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Hirschsprung disease (OMIM #142623) is a congenital malformation of 

the nervous system of the gastrointestinal tract, the Enteric Nervous 

System. The work in this thesis focuses on modes of development of 

this disease, in vitro disease modelling and possible therapeutic options. 

The Enteric Nervous System 

The gastrointestinal (GI) tract is the core of the digestive system and has 

many functions including the mixing and breaking down of ingested 

material, water and nutrient extraction and absorption, secretion of 

enzymes and propulsion of ingested material through the body for 

waste expulsion in defecation1. These functions require the input of 

various cell types communicating together in order to effectively digest 

food and avoid nutritional deficit or inflammatory responses from poor 

gut function. At birth, the GI tract, including the oesophagus, stomach, 

small intestine and colon, is approximately 3 meters in length, and 

increases to approximately 7 meters in adults3. The development of such 

an organ is complex and requires extensive elongation of the primitive 

gut tube, as well as migration of a wide variety of cell types along the 

gut, to ultimately result in co-ordinated gut activity4. Proper functioning 

of the GI system is regulated by the enteric nervous system (ENS).  

The ENS is one of the three main divisions of the autonomic nervous 

system, along with the sympathetic and parasympathetic divisions. The 

ENS is also colloquially known as the second brain or the brain in the 

gut, due to its ability to function independently from the central nervous 

system (CNS).  The basic functions of the ENS do not require input from 

the sympathetic and parasympathetic divisions, although it is influenced 

by both5. The ENS is made up of neuronal cells and supportive glial cells 
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located within ganglia, which form two distinct mesh-like plexuses in 

the wall of the GI tract (Figure 1). 

The myenteric plexus spans the entire length of the GI tract and lies 

between the longitudinal and circular muscle layers. It controls muscle 

contraction and relaxation which generates the peristaltic movement of 

the gut. The submucosal plexus, located between the circular muscle 

and mucosa, is only prominently seen in the small and large intestines. 

It regulates fluid absorption and secretion, modulates blood flow, and 

responds to stimuli from the mucosa to support gut function and 

homeostasis6. 

Figure 1. Schematic Cross-section of the adult GI tract showing the submucosal 
and myenteric plexuses either side of the circular muscle layer. Axons extend 
radially from the plexuses for communication between plexuses and into the gut 
mucosa. 

11



Development of the ENS 

The ENS is derived from the neural crest which arises at the border 

between the neural plate and the non-neural ectoderm. The majority of 

cells that are fated to become the ENS originate at the level of the vagal 

neural crest. These precursor cells, known as enteric neural crest cells 

(ENCCs), migrate to the cranial end of the gut tube at week 4 of human 

development (embryonic day [E]9.5 in mice)7,8, and rapidly proliferate, 

migrate and differentiate to colonise the entire length of the gut by 

week 7 (E13.5 in mice) (Figure 2)7,8. A smaller population of neural cells 

also arises from the sacral region of the neural tube, but contributes to 

the ENS mainly in the distal hindgut9,10. In addition to the uniform 

directional (oral to anal) migration of vagal ENCCs along the gut, 

Nishiyama and colleagues showed that, in mice, ENCC migration halts 

Figure 2. Schematic of vagal neural crest cell (NCC) migration into the embryonic gut 
tube and the contribution of sacral NCCs in the hindgut. The final ganglia contain glial 
and neuronal populations.  
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at the midgut to hindgut boundary to allow for trans-mesenteric 

migration to occur before the wave-front of ENCCs advances into the 

hindgut region11. It is unclear whether this trans-mesenteric migration 

occurs in other species, including humans, however given that 

Hirschsprung disease (HSCR) is mostly limited to the distal colon, this 

migratory path of ENCCs is interesting for further study. 

As the gut is growing and elongating during embryogenesis and foetal 

development the ENCCs are highly migratory, with cells migrating in all 

directions rather than just towards the caudal end of the gut. The 

leading wavefront of migrating cells sets the tracks for the other cells to 

follow, determining the position of the ganglionic network12,13. 

Migratory pathways are dependent on the expression of surface 

receptors in order for the cells to recognise environmental signals, if 

present. For example, GDNF, expressed in the gut mesenchyme, is 

recognised by GFRα1, expressed on the migrating NCCs and acts as a 

chemoattractant for the migrating wavefront7. Studies in avian models 

have established that migration in the pre-umbilical stage, through the 

foregut and midgut, occurs before smooth muscle formation. As the 

cells migrate along this mesenchymal gut tube, the circular muscle layer 

begins to develop, creating a different migration environment for cells 

in the hindgut10,13. Additionally, cell adhesion molecules and 

appropriate extracellular matrix (ECM) components, such as collagen 18 

and agrin proteins, secreted at the migrating wavefront, play a crucial 

role in these migratory pathways12,14. Intercellular and extracellular 

signals from surrounding cells and the ECM also influence cell fate 

decisions and components of the ECM have been studied in vitro to 

assess their effect on ENCCs and other gut cells. It has been shown that 

on tissue engineering matrices, nitrergic neuronal populations are 
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enriched with presence of collagen IV. Presence of laminin and/or 

heparan sulphate gives balanced relaxant and contractile motor neuron 

populations15.  

As cells stop migrating and find their final positions within the gut wall, 

they form connections and synapses with each other and the neural cell 

bodies group into ganglia16,17. The ENCCs differentiate into multiple 

neuronal subtypes as well as enteric glia. At least 20 enteric neuronal 

subtypes have been identified, varying in function, electrophysiology, 

neuro-transmitters and morphology18.  

Multiple trophic factors, morphogens, and transcriptional regulators 

control and influence enteric neural subtype specification within the 

ENS19. However, the mechanisms determining specific differentiation 

patterns are poorly understood and a fate map of ENCC differentiation 

does not yet exist. Factors influencing ENCC proliferation, migration or 

differentiation may alter the ratio of subtypes within the GI tract, 

depending on when and where a neuron is ‘born’ during ENS 

development, as evidenced by its exit from the cell cycle. The timing of 

cell cycle exit has been linked with lineage commitment and this could 

mean that a slowing of migration or proliferation of ENCCs would not 

similarly slow-down their differentiation and cell cycle exit20. It is 

possible that this could lead to insufficient naïve ENCCs reaching the 

distal colon. Neural activity also influences ENCC differentiation and 

migration, as treatment with neurotoxins that inhibit vesicular signalling 

has been shown to alter the ratio of neuronal subtypes and slow cell 

migration21. Thus, alterations in developmental signals can occur 

through many modes and pathways, which create opportunities for 

physiological and/or anatomical malformations of the ENS.  
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Hirschsprung Disease 

 Hirschsprung disease (HSCR) is a congenital neuropathy of the GI tract 

characterised by an absence of enteric ganglia in a variable length of 

the distal gut (Figure 3). This defect is usually confined to the colon but, 

although rare, total intestinal aganglionosis can occur. The length of the 

Figure 3. Schematic of the intestines of a healthy individual compared to a 
patient with HSCR. The tonic constriction of the distal colon in the patient leads 
to functional obstruction. The inability of faecal matter to pass causes 
inflammation and expansion of the proximal regions of the colon, observed by 
abdominal distension in the patient. 
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aganglionic segment varies from only the rectal regions, or rectal and 

sigmoid regions, (short segment), extended towards the splenic flexure 

or transverse colon (long segment), or further to the cecum (total 

colonic aganglionosis; TCA). The affected region of gut lacks intrinsic 

neural input with the result that the smooth muscles of the gut wall 

contract, causing life-threatening obstruction and preventing passage 

of stool. Complications from HSCR include infections, enterocolitis, 

abdominal swelling and potential rupture of the colon6,22-24.  

HSCR results from a failure of ENCCs to colonise the full length of the 

GI tract, which could be caused by functional deficit within the ENCCs 

themselves or in the local environment that the ENCCs encounter during 

their migration along and within the gut. The appropriate proliferation, 

migration, differentiation and survival of these cells is therefore 

essential for colonisation. The basic pathophysiological feature in HSCR 

is functional obstruction caused by the tonic contraction of smooth 

muscle of the aganglionic segment, and absence of the peristaltic 

motion of the gut. Despite extensive research, the pathophysiology of 

this is not fully understood. There is no clear explanation for the 

occurrence of tonic contraction of this smooth muscle other than the 

absence of signals from the ENS.  

Genetics of HSCR 

Genetics of Isolated HSCR 

HSCR is a congenital disorder and can be present as an isolated feature 

or part of a syndrome. Isolated HSCR has been shown to have familial 

recurrence, but it most commonly occurs sporadically2,25. The incidence 

of HSCR is estimated at 1 in 5000 live births, although this varies 

between populations6. Developmentally, HSCR has a genetic 
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component and there is a sex-linked bias in classical and short segment 

cases with a male:female ratio of approximately 4:16. To date, at least 17 

genes have been found to play a role in isolated HSCR development, in 

patients and animal models (Table 1)2,26,27. Of these, the Rearranged 

during Transfection gene (RET) has proved to be the most important. 

This can be concluded from several genetic linkage analyses which have 

shown that, even in the absence of pathogenic coding variants in RET, 

over 90% of familial HSCR is linked to the gene28,29. Mutations affecting  

Table 1. HSCR Associated genes 

Gene Location Phenotype Incidence Pathway 

RET 10q11.2 HSCR 50% familial; 
20% sporadic 

RET 

GDNF 5p13 HSCR Very rare RET 

GFRα1 10q26 HSCR Very rare RET 

NTN 19p13 HSCR Very rare RET 

PSPN 19p13 HSCR Very rare RET 

EDNRB 13q22 HSCR; WS4 3-7% Endothelin 

EDN3 20q13 HSCR; WS4 <5% Endothelin 

SOX10 22q13 HSCR; WS4 >5% Transcription factor 

L1CAM Xq28 HSCR x-linked 
hydrocephalus 

Rare - 

NRG1 8p12 HSCR 6% ERBB2; RET 

NRG3 10q23.1 HSCR - ERBB2; RET 

DENND3 8q24.3 HSCR (zebrafish) - - 

NCLN 19p13.3 HSCR (zebrafish) - - 

NUP98 11p15.4 HSCR (zebrafish) - - 

TBATA 10q22.1 HSCR (zebrafish) - - 

IHH 2q35 Hypoganglionosis 
(zebrafish) 

- Hedgehog; RET 

GLI3 7p14.1 - - Hedgehog; RET 

HSCR: Hirschsprung disease; WS4: Waardenburg-Shah syndrome. 
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 its coding and non-coding regions have been described30,31. When 

screening for mutations, pathogenic coding variants in RET are 

identified in ~50% of familial and 15-35% of sporadic HSCR cases25,32.  

A number of loci in or around non-coding regions of RET have been 

identified, in several studies, to be linked with susceptibility to or 

protection from HSCR33-41. An enhancer variant in RET intron 1, a C>T 

SNP, was found to have a higher HSCR contribution risk than coding 

sequence variants. The frequency of the T allele in the European 

population is approximately 20% and is as high as 50% in the Chinese 

population, which could contribute to the higher incidence of HSCR in 

Asian populations25,39. Common variants in RET are well established as 

a susceptibility factor for HSCR30,42. All these studies point towards a 

central role for RET in the development of isolated HSCR and the ENS. 

RET signalling balance 

RET encodes for a receptor tyrosine kinase, RET, which is involved in 

several intracellular signalling cascades, regulating cell differentiation, 

migration, proliferation and survival. RET activation depends on binding 

with either glial cell line-derived neurotrophic factor (GDNF), neurturin 

(NRTN), artemin (ARTN) or persephin (PSPN) and with one of the four 

GDNF family receptor alphas (GFRα1-4) respectively to form a 

complex43. Disturbance of RET or any of these binding partners will in 

turn affect the action of downstream pathways, which can also disturb 

the development of other components of the peripheral and central 

nervous systems44. It has been hypothesized that, because RET proves 

to be the key player in isolated HSCR development, RET signalling is the 

fulcrum of ENS formation, with other pathways and the action of ENS-

related proteins being dependent upon correct RET expression2. This  
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Figure 4. The RET signalling balance theory proposes RET as the fulcrum of ENS 
development. Other protective or predisposing factors can contribute in varying amounts 
towards the tipping of the normal balance towards hyperganglionosis or aganglionosis2. 
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model proposes RET as the primary influencing factor in the 

multifactorial development of the ENS, the balance of which can be 

shifted by genetic or non-genetic factors to lead to a spectrum of ENS 

phenotypes, ranging from total aganglionosis to hyperganglionosis 

(Figure 4). It is likely to be a combination of (inherited) genetic and non- 

genetic factors that cause HSCR.  

Genetics of Syndromic HSCR 

HSCR occurs as an isolated phenotype with no associated anomalies in 

the majority of patients45. However, due to the genetic nature and the 

interaction of pathways in this disease it is inevitable that if ENS 

development is impaired there may be associated impairments in other 

cell types. Approximately 12% of HSCR patients have an associated 

chromosomal abnormality and 18% have additional congenital 

anomalies2,25. These associated anomalies most commonly affect other 

ectoderm or neural crest derivatives, but there are crossovers to other 

systems that may have links with cell migration or proliferation signals46. 

There are a number of defined syndromes that have HSCR as a feature 

and are generally explained by Mendelian inheritance (Table 2). In some 

of these it is a variable feature and its presence or absence may be 

influenced by modifying factors that either predispose a patient to 

HSCR or protect against its development25,46. Goldberg-Shprintzen 

syndrome (GOSHS) is caused by truncating variants in the KIF1 Binding 

Protein gene (KIF1BP)47. It is characterised by dysmorphic facial features, 

microcephaly, developmental delay, intellectual disability and short 

stature and has HSCR as a variable feature among other associated 

phenotypes. The presence or absence of HSCR in GOSHS patients is 

highly variable, even in members of the same family, with the same 

20



causative variant46,48,49. KIF1BP is associated with microtubule dynamics, 

cargo trafficking and axonal outgrowth, but its precise functions in 

development are not well known49-52. 

In chapter 3 we introduce new truncating variants in KIF1BP and add 

two patients with missense variants, one with classical GOSHS features 

and the other with an alternative phenotype. Functional studies of the 

missense variants indicate that a threshold of KIF1BP expression is 

necessary to avoid GOSHS development. 

Table 2. Characterised syndromes with HSCR as a mandatory or frequent feature. 

Syndrome Gene(s) HSCR Other features 

WS4 SOX10; 
EDNRB; 
EDN3 

100% Pigmentary anomalies; sensorineural deafness 

MWS ZEB2 

GOSHS KIF1BP >70% Craniofacial dysmorphia; microcephaly; 
polymicrogyria; developmental delay 

DS Tri21 ~7% Characteristic facial dysmorphism; intellectual 
disability; developmental delay 

CCHS PHOX2B ~20% Autonomic respiratory failure 

BBS Several Pigmentary anomalies; renal anomalies; 
intellectual disability; polydactyly 

MKKS MKKS/BBS6 ~10% Cardiac anomalies; polydactyly; 
hydrometrocolpos 

SLOS DHCR7 - Developmental delay; intellectual disability;
microcephaly; craniofacial dysmorphism;
syndactyly

CHHS RMRP ~10% Metaphysial dysplasia; dwarfism; fine, sparse,
blonde hair; anaemia; immunodeficiency

MEN2 RET ~2% MTC; parathyroid tumours; pheochromocytoma

HSCR: Hirschsprung disease; WS4: Waardenburg-Shah syndrome; CCHS: Congenital 
Central Hypoventilation Syndrome; MWS: Mowat-Wilson Syndrome; GOSHS: Goldberg-
Shprintzen Syndrome; BBS: Bardet-Biedl Syndrome; MKKS: McKusick-Kauffman Syndrome; 
SLOS: Smith-Lemli-Opitz Syndrome; CHHS: Cartilage-Hair Hypoplasia Syndrome; MTC: 
Medullary Thyroid Cancer. 
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Copy Number Variation in HSCR 

As well as defined monogenic syndromes, there are many patients with 

complex phenotypes and multiple associated developmental defects 

that are yet unexplained. Chromosomal abnormalities may explain part 

of these clinically complex patients. Changes in the number of copies of 

DNA present in the genome are termed Copy Number Variations 

(CNVs). These can contribute to phenotypes, diseases or syndromes that 

are influenced by gene dosage53. CNV is also known to contribute to 

HSCR disease aetiology. Chromosomal band deletions54,55 and 

duplications54,56-58 have been described in HSCR patients, most of these 

being syndromic patients. Deletions of chromosomes 10 and 13 were 

instrumental in the identification of RET and EDNRB as major HSCR 

genes25,59. Patients with Down Syndrome, trisomy 21, have a 100 times 

higher incidence of HSCR than the general population25, implying that 

genes or regions on chromosome 21 are sensitive to dose increase and 

may increase susceptibility to ENS disorders. Large CNVs are more 

frequent in individuals with developmental anomalies compared to 

healthy controls60. In addition, more common CN polymorphisms 

(CNPs) are thought to be modifiers of the HSCR phenotype61,62. 

Therefore, we believe that rare CNVs could contribute significantly to 

syndromic patients with HSCR as a feature, where no pathogenic variant 

can be identified. In chapter 4 this phenomenon is explored in HSCR 

patients with and without other congenital anomalies in order to find 

new genes or regions that may be causative for the HSCR phenotype. 

Other factors in HSCR development 

Known HSCR genes have only been implicated in ~30% of cases25. There 

has been no implicated high penetrant causative variant found in the 

remaining ~70% of cases and in sporadic, non-familial, HSCR genetic 
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counselling is challenging. There are a number of possible reasons for 

the missing heritability. There may be an epigenetic component 

affecting protein expression of the known, implicated pathways, or 

there may be other genes involved in pathways up or downstream of, 

or otherwise linked to, these pathways that have not yet been 

elucidated. Changes in expression of HSCR related genes, either due to 

variation in methylation regulating genes, or methylation changes to 

promotor or enhancer regions themselves, have been shown to 

influence ENS development63-65. Environmental factors including 

maternal diet and use of prescribed drugs can also play a role and may 

influence epigenetic patterns. This is most likely limited to being a small 

influencing factor rather than being significant enough alone to cause 

any damaging phenotype66-69. 

A further theory that warrants investigation is the existence of somatic 

cell variations affecting a subset of cells important in the ENS 

colonisation of the GI tract. During the accelerated cell division and 

growth of embryonic development there are many chances for mistakes 

to be made in DNA replication. If there is a failure of DNA repair 

mechanisms to identify and correct these mistakes this would lead to 

subsets of cells containing variants that are not present in the remaining 

embryonic cells. Dependent on the temporal and spatial identity of a 

cell in which this variation occurs this may lead to a whole system, organ 

or tissue containing a mosaic variant. However, as discussed in chapter 

2, such defects would prove difficult to identify in patient material. 

Diagnosis & Treatment 

HSCR is suspected when a newborn infant fails to pass meconium within 

the first 48 hours of life, which is generally the case for >90% of HSCR 
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cases22. Patients are usually diagnosed before 3 months of age, 

although some within the first year or upon weaning from breastmilk. 

Rarely, an older patient will be diagnosed, but they generally have a 

history of chronic obstipation and the aganglionic segment is short22. 

When HSCR is suspected, the diagnosis is usually confirmed by taking a 

rectal suction biopsy. The length of the aganglionosis is established 

using histological examination for presence/absence of enteric ganglia. 

The current standard of care for HSCR is surgical removal of the affected 

aganglionic region and anastomosis of the ganglionic bowel region to 

the anus. A colostomy may be fashioned prior to surgery. This allows 

the obstruction to be bypassed, and allows the gut to grow and 

inflammation to diminish. The most common surgical mode for 

resection is transanal endorectal pull-through (TEPT), which minimises 

the invasive nature of the surgery as the abdominal cavity does not need 

to be opened. TEPT can take place entirely transanally. However, it is 

commonly performed in combination with laparoscopy or laparotomy, 

to visualise and mobilise the colon abdominally70. Common surgical 

procedures are the Swenson, Soave, Duhamel and Rehbein procedures 

which are adaptations of similar pull-through approaches with 

differences in anastomosis6,70,71. 

Although surgical intervention is generally effective in preventing 

obstruction, it may not prevent further complications for the patient, 

including enterocolitis, faecal incontinence or chronic constipation, and 

an increased risk of infections23,72,73. TEPT may avoid some of the risks 

of open abdominal surgery, however the rates of faecal incontinence as 

well as the psychological and psychosexual side-effects of this surgery 

may negatively impact on the quality of life of HSCR patients24,72,74,75. It 
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has also been shown that TEPT can cause long-term damage to the anal 

sphincter, due to the prolonged and significant period of being 

stretched. This can be minimised if a combined laparotomy technique 

is implemented6. If complications arise following surgery, it may be 

necessary to have a redo surgery. A redo surgery is primarily for patients 

with persistent constipation and may involve removal of a further 

section of colonic tissue to ensure that the transition zone between the 

ganglionic and aganglionic regions is totally removed, as this is likely to 

have disturbed function and may have been inaccurately identified at 

the time of surgery76. Correction may also be necessary if there is a 

twisting of the bowel in the anastomosis which leads to discomfort or 

abdominal pain77. Patients who undergo corrective transanal surgery 

have a higher risk of damage to the anal sphincter, so this is only 

undertaken if the benefits outweigh this risk. 

Additional, non-surgical, treatment options for HSCR include continued 

use of a colostomy, modified diet, laxatives and/or anti-diarrhoeal 

drugs, electrical nerve stimulation, hospital visits for rectal/colonic 

irrigation and injection of bulking agents to thicken the anal sphincter. 

These options, as well as the above-mentioned surgeries, leave a lot to 

be desired in terms of patient care. Quality of life can be negatively 

affected and, while paediatric patients are resilient to some 

psychological impacts, their frequent hospital visits and the social 

implications of faecal incontinence could complicate educational and 

social commitments in later life24,72,75. Due to normal life expectancy in 

HSCR patients the need for prolonged treatment can generate large 

healthcare costs78-81. New treatment avenues that are being explored in 

the field include nerve cell-replacement or transplantation therapies, 

discussed here and in chapter 5. Other, less well explored options can 
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be multidisciplinary and effective for a greater range of patients, as 

discussed in chapter 6. 

Cell-based therapies for HSCR 

One of the major drives in ENS translational research is to develop a cell 

replacement therapy for enteric neuropathies such as HSCR. HSCR is the 

primary focus for cell replacement therapy as cells could be 

transplanted into the aganglionic region in an attempt replenish and 

rescue the absent ENS. There are a number of cell types that are 

generally considered for any cell transplantation therapy: cells that are 

obtained from the same tissue as the cells that are to be replaced; 

ameliorative cells, such as mesenchymal stem cells (MSCs), that facilitate 

natural recovery within the body and decrease inflammation; or stem 

cells, either of embryonic, postnatal or reprogrammed origin, that are 

differentiated towards the desired cell lineage or type.  

Sources of cells for ENS therapy 

A number of options for a viable cell source for transplantation 

therapies have been explored82-86. The discovery of ENS stem cells that 

persist within the postnatal gut, and the assessment of their proliferative 

potential in mice13,87, led to multiple attempts to isolate them from 

human colon and characterise them in vitro88. Although they provide an 

ideal cell source for functionally investigating the ENS, their proliferative 

capacity may be inadequate for generating required numbers of cells, 

especially when obtained from postnatal gut89. Current culture methods 

of ENCCs in neurospheres maintain a progenitor state in some cells, and 

these cells are able to integrate and form a functional network upon 

transplantation85,90-92. However, the area covered remains low in mouse 
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models and considering the scale-up to human gut, it is likely that many 

more cells would be required in a human therapy.  

Pluripotent stem cells (PSCs) were initially thought to be ideal stem cell 

source for treating a variety of diseases. First studied from embryonic 

origin, embryonic stem cells (ESCs) offered a potentially unlimited 

source of cells to study differentiation pathways93,94. However, ethical 

considerations of using human embryos for this purpose, as well as the 

need for immunosuppression in transplantation, created significant 

barriers for their use95. The generation of induced PSCs (iPSCs) from 

human fibroblast cells by Takahashi and Yamanaka in 2006 led to a huge 

advance in developmental biology research. These cells have 

comparable differentiation potential to ESCs and can be created with 

somatic cells from the intended patient, circumventing source and 

immune rejection issues96,97. 

However, persisting issues include the genomic stability of the iPSCs, 

which have been shown to accumulate chromosomal aberrations after 

a number of passages in culture, and the ability to differentiate the cells 

into the correct lineage whilst avoiding the introduction of tumorigenic 

cells to a patient98-100. An additional consideration when thinking of a 

transplantation therapy for a genetic disease, is the genetic background 

of the patient and whether the cells’ function will be negatively affected 

by the pathogenic variant that initially caused the disease. 

A number of protocols have been developed for the differentiation of 

PSCs towards an ENS lineage101-104. Most of them initially achieve a vagal 

neural crest expression pattern and the study from Fattahi, et al., shows 

promise in transplantation and rescue of a mouse model of HSCR103. 

However, if iPSC-derived neural crest cells (NCCs) are to be used for 
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disease modelling and transplantation, a standardised method for 

creation and characterisation should be developed to ensure 

replicability. Particularly in the case of using HSCR patient derived iPSC-

NCCs for genetic characterisation, standardised and controlled methods 

would ensure that any differences measured are due to genetic 

background rather than protocol variation. The parameters for 

measuring cell function, to assess the need for genetic correction, as 

well as the necessary stage of differentiation for ideal integration 

efficiency following transplantation, remain to be determined105. 

Aims & Outline of this Thesis 

The aims of the work described in this thesis were to investigate the 

missing heritability that is seen in HSCR in both isolated and syndromic 

cases, understand more about the development and differentiation of 

ENCCs, assess suitability of various cell sources for transplantation 

therapy, and explore possible treatment avenues for current and future 

HSCR patients. 

The possibilities of somatic variants contributing to the development of, 

and accounting for the missing heritability in, HSCR are discussed in 

chapters 2.1 and 2.2. In chapter 2.1 we outline the need for appropriate 

distinction between inherited parental mosaicism and true somatic 

mosaicism, proposing an appropriate experimental design to truly 

differentiate between the two in HSCR patient tissue. In chapter 2.2 this 

experimental design is utilised to look for ENCC specific variation in 

patient tissue. We further discuss the mechanisms of somatic variation 

in ENCCs and why, due to the developmental patterning of the ENS, 

they are unlikely to be detected, even if they have contributed to the 

phenotype. 
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In syndromic cases, HSCR can be a variable feature, the presence of 

common RET variants as well as the type of causative variant may 

influence HSCR development. The presence of HSCR in cases of GOSHS 

is discussed in chapter 3. Pathogenic variants in KIF1BP lead to GOSHS, 

in which HSCR is a variable feature. Given that HSCR is not a mandatory 

feature, it is likely that predisposing factors can be found to have 

involvement in its development. A number of patients have been 

reported in the literature, and truncating variants in KIF1BP have been 

found to be causative in all sequenced cases. In this chapter, we report 

nine new patients with KIF1BP variants, and functionally investigate, for 

the first time, three new missense variants identified in two patients with 

differing phenotypes. We also look at the presence of RET common 

SNPs, as a determining factor for the presence or absence of HSCR.  

Another possible genetic factor for HSCR in syndromic cases is the 

presence of CNVs that affect dosage sensitive HSCR loci. In chapter 4 

we compare the size and number of CNVs between syndromic and non-

syndromic HSCR cases, to find new candidate genes/loci.  

To further look into the underlying pathogenesis of HSCR development 

we created iPSC lines from four patients with different pathogenic 

variations. These cells offer possibilities for disease modelling, 

functional investigation of variants as well opening the door to future 

iPSC-enteric neuron transplantation options. In chapter 5 we present 

the characterisation of these patient-derived iPSCs and explore 

variations in their function compared to iPSCs generated from healthy 

controls. We also discuss their genomic stability and viability with a view 

to their use in cell therapy. 

29



In order to bring an expedient option for the treatment of HSCR patients 

who continue to suffer from gastrointestinal problems following the 

current surgical standard of care, we may have to think beyond 

biological interventions. The technological world has arguably been 

able to advance at a faster rate than the development of purely 

biological treatment options. With the advances in microelectronics and 

prosthetic technologies incorporating sensory input, the opportunities 

for developing transplantable devices may provide a more elegant 

solution than the more primitive prostheses currently available. These 

ideas are discussed in chapter 6, together with a patent proposal for an 

artificial prosthetic sphincter with an anatomically relevant mechanism 

and design which could provide therapeutic options for HSCR patients, 

but also to others suffering from faecal incontinence, or loss of anal 

sphincter control. 

Chapter 7 summarises the work in this thesis and discusses future 

prospects in the field of ENS development, as well as possibilities for 

treating patients with HSCR and related disorders. 

All supplementary material can be found here.
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Chapter 2.1 

Do RET somatic mutations play a role in 

Hirschsprung disease? 
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Dear Editor, 

We have read the manuscript from Jiang et al.,1 recently published in 

your journal, with great interest. In this, a contribution of RET somatic 

mutations for Hirschsprung disease (HSCR) is hypothesized. 

HSCR is a complex inherited disorder characterized by the absence of 

enteric ganglia in the distal part of the colon. Several genes and loci 

have been described to underlie disease pathogenesis. However, 

variants in these genes explain no more than 20% of all cases2. This 

missing heritability seen in HSCR is a common feature of many 

complex disorders and explaining it remains challenging. Considering 

that HSCR develops during embryogenesis as a result of either 

impaired migration, proliferation or differentiation of enteric neural 

crest cells (ENCCs), it is tempting to consider that somatic mutations 

occurring during the development of the enteric nervous system, and 

specifically affecting ENCCs, can also contribute to HSCR genetics. 

Jiang and colleagues think that this is possible, and we share the same 

opinion, as we believe that somatic variants could be underrecognized 

in HSCR, and thus, possibly account for some of the missing 

heritability. However, the results described by the authors do not, in 

our opinion, fully support the conclusions of the manuscript. This is 

mainly because routine genetic testing on DNA derived from blood or 

saliva would not find these ENCC specific mutations, nor would easily 

detect low mosaic variants. With this letter, we intend to further 

discuss our concerns and highlight the difference between causative 
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somatic mutations and germline mosaicism resulting in seemingly de 

novo mutations in the next of kin. 

In their study, the authors screened 152 HSCR patients by targeted 

exome sequencing and direct gene screening. In eight patients they 

identified putative deleterious de novo variants in RET. Since RET is the 

major HSCR causing gene,3 they assumed that these variants were 

responsible for the disease phenotype. However, only six patients 

carried a truly de novo RET mutation, as in the other two the variants 

identified were also found in one of the parents. The authors 

continued the genetic analysis of the six remaining patients, and 

described based on their findings, that the RET mutations identified 

were somatic. This result led to the conclusion that RET somatic 

mosaicism is present in 75% of the HSCR cases and is, therefore, 

underrecognized. However, in four of the six patients studied, 

germline mosaicism was identified in the parents. As these variants are 

transmitted to the affected next of kin as heterozygous variants, these 

cannot represent somatic mosaicism. In addition, the parents are not 

affected, leading us to speculate that their ENCCs are either not 

affected by the mutation or that the mutational load in their ENCCs 

does not cross a threshold for abnormal ENS development. Therefore, 

although these four families are likely to represent germline mosaicism 

resulting in seemingly de novo mutations in the next of kin, they do 

not support the conclusion that RET somatic mutations are 

underrecognized. These heterozygous mutations would be detected 

(and are detected in these patients) in routine genetic screening and 

as such, do not resolve missing heritability due to “recognizing” 

somatic mosaicism. 
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For the remaining two patients, the RET variants identified were 

present in blood, saliva, and colon, in family 1 (39/39/44%) and family 

2 (44/35/39%). The authors validated the sequencing data with TA 

cloning, but the results are variable even within the same tissue, and 

the differences seen in the amplicon-based sequencing test are well 

within the normal range for detection of a heterozygous variant. 

Moreover, the samples tested—blood, saliva, and colon—derive from 

tissues originating from different germ layers. Blood, mostly 

lymphocytes, is derived from mesoderm; saliva, lymphocytes, and 

epithelial lining of the mouth are derived from mesoderm and 

ectoderm; and the colon has contributions from all three germ layers. 

The high allele frequencies identified in all three samples for both 

patients (>30%) does not allow for discrimination between very early 

developmental stage somatic mutations or de novo variants present as 

a germ-line mosaicism in one of the parents. Although the authors 

acknowledge this fact in the discussion, it is more fitting to conclude 

that the variants identified in these two remaining patients are likely to 

be de novo heterozygous variants.  

In conclusion, we agree with the hypothesis of Jiang et al. and think 

that somatic variants might well play a role in HSCR development. 

However, based on the results presented we think that it is not 

possible to make such a conclusion, as no true somatic RET mutations 

were identified in any of the presented patients. We believe that to 

draw the conclusions stated, the allele frequency of the mutations in 

ENCCs, surface ectoderm, and, for instance, blood or fibroblasts would 

need to be compared because these represent different germ layers 

and include the cells involved in HSCR. An experimental setup that 

would isolate cells specifically from each germ layer, as well as ENCCs, 
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or that would separate the colon into various cell types, would be 

necessary to determine whether true somatic mutations impact HSCR 

development. Only if differences were found under such conditions 

could the authors show that RET somatic mutations are indeed 

underrecognized in HSCR.  
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Chapter 7 

General Discussion
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Hirschsprung disease (HSCR) is a rare congenital malformation of the 

enteric nervous system (ENS) characterised by an aganglionosis in a 

variable length of the distal gastrointestinal (GI) tract. Aganglionosis 

results in constriction of the smooth muscle in the affected region, 

leading to a functional obstruction1. During development, the cells that 

form the ENS bud from the neural crest and rapidly proliferate and 

migrate along the developing gut tube. These neural crest cells (NCCs) 

eventually form the enteric ganglia and differentiate into neuronal 

subtypes and glial cells located in the submucosal and myenteric 

plexuses of the ENS. A disturbance to proliferative, migratory, 

differentiative and/or survival functions in these cells could contribute 

to the pathogenesis of HSCR2. The current treatment for HSCR consists 

of surgical resection of the affected gut region, however most patients 

continue to have prolonged GI tract complications following surgery3,4. 

Understanding the development and pathogenesis of HSCR is vital to 

provide improved treatment options for these patients. 

Factors involved in the development of HSCR 

The disruption of ENS development is thought to be broadly under 

genetic control. A number of key NCC regulating genes have been 

implicated in HSCR pathogenesis. However, pathogenic variants in 

these genes only explain ~50% of HSCR cases2. It is therefore likely that 

other strong pathogenic variants in yet unknown genes, and/or 

combinations of pathogenic variants and weaker modifying variants, 

contribute to the aetiology and pathogenesis of HSCR5. Of the genes 

known to be involved in HSCR pathology, RET is understood to be the 

major influencer, acting as a fulcrum in the balance between 

aganglionosis and hyperganglionosis5. If there is a strong RET or other 

causal variant then the presence or absence of risk alleles6-8 at common 
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SNP locations is unlikely to influence disease development substantially. 

The RET balance is therefore more representative in cases where a 

combination of variants and other risk factors have the cumulative effect 

of a HSCR phenotype.  

If a patient presents with a multi-feature syndromic form of HSCR then 

the risk alleles may slightly influence presence or absence of HSCR, but 

more likely large copy number variations and chromosomal 

displacement affect its presence or absence. It could also be that 

combinations of missense variants and modifying SNPs have a 

cumulative influence on pathology in both non-syndromic and 

syndromic forms of HSCR. 

Genetics of isolated HSCR 

In non-syndromic isolated HSCR cases RET is the major genetic risk 

factor. However, the inheritance in sporadic non-syndromic HSCR cases 

is considered complex2. In this group, many genes other than RET have 

been identified. The identified genes are primarily involved in either the 

RET signalling pathway or the endothelin signalling pathway, and it is 

likely that other up- or down-stream influencers of these are yet to be 

identified. Due to the frequency of sporadic isolated cases and the 

unexplained genetic origin in many familial cases, it can be safely 

assumed that there are further disease genes yet to be identified, and/or 

factors other than the genomic DNA sequence of a patient that may 

play a role in disease pathogenesis9,10. Susceptibility to HSCR could be 

further influenced by stochastic effects on gene expression, additional 

variants in other genes that influence regulatory elements, and 

environmental effects on gene expression6. Additionally, the effects of 
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variants may be subject to epigenetic factors and changes in 

methylation patterns, which could also affect the complex heritability.  

Genetics of unexplained syndromic HSCR 

Approximately 12% of HSCR cases are associated with chromosomal 

anomalies, and approximately 18% of cases present in combination with 

other defects or features11. In contrast to non-syndromic HSCR, in 

syndromic HSCR we assumed that large copy number variations (CNVs) 

could explain part of the missing heritability. In chapter 3 we discuss 

CNV and how large CNVs may influence HSCR pathology if they overlap 

dose-sensitive genes that affect ENS development. HSCR can present as 

one symptom in patients with multiple associated anomalies, these can 

be recognised syndromes or newly presenting multi-feature 

presentations11,12. In multi-feature patients with known strong 

pathogenic variants CNVs have little influence on HSCR development. 

We demonstrate that CNVs in multi-feature patients, without a known 

pathogenic variant, tend to be longer and affect regions that contain 

genes expressed in the developing ENS. This data needs to be replicated 

in independent cohorts to confirm if candidate genes within large CNVs 

are seen in multiple patients. Investigations in zebrafish models, to 

knock down these genes or express multiple copies, may help to 

confirm new candidate genes present within CN loss/gain regions.  

Missense variations in known syndromic HSCR 

Missense variants can go unnoticed and be present in the healthy 

population, but still disturb protein folding, binding or other functions. 

They can have the same pathogenicity as a loss of function variant, 

specifically in recessive diseases in which carriership does not result in a 

disease phenotype. In chapter 4 the identification of missense variants 
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in Goldberg-Shprintzen syndrome (GOSHS), as well as the presence or 

absence of HSCR as a variable clinical feature in GOSHS is discussed. 

Truncating variants in the KIF1 binding protein gene (KIF1BP) are known 

to cause GOSHS13. The presentation of two patients with missense 

variants in KIF1BP was interesting given the lack of knowledge of protein 

folding and interactions. There is no crystal structure available of KIF1BP 

and the interactive sites are not well understood. Given that loss-of-

function variants have been reported in all 7 exons, it is likely that there 

are many regions, even in the terminal regions of exon 7 that are vital 

to RNA or protein stability. The two patients presented with different 

phenotypes and the finding of missense KIF1BP variants in patient NL1 

was surprising, given their clinical presentation. The homozygosity of 

the missense variant in patient CYP3, or the region affected, may have 

been a tipping factor in the development of classical GOSHS with HSCR. 

The expression of KIF1BP in CYP3 is lower than in NL1, despite the 

compound heterozygous variants in exons 1 and 7. A CNV analysis in 

these patients, particularly patient NL1, may be informative to 

determine if there are other candidate regions that have influenced 

neural development. As no other pathogenic variant was identified in 

diagnostic screening of patient NL1, and given their syndromic features, 

it may be that CNV of dose dependent genes contributes to their 

neurological phenotypes. This is the case in HSCR patients with 

associated syndromic features and would be interesting to investigate 

in other multi-feature patients.  

Missing heritability in HSCR 

As previously mentioned, in many HSCR cases a genetic cause for the 

disease cannot yet be identified. This can be partly explained by the 

complexity of inheritance patterns, presence of low-penetrant non-
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coding variants and the influence of risk alleles14. In chapter 2 we 

discussed somatic mosaicism as an influencer of HSCR, and the difficulty 

of identifying this phenomenon in relation to a HSCR phenotype. The 

developmental patterning of the ENS is such that a variant originating 

early has a high chance of being out-competed by other “healthy” 

cells. Unless this somatic variant gives a competitive advantage, such as 

higher proliferation or migration rate. This could lead to these cells 

reaching the distal colon and being unable to differentiate to the correct 

lineages and/or survive. We conclude that it is therefore extremely 

difficult to prove that true somatic variants contribute to HSCR 

aetiology, but it cannot totally be ruled out as a mode of missing 

heritability or a cause of some sporadic cases. 

As somatic mutations appear unlikely to play a major role in HSCR, the 

question of what might explain these unsolved cases remains. A 

possible problem could be the genes that are selected as being 

candidates for HSCR. Current filtering criteria selects genes that have a 

clear role in neuronal development, are expressed in the developing 

central nervous system (CNS) or ENS, or expressed in NCCs15. It can be 

assumed that there are HSCR causing variants that are not expressed in 

ENCCs themselves, but in other developing GI tract tissues. Variants in 

genes expressed in smooth muscle or connective tissue could change 

the local gut environment through which ENCCs migrate16. These 

changes could leave the distal colonic segment unable to support the 

migration, incorporation or survival of the ENCCs, an example of this is 

variation in EDN317,18.  

Moreover, the timing of cell-cycle exit has been shown to be of 

importance to ENS subtype specification19, the current filtering criteria 
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could also exclude cell cycle genes that may influence ENS 

differentiation. In order to fully understand the enteric neural subtypes 

derived from ENCCs it would be beneficial to utilise single-cell RNA 

sequencing technologies to build a control database from healthy gut 

at various developmental stages as well as postnatally. This could be 

built of the ENS as well as other GI tract cell types. Once a baseline of 

expression at various points along the GI tract is established then 

comparisons can be made with different disease states. This could also 

help with the identification of causal genes and further understand links 

in the developmental pathways that are disrupted in HSCR 

development. 

Non-genetic influencing factors 

Other than inherited and somatic alterations, external factors can also 

influence ENS development by changing the epigenetic landscape9,20. 

Using a similar strategy to that mentioned above, it would be beneficial 

to create a control database for the methylation state of various regions 

and developmental stages of the GI tract. Initial efforts could focus on 

isolation of ENCCs from control gut in order to establish methylation 

patterns of the ENS. Eventually other cell types and full gut sections 

could be included to be able to compare HSCR patient tissue and find 

large methylation changes. The creation of expression maps of the ENS, 

both with RNA and methylation patterns, would be pivotal to linking 

known pathways together and finding new players in the network of 

ENS development. 

The ability of clinical geneticists to give reliable genetic counselling to 

the families of patients relies on an understanding of the heritability of 

the condition. This is dependent on a knowledge of the genetic 
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background of HSCR pathogenesis as well as the non-genetic 

influencing factors. However, it may not be possible to explore every 

avenue, and there will still be sporadic cases that are difficult to explain. 

Modelling HSCR 

Proliferation, migration, differentiation and survival of ENCCs is a major 

focus of research and deviations of these processes are shown to cause 

aganglionosis in animal models of HSCR21. There are cases where the 

causative variant is known to be disruptive in these mechanisms and is 

shown to have expression in ENCCs specifically. However, for many 

patients the remaining ganglionic gut functions to a manageable 

degree and no other physiological problems are reported other than 

malfunction of the anal sphincter region. Animal models for 

developmental disease can only truly be useful if the genetic variant is 

known, and there is a practical limit to the number of genes that can be 

investigated in one model. The use of patient-specific cells to create a 

model circumvents this issue as the genetic background does not need 

to be fully known to functionally test for defects. 

In chapter 5 the creation of induced pluripotent stem cells (iPSCs) from 

HSCR patients was presented. These iPSC lines each harbour variants for 

known causative HSCR genes and were investigated for differences in 

function that may influence their ability to rescue the ENS using cell 

transplantation strategies. These iPSCs could also be utilised for disease 

modelling at the cellular level. 

The development of a reliable in vitro model for HSCR might help to 

dissect small cellular changes in ENCCs and/or the local gut 

environment. A 3D organ-on-chip system for GI tract development and 

function would be ideal to investigate the interplay of the different cell-
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types in the gut that are necessary for normal ENS development. Initial 

establishment of such a system with iPSC lines from healthy controls will 

allow the optimisation of cell-type ratios and flow of nutrients. Such a 

model, and generation of iPSCs from patients, will allow for the 

investigation of individual patient gut and help to determine the 

functions that may be disrupted during development. Moreover, it will 

also be help to determine whether ENCCs, smooth muscle, mucosal 

interaction or extracellular matrix (ECM) components were altered. 

Although gut organoids also offer a method of creating a 3D gut-like 

environment for cell transplantations, the spheroid structure is random 

which will influence intercellular signalling22. Gut organoids form a self-

organising lumen system which creates multiple signalling gradients 

that are difficult to compare between organoids. An organ-on-chip 

system would offer a more organised and replicable model and is 

already being used with mucosal models to create an epithelial layer 

that can support a microbiota23. 

Cell transplantation therapy 

As discussed in chapter 5, the possibilities for cell replacement therapy 

in HSCR have been explored for a number of years. The ability of 

transplanted cells to find the appropriate positioning, into either 

submucosal or myenteric plexus, and to form functional connections, 

both with other transplanted cells and with target cells within the gut, 

is vital to transplantation success. The appropriate cell type for this 

purpose, and an optimal transplantation strategy still need to be 

determined when scaling up from mouse to human gut24. No human 

trials have yet been attempted, but initial transplants into HSCR mouse 

models have been encouraging. Both injection of postnatal enteric 

neural crest cells (ENCCs)25,26 and of more proliferative pluripotent stem 
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cells (PSCs) differentiated towards neural crest27 have shown an 

integration and spread of transplanted cells.  

Initial transplantation studies established the potential of postnatally 

derived ENCCs to integrate and survive in explanted colonic 

segments28,29. In vivo transplantation of ENCCs of embryonic and 

postnatal origin has been shown to lead to the engraftment of donor-

derived cells within recipient colon25,30. Additionally, it was shown that 

ENCC-derived neurons adopt the appropriate localisation within the gut 

and can give rise to various enteric neurons, including the main 

subtypes for excitation (ChAT, VAChT, Calretinin and Calbin-din) and 

relaxation (nNOS and VIP)25,30. The transplanted cellular networks were 

also shown to closely localise with the endogenous ENS, suggesting 

functional integration of the transplanted neurons 

Methods of transplantation 

Current protocols for transplantation of cells into in vivo gut involves 

injection of cells in suspension with saline or matrigel26,27. Injection of 

ENCCs has proven safe in longer term follow-up and no migration of 

cells to ectopic sites was observed. Using PSCs, it is uncertain how many 

of the injected cells remain at the injection site and which other 

locations cells may reach. It is a recognised pattern following injection 

of PSCs to other organs that, although beneficial effects may be seen in 

the target tissue, cells are found in other organs31. It is also likely that 

many injected cells will die before making cell-cell contact32. Therefore, 

the already high numbers of cells required with this method, given the 

size of the target organ, may be even higher than anticipated when 

accounting for cell viability. Cellular scaffolds, injectable gels or other 

devices may make the environment more amenable to cell invasion, 
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lead to easier introduction of the cells, increase cell survival and avoid 

the migration of cells beyond the desired location33,34. 

Over-invasion and mass migration and proliferation is a known issue in 

PSC transplantation31. The study by Fattahi et al., considered as a 

landmark paper, shows transplantation of PSC-derived NCCs to wild-

type and Ednrb-/- mouse models27. The study shows a promising start to 

integration of PSC-derived NCCs and migration of transplanted cells 

along the GI tract. However, it has yet to be determined whether these 

cells also migrate to other regions in the body, especially connecting 

abdominal organs and this was not investigated with the reported 

transplantations. The extensive migration that they present is contrary 

to ENCC transplants reported in literature, which show a more modest 

migration to form small ENS-like plexuses in mouse gut25,26,28,30,35,36. The 

interesting factor in these studies is how many injection sites would be 

necessary in the human gut in order to effectively form a functional ENS. 

The highly proliferative nature of the PSC-derived cells could circumvent 

this, although it is vital to ensure that all transplanted cells are 

adequately differentiated to at least a multi-potent single germ lineage 

progenitor state as opposed to retaining ability to form other lineages. 

The slowing of the cell cycle to a point of normal turnover for tissue 

maintenance is required after the desired integration of cells, otherwise 

the tumour-risk from the transplanted cells is higher37.  

Numbers matter 

It has been shown that in development critical threshold numbers of 

NCCs are required for full colonisation of the GI tract38. It is also known 

that cells benefit in culture from contact with other cells producing 

“friendly cytokines”39. A similar phenomenon may translate in 
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transplantation where both adequate cell number and density are vital 

to transplantation success. A disadvantage of the significant cell 

expansion needed to create large numbers of cells is the propensity of 

cells to acquire genetic and epigenetic changes upon long-term culture 

and expansion40-42. Such changes may reduce the efficacy of generating 

specific cell derivatives, or could potentially compromise safety, for 

example by promoting tumour growth. ENCCs offer less tumorigenic 

risk than pluripotent alternatives37, and a more primed ability to form 

these enteric neural subtypes directly25. However, they may not be 

proliferative enough for expansion to required numbers43. Current 

culture methods do not generate enough cells for both characterisation 

and transplantation. Pluripotent cell types expand more quickly in 

culture than postnatal stem cells, which would decrease expansion time 

for generating sufficient numbers. 

Safety of Cell Transplantation 

Human PSCs are becoming more popular as a therapeutic tool and are 

currently being investigated in clinical trials for a number of conditions, 

including macular degeneration, spinal cord injury, diabetes, heart 

disease and Parkinson’s disease44. However, before these cells can safely 

be used in routine therapies, a better understanding of their behaviour, 

and understanding the possible genetic changes that may have 

occurred during their processing, is required.  

Safety discussions to date have focused mainly on possibility of 

teratoma formation from transplanted cells, migration of cells beyond 

the tissue of interest and the occurrence of genetic variation arising 

during cell culture. To mitigate the possibility of teratoma development 

from transplanted cells the appropriate differentiation stage would 
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need to be reached. Cell therapy should consist of administering 

progenitors or differentiated derivatives rather than undifferentiated 

stem cells, and the accidental transplantation of undifferentiated cells 

should be avoided37. With the appropriate checks and characterisation 

of cells the chance of teratomas would be minimal. Another safety issue 

is the spread of the transplanted cells outside the tissue of interest, as 

discussed briefly above. When cells integrate into non-target tissues, 

possibly in combination with (epi)genetic changes, this could have 

profound consequences31. Monitoring the spread of cells is therefore 

crucial and the investigation into methods to ensure that transplanted 

cells remain at the transplantation site is necessary.  

The primary focus of attention should be on the potential (epi)genetic 

changes that may have arisen during creation and culture of PSCs. It is 

these somatic (epi)genetic changes that may have a substantial impact 

on the behaviour of the PSCs and may even lead to malignant 

transformation of the mutated cells45. Monitoring the PSCs for such 

genetic changes is therefore crucial. Discussions are still ongoing on 

how to screen cells and how to interpret the results in order to evaluate 

their significance for the safety of therapeutic applications46. Due to the 

risks associated with significant cell expansion in vitro, the time in 

culture and number of passages of cells should be kept as low as 

possible. Cells should be checked genetically, preferably by exome 

sequencing, before use. As long as the effects of individual genetic 

variants on the PSCs or differentiated cell types are uncertain, and while 

cells are likely to spread from the target tissue, the introduction of a 

conditional suicide gene could provide a fail-safe strategy for 

eliminating cells after transplantation if a problem were to arise46.  
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Other challenges to overcome 

Eventually, with a greater understanding of the development of enteric 

neural subtypes at all levels of GI tract development, reliable induction 

of ENCC-specific differentiation will be possible with iPSC lines. A non-

integrating viral transduction system to iPSCs will further reduce the 

inter-line variability and allow for the patient specific defects to be more 

readily compared. The therapeutic potential of iPSCs is great, they are 

arguably the most valuable tool for personalised regenerative medicine, 

but for their full potential to be realised it will be necessary to recognise 

and correct for their disadvantages. 

As the gut receiving transplantation has developed without ganglia the 

ECM and cellular environment of the tissue may be less receptive to ENS 

cell transplantation. As mentioned above, the creation of a suitable 

transplant agent or cell scaffold system may create a more receptive 

environment for the transplanted cells33,47. It is yet to be established if 

cytotoxicity from inflammation or fibrotic regions of scar formation at 

the anastomotic region in HSCR could make tissues less permissive to 

cell transplant invasion. In spinal cord injury the fibrotic tissue is known 

to be an issue for transplantation and scar ablation is common prior 

administration of cells48. 

Multi-disciplinary Treatment for HSC 

Current standards of care for HSCR patients leave many with poor anal 

sphincter control4,49, and this has been highlighted as a target region for 

initial cell therapy50. Given the safety and other challenges with the use 

of cell therapy that are yet to be overcome, such an approach is unlikely 

to reach the clinic for a number of years, and could have variable success 

rates within patients. In chapter 6, we introduce a novel treatment 
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possibility with the description of a device that could mimic the 

physiological function of the anal sphincter. In HSCR patients the 

constriction of the sphincter can lead to chronic constipation, and the 

damage to the musculature from surgery can lead to continued 

incontinence and anal leakage. There is need for a solution to allow for 

sphincter control for both opening and closing. Current solutions for 

this problem focus on closure, with no solution that will address both 

contraction and relaxation of the muscles51.  

The anal sphincter complex is comprised of the internal anal sphincter 

(IAS) and the external anal sphincter (EAS). It is the combined function 

of these sphincters that allows normal physiological defecation52. 

Function of the IAS is entirely involuntary and controlled by 

parasympathetic nerve fibres and the myenteric plexus whereas the EAS 

is mainly innervated by the pudendal nerve and is under voluntary 

control53. During defecation the increased pressure and stretch from 

bowel contents on the internal sphincter signals for it to relax, which is 

picked up by sensory nerves more distally and by the EAS. The pressure 

is sensed and these combined signals let us know that we need to 

defecate. The voluntary control of the EAS allows us to choose when to 

defecate. The lack of this control is the primary cause of adult faecal 

incontinence, and a number of pathologies can contribute to this54. The 

proposed solution of an electronic prosthetic anal sphincter is a multi-

disciplinary approach, combining surgical techniques with 

microelectronics and physiological function in order to provide patients 

with a modern and convenient solution to anatomical malfunction.  
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Conclusions 

HSCR development is complex and multifaceted. Although the 

overarching RET pathway can account for much of HSCR 

pathophysiology, there remains much to be learned from genetic 

studies. Collection of patient material and inclusion of parents and other 

family members in sequencing and functional cell-based research 

approaches will be instrumental in discovering new candidate genes 

and pathways that contribute to HSCR aetiology. The advancing of 

technologies to reliably sequence small amounts of DNA, and 

identification of methylation and other epigenetic marks will help to 

answer many questions that remain concerning the missing heritability 

observed in familial and sporadic HSCR cases. This, together with the 

understanding of HSCR as a variable symptom in multi-feature and 

syndromic cases, will enable more informative genetic counselling to 

patients and their families.  

Treatment options for HSCR have been stagnant for the past decades, 

and ongoing research is necessary before novel cell therapy approaches 

can be applied in a clinical setting. The differentiation of PSCs to 

appropriate lineages is progressing quickly and, given a concerted effort 

in safety and efficacy trials, clinical application is approaching. A further 

possible option that may be suitable to more patients is the use of an 

electronic prosthetic that could mimic anatomical function. In the future 

this could be used in combination with cell transplantation therapy and 

allow for the training of surrounding tissue and conditioning of 

transplanted cells to function within the anal sphincter complex. 
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Summary 

Hirschsprung disease (HSCR) is a disease of the intestines. It is 

characterised by an absence of the enteric nervous system (ENS) in a 

distal portion of the colon causing a contraction of the muscles and a 

functional obstruction. This results from defects in the differentiation, 

proliferation, migration and/or survival of ENS progenitors during 

development. HSCR can be an isolated trait or be part of a multi-feature 

syndrome. There are multiple developmental pathways which 

contribute to these defects and the genetic background of HSCR is 

complex, ~70% of cases cannot be explained by known genes. 

The possibilities of somatic variations contributing to the development 

of, and accounting for the missing heritability in, HSCR are discussed in 

chapters 2.1 and 2.2. In chapter 2.1 we outline the need for appropriate 

distinction between inherited parental mosaicism and true somatic 

mosaicism, proposing an experimental design to differentiate between 

the two in HSCR patient tissue. In chapter 2.2 this experimental design 

is utilised to look for ENCC specific variation in patient tissue. Although 

somatic variants were present in all included patients, somatic variants 

in HSCR related genes were not. Due to the nature of ENS development 

it is likely that somatic variants could not be identified in the distal colon. 

If damaging somatic variants were to occur in ENCCs, these cells would 

likely be out-competed to ENS niches before reaching these distal 

regions. 

In syndromic cases, HSCR can be a variable feature, the presence of 

common RET variants as well as the type of causative variant may 

influence HSCR development. The presence of HSCR in cases of 

Goldberg-Shprintzen syndrome (GOSHS) is discussed in chapter 3. 
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Pathogenic variations in KIF1 binding protein (KIF1BP) lead to GOSHS. 

A number of patients have been reported in the literature and 

truncating variations in KIF1BP have been found to be causative in all 

sequenced cases. We report nine new patients with KIF1BP variations, 

and functionally investigate three new missense variants which were 

suspected to be pathogenic in two patients with differing phenotypes. 

The three missense variants were found to result in a decrease in KIF1BP 

expression. The variant resulting in the lowest expression was present 

in the patient with the classical GOSHS and HSCR. Common 

predisposing HSCR SNPs were not found to have correlation with the 

presence or absence of HSCR in GOSHS patients. 

Another possible genetic factor for HSCR in syndromic cases is the 

presence of copy number variations (CNVs) that affect dosage sensitive 

HSCR loci. In chapter 4 we compare the size and number of CNVs 

between syndromic and non-syndromic cases of HSCR to find new 

candidate genes/loci. Syndromic HSCR patients with an unknown 

genetic aetiology have more and larger CNVs than isolated HSCR cases 

with a known pathogenic variant. These large CNVs overlap with dose-

sensitive genes which may help to identify candidate genes for HSCR. 

To further look into the underlying pathogenesis of HSCR development 

we created iPSC lines from four patients with different pathogenic 

variations. These cells offer possibilities for disease modelling, 

functional investigation of variants as well opening the door to future 

iPSC-enteric neuron transplantation options. In chapter 5 we present 

the characterisation of these patient-derived iPSCs and explore 

variations in their function compared to iPSCs generated from healthy 

controls. Three out of four of the patient-derived lines differentiated 
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effectively towards a vagal neural crest lineage and expressed 

appropriate markers. The less successful line also showed a markedly 

higher proliferation rate suggesting immaturity in differentiation. High 

seeding density was an important factor in successful differentiation, 

implicating cell-cell contact as vital for neural crest formation. Together 

our data suggest that for many HSCR patients, gene correction may not 

be necessary before transplantation trials. 

In order to bring an expedient option for the treatment of HSCR patients 

who continue to suffer from gastrointestinal problems following the 

current surgical standard of care, we may have to think beyond 

biological interventions. The technological world has arguably been 

able to advance at a faster rate than the development of purely 

biological treatment options. With the advances in microelectronics and 

prosthetic technologies incorporating sensory input, the opportunities 

for developing transplantable devices may be provide a more elegant 

solution than the more primitive prostheses currently available. These 

ideas are discussed in chapter 6, together with a patent proposal for an 

artificial prosthetic sphincter with an anatomically relevant mechanism 

and design which could provide therapeutic options for HSCR patients 

and others suffering from faecal incontinence or loss of anal sphincter 

control. 

In conclusion, the work of this thesis investigates the development of, 

and treatment options for, HSCR. We explore the missing heritability 

that is seen in HSCR, modes of development and differentiation of the 

progenitors of the ENS, suitability of various cell sources for 

transplantation therapy, and explore other possible treatment avenues 

for current and future HSCR patients. 
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Samenvatting 

De ziekte van Hirschsprung (HSCR) is een aangeboren neurologische 

aandoening van het maagdarmkanaal. De ziekte wordt gekenmerkt 

door de afwezigheid van ganglia in het uiteinde van de darm. Ganglia 

zijn groepjes zenuwcellen en gliacellen die behoren tot het enterische 

zenuwstelsel (engels: ENS). Daar waar de ganglia ontbreken trekken de 

spieren samen en veroorzaken zo een verstopping. Het ontbreken van 

ganglia kan het gevolg zijn van fouten in de differentiatie, proliferatie, 

migratie en/of overleving van ENS voorlopercellen tijdens hun 

ontwikkeling. De aanleg / ontwikkeling van het enterische zenuwstelsel 

is complex en dat kan meestal ook gezegd worden van het ontstaan van 

HSCR. De belangrijkste oorzaak voor het ontstaan van HSCR zijn fouten 

(mutaties) in het erfelijk materiaal. Er is één gen dat het meest 

gemuteerd voorkomt en dat is het RET-gen. We vinden mutaties van 

het RET-gen die genoeg veranderingen kunnen veroorzaken om de 

ziekte doen ontstaan, maar, veel vaker vinden we ook variaties die de 

kans op de ziekte verhogen, maar niet veroorzaken. Echter, in ~70% van 

de gevallen kan de volledige oorzaak nog niet worden verklaard door 

mutaties. 

HSCR kan als een op zichzelf staande ziekte voorkomen, maar kan ook 

in combinatie met andere afwijkingen worden gediagnosticeerd; dan 

noemen we het een syndroom.  

Zoals gezegd is de oorzaak van de ziekte veelal erfelijk, en mutaties in 

een groot aantal genen zijn al gevonden. Deze mutaties erft de patiënt 

vaak over van één van de ouders. Soms ontstaan de mutaties in de 

geslachtscellen (dit noemen we ook wel kiembaan mozaïcisme) en heeft 

alleen het kind de genetische afwijking. Maar zelfs als we alle genen 
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screenen vinden we niet altijd een duidelijke verklaring. Een hypothese 

die we hebben onderzocht was of er mutaties voorkomen alleen in het 

ENS. Die mutaties moeten dan tijdens de ontwikkeling van het kind 

ontstaan. We noemen dergelijke mutaties somatische mutaties of 

variaties. Deze hypothese, dat somatische varianten bijdragen aan de 

ontwikkeling van HSCR, wordt besproken in de hoofdstukken 2.1 en 2.2. 

In hoofdstuk 2.1 schetsen we de noodzaak voor een duidelijk 

onderscheid tussen kiembaan mozaïcisme en werkelijk somatisch 

mozaïcisme, en stellen we een toepasbaar experimenteel plan voor om 

in weefsel van HSCR patiënten dit onderscheid ook daadwerkelijk te 

kunnen maken. In hoofdstuk 2.2 wordt van dit experimentele plan 

gebruik gemaakt om te onderzoeken of er in het ENS van patiënten 

inderdaad sprake is van specifieke somatische variaties in de 

zenuwcellen. Alhoewel somatische varianten aanwezig waren in alle 

onderzochte patiënten, vonden we er geen in de genen waarvan bekend 

was dat ze HSCR kunnen veroorzaken. Ook beschrijven we dat, gezien 

de manier waarop het ENS wordt aangelegd, de kans op het vinden van 

somatische varianten niet heel waarschijnlijk is; we denken namelijk dat 

als somatische varianten zouden voorkomen in het ENS, deze cellen 

vermoedelijk weg zouden worden geconcurreerd door gezonde ENS 

specifieke cellen voordat ze deze plek bereiken. 

Zoals gezegd, kan HSCR onderdeel zijn van een syndroom. Eén van de 

bekende syndromen is Goldberg-Shprintzen syndroom (GOSHS). We 

bespreken dit syndroom in hoofdstuk 3. Pathogene varianten in het KIF1 

bindingseiwit (KIF1BP) veroorzaken GOSHS, met HSCR als een variabel 

kenmerk. Alhoewel HSCR geen criterium is voor de diagnose GOSHS, 

zijn er mogelijk wel factoren die er voor zorgen dat deze patiënten HSCR 
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ontwikkelen. Een aantal patiënten zijn beschreven in de literatuur en in 

al die patiënten waarbij DNA geanalyseerd werd, werden varianten 

gevonden die een verkort KIF1BP eiwit tot gevolg hebben. We 

beschrijven negen nieuwe patiënten met varianten in KIF1BP. Ook 

hebben we functioneel onderzoek gedaan naar drie nieuwe missense 

varianten (missense: vervanging van een aminozuur door een ander 

aminozuur), t.w. varianten waarvan we denken dat ze ziektes kunnen 

veroorzaken. We hebben deze varianten gevonden in twee patiënten 

met verschillende fenotypes. De drie missense varianten bleken een 

verlaagde KIF1BP expressie tot gevolg te hebben. De variant met de 

laagste expressie werd gevonden in de patiënt met klassiek GOSHS en 

HSCR. We hebben geen veelvoorkomende veranderingen gevonden die 

gecorreleerd zijn aan de aan- of afwezigheid van HSCR in GOSHS 

patiënten. 

Een andere mogelijk genetische factor voor HSCR in syndromale 

gevallen, is de aanwezigheid van grote variaties in het DNA, d.w.z. grote 

stukken van een chromosoom die extra of juist minder aanwezig zijn. In 

hoofdstuk 4 vergelijken we de grootte en het aantal 

chromosoomafwijkingen (CNVs) tussen syndromale en niet-syndromale 

HSCR patiënten om nieuwe kandidaat genen/loci te vinden. Syndromale 

HSCR patiënten met een onbekende genetische oorzaak hebben meer 

en grotere CNVs dan patiënten met alleen HSCR en een bekende 

ziekteverwekkende mutatie. Deze grote CNVs overlappen met dosis-

gevoelige genen. Deze bevindingen kunnen helpen bij het identificeren 

van nieuwe kandidaat genen voor HSCR.  

Om de onderliggende pathogenese van HSCR verder te onderzoeken, 

hebben we cellijnen gemaakt van geïnduceerde pluripotente stamcellen 
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(engels: iPSCs) van vier patiënten met mutaties in verschillende genen. 

Deze cellen bieden de mogelijkheid om het ziektebeeld te modelleren 

en de varianten functioneel te onderzoeken. Dit type onderzoek opent 

de deur naar toekomstige therapie. We denken dat daar waar de 

neuronen ontbreken deze cellen mogelijk gebruikt kunnen worden voor 

transplantatie in de darm. In hoofdstuk 5 laten we de karakterisering, 

van deze van de patiënt afgeleide cellijnen zien. Ook gaan we na of de 

variaties die we hebben gevonden effect hebben op de cellijnen (we 

vergelijken de patiënten cellijnen met controle cellijnen). Drie van de 

vier van de patiënt afgeleide lijnen lieten geen echte verschillen zien. 

Eén cellijn was anders. De cellijn vermeerderde zich aanmerkelijk sneller 

dan de rest, hetgeen duidt op een onrijpe differentiatie. Een belangrijke 

factor voor het goed groeien is een hoge celdichtheid bij het opgroeien, 

wat er op duidt dat cel-cel contact van vitaal belang is bij de vorming 

van deze cellen. Omdat de meeste cellen geen groot verschil lieten zien 

lijkt het erop dat deze cellijnen geschikt zouden moeten zijn voor 

therapie. 

Om met een doeltreffend alternatief te komen voor de behandeling van 

HSCR patiënten die last blijven houden van gastro-intestinale 

problemen na de huidige standaard operatieve behandeling, moeten 

we verder denken dan de biologische interventies. In de technische 

wereld is de vooruitgang sneller gegaan dan de ontwikkeling op het 

gebied van puur biologische behandelmogelijkheden. Met name de 

vooruitgang in de micro-elektronica en de prothetische technologieën 

die gevoelssensoren weten in te bouwen, bieden mogelijkheden om 

transplanteerbare hulpmiddelen te ontwikkelen. Deze ideeën worden 

besproken in hoofdstuk 6, samen met een patent protocol voor een 

kunstmatige sluitspierprothese met een anatomisch toepasbaar 
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mechanisme en ontwerp. Deze zou kunnen voorzien in therapeutische 

behandelmogelijkheden voor HSCR en andere patiënten die leiden 

onder fecale incontinentie of het gebrek aan controle over de sluitspier. 

Samengevat, het werk gepresenteerd in dit proefschrift, onderzoekt de 

ontwikkeling van, en de behandelmogelijkheden voor, HSCR. We 

hebben gezocht naar erfelijke factoren in HSCR, de wijze van 

ontwikkeling en differentiatie van de ENS voorlopercellen, de 

geschiktheid van cellen met verschillende origine voor transplantatie 

therapieën én andere behandelmogelijkheden voor huidige en 

toekomstige HSCR patiënten.  
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