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a b s t r a c t 

We investigate the trade-off between privacy and solution quality that occurs when a k - 

anonymized database is used as input to the bin-packing optimization problem. To in- 

vestigate the impact of the chosen anonymization method on this trade-off, we consider 

two recoding methods for k -anonymity: full-domain generalization and partition-based 

single-dimensional recoding. To deal with the uncertainty created by anonymization in the 

bin-packing problem, we utilize stochastic programming and robust optimization meth- 

ods. Our computational results show that the trade-off is strongly dependent on both the 

anonymization and optimization method. On the anonymization side, we see that using 

single dimensional recoding leads to significantly better solution quality than using full 

domain generalization. On the optimization side, we see that using stochastic program- 

ming, where we use the multiset of values in an equivalence class, considerably improves 

the solutions. While publishing these multisets makes the database more vulnerable to a 

table linkage attack, we argue that it is up to the data publisher to reason if such a loss of 

anonymization weighs up to the increase in optimization performance. 

© 2019 Published by Elsevier Inc. 
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1. Introduction 

In the last decades, many different methods have been proposed to preserve privacy in published databases. The two

most common frameworks are that of recoding the data through generalization and/or suppression, and that of adding

random noise to the data [28] . In both cases, the original data is published in a perturbed format to achieve anonymity.

Hence, maintaining the utility of the anonymized data for further processing is a challenge. 

Fields that already deal extensively with this challenge are those of data mining, machine learning, and statistics. In

[11] for instance, specialized algorithms have been developed that aim to minimize the effects of the perturbations on query

counts. Another example is [16] , where a privacy preserving transformation is proposed that maintains distances between

data rows. Typically, studies are limited to the effect of data perturbation on data mining measures such as frequency counts,

statistics, distances, and predictive accuracy. Surprisingly, the effect of data perturbation on subsequent decision making has
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been largely ignored in the current literature. In this paper, we fill this gap by presenting a first study on the effect that

data transformations for k -anonymity have on the decision quality of optimization problems. 

The topic of privacy preservation is by itself not new to the field of optimization, where different works have focused

on finding optimization methods that provide solutions which are privacy preserving, see, e.g., [23,43] . Our approach dif-

fers substantially from the path taken in these earlier works. Instead of assuming that the input data to the optimization

constitutes the true data and that we want to obtain a privacy preserving solution, we assume that the input data of the

optimization problem already satisfies a formal privacy criterion. The challenge in optimization is then to deal with the

uncertainty about the true input data that is created by the anonymization. This setting of using privacy preserving data as

input to optimization offers interesting challenges for both optimization and data publishing parties. 

We study the effect of data perturbation on an optimization problem that is commonly encountered in operations re-

search: bin-packing. This problem for example models loading containers onto the different available transport modes such

as ships, rail, or trucks. Crucial in such cargo-loading problems is that no transport vehicle should be overloaded (the bin

size). A container’s weight is thus very important information for minimizing the number of required vehicles. However, it

is also a very identifying attribute for attackers that seek to find a specific container. Hence, this example illustrates the

privacy-utility trade-off between the anonymity of the data and the use of the data in optimization that we investigate in

this paper. 

The introduced data perturbations correspond to the familiar case of data uncertainty in optimization, for which many

specialized frameworks exist. Prime examples are the multitude of robust [5] and stochastic [10] optimization methods,

which often rely on the implementation of chance constraints that limit the probability of obtaining an infeasible solution.

An interesting new perspective when considering data anonymization is that the level of data uncertainty is strongly influ-

enced by the chosen method of anonymization and the corresponding output statistic that is provided with the anonymiza-

tion. We show how this knowledge can be utilized by stochastic and robust optimization methods in order to significantly

increase the solution quality. 

The contributions of our work are twofold. First of all, we study the extend to which the chosen method of recod-

ing for k -anonymity affects the solution quality when this k -anonymized database is used as input to a bin-packing opti-

mization model. Second, we show how the chosen optimization method affects the final solution quality when handling

k -anonymized input data and propose two novel optimization methods for this setting. Although we study only one opti-

mization problem, and only a single anonymization framework, our study brings to light several important observations: 

• We show that the chosen method of recoding in case of k -anonymity has a significant effect on solution quality, moti-

vating the choice for (near-)exact methods to achieve privacy preservation. 

• We show that the main challenge in the use of k -anonymized datasets in an optimization settings lies in achieving

feasibility, where the penalty to the solution quality to achieve feasibility is substantial. 

• We show that a novel anonymization-aware stochastic optimization method, that uses the exact multiset of perturbed

values over the aggregation ranges to reduce the effect of data uncertainty, is better able to balance feasibility with the

obtained objective value. 

With our work, we hope to open up a new line of research investigating this trade-off between optimization and

anonymization and the development of advanced methods for combining anonymization and optimization. Using the cur-

rent state-of-the-art methods, it is very hard to reach acceptable levels of privacy preservation and optimization performance

simultaneously when using k -anonymity as a privacy criterion. 

2. Literature review 

Our work on the use of anonymized data in optimization is strongly influenced by the advances of other researchers

that have worked on integrating privacy preservation in the field of data mining. The idea of privacy-preserving data mining

was introduced by Agarwal and Srikant [1] and Lindell and Pinkas [39] . In their work, the aim is to extract information

from users’ private data without having to reveal individual data items. Since then, a large number of privacy protection

mechanisms have been proposed in [12,17,29,30,45,46] . These works can generally be divided into two categories: the ones

using cryptographic tools [2,3,9,12,17,20,29,30,34,50] and the ones using perturbation based techniques [45,46] . 

The works using cryptographic tools mostly have a multi-party communication setting, either using secret sharing

[29,30,39] or homomorphic encryption [2,3,9,17,20,50] to preserve privacy. While such methods achieve solutions of sim- 

ilar utility to those in the non-private setting, they do so at the cost of increased computation time. In particular, such

methods generally operate on ciphertexts of 2048 bits opposed to the typical values of 32 or 64 bits considered in non-

private applications [35] . It is thus not straightforward to use these methods efficiently. This already holds for simple greedy

algorithms such as the K-means clustering algorithm and it will thus be very challenging if not impossible to apply them

for solving the typically NP-hard problems considered in optimization. We are aware of preliminary work on using such

methods for optimization, where [14] develop such methods for solving simple linear inequalities using an adapted simplex

algorithm, but the sizes of problems these methods can handle are still very small. 

The perturbation based privacy mechanisms are mostly based on the idea of transforming the data (e.g. by generalization)

or on adding a random perturbation to the data. Opposed to the cryptographic tools, these methods do lead to a loss of

utility of the found solution when compared to the non-private setting, as any subsequent algorithms will only be able to
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use the perturbed data. However, they do generally allow for fast solution algorithms which are close to the algorithms

used in the non-privacy preserving setting, explaining the widespread use of these methods in practice. As a result, a wide

variety of such methods have been developed to output a privacy preserving database, including the popular methods of

k -anonymity [48,52] and differential privacy [19] . 

Considering the loss of utility that is implied by such methods, numerous papers have focused on finding anonymization

and data mining methods that minimize this utility loss [11,16,45,46] . The randomization approach taken by Oliviera and

Zaiane [45,46] is very related to our study in the sense that they care about the performance of (clustering) algorithms after

the data has been anonymized. Using geometric data transformations they obfuscate the data in such a manner that the

distances between the individual data items remain intact, ensuring it is still useful for analysis using distance-based data

mining methods. Similarly, we study when data anonymization results in data sets that are still useful for optimization. 

Most recently, some work has been done on incorporating differential privacy into distributed allocation problems, where

the focus is on how to randomly perturb coordination signals, in order to avoid revealing private information of the users

[24–27] . In [27] , the authors assume the private user information is encoded in its cost functions and study the problem

of differentially private distributed convex optimization. In [25,26] , the authors assume that the private user information is

encoded in the individual constraints. For example, Hsu et al. [26] investigate how to hide the presence or absence of a

single constraint in linear programs. Different from these existing work where only partial data are privacy preserved, our

work assumes all inputs to the optimization problem are anonymized. Moreover, a different privacy preserving method, i.e.,

k -anonymity, is studied in this paper. 

To solve the bin-packing problem with anonymized weights, we make use of techniques from stochastic programming

[10] and robust optimization [5,6] . These methods take into account uncertainty in optimization problems based on respec-

tively a probability distribution on the uncertainty and an uncertainty set. We show that we can choose the information

that remains after anonymization in such a way that we are able to derive such distributions and sets. Alternatively to these

mathematical programming techniques, one might use heuristic solution methods such as simulated annealing [31] , sam-

pling [42] , and Monte Carlo based techniques [22] . However, it is non-trivial to effectively deal with this knowledge about

the uncertainty using these heuristics. It could be an interesting topic for future work. 

To the best knowledge of the authors, this is the first paper to consider the effect of applying k -anonymity to the input

data of a combinatorial optimization problem. In this way, this paper aims to quantify the effect of k -anonymity preserv-

ing data transformations on solution quality and suggests novel optimization methods to limit the effect that these data

transformations have on the final solution quality. 

3. Problem formulation 

In this section, we introduce the bin-packing optimization problem and the concept of k -anonymity. Moreover, we in-

troduce the general framework that we consider for achieving anonymity and for optimizing the bin-packing problem with

anonymized data. 

3.1. Bin-packing 

In the bin-packing optimization problem, we need to find an allocation of n items over n bins such that the minimum

number of bins is used. Here, each item j ∈ N has weight w j and each bin i ∈ N has capacity c , where N = { 1 , . . . , n } . If we

introduce the decision variables 

y i = 

{
1 if bin i is used , 

0 otherwise , 
(1)

x i, j = 

{
1 if item j is packed into bin i , 
0 otherwise , 

(2)

the formulation of the bin-packing problem as proposed by [41] is given by 

min 

∑ 

i ∈ N 
y i (3)

s.t. 
∑ 

j∈ N 
w j x i, j ≤ cy i ∀ i ∈ N, (4)

∑ 

i ∈ N 
x i, j = 1 ∀ j ∈ N, (5)

y i , x i, j ∈ { 0 , 1 } ∀ i, j ∈ N. (6)
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Table 1 

An example of a possible dataset with the 

item weights as sole quasi-identifier. 

id 1 2 3 4 5 

w j 81 81 83 87 88 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The objective (3) is to minimize the number of used bins. Constraints (4) ensure that the capacity of each bin is respected,

where items can only be placed in a bin if it is used. Constraints (5) ensure that each item is placed in a bin. Constraints

(6) ensure that the decision variables are binary. To improve this formulation, which tends to perform relatively poor due

to symmetry considerations, we add the valid inequalities and symmetry-breaking constraints as suggested by [18] . It will

be this joint model that we will refer to as the bin-packing optimization model. 

3.2. Anonymization 

Optimization methods often operate on datasets that contain privacy-sensitive information. The input data may, for ex-

ample, consist of medical data, where some of the variables provide information that may lead to the identification of

individuals in the data. More generally, let us assume that the data is given by a table of rows and columns, where the rows

represent the data entries and the columns (i.e., attributes) the different variables of interest in the table. The table can

then be represented as T (A 1 , A 2 , . . . , A m 

) , where A i denotes the i th attribute. In privacy-preserving data publishing one of-

ten separates these attributes into sensitive attributes and quasi-identifiers [21] . The sensitive attribute defines the sensitive

information in the dataset, while quasi-identifiers may be used to identify the individual to whom the sensitive attribute

belongs. 

In our application, we will assume that the bin weights are a quasi-identifier and may be used to identify the item they

belong to. This is, for example, an issue in ports, where the weight of a certain container may be important information

for smugglers to identify the location and means of transport of a container. Another application is present in hospitals,

where for example the duration of an operation may lead to the identification of the individual that is operated. A small

example of how our input data looks like is given by the dataset in Table 1 , which contains the item weights as the sole

quasi-identifier and an additional id that represents the sensitive attribute. 

A crucial step for the data publisher in privately publishing a database is to pick a privacy criterion that should reflect

on the sensitivity and further use of the data. As achieving an absolute definition of privacy, which protects in all cases, is

impossible in the presence of background information on behalf of the adversary [19] , the field of Privacy Preserving Data

Publishing (PPDP) has focused on finding privacy criteria for situations where the adversary has only limited background

information. In this setting, one can then identify possible attacks that an adversary could employ to compromise privacy

in a published database. 

Determining the exact type of attack to focus on for operations research problems is difficult, as the relevant type of

attack depends on the privacy implications of the used data. For this reason, we will focus in this paper on one type of

attack that has been given significant attention in the PPDP literature: the linkage attack. This type of attack refers to the

situation in which an adversary is able to link an individual to either a certain entry in the table, a given attribute of

the table or even to the table as a whole [21] . A privacy measure that has been linked to this type of attack is that of

k -anonymity: 

Definition 1 ( k -Anonymity [40] ) . A table satisfies k -anonymity if every record in the table is indistinguishable from at least

k − 1 other records with respect to every set of quasi-identifier attributes. 

One can achieve k -anonymity in a database through various ways of recoding the data, where the two most common

techniques are that of generalization and suppression [4,32] . Here, generalization refers to making the given entry more

general, while suppression accounts to replacing the entry by a predefined suppressing token. Clearly, the exact way in

which this anonymization is performed impacts the performance of the complete optimization process, as it determines

the information available to the optimization process. In this paper we will investigate optimization performance under

two common recoding methods used for achieving k -anonymity to test the dependence of the final solution quality on the

chosen privacy preservation method. 

3.3. The framework 

The framework that we have proposed in this section is illustrated in Fig. 1 . The first step in the process is for the data

publishing party to anonymize the data. In this paper, we assume that the publishing party uses k -anonymity as a privacy

concept. The resulting anonymized database is then made available by the data publishing party. 

This published database, which thus adheres to k -anonymity, now acts as input to the bin-packing optimization problem.

Hence, the optimizer has to deal with the uncertainty that is created regarding the true inputs for the bin-packing problem.

The result of the optimization procedure is a solution to the bin-packing problem. Considering that the input to the bin-
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Fig. 1. Schematic overview of the proposed framework. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

packing problem was anonymized, this solution to the problem does not leak any privacy sensitive information as well. The

solution can then be published by the optimizer or implemented in some business process. 

The aim in this paper is to perform anonymization and optimization in such a way that the quality of the solution is as

good as possible. In particular, this implies that we try to find a solution that is in quality as close as possible to the optimal

solution that would be obtained in case no anonymization is applied. For this reason, we will investigate in the next two

sections how to perform the anonymization of the data and how to perform the optimization of the bin-packing problem

in such a way that the loss of solution quality due to anonymization is as small as possible. 

4. Recoding methods for k -anonymity 

As finding an optimal k -anonymous generalization is, in general, an NP-hard problem [36,44] , different methodologies

and algorithms have been developed to perform the recoding. A general distinction to be made is between global and local

recoding. A global recoding is a recoding in which equal data values are mapped to identical generalizations. Local recoding

relaxes this condition. As global recoding has been developed considerably more than local recoding, we will focus on global

recoding methods in this paper. 

For our further analysis, we adopt the domain generalization relation < D as proposed by [37] . Here, a domain relates

to the possible values that can be taken for a certain attribute. Now, D i ≤ D D j implies that the domain D i is identical or

generalized by D j . A many-to-one value generation function γ : D i → D j is thus associated to each domain generalization,

where one domain generalizes many other domains. Extending this, we can define a domain generalization hierarchy to be

a set of domains that is totally ordered by the relation < D . These generalizations can be represented by nodes and edges.

Here an edge implies a direct generalization as given by γ , whereas a path gives an implied generalization as denoted by

γ + . If we then construct the tree implied by the functions γ , we obtain a value generalization hierarchy, for which an

example is shown in Fig. 2 . We will now distinguish between the global recoding techniques of full-domain generalization

and partition-based single-dimensional recoding. 

4.1. Full-domain generalization 

The most often used technique of global recoding is that of full-domain generalization [49] . The main idea behind this

method is that the level of generalization is determined at the attribute level, implying that all values belonging to an

attribute are generalized to an equivalent level in the value generalization hierarchy. More formally, if we let D A i 
indicate

the domain of attribute A i : 

Definition 2 (Full-domain generalization [37] ) . Let T (A 1 , . . . , A m 

) be a table with quasi-identifier attributes Q 1 , . . . , Q r . A full-

domain generalization is defined by a set of functions φ1 , . . . , φr , each of the form φi : D Q i 
→ D B i 

, where D Q i 
≤D D B i 

. φi maps

each value q ∈ D Q i 
to some b ∈ D B i 

, such that b = q or b ∈ γ + (q ) . A full-domain generalization V of T is obtained by replacing

the value q of attribute in Q i in each entry of T with the value φi ( q ). 

An important reason for the popularity of full-domain generalization lies in the reduction of search space it implies, as

the level of generalization is decided at the attribute level instead of at the value level. This comes at the cost of generalizing

values further than strictly necessary to obtain k -anonymity, meaning a loss of precision and increased data uncertainty in

optimization. 
Fig. 2. Possible value generalization hierarchy for the weights in Table 1 . 
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To investigate the effect of this loss of precision on the final solution quality of the optimization we will consider the

Flash implementation of full-domain generalization as suggested by [33] as one of our anonymization methods. To guide

the search over the search lattice constructed by this method, we make use of a variant of the loss metric as suggested by

[28] for the case of numeric data. This metric provides a good candidate for optimization as it minimizes the total spread

in the data and is thus likely to reduce the uncertainty in the data. Here we define the set of equivalence classes E , where

an equivalence class consists of all data entries that have become generalized to the same generalization. Let the interval to

which the values in this equivalence class with respect to attribute i are generalized be given by L e 
i 

and U 

e 
i 

and let L i and U i 

indicate respectively the largest and smallest value in the domain of Q i . The metric is then given by 

C LM 

= 

r ∑ 

i =1 

βi 

( ∑ 

∀ e ∈ E: | e |≥k 

| e | U 

e 
i 

− L e 
i 

U i − L i 
+ α

∑ 

∀ e ∈ E: | e | <k 

| e | 
) 

. (7) 

The first inner sum represents the sum of (standardized) costs for values that are generalized, while the second inner sum

gives the cost of values that are suppressed instead. The scaling constant α allows to change the degree of suppression. 

4.2. Partition-based single-dimensional recoding 

The second type of recoding we consider is that of partition-based single-dimensional recoding, where the assumption

of equal equivalence levels is relaxed and where, instead of assuming a value generalization hierarchy, we assume that the

interval can be partitioned into a set of disjoint intervals: 

Definition 3 (Single-dimensional partitioning [38] ) . Let T (A 1 , . . . , A m 

) be a table with quasi-identifier attributes Q 1 , . . . , Q r .

Assume the domain of each quasi-identifier Q i can be represented by a totally ordered set. Let φi map D Q i 
→ Z, such that Z is

a set of disjoint intervals that cover D Q i 
. Then if we map every q ∈ D Q i 

to φi ( q ) this defines a single-dimensional partitioning.

The aim is thus to find some partitioning (I 1 , I 2 , . . . , I o ) such that these domains cover D Q i 
, fulfill k -anonymity and where

this partitioning gives us the highest information utility possible. The algorithm we employ is that of K-Optimize [4] , which

according to [21] is one of the few algorithms that can perform single-dimensional partitioning effectively. K-Optimize first

formulates a set representation of anonymizations, where every element in the set indicates the start of a new interval. The

empty set is thus the most general anonymization, while if we let v l i indicate the smallest value in D Q i 
, �all = 

⋃ r 
i =1 (D Q i 

\ v l i )
represents the most specific generalization. This follows due to the fact that the smallest value in a domain always indicates

the start of a new interval. 

Example 1. With respect to the weights considered in Table 1 , the set {83, 87} represents an anonymization where we split

the domain D Q i 
into the intervals [81,83),[83,87),[87,88]. 

Considering this set representation, the problem reduces to a search through the power set of �all . To solve this problem

the authors suggest a specialized version of the OPUS framework [54] , which is a branch-and-bound framework for un-

ordered search. To measure the quality of an anonymization we again use the loss metric as proposed in Eq. (7) . In addition

we need a lower bounding function for the loss metric, which gives a lower bound for the cost in any sub-tree of a node in

the search tree. We use the lower bounding function 

LB LM 

= 

∑ 

∀ t∈ T 

⎧ ⎨ 

⎩ 

∑ r 
i =1 βi α if H suppresses t ∑ r 
i =1 βi 

(
U 

a t 
i 

− L a t 
i 

U i − L i 

)
otherwise , 

(8) 

where H is the generalization at the current node and U 

a t 
i 

and L 
a t 
i 

are respectively the lower and upper bound for the equiv-

alence class in which the value t lies with respect to the generalization implied by the �all of the current node. The upper

case in the lower bounding function corresponds to the case where t is already suppressed in the current generalization.

Clearly, this implies that t will be suppressed for the whole branch, resulting in the first sum as lower bound for this value t .

The second case applies if entry t is not yet suppressed, meaning that the width of the equivalence class is always bounded

from below by the most specific anonymization in this branch of the tree, that implied by the current �all . 

5. Optimization methods for privacy preserved input data 

In this section, we study how we pack items of different weights into bins such that the number of used bins is min-

imized while the weight capacity of each bin is not violated by the packed items. Recall that, different from the standard

bin-packing problem, here the weights of items are anonymized, i.e., they are the query results from the privacy-preservation

methods described in Section 4 . One straightforward optimization method is to directly consider the anonymized data as an

input to the bin-packing problem, meaning that we for example directly use the lower bounds produced by generalization.

However, this method suffers from the following two issues: (1) the solution quality, i.e., the number of used bins, can be

largely overestimated or underestimated; and even more seriously, (2) the solutions can be infeasible because the weight

capacity constraint of bins could be violated. These two issues are caused by the fact that this straightforward method

disregards the data uncertainty, which is caused by the generalization and suppression of values in the anonymization. 
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One popular method in the operations research literature to handle such data uncertainty is that of robust optimization

[7] , for which the basic idea is to make sure that a solution is feasible for every choice of weight w ∈ U . Here U denotes the

uncertainty set for the weights. Then the problem 

min 

x,y 

{ ∑ 

i ∈ N 
y i : 

∑ 

j∈ N 
w j x i, j ≤ cy i ∀ i ∈ N, w ∈ U , 

∑ 

i ∈ N 
x i, j = 1 ∀ j ∈ N, x i, j , y i ∈ { 0 , 1 } ∀ i, j ∈ N 

} 

(9)

is known as the robust counterpart of the bin-packing problem. However, it can easily be seen that this robust counterpart

in case of k -anonymization methods, with column-wise uncertainty, simply corresponds to the case of using the upper

bounds of the intervals as output statistic f ( T ) from the generalization. In that case, the found solution will be feasible for

any realization for the true weights. 

Although this robust counterpart approach ensures feasible solutions to the bin-packing problem, it comes at a great cost

to the solution quality. One possible solution to overcoming the conservatism of the robust optimization approach is to only

enforce feasibility in a certain percentage of the cases. This approach corresponds to that of using chance constraints [15] ,

where we want all constraints to be jointly satisfied with some probability 1 − δ for δ ∈ [0, 1]. To simplify further analysis,

let us parameterize the uncertainty as in [5] . Here assume a vector of nominal weights w 

0 and basic unit shifts w 

l and let

ζ be a perturbation vector taking realizations from distribution P . Then the true weights are given by 

w = w 

0 + 

n ∑ 

l=1 

ζl w 

l , ζ ∼ P, (10)

after which we consider the joint chance constraint 

P rob ζ∼P 

[ 

ζ : [ w 

0 ] T x i + 

n ∑ 

l=1 

ζl [ w 

l ] T x i ≤ cy i ∀ i ∈ N 

] 

≥ 1 − δ (11)

for the set of capacity constraints in Eq. (4) . Here, x i = [ x i, 1 , . . . , x i,n ] 
T corresponds to the vector of packing decisions for bin

i . We now propose two ways to solve the bin-packing problem involving the joint chance constraint ( Eq. (11) ). 

5.1. Anonymization-aware stochastic programming 

An intuitive way to solve a problem involving the joint chance constraint ( Eq. (11) ) is through considering the support

of the distribution of P , which we call 	. In our setting we know that this support is discrete, as k -anonymity provides

a discrete amount of different generalizations. Let E again indicate the set of equivalence classes and assume | E| = q . Let

additionally the set of all permutations of the equivalence class e i ∈ E be given by Perm e i . Then every realization of P is

some p ∈ Z = Perm e 1 × . . . × Perm e q . 

Example 2. Consider the last four weights of Table 1 and the case in which two values are generalized to the interval

[80,85] and two to the interval [86,90]. In this case 	 consists of the Cartesian product {{81, 83}, {83, 81}} × {{87, 88}, {88,

87}}. 

In order to establish 	 we need for every equivalence class the values contained in it, more specifically, we need all

underlying weights of the database. One may wonder whether it leads to a breach of k -anonymity. Although it clearly leaks

more information to an adversary than only the upper bound on an interval, all values in an equivalence class are still

generalized to the same generalization. This makes that each entry is still indistinguishable from at least k − 1 other entries.

Hence, the criterion of k -anonymity is still satisfied. However, the extra information that is provided may make one liable

to other type of attacks, making that a trade-off is applicable between privacy and optimization quality. This trade-off is

studied further in Section 6.5 . 

We can now transform the uncertain problem with chance constraints to a deterministic model [53] . Considering that

our distribution P is discrete, it can be represented by some finite support 	. Let ω ∈ 	 indicate a realization from this

support, let p ω be the probability of this realization occurring, w j, ω be the associated weight for item j corresponding to

realization ω and M be a sufficiently large number. Then we can solve our bin-packing problem with k -anonymized weights

by solving the deterministic problem: 

min 

∑ 

i ∈ N 
y i (12)

s.t. 
∑ 

j∈ N 
w j,ω x i, j − Mz ω ≤ cy i ∀ i ∈ N, ω ∈ 	 (13)

∑ 

i ∈ N 
x i, j = 1 ∀ j ∈ N (14)
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∑ 

ω∈ 	
p ω z ω ≤ δ (15) 

y i , x i, j , z ω ∈ { 0 , 1 } ∀ i, j ∈ N, ω ∈ 	. (16) 

In this formulation we allow by introducing the binary variables z ω in the constraints (13) that the capacity may be

violated in the cases where z ω = 1 . Then we enforce in the knapsack constraint (15) that this does not happen more often

than with probability δ, such that the joint chance constraint is satisfied. Note that in general considering the whole support

	 is computationally infeasible even in the case of finite support, since many permutations are possible. 

Example 3. Consider a case with only 25 weights, where we enforce 5-anonymity. Then we have 5 equivalence classes with

5 weights in the best case, which already corresponds to (5!) 5 ≈ 2.5 ∗10 10 different realizations. 

Considering this computational difficulty in using the complete support, we use sampling to create a subset 	s of 	

using s realizations, as suggested by [13] . Then we solve the sample average approximation of the optimization problem

(12) –(16) with 	 replaced by 	s . The level of s is dependent on the level of confidence we want. Following [13] , we specify

δ not too small a priori, after which we can determine through the means of Monte-Carlo techniques the constraint violation

a-posteriori more exactly. 

5.2. Robust optimization 

A major disadvantage of the stochastic programming based solution is that it often results in large optimization problems.

Hence, we use a robust counterpart approach that has been suggested to handle chance constraints in [5] , which instead

uses probability bounds. Here we relax the assumption that ζ ∼ P and instead assume that P belongs to some family of

functions P . We apply the Bonferonni inequality to replace the relatively difficult joint chance constraints to n relatively

easier individual chance constraints. This brings us to the ambiguous chance constraints: 

P rob ζ∼P 

[ 

ζ : [ w 

0 ] T x i + 

n ∑ 

l=1 

ζl [ w 

l ] T x i > cy i 

] 

≤ δ

n 

∀ i ∈ N (17) 

The exact assumptions made on P determine the robust approximations of these chance constraints. 

To reduce computational complexity, we assume that our region of uncertainty is bounded with the mean in the middle

of the interval. As we are mostly interested in the upper bounds of some interval [ l, u ], we can consider our interval to be

[ μ − (u − μ) , μ + (u − μ)] . We additionally assume that: 

E[ ζl ] = 0 , l = 1 , . . . , n & | ζl | ≤ 1 , l = 1 , . . . , n & { ζl } n l=1 are independent (18) 

While the last assumption of independence is clearly not realistic it allows for a more simple robust counterpart analysis

in our case where describing covariances is difficult analytically. An important implication of this will be that later results

will not tend to hold exactly and hence will only act as approximate bounds. However, as suggested before, one can always

apply Monte-Carlo simulations to determine more exactly the feasibility afterwards. 

In this paper, we consider a budget of uncertainty [5,8] to reduce computational complexity. This gives us the set of

perturbations 

Z = 

{ 

ζ ∈ R 

n : −1 ≤ ζl ≤ 1 , l = 1 , . . . , n, 

n ∑ 

l=1 

| ζl | ≤ γ

} 

, (19) 

giving for the individual chance constraints the robust counterpart 

n ∑ 

l=1 

| z i,l | + γ max 
l 

| q i,l | + [ w 

0 ] T x i ≤ cy i ∀ i ∈ N, (20) 

z i,l + q i,l = −[ w 

l ] T x i ∀ i ∈ N, l ∈ N, (21) 

which can easily be transformed into a linear system. The γ in this case acts as a budget of uncertainty and to enforce the

chance constraints we should take γ = 

√ 

−2 n log 
(

δ
n 

)
. 

6. Experimental evaluation 

In the last two sections, different methodologies were presented for both the phase of privacy preservation and opti-

mization. We presented theoretical arguments to support the use of these methods in our setting of combining privacy

preservation and optimization. The aim of this section is to evaluate these methods empirically. 
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Table 2 

Experimental setup in terms of bin-packing input data. 

setting c l u n distribution 

I: 25Item/LWeight/Eq 500 0.25 0.75 25 100%: U(125,375) 

II: 50Item/LWeight/Eq 500 0.25 0.75 50 100%: U(125,375) 

III: 25Item/SWeight/Eq 2500 0.05 0.15 25 100%: U(125,375) 

IV: 50Item/SWeight/Eq 2500 0.05 0.15 50 100%: U(125,375) 

V: 25Item/LWeight/UnEq 500 0.25 0.75 25 75%: U (125, 250); 25%: U (250, 375) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1. Performance measures 

As our final aim is to find anonymization and optimization methodologies that perform well in terms of the found

solutions from the optimization, it is natural to use solution quality as a direct measure for evaluating the performance of a

suggested methodology. Note here that, due to the uncertainty that is added during privacy preservation, the solutions are

likely to deviate from the true results. Hence the first two performance measures are: 

1. The performance ratio o 
o n 

, where o = 

∑ 

i ∈ N y i is the found objective value and o n is the objective value without consider-

ing privacy preservation (i.e., actual weight values are used in the bin-packing problem). 

2. The feasibility f of the found solution with regard to satisfying the constraints (4) –(6) for the true weights w j . 

Note that the found objective value o is merely the number of used bins as the outcome of solving the bin-packing

problem with anonymized weights, while o n is the number of bins used in case the true weights are used. Moroever, note

that in case of k -anonymity, solutions are by construction not unique. Due to generalization, all values in some equivalence

class e ∈ E are mapped to the same summary statistic, which implies that the weights w j for items in the same equivalence

class are the same. Items in the same class can thus always be interchanged in the optimal solution, meaning that every

element z ∈ Z = Perm e 1 × . . . × Perm e q is an optimal solution to the considered problem. Let f ( z ) indicate if z is feasible given

the constraints and the true weights. Then we define the feasibility f k to be the proportion: f k = 

∑ 

z∈ Z f (z) 

| Z| . As Z is in general

too large to be explicitly enumerated, we instead use sampling to compute f k . 

Besides solution quality, we require that the methods are able to provide solutions in reasonable time. We thus addition-

ally consider the metrics: 

3. The time needed for anonymization t a . 

4. The solving time of the optimization problem t o . 

6.2. The experimental settings 

We investigate the performance of our methodologies in varying bin-packing settings. There are essentially two important

properties of bin-packing problem instances that are likely to influence the solution quality. The first is the distribution of

the weights over the bin capacity. As all item weights should be smaller than the bin-capacity and be positive, we assume

a distribution with finite support [ lc, uc ], where l and u are respectively the lower and upper proportion of the bin capacity

c that the weights may take. We consider two options for l and u . One takes into account relatively large weights compared

to the bin capacity, which is applied in setting I, II and V. The second corresponds to relatively small weights, which is used

in setting III and IV. We furthermore use an uniform distribution over [ lc, uc ] for settings I–IV. To additionally research the

effects of skewness in the input data we investigate the case in which 75% of the weights lies in [ lc, l+ u 2 c] and 25% of the

weights in [ l+ u 2 c, uc] , where in these intervals the weights are again uniformly distributed. This corresponds to setting V. 

A second important property is the spread (average distances) of the weights. Different spreads for the same distributions

are achieved through distinguishing different sizes of the instances, i.e., number of items n = 25 and n = 50 . Thus, we have

a larger spread in case of settings I, III, and V with a small number of items n = 25 , whereas a smaller spread in settings II

and IV with n = 50 . The five experimental settings are summarized in Table 2 . In order to obtain reliable results over these

different settings, 10 different instances are considered for each experimental setting. 

Lastly, we describe the computational environment. We implemented the K-Optimize privacy methods in Java, and used

the ARX package [47] to implement the Flash algorithm. We use CPLEX 12.6.1 to solve the optimization models. A time limit

of 10 min was granted to the solver, after which 2 min of solution polishing was applied if the best solution has not been

proven optimal. All the experiments were run on the Lisa Supercomputer [51] . 

6.3. The performance of the suggested privacy preservation methods 

We first investigate the impact of different anonymization methods on the solution quality of the optimization problem.

We use the standard model of optimization for the bin-packing problem (see Eq. (3) –(6) ). Two different output statistics

are provided as output of the anonymization and as input to the bin-packing problem: mean and upper bound. In case of

the mean summary statistic, we use �t ∈ e w t /| e | as input for w j for j ∈ e . In the case of the upper bound summary statistic
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Fig. 3. Performance of two k -anonymity methods (Flash and K-Optimize) with upper bound and mean as input to the standard bin-packing optimization 

model. The x-axis shows increasing levels of k -anonymity, with varying k from 2 to 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

we use U e . We expect the mean statistic to give a good estimate of the true objective value, whereas the upper bound will

ensure full feasibility of the solution. 

Fig. 3 shows the experimental results. The objective values obtained by using the true weights are equal to 13.5, 27.8, 3,

5.5 and 12.2 for settings I to V respectively and these values are thus used to determine the objective ratios. The level of

k to achieve k -anonymity is varied from 2 to 10, with steps of size 1. Comparing the different summary statistics used, we

observe that using mean values ( Fig. 3 (b)) in general leads to better objective values than using upper bounds ( Fig. 3 (a)),

at a cost of lower feasibility. As using upper bound statistics always ensures feasibility of the solutions, we exclude the

feasibility measure for upper bounds from Fig. 3 . 

One might expect the mean summary statistics to result in reasonable estimate of the true objective value, however,

we see that in most settings the mean summary statistic (in Fig. 3 (b)) results in objective values that are greater than the

value of the optimal solution without anonymized weights. Especially in setting I, the differences are considerable. This

over-estimation is due to the fact that packing items with equal values (the summary statistics) into bins is more difficult

than the case of varying weights (the actual weights), in which items may more easily fit in empty spots left. The only

exception seems to be the case of setting III in Fig. 3 (b). This can be explained by the fact that c / μ is equal to 2.5, leaving

on average some spare capacity in the last bin which acts as a buffer for deviations due to data uncertainty. 

In terms of the returned objective value, we notice that the Flash algorithm, which enforces full-domain generalization,

performs worse than the K-Optimize algorithm in all settings (see Fig. 3 (a) and (b)). This is expected as Flash typically

generalizes values further than K-Optimize. In terms of feasibility ( Fig. 3 (c)), Flash outperforms K-Optimize in the settings

with large weights (i.e., settings I, II, V), but with a large increase in objective value ( Fig. 3 (b)). 

Interestingly, the performance of the anonymization methods is dependent on the problem instance at hand and the

level of privacy preservation. It is not surprising that a higher k value leads to a worse performance ratio for both Flash and

K-Optimize algorithms. Nevertheless, K-Optimize performs well in most settings, especially when using the mean statistic.

The solution quality obtained using the Flash anonymization with the upper bound statistic is much worse in settings I,

II and V (with relatively large weights) than in settings III and IV (with relatively small weights). In particular, when k is

larger than 7 and 4 in settings I and V, respectively, the Flash algorithm uses all available bins. This may be explained by

the fact that in bin-packing problem instances items can only be combined in a bin when their weight is smaller than half

the bin-capacity threshold. But in settings with relatively large and only few weights (such as settings I and V in Fig. 3 (a))
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Fig. 4. Solution quality and solving time for normal, robust and stochastic optimization and the K-Optimize algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a large k may imply that all upper bounds for the equivalence classes become larger than this threshold. In such cases, the

combination of items becomes impossible, leading to a situation in which all bins are used. 

6.4. The performance of the suggested optimization methods 

Let us now move to an evaluation of the suggested optimization methods. We consider the methods of robust optimiza-

tion and stochastic programming. Additionally, we include the upper bound as a benchmark for the suggested methods.

We do not consider all methods for achieving k -anonymization, but only use K-Optimize, which has overall shown the best

performance in the last section. Furthermore, we enforce that all constraints are satisfied with a probability of 95% in re-

spectively stochastic optimization and robust optimization, corresponding to a value of δ = 0 . 05 in the formulation (12) –(16)

and in Eq. (11) . Furthermore, we use s = 100 samples in stochastic optimization. 

The results of these optimizations are displayed in Fig. 4 . It is clear from Fig. 4 (a) that using the proposed optimization

methods for anonymized data improves the solution quality compared to the standard optimization using the upper bound

statistic for most of the instances. The robust approach with the budgeted uncertainty set performs not as good as we

expected, as it always provides the same objective value and feasibility as the upper bound statistic. What we expected is

that the chance constraints would reduce the found objective value, while ensuring an acceptable level of feasibility. The

unexpected behavior can be explained as follows. First of all the implementation we considered is only an approximation

as we explained in subsection 5.2 . In reality our random variables ζ l are not independent, but rather negatively correlated.

There are only a finite number of realizations, meaning that finding a positive deviation reduces the chance of finding a

positive deviation for the other weights. Secondly, the parameter γ is not related to the values of x i,j . Hence, in cases where

only few of the x i,j variables are set to 1 in an optimal solution, this method tends to over-insure against the worst-case

scenario. A possible way to improve this would be to pick γ on the basis of experience, but this may be difficult in the case

of privacy preservation, especially in single-shot optimization problems. 

The stochastic optimization approach does give better solutions than the robust approach, and hence the upper bound

benchmark, for most of the settings. Especially for instances with a small number of items (i.e., settings I, III, V), it consis-

tently outperforms the robust approach in terms of performance ratio ( Fig. 4 (a)), regardless of the level of anonymity. For

the settings II and IV with large problem sizes (i.e. more items), the performance of the stochastic approach is not dominant

anymore. Given the current time limit set, we obtain a worse solution than by using the upper bound in 2 cases in setting

II and for 5 cases in setting IV in Fig. 4 (a). These results can be fully attributed to the fact that in these cases the solver

was unable to find an optimal solution in the given time-frame, as can be seen by the solving times that almost equal the

time limit of 12 min in Fig. 4 (c). Thus, while stochastic programming is a reliable method in case of smaller settings with

few items, its usefulness for larger cases is strongly dependent on the problem size and correspondingly the solving time

granted. 

When considering the feasibility of the obtained solutions, as shown in Fig. 4 (b), we find that the anonymization-aware

stochastic optimization methods satisfies the chance constraints in almost all of the instances. This implies that for most
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Table 3 

An example data set with attributes Disease (sensitive attribute) and Age (quasi- 

identifier). The original data is shown left, the middle shows the anonymized Age at- 

tribute using lower and upper bound statistics, and the right part using multiset statistics. 

Both anonymizations satisfy 6-anonymity. 

Name Disease Age lower and upper bounds multisets 

Person 1 Hepatitis 21 [21–25] {21, 22, 23, 23, 24, 25} 

Person 2 HIV 22 [21–25] {21, 22, 23, 23, 24, 25} 

Person 3 Flu 23 [21–25] {21, 22, 23, 23, 24, 25} 

Person 4 HIV 23 [21–25] {21, 22, 23, 23, 24, 25} 

Person 5 Hepatitis 24 [21–25] {21, 22, 23, 23, 24, 25} 

Person 6 Cancer 25 [21–25] {21, 22, 23, 23, 24, 25} 

Person 7 Cancer 31 [31–35] {31, 31, 31, 32, 34, 35} 

Person 8 Cancer 31 [31–35] {31, 31, 31, 32, 34, 35} 

Person 9 Cancer 31 [31–35] {31, 31, 31, 32, 34, 35} 

Person 10 Flu 32 [31–35] {31, 31, 31, 32, 34, 35} 

Person 11 HIV 34 [31–35] {31, 31, 31, 32, 34, 35} 

Person 12 Hepatitis 35 [31–35] {31, 31, 31, 32, 34, 35} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

settings we indeed obtain a feasible solution with a probability of 95%, the specified probability. Clearly, the level to which

the required probability is obtained depends on the sample size. However, our sample of size s = 100 seems to be perform

well in these settings. 

6.5. The trade-off between privacy and solution quality 

We now evaluate the trade-off that occurs between privacy and solution quality when a privacy preserving database is

used as input to a bin-packing problem. This trade-off has proven to be dependent on the purpose of the optimizer: whether

we want to find a good objective value (i.e., a correct amount of bins), or if we also want to ensure the feasibility of the

allocation. In case we are mainly interested in finding a good objective value, the trade-off is acceptable in many settings.

Especially in the case of the settings III and IV, where we consider only relatively small weights, the deviation from the true

objective value remains limited to less than 2% when using the mean summary statistic ( Fig. 3 ). In settings I, II, and V, the

trade-off is considerably larger, where the increase in performance ratio going from a level of no privacy protection to a

level of k = 10 corresponds to respectively 7%, 5% and 7% when using the method of k -anonymity with the mean summary

statistic (see Fig. 3 ). 

However, achieving feasible solutions is considerably more costly. For example, for setting I the objective value under

stochastic optimization and k = 8 is about 27% larger than when using the true weights and about 20% higher than when

using the mean weights. Clearly, the impact of such an increase in practical applications is large. However, with a feasibil-

ity of only 13% when using the mean weights, such an increase is hard to overcome when the found solution has to be

implemented in practice. 

However, the trade-off is also dependent on the instance at hand. In case of setting III it is especially acceptable, where

for k up until 10 there is no trade-off at all when using the stochastic optimization and K-Optimize algorithm as seen

in Fig. 4 . In the case of large weights as seen in setting I the results are very dependent on k , where the increase in

objective value is proportional to the value of k . This entails for example an increase of 4% in objective value in going from

no privacy preservation at all to k = 2 , whereas going to k = 10 raises the objective value by about 41% (when using the

methods of K-Optimize and stochastic programming, as presented in Fig. 4 ). In such settings it thus seems only possible

to enforce a low level of privacy. When there are more items, the stochastic programming approach seems to break down,

sometimes returning even worse results than simply considering upper bounds as summary statistics. This is due to the

running time limit of 10 min. Hence, to be used in practice, longer running time should be granted. In addition, more

advanced optimization methods may be required to improve the solution quality for large problem instances. 

7. Attacks on multiset statistics 

In the experiments above, we clearly see the benefit of using multiset statistics for stochastic optimization. In this section,

we analyze the privacy preservation qualities of this new type of statistic, compared to the commonly used lower and

upper bound values of the aggregation ranges. We consider three commonly used attack models for privacy-preserving data

publishing schemes: record linkage, attribute linkage, and table linkage. In order to clarify the privacy risks, we provide a

small example dataset as illustrated in Table 3 . 

Record Linkage 

In this attack model, it is possible to uniquely identify a data owner (Person) using quasi-identifiers [21] . In the

anonymized datasets, both anonymizations satisfy k -anonymity, since each record has at least k > 1 matching records for
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the corresponding quasi-identifiers. Therefore, even if an attacker has access to external knowledge, the privacy preserva-

tion quality of the multisets is the same as the lower and upper bound statistics. For instance, an attacker knows that Alice

is in Table 3 and also knows her age is 21. The attacker can observe that Alice’s record is one of the first six records with

both multisets and lower and upper bounds, but cannot identify which one is her. Furthermore, the frequencies of age values

do not provide additional information to an attacker that could identify Alice, although she is the only one in the dataset

with age 21. 

Attribute Linkage 

In an attribute linkage attack, the data owner’s record does not have to be identified uniquely but his/her sensitive

attribute may be inferred through a homogeneity or background knowledge attack [21] . Similar to record linkage, the privacy

of using multisets is identical to that of using lower and upper bounds. Although people in the same age set have the same

disease (Person 7/8/9 are 31 years old and have cancer), the additional information of knowing the exact age values in

the multisets does not help to perform a homogeneity attack since these people cannot be identified. Similarly, in case of

background knowledge attack, the multisets do not leak more information than lower and upper bounds. 

Table Linkage 

A table linkage attack is possible if an attacker can infer the presence or absence of a record owner in a dataset [21] .

While the lower and upper bounds is not a guarantee against a table linkage attack, the multiset statistics are more vul-

nerable against it since the values of quasi-identifiers are visible. For an attacker, inferring the presence of a data owner is

probabilistic in the multiset statistics as in the lower and upper bounds. However, (s)he can confidently infer the absence

of a data owner if no matching quasi-identifier value is present. For instance, if an attacker knows that Bob is 33 years old,

(s)he can confidently state that Bob’s record is not present in the data. 

8. Conclusion 

We investigated the trade-off between privacy and solution quality that occurs when a k -anonymized database is used

as input to a bin-packing problem. An important contribution in this respect was to suggest a framework in which the

enforcement of a formal privacy criterion introduced a minimal loss of solution quality. In this respect, we started of by

considering two methods for achieving k -anonymity, out of which one was a heuristic one and the other exact. A second step

was to consider, optimization methods that could reduce the effects of data uncertainty, as created by the anonymization,

on solution quality. This resulted in enforcing chance constraints, for which we made use of the frameworks of robust

optimization and stochastic programming. 

All these methods were then empirically tested in a variety of bin-packing instances. Here we found that using an exact

method, in this case K-Optimize, to achieve k -anonymity lead to significant improvements in solution quality. Furthermore,

the approach of stochastic programming offered a good solution quality, by balancing feasibility and objective value in case

of small problems. However, the increase in solving time made that this method was not dominant for large problem in-

stances, where using the upper bound statistics may provide an alternative method. 

The computational results show that one can obtain reasonable estimates of the true objective value when one is not

interested in feasibility. However, enforcing feasibility comes at greater cost to the objective value, especially when consid-

ering a higher level of privacy preservation, i.e. a higher level of k . We conclude that using current state-of-the-art methods

for privacy preservation, it is very hard to obtain feasible solutions during optimization without increasing the objective

value unrealistically, or significantly decreasing the level of privacy protection. By developing new optimization methods

that take the anonymization into account ( k -anonymity with stochastic programming), we demonstrate that optimization

performance can be increased significantly. This new method only requires a small amount of additional information that

was lost during anonymization: the multiset of values used to construct an aggregation range, instead of only the lower and

upper bounds. 

There is however a downside to publishing multisets instead of lower and upper bounds: the database becomes suscep-

tible to a table-linkage attack to identify the absence of individual rows. In our opinion, this is for most applications a small

price to pay for the improvement in solution quality of an optimization method that uses these multisets as input. Our

results clearly show the need for new ways of anonymizing data that take the optimization that will be using the resulting

data into account, and vice versa. 
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