantities, we need to know the distributions of TI
and TN , and the question of determining these is therefore central to the study of
linear cryptanalysis.

From Distinguishing to Key Recovery.

It is possible to turn a distinguisher over r rounds of an iterative block cipher into a
key recovery attack over r′ > r rounds in a generic way. Consider the case r′ = r + 1
as an example. Denote by Er the r-round encryption function, and let Fk denote
the last round function such that Er′ = Fk ◦ Er. Let Ēr be the truncation of Er
such that only the bits required to calculate the test statistic T are output.
The attacker obtains some data from Er

′ , and guesses the parts of k required to
partially invert Fk and calculate the output of Ēr. The attacker then calculates the
test statistic T and runs the distinguisher. If the attacker guessed the partial key k
correctly, the distinguisher should indicate that T was drawn from the distribution
of TN with probability PS . If not, the hypothesis is that the distinguisher will behave
as if T was drawn from the distribution of TI . The reasoning here is that for a wrong
key guess, the attacker is basically observing data from a cipher with r + 2 rounds,
which should behave more like an ideal cipher than a cipher with r rounds. This idea
was first formally stated by Harpes et al. [24] and later stated in the context of linear
cryptanalysis by Junod [30]. Once all candidates for the partial key k have been
tested, the attacker has to guess the remaining bits of the master key K, discarding

81

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

any wrong guesses by trial encryption. By definition of the advantage, the attacker
has to try 2κ−a candidates.

2.3 PRESENT
present is an ultra-lightweight, key-alternating, block cipher. It is an SPN cipher
with 31 rounds, a block size of 64-bit, and a key size of either 80 bit or 128 bit. Each
round consists of an XOR with a round key, a layer of 16 parallel 4-bit S-boxes, and
bit permutation. An additional round key is added after the last round. The 32
round keys are derived through a key-schedule. For details on the bit permutation
and the key-schedule, we refer to [15]. Due to the choice of S-box, present exhibits
some interesting linear properties [41]. It is therefore a common target for new linear
cryptanalysis techniques. We consider new attacks on present in Section 6.

3 Survey of Previous Work
As discussed in Section 2.2, it is of primary interest to determine the distributions
of TI and TN for a given statistical test. For linear cryptanalysis, the test statistic
is derived from the observed correlation of one or more linear approximations. An
equivalent question in this context is therefore what the distribution of the correlation
CNα,β , for a given approximation or set of approximations, looks like, both for a specific
block cipher and for an ideal cipher. Starting with [39], this topic has been extensively
investigated in the literature. In the following, we consider a series of models that
have been proposed since the introduction of linear cryptanalysis, and reflect on
their assumptions and requirements. We divide the models into two main categories:
models that assume that CKα,β is approximately equal for all keys, and models that
include the influence of the key.

3.1 Models Without Key Influence
Matsui introduced linear cryptanalysis in [34, 36] as a means to attack DES. The
approximations used for this attack exhibit a single dominant trail each, i.e. there
exists a trail U such that |CKU | � |CKU ′ | for any U ′ 6= U . Then by Equation 1,
CKα,β ≈ CKU for all keys. Moreover, it can be shown that for key-alternating ciphers
(or ciphers that can be expressed as such, e.g. DES) the correlation contribution
is given by CKU = (−1)U ·K̄ |CKU |, where |CKU | is independent of the key [23]. Thus,
Matsui asserts that for DES, CKα,β ≈ ±|CKU | for all keys. This leads to the concept
of right-key equivalence:
Hypothesis 2 (Right-Key Equivalence – Matsui). If a linear approximation (α, β)
has a single dominant trail U , then the absolute value of the linear correlation is
approximately equal for all keys, with |CKα,β | ≈ |CKU |.

Similarly, Matsui assumed that for a wrong key guess, the correlation would be
approximately zero for all keys, leading to the concept of wrong-key randomisation:

82

3 Survey of Previous Work

Hypothesis 3 (Wrong-Key Randomisation – Matsui). During a key recovery attack,
the linear correlation of a linear approximation (α, β) is approximately equal to zero
for all wrong keys, i.e. CKα,β = 0.

Under Hypotheses 2 and 3 the distribution of CK,Nα,β only depends on the number N
of observed plaintext-ciphertext pairs. Using a normal approximation to the binomial
distribution, it can be shown that

CKR,Nα,β ∼ N (±|CKU |, N−1) and CKW ,Nα,β ∼ N (0, N−1) (2)

where KR and KW represents a right and wrong key guess, respectively. This
and similar models have been used extensively in the literature, first in classical
linear cryptanalysis [4, 30, 34, 36, 42, 46], and later in its extensions multiple linear
cryptanalysis [5, 29] and multidimensional linear cryptanalysis [18, 25, 26, 27, 41, 47].
Notably, the best attacks on the block cipher present (both multidimensional), the
26-round attack by Cho [18] and the 27-round attack by Zheng and Zhang [47], both
use this model.

3.2 Models Incorporating the Key
Single Approximations

While the idea of identical behaviour for all keys simplifies analysis, it does not
reflect the behaviour of most modern ciphers. Indeed, if the number of trails with
a significant correlation contribution is large, then by Equation 1 the correlation
CKα,β will take on many values over the key space. Dubbed the linear hull effect, this
phenomenon was first discussed by Nyberg in [39]. Ohkuma later pointed out that
for present this effect is very strong, as the number of trails with the same best
correlation contribution is large [41]. The situation is similar for most other modern
ciphers designed with resistance to linear cryptanalysis in mind. Thus, Hypothesis 2
is not true for most ciphers of interest.
Although the correlation CKα,β is a random variable over the key space, it is not

immediately clear what distribution it follows. For a long-key cipher, it can be
shown that the distribution is normal with mean zero and variance equal to ELP
[21]. For other key-schedules, the distribution has been studied in several works [2,
17, 32], and have been found to be close to normal – however, the key-schedule can
have an impact on the parameters of the distribution, invalidating the veracity of
Hypothesis 2. This leads to the following revised right-key hypothesis, which has
been used several times in the literature [8, 9, 28].

Hypothesis 4 (Right-Key Randomisation – Single [17, 22]). The linear correlation
CKα,β of a linear approximation (α, β) of a block cipher, which does not have a
single dominant trail, is a random variable over the key space with distribution
CKα,β ∼ N (µ, σ2).

83

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

Note that by the definition of ELP and variance, we can write σ2 = ELP − µ2.
Moreover, for a long-key cipher, µ = 0 [22, 23]. For the wrong-key, the situation is a
little simpler. In [22], Daemen and Rijmen show that the correlation distribution
of an ideal cipher is normal with mean zero and variance 2−n. Thus, we obtain the
following hypothesis in this case.

Hypothesis 5 (Wrong-Key Randomisation – Single). During a key recovery attack,
for a wrong key guess, the linear correlation CKα,β of a linear approximation (α, β) is
a random variable with distribution CKα,β ∼ N (0, 2−n).

While the picture seems clear in the case of a single approximation, moving to
extensions that use multiple approximations simultaneously in order to extract more
information seems to complicate matters considerably.

Multiple Linear Cryptanalysis

Kaliski and Robshaw first proposed the use of multiple approximations simultaneously
in [29]. The idea was extended by Biryukov et al. in [5], where they also defined the
capacity of a set of linear approximations as a measure of the strength of this set.
For a set of M approximations (α1, β1), . . . , (αM , βM), the capacity is defined as

CK =
M∑
i=1

(CKαi,βi)
2. (3)

Similar to the correlations, we denote an estimate of the capacity based on N
plaintext-ciphertext pairs by CK,N . The main problem with this approach is that
the linear approximations are not in general statistically independent, making the
analysis of the capacity very difficult. Indeed, statistical independence was assumed
in [5, 29]. This approach is commonly referred to as multiple linear cryptanalysis.

Multidimensional Linear Cryptanalysis

To avoid the problem of independence, Hermelin et al. proposed multidimensional
linear cryptanalysis in [25, 26], based on the work done by Baignères et al. in [3].
It considers an m-dimensional subspace of Fn2 × Fn2 and studies the distribution
of a plaintext-ciphertext pair (x̄, ĒK(x)) restricted to this subspace, which can be
described by the vector ηK = (ηK0 , . . . , ηK2m−1), where ηKi = Pr(x̄‖ĒK(x) = i). ηK
is a key-dependent, 2m-dimensional, discrete probability distribution. It can then be
shown that the capacity of the set of all linear approximations in the subspace can
be calculated from ηK .

Theorem 1. [26] Consider an m-dimensional subspace of Fn2 × Fn2 , and denote the
multidimensional probabilities by ηKi . The capacity of all linear approximations in

84

3 Survey of Previous Work

this subspace can be calculated as

CK =
2m−1∑
i=1

(CKαi,βi)
2 =

2m−1∑
i=0

(ηKi − 2−m)2

2−m ,

The main advantage of multidimensional linear cryptanalysis is that it can be
shown that the amount of data needed for a multidimensional distinguisher (with
a fixed success probability) is inversely proportional to the capacity, regardless of
statistical dependence of the associated approximations [3].
While the influence of the key on the correlation of a single approximation has

been studied for some time, it is only recently that versions of Hypotheses 4 and 5
have been developed for multiple and multidimensional linear cryptanalysis. In the
following, we give a short summary of the contributions of the three main works in
this area, and in Section 4 we consider their results in depth.

Huang et al., CRYPTO’15 [28] To the best of our knowledge, this is the first
work to study the key-dependent distribution of the multidimensional capacity,
although the wrong-key capacity is not considered. Under some assumptions on
the one-dimensional approximations, it is shown that the capacity follows a gamma
distribution. Two cases are considered giving the following results.

Result 1 ([28], Proposition 2). Consider an m-dimensional linear approximation
where m linearly independent base approximations have dominant ELPs. Moreover,
let the correlations of these base approximations, CKα1,β1

, . . . , CKαm,βm , be i.i.d as
N (0, ELP). Then CK ∼ Γ(m2 , 2ELP) = ELP · χ2

m.

Result 2 ([28], Proposition 3). Consider an m-dimensional linear approximation with
probability distribution ηK = (ηK0 , . . . , ηK2m−1). Assume that the multidimensional
probabilities ηKi are i.i.d as N (2−m, σ2). Then CK ∼ Γ(2m−1

2 , 2m+1σ2) = 2mσ2 ·
χ2

2m−1.

Blondeau and Nyberg, DCC’17 [9] This work improves upon [28] in several ways.
First, both the key and data dependence are included in the models, as opposed to
[28] that only consideres the exact distribution of capacity. Moreover, both sampling
of the texts with and without replacement is considered; here, we will only cover the
case without replacement, and refer to [9] and [12] for further details.

A model for the wrong-key is derived by using Hypothesis 5 and Theorem 1, under
the assumption that approximations of ideal ciphers are statistically independent.

Result 3 ([9], Theorem 6). Consider a multiple or multidimensional attack using
M approximations and N text pairs. Then, for a wrong key guess, CK,N ∼ (N−1 +
2−n)χ2

M .

For the right-key, [9] considers a more general case where the mean of the corre-
lations is not necessarily zero. Let χ2

`(k) be the non-central χ2-distribution with `
degrees of freedom and non-centrality parameter k. The following result is given.

85

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

Result 4 ([9], Theorem 7 and 8). Consider a multiple or multidimensional attack
using M approximations and N text pairs. For a multiple attack, assume that the
linear correlations of the approximations, CKαi,βi , are independently distributed as
N (µi, σ2), i = 1, . . . ,M . For a multidimensional attack, assume that the multidi-
mensional probabilities ηKi are normally distributed with equal variances and that
each set of M probabilities are statistically independent. Let µi be the mean of the
correlation of the related approximation, i = 1, . . . ,M . Then

CK,N ∼ ∆χ2
M

(
N
∑
µ2
i

N∆

)
where ∆ = N−1 +M−1

∑
(ELPi − µ2

i).

For the multidimensional probabilities, note that the assumption of statistical
indepedence of sets of size M arises since

∑
ηKi = 1.

Blondeau and Nyberg, ToSC’16 [8] While [9] derives the capacity distributions
under some assumptions, Result 4 requires that the cryptanalyst can get accurate
estimates of the distribution parameters of the one-dimensional correlations or the
multidimensional probabilities. Obtaining these is left as an open problem. [8] aims
to solve this problem by utilising the signal/noise decomposition technique developed
in [17].
The idea of the signal/noise decomposition is to first get an estimate of the

correlation distribution by computing a part of the linear hull, i.e. some (significant)
terms of Equation 1. We call this set of known trails the signal, denoted by S. Then,
the unknown part of the hull, i.e. the trails not in S, are modeled as noise with
the distribution N (0, 2−n). We will take a closer look at this method in Section 5.2.
Using the signal/noise decomposition, the following result is given for the right-key
distribution of capacity. Note that [8] uses the wrong-key result given in Result 3.

Result 5 ([8], Theorem 4). Given M linear approximations, assume that a signal S
is known for ` approximations, and that the noise of these ` approximations, as well as
the correlations of the remaining M − ` approximations, are statistically independent.
Let CS =

∑`
i=1
∑
U∈Si(C

K
U)2 be the signal capacity. Then, for a long-key cipher,

E(CK) = CS +M2−n, and

Var(CK) = 2
∑̀
i=1

(∑
U∈Si

(CKU)2

)2

+ CS22−n +M21−2n.

4 Limitations of Current Models
The results described in Section 3 use one or more assumptions about the linear
correlation distributions. Moreover, the results are not as general as a cryptanalyst
might want, i.e, the situations in which they can be used are restricted in some way.
In the following, we consider the validity of these assumptions and describe some of
these restrictions.

86

4 Limitations of Current Models

4.1 Independence Assumptions
Dealing with statistical independence has long been a problem for linear cryptanalysis.
Indeed, the very reason for the introduction of multidimensional linear cryptanalysis
was to avoid this issue. When trying to incorporate the key-dependence in the
models, however, it seems difficult to avoid assumptions on the statistical behaviour
of the approximations. We note that Results 1 to 5 all use some assumptions on the
statistical independence of (some of) the approximations. Recently, Nyberg proved
the following theorem:

Theorem 2 ([40]). Let A be a set of pair-wise statistically independent linear approx-
imations. Then the correlations of the linear approximations in A are statistically
independent if and only if they are linearly independent.

While it is an open problem to formally prove when two approximations are
statistically independent, for all practical intents and purposes, assuming pair-wise
statistical independence seems reasonable in the case of random permutations of the
block size used in practice. With this assumption in mind, let us consider a general
set of M linear approximations, (αi, βi), i = 1, . . . ,M . We denote the vector of
their correlations by CK = (CKα1,β1

· · ·CKαM ,βM)>. Under the wrong-key hypothesis,
Hypothesis 5, CKαi,βi ∼ N (0, 2−n), i = 1, . . . ,M . In this case, if the approximations
are linearly independent, Theorem 2 asserts that CK ∼ NM (0,diag(2−n)). But
this is not the case if the linear approximations are linearly dependent, which poses
an interesting problem for the multidimensional models. In particular, not all the
one-dimensional approximations are linearly independent, and so by Theorem 2,
they cannot be statistically independent. The consequence for Result 3 is that it is
unknown whether the capacity is χ2-distributed in a multidimensional linear attack.
For a multiple linear attack the result still holds if the approximations are linearly
independent.
For the right-key models, Theorem 2 has the biggest impact on Result 5. When

adding noise to the model, the assumption is that the noise distributions behave
as for a random permutation and are independent, but this cannot be the case for
a multidimensional approximation. For Results 2 and 4, it is assumed that the
multidimensional probabilities are independent, and thus Theorem 2 does not affect
these models. Whether this assumption is sound is an open problem.
Finally, we note that an often used assumption when deriving these models

is that the cipher is a long-key cipher, where pair-wise statistical independence
might also be a reasonable assumption in practice. In this case, we could choose
linearly independent approximations, and then by Theorem 2 and [21], CK ∼
NM (0,diag(ELPi)). However, most ciphers do not actually have independent round
keys. If a key-schedule is used, we can no longer use Theorem 2 to equate linear
independence with statistical independence. Moreover, we cannot even guarantee
that the distribution is jointly normal. We take a close look at the key-schedule
influence in the following.

87

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

Squared Mahalanobis distance

D
en

si
ty

Squared Mahalanobis, key−schedule
Squared Mahalanobis, long−key
Squared Mahalanobis, identical keys
χ2 −distribution

Figure 1: The densities of the squared Mahalanobis distance of the joint correlation
distribution for 18 approximations over 9 rounds of 32-bit SmallPresent
for three different key-schedules. The plot show a connection between depen-
dence between the round keys, and how much the correlation distribution
deviates from joint normality.

Non-Normality of Linearly Independent Approximations

In light of Theorem 2, the joint correlation distribution of multiple linear approxima-
tions of an ideal cipher is currently unknown. Since knowledge of this distribution is
crucial to linear cryptanalysis, it seems safer to consider sets of linearly independent
approximations. But how do these behave for a specific block cipher that does not
have independent round keys? To investigate this, we consider a set of 18 linearly
independent approximations over 9 rounds of 32-bit SmallPresent [33]. The input
and output masks are given by

α = 24i+3, i ∈ 5, 6, 7, and β = 24i+j , i ∈ 5, 6, 7, j ∈ 2, 3.

We note that these approximations have the same form as those we will later use to
attack present in Section 6. We consider three different key-schedules: long-key,
identical round keys, and a 40-bit key-schedule described in Section A. For each
key-schedule, we calculated the linear correlation of each approximation for the
full code-book and 2 000 000 randomly chosen keys. Let µ and Σ be the mean
vector and covariance matrix of each of the data sets, respectively. To assess how
much the distribution of CK deviates from joint normality, we consider the squared
Mahalanobis distance, defined by

d2 = (CK − µ)>Σ−1(CK − µ).

Note that if CK ∼ N18(µ,Σ), then d2 ∼ χ2
18. Figure 1 shows the density of d2 for

the three data sets against the density of the χ2-distribution.
We make the following observations: For the long-key, the joint distribution of CK

is very close to the multivariate normal distribution N18(µ,Σ). When we switch to a
key-schedule with dependent round keys, we observe a deviation from normality. The

88

4 Limitations of Current Models

most drastic effect is seen in case of the strongest dependence between the round keys,
namely for identical round keys. Here, the distribution of d2 is heavier towards zero,
but also has a heavier tail towards infinity, compared to the χ2

18-distribution. For such
a key-schedule, it does not seem reasonable to approximate the distribution of CK

by a multivariate normal distribution. For the 40-bit key-schedule, the distribution
of d2 also deviates somewhat from χ2

18. The 40-bit key-schedule we have used here
is a scaled down version of the 80-bit key-schedule used in present, and so it
might be natural to assume that the cipher behaves as a long-key cipher, in order to
simplify analysis. However, there is still quite some overlap of the bits in consecutive
round keys, which seems to have a non-negligible influence on the shape of the joint
correlation distribution. It would then seem that, strictly speaking, joint normality
is not a fair assumption, even for good key-schedules.

4.2 Restricted Approximation Choices
The right-key models of [9, 28] set certain requirements for the set of approximations
used. The primary requirement is on the parameters of either the correlation or
multidimensional probability distributions. For Results 1 and 2, the assumption is
that all the distributions are identical. For Result 4, the assumption is that the
distributions have identical variances. Although it might be possible to find sets of
approximations such that these assumptions are satisfied, it does restrict the ability of
the cryptanalyst to freely choose a set of approximations that can optimally facilitate
an attack. This can for example make it hard to do efficient key-guessing, and so
would result in a worse attack than if the cryptanalyst could choose approximations
freely.

While the use of the multidimensional probability distribution in Result 2 is promis-
ing, it seems that there are more works that analyse the correlation distributions
directly – perhaps because the distribution of these is more well understood. For
models that use the correlation distributions directly, it seems that these are currently
either multiple (Result 4) or multidimensional with similar restrictions to the multiple
case (Results 1 and 5). For Result 1, a set of (linearly independent) dominant base
approximations are required, and so the combined approximations derived from
these cannot by assumption contribute significantly to the attack. For Result 5,
the noise part of the ` known approximations are modelled as approximations of a
random permutation and must be independent, and so by Theorem 2 and Section B,
they must be linearly independent. Additionally, the remaining approximations only
contribute with noise.

4.3 Parameter Estimation
As noted by [8], one major challenge when trying to apply Results 1, 2 and 4
is to get an accurate estimate of the various distribution parameters. For single
approximations, this problem was identified in [17] and the signal/noise decomposition
was proposed. This approach was nicely applied in [8], and was shown to give more

89

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

accurate results. However, [8] uses the long-key assumption to avoid considering the
actual distribution of the signal, instead only considering the signal ELP. Extending
the discussion of Section 4.1, this might not be accurate for other key-schedules.
In this case, the cryptanalyst would have to get an estimate of the actual signal
distribution.
To estimate the parameters of the signal, one could find a set of trails with large

correlation contribution, and calculate part of the sum in Equation 1 for a significant
number of randomly chosen keys. Doing this can be a significant challenge, especially
for present-like ciphers where the number of good trails is extremely large. Various
methods for finding good trails of a cipher have been proposed, e.g. the branch-and-
bound method [35] and sparse correlation matrices [1], but it can still be quite the
computational challenge to obtain good parameters for the signal. In Section 6, we
use a method similar to that of [1] and significant computational power to obtain
estimates for a set of present approximation.
While it might be possible to avoid the other issues discussed in this section, if

we abandon the long-key assumption, parameter estimation seems like a challenge
that is difficult to avoid. Indeed, the model we propose in Section 5 in some sense
trades assumptions for increased computational effort. As such, efficient algorithms
for computation of the signal trails seems like an increasingly important research
topic. In connection to this, note that while an estimate of the parameters of the
correlation distributions can be obtained by the above method, we are not aware
of any such method to estimate the parameters of the multidimensional probability
distributions.

5 Multivariate Linear Cryptanalysis
As argued in Section 4.1, when a cipher uses round keys that exhibit some dependence
between them, the joint distribution CK of linear correlations for a set of linearly
independent approximations can deviate from the joint normality we would expect
from a long-key cipher. Indeed, it seems very difficult to describe the exact joint
distribution in this case. On a lower level, the marginal distributions do not necessarily
have identical variances, as was assumed in [9, 28]. Additionally, as discussed in
Section 4.2, the current models for multidimensional linear cryptanalysis do not seem
to fully use most of the approximations in the chosen subspace of Fn2 × Fn2 , and so by
using the multidimensional approach, the attacker has to consider approximations
that only add noise. What is worse, it seems that we are not able to formulate a
wrong-key hypothesis in the multidimensional case that fully agrees with Theorem 2.
Thus, the need for a wrong-key model forces us to consider the case of multiple,
linearly independent approximations. It is therefore our aim to create a more powerful
model for this setting which: models the behaviour of any set of linearly independent
approximations; does not assume statistical independence of approximations or round
keys; does not assume the shape of the joint correlation distribution; and takes into
account the unknown part of the linear hull.

90

5 Multivariate Linear Cryptanalysis

In the following we propose multivariate linear cryptanalysis. In Section 5.1 we
present the main right- and wrong-key hypotheses the model relies on. This model in
some sense trades assumptions for computational effort during the off-line analysis.
In Section 5.2 we incorporate the signal/noise decomposition of [17] into the model,
similar to [8], in order to make the model practically usable. In Section 5.3 we
describe the model as used in a key-recovery attack where the attacker does not have
access to the full codebook.

5.1 The Main Model: Arbitrary Right-Key Distribution
The first part of our model is very general, and simply expresses the fact that the
correlations of a set of M linear approximations follow some multivariate probability
distribution. Consider the vector CK containing the correlations of M linear approx-
imations with linearly independent masks. We propose the following right-key and
wrong-key models.

Model 5 (Right-key – Multiple). Let (αi, βi), i = 1, . . . ,M , be M different linear
approximations of a block cipher with linearly independent masks, and let CK =
(CKα1,β1

· · ·CKαM ,βM)> be a vector containing the linear correlations. Then CK ∼ DM
over the key space, for some M -variate probability distribution DM .

Hypothesis 6 (Wrong-key – Multiple). Let Σδ = diag(2−n). During a key re-
covery attack, for a wrong key guess, the linear correlation vector CK of M linear
approximations with linearly independent masks is a random vector with distribution
CK ∼ NM (0,Σδ).

The wrong-key hypothesis is inspired by Theorem 2 and the result of [22], and the
veracity of the hypothesis therefore relies on the assumption of pair-wise statistical
independence of linear approximations of a random permutation. We take some steps
towards validating Hypothesis 6 in Section B. For the right-key, this model allows
the attacker to pick any set of linearly independent approximations, but requires
that she can somehow estimate the shape of the distribution DM . While this at first
does not seem very useful, as determining this distribution seems like a very hard
problem in general, we propose a way to do this in the following by applying the
signal/noise decomposition. We note that, interestingly, Model 5 could be extended
to any arbitrary set of approximations, but it is currently unknown how to express
Hypothesis 6 in this setting. It is therefore a very interesting open problem to derive
the distribution of linearly dependent approximations of an ideal cipher.

5.2 The Practical Model: Signal/Noise Decomposition
The model presented requires the cryptanalyst to somehow obtain the distribution
DM for the right-key distribution. In most cases, we will be unable to calculate the
exact distribution of CKα,β for any single approximation, and we therefore have to
estimate DM . In order to do this, we take a similar approach to [8, 17]. Let S be

91

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

the set of known signal trails for an approximation (α, β). Then we define the signal
correlation as

CK?α,β =
∑
U∈S

CKU . (4)

The signal correlation CK?α,β will itself follow some probability distribution – we denote
this by D?α,β . We then assume that the unknown trails, the noise, behave as for a
random permutation, i.e. their correlation is distributed as N (0, 2−n). Then we can
approximate the full correlation with the distribution

CKα,β ∼ D?α,β +N (0, 2−n)

However, we still have the problem that D?α,β is unknown. This problem can be
solved computationally. By computing Equation 4 for a large number of keys, we
obtain a set of values drawn from D?α,β . Whenever we need to randomly sample
from D?α,β , as we will need to do to estimate the strength of an attack, we simply
sample from this data set. The same can be done for multiple approximations by
calculating the signal correlations simultaneously for all M approximations for a
randomly chosen set of keys. In this way, we trade any assumptions on the shape
of the distribution D?M for a potentially large computational effort. However, this
computational effort is only required during the off-line analysis, and so has no
influence on the computational complexity of an attack.
Under the assumption that the noise behaves as for a random permutation, the

noise of linearly independent approximations will also be statistically independent,
by Theorem 2 and Section B. Then we can make the following generalisation of the
signal/noise decomposition to several approximations. Note that compared to [8],
we here consider the distribution of the signal over the keys, as opposed to only the
ELP of the approximations.

Model 6. Let Σδ = diag(2−n). If the distribution, D?M , of the signal CK? is
known, then the distribution of CK in Model 5 is closely approximated by CK ∼
D?M +NM (0,Σδ).

Experimental Verification.

In order to verify Model 6, we again consider the set of 18 approximation over 9
rounds of 32-bit SmallPresent defined in Section 4.1. We considered the version
with the 40-bit key-schedule, and enumerated part of the hull of each approximation,
by using an approach very similar to the sparse correlation matrix method in [1]. In
this way, we obtain a set of signal trails that includes all trails having intermediate
masks with hamming weight at most four in each round. We did this simultaneously
for all 18 approximations and 500 000 randomly chosen keys, in order to get an
estimate of the distribution D?18. Furthermore, we measured the actual correlation
values of the cipher for 2 000 000 randomly chosen keys. We then applied Model 6

92

5 Multivariate Linear Cryptanalysis

0 10 20 30 40 50

0.
00

0.
02

0.
04

0.
06

Squared Mahalanobis distance

D
en

si
ty

Measured
Predicted, Model 2

Figure 2: A density of the squared Mahalanobis distance for the joint distribution of
linear correlation for 18 approximations over 9 rounds of 32-bit SmallPre-
sent using a 40-bit key-schedule. The plot compares the density measured
using the full codebook to a prediction made using Model 6.

to our signal estimate, and calculated the squared Mahalanobis distance of the two
resulting data sets. The result is shown in Figure 2. The figure shows that Model 6
gives us a very close estimate of the actual distribution.

5.3 The Attack Model: Dealing with Undersampling
Even though Model 6 provides a way to get a good estimate of the multivariate
correlation distribution, we would often like to avoid using the full codebook in a
key-recovery attack. Thus, we also need to be able to express the distribution of the
undersampled correlation, CK,N . Using a result due to Murphy, we develop such a
model next.

Murphy showed [37] that the joint distribution over the text space of the empirical
correlations, measured using N randomly drawn text pairs for a fixed key K0, has a
multivariate normal distribution, CK0,N ∼ NM (µK0 ,ΣK0,N), where µK0

i = CK0
αi,βi

and

ΣK0,N
i,j =

{
N−1CK0

αi⊕αj ,βi⊕βj for i 6= j,

N−1 for i = j.

When taken as a random variable over the key space, we note that µK0 = CK

and therefore has distribution DM . Indeed, ΣK0,N also has a distribution over the
key space, making the distribution over both the key and text space extremely
difficult to analyse. However, as Murphy notes, it is often the case that the com-
bined approximations (αi ⊕ αj , βi ⊕ βj) are extremely weak, e.g. in the case where
(αi, βi) and (αj , βj) activate different S-boxes at the input and output. In this case,
N−1CK0

αi⊕αj ,βi⊕βj � N−1, and we can set these covariances to zero. As Murphy says,
in this case the fixed-key correlations are “approximately statistically independent”

93

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

over the text space, in the sense that any contribution by the covariances is negligible.
Under this assumption, we obtain the following theorem.

Theorem 3. Let ΣN = diag(N−1). Consider a set of M approximations as given in
Model 5. Assume that the correlation of any combination of two such approximations is
zero. Then the empirical correlation vector of these approximations, measured with N
randomly drawn plaintext-ciphertext pairs, has distribution CK,N ∼ DM+NM (0,ΣN).
For the wrong-key scenario of Hypothesis 6, CK,N ∼ NM (0,Σδ + ΣN).

Proof. From [37] we have that CK0,N ∼ NM (µK0 ,ΣK0,N) for a fixed key K0. By
assumption, we further have that ΣK0,N = ΣN = diag(N−1), and so is independent
of the key. The distribution of CK0,N over keys is therefore NM (DM ,ΣN) =
DM +NM (0,ΣN). For the wrong-key, DM = NM (0,Σδ), finishing the proof.

By applying Model 6 to this theorem, we obtain the following corollary.

Corollary 4. For a set of M approximations as in Theorem 3, if the distribution,
D?M , of the signal CK? is known, then the distribution of CK,N is closely approximated
by CK,N ∼ D?M +NM (0,ΣN + Σδ).

As an interesting observation, this result shows how the original model by Matsui,
Equation 2, can misleadingly give accurate results when N is relatively small, as is
the case for the attack on DES. In this case, and as long as DM does not deviate
too much from joint normal distribution, N−1 will dominate the variance terms
of Cov(DM) and Σδ, making the key-variance undetectable. This also shows that
conducting experiments for a low number of rounds with low data complexity can
not necessarily confirm a model.

Corollary 4 gives us a way to estimate the distribution of the correlation vector over
the keys for a set of linearly independent approximations. In contrast to Results 1,
2, 4 and 5, no assumptions about independence or the parameters of the involved
distributions are required, and we do not assume independent round keys. This
generality of course comes with a cost: the approximations have to be linearly
independent (although we are not forced to consider weak approximations), and we
have to estimate the distribution D?M . We have partially discussed the latter issue in
Section 5.2, and we will discuss how we have done this for present in Section 6.

6 Multivariate Linear Attacks on PRESENT
Different methods for distinguishing when using many approximations have been
proposed. The LLR method was proposed by Baignères et al. in [3] as an optimal
distinguisher and used in [26] in a multidimensional attack against the block cipher
Serpent. Both the LLR method and the χ2 method were studied in [25], where the
LLR method was concluded to have better performance. However, as noted by Cho in
[18], the LLR method is often not practical to use, as it requires an accurate knowledge
of the key-dependent behaviour of the multidimensional probability distribution. For

94

6 Multivariate Linear Attacks on PRESENT

this reason, the χ2 method is more commonly used. We now present a new attack on
26 and 27 rounds of present using this method and the improved multiple linear
model of Section 5.

6.1 Determining the Advantage
The χ2 method has been widely used as a distinguisher in various attacks. For this
method, the test statistic is defined as

Tχ2 = N

M∑
i=1

(CK,Nαi,βi
)2.

In the following, we describe how to determine the advantage of the χ2 distinguisher
using the theory developed in this paper. The approximations used are chosen based
on the observations made by Ohkuma in [41]: the best approximations of present
are those that start and end with the S-boxes Si with i ∈ {5, 6, 7, 9, 10, 11, 13, 14, 15}.
For our attack, we consider the input and output masks

α = 24i+3, i ∈ {5, 6, 7, 9, 10, 11, 13, 14, 15},
β1 = 24i+3, i ∈ {5, 6, 7, 9, 10, 11, 13, 14, 15}, β2 = 24i+2, i ∈ {5, 6, 7, 9, 10, 11}.

Taking all possible combinations of these input and output masks gives us M = 135
approximations. These approximations are chosen to facilitate efficient key-guessing
over a large number of rounds, as will become evident in Section 6.2. We note that
due to the structure of the approximations, it can be assumed that the undersampling
matrix ΣN is a diagonal matrix, as discussed in Section 5.3. This does not imply
independence of the approximations, but simplifies our analysis considerably.
With this choice, we obtain the advantage in the following way. By using a

signal that includes all trails having intermediate masks with hamming weight at
most four in each round, and a technique similar to that of [1], we obtain a data
set of observations from the signal distribution D?135. We used 217 100 random
master keys to generate these observations. We now simulate observations from
CK,N in the following way: We fix a sample size for the simulation, say k. For the
right key, we randomly sample k observations of D?135 (with replacement, if k is
larger than the number of observations we have collected) from our data set. We
then sample k random observations from the normal distribution NM (0,ΣN + Σδ).
These two samples are then added together, following Corollary 4. The wrong-key
distribution is simulated by randomly sampling k times from the normal distribution
NM (0,ΣN + Σδ), according to Theorem 3.
We note for comparison to previous works that the expected right-key capacity

obtained from these simulations is E(CK) = 2−55.01 with a variance of Var(CK) =
2−115.59, whereas the wrong-key capacity has E(CK) = 2−56.92 and Var(CK) =
2−119.92.

95

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

log2(N)

A
dv

an
ta

ge

● ● ● ● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●

●

●

●

●

60 60.3 60.6 60.8 61.1 61.4 61.7 61.9 62.2 62.5 62.8 63

0
5

10
15

Figure 3: Advantage of the χ2 distinguisher using 135 approximations of 22-round
present, with PS = 0.95. At half the codebook, N = 263, the advantage
is 14.5 bits.

We can now calculate the empirical CDFs of the simulated right-key and wrong-key
distributions. For a fixed success probability PS , we use the right-key CDF to obtain
a threshold τ , as described in Section 2.2. The advantage is finally calculated using
the wrong-key CDF and τ , as defined in Section 2.2. Figure 3 shows the result of
applying this procedure for k = 222, PS = 0.95, and varying values of N . We note
that we need to set k fairly high to obtain sufficient resolution of the empirical CDFs.
For the chosen k, we can detect probabilities down to 2−22, allowing us in turn to
detect advantages of up to 22 bits. At half the codebook, N = 263 we obtain an
advantage of 14.5 bits.

6.2 Attacking 26 rounds
Under the wrong key randomisation hypothesis, Hypothesis 6, we can turn our
multivariate linear distinguisher into a key-recovery attack, as described in Section 2.2.
That is, the attack proceeds as follows: Collect N plaintext-ciphertext pairs. Guess
the bits of the outer round keys required to (partially) encrypt/decrypt the desired
number of rounds. Apply the χ2 distinguisher to the resulting correlations, and save
the key guess if the distinguisher indicates a non-ideal cipher. Repeat for all guesses
of the round key bits. For each saved key we can find the master key by exhaustively
guessing the remaining bits and verifying by trial encryption.

We aim to recover the master key for r rounds of present-80 by using a multiple
linear approximation over r − 4 rounds. Because of the large number of outer
rounds we need to bypass, the approximations are chosen such that the involved
round key bits are sparse. We consider the set of 135 approximations described
above. The bit positions of the input and output masks are highlighted in Figure 4.
Figure 4 shows the S-box positions we need to encrypt/decrypt to calculate the linear
correlations of these approximations. The straightforward approach to partially

96

6 Multivariate Linear Attacks on PRESENT

K0

K1

K25

K26

? ? ? ? ? ?

S15 S14 S13 S12

S15 S14 S13

S15 S14 S13

S15 S14 S13

S15 S14

S15

S11 S10 S9 S7 S6 S5

S11 S10 S9 S7 S6 S5

S11 S7

S10 S9

S11 S10 S7 S6 S3 S2

pLayer

pLayer

pLayer

pLayer

pLayer

?

Figure 4: An outline of the 26-round attack using 22 round approximations. The
input/output mask bits are indicated by bold lines. The dark grey squares
indicate the round key bits obtained by guessing 24 bits of the master key.
The light grey squares indicate the round key bits obtained by guessing 23
bits of the last round key. The squares indicated by ? are extra bits of the
second to last round key that need to be guessed.

encrypting/decrypting these positions would require guessing 80 key bits across the
four round keys. By considering the key-schedule, we can dramatically improve this.
We first guess the following 24 bits of the master key:

ki, i ∈ [0, 2] ∪ [15, 18] ∪ [63, 79]. (5)

The round key bits we obtain from this guess are marked in dark grey in Figure 4,
as well as 42 additional bits needed by the attack. By guessing the missing 23 bits of
K26, we also obtain 13 bits of K25. Finally, we only need to guess an additional 7
bits of K25. In total, we need to guess 54 key bits. Note that each approximation
only depends on 4 bits of K25 and 16 bits of K26. With these considerations in mind,
the attack proceeds as follows.

Distillation phase

1. Obtain N partial text pairs (pi, ci), where pi is 16 bits and ci is 32 bits.

97

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

2. Generate a vector t of size 248 where t[s‖t] = #{i | pi = s and ci = t}.

Analysis phase

1. For each 24-bit guess of the partial master key, KM , perform these steps:
a) For each input mask α, calculate two vectors tKMα1

and tKMα2
of size 216,

where

tKMαx [j] = #{(pi, ci)|Gx(ci) = j and α · EKM (pi) = 0},

where EKM (p) is the partial two-round encryption of p under key KM ,
and Gx selects the bits of ci required to calculate the output masks of βx,
x ∈ {1, 2}.

b) For each output mask β, fix a guess of the relevant 4 bits of K25. Denote
the guess KI . Then calculate the 216 × 216 matrix AKI

β , where

AKI
β [i, j] = β · DKI (i⊕ j),

and DKI (c) is the partial two-round decryption of the 16-bit value c using
KI , but excluding the first key XOR.

c) Calculate the correlations of all 135 approximations and 216 guesses of
the partial K26 by calculating the matrix-vector products

Cα,β = 2
NAKI

β tKMαx − 1.

d) Repeat steps (b) and (c) for all values of KI , resulting in correlation values
for all approximations for at most 236 guesses of the last two round keys.

e) Extract the correlations of at most 230 guesses that agree with KM .
f) Calculate the χ2 test statistic Tχ2 for each surviving key guess. Save all

keys (of 54 bits) with τ < Tχ2 .

Search phase

1. For each key candidate, perform trial encryption to find the remaining 80−54 =
26 bits of the master key.

Attack Complexity.

We now consider the computational complexity of the attack. We consider the
number of single round encryption equivalent operations performed.

• The distillation phase requires N operations.

• For the analysis phase:

98

6 Multivariate Linear Attacks on PRESENT

log2(N)

lo
g 2

(C
om

pl
ex

ity
)

● ● ● ● ● ● ● ● ●
●

●
●

●
●

●
●

●

●

●

●

●

●
● ●

60 60.3 60.6 60.8 61.1 61.4 61.7 61.9 62.2 62.5 62.8 63

68
72

76
80

Figure 5: Our 26 round attack: Computational complexity as a function of data
complexity for the 26-round attack on present using 135 approximations
over 22 rounds. Non-distinct random texts were used, and PS = 0.95.
Note that the complexity reaches a lower limit close to N = 263 when the
advantage becomes sufficiently large.

– Step 1a can be done by iterating over t once and encrypting two rounds,
using 2 · 248 operations.

– Steps 1b and 1c can be performed using the FFT technique given in [19].
Using this technique, we only need to compute the first column of each
AKI
β , at a cost of 2 · 216 operations, and then calculate Cα,β for a fixed β

and all α in time (2 · 9 + 1) · 16 · 216.
– There are 24 values of KI and 15 output masks. Thus, steps 1d needs a

total of 15 · 24 · (2 · 216 + (2 · 9 + 1) · 16 · 216) ≈ 232.16 operations.
– Step 1e uses 230 operations.
– Step 1f takes roughly 2 · 135 · 230 = 238.08 operations.
– In total, this phase uses 224 ·(249 +232.16 +230 +238.08) ≈ 273.00 operations.

• Finally, the search phase requires 2κ−54 full encryptions of 254−a candidate
keys, using a total of 26 · 2κ−a operations.

From Figure 3, we obtain a plot of the computational complexity of the 26-round
attack, given in Figure 5. Here, we have fixed the success probability at 95%.
As long as the search phase dominates, we can increase the number of texts to
decrease to computational complexity. We can highlight two 26 round attacks with
different trade-offs. For N = 263.0, the advantage is 14.0 bits, and the computational
complexity is 273.27/26 = 268.57 encryptions. Interestingly, this multiple attack uses
far fewer approximations than Cho’s multidimensional attack [18], but at half the
data complexity and a computational complexity that is 11 times smaller, all the
while needing far fewer assumptions. Compared to the reevaluation of Cho’s attack

99

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

log2(N)

lo
g 2

(C
om

pl
ex

ity
)

● ●
●

●
●

●
●

●
●

●

63 63.09 63.18 63.27 63.36 63.45 63.55 63.64 63.73 63.82 63.91 64

76
77

78
79

80

Figure 6: Our 27 round attack: Computational complexity as a function of data
complexity for the 27-round attack on present using 135 approximations
over 23 rounds. Distinct random texts were used, and PS = 0.95.

in [8] (which has the same computational complexity as the original attack), our
attack uses less data, and has a higher success probability. Alternatively, we can
decrease the data complexity to N = 261.9, giving an advantage of 4.7 bits, and a
computational complexity of 280.00/26 = 275.30 encryptions. While being slower than
Cho’s attack, to the best of our knowledge, this attack has the lowest data complexity
of any 26-round attack on present presented in the literature.

6.3 Attacking 27 rounds
The attack can be extended to 27 rounds by using the same approximations over 23
rounds. By guessing the bits of the master key given in Equation 5, we determine 41
required bits of the round keys. We then have to guess 25 bits of K27 and 6 bits of
K26, for a total of 55 bits of key material. Due to the way we carry out the attack,
the complexity calculation is not affected by this – only the lower advantage has an
influence. However, if we use non-distinct random texts for the attack, the advantage
is too low. If we instead use distinct random texts, we obtain a better advantage.
This scenario is in some sense a chosen plaintext attack, and has been studied in
[9, 12]. The only change to our model is that ΣN = diag(2n−N

N ·(2n−1)) in Corollary 4.
The distribution of CK? was again estimated using 217 100 random keys as for the
26 round attack, and we obtain E(CK) = 2−56.38 and Var(CK) = 2−118.73 for the
right-key. The resulting attack complexities are shown in Figure 6. Using the χ2

distinguisher with PS = 0.95 and N = 263.83, we obtain an advantage of 2.73 bits
and a computational complexity of 277.27 encryptions.

100

REFERENCES

References
[1] Mohamed Ahmed Abdelraheem. “Estimating the Probabilities of Low-Weight

Differential and Linear Approximations on PRESENT-Like Ciphers”. In:
Information Security and Cryptology - ICISC 2012. 2012, pp. 368–382.

[2] Mohamed Ahmed Abdelraheem, Martin Ågren, Peter Beelen, and Gregor
Leander. “On the Distribution of Linear Biases: Three Instructive Examples”.
In: Advances in Cryptology - CRYPTO 2012. 2012, pp. 50–67.

[3] Thomas Baignères, Pascal Junod, and Serge Vaudenay. “How Far Can We Go
Beyond Linear Cryptanalysis?” In: Advances in Cryptology - ASIACRYPT
2004. 2004, pp. 432–450.

[4] Eli Biham. “On Matsui’s Linear Cryptanalysis”. In: Advances in Cryptology -
EUROCRYPT ’94. 1994, pp. 341–355.

[5] Alex Biryukov, Christophe De Cannière, and Michaël Quisquater. “On Multiple
Linear Approximations”. In: Advances in Cryptology - CRYPTO 2004. 2004,
pp. 1–22.

[6] Céline Blondeau, Asli Bay, and Serge Vaudenay. “Protecting Against Multidi-
mensional Linear and Truncated Differential Cryptanalysis by Decorrelation”.
In: Fast Software Encryption, FSE 2015. 2015, pp. 73–91.

[7] Céline Blondeau, Gregor Leander, and Kaisa Nyberg. “Differential-Linear
Cryptanalysis Revisited”. In: Fast Software Encryption, FSE 2014. 2014,
pp. 411–430.

[8] Céline Blondeau and Kaisa Nyberg. “Improved Parameter Estimates for Corre-
lation and Capacity Deviates in Linear Cryptanalysis”. In: IACR Transactions
on Symmetric Cryptology 2016.2 (2016), pp. 162–191.

[9] Céline Blondeau and Kaisa Nyberg. “Joint Data and Key Distribution of
Simple, Multiple, and Multidimensional Linear Cryptanalysis Test Statistic
and Its Impact to Data Complexity”. In: Design, Codes and Cryptography
82.1-2 (2017), pp. 319–349.

[10] Céline Blondeau and Kaisa Nyberg. “Links between Truncated Differential
and Multidimensional Linear Properties of Block Ciphers and Underlying
Attack Complexities”. In: Advances in Cryptology - EUROCRYPT 2014. 2014,
pp. 165–182.

[11] Céline Blondeau and Kaisa Nyberg. “New Links between Differential and
Linear Cryptanalysis”. In: Advances in Cryptology - EUROCRYPT 2013. 2013,
pp. 388–404.

[12] Céline Blondeau and Kaisa Nyberg. “On Distinct Known Plaintext Attacks”.
In: The Ninth International Workshop on Coding and Cryptography. 2015.

[13] Andrey Bogdanov, Christina Boura, Vincent Rijmen, Meiqin Wang, Long
Wen, and Jingyuan Zhao. “Key Difference Invariant Bias in Block Ciphers”.
In: Advances in Cryptology - ASIACRYPT 2013. 2013, pp. 357–376.

101

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

[14] Andrey Bogdanov, Huizheng Geng, Meiqin Wang, Long Wen, and Baudoin
Collard. “Zero-Correlation Linear Cryptanalysis with FFT and Improved
Attacks on ISO Standards Camellia and CLEFIA”. In: Selected Areas in
Cryptography, SAC 2013. 2013, pp. 306–323.

[15] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
“PRESENT: An Ultra-Lightweight Block Cipher”. In: Cryptographic Hardware
and Embedded Systems - CHES 2007. 2007, pp. 450–466.

[16] Andrey Bogdanov and Vincent Rijmen. “Linear Hulls with Correlation Zero
and Linear Cryptanalysis of Block Ciphers”. In: Designs, Codes and Cryptog-
raphy 70.3 (2014), pp. 369–383.

[17] Andrey Bogdanov and Elmar Tischhauser. “On the Wrong Key Randomisation
and Key Equivalence Hypotheses in Matsui’s Algorithm 2”. In: Fast Software
Encryption, FSE 2013. 2013, pp. 19–38.

[18] Joo Yeon Cho. “Linear Cryptanalysis of Reduced-Round PRESENT”. In:
Topics in Cryptology - CT-RSA 2010. 2010, pp. 302–317.

[19] Baudoin Collard, François-Xavier Standaert, and Jean-Jacques Quisquater.
“Improving the Time Complexity of Matsui’s Linear Cryptanalysis”. In: In-
formation Security and Cryptology, ICISC 2007. 2007, pp. 77–88.

[20] Joan Daemen. “Cipher and Hash Function Design Strategies Based on Linear
and Differential Cryptanalysis”. PhD thesis. Doctoral Dissertation, March
1995, KU Leuven, 1995.

[21] Joan Daemen and Vincent Rijmen. “Probability distributions of Correlation
and Differentials in Block Ciphers”. In: IACR Cryptology ePrint Archive 2005
(2005), p. 212.

[22] Joan Daemen and Vincent Rijmen. “Probability Distributions of Correlation
and Differentials in Block Ciphers”. In: Journal of Mathematical Cryptology
1.3 (2007), pp. 221–242.

[23] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002. isbn: 3-540-42580-2.

[24] Carlo Harpes, Gerhard G. Kramer, and James L. Massey. “A Generalization
of Linear Cryptanalysis and the Applicability of Matsui’s Piling-Up Lemma”.
In: Advances in Cryptology - EUROCRYPT ’95. 1995, pp. 24–38.

[25] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. “Multidimensional Extension
of Matsui’s Algorithm 2”. In: Fast Software Encryption, 16th International
Workshop, FSE 2009. 2009, pp. 209–227.

[26] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. “Multidimensional Linear
Cryptanalysis of Reduced Round Serpent”. In: Information Security and
Privacy, ACISP 2008. 2008, pp. 203–215.

102

REFERENCES

[27] Miia Hermelin and Kaisa Nyberg. “Multidimensional Linear Distinguishing
Attacks and Boolean Functions”. In: Cryptography and Communications 4.1
(2012), pp. 47–64.

[28] Jialin Huang, Serge Vaudenay, Xuejia Lai, and Kaisa Nyberg. “Capacity
and Data Complexity in Multidimensional Linear Attack”. In: Advances in
Cryptology - CRYPTO 2015. 2015, pp. 141–160.

[29] Burton S. Kaliski Jr. and Matthew J. B. Robshaw. “Linear Cryptanalysis
Using Multiple Approximations”. In: Advances in Cryptology - CRYPTO ’94.
1994, pp. 26–39.

[30] Pascal Junod. “On the Complexity of Matsui’s Attack”. In: Selected Areas in
Cryptography, SAC 2001. 2001, pp. 199–211.

[31] Susan K. Langford and Martin E. Hellman. “Differential-Linear Cryptanalysis”.
In: Advances in Cryptology - CRYPTO ’94. 1994, pp. 17–25.

[32] Gregor Leander. “On Linear Hulls, Statistical Saturation Attacks, PRESENT
and a Cryptanalysis of PUFFIN”. In: Advances in Cryptology - EUROCRYPT
2011. 2011, pp. 303–322.

[33] Gregor Leander. “Small Scale Variants Of The Block Cipher PRESENT”. In:
IACR Cryptology ePrint Archive 2010 (2010), p. 143.

[34] Mitsuru Matsui. “Linear Cryptanalysis Method for DES Cipher”. In: Advances
in Cryptology - EUROCRYPT ’93. 1993, pp. 386–397.

[35] Mitsuru Matsui. “On Correlation Between the Order of S-boxes and the
Strength of DES”. In: Advances in Cryptology - EUROCRYPT ’94. 1994,
pp. 366–375.

[36] Mitsuru Matsui. “The First Experimental Cryptanalysis of the Data Encryp-
tion Standard”. In: Advances in Cryptology - CRYPTO ’94. 1994, pp. 1–
11.

[37] S. Murphy. “The Independence of Linear Approximations in Symmetric
Cryptanalysis”. In: IEEE Trans. Information Theory 52.12 (2006), pp. 5510–
5518.

[38] Phuong Ha Nguyen, Hongjun Wu, and Huaxiong Wang. “Improving the
Algorithm 2 in Multidimensional Linear Cryptanalysis”. In: Information
Security and Privacy, ACISP 2011. 2011, pp. 61–74.

[39] Kaisa Nyberg. “Linear Approximation of Block Ciphers”. In: Advances in
Cryptology - EUROCRYPT ’94. 1994, pp. 439–444.

[40] Kaisa Nyberg. “Statistical and Linear Independence of Binary Random Vari-
ables”. In: IACR Cryptology ePrint Archive 2017 (2017), p. 432.

[41] Kenji Ohkuma. “Weak Keys of Reduced-Round PRESENT for Linear Crypt-
analysis”. In: Selected Areas in Cryptography, SAC 2009. 2009, pp. 249–265.

103

Publication 2 Multivariate Profiling of Hulls for Linear Cryptanalysis

[42] Ali Aydin Selçuk. “On Probability of Success in Linear and Differential
Cryptanalysis”. In: Journal of Cryptology 21.1 (2008), pp. 131–147.

[43] Ali Aydin Selçuk and Ali Biçak. “On Probability of Success in Linear and
Differential Cryptanalysis”. In: Security in Communication Networks, SCN
2002. 2002, pp. 174–185.

[44] Bing Sun, Meicheng Liu, Jian Guo, Vincent Rijmen, and Ruilin Li. “Provable
Security Evaluation of Structures Against Impossible Differential and Zero
Correlation Linear Cryptanalysis”. In: Advances in Cryptology - EUROCRYPT
2016. 2016, pp. 196–213.

[45] Hong Xu, Ping Jia, Geshi Huang, and Xuejia Lai. “Multidimensional Zero-
Correlation Linear Cryptanalysis on 23-Round LBlock-s”. In: Information
and Communications Security, ICICS 2015. 2015, pp. 97–108.

[46] Jingyuan Zhao, Meiqin Wang, and Long Wen. “Improved Linear Cryptanalysis
of CAST-256”. In: Journal of Computer Science and Technology 29.6 (2014),
pp. 1134–1139.

[47] Lei Zheng and Shao-Wu Zhang. “FFT-Based Multidimensional Linear At-
tack on PRESENT Using the 2-Bit-Fixed Characteristic”. In: Security and
Communication Networks 8.18 (2015), pp. 3535–3545.

A 40-bit Key-Schedule for SmallPresent
We define a 40-bit key-schedule for 32-bit SmallPresent, which is a scaled down
version of the 80-bit PRESENT key-schedule. Let K = k39k38 . . . k1k0 be a 40-bit
key register, initialised to the master key. At round i, the round key is extracted as
the 32 most significant bits of K, i.e. Ki = k39k38 . . . k9k8. Then, K is updated as
follows:

• K is rotated 9 bits to the right,

• The PRESENT S-box is applied to k39k38k37k36,

• A round counter is xor’ed to the least significant bits.

The round counter starts at 1 and is incremented by 1 for each round.

B Pair-Wise Independence of Linear Correlations
The wrong-key hypothesis presented here, Hypothesis 6, follows from Theorem 2 and
[22], assuming that linear approximations of random permutations can be considered
pair-wise independent. While it seems difficult to show when this assumption is true,
we here take some steps towards verifying Hypothesis 6 experimentally. We first note
that the normality of the marginal distributions of CK for a random permutation is

104

B Pair-Wise Independence of Linear Correlations

Table 2: Results of the Pearson χ2 test of independence for various permutation
sizes. A p-value larger than 0.05 indicates that the correlations of two linear
approximations are statistically independent at the 95% significance level.

Size Experiments % of Experiments with
p-value > 0.05

Smallest observed
p-value

216 20000 99.995 0.021
220 20160 100.00 0.975
224 15342 100.00 1.000

proven in [22]. Moreover, it seems unlikely that the joint distribution would deviate
much from a multivariate normal distribution for most sets of approximations. Thus,
if we can demonstrate that pairs of correlation distributions are independent, we
can be confident that Hypothesis 6 is reasonable. To this end, we performed the
following experiment:

• Fix a size of the permutation, say 2n,

• Pick two random linear approximations,

• Generate 10 000 random permutations of the given size and measure the exact
correlation of both approximations for each permutation using the full code-
books,

• Perform Pearson’s χ2 test of independence between the two correlation distri-
butions and record the p-value,

• Repeat the above process the desired number of times.

We note that when performing Pearson’s χ2 test of independence, the null hypothesis
is that the two observed distributions are independent, and thus a p-value larger
than e.g. 0.05 would indicate independence at the 95% significance level.

We performed the above experiment for varying sizes of the permutations, and the
results are shown in Table 2. Here, we observe that for a 16-bit permutation, one out
of 20 000 pairs of permutations had a significant p-value of 0.021. However, already
for the slightly larger 20-bit permutation, the lowest p-value was 0.975; in other
words, even in the worst case, there was only 2.5% chance that the two correlation
distributions were dependent. For a 24-bit permutation, this results are even clearer,
with the lowest p-value being extremely close to 1.

Additionally, we repeated the experiments for the 20-bit permutations, but this
time using approximations that only differed in a single bit. Even for these very
similar approximations, we observed the exact same results as for randomly chosen
pairs of approximations. In light of these experimental results, it thus seems quite
reasonable that correlations of 64- or 128-bit permutations would be independent for
all practical intents and purposes.

105

Publication 3

Generating Graphs Packed with Paths

Publication Information
Mathias Hall-Andersen and Philip S. Vejre. “Generating Graphs Packed with
Paths: Estimation of Linear Approximations and Differentials”. In: IACR
Transactions on Symmetric Cryptology 2018.3 (2018), pp. 265–289

Contribution
• Main author.

Remarks
This publication has been slightly edited to fit the format.

107

Generating Graphs Packed with Paths
Estimation of Linear Approximations and Differentials

Mathias Hall-Andersen1 and Philip S. Vejre2

1 University of Copenhagen, Denmark,
2 Technical University of Denmark

Abstract. When designing a new symmetric-key primitive, the de-
signer must show resistance to known attacks. Perhaps most prominent
amongst these are linear and differential cryptanalysis. However, it is
notoriously difficult to accurately demonstrate e.g. a block cipher’s
resistance to these attacks, and thus most designers resort to deriving
bounds on the linear correlations and differential probabilities of their
design. On the other side of the spectrum, the cryptanalyst is interested
in accurately assessing the strength of a linear or differential attack.
While several tools have been developed to search for optimal linear
and differential trails, e.g. MILP and SAT based methods, only few
approaches specifically try to find as many trails of a single approxima-
tion or differential as possible. This can result in an overestimate of a
cipher’s resistance to linear and differential attacks, as was for example
the case for present.
In this work, we present a new algorithm for linear and differential trail
search. The algorithm represents the problem of estimating approxi-
mations and differentials as the problem of finding many long paths
through a multistage graph. We demonstrate that this approach allows
us to find a very large number of good trails for each approximation
or differential. Moreover, we show how the algorithm can be used
to efficiently estimate the key dependent correlation distribution of a
linear approximation, facilitating advanced linear attacks. We apply
the algorithm to 17 different ciphers, and present new and improved
results on several of these.

1 Introduction
Whenever a new design for a symmetric-key primitive is proposed, it is usually
accompanied by a design rationale. This rationale explains how the specific choice
of components ensure resistance to a set of common attack techniques. However,
thoroughly checking maybe a dozen different attacks is laborious work for the designer,
and it is therefore common to somehow make an estimate of how well a design resists
a specific attack.

109

Publication 3 Generating Graphs Packed with Paths

Two attack techniques that are almost always featured in the security analysis of
a new design, due to their long history and many strong results, are linear [35] and
differential [10] cryptanalysis. However, it is notoriously difficult to make an accurate
and complete analysis of a cipher’s security against these attacks, and for this reason
methods of estimating the strength of these attacks feature prominently in the initial
analysis of a new design. For block ciphers, this will often consist of lower-bounding
the number of active S-boxes in a linear or differential trail, thus showing how many
rounds the cipher needs to resist these attacks.

Nevertheless, several examples exist of this approach not giving the full picture, in
particular due to the existence of linear approximations or differentials that contain
a very large number of good trails. This effect was already recognised for differential
cryptanalysis in [34] and subsequently extended to linear cryptanalysis in [39] where
it was dubbed the linear hull effect. As an example of this phenomenon, it was
demonstrated in [40] that for the block cipher present the difference between a
single linear trail and the full linear approximation is quite significant. Thus, it
would be extremely helpful for a designer if a simple tool existed that could more
accurately find linear approximations and differentials for a given design. This would
not only save the designer time, but potentially also allow for exploration of a larger
design space as well as enabling a more informed choice of the number of rounds
needed to obtain adequate security.

1.1 Previous Work
Several approaches for finding linear and differential trails have been suggested in
the literature. Perhaps the most well known technique is Matsui’s original branch-
and-bound algorithm [36], which can essentially be viewed as a depth-first search
with pruning. While this algorithm does guarantee to return the optimal trail for any
starting value, one still needs to have some idea what a good starting value might be.
Moreover, while the algorithm can be adapted to return multiple trails, this is not
very efficient if the number of trails is extremely large.

Several other approaches for finding linear and differential trails have been proposed.
Amongst these are MILP based algorithms [28, 38, 43, 46] and SAT based algorithms
[4, 33, 37], as well as more dedicated approaches [26, 27, 42]. Both the MILP and
SAT based approaches can be extended in order to find multiple trails by removing
already known trails from the solution space, but this approach also has the problem
of scaling linearly with the number of trails. Additionally, in order to use these
algorithms, every design one wishes to analyse has to be formulated as a MILP/SAT
model.
A few approaches for finding large numbers of linear or differential trails have

been suggested. Matsui’s algorithm was generalised in [21, 22] to search for multiple
differential trails of generalised Feistel networks. A more versatile approach was
presented in [1], where the idea of using partial, sparse correlation/differential
transitions matrices to find multiple trails was proposed. While this approach
does scale well with the number of trails found, it potentially has high memory

110

1 Introduction

requirements. This problem was acknowledged in [2] where the matrix method
was combined with the MILP method to improve results for ARX designs. Still,
these works do not offer a general, design agnostic strategy for choosing the partial
matrices.

While the mentioned works focus on estimating expected differential probabilities
or expected squared correlations, we note that for linear cryptanalysis especially,
there has recently been an increased focus on the key dependent distribution of
correlations. Namely, several works developing models for the key dependent be-
haviour of correlations have been published [12, 13, 15, 31] as well as some advanced
attack techniques exploiting these correlations distributions [16, 17]. Thus, it is of
additional interest to develop algorithms that also allow for efficient estimation of
these distributions.

1.2 Contributions
In this work, we propose a new algorithm for linear and differential trail search. The
overall concept of the algorithm is to represent all linear/differential trails as paths in a
multistage graph, and then find a manageable subgraph which hopefully contains good
trails. By performing a breadth first traversal of this subgraph, we can very efficiently
consider a larger number of trails when estimating the squared correlation/differential
probability, and even do so for many linear approximations/differentials simultane-
ously. Moreover, for linear cryptanalysis, the algorithm allows us to very efficiently
approximate the correlation distributions over the key space.

While the overall concept of this approach is related to the idea of partial correlation
and difference transition matrices, the graph representation allows a designer or
cryptanalyst to gain additional insight, e.g. one can extract the actual trails from
the graph or visualise the trail structure in order to gain deeper understanding of a
cipher’s linear and differential behaviour (see e.g. Figure 5). Moreover, we can more
easily obtain the key-dependent linear correlations without having the recompute
everything for each new key. In more detail, we achieve the following:

• Efficient graph generation We present a heuristic approach for selecting a
subgraph of the linear/differential trail graph, i.e. we identify good approxi-
mations/differentials over a single round. For SPN ciphers, we give a highly
efficient algorithm for generating these. Moreover, we show how to remove
redundant information from the graph in order to reduce memory costs. As
opposed to the strategy for choosing partial correlation/difference matrices in
[1], our heuristic is design agnostic.

• Algorithm optimisations We present a number of optimisations to the basic
algorithm which both reduces the time it takes to generate the trail graph
and the amount of memory consumed while generating the graph. The latter
is done by removing single round approximations/differentials which are not
part of any trail before it is ever added to the graph. While the most effective

111

Publication 3 Generating Graphs Packed with Paths

improvements only apply to SPN ciphers, they allow us to increase the effective
size of our search space; as an example, for Midori64 [6] we were able to include
as many as 246.5 single round approximations in our search space.

• Improved estimates of ELP and EDP Compared to algorithms that find
one trail at a time (e.g. MILP and SAT based methods), our graph represen-
tation allows us to consider a much larger number of trails when estimating
the expected squared correlation or the expected differential probability. As an
example, we are able to consider 2112.4 linear trails for a single approximation
of PUFFIN [23]. This ensures a more accurate estimate of these statistics.

• Extensive application We use the new algorithm to find linear approxima-
tions and differentials for 17 different SPN ciphers. The selection of ciphers
have block sizes ranging from 48 to 128 bits, use 4- and 8-bit S-boxes, and
apply a variety of different design approaches for choosing the linear layer, e.g.
from very lightweight bit permutations to heavy MDS matrices. We present
new results on several ciphers, and improve existing results for five ciphers.

• Correlation distributions We demonstrate that for SPN ciphers, the graph
representation can also be used to efficiently obtain estimates for the key
dependent correlation distribution of a linear approximation. In particular, it
takes at most a couple of minutes to generate key dependent correlation values
for 10 000 randomly chosen keys. We use this fact to investigate the correlation
distributions of several ciphers, and show for example that GIFT-64 [7] exhibits
multiple approximations with asymmetries similar to those observed for DES
in [17]. In general, this feature of our algorithm facilitates easier application of
more advanced linear attacks.

• Software implementation Finally, we make our implementation of the al-
gorithm freely available at https://gitlab.com/psve/cryptagraph. This
implementation is written in Rust, and is highly optimised and parallelised.
At the time of writing, it supports analysis of SPN ciphers whose substitution
layer consists of applying S-boxes to the state, as well as Feistel ciphers with
SPN-like F -functions. Additionally, adding new ciphers to the implementation
only requires the usual implementation of the S-box and the linear layer, as
opposed to MILP and SAT based tools that require modelling of the cipher
in the relevant framework. We hope that the availability of this tool, as well
as its ease of use, will facilitate more informed design processes and improved
cryptanalysis.

The rest of this work is structured as follows: In Section 2 we introduce the basic
definitions for linear and differential cryptanalysis. Section 3 introduces the idea of
the graph framework, while Section 4 outlines the basic algorithm for trail search.
Section 5 contains several improvements to the basic algorithm. In Section 6 and
Section 7 we present the results we obtain by using the algorithm on various ciphers.
Finally, Section 8 discusses some prospects for future work.

112

https://gitlab.com/psve/cryptagraph

2 Preliminaries

2 Preliminaries
Throughout the paper we consider block ciphers, i.e. functions of the type

E(k,m) : Fκ2 × Fn2 → Fn2 ,

where E is a permutation on the plaintext space Fn2 for each key k ∈ Fκ2 . In particular,
we consider iterative block ciphers where E is defined as a composition of several
(potentially different) round-functions, i.e.

E = fr ◦ . . . ◦ f1.

We define a distinguisher as an algorithm which attempts to distinguish between
the function E and a permutation picked uniformly at random from the space of all
permutations on Fn2 . In particular, the cryptanalyst is interested in a distinguisher
which succeeds with high probability and uses time less than 2κ.

In the following, we briefly describe the main ideas of linear and differential
distinguishers as well as the problem of finding good properties of these types. While
we only describe the techniques from a distinguisher viewpoint, distinguishers of
both types can be turned into key-recovery attacks in most cases.

2.1 Linear Cryptanalysis
We define a linear approximation of a block cipher as the pair of masks (α, β) ∈ Fn2×Fn2 .
Let 〈·, ·〉 denote the canonical inner product on Fn2 . We say that the approximation
(α, β) has a linear correlation defined by

Ck(α,β) = 2 · Pr
m∈Fn2

(〈α,m〉 = 〈β, E(k,m)〉)− 1.

Note that the correlation is key dependent, and thus has some distribution over Fκ2 .
For a randomly chosen permutation, the correlation is drawn from the distribution
N (0, 2−n) [24]. Thus, if there exists a linear approximation (α, β) of a block cipher
such that Ck(α,β) is distributed significantly differently from N (0, 2−n), we can use
this approximation to build a distinguisher.

2.2 Differential Cryptanalysis
We define a differential of a block cipher as the pair of differences (∆,∇) ∈ Fn2 × Fn2 .
Let ⊕ denote the componentwise addition of vectors in Fn2 . Then we say that the
differential (∆,∇) has a differential probability defined by

pk(∆,∇) = Pr
m∈Fn2

(E(k,m)⊕ E(k,m⊕∆) = ∇).

For a randomly chosen permutation, we expect the differential probability to be close
to 2−n. Thus, if there exists a differential (∆,∇) of a block cipher such that pk(∆,∇)
is significantly bigger than 2−n for almost all keys, we can us this differential to build
a distinguisher.

113

Publication 3 Generating Graphs Packed with Paths

2.3 Finding Approximations and Differentials
Determining either Ck(α,β) or pk(∆,∇) is not feasible for the values of n and κ used in
practice. Therefore, for iterative block ciphers, the problem is usually reduced to
that of finding linear and differential trails. A linear trail of an approximation (α, β)
is defined as a sequence of masks U = (u0, . . . , ur), with (u0, ur) = (α, β). Then, we
define the correlation contribution of this trail as

CkU =
r∏
i=0

C(ui,ui+1)(i),

where C(ui,ui+1)(i) is the correlation of the approximation (ui, ui+1) for the i’th round
function fi. Since the fi usually have a simple form, it is easier to determine the
correlation of these functions. The set of all trails of an approximation is called the
linear hull of the approximation. It can be shown that the correlation of (α, β) is the
sum of the correlation contributions of all trails in the linear hull [25], i.e.

Ck(α,β) =
∑

(u0,ur)=(α,β)

CkU .

The situation is analogous for differentials. Although the number of trails is extremely
large, it often suffices to find a set of trails with high correlation or probability contri-
bution, such that computing the partial sum over these trails is a good approximation
of the actual correlation or probability. Thus, finding a good set of trails is essential
to both linear and differential cryptanalysis, and it is this problem that we will
consider in the following.

A note on ELP and EDP As explained above, the linear correlation and differential
probability of a cipher depends on the specific key used. However, for the initial
analysis of these attacks, it is often more convenient to consider the expected linear
potential and the expected differential probability.
In the case of differentials, EDP is defined as E(pk(∆,∇)) and it is often assumed

that pk(∆,∇) ≈ E(pk(∆,∇)) for most keys. For approximations, ELP is defined as
E((Ck(α,β))2), and it can be shown that E((Ck(α,β))2) ≈

∑
(CkU)2, and that for key-

alternating ciphers (or Feistel ciphers with SPN-like structures) (CkU)2 is independent
of the key [25].

Thus, considering ELP and EDP eliminates the key and therefore greatly simplifies
the search, and usually gives a good indicator for the strength of an approximation or
differential. We will therefore initially take this approach, and then show in Section 7
how to find the key-dependent linear correlation distributions.

3 Trail Search Viewed as a Graph Problem
Although finding trails of a specific approximation or differential is already a difficult
problem, for a newly designed block cipher it might not even be clear what approxi-

114

3 Trail Search Viewed as a Graph Problem

mations or differentials we should be considering. In the following, we will view the
problem of finding good approximations and differentials more abstractly as a graph
problem. This perspective will help us develop a trail search algorithm which does
not require any initial understanding of the linear or differential behaviour of the
cipher being analysed. We will describe the graph problem and the algorithm in
terms of linear cryptanalysis, but all observations are directly applicable to the case
of differential cryptanalysis.
We first introduce some graph notation. A directed graph G is a set of vertices

V and a set of directed edges E. We associate a value to each vertex. Throughout
the paper, we will not differentiate between a vertex and its value, and use the two
concepts interchangeably. We denote a directed edge from a vertex u ∈ V to a vertex
v ∈ V by u→ v. For a weighted graph, each edge u→ v has a length, denoted by
l(u→ v). We furthermore denote a path from a vertex u to a vertex v by u v. If
v = v1, . . . , u = vk are the vertices traversed by this path, then we define the length
of the path as:

l(u v) =
k−1∏
i=1

l(vi → vi+1).

Furthermore, we call the set of all paths u v the hull of (u, v). We denote the hull
by u ♦ v and associate to it a weight defined as:

w(u ♦ v) =
∑

l(u v),

i.e. the sum of the length of all the paths contained in the hull. We will exclusively
consider a special type of directed graph, called a multistage graph.

Definition 1 (Multistage Graph). Let G be a directed graph with vertices V and
edges E. If the vertices in V are partitioned into ` subsets S0, . . . , S`−1, called stages,
such that any edge in E has the form u → v with u ∈ Si and v ∈ Si+1, for some
i ∈ [0, `− 1[, we call the graph a multistage graph.

By definition, a multistage graph is a directed acyclic graph (DAG). We now define
a weighted multistage graph GE which represents the linear hulls of all approximations
of an iterative block cipher E . Assume that E has r rounds. Then GE has r + 1
stages each with 2n vertices representing the elements of Fn2 . GE contains all edges
u→ v for u ∈ Si and v ∈ Si+1, i ∈ [0, r[. The length of an edge is defined as

l(u→ v) = (C(u,v)(i))2 if u ∈ Si.

Note that if α ∈ S0 and β ∈ Sr, then a path (α β) is equivalent to a linear trail
U = (α, . . . , β) and its length is exactly (CkU)2. Moreover, α ♦ β corresponds exactly
to the linear hull of the approximation (α, β) and its weight is equal to the ELP
of (α, β). Thus, the graph GE represents the linear hulls of all approximations of
E . Finding good approximations therefore corresponds to finding pairs of vertices
(α, β) ∈ S0 × Sr such that w(α ♦ β) is as large as possible. In the following section,
we describe an algorithm that aims to solve this problem.

115

Publication 3 Generating Graphs Packed with Paths

4 A New Algorithm for Trail Search
The graph GE defined above is exceedingly huge; it has (r + 1) · 2n vertices and
r · 22n edges. Thus, it is completely infeasible to run even a linear time algorithm
on the graph3. We therefore have to somehow reduce the size of the graph, i.e. we
have to reduce the size of the search space. Straight away, we can remove any edges
u→ v with l(u→ v) = 0 as any path which includes this edge will have length zero
and therefore not contribute to the hull. Nevertheless, for most ciphers the set of
non-zero edges in GE is still intractable. Thus, we propose the following approach:

1. Determine an interesting subgraph ḠE of GE .

2. Calculate w(α ♦ β) for all (α, β) ∈ S0 × Sr in ḠE .

For this approach to give a good result, would like many of the longest paths of
α ♦ β to appear in ḠE . How to ensure this is clearly highly dependent on the cipher
E in question. Moreover, at first glance it seems that if we can specify ḠE , then
we already know a good collection of trails. However, we note that finding good
approximations in some sense corresponds to finding a minimal subgraph. In contrast,
in the process of finding the subgraph ḠE we can start with a larger subgraph that
might contain a lot of unnecessary vertices and edges. While this graph might be too
large for us to perform Step 2 above, we can then remove any superfluous information
and hopefully arrive at a suitable subgraph ḠE .

In Section 4.1, we propose a simple, generic approach to Step 1. Section 4.2 then
details how to efficiently perform Step 2 on the resulting subgraph. In Section 5 we
propose various improvements to the naive algorithm.

4.1 Choosing a Subgraph
We propose the following general, design agnostic heuristic for generating ḠE .

• Selection: Select the k longest edges going out from each stage in GE .

• Pruning: Remove any irrelevant edges and vertices from the resulting graph.

It is clear that this way of selecting edges does not guarantee that we find optimal
paths. Indeed, it could be the case that the longest paths contain a single very short
edge. However, as long as we are able to use fairly large values of k, we should
be able to cover a good fraction of the search space. Additionally, if we do find
paths using this strategy, we can at least be confident that they are quite close to
optimal. A similar heuristic was used in [1, 2] for constructing partial correlation
matrices – here, single round approximations with low hamming weight were selected.
How well this heuristic works is however heavily dependent on the cipher’s structure.
Indeed, choosing the longest edges seem like an approach that will work well in a
more general setting.

3Note that the longest path problem can be solved in linear time for DAGs.

116

4 A New Algorithm for Trail Search

We now show how the selection step can be performed efficiently for ciphers with
SPN-like round-functions and then detail how the pruning step works.

Edge Selection for SPN Ciphers

For the sake of simplicity, we will initially consider substitution-permutations networks
(SPN ciphers) with identical round-functions (aside from the key addition), i.e.
∀i, fi = f ⊕ ki, although the approach also applies to the more general case of
SPN ciphers with different round-functions. Our goal is then to find a set A of
the k approximations (each representing an edge) with largest squared correlation.
Following Section 2.3, we can ignore the key addition in the following, and hence the
SPN round-function takes on the form:

f = L ◦ S,

where L is a linear transformation of the state and S is the parallel application of t
independent S-boxes to the state. Let Si be the i’th S-box, i.e.

S = S0‖ · · · ‖St−1.

Then, in the usual way, the correlation of an approximation (α, β) of f is entirely
determined by the approximation (α,L−1(β)) of S. This is in turn entirely determined
by the component approximations of the individual S-boxes so that

(C(α,β)(f))2 =
t−1∏
i=0

(C(αi,L−1(β)i)(Si))
2.

We can now reduce the problem of finding the k best approximations over f to
the problem of finding certain classes of approximations over S. To this end, we
introduce the notion of an S-box pattern.

Definition 2 (S-box pattern). Let S = S0‖ · · · ‖St−1 be the parallel application of t
independent S-boxes to a cipher state. Then a pattern of S is a tuple p ∈ Rt. The
pattern represents a set of approximations of S such that the squared correlation of
Si is equal to pi. We associate a value to a pattern p, namely C(p) =

∏
pi, i.e. the

squared correlation of any approximation represented by p.

We say that a pattern expands into a number of approximations, and denote this
set of approximations by Ex(p). As an example, consider an S function consisting of
five copies of a 4-bit S-box which has two approximations with squared correlation
2−2, namely (0x3, 0xd) and (0x7, 0x4). Then the pattern

p = (1, 2−2, 1, 1, 2−2)

would have value C(p) = 2−4 and expands into the set of four approximations

Ex(p) = {(0x03003, 0x0d00d), (0x03007, 0x0d004),
(0x07003, 0x0400d), (0x07007, 0x04004)}.

117

Publication 3 Generating Graphs Packed with Paths

We note that this expansion can be done in amortized linear time in the size of Ex(p),
independent of t. Moreover, if we just desire to know the input or output masks of
the approximations in Ex(p), these can also be generated in amortized linear time in
the number of inputs/outputs.
Now, if we can determine the set P of patterns with the k′ largest values, then

clearly Ex(P) = A contains approximations over f with the |A| largest correlations.
This problem can be efficiently solved using the approach of finding critical paths
presented in [45]. We briefly outline the idea of the algorithm here:

1. Compute lists Li of unique values in the LAT of each Si and sort them in
descending order.

2. Maintain a max-heap of partially determined patterns sorted by their current
value. Add a fully undetermined pattern p = (?, ?, . . . , ?) to the heap.

3. Create an empty set P. Repeat the following until P has the desired size:
a) Pop the top pattern p off the heap. If it was fully determined, add it to P .
b) Find the last determined position of p, say pi, and generate two new

patterns:
i. Replace pi with the next value in the list Li and insert the pattern in

the heap.
ii. Replace the undetermined value pi+1 with the first value on the list

Li+1 and insert the pattern in the heap.

Note that this pattern representation, aside from making it easy to find approx-
imations sorted by their correlation, is a very useful time-memory trade-off: each
pattern can represent a large number of approximations, allowing us to select a
large number of candidate edges for the graph ḠE without storing them explicitly.
However, we need to spend time expanding each pattern whenever we explicitly need
the approximations.

About Feistel constructions and other designs The process described here for
selecting edges is very efficient for SPN designs. However, it is less clear how to
perform the edge selection for other types of designs. For Feistel designs with SPN-like
F -functions, we can use the same approach with a slight modification: We let an
S-box pattern describe approximations over the F -functions of two consecutive rounds
and then derive approximations over two rounds from this pattern. The resulting
two-round approximation is shown in Figure 1. This concept can be extended to
generalised Feistel constructions.

Concerning radically different design approaches, i.e. ARX and AND-RX designs,
we note that [11] and [33] present formulas for the differential probabilities of SPECK
and SIMON-like round-functions, respectively. The latter work also gives a method
for determining linear correlations of SIMON-like round-functions. These results
could potentially be used to perform efficient edge selection for these types of designs.

118

4 A New Algorithm for Trail Search

F

⊕β0

α0 ⊕ β1

β0

α0

F

⊕ β0 ⊕ α1

β1

β1

α1

F

⊕∆1 ⊕∇0

∆0

∇0

∆0

F

⊕ ∆1

∆0 ⊕∇1

∇1

∆1

Figure 1: An illustration of how linear approximations/differentials over the F -
functions of two consecutive Feistel rounds determine a linear approxi-
mation/differential over those rounds.

Pruning

Figure 2: Left: A graph representing parts of linear/differential trails over three
rounds of a cipher. Right: The graph after all edges and vertices which are
not part of a full trail have been removed.

Graph Pruning

By using the pattern representation introduced above, we can store a large set of
interesting edges in a space efficient way. However, not all edges in A might be
relevant when added to the graph ḠE . Consider Figure 2. On the left we show
a graph which was generated from a set of patterns, i.e. each edge represents an
approximation over the round-function f . The vertices marked in red cannot be a
part of a path from a vertex in the first stage to a vertex in the last stage. Hence,
we can remove these vertices and all their edges, leaving us with the second, smaller
graph, which only contains the information we are interested in. In other words:

• Remove any vertex in S0 with no outgoing edges.

• Remove any vertex in S1 to Sr−1, if it does not have at least one incoming and
one outgoing edge, remove it.

• Remove any vertex in Sr with no incoming edges.

We potentially have to repeat this process until no more vertices can be removed.
There is one major problem with naively generating the graph ḠE in this way, namely
that we have to store the initial graph before pruning (which takes roughly r · |A|
space), which can be many times larger than the pruned graph. This essentially limits
the number of single round approximations we can consider, i.e. it limits the size of
the search space we can cover. In Section 5 we present a number of improvements
that alleviate this problem.

119

Publication 3 Generating Graphs Packed with Paths

4.2 Finding Linear Hulls and Differentials
Once the graph ḠE has been generated, we can quite easily calculate w(α ♦ β) for
all pairs (α, β) ∈ S0 × Sr by essentially performing a breadth first traversal of the
graph for each α while doing some bookkeeping. The idea is the following:

1. Let H be an empty hash table. Choose an α ∈ S0 and let H(α) = 1.

2. For each stage S0 to Sr−1 of ḠE , do the following:
a) Create an empty hash table H′.
b) For each key of H, let u be the corresponding vertex in ḠE . Let c = H(u).

Then, for each edge u→ v, if H′(v) does not exists, let H′(v) = c·l(u→ v).
Otherwise, let H′(v) = H′(v) + c · l(u→ v).

c) Let H = H′.

3. H(β) now contains w(α ♦ β).

4. Repeat for a new value of α.

Note that the number of paths in any α ♦ β can also be calculated with a bit of
extra bookkeeping in step 2.b. The time complexity of this algorithm is O(|S0| · |ḠE |)
and the memory complexity is O(|S0| · |Sr|). The memory complexity can be reduced
to a constant by only storing the hulls with highest weight calculated so far in
Step 3. The time complexity can be reduced to O(|ḠE |) by considering all α ∈ S1
simultaneously. However, this will increase the memory complexity, and in practice
we find that this slows down the search due to a poorer cache locality. Moreover, the
procedure outlined above is trivially parallelisable over different α values.

It is interesting to note that when the paths contained in α ♦ β are not completely
edge disjoint, the number of paths can be many orders of magnitude larger than the
size of ḠE . Thus, this way of computing w(α ♦ β) can be much more efficient than
explicitly finding each possible path of α ♦ β and adding their lengths. This graph
representation of linear hulls therefore allows us to compactly express a large number
of trails for a linear approximation, and potentially enables us to capture a much
larger part of the linear hull than if we had used a more direct trail search.

5 Improvements
The graph generation algorithm presented in Section 4.1 has two main limitations:
First, the time we spend generating the graph is proportional to the number of
single round approximations we consider, and second, we initially have to store
a much larger graph than we ultimately need. In the following, we present some
improvements to the algorithm which prevent this, as well as some additional useful
techniques.

120

5 Improvements

5.1 Vertex Generation
We first note that we can perform the pruning step of Section 4.1 without initially
storing all r · |A| edges. Let us denote by Exin(P) and Exout(P) the expansion of
P into only input masks and output masks, respectively. As noted in Section 4.1,
for SPN ciphers we can generate Exin(P) or Exout(P) in linear time in the number
of inputs or outputs. Moreover, observe that if a vertex in any of the stages S1 to
Sr−1 does not correspond to a mask contained in Exin(P) ∩ Exout(P), then it will
be removed during the pruning process. Thus, we can initially set

Si =

Exin(P) i = 0,
Exin(P) ∩ Exout(P) 1 ≤ i ≤ r − 1,
Exout(P) i = r.

Then, when adding edges, we generate A and only add an edge if the corresponding
vertices already exists in the graph. Since usually Exin(P) ∩ Exout(P)� Exin(P) ∪
Exout(P), the memory usage is greatly reduced. In practice, the time taken to
generate the graph is also reduced, even though we still have to generate the entire
set A, as inserting edges and vertices is much more expensive than checking set
membership. Finally, we note that we still have to prune the resulting graph to
obtain the desired ḠE .

5.2 Graph Compression and Pattern Elimination
While vertex generation somewhat improves memory and running time, it still might
be the case that some patterns in P ultimately did not contribute to ḠE , i.e. all
edges expressed by the pattern are removed during pruning. We will call such a
pattern a dead pattern. Clearly, it would be preferable if we ignored dead patterns
completely. We now present a technique for finding dead patterns quickly while using
little memory.
We first introduce the notion of a compression function gj(x) : Fn2 → Fn/j2 . Let

y = gj(x). Then for 0 ≤ i < j, yi = 1 iff (xj·i, . . . , xj·(i+1)−1) is non-zero. For
example,

g4(0xf1a0000500705200) = 0b1110000100101100 = 0xe12c,

i.e. the value 0xf1a0000500705200 ∈ F64
2 is compressed to the value 0xe12c ∈ F16

2 .
Note that this is similar to the concept of truncated differentials/approximations.
With some abuse of notation, for a graph G will say that gj(G) is the graph obtained
by applying gj to all vertices, identifying vertices in the same stage that have the
same compressed value, and then removing multiple edges. An example of this
process is shown in Figure 3.
We can use compression to find dead patterns in a space efficient way. Instead

of generating ḠE , we first generate an approximation to gj(ḠE), say ĝj(ḠE), by
applying gj to all values when generating the graph. Note that this does not yield

121

Publication 3 Generating Graphs Packed with Paths

0035

0041

120f

0120

0083

00ce

0106

0109

010e

3

d

6

3

5
Compression, g4

Figure 3: An example of graph compression using the compression function g4. The
values of the vertices are shown in hexadecimal notation. Vertices in the
same stage with non-zero nibbles in the same position are identified, and
any multiple edges are removed.

gj(ḠE); any path between two vertices in ḠE is preserved in ĝj(ḠE), but there might
be some additional false paths. As a result, when applying pruning to the compressed
graph, some vertices might not be removed, although they would have been removed
in the actual graph.

Note now that if a pattern is dead when considering ĝj(ḠE), it is also dead when
considering ḠE (although the converse does not hold). Thus, we can use ĝj(ḠE) to
remove some dead patterns. We propose the following approach to removing dead
patterns while conserving memory:

1. Generate a set of patterns P.

2. Pick a j > 1 such that j is a power of two, and do the following:
a) Generate the graph ĝj(ḠE) as described above.
b) Remove any patterns from P which are dead according to ĝj(ḠE).
c) If j = 2 then stop. Otherwise set j = j/2 and repeat.

The main insight here is that initially Ex(P) can be many times larger than what
we can store in memory. By gradually using a finer compression, we decrease the
size of Ex(P), while still keeping the intermediate graphs manageable and without
losing any information from the original search space. In practice, for ciphers with a
block size of 64 bits and 4-bit S-boxes, we find that starting with j = 4 works well.
How many dead patterns occur varies between different designs, but we find that in
general, if there are few dead patterns, we also rarely need to use a large set A to
get good results.

Speedup for SPN Ciphers While the above processes has the potential to greatly
reduce memory usage, we still need to calculate the initial set A at least once,
and potentially multiple times if few patterns are eliminated. For SPN ciphers we
can improve this by observing that if j is a multiple of the width of the S-box,
we can calculate the compression of an approximation (α, β) simply by calculating
L−1(β). This is true, since if the output mask of any S-box is non-zero, then so is the

122

5 Improvements

Pruned middle rounds

S0 S1 S2 S3 S4 S5 S6 S7

Figure 4: An illustration of vertex anchoring. The black and red graph represents
trails built from the set of single round approximations A. The red sub-
graph would be removed if the red/black graph was pruned. The blue
anchor vertices are added to prevent the red subgraph from being removed,
increasing the number of trails found.

corresponding input mask of that S-box, which is all we need to know to calculate
the compressed value of α. In this case we can therefore generate ĝj(ḠE) in time
O(|Exin(P)|+ |Exout(P)|) (recall that vertex generation has this time complexity for
SPN ciphers). This greatly improves the running time of the algorithm for this type
of ciphers.

5.3 Vertex Anchoring
One big limitation with the algorithm presented here is that the search space is
limited by how big a set A the available computing power allows us to consider.
While the improvements presented so far increase the possible size of A, we wont be
able to find paths that locally have very short edges. Note that such a path might
still be comparatively long, if all other edges of the path are long.
Without having cipher specific insight, it seems difficult to know when it is

beneficial to add a locally bad edge, and especially which edge to add. This problem
is exacerbated by the fact that short edges represent approximations which usually
activate many S-boxes, and so the number of short edges is usually much larger than
the number of long edges.
We propose a partial solution to this problem by introducing a technique called

vertex anchoring. Consider the example given in Figure 4. Here, the red and black
subgraph is the graph we might obtain from a set of approximations A, before pruning.
Note that all the red vertices would be removed from this graph during pruning, as
they are not part of a path from a vertex in S0 to a vertex in S7. Nevertheless, the
red paths might be quite long paths and it is therefore potentially wasteful to discard
such nearly complete paths. Instead, note that we can freely add a vertex to S0, as
long there exists an edge between this vertex and any vertex of S1. Such an edge

123

Publication 3 Generating Graphs Packed with Paths

would be outside the set A, and including it will effectively increase our search space.
These edges are shown in blue in Figure 4, and they ensure that the red subgraph is
not removed during any subsequent pruning. As the result of these observations, we
propose the following approach:

1. Generate the graph ḠE for r − 2 rounds. Denote the stages S1, . . . , Sr−1.

2. Add a stage S0 at the start (respectively Sr at the end) of ḠE consisting of all
vertices and edges in A which are incident to a vertex in S1 (Sr−1).

3. For any vertex in S1 (respectively Sr−1) which does not have an incoming
(outgoing) edge, find the longest possible edge going into (out of) this vertex,
and add this edge and its start (end) vertex to S0 (Sr).

For SPN ciphers, Step 3 can be done efficiently simply by finding the output
(input) mask to the S-box layer represented by each vertex, and then choosing the
best possible input (output) masks for each S-box. In practice, we limit the number
of anchor vertices added so as to not increase the search time too much. We find
that this method dramatically improves the results for some ciphers.

5.4 Parallelisation
As a practical improvement to the algorithm, we note that most aspects can be
parallelised. In particular, whenever we need to calculate Ex(P), P can be split into
parts and distributed across different threads. Often a main thread will have to collect
the results form each of the worker threads, e.g. when calculating Exin(P)∩Exout(P)
during vertex generation, but this work is quite minimal. Moreover, as mentioned in
Section 4.2, the search for hulls can easily be parallelised by distributing different α
values across threads. Thus, while the scaling is not perfect, the algorithm benefits
quite heavily from increasing the number of threads, especially when A is large,
which is often the case since we want to cover as large a search space as possible.

6 Searching for Linear Approximations and
Differentials

We applied the algorithm described here to 17 different SPN ciphers. The types of
designs vary from ciphers with very lightweight permutation layers, such as present,
to ciphers with very heavy permutation layers, such as KLEIN. While we did also
apply the algorithm to some Feistel designs (i.e. TWINE and MIBS), the main
improvements over the basic algorithm presented in Section 5 apply to strict SPN
designs, and we were unable to obtain any interesting results for these ciphers due to
the increased running time. Moreover, the current implementation of the algorithm
only supports ciphers with identical S-boxes, although adding this functionality would
not slow down the implementation noticeably.

124

6 Searching for Linear Approximations and Differentials

Table 1: Results for linear cryptanalysis obtained using the algorithm presented in
this work. A is the set of single round approximations, a is the number of
anchor vertices, α ♦ β is the set of trails found for the best approximation,
ELP is the expected squared correlation, and Tg and Ts is the time in hours
to generate and search through the graph, respectively. Entries annotated
by † indicate an improvement over a previously published result.

Cipher
(Total rounds,

block size)
Rounds |A| a |α ♦ β| ELP Tg Ts

AES [41]
(10, 128)

3 229.9 224.0 21 2−53.36 0.0 0.0
4 238.8 224.0 24 2−147.88 2.5 20.0

EPCBC-48 [44]
(32, 48)

15 † [19] 226.1 – 231.3 2−43.74 0.0 0.4
16 † [19] 226.1 – 234.0 2−46.77 0.0 0.4

EPCBC-96 [44]
(32, 96)

31 227.6 – 263.6 2−94.47 0.0 0.4
32 227.6 – 263.6 2−97.59 0.0 0.4

Fly [32]
(20, 64)

8 232.5 – 26.5 2−54.83 0.1 6.0
9 232.5 – 26.1 2−63.00 0.2 8.8

GIFT-64 [7]
(28, 64)

11 231.8 – 25.1 2−55.00 0.1 8.0
12 232.7 – 23.6 2−64.00 0.2 41.5

Khazad [8]
(8, 64)

2 218.3 225.0 20 2−37.97 0.0 0.0
3 230.1 225.0 20 2−68.01 0.2 0.2

KLEIN [29]
(12, 64)

5 230.8 217.0 20 2−46.0 0.0 0.0
6 239.6 216.9 20 2−66.0 0.3 0.0

LED [30]
(32, 64)

4 224.7 225 22 2−48.68 0.0 0.9

MANTIS7 [9]
(2 · 8, 64)

2 · 4 234.3 224.0 215.0 2−49.05 0.1 0.0

Midori64 [6]
(16, 64)

6 244.3 – 219.0 2−53.02 25.9 0.8
7 246.5 – 221.9 2−62.88 53.1 5.5

present [14]
(31, 64)

23 † [40] 231.1 – 255.0 2−61.00 0.1 6.8
24 † [40] 231.1 – 257.9 2−63.61 0.1 6.9
25 † [40] 231.1 – 260.7 2−66.21 0.1 6.9

PRIDE [3]
(20, 64)

15 227.1 – 20 2−58.00 0.0 0.0
16 237.4 – 23 2−63.99 1.8 0.0

PRINCE [18]
(2 · 6, 64)

2 · 3 218.1 – 22.0 2−54.00 0.0 0.0
2 · 4 238.3 – 26.8 2−63.82 2.1 0.4

PUFFIN [23]
(32, 64)

32 226.8 – 2112.4 2−51.90 0.0 0.0

QARMA [5]
(2 · 8, 64)

2 · 3 224.8 224.0 25.0 2−53.71 0.0 0.0

RECTANGLE [47]
(25, 64)

12 † [47] 231.1 – 215.0 2−52.27 0.1 21.1
13 † [47] 231.1 – 215.9 2−58.14 0.1 25.9
14 † [47] 231.1 – 218.3 2−62.98 0.1 31.1

SKINNY-64 [9]
(32, 64)

8 241.4 223.7 234.4 2−50.46 0.7 50.7
9 241.4 223.9 231.3 2−69.83 0.4 8.9

125

Publication 3 Generating Graphs Packed with Paths

Table 2: Results for differential cryptanalysis obtained using the algorithm presented
in this work. D is the set of single round differentials, a is the number of
anchor vertices, ∆ ♦∇ is the set of trails found for the best differential, EDP
is the expected differential probability, and Tg and Ts is the time in hours
to generate and search through the graph, respectively. Entries annotated
by † indicate an improvement over a previously published result.

Cipher
(Total rounds,

block size)
Rounds |D| a |∆ ♦ ∇| EDP Tg Ts

AES [41]
(10, 128)

3 218.7 224.0 20 2−54.00 0.0 0.0
4 236.9 224.0 20 2−150.00 0.7 0.3

EPCBC-48 [44]
(32, 48)

13 228.4 – 221.2 2−43.86 0.1 13.7
14 228.4 – 220.4 2−47.65 0.1 14.0

EPCBC-96 [44]
(32, 96)

20 232.8 – 216.9 2−92.73 1.1 21.6
21 232.8 – 219.9 2−97.78 1.1 22.6

Fly [32]
(20, 64)

8 231.6 – 24.9 2−55.76 0.1 2.6
9 233.2 – 27.3 2−63.35 0.2 17.8

GIFT-64 [7]
(28, 64)

12 † [48] 222.4 – 23.3 2−56.57 0.0 0.0
13 222.4 – 23.6 2−60.42 0.0 0.0

Khazad [8]
(8, 64)

2 225.8 224.8 20 2−45.42 0.0 0.0
3 225.8 225.0 20 2−81.66 0.0 0.0

KLEIN [29]
(12, 64)

5 230.8 217.0 21.0 2−45.91 0.0 0.0
6 239.7 224.0 21.0 2−69.00 0.3 6.4

LED [30]
(32, 64)

4 237.7 224.0 21 2−49.42 0.5 0.1

MANTIS7 [9]
(2 · 8, 64)

2 · 4 237.7 – 218.6 2−47.98 0.9 0.1

Midori64 [6]
(16, 64)

6 242.2 223.9 219.6 2−52.37 1.6 1.0
7 242.2 223.9 222.8 2−61.22 1.0 0.9

present [14]
(31, 64)

15 230.3 – 227.2 2−58.00 0.1 16.2
16 † [1] 230.3 – 228.9 2−61.80 0.1 18.0

17 230.3 – 232.9 2−63.52 0.1 18.8
PRIDE [3]
(20, 64)

15 235.9 223.6 25.0 2−58.00 0.5 36.5
16 235.9 223.6 217.4 2−63.99 0.5 44.1

PRINCE [18]
(2 · 6, 64)

2 · 3 † [20] 214.0 219 21 2−55.91 0.0 0.0
2 · 4 238.7 – 29.0 2−67.32 3.0 1.0

PUFFIN [23]
(32, 64)

32 226.0 – 263.7 2−59.63 0.0 0.0

QARMA [5]
(2 · 8, 64)

2 · 3 224.8 226.0 27.3 2−56.47 0.1 0.0

RECTANGLE [47]
(25, 64)

13 † [47] 231.1 – 215.3 2−55.64 0.1 32.2
14 † [47] 231.1 – 215.9 2−60.64 0.1 41.3
15 † [47] 231.1 – 218.2 2−65.64 0.1 50.2

SKINNY-64 [9]
(32, 64)

8 239.4 224.0 231.0 2−50.72 0.2 15.0
9 241.7 223.8 231.2 2−69.64 0.4 6.4

126

6 Searching for Linear Approximations and Differentials

Note that we investigate three ciphers that use a PRINCE-like design, namely
PRINCE, MANTIS, and QARMA. For these ciphers, we generate a graph for the first
half of the rounds, as described above, reverse this graph, and then stitch these two
graphs together through the central permutation layer.

6.1 Results for ELP and EDP
We ran the algorithm using an Intel Xeon E5-2650 v4 processor (24 threads at 2.2
GHz) with 256 GB of memory available. The results for linear cryptanalysis are
shown in Table 1 and the results for differential cryptanalysis in Table 2. Note that
the number of rounds stated here is the number of non-linear layers (i.e. S-box layers)
applied.
The number of single round approximations or differentials considered when

generating the graph is the smallest that gave the stated result – for most ciphers, we
investigated larger search spaces without obtaining any improvements. In general, it
is interesting to note that for the majority of ciphers, actually generating the graph is
quite fast, while searching through the graph can take considerably longer. If one has
an idea of what input/output masks/differences are good, the graph can be restricted
to paths between these interesting values, which will greatly reduce the search time.
A general strategy for using the algorithm could therefore be to find some preliminary
interesting approximations/differentials using a small search space, and then increase
the search space while restricting the graph to these approximations/differentials in
order to improve the estimates.
Entries annotated with a † indicate improvements over previous best results.

Entries that are not annotated are either new or do not improve on known results.
For many of the ciphers, the search found multiple approximations/differentials that
were equally good. It is therefore possible that multiple linear/differential attacks
could be mounted on a larger number of rounds than stated here.
We highlight a few interesting results. For RECTANGLE, the designers did take

into account multiple trails in [47], and estimated that over 14 rounds the best
differential has EDP 2−62.83. We improve this to 2−60.64, demonstrating that being
able to include a larger number of trails can improve estimates.

For GIFT-64, [48] used a MILP based tool to find a 12 round differential trail with
probability 2−60. By taking into account multiple trails, we improve this to 2−56.57

and find a 13 round differential with probability 2−60.42. Thus, we can potentially
extend their attack by one round.
For present, we improve some results of [1]. In particular, we improve their

result for 16 round differentials from 2−62.58 to 2−61.80 and furthermore find a
17 round differential with probability 2−63.52. For linear cryptanalysis, we match
the results of [1], although interestingly we find fewer trails. This shows that the
algorithm presented here can match or even improve the results obtained by the
partial correlation/difference transition matrix method, all the while being more
versatile.

127

Publication 3 Generating Graphs Packed with Paths

Figure 5: Examples of linear hull graphs generated by our algorithm. Top: 23 rounds
of present using |A| = 224.7 single round approximations. Middle: 14
rounds of PRIDE, also with |A| = 224.7. Bottom: 5 rounds of KLEIN,
with |A| = 226.8 and using 217 anchoring vertices.

128

7 Correlation Distributions

6.2 Visualising Trail Graphs
An interesting side effect of applying our new algorithm is that we can visualise the
linear/differential trails in order to get a better understanding of how the cipher’s
structure influences its resistance to linear and differential cryptanalysis. Figure 5
show the linear hull graphs that we generated for three different ciphers: present,
PRIDE, and KLEIN. The vertices in each stage are ordered by their value as integers.

While the search spaces selected for the three ciphers are comparable in size, the
resulting graphs have widely different structures. The graph for present show that
each stage is identical, and that the stages are highly connected. Thus, as observed in
[40], there exists a very large number of trails for many approximations of present
that have similar structure and therefore similar correlation contribution. PRIDE
also exhibits identical stages, and we can even observe iterative trails, but there are
only very few vertices in each stage, preventing the number of trails from exploding.
The graph for KLEIN (which has a very heavy linear layer), shows a very large
number of edges in the graph, but the structure of the stages vary, resulting in no
clustering of trails. Indeed, Table 1 shows that we only found one trail for the best
approximations over 5 and 6 rounds.

7 Correlation Distributions
Determining the ELP and EDP of the best linear approximations and differentials is
important when assessing the strength of a cipher against these attacks. However,
these summary statistics do not paint to full picture: in reality, the linear correlation
and differential probability vary over the key space, and more detailed knowledge
about the distribution of these values can lead to stronger distinguishers. As an
example, [17] demonstrated how asymmetries in the joint correlation distribution of
multiple linear approximations of DES can be used to improve attacks.
For differentials, not much is known about how the differential probabilities vary

as the key changes. For linear cryptanalysis, there has been an increased interest in
developing more accurate models for the key dependent behaviour, see e.g. [12, 13,
15, 16, 31]. This line of research is in large part facilitated by the following useful
result.
Theorem 3 ([25]). Let (α, β) be a linear approximation of an SPN cipher and let k̄
denote the concatenation of the cipher’s round keys for the encryption key k. Then
the linear correlation is given by

Ck(α,β) =
∑
U

(−1)sU⊕〈U,k̄〉|CkU |,

where the sum is over trails U = (α, . . . , β), sU is the sign bit of U , and |CkU | is
independent of k.

The above theorem indicates that for an SPN cipher we can determine the key
dependent correlation by adjusting the sign of each trail’s correlation contribution.

129

Publication 3 Generating Graphs Packed with Paths

Consequently, we can estimate the distribution over the key-space by doing this
for a large number of keys. A similar result holds for Feistel ciphers with SPN like
F -functions.

7.1 Finding Key-Dependent Distributions
Our algorithm for estimating ELP can easily be adapted to efficiently calculate key
dependent correlations instead. The main idea is simply to construct the graph ḠE ,
but using the signed correlation values instead of the squared correlation as edge
weights, and then adjust the sign of the edges for each different key. Note that we can
easily find the signs of each edge after we have generated ḠE , as we know the input
and output masks each edge represents. Thus, we can find the signed correlation of
an approximation by using a slightly adapted version of the algorithm presented in
Section 4.2 (we assume that a pre-whitening key k0 is used):

1. Choose an encryption key k.

2. Let H be an empty hash table. Choose an α ∈ S1 and let H(α) = (−1)〈α,k0〉.

3. For each stage S0 to Sr−1 of ḠE , do the following:
a) Let ki be the current round-key.
b) Create an empty hash table H′.
c) For each key of H, let u be the corresponding vertex in ḠE . Let c = H(u).

Then, for each edge u → v, if H′(v) does not exists, let H′(v) = c ·
(−1)〈v,ki〉 · l(u→ v). Otherwise, let H′(v) = H′(v)+c · (−1)〈v,ki〉 · l(u→ v).

d) Let H = H′.

4. H(β) now contains Ck(α,β).

5. Repeat for as many encryption keys as desired.

Clearly, this procedure only calculates a partial sum of Ck(α,β). To obtain a better
approximation of the actual value, we use the signal/noise decomposition technique
proposed in [15]. This technique is summarised the in the following lemma.

Lemma 4 ([15]). Let S be a set of strong linear trails for an approximation (α, β).
Then Ck(α,β) can be approximated by

Ck(α,β) =
(∑
U∈S

(−1)sU⊕〈U,k̄〉|CkU |
)

+N (0, 2−n),

where N (0, 2−n) denotes the normal distribution with mean 0 and variance 2−n.

130

7 Correlation Distributions

−2e−09 0e+00 2e−09

−
2e

−
09

2e
−

09

−2e−09 1e−09 −2e−09 1e−09 −2e−09 1e−09

−
2e

−
09

2e
−

09
−

2e
−

09
2e

−
09

−
2e

−
09

2e
−

09

−2e−09 1e−09

−
2e

−
09

2e
−

09

Figure 6: Shown in blue, the pairwise joint linear correlation distributions for four
linear approximations of 23 rounds of present. The correlation distribution
of an ideal cipher is shown in red. The plot shows that the joint correlation
distribution for present is close to normal.

−1e−09 5e−10

−
1e

−
09

1e
−

09

−1e−09 5e−10 −1e−09 5e−10 −1e−09 5e−10

−
1e

−
09

1e
−

09
−

1e
−

09
1e

−
09

−
1e

−
09

1e
−

09

−1e−09 5e−10

−
1e

−
09

1e
−

09

Figure 7: Shown in blue, the pairwise joint linear correlation distributions for four
linear approximations over 9 rounds of Fly. The correlation distribution
of an ideal cipher is shown in red. For each pair of approximations we
observe four distinct clusters in the distributions.

131

Publication 3 Generating Graphs Packed with Paths

−1e−09 0e+00 1e−09

−
1e

−
09

5e
−

10

−5e−10 5e−10 −1e−09 0e+00 1e−09−1e−09 5e−10

−
1e

−
09

5e
−

10
−

5e
−

10
1e

−
09

−
1e

−
09

5e
−

10

−1e−09 5e−10

−
1e

−
09

1e
−

09

Figure 8: Shown in blue, the pairwise joint linear correlation distributions for four
linear approximations over 12 rounds of GIFT-64. The correlation distri-
bution of an ideal cipher is shown in red. For each pair of approximations
we observe two distinct clusters in the distributions. This indicates a
dependence between the approximations.

−2e−09 1e−09

−
2e

−
09

2e
−

09

−2e−09 1e−09 −3e−09 0e+00 −3e−09 0e+00 3e−09

−
2e

−
09

2e
−

09
−

2e
−

09
2e

−
09

−
3e

−
09

1e
−

09

−3e−09 0e+00 3e−09 −
3e

−
09

2e
−

09

Figure 9: Shown in blue, the pairwise joint linear correlation distributions for four
linear approximations over 14 rounds of RECTANGLE. The correlation
distribution of an ideal cipher is shown in red. For each pair of approxima-
tions we observe a significant deviation from normality, manifested by very
long tails of the distributions.

132

8 Future Work

7.2 Results
We have applied the above technique to some of the ciphers we investigated in
Section 6. That is, we calculated the partial sum of Ck(α,β) for 10 000 randomly chosen
encryption keys, and then added the noise distribution N (0, 2−n) to the resulting
data sets. We note that when doing this for only a few approximations, the process
takes at most a few minutes, depending on the cipher. In light of the results of [17]
we consider the joint distributions of four different ciphers.

Figure 6 shows the pairwise joint distributions of four linear approximations over
23 rounds of present. As a reference, the correlation distribution of an ideal cipher
is shown, i.e. a bivariate normal distribution with marginals N (0, 2−n). In this case,
the correlation distributions appear to be close to normal and entirely independent,
resulting in a joint normal distribution. This matches the observations made in [16].
Figure 7 shows the same picture but for 9 rounds of Fly. However, in this

case, while the marginal correlation distributions appear the be close to normal,
when considering the joint distributions, we can see that there are four clusters of
observations for each pair of approximations. A similar situation occurs over 12
rounds of GIFT-64, as shown in Figure 8, only here we only observe two clusters for
each pair. As in [17], this would indicate that there is a heavy overlap in the trails
of the approximations, resulting in a strong dependence between the signs of the
correlations.

Finally, we consider approximations over 14 rounds of RECTANGLE in Figure 9.
Here, we observe even stranger behaviour, as the marginal distributions do not even
appear to be normal. In fact, the distributions have much longer tails than expected,
which would indicate that there is a large percentage of weak keys for which a linear
attack would work better than expected.

The last three examples show that even if the ELP is close to the value expected
from an ideal block cipher, the actual correlation distributions might exhibit additional
behaviour which can be exploited in an attack. Attacks of this type warrant further
investigation, and hopefully the algorithm presented in this work will make this line
of research easier.

8 Future Work
The algorithm presented in this work has much potential for further extensions and
improvements. First and foremost, it would be very useful to find improvements
similar to those of Section 5 that apply to other types of ciphers, in particular Feistel
designs and designs that are not based on S-boxes. This is closely related to the
strategy for selecting edges, discussed in Section 4.1. As also pointed out there, it
would be interesting to use the results of [11, 33] to develop an edge selection strategy
for ARX and AND-RX designs.
In more general terms, it would also be highly interesting to explore different

heuristics for the edge selection, as selecting the longest edges is not necessarily

133

Publication 3 Generating Graphs Packed with Paths

the best strategy. This consideration has two aspects: First, we might obtain
globally better results by including very bad edges locally, and second, for all the
ciphers we investigated, we end up only using a very small subset of the single round
approximations/differentials we initially consider. As such, we waste much time and
memory considering edges we are ultimately not interested in. A better heuristic that
can filter out (some) of these edges early would potentially improve the algorithm.
Finally, we entertain the possibility that the general graph framework could be

extended to other types of cryptanalysis. Indeed, we could describe any property that
propagates through the round-function of a cipher as a path through a graph. As
such, it might be possible to apply the technique to search for e.g. division properties.

References
[1] Mohamed Ahmed Abdelraheem. “Estimating the Probabilities of Low-Weight

Differential and Linear Approximations on PRESENT-Like Ciphers”. In:
Information Security and Cryptology - ICISC 2012. 2012, pp. 368–382.

[2] Mohamed Ahmed Abdelraheem, Javad Alizadeh, Hoda A. AlKhzaimi, Moham-
mad Reza Aref, Nasour Bagheri, and Praveen Gauravaram. “Improved Linear
Cryptanalysis of Reduced-Round SIMON-32 and SIMON-48”. In: Progress in
Cryptology - INDOCRYPT 2015. 2015, pp. 153–179.

[3] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander,
Christof Paar, and Tolga Yalçin. “Block Ciphers - Focus on the Linear Layer
(feat. PRIDE)”. In: Advances in Cryptology - CRYPTO 2014. 2014, pp. 57–76.

[4] Ralph Ankele and Stefan Kölbl. “Mind the Gap - A Closer Look at the Security
of Block Ciphers against Differential Cryptanalysis”. In: Selected Areas in
Cryptography - SAC 2018. 2018.

[5] Roberto Avanzi. “The QARMA Block Cipher Family. Almost MDS Matrices
Over Rings With Zero Divisors, Nearly Symmetric Even-Mansour Construc-
tions With Non-Involutory Central Rounds, and Search Heuristics for Low-
Latency S-Boxes”. In: IACR Transactions on Symmetric Cryptology 2017.1
(2017), pp. 4–44.

[6] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani,
Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni. “Midori: A
Block Cipher for Low Energy”. In: Advances in Cryptology - ASIACRYPT
2015. 2015, pp. 411–436.

[7] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang
Meng Sim, and Yosuke Todo. “GIFT: A Small Present - Towards Reaching the
Limit of Lightweight Encryption”. In: Cryptographic Hardware and Embedded
Systems - CHES 2017. 2017, pp. 321–345.

[8] Paulo S.L.M. Barreto and Vincent Rijmen. “The Khazad Legacy-Level Block
Cipher”. In: Primitive submitted to NESSIE 97 (2000).

134

REFERENCES

[9] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. “The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS”.
In: Advances in Cryptology - CRYPTO 2016. 2016, pp. 123–153.

[10] Eli Biham and Adi Shamir. “Differential Cryptanalysis of DES-like Cryptosys-
tems”. In: Advances in Cryptology - CRYPTO ’90. 1990, pp. 2–21.

[11] Alex Biryukov and Vesselin Velichkov. “Automatic Search for Differential
Trails in ARX Ciphers”. In: Topics in Cryptology - CT-RSA 2014. 2014,
pp. 227–250.

[12] Céline Blondeau and Kaisa Nyberg. “Improved Parameter Estimates for Corre-
lation and Capacity Deviates in Linear Cryptanalysis”. In: IACR Transactions
on Symmetric Cryptology 2016.2 (2016), pp. 162–191.

[13] Céline Blondeau and Kaisa Nyberg. “Joint Data and Key Distribution of
Simple, Multiple, and Multidimensional Linear Cryptanalysis Test Statistic
and Its Impact to Data Complexity”. In: Design, Codes and Cryptography
82.1-2 (2017), pp. 319–349.

[14] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
“PRESENT: An Ultra-Lightweight Block Cipher”. In: Cryptographic Hardware
and Embedded Systems - CHES 2007. 2007, pp. 450–466.

[15] Andrey Bogdanov and Elmar Tischhauser. “On the Wrong Key Randomisation
and Key Equivalence Hypotheses in Matsui’s Algorithm 2”. In: Fast Software
Encryption, FSE 2013. 2013, pp. 19–38.

[16] Andrey Bogdanov, Elmar Tischhauser, and Philip S. Vejre. “Multivariate Pro-
filing of Hulls for Linear Cryptanalysis”. In: IACR Transactions on Symmetric
Cryptology 2018.1 (2018), pp. 101–125.

[17] Andrey Bogdanov and Philip S. Vejre. “Linear Cryptanalysis of DES with
Asymmetries”. In: Advances in Cryptology - ASIACRYPT 2017. 2017, pp. 187–
216.

[18] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knežević, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
“PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applica-
tions - Extended Abstract”. In: Advances in Cryptology - ASIACRYPT 2012.
2012, pp. 208–225.

[19] Stanislav Bulygin. “More on Linear Hulls of PRESENT-like Ciphers and a
Cryptanalysis of Full-Round EPCBC-96”. In: IACR Cryptology ePrint Archive
2013 (2013), p. 28.

[20] Anne Canteaut, Thomas Fuhr, Henri Gilbert, María Naya-Plasencia, and
Jean-René Reinhard. “Multiple Differential Cryptanalysis of Round-Reduced
PRINCE”. In: Fast Software Encryption, FSE 2014. 2014, pp. 591–610.

135

Publication 3 Generating Graphs Packed with Paths

[21] Jiageng Chen, Atsuko Miyaji, Chunhua Su, and Jesen Teh. “Accurate Estima-
tion of the Full Differential Distribution for General Feistel Structures”. In:
Information Security and Cryptology, 2015. 2015, pp. 108–124.

[22] Jiageng Chen, Atsuko Miyaji, Chunhua Su, and Jesen Teh. “Improved Dif-
ferential Characteristic Searching Methods”. In: IEEE 2nd International
Conference on Cyber Security and Cloud Computing, CSCloud 2015. 2015,
pp. 500–508.

[23] Huiju Cheng, Howard M. Heys, and Cheng Wang. “PUFFIN: A Novel Compact
Block Cipher Targeted to Embedded Digital Systems”. In: 11th Euromicro
Conference on Digital System Design: Architectures, Methods and Tools, DSD
2008. 2008, pp. 383–390.

[24] Joan Daemen and Vincent Rijmen. “Probability distributions of correlation
and differentials in block ciphers”. In: Journal of Mathematical Cryptology
1.3 (2007), pp. 221–242.

[25] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002.

[26] Christoph Dobraunig, Maria Eichlseder, and Florian Mendel. “Heuristic Tool
for Linear Cryptanalysis with Applications to CAESAR Candidates”. In:
Advances in Cryptology - ASIACRYPT 2015. 2015, pp. 490–509.

[27] Pierre-Alain Fouque, Gaëtan Leurent, and Phong Q. Nguyen. “Automatic
Search of Differential Path in MD4”. In: IACR Cryptology ePrint Archive
2007 (2007), p. 206.

[28] Kai Fu, Meiqin Wang, Yinghua Guo, Siwei Sun, and Lei Hu. “MILP-Based
Automatic Search Algorithms for Differential and Linear Trails for Speck”. In:
Fast Software Encryption, FSE 2016. 2016, pp. 268–288.

[29] Zheng Gong, Svetla Nikova, and Yee Wei Law. “KLEIN: A New Family of
Lightweight Block Ciphers”. In: RFID. Security and Privacy, RFIDSec 2011.
2011, pp. 1–18.

[30] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
“The LED Block Cipher”. In: Cryptographic Hardware and Embedded Systems
- CHES 2011. 2011, pp. 326–341.

[31] Jialin Huang, Serge Vaudenay, Xuejia Lai, and Kaisa Nyberg. “Capacity
and Data Complexity in Multidimensional Linear Attack”. In: Advances in
Cryptology - CRYPTO 2015. 2015, pp. 141–160.

[32] Pierre Karpman and Benjamin Grégoire. “The LITTLUN S-box and the FLY
block cipher”. In: Lightweight Cryptography Workshop. 2016, pp. 17–18.

[33] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. “Observations on the SIMON
Block Cipher Family”. In: Advances in Cryptology - CRYPTO 2015. 2015,
pp. 161–185.

136

REFERENCES

[34] Xuejia Lai, James L. Massey, and Sean Murphy. “Markov Ciphers and Differ-
ential Cryptanalysis”. In: Advances in Cryptology - EUROCRYPT ’91. 1991,
pp. 17–38.

[35] Mitsuru Matsui. “Linear Cryptanalysis Method for DES Cipher”. In: Advances
in Cryptology - EUROCRYPT ’93, 1993, pp. 386–397.

[36] Mitsuru Matsui. “On Correlation Between the Order of S-boxes and the
Strength of DES”. In: Advances in Cryptology - EUROCRYPT ’94. 1994,
pp. 366–375.

[37] Nicky Mouha and Bart Preneel. “Towards Finding Optimal Differential Char-
acteristics for ARX: Application to Salsa20”. In: IACR Cryptology ePrint
Archive 2013 (2013), p. 328.

[38] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel. “Differential and
Linear Cryptanalysis Using Mixed-Integer Linear Programming”. In: Infor-
mation Security and Cryptology, Inscrypt 2011. 2011, pp. 57–76.

[39] Kaisa Nyberg. “Linear Approximation of Block Ciphers”. In: Advances in
Cryptology - EUROCRYPT ’94. 1994, pp. 439–444.

[40] Kenji Ohkuma. “Weak Keys of Reduced-Round PRESENT for Linear Crypt-
analysis”. In: Selected Areas in Cryptography, SAC 2009. 2009, pp. 249–265.

[41] National Institute of Standards and Technology. “197: Advanced encryption
standard (AES)”. In: Federal information processing standards publication
197.441 (2001), p. 0311.

[42] Marc Stevens. “New Collision Attacks on SHA-1 Based on Optimal Joint
Local-Collision Analysis”. In: Advances in Cryptology - EUROCRYPT 2013.
2013, pp. 245–261.

[43] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma, and Ling Song.
“Automatic Security Evaluation and (Related-key) Differential Characteristic
Search: Application to SIMON, PRESENT, LBlock, DES(L) and Other Bit-
Oriented Block Ciphers”. In: Advances in Cryptology - ASIACRYPT 2014.
2014, pp. 158–178.

[44] Huihui Yap, Khoongming Khoo, Axel Poschmann, and Matt Henricksen.
“EPCBC - A Block Cipher Suitable for Electronic Product Code Encryption”.
In: Cryptology and Network Security, CANS 2011. 2011, pp. 76–97.

[45] S. H. Yen, David Hung-Chang Du, and Subbarao Ghanta. “Efficient Algorithms
for Extracting the K most Critical Paths in Timing Analysis”. In: Proceedings
of the 26th ACM/IEEE Design Automation Conference, 1989. 1989, pp. 649–
654.

[46] Jun Yin, Chuyan Ma, Lijun Lyu, Jian Song, Guang Zeng, Chuangui Ma,
and Fushan Wei. “Improved Cryptanalysis of an ISO Standard Lightweight
Block Cipher with Refined MILP Modelling”. In: Information Security and
Cryptology, 2017. 2017, pp. 404–426.

137

Publication 3 Generating Graphs Packed with Paths

[47] WenTao Zhang, ZhenZhen Bao, DongDai Lin, Vincent Rijmen, BoHan Yang,
and Ingrid Verbauwhede. “RECTANGLE: A Bit-Slice Lightweight Block Ci-
pher Suitable for Multiple Platforms”. In: Science China Information Sciences
58.12 (2015), pp. 1–15.

[48] Baoyu Zhu, Xiaoyang Dong, and Hongbo Yu. “MILP-based Differential Attack
on Round-reduced GIFT”. In: IACR Cryptology ePrint Archive 2018 (2018),
p. 390.

138

Publication 4

On Linear Correlation Distributions:
More Instructive Examples

Publication Information
Andrey Bogdanov and Philip S. Vejre. On Linear Correlation Distributions: More
Instructive Examples. In submission. 2018

Contribution
• Main author.

Remarks
None.

139

On Linear Correlation Distributions:
More Instructive Examples

Andrey Bogdanov and Philip S. Vejre

Technical University of Denmark

Abstract. Despite the fact that linear cryptanalysis is one of the most
prominent cryptanalysis techniques, our understanding of distinguishers
made from linear approximations is still developing. This is especially
true for advanced variants that use multiple linear approximations.
Using recent models for expressing multivariate linear correlation distri-
butions, this work takes a closer look at these distributions for a range
of different ciphers.
Our main finding is that the shapes of the correlation distributions
are very diverse, ranging from normal distributions, to mixtures of
different types, to highly non-normal distributions. A consequence of
this is that the cryptanalyst should be careful when making estimates
of distinguisher advantage. Indeed, when considering the χ2 and the
likelihood distinguishers, we find that estimates made solely from ELP
can be misleading.
While ELP estimates prove to be accurate for present, a cipher which
has been studied intensely in this context and has approximations with
approximately normally distributed correlations, this is not the case
for other distribution types. For normal mixtures, we observe that the
advantage is highly dependent on the configuration of the components.
For 15 rounds of PRIDE the lack of a central component results in a
higher advantage, while a dense central component for 11 rounds of GIFT
makes distinguishing very difficult. The highly non-normal correlation
distribution we observe for 13 rounds of RECTANGLE likewise results
in a lower advantage than what we would expect under assumptions of
normality. For these ciphers, we observe a discrepancy in advantage
compared to a well behaved normal distribution of about 6 bits.
We reaffirm previous work by Hermelin et al., now in a key dependent
model, and show that the χ2 distinguisher is not robust to the intro-
duction of noise, i.e. its advantage decreases if we add uninformative
approximations to our distinguishing set. The likelihood distinguisher
does not exhibit this behaviour, and its advantage is unaffected. Both
of these results demonstrate the importance of closely examining the
probability distributions used in a distinguisher, as variation between
ciphers can make it hard to rely on e.g. summary statistics.

141

Publication 4 On Linear Correlation Distributions: More Instructive Examples

1 Introduction
New types of attacks on symmetric key primitives, such as block ciphers and hash
functions, continue to be developed. At their core, many of these attacks rely on
some kind of distinguisher; a function which determines whether the attacker is
interacting with the target primitive or a random function. However, for some of
these distinguishers, our understanding of exactly how they behave is not perfect.
Surprisingly, this is perhaps most true for some of the oldest statistical distinguishers,
namely differential [6] and linear distinguishers [22]. While theoretical results on
the statistical behaviour of these distinguishers do exist for ideal primitives [15], the
behaviour for e.g. practical block cipher designs is not as set in stone. As in example,
[3] explores the distributions of differential probabilities for different block ciphers,
and find that their distributions deviate from the expected Poisson shape.

This picture only becomes more complicated for advanced variants of these attacks,
such as truncated differential attacks and multiple linear attacks. Nevertheless, the
power of a differential or linear attack entirely depends on how well the underlying
distinguishers perform, and so if we cannot accurately assess this, we also cannot
determine how well e.g. a key recovery attack based on these distinguishers will
work. It is therefore important to keep refining our understanding of these statistical
distinguishers. To this end, this work will take a closer look at the behaviour of
linear correlation distributions.

Previous Work

Since the introduction of linear cryptanalysis by Matsui in 1993 [22], a great number
of publications have improved and expanded on the idea. Perhaps the most influential
extensions are multiple [4, 7] and multidimensional [14, 18, 19] linear cryptanalysis,
and both for the one-dimensional case and the multidimensional extensions a lot of
work has been done recently to further our understanding of how linear correlation
distributions behave [8, 9, 11, 20]. In particular, [12] proposes the multivariate profil-
ing model that in principle is able to describe arbitrary (multivariate) distributions
of linear correlations over the space of encryption keys, provided that a set of good
linear trails is known. Moreover, tools have been developed for finding such trails,
e.g. [3, 17], allowing us to efficiently sample from these distributions. In one case, an
attack improvement was facilitated by the unusual shape of correlation distributions
[13]. This begs the question if other such cases exist, facilitating more powerful
attacks, or whether our assessment of current attacks might be flawed in some cases.
This motivates us to take a closer look at correlations distributions of various different
block ciphers.

Contributions

For multiple and multidimensional linear cryptanalysis, estimates of a particular
distinguisher’s effectiveness is often made under simplifying assumptions. It is

142

1 Introduction

common practice to find a set of good trails for each approximation, and then use
the sum of squared correlation contributions of these trails to estimate the expected
capacity of the approximations. Assuming a χ2 shape of the capacity, an estimate
of the advantage can then be made. Indeed, this is a reasonable approach if the
distribution we are distinguishing is well behaved, i.e. it is close to a multivariate
normal distribution. This is the case for present [10], which has been analysed in
many different works, and many models have been proposed that give good results in
this case using ELP as the main estimator [8, 9, 20]. Thus, while the normal case is
well understood, little work has been done on other types of correlation distributions.

When ELP Succeeds and When it Fails In this work, we consider examples of
correlation distributions for which ELP is a not a good estimate of distinguishing
power. We utilise the multivariate profiling model of [12], in which the shape of the
correlation distribution is estimated directly from known linear trails of the cipher
using no assumptions about e.g. the key-schedule. In order to find such trails, we use
the recently published tool from [17]. This tool allows us to efficiently find a large
number of trails for each approximation, hopefully resulting in accurate estimates,
and also allows us to sample from the corresponding signal distributions, which
directly enables the use of the multivariate profiling model.
Under this model the correlation distributions we observe for different ciphers

designs vary widely in shape, and as a result, an estimate of advantage based on ELP
alone can deviate significantly from an advantage observed using this model. Indeed,
this deviation boils down to the exact shape of the correlation distribution compared
to the shape of an ideal distribution. Since the ideal distribution is concentrated
around zero, distributions that have a very low density around zero are easier to
distinguish, while distributions that have a high density around zero can be difficult
to distinguish. This is despite the fact that such distributions can have components
far away from zero, giving them a high ELP.
We explore this discrepancy for two commonly discussed distinguishers, the χ2

and the likelihood distinguishers, for a range of different types of distributions. Our
findings are summarised in Table 1 and described in more detail below.

• Mixtures of Normal Distributions We first consider correlation distribu-
tions of various ciphers which can be described by the mixture model of [13].
We demonstrate that if the distribution has a single component, estimating
the advantage solely from ELP is a sound approach. This is for example the
case for present [10]. We apply the profiling model using about 252 trails per
approximation over 22 rounds, and the observed advantage closely matches the
estimate.
For mixtures with several components, the picture is more complex. Indeed,
while the distributions for the ciphers PRIDE [2] and GIFT [5] can both be
described as mixtures, the simple advantage estimate deviates in different
directions from the one we observe. In the case of PRIDE, the approximations
have a single dominant trail over 15 rounds, causing the distribution to have a

143

Publication 4 On Linear Correlation Distributions: More Instructive Examples

low density around zero. For GIFT however, several strong trails exist over 11
rounds, creating a central component in the correlation distribution, decreasing
the advantage. For PRIDE, the observed advantage is about 6 bits higher than
estimated, while for GIFT it is about 6 bits lower.

Moreover, while it was shown in [13] that asymmetric mixture distributions
can improve distinguishing advantage, we show that this is not always the case.
Indeed, GIFT exhibits both symmetric and asymmetric distributions with the
same ELP values, but the distinguisher works no better in the asymmetric
case due to the persistence of the central component. These observations
demonstrate the importance of carefully inspecting the correlation distributions
used in an attack when deriving attack complexities, as small variations in
these can have a large impact.

• Non-Normal Distributions While the examples explored above have com-
ponents which are individually normal, it is not guaranteed that the correlation
distributions of a cipher can be expressed in this model. As an example of this,
we show that the block cipher RECTANGLE [28] exhibits very non-normal
correlation distributions, even in the one-dimensional case. In particular, de-
spite finding 6 million trails over 13 rounds of the cipher, the distributions we

Table 1: Summary of cases studied in this work. We considered how distinguishing
advantage estimated assuming a simple normal shape compares to the
advantage estimated using the more advanced multivariate profiling (MP)
model of [12]. The number of trails used for the MP model is shown. In
most cases, there is a significant difference in the two estimates, caused by
the more complex shape of the correlation distributions.

Cipher Rounds Trails Distribution
Type Symmetry

Advantage
Estimate

ELP MP
Known results

present
Section 3.1 22 253 Normal Symmetric 5.85 5.85

New results
PRIDE

Section 3.2 15 1

Normal
mixture

Symmetric 2.49 8.83

GIFT-64
Section 3.2 11 34 Symmetric 7.25 0.53

GIFT-64
Section 3.3 11 34 Asymmetric 7.25 0.52

RECTANGLE
Section 4 13 223 Non-normal Symmetric 7.98 1.85

144

2 Linear Distinguishers

observe have much longer tails than a normal distribution and show a strong
dependence structure in the case of multiple approximations. We rule out
the key-schedule as the source of this non-normality, but it remains an open
question exactly what about the structure of RECTANGLE results in this
deviation from normality.
One consequence of this complicated distribution shape is that using the
likelihood distinguisher is impractical. Moreover, for the χ2 distinguisher we
observe a much lower advantage than the estimate obtained from the ELP,
again due to the distribution being dense around zero. We leave it as an
open question whether the deviation from normality itself can be used as a
distinguisher.

• Distinguishing with Uninformative Approximations Finally, we con-
sider the performance of the two distinguishers in a scenario where a proportion
of approximations behave like noise. The two distinguishers were previously
compared in [18] for multidimensional linear cryptanalysis, where it was shown
that for a fixed capacity, the χ2 advantage is inversely proportional to the num-
ber of approximations M , while the LLR advantage is inversely proportional
to log(M). However, that work does not consider how the multidimensional
probability distribution varies over the key space. Thus, we reconsider this
comparison in a key dependent model. To eliminate the factor of distribution
shape, we again consider present, and demonstrate that the χ2 distinguisher
is not robust, that is, its distinguishing advantage decreases dramatically when
“bad” approximations are added to a set of “good” approximations. For a
set of four approximations, adding four noisy approximations decreases the
advantage from about 11 bits to about 9 bits. We also show that the likelihood
distinguisher does not suffer from this problem, although it can be harder to
apply in practice, reaffirming the findings of [18]. This further shows that if a
cryptanalyst decides to use the unstable χ2 distinguisher, she must carefully
analyse the approximations used to obtain the optimal advantage.

The rest of this work is structured as follows: Section 2 describes the preliminaries
of linear distinguishers. Section 3 considers distinguishing distributions that can
be described as normal mixtures, while Section 4 describes non-normal distribu-
tions. Finally, Section 5 analyses distinguishing in the presence of uninformative
approximations.

2 Linear Distinguishers
Throughout this work, we will consider the challenge of distinguishing block ciphers.
We define a block cipher as a function

E(x, k) : Fn2 × Fκ2 → Fn2 .

145

Publication 4 On Linear Correlation Distributions: More Instructive Examples

For each key k in the key-space Fκ2 , E is a permutation on Fn2 . As such, E is a family
of 2κ permutations. To E we associate an ideal version, Ẽ . Each instance of Ẽ is also
a permutation on Fn2 , but the permutations are chosen uniformly at random from
the space of all permutations on Fn2 . Thus, we can view Ẽ as a “perfect” block cipher
with a key-space of size 2n!.

2.1 Distinguishers in General
Assume now that an attacker is either given or chooses a list of N inputs and is then
given the corresponding list of outputs, encrypted with either an instance of E or an
instance of Ẽ . Let T denote the list of input/output pairs. The goal for the attacker
is to determine if the ideal or non-ideal block cipher was used. To this end, we define
a distinguisher :

D(T) : (Fn2)N × (Fn2)N → {Ideal, Not ideal}.

The distinguisher simply computes some function of T , and outputs either “Ideal”
or “Not ideal”. We are mainly interested in two properties of the distinguisher: its
success probability and its advantage. We define the success probability as

pS = Pr(D(T) = Not ideal | E)

and the advantage as

a = − log2
(
Pr(D(T) = Not ideal | Ẽ)

)
,

where the probabilities are taken over the respective sets of permutations, as well
as any other randomness used in the choice of inputs or by the distinguisher. The
situation is illustrated in Figure 1. We will often fix the success probability, and
consider the resulting advantage, as this value is directly associated with how well a
distinguisher can be used as part of a key recovery attack on E . For further details,
see e.g. [25].

2.2 Linear Distinguishers
The general idea of a linear distinguisher is to find linear relationships between the
bits of elements in T which exhibit a larger correlation than one would expect from
an ideal cipher. To this end, we define a linear approximation (α, β) ∈ Fn2 × Fn2 and
associate to it a linear correlation:

Ck(α,β) = 2 · Pr
x∈Fn2

(〈α, x〉 = 〈β, E(x, k)〉)− 1,

where 〈·, ·〉 denotes the canonical inner product on Fn2 . Note that Ck(α,β) is a random
variable over the key-space. We will denote the correlation measured for a specific

146

2 Linear Distinguishers

Value

D
en

si
ty Non−Ideal

Ideal

2−Advantage
1 − Success
probability

Figure 1: Illustration of success probability and advantage when applying a statistical
distinguisher. The threshold value is denoted by the dashed line.

set T as Ck(α,β)(T). Thus, a very simple linear distinguisher could be defined as

D(T) =
{
Not ideal if |Ck(α,β)(T)| > τ

Ideal otherwise
,

for some predetermined value of the threshold value τ . While this distinguisher
is essentially that proposed originally by Matsui [22], a variety of other linear
distinguishers have been proposed. Amongst these is the natural extension of multiple
linear cryptanalysis [4, 7] (and the related multidimensional linear cryptanalysis [14,
18, 19]). Let us denote a vector of M approximations by [α,β], and its associated
vector of simultaneous correlations by Ck[α,β]. The idea of multiple linear cryptanalysis
is then that the distinguisher can make a better decision based on Ck[α,β] as opposed
to just the correlation of a single approximation.

Common to all of these methods (and analogously any statistical distinguisher) is
that in order to determine the success probability and advantage, we need to know
the distribution of Ck(α,β) over the key-space for both E and Ẽ .

2.3 Correlation Distributions
The Ideal Case For the ideal cipher Ẽ , [15] shows that Ck(α,β) ∼ N (0, 2−n), i.e.
a normal distribution with mean zero and variance 2−n. For a specific set of
input/output pairs T , with inputs sampled randomly with replacement, we moreover
have that Ck(α,β)(T) ∼ N (0, 2−n + N−1). However, in the case of multiple linear

147

Publication 4 On Linear Correlation Distributions: More Instructive Examples

approximations, it seems difficult to determine the exact shape of the joint linear
correlations. Indeed, even if statistical dependencies of correlations are likely to occur,
see e.g. the discussion in [24], we take the same approach as in [12] and make the
simplifying assumption of statistical independence in the case of linearly independent
approximations. Thus, in this case, we have that Ck[α,β](T) ∼ NM (0,diag(2−n +
N−1)).

The Non-Ideal Case For the cipher E useful results are known in the case of
key-alternating ciphers, i.e. ciphers of the form

E = fr ◦ · · · ◦ f1,

where each round function fi has the form

fi(x, ki) = gi(x)⊕ ki,

and the ki’s are round keys derived deterministically from k. Usually, a pre-whitening
key k0 is added to the input. For this construction, we define a linear trail as the
tuple U = (u0, . . . , ur), and its associated correlation contribution as

CkU =
r∏
i=0

Cui,ui+1(fi)

i.e. the product of the correlations of each round function. Then the following result
can the be shown.

Theorem 1 ([16]). Let k̄ denote the concatenation of a key-alternating cipher’s
round keys for the encryption key k. Then the linear correlation of an approximation
(α, β) of the cipher can be calculated as

Ck(α,β) =
∑
U

(−1)sU⊕〈U,k̄〉|CkU |,

where the sum is over trails U = (α, . . . , β), sU is the sign bit of U , and |CkU | is
independent of k.

While it is infeasible to calculate the full sum in Theorem 1, [11] proposed to split
the sum into a set of signal trails S and a set of noise trails. The sum for a specific
set T (with inputs sampled randomly with replacement) is then approximated by

Ck(α,β)(T) ≈
(∑
U∈S

(−1)sU⊕〈U,k̄〉|CkU |
)

+N (0, 2−n +N−1). (1)

A generalisation of this result to the case of multiple linearly independent approx-
imations was given in [12]. In both cases, we can easily sample from Ck(α,β)(T),

148

2 Linear Distinguishers

respectively Ck[α,β], by calculating the above sum for different keys k. However,
this requires that a suitable set of signal trails S is known. The work [17] gives an
algorithm both for finding good trails and for efficiently sampling from the signal
distribution. We will use this tool in the following to generate correlation distributions
and derive the corresponding success probabilities and advantages.

2.4 On ELP and Capacity
While using the above model to derive success probabilities and advantage is somewhat
involved, other methods for determining the effectiveness of a linear distinguisher
have often been used in the literature, namely using ELP and capacity. Consider
Theorem 1: It is known that if the round keys are statistically independent, then

E((Ck(α,β))2) =
∑
U

(CkU)2.

The sum on the right is usually denoted the expected linear potential (ELP). Moreover,
under this independence assumption, and by the central limit theorem1, Ck(α,β) ∼
N (0, ELP). Thus, it is very common for works on linear cryptanalysis to find one
or more trails of a linear approximation, calculate the ELP from their correlation
contributions, and then estimate the strength of the attack from this value. Similarly,
for multiple/multidimensional attacks with M approximations, we can define the
capacity as

Ck =
M∑
i=1

(Ck(αi,βi))
2.

Under the above independence assumption for correlations of multiple linearly in-
dependent linear approximations, the expected value of the capacity is simply the
sum of the ELPs, and so this sum is often used as an estimate for the effectiveness of
a multiple linear attack. Additionally, several works present results on estimating
the variance of capacity for multidimensional distinguishers, in order to get a more
precise estimate [8, 9].

As shown in [12], the fact that round keys are not independent in most ciphers can
have an impact on the expected capacity, making it deviate from the sum of ELPs.
Moreover, if the correlation distributions exhibit statistical dependence, the shape of
the capacity distribution might make the expected value, or even the variance, a bad
indicator of distinguishing power. Indeed, in Sections 3 and 4 we explore examples
of correlation distributions where the sum of ELPs might give a misleading estimate,
both positively and negatively. As a benchmark, we will compare to an estimate
obtained using a “well behaved” correlation distribution, namely the distribution

CkB ∼ NM (0,diag(ELP1, . . . , ELPM)).
1Assuming that the difference in correlation contributions is not too large.

149

Publication 4 On Linear Correlation Distributions: More Instructive Examples

Indeed, this would be the best case for using the above method of summing ELPs as a
way to estimate distinguishing power, and as such represents an optimal scenario for
the cryptanalyst in terms of easy analysis. We note that when making comparisons,
we still apply the signal/noise decomposition of [11], i.e. the estimate for each ELP
value becomes

ELPi =
(∑
U∈Si

(CkU)2

)
+ 2−n + 1/N.

2.5 The χ2 and LLR Distinguishers
Given the (potentially multivariate) correlation distributions of E and Ẽ , we can
formulate many different distinguishers. In this work, we will consider two distin-
guishers that have been proposed in the literature, namely the χ2 distinguisher and
the likelihood distinguisher.

The χ2 Distinguisher The χ2 distinguisher builds on the χ2 method for hypothesis
testing, and is perhaps the most used linear distinguisher. In the general case of M
approximations, and for a given threshold value τ , the distinguisher is defined as

Dχ2(T) =
{
Not ideal if N

∑M
i=1(Ck(αi,βi)(T))2 > τ

Ideal otherwise
.

Note that for a general multivariate distribution of Ck[α,β], the sum computed by the
distinguisher is not χ2 distributed, as the marginals need not be independent nor
normally distributed. This makes it difficult to derive closed form expressions of
the success probability and advantage. Nevertheless, as long as we can sample from
Ck[α,β], we can estimate these values.
It is interesting to note that the distribution of the sum computed by Dχ2 only

depends on the distribution of Ck[α,β]. That is, if we fix τ , changing the distribution
of Ck[α,β] for E only affects the success probability, while changing the distribution
for Ẽ only affects the advantage. On the other hand, the χ2 distinguisher does not
need any prior knowledge of these two distributions to work, making it very easily to
apply in practice.

The Likelihood Distinguisher The likelihood distinguisher is more involved than
the χ2 distinguisher, in that we need to a priori have a good estimate of the two
distributions we want to distinguish. For a given threshold value τ , it is defined as

DLR(T) =

Not ideal if Pr(Ck[α,β](T)|E)
Pr
(
Ck[α,β](T)|Ẽ

) > τ

Ideal otherwise
.

150

3 Distinguishing Normal Mixtures

For practical reasons, the logarithm of the likelihood ratio is often used, and so
this distinguisher is also known as the log-likelihood ratio (LLR). If we have perfect
knowledge of the two correlation distributions, this distinguisher is theoretically
optimal. However, as previously pointed out in [18], it is not often used in practice
due to the difficulty of calculating the required probabilities.
Using the models described in Section 2.3, one could e.g. use kernel density

estimates to estimate DLR. However, this might become impractical for higher
dimensions. In [13] it was proposed to use a mixture model, when this seems
reasonable, and it is demonstrated that in this case the likelihood distinguisher
performs better than the χ2 distinguisher.
We finally note that the likelihood distinguisher does not have the behaviour

described for the χ2 distinguisher above. Namely, if we change either of the correlation
distributions both the success probability and the advantage are likely to change. In
other words, the distribution of DLR depends both on the ideal and the non-ideal
distribution simultaneously.

3 Distinguishing Normal Mixtures
In the following, we will compare advantage estimates obtained using the sum of ELP
approach described in Section 2.4 to advantages observed under the model of [12]
described in Section 2.3, for both the χ2 and LLR distinguishers. We will first consider
the case of distinguishing correlation distributions whose signal can be described by
the model given in [13]. There, the signal is described as a normal mixture, i.e. a
weighted sum of normal distributions. For a mixture with ` components, weights λi,
mean vectors µi, and covariance matrices Σi, i = 1, . . . , `, the probability density of
the distribution is given by, under the condition that

∑
λi = 1,

f(x) =
∑̀
i=1

λiφM (x;µi,Σi),

where φM is the PDF of the M -variate normal distribution. Combining this with
Equation 1 we can e.g. calculate the probabilities required for the likelihood distin-
guisher. Note however, that while algorithms for determining the mixture parameters
do exist, a better result will likely be obtained if the cryptanalyst defines them herself,
making the use of this model rather time consuming.

Testing Methodology In the following, we have used the tool published in [17] to
search for linear trails as well as to sample from the signal distributions. For each
set of approximations we consider, we have sampled 50 000 signal correlations using
this tool, and then approximated the linear correlation by using the signal/noise
model of [11]. Then, when calculating the advantage of each distinguisher, we split
the data set randomly into two equal parts, i.e. a training set and a testing set. We
use the training set to calculate the threshold value required for an 85% success

151

Publication 4 On Linear Correlation Distributions: More Instructive Examples

0

228.9

229.9

D
en

si
ty

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

● ●
●

●

●

● ●

●

●●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

● ●

●
●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
● ●

●

●

● ●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
● ● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●●
●

● ●

●

●

●

●
● ● ●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●
● ●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●●●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●

●

●

●

●●
● ●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●●

●
●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

● ●● ●

●

●

●
●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ● ●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●
●

●

●
●●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●
●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

● ●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●
●

●

●

●
●

●
●

●

● ●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●
● ●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●

●
●

●

● ●

●●

●

●

●

●

●●

●
●

● ●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

− 2−27.3

− 2−28.3

0

2−28.3

− 2−27.3 − 2−28.3 0 2−28.3 2−27.3

Approximation 1

A
pp

ro
xi

m
at

io
n

2

0 228.2 229.2 229.7 230.2

Density

present, N = 264, pS = 0.85, aχ2 = 5.85, aLR = 5.86

Figure 2: In blue, the joint correlation distribution of two linear approximations over
22 rounds of present. The distribution for an ideal cipher is shown in red.
The advantage for the two distinguishers is given.

probability, and then estimate the advantage using the testing set. We repeat this
process 1000 times to get a stable estimate of the advantage. In the following, we
only consider pairs of approximations, in order to make visualisation easier. However,
our observations generalise to higher dimensions.

3.1 The Normal Case: One Component
We first consider the case of a single mixture component, ` = 1, i.e. a simple
multivariate normal distribution. This case can be found for the 64-bit block cipher
present [10]. present has been the target of many linear cryptanalysis publications
due to the extreme linear hull effect it exhibits. It is also this presence of many
equally good linear trails for each approximation that ensures that the correlation
distributions are quite close to normal. We consider the two approximations

(α1, β1) = (0x000000000e000000, 0x8000000080008000),
(α2, β2) = (0x0000000000e00000, 0x8000000080008000),

over 22 rounds of the cipher. Using the tool of [17], we find about 252.3 trails for each
approximation, for a total ELP of 2−58.40 each. Applying the model of Equation 1
with N = 264, we obtain the correlation distribution shown in Figure 2. As previously
observed in the literature, this distribution is quite close to normal [1, 12]. In this
case, the two distinguishers perform equally well, both obtaining an advantage of

152

3 Distinguishing Normal Mixtures

0
227.6
228.6
229.2

D
en

si
ty

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

● ●
●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

● ●

●

● ●

●

●

− 2−28.6

0

2−28.6

2−27.6

− 2−27.9 − 2−28.9 0 2−28.9 2−27.9

Approximation 1

A
pp

ro
xi

m
at

io
n

2

0 227.6 228.6 229.2

Density

PRIDE, N = 261.5, pS = 0.85, aχ2 = 8.83, aLR = 9.31

Figure 3: In blue, the joint correlation distribution of two linear approximations
over 15 rounds of PRIDE. The distribution for an ideal cipher is shown
in red. The advantage for the two distinguishers is given. A bivariate
normal distribution with the same ELP values has a lower distinguishing
advantage of 2.49 bits.

about 5.85 bits. Moreover, if we consider the idealised distribution CkB described in
Section 2.4, we obtain a similar advantage. Thus, in this case, we can expect the
sum of ELPs to give us a quite good estimate of our distinguishing power. Next, we
will see that this is not always the case.

3.2 Several Components: ELP Can Be Misleading
We now consider two cases with ` > 1 that demonstrate that the sum of ELPs
is not necessarily a good indicator of distinguishing power. We first consider the
64-bit block cipher PRIDE [2]. While several works in differential cryptanalysis of
PRIDE have been published [21, 26, 27, 29], there seems to be few results on linear
cryptanalysis. Here, we consider the two approximations

(α1, β1) = (0x0000000000000100, 0x0100000001000100),
(α2, β2) = (0x0000000000000001, 0x0001000000010001),

over 15 rounds of the cipher. In this case, we were only able to find a single trail
for each approximation, having squared correlation contribution 2−58. This matches
the initial analysis in [2]. Thus, each approximation has a single dominant trail, and
as observed in [13], if the ELP is large enough, the distribution will therefore have

153

Publication 4 On Linear Correlation Distributions: More Instructive Examples

0
226.6
227.6
228.2
228.6

D
en

si
ty

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●●●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●
●

●●●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●
●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

− 2−26.6

− 2−27.6

0

2−27.6

2−26.6

− 2−26.6 − 2−27.6 0 2−27.6 2−26.6

Approximation 1

A
pp

ro
xi

m
at

io
n

2

0 226.6 227.6 228.2 228.6

Density

GIFT-64, N = 260, pS = 0.85, aχ2 = 0.53, aLR = 0.52

Figure 4: In blue, the joint correlation distribution of two linear approximations
over 11 rounds of GIFT-64. The distribution for an ideal cipher is shown
in red. The advantage for the two distinguishers is given. A bivariate
normal distribution with the same ELP values has a higher distinguishing
advantage of 7.25 bits.

more than one component. Indeed, the correlation distribution is shown in Figure 3,
where we can clearly observe four distinct components.

If we set N = 261.5, and apply the χ2 distinguisher, we obtain an advantage of 8.83
bits. A small improvement, i.e. about 0.5 bits, is obtained by applying the likelihood
distinguisher, matching the observations made for DES in [13]. The interesting
observation here, however, is that if we consider the benchmark distribution CkB
with the same ELP values, we only obtain an advantage of 2.49 bits. Thus, if the
cryptanalyst only considered the ELP when searching for suitable approximations,
she would drastically underestimate her attack power, and maybe wrongly conclude
that no linear attack on this number of rounds could be mounted. This could for
example result in a designer choosing to use an insufficient number of rounds in the
believe that no linear attack will be successful.
While the above case shows that one can easily underestimate the power of a

distinguisher, we now consider the opposite case. The 64-bit block cipher GIFT-64 is
a recent design that revisits the ideas of present, while trying to improve efficiency
and security. For GIFT-64, we consider the two approximations

(α1, β1) = (0xe000090000600900, 0x4014008210410028),
(α2, β2) = (0xd000090000600900, 0x4014008210400028),

154

3 Distinguishing Normal Mixtures

0
226.6
227.6
228.2
228.6

D
en

si
ty

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

● ●

●●

●

●

●

●
●

●
● ●

●
●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●●

●

●

●● ●

●

●

●

●

●

● ●●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●●

●

●

● ●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●●

●

●

●

●

●

●

●

− 2−26.6

− 2−27.6

0

2−27.6

2−26.6

− 2−26.6 − 2−27.6 0 2−27.6 2−26.6

Approximation 1

A
pp

ro
xi

m
at

io
n

2

0 226.6 227.6 228.2 228.6

Density

GIFT-64, N = 260, pS = 0.85, aχ2 = 0.52, aLR = 0.52

Figure 5: In blue, the joint correlation distribution of two linear approximations over
11 rounds of GIFT. The distribution for an ideal cipher is shown in red. The
advantage for the two distinguishers is given. Compared to the distribution
in Figure 4 we here see asymmetries, but the advantage is no better.

over 11 rounds of the cipher. For each of these approximations, we find 34 trails for
a total ELP of approximately 2−55.0. Setting = 260, we obtain the very interesting
correlation distribution shown in Figure 4.
While we do observe four components with non-zero mean vectors, there is also

a fifth components with mean roughly zero. This could be explained by a pair
of dominant trails which interact constructively and destructively. By inspecting
the marginal distributions, it is evident that a large part of the probability density
is contained in this central component. Indeed, when we estimate the mixture
parameters, we find that the weight, λ5, for this component is 0.5, i.e. it constitutes
half the density. As a consequence, both distinguishers have a very low advantage of
about 0.5 bits. This is compared to the benchmark distribution CkB for which one
would get a 7.25 bit advantage. On the other hand, the shape of the distribution also
implies that half the keys are weak keys, i.e. if we lower our success probability to 0.5,
we obtain a perfect distinguisher. These two examples clearly show how important it
is to consider the actual shape of the correlation distribution, as opposed to simply
making estimates based on the sum of ELPs.

155

Publication 4 On Linear Correlation Distributions: More Instructive Examples

3.3 Asymmetry Cannot Save You
In [13], it was observed that DES exhibits asymmetrical correlation distributions,
and the term asymmetry factor was proposed, defined as `/2M . For DES it was
observed that a smaller asymmetry factor increased the distinguishing power, and it
was conjectured that this might be the case in general. However, we now demonstrate
that this is not the case.
We again consider 11 rounds of GIFT-64, but this time we consider the two

approximations

(α1, β1) = (0x010000e00900e000, 0x4401200011040002),
(α2, β2) = (0x010000e00900e000, 0x4401200011048002).

These approximations have the same ELP as those described previously, but their
input/output masks are chosen in a special way: their input masks are identical, and
their output masks only differ in bit 15. GIFT is designed such that only part of the
state is affected by the key addition step, and in particular only a constant is added
to bit 15. In this case, the constant is 1, and thus these two approximations will
likely always have the same absolute correlation but with opposite signs. Indeed,
this is the case, as can be observed in Figure 5. Nevertheless, these approximations
still have a central component, and even though we have an asymmetry factor of 3/4,
we obtain no improvement in advantage over the symmetric case, for either of the
distinguishers. Essentially, how well our distinguisher works is entirely determined
by the central component. This further demonstrates that direct inspection of the
correlation distributions is necessary in order to evaluate distinguishing power.

4 Distinguishing Non-Normal Distributions
The examples we have shown so far have all had correlation distributions that
could be expressed as normal mixtures. Nonetheless, this type of shape is not a
given. In particular, dependence between round-keys can influence the shape of the
distribution, as demonstrated in both [1] and [12]. Moreover, it could happen that
the structure of the linear trails is such that the resulting distribution is not normal.
We will investigate such a case next. Since it it quite difficult to apply the likelihood
distinguisher in this case, we only consider the χ2 distinguisher in the following.

4.1 The Case of RECTANGLE
RECTANGLE [28] is yet another 64-bit block cipher inspired by the present design,
but with a focus on bit-slicing friendly components. Over 13 rounds of the cipher,
we found 6 242 685 trails for each of the two approximations

(α1, β1) = (0x00000d000000a000, 0x0000021000600084),
(α2, β2) = (0x00000d000000a000, 0x0000021000610004),

156

4 Distinguishing Non-Normal Distributions

0
228.2
229.2
229.7
230.2

D
en

si
ty

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●

●
●

●●

●

●

●

●

● ●

●

●

●

●

●

●
●● ●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

● ●

●

●
●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●●● ●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●

●
●

●●
●

●

●

●●
●

●

●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●
●

●●

●

●
●

●

● ●

●
●

●
●

●

●
●

●
●●

●
●●

●

●
●
●
●

●

● ●

●

●
●

●● ●●
●

●

●

●

●
●

●
●

●
●

●●

● ●

●
●

●
●

●

●

●

●
●

●●●
●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

● ●
●

●

●

●
●

●

●

●●

●

● ●
●●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●

●

●

●
● ●

●●●
●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

● ●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●

●

●

●●●

●
●

●
●●

●

●●
●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●●

●

●● ●
●

●

●

●●

●

●

●

●
● ●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●
●

●

●

●
●

● ●

●

● ●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

● ●●

●●

●

●
●

●

●

●

●
●

●

●
●●●

●

● ●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

● ●●

●

●
●

●
●

●

●

●

● ●

●

●

●
●

●

●

●
● ●●

● ●
●

●

●

●

●
● ●●

●

●●

●● ●

●

●
●●

●

●

●

●

●

●●●

●
●

●

●
● ●●

●

●

●●

●

●
●

●●

●

●
● ●

●
●

●

●● ●●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●●

●

●● ●

●

●●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

● ●

●
●

●

● ●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●
●●

●

●
●

●

●

●

●
●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●
●

●
●●

●

● ●
●●

●

●
●

●

●

●

●

● ●
● ●

●

●
●

●

●

●
●●

●

●●

●

●●

●

●

●

●●
●

●●

●

●

●
●

● ●
● ●
●

●

●

●

●

●

●
●

●
●

●

●
● ●

●●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

● ●
●

●

●
●

●

●

●

●

●
●

●
● ●

●

●

●
●

●
●

●
●

●●

●●

●●

●

●●

● ●●
●

●

●

●
●

●
●

●

●●
●

●

●●

●●

●
●

●

●
●

●

●

●
● ●

●

● ●

●

●

● ●●

●

●
●

●
●

●

●
●

●

●
●

●

●
●●

● ●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●
●

●

● ●

●
●

●

●

●

●●
● ●

●●

●

●

●
●

●

●
●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●●

●●

●

●

●

●

●

●

●●
●

●
● ●

●

●

●

●

●
●

●●●

●●

●●

●

●

●

● ● ●
●

●
●●

●
●

●

●

●

●●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●●

●

●
●

●
●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●
●●

●

●● ●

● ●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●●

●

●
●

●
●●

●

●
●

●
●

●
●

●

●

●

●

● ●●

●

●

●

●

●●
●

●
●

●
●

●

●
●

●

●
●

●
●

●

●

●
●

●

●

● ●

●

●

●

●
●

●
●

●
●

● ●
●

●●

●

●

●

●

●●

●

●

●

●
● ●

●
● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●● ●●

●
●●

●
●

●

●
●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●
●●

●

●
●

●

●

●
●

●

●
●

●●

●

●

●
●●

● ●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

● ●

●

● ●

●

● ●
●

●
●

●

●
●

●
● ●

●

●

●

●
● ●

●●

●

●

●

●

●

●

●

● ●

●

●● ●

●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
● ●

●●
●

●

●
●

●

●

●
●

●
●

● ●
●

●

●
●● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●
●

●
●

● ●

●

●

●

●
●

● ●●

●●
●

●

●

●

●
●

●

●●
● ●

●●●

●

●

●

●●

●

●
●

●

●
●

●

●

● ●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●●

●

●

●
●

●
●●

●●

●

●
●● ●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●●●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●● ●
● ●

●●
●

●

● ●

●● ●

●
●●

●●●
●●

●
●

●

●
●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

● ●

●

●

●

●

●
●●

●

●

●●
●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●● ●
●●

●

●●●

●●
●

●

●
● ●

●

●

● ●

●●
●●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●
●

●

● ●

●

● ●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●

●
●

●
●

●

● ●●

●

●

●
●●

●
●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●
●

●
●

●●●
●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●
●

●

●
●

●

● ●
●

●

●

●

●
●

●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

● ●●

●

●
●

●

●●

● ●

● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●●

●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

● ●
●

●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●●

●

●

●

● ●
●●

●

●●
●

●

●

●
●

●

●

●
● ● ●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

● ●
●

●
●●

●

●
●

●
●

●
●

●

●●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●
●

●

●
●

●

●●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

● ●
●

●

●
●●●

●

● ●

●

●

●

●

●

● ●●
●

●

●●
● ●

●

●
●

●

●

●

●

●●

●

●

●

●

● ●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●
●●

●●

●
●●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●

●
●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●
●● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●● ●

● ●
●●●

●

●

●

●
●●

●

●

●
●

●

●

●
●

●●
●

●
● ●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●
● ●●

●

●
●

●

●●
●

●

● ●

●

● ●●
●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●
●●

●

●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●

●●
●

●

●●

●

●●
●

●

●

●
●

●

●
●●

●

●●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●
●

●
●

●

●

●

●

●

●

● ●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

− 2−26.6

− 2−27.6

0

2−27.6

2−26.6

− 2−26.6 − 2−27.6 0 2−27.6 2−26.6

Approximation 1

A
pp

ro
xi

m
at

io
n

2

0 227.9 228.9 229.5 229.9 230.2

Density

RECTANGLE, N = 264, pS = 0.85, aχ2 = 1.85

Figure 6: In blue, the joint correlation distribution of two linear approximations over
13 rounds of RECTANGLE. The distribution for an ideal cipher is shown
in red. The advantage for the χ2 distinguisher is given. The distribution
cannot be described by a normal mixture. A bivariate normal distribution
with the same ELP values has a higher distinguishing advantage of 7.98
bits.

●
●

●
●

●
● ●●

●●●●●●
●●●●●●●●●

●●●●●
●●●●●●

●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●

●●●
●●

●●●
●●

●●
●●●

●●
●●

●●
●●●

●●●
●●●

●●●
●●●

●●●
●●

●●
●●●

●●
●●●

●●●
●●●

●●
●●●

●●
●●

●●●
●●●

●●
●●

●●●
●●●

●●●
●●

●●
●●●

●●●
●●

●●
●●

●●
●●●

●●●
●●●

●●●
●●

●●●
●●●

●●
●●

●●
●●

●●
●●●

●●●
●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●●●●●●

●●●●●
●●●●●●●●

●●●●●●
●●●●●●●

●●
●●●●●●●

●

● ●
●

● ● ● ●

− 2−26

− 2−26.6

− 2−27.6

0

2−27.6

2−26.6

−2.5 0.0 2.5

Theoretical normal quantiles

M
ea

su
re

d
co

rr
el

at
io

n
qu

an
til

es

Figure 7: Theoretical normal quantiles compared to the observed correlation distri-
bution quantiles for the block cipher RECTANGLE and the approximation
(0x00000d000000a000, 0x0000021000600084). We observe a clear devia-
tion from normality.

157

Publication 4 On Linear Correlation Distributions: More Instructive Examples

for a total ELP of 2−58.01. The correlation distribution of these two approximations
is shown in Figure 6 for N = 264. It is immediately clear that the joint distribution
is not a normal mixture. Moreover, if we consider the marginal distributions, these
are not normal either, as demonstrated by the quantile-quantile plot in Figure 7.
Indeed, the observed distributions have much longer tails than a normal distribution
with the same variance would have. Additionally, it is interesting to observe that this
shape seems to be inherent to the structure of the round function of RECTANGLE,
as replacing the key-schedule with e.g. that of present does not affect the shape of
the distributions.

At a first glance, this extreme deviation from normality might suggest that these
distributions would be easier to distinguish, but this is not the case. Indeed, the
χ2 distinguisher only obtains an advantage of 1.85 bits with N = 264, whereas
distinguishing the benchmark distribution CkB would result in an advantage of 7.98
bits. The reason for this is similar to the case of GIFT discussed in Section 3.2,
namely that the majority of the distribution density is concentrated close to zero.
As such, only very few keys actually exhibit a large correlation.

While this non-normal distribution shape observed for RECTANGLE may not be
beneficial in the case of single-key distinguishers, it would be interesting to explore
in a multi-key setting. Indeed, if we could observe several points from the correlation
distribution, a simple test of normality might work very well as a distinguisher. In any
case, further exploration of these non-normal correlation distributions is warranted.

5 Distinguishing with Uninformative Approximations
In the previous sections we saw that it is essential to closely examine the correlation
distributions of the approximations one intends to use for distinguishing. In the
following, we eliminate the question of distribution shape by only considering distri-
butions that are approximately multivariate normal. However, we now consider the
composition of the set of approximations we use for distinguishing. Specifically, we
consider the case of distinguishing when using a set of M + M̃ approximations, but
where a subset of M̃ of the approximations are uninformative, i.e. their correlations
are distributed as N (0, 2−n), independently from the other approximations.
This case could for example occur if a cryptanalyst chooses to include extra

approximations in their attack with the hope of an added advantage, assuming that it
has no adverse effect on the final attack complexity, but without carefully analysing
the correlation distributions of these. Indeed, the general thinking here would be that
adding these approximations cannot worsen the attack. This case was considered
in [8, Theorem 4], where an expression of the variance of the capacity was given.
Another case would be if the cryptanalyst wants to use the multidimensional model,
in which case she needs to include all approximations in a full subspace, some of
which are likely to have low correlations. We note that a recent work proposes a
model in which some of these bad approximations can be discarded [23].
In this scenario, it is natural to expect that a distinguisher on all M + M̃ ap-

158

5 Distinguishing with Uninformative Approximations

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
● ●

●
●

●
●

●
●

●
●

●
●

●
● ● ● ●

● ● ● ● ● ●
● ● ● ●

● ● ● ● ●
●

● ● ● ●
●

●
●

● ● ● ● ● ● ● ● ● ●

6

8

10

0 10 20 30

Number of uninformative approximations

A
dv

an
ta

ge

●●

●●

LR advantage

X2 advantage

Good approximations: 4

M = M̃

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●
● ●

● ● ● ●
● ●

● ●

2

4

6

8

10

0 100 200 300 400 500

Number of uninformative approximations

A
dv

an
ta

ge

●●

●●

LR advantage

X2 advantage

Good approximations: 64

M = M̃

Figure 8: Distinguisher advantage as a function of uninformative approximations.
The top plot uses a set of 4 good approximations (N = 263.5), whereas
the bottom plot uses a set of 64 good approximations (N = 259.5). The
advantage of the χ2 distinguisher decreases as a function of the ratio of
bad approximations, whereas the likelihood distinguisher is stable.

proximations performs no better than on the M “good” approximations, as the M̃
approximations add no information. On the other hand, we would also hope that
adding these uninformative approximations does not have an adverse effect on our
distinguisher, that is, the distinguisher is stable. Note that for multidimensional
linear cryptanalysis, the previous work [18] shows that for a fixed capacity, the χ2

159

Publication 4 On Linear Correlation Distributions: More Instructive Examples

advantage is inversely proportional to M , while the LLR advantage is only inversely
proportional to log(M). However, the analysis made there assumed that the mul-
tidimensional probabilities were largely independent of the encryption key. In the
following, we investigate whether this result also holds when the key dependence is
taken into account.

5.1 Distinguisher Stability
As mentioned above, we will eliminate the variable of distribution shape by consid-
ering a joint correlation distribution which is close to normal. As demonstrated in
Section 3.1, this is true for present. As our set of good approximations, we choose
subsets of the approximations used in [12] to mount attacks on 26 and 27 rounds
of the cipher. This set consists of 135 linearly independent approximations. We
consider two subsets of these approximations, i.e. for M = 4 (Ck = 2−56.87) and
M = 64 (Ck = 2−54.18), over 21 rounds of the cipher. We then investigate how the
advantage behaves when we add uninformative approximations to these sets.
Advantage measurements are performed as in Section 3, i.e. we calculate the

threshold required for an 85% success probability using a training set, and then
calculate the advantage using a testing set, averaging the result over 100 repetitions.
For both sets of approximations we consider up to M̃ = 8 · M uninformative
approximations. The result is shown in Figure 8. Interestingly, we observe that the χ2

advantage declines quite rapidly when we increase the number of bad approximations.
Moreover, comparing the two plots, the rate of decline seems to roughly be a function
of the fraction of uninformative approximations. Thus, if M is relatively small even
a quite low number M̃ of bad approximations can have a drastic negative impact on
the advantage.
This observation is not so surprising in light of the discussion in Section 2.5;

when adding uninformative approximations to the distributions for E and Ẽ , the
distinguishing distributions change independently of each other, and the larger the
proportion of uninformative approximations get, the more they will resemble each
other. For the likelihood distinguisher however, the ratio used for distinguishing
stays constant, and so the distinguisher is unaffected, as can be seen in Figure 8.
Thus, if it is possible to obtain a good estimate for the likelihood probabilities, e.g.
when the correlation distributions are normal mixtures, this seems like a more robust
choice for the cryptanalyst.

6 Conclusions
In this work, we have taken a closer look at different types of correlation distributions
of multiple linear approximations, and our ability to distinguish these from the
correlation distribution of an ideal cipher. We considered two types of distinguishers,
the χ2 distinguisher and the likelihood distinguisher, and how well the ELPs of a
distribution can be used to predict the advantage of these distinguishers. Through-

160

REFERENCES

out, we have used the multivariate profiling model of [12] to estimate correlation
distributions.
We first considered correlation distributions which can be described using the

normal mixture model of [13]. We found that if the mixture has one component,
i.e. it is a multivariate normal distribution, the ELP values gives a good estimate
of advantage. However, we examined two examples where this is not the case: for
the cipher PRIDE, whose correlation distribution has more than one component, we
obtain a significantly larger advantage than expected from the ELP values alone due
to the shape of the distribution. On the other hand, for the block cipher GIFT, we
also observed multiple components, but the shape of the distribution is such that the
advantage is adversely affected.

Considering correlation distributions that do not fit in the mixture model, we find
that RECTANGLE exhibits distributions that are highly non-normal. As for GIFT,
this has the effect of decreasing the distinguisher advantage compared to a normal
distribution with the same expected capacity. We conclude that the cryptanalyst
should closely examine the shape of the correlations distributions instead of relying
on summary statistics in order to estimate distinguishing advantage.

Lastly, we observed that the two distinguishers behave differently if noisy approxi-
mations are added to the distinguishing set. In particular, the advantage of the χ2

distinguisher decreases when the ratio of “good” to “bad” approximations decreases,
but we found that the advantage of the more complex likelihood distinguisher is
stable in this regard. We therefore urge the cryptanalyst to be careful when using
the χ2 distinguisher.

References
[1] Mohamed Ahmed Abdelraheem, Martin Ågren, Peter Beelen, and Gregor

Leander. “On the Distribution of Linear Biases: Three Instructive Examples”.
In: Advances in Cryptology - CRYPTO 2012. 2012, pp. 50–67.

[2] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander,
Christof Paar, and Tolga Yalçin. “Block Ciphers - Focus on the Linear Layer
(feat. PRIDE)”. In: Advances in Cryptology, CRYPTO 2014. 2014, pp. 57–76.

[3] Ralph Ankele and Stefan Kölbl. “Mind the Gap - A Closer Look at the Security
of Block Ciphers against Differential Cryptanalysis”. In: Selected Areas in
Cryptography, SAC 2018. 2018.

[4] Thomas Baignères, Pascal Junod, and Serge Vaudenay. “How Far Can We Go
Beyond Linear Cryptanalysis?” In: Advances in Cryptology - ASIACRYPT
2004. 2004, pp. 432–450.

[5] Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang
Meng Sim, and Yosuke Todo. “GIFT: A Small Present - Towards Reaching the
Limit of Lightweight Encryption”. In: Cryptographic Hardware and Embedded
Systems, CHES 2017. 2017, pp. 321–345.

161

Publication 4 On Linear Correlation Distributions: More Instructive Examples

[6] Eli Biham and Adi Shamir. “Differential Cryptanalysis of DES-like Cryptosys-
tems”. In: Advances in Cryptology - CRYPTO ’90. 1990, pp. 2–21.

[7] Alex Biryukov, Christophe De Cannière, and Michaël Quisquater. “On Multiple
Linear Approximations”. In: Advances in Cryptology - CRYPTO 2004. 2004,
pp. 1–22.

[8] Céline Blondeau and Kaisa Nyberg. “Improved Parameter Estimates for Corre-
lation and Capacity Deviates in Linear Cryptanalysis”. In: IACR Transactions
on Symmetric Cryptology 2016.2 (2016), pp. 162–191.

[9] Céline Blondeau and Kaisa Nyberg. “Joint Data and key Distribution of
Simple, Multiple, and Multidimensional Linear Cryptanalysis Test Statistic
and its Impact to Data Complexity”. In: Designs, Codes and Cryptography
82.1-2 (2017), pp. 319–349.

[10] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
“PRESENT: An Ultra-Lightweight Block Cipher”. In: Cryptographic Hardware
and Embedded Systems, CHES 2007. 2007, pp. 450–466.

[11] Andrey Bogdanov and Elmar Tischhauser. “On the Wrong Key Randomisation
and Key Equivalence Hypotheses in Matsui’s Algorithm 2”. In: Fast Software
Encryption, FSE 2013. 2013, pp. 19–38.

[12] Andrey Bogdanov, Elmar Tischhauser, and Philip S. Vejre. “Multivariate Pro-
filing of Hulls for Linear Cryptanalysis”. In: IACR Transactions on Symmetric
Cryptology 2018.1 (2018), pp. 101–125.

[13] Andrey Bogdanov and Philip S. Vejre. “Linear Cryptanalysis of DES with
Asymmetries”. In: Advances in Cryptology - ASIACRYPT 2017. 2017, pp. 187–
216.

[14] Joo Yeon Cho, Miia Hermelin, and Kaisa Nyberg. “A New Technique for
Multidimensional Linear Cryptanalysis with Applications on Reduced Round
Serpent”. In: Information Security and Cryptology, ICISC 2008. 2008, pp. 383–
398.

[15] Joan Daemen and Vincent Rijmen. “Probability Distributions of Correlation
and Differentials in Block Ciphers”. In: Journal of Mathematical Cryptology
1.3 (2007), pp. 221–242.

[16] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002.

[17] Mathias Hall-Andersen and Philip S. Vejre. “Generating Graphs Packed with
Paths: Estimation of Linear Approximations and Differentials”. In: IACR
Transactions on Symmetric Cryptology 2018.3 (2018), pp. 265–289.

[18] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. “Multidimensional Extension
of Matsui’s Algorithm 2”. In: Fast Software Encryption, FSE 2009. 2009,
pp. 209–227.

162

REFERENCES

[19] Miia Hermelin, Joo Yeon Cho, and Kaisa Nyberg. “Multidimensional Linear
Cryptanalysis of Reduced Round Serpent”. In: Information Security and
Privacy, ACISP 2008. 2008, pp. 203–215.

[20] Jialin Huang, Serge Vaudenay, Xuejia Lai, and Kaisa Nyberg. “Capacity
and Data Complexity in Multidimensional Linear Attack”. In: Advances in
Cryptology - CRYPTO 2015. 2015, pp. 141–160.

[21] Virginie Lallemand and Shahram Rasoolzadeh. “Differential Cryptanalysis of
18-Round PRIDE”. In: Progress in Cryptology - INDOCRYPT 2017. 2017,
pp. 126–146.

[22] Mitsuru Matsui. “Linear Cryptanalysis Method for DES Cipher”. In: Advances
in Cryptology - EUROCRYPT ’93. 1993, pp. 386–397.

[23] Kaisa Nyberg. “Affine Linear Cryptanalysis”. In: Cryptography and Commu-
nications (2018), pp. 1–11.

[24] Kaisa Nyberg. “Statistical and Linear Independence of Binary Random Vari-
ables”. In: IACR Cryptology ePrint Archive 2017 (2017), p. 432.

[25] Ali Aydin Selçuk and Ali Biçak. “On Probability of Success in Linear and
Differential Cryptanalysis”. In: Security in Communication Networks, SCN
2002. 2002, pp. 174–185.

[26] Cihangir Tezcan, Galip Oral Okan, Asuman Senol, Erol Dogan, Furkan
Yücebas, and Nazife Baykal. “Differential Attacks on Lightweight Block
Ciphers PRESENT, PRIDE, and RECTANGLE Revisited”. In: Lightweight
Cryptography for Security and Privacy, LightSec 2016. 2016, pp. 18–32.

[27] Qianqian Yang, Lei Hu, Siwei Sun, Kexin Qiao, Ling Song, Jinyong Shan, and
Xiaoshuang Ma. “Improved Differential Analysis of Block Cipher PRIDE”. In:
Information Security Practice and Experience, ISPEC 2015. 2015, pp. 209–
219.

[28] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rijmen, Bohan Yang, and
Ingrid Verbauwhede. “RECTANGLE: A Bit-slice Lightweight Block Cipher
Suitable for Multiple Platforms”. In: SCIENCE CHINA Information Sciences
58.12 (2015), pp. 1–15.

[29] Jingyuan Zhao, Xiaoyun Wang, Meiqin Wang, and Xiaoyang Dong. “Differen-
tial Analysis on Block Cipher PRIDE”. In: IACR Cryptology ePrint Archive
2014 (2014), p. 525.

163

	Abstract
	Resumé
	Acknowledgements
	Contents
	Block Ciphers and Linear Cryptanalysis
	Introduction
	Block Ciphers and Their Cryptanalysis
	The Block Cipher
	Block Cipher Constructions
	Attacks on Block Ciphers

	Linear Cryptanalysis
	Fundamentals of Linear Cryptanalysis
	Linear Trails and the Linear Hull
	Linear Distinguishers and Key Recovery
	Using Multiple Approximations
	Multiple Linear Cryptanalysis
	Multidimensional Linear Cryptanalysis

	Other Extensions

	Contributions of Publications
	Bibliography

	Publications
	Linear Cryptanalysis of DES with Asymmetries
	Introduction
	Previous Work and Problems
	Our Contributions

	Linear Cryptanalysis of DES
	Basics of Linear Cryptanalysis
	Matsui's approach
	Biryukov et al. – Multiple Approximations

	Right-Key Correlation for DES: Key Inequivalence
	The Correlation Distribution of a Single Approximation
	Exploring the Signal Distribution of DES
	A New Mixture Model for Single and Multiple Approximations

	Wrong-Key Correlation for DES: Non-Random Behaviour
	The Current Ideal Wrong-Key Distribution
	A New Non-Random Wrong-Key Distribution

	Classifying Keys using Asymmetric Distributions
	The Bayesian Classifier of Biryukov et al.
	Our Likelihood Classifier
	Decision Boundaries
	Observations on the Asymmetric Distribution

	Improved Attack on DES
	Attack Description
	Attack Complexity
	Experimental Verification

	Multivariate Profiling of Hulls for Linear Cryptanalysis
	Introduction
	Preliminaries
	Linear Cryptanalysis
	Statistical Distinguishing
	PRESENT

	Survey of Previous Work
	Models Without Key Influence
	Models Incorporating the Key

	Limitations of Current Models
	Independence Assumptions
	Restricted Approximation Choices
	Parameter Estimation

	Multivariate Linear Cryptanalysis
	The Main Model: Arbitrary Right-Key Distribution
	The Practical Model: Signal/Noise Decomposition
	The Attack Model: Dealing with Undersampling

	Multivariate Linear Attacks on PRESENT
	Determining the Advantage
	Attacking 26 rounds
	Attacking 27 rounds

	40-bit Key-Schedule for SmallPresent
	Pair-Wise Independence of Linear Correlations

	Generating Graphs Packed with Paths
	Introduction
	Previous Work
	Contributions

	Preliminaries
	Linear Cryptanalysis
	Differential Cryptanalysis
	Finding Approximations and Differentials

	Trail Search Viewed as a Graph Problem
	A New Algorithm for Trail Search
	Choosing a Subgraph
	Finding Linear Hulls and Differentials

	Improvements
	Vertex Generation
	Graph Compression and Pattern Elimination
	Vertex Anchoring
	Parallelisation

	Searching for Linear Approximations and Differentials
	Results for ELP and EDP
	Visualising Trail Graphs

	Correlation Distributions
	Finding Key-Dependent Distributions
	Results

	Future Work

	On Linear Correlation Distributions: More Instructive Examples
	Introduction
	Linear Distinguishers
	Distinguishers in General
	Linear Distinguishers
	Correlation Distributions
	On ELP and Capacity
	The Chi-Squared and LLR Distinguishers

	Distinguishing Normal Mixtures
	The Normal Case: One Component
	Several Components: ELP Can Be Misleading
	Asymmetry Cannot Save You

	Distinguishing Non-Normal Distributions
	The Case of RECTANGLE

	Distinguishing with Uninformative Approximations
	Distinguisher Stability

	Conclusions

