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Abstract
The inferior olive (IO) is an evolutionarily conserved brain stem structure and its output activity plays a major role in the 
cerebellar computation necessary for controlling the temporal accuracy of motor behavior. The precise timing and syn-
chronization of IO network activity has been attributed to the dendro-dendritic gap junctions mediating electrical coupling 
within the IO nucleus. Thus, the dendritic morphology and spatial arrangement of IO neurons governs how synchronized 
activity emerges in this nucleus. To date, IO neuron structural properties have been characterized in few studies and with 
small numbers of neurons; these investigations have described IO neurons as belonging to two morphologically distinct 
types, “curly” and “straight”. In this work we collect a large number of individual IO neuron morphologies visualized using 
different labeling techniques and present a thorough examination of their morphological properties and spatial arrangement 
within the olivary neuropil. Our results show that the extensive heterogeneity in IO neuron dendritic morphologies occupies 
a continuous range between the classically described “curly” and “straight” types, and that this continuum is well represented 
by a relatively simple measure of “straightness”. Furthermore, we find that IO neuron dendritic trees are often directionally 
oriented. Combined with an examination of cell body density distributions and dendritic orientation of adjacent IO neurons, 
our results suggest that the IO network may be organized into groups of densely coupled neurons interspersed with areas of 
weaker coupling.

Keywords  Dendritic morphometry · Sparse viral labeling · Network structure · Brainstem · Olivo-cerebellar system · 
Neuron reconstructions

Introduction

The inferior olive (IO) provides the sole source of climb-
ing fibers that evoke potent complex spikes in cerebellar 
Purkinje neurons (PNs), and thereby plays a critical role 
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in controlling cerebellar function (Azizi 2007; Jacobson 
et al. 2008; Ito 2013; Llinás 2014; Ten Brinke et al. 2018; 
Streng et al. 2018). The neurons within the IO are exclu-
sively interconnected by dendro-dendritic gap-junctions 
(GJs; Sotelo et al. 1974; De Zeeuw et al. 1989; Placanto-
nakis et al. 2004). The GJ-mediated signaling shapes sub-
threshold oscillations (STOs) and spike timing among cou-
pled IO neurons (De Zeeuw et al. 1998, 2003; Long et al. 
2002; Blenkinsop and Lang 2006; Jacobson et al. 2009; 
Kitazawa and Wolpert 2005; Welsh et al. 1995; Lampl and 
Yarom 1997; Loewenstein et al. 2001; Manor et al. 1997; 
Placantonakis et al. 2006; Torben-Nielsen et al. 2012). 
Thus, the dendritic layout which determines connectivity 
within the nucleus is at the core of the spatiotemporal pat-
terning of IO network activity.

Morphologically, IO neurons have historically been clas-
sified into “curly” and “straight” types (Ramón y Cajal 1995; 
Scheibel and Scheibel 1955; Foster and Peterson 1986). The 
“curly” type is characterized by complex curled dendritic 
trees that branch and bend profusely within a very small 
volume of the neuropil around the soma. In contrast, the 
“straight” neurons have dendrites sparsely occupying a much 
larger volume. As GJs are overwhelmingly located on the IO 
neuron’s dendrites, the different dendritic shapes must lead 
to different connectivity profiles. Nevertheless, relatively lit-
tle is known about the structural properties of IO neurons, 
and quantitative descriptions of different IO neuron mor-
phologies are lacking. One reason for this is that anatomical 
investigations have long been limited to the examination of 
two-dimensional projections of neuronal structures. Using 
more advanced labeling techniques and detailed confocal 
imaging, we can now fully reconstruct and accurately quan-
tify complex dendritic morphologies in 3D.

In this work we constructed an extensive library of IO 
neuron morphologies and give a detailed quantitative 
description of the variability in their morphological proper-
ties and the spatial arrangement of their dendritic arbors. 
Our results reveal that dendritic tree shapes span a contin-
uum between the classically described “curly” and “straight” 
IO neuron morphologies and that dendritic trees are often 
directional. These findings have important implications for 
our understanding of connectivity in the IO network.

Methods

All animal experimental procedures were approved by the 
Hebrew University’s Animal Care and Use Committee, and 
the animal experiment committee of the Royal Netherlands 
Academy of Arts and Sciences (DEC-KNAW) which follows 
the European guidelines for the care and use of laboratory 
animals (Council Directive 86/6009/EEC).

Single neuron labeling

Sparse viral labeling of neurons was achieved by injecting 
a cre-dependent fluorophore-expressing virus mixed with a 
highly diluted cre-expression virus into the IO of juvenile 
or adult mice (6 weeks to 4 months old; all animals were at 
least 10 weeks old after the viral transfection period). The 
Cre-expression virus (AAV9.CamKIIa.cre, Penn Vector 
Core) was diluted (1:3000, 1:3500 or 1:4000) with saline 
in multiple steps, taking care to mix well at each step. The 
diluted viral suspension was then mixed 1:1 with a loxed 
GFP-expression virus (AAV9.CAG.flex.eGFP.bGH, Penn 
Vector Core). Mice were anaesthetized using a mixture 
of ketamine and xylazine (100 mg/kg and 20 mg/kg) and 
head-fixed into a stereotaxic device. The skull over the IO 
was exposed through a single incision into the skin and 
scraping away some of the soft tissue covering the area. 
A single craniotomy, ~ 2 mm wide was then drilled in the 
skull, centered around the midline just behind the posterior 
suture. ~500 nL of the mixture of Cre and lox viruses was 
then slowly injected at 6.5 mm depth, bilaterally to the 
midline using air pressure. After 4–6 weeks incubation 
time, mice were deeply anesthetized with pentobarbital 
and fixed through transcardiac perfusion with 4% para-
formaldehyde (PFA) in phosphate-buffered saline (PBS), 
and brains were post-fixed overnight in the same solution. 
The brains were then washed in PBS and the brain stem 
cut into 150 µm-thick sections in coronal or sagittal plane 
using a Leica VT1000S or Leica VT1200S vibratome 
(Leica Biosystems, Germany) and subsequently mounted 
with prolong gold antifade mounting medium (RI 1.47; 
Thermo Fisher Scientific, MA) under #1.5 coverslip glass 
(Thermo Fisher).

Dye-filling of IO neurons was achieved during in vitro 
patch-clamp experiments on acute brainstem slices (per-
formed by N.V. or S.L., for the purpose of other projects). 
Alexa-labeling of IO neurons was done in 200 µm-thick 
coronal brainstem slices prepared following the “hot” pro-
cedure (Huang and Uusisaari 2013; Ankri et al. 2014); 
in brief, adult mice (3–12 months old) of either sex were 
deeply anesthetized with pentobarbital, decapitated and 
their brain stem extracted from the skull while continu-
ously kept in oxygenated artificial cerebrospinal fluid 
(ACSF) warmed to a temperature of 30–35 °C. The ACSF 
was composed of (in mM) 126 NaCl, 3 KCl, 1.2 kH2PO4, 
26 NaHCO3, 10 glucose, 2.4 CaCl2, 1.3 MgSO4 and con-
tinuously bubbled with carbogen (95% O2/5% CO2). Slices 
were then incubated at 35 °C for at least half an hour and 
then at room temperature. Fluorescent labeling of IO 
neurons was achieved by adding 20–50 µM Alexa-594 
or Alexa-488 Hydrazide (Thermo Fisher Scientific, MA) 
to a patch pipette solution containing (in mM) 4 NaCl, 
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140 K-gluconate, 10 HEPES, 0.01 EGTA, 0.001 CaCl2 and 
4 Mg-ATP (pH adjusted with KOH to 7.2–7.3, osmolality 
290–310 mOsm) during whole-cell recordings performed 
at room temperature. Whole-cell configuration was main-
tained for at least half an hour and slices were incubated 
for an additional half hour after recordings were termi-
nated to allow dye to spread through dendrites. Slices were 
subsequently preserved by fixation in 0.1 M PBS contain-
ing 1% PFA for 30 min and then washed and stored in PBS 
until mounted with Vectashield (RI 1.45; Vector laborato-
ries, CA) and coverslipped. The biocytin-labeling experi-
ments differed on several points: juvenile (4–8-week-old) 
mice of either sex were anesthetized with isoflurane, and 
their brain stem extracted and sliced in ice-cold ACSF. 
Slices were cut sagittally and then incubated at 35 °C for 
half an hour and at room temperature for at least half an 
hour, before being transferred into a recording chamber 
maintained at ~ 32 °C. The ACSF had the same composi-
tion as used in the Alexa-labeling experiments, as was the 
patch pipette solution except in that it contained 5 EGTA 
and 0.5 CaCl2, and 0.1–0.5% (w/v) biocytin (Sigma) was 
added. After recordings were completed, slices containing 
biocytin-filled neurons were fixed in 0.1 M PBS containing 
4% PFA overnight at 4 °C. Slices were then washed three 
times (0.1 M PBS, 10 min at 4 °C), incubated with Alexa 
Fluor 594-conjugated streptavidin (Life technologies, 
2 mg/ml) and 0.6% Triton X-100 (Sigma) in 0.1 M PBS 
(4 h at 4 °C), washed three times (0.1 M PBS, 10 min at 
4 °C), mounted with Dako glycergel fluorescence mount-
ing medium (RI 1.47–1.50; Dako) and coverslipped.

In our examinations of hundreds of IO neurons in both 
sagittal and coronal brain stem slices we noted no overt dif-
ferences in the morphologies’ orientations relative to the 
confocal z-axis, or any tendency for “curlier” or “straighter” 
neurons to be more prevalent in juvenile or adult mice; 
regardless of the experimental conditions, labeled mor-
phologies exhibited extensive heterogeneity covering the 
full range from “curly” to “straight”. We therefore chose to 
consider all the available material together and select only 
the most complete morphologies (see below) for inclusion 
in our library.

Recovery and reconstruction of morphologies

The labelled material was examined and imaged using con-
focal microscopy (Leica SP5 and SP8, Leica Microsystems, 
Germany; Zeiss LSM 510, 710, 780 and 880, Zeiss, Ger-
many). Each mounted section was first scanned with low 
magnification (10×) and a maximal projection of the slice 
was created to record the position of the neurons within the 
IO volume and select candidates for high-resolution stack 
acquisition.

High-magnification confocal image stacks were obtained 
with either 40 or 63× plan-Apochromat objectives (NA 
1.25–1.3) as were available at each confocal system, so that 
resolution ranged from 0.11 to 0.38 µm/pixel in XY plane. 
The sections were oversampled in z-dimension (ranging 
0.1–0.3 µm/z-step) to support correction of the z-axis values 
due to shrinkage factor. The morphologies were manually 
reconstructed using the Vaa3D software (Peng et al. 2010), 
taking care that the reconstructions end up as sorted trees 
with a single root. The shrinkage was estimated from the 
thickness of the mounted section (as measured by confo-
cal visualization) relative to the fresh section and the final 
reconstructions were expanded in z-dimension to account for 
the shrinkage (ranging 1.5–3×).

To ensure that the overall dendritic shape of the mor-
phologies in our library was not distorted, morphologies 
were carefully selected for inclusion based on the com-
pleteness of their 3D reconstruction. Morphologies that 
appeared skewed, due to optical or physical distortions, were 
discarded from analysis. Distal and/or very thin dendrites 
were occasionally difficult to reconstruct in entirety due 
to decreasing signal/noise ratio, and reconstructions were 
discarded if multiple disconnected fine branches could be 
observed around a reconstruction’s dendrite tips in the con-
focal image stack. We also kept track of the number dendrite 
tips occurring at the slice surface counting these as “cut 
tips” and discarded any morphologies that had more than 
half of tips cut, or that had one or more proximal dendrites 
cut at < 50 µm path length. Out of the hundreds of neurons 
examined in confocal image stacks, ~ 150 morphologies 
were reconstructed, and a total of 36, 27 and 29 morpholo-
gies were selected for the viral, Alexa- and biocytin-labeled 
datasets, respectively. The selected morphologies will be 
submitted to NeuroMorpho.org.

Quantification of morphological properties

The included morphologies were first inspected by the 
authors and subjectively labeled as being either “straight”, 
“curly” or “ambiguous” (18, 44 and 30 out of 92 morpholo-
gies, respectively). Subsequently, the 25 parameters, cover-
ing both “within-tree” and “whole-tree” variables (Uylings 
and van Pelt 2002) were obtained as extracted by Vaa3D or 
by custom scripts in MatLab and btmorph (Torben-Nielsen 
2014). The complete list of measurements, together with 
their definition, is provided in Table 1.

Three of the measures obtained by custom scripts were 
defined as follows. Soma-border distance was defined as 
the shortest distance of the reconstruction root node to the 
extrapolated convex hull of the full reconstruction. Soma-
center of mass distance was defined as the distance of the 
root node to the average location of all the nodes of the 
reconstruction. Stem directionality was defined as the length 
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of the vector obtained by sum of all vectors formed from 
reconstruction root node to the first nodes of each dendrite, 
normalized by the number of stem vectors; in this way, a 
soma with one dendrite would have a directionality value of 
1, whereas a soma with dendrites stemming evenly around 
the cell body would approach directionality of 0.

Statistical analyses

Statistical analyses were performed in R (R Core Team 
2018; Wickam et al. 2017, 2018; Fox and Weisberg 2011; 
Wickam 2016; Revelle 2018; Ogle 2018; Peterson and Carl 
2018; Kassambara and Mundt 2017; Venables and Ripley 
2002), unless stated otherwise. The assumption that data 
are sampled from a normal distribution was rejected for 
almost all measures based on the Shapiro–Wilk normal-
ity test (p < 0.1 in each data set for all measures except 
number of stems and average local bifurcation angle). 

Therefore, correlation estimates and p values were calcu-
lated using Spearman’s rank correlation test, and group-
level comparisons in mean and variance were calculated 
using Welch’s ANOVA and Levene’s test for equality of 
variance, respectively.

For performing PCA on the morphometric data per 
dataset, the values of all morphometric features were 
scaled and centered to have zero mean and unit variance. 
We then applied K-means clustering into two clusters to 
the data as represented along the first three components 
of the decomposition (which resulted in nearly identical 
clustering as applying K-means clustering to the data rep-
resented along the first two PCs only).

On individual morphologies, PCA was performed in 
MatLab and applied to the x-, y-, z-coordinates of each 
point on the reconstruction without re-scaling the data 
since variance has the same units in each dimension of 
3D space.

Table 1   The morphometric measures used in the study

Numbers in the first column are used to reference to the measures in Fig. 3c. “Compartment” refers to the variable-length nodes of reconstruc-
tion within which the dendrite thickness and shape is uniform

Measure # Name Description

1 Number of stems Number of primary dendrites
2 Stem diameter—mean Average diameter of dendrite stems (µm)
3 Stem diameter—sum Sum of the diameter of all dendrite stems (µm)
4 Stem diameter—maximum Maximal diameter of dendrite stems (µm)
5 Stem directionality Directionality of dendrite stems; for definition see “Methods”
6 Dendrites—total length The summed length of all of a neuron’s dendrites (µm)
7 Dendrite diameter—mean Average diameter of the dendrites (µm)
8 Dendrites—longest single path length Longest soma-to-tip dendrite path length (µm)
9 Number of bifurcations Number of bifurcation points on the dendritic tree
10 Local bifurcation angle—mean Angle formed at the vertex of a bifurcation, averaged over all bifurcations
11 Remote bifurcation angle—mean Angle to the tips of two daughter branches of a bifurcation, averaged over all bifurcations
12 Number of branches Number of segments (between two branch points or between a branch point and a tip)
13 Branch order—maximum The number of branches coming off the most-branching dendrite on the tree
14 Number of tips Number of dendrite terminal points within the imaged slice
15 Number of cut tips Number of dendrites running out of the imaged slice
16 Number of tips—total Total number of dendrite terminal points on the reconstructed morphology
17 Soma area Area of the 2D projection of the soma
18 Hull volume Volume of the convex hull containing all of the neuron’s dendrites (µm3)
19 Soma-to-hull distance Smallest distance between the soma and the hull containing all of the neuron’s dendrites 

(µm)
20 Soma-to-center of gravity distance Distance between the soma and the average of all points of the reconstructed morphology 

(µm)
21 Reach—maximum Furthest reach of the dendritic tree away from the soma (µm)
22 Straightness Maximal reach divided by maximal path length
23 Mean contraction Furthest reach divided by longest path length of each tree arising from the primary den-

drites, averaged over the number of primary dendrites
24 Hausdorff dimension Measure of fractal dimension (Mizrahi et al. 2000)
25 Mean fragmentation Number of compartments that form a branch between two bifurcation points, or between a 

bifurcation and a terminal tip
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Reconstruction and analysis of IO soma distribution

For analyzing the spatial distribution and clustering of IO 
somata, we used two mice obtained from a PDX-cre (Song 
et al. 2010) X Ai9 (Madisen et al. 2010) mating, resulting in 
strong expression of tdTomato in IO neurons. The mice were 
perfusion-fixed and their brains sectioned and mounted as 
described above, and all somata on one hemisphere in both 
animals were reconstructed manually for each subnucleus 
using Fiji software (Schindelin et al. 2012).

The density distribution of IO somata was estimated by 
3D binning the somata in voxels of 10 µm3, and subsequently 
applying an isotropic 3D-gaussian kernel to account for bin-
ning artifacts. The standard deviation parameter utilized for 
the 3D kernel was 4. To test the null-hypothesis that the den-
sity of somata was isotropic, the distribution of voxel densi-
ties of the data was compared to a volume bootstrapping 
the somata densities assuming a uniform density. Thus, the 
bootstrap was constructed by drawing somata counts from 
a uniform distribution within the bounded volume formed 
by the non-zero somata voxels. The density per voxel in the 
uniform distribution is simply the total somata count in the 
actual subnucleus divided by the total volume included in 
non-zero voxels. A two-sample Kolmogorov–Smirnov test 
was used to compare the distributions.

Presence of local soma clusters was examined using the 
DBSCAN algorithm (Ram et  al. 2010) implemented in 
MatLab. This algorithm assigns cluster membership to any 
group of at least N somata where any one soma within the 
cluster is at most D µm removed from another cluster mem-
ber. Clustering was explored for values of D ranging from 15 
to 100 µm and values of N ranging from 3 to 20.

Results

Variability of IO dendritic morphology

We used a sparse viral labeling technique to induce strong 
fluorescent labeling in a small number of neurons in a given 
IO (Fig. 1a, b) as well as IO neurons that were labeled using 
either Alexa (488 or 594) or Biocytin during in vitro patch-
clamp experiments (see “Methods”). Confocal image stacks 
were acquired from the labeled tissue and a total of 90 manu-
ally reconstructed morphologies were analyzed (see “Meth-
ods”). Except for two neurons from the dorsal cap of Kooy 
(DCK)-subnucleus (which has been shown to be pheno-
typically distinct from the main IO subnuclei; Urbano et al. 
2006), neurons from all IO subnuclei were included in our 
analyses. The different methods of neuronal labeling lead to 
some variability in the quality of the confocal image stacks; 
specifically, the viral-labeled material was of higher quality 
regarding the ratio between signal strength and background 

noise. Nonetheless, qualitative differences between morphol-
ogies reconstructed from the differently labeled materials 
were not immediately apparent (see Fig. 1c–f). To exemplify 
morphologies from each of the three data sets, Fig. 1c–e 
show maximal Z-projections of confocal stacks from viral-, 
Alexa- and biocytin-labeled data, respectively; the corre-
sponding reconstructed morphologies are shown in the left 
column in Fig. 1f. Additional examples of morphologies 
reconstructed from the three datasets are shown in the mid-
dle and right columns of Fig. 1f, indicating a progression 
from “very curly” (left column) to “very straight” (right col-
umn) morphologies in each of the three data sets.

Examining the full morphological library, both “clearly 
curly” (30 out of 90; Fig. 1f, left column) and “clearly 
straight” morphologies (16 out of 90; Fig. 1f, right col-
umn) could be subjectively identified. However, categorical 
distinction was ambiguous, as a significant portion of the 
morphologies could not be easily classified (44 out of 90; 
examples are shown in Fig. 1f, middle column).

It has been previously considered that IO neurons with 
subjectively straight and curly appearance would be anatom-
ically segregated into different parts of the olivary nucleus 
(Scheibel and Scheibel 1955; Ruigrok et al. 1990). However, 
we found that “curly” and “straight” neurons could be found 
within each of the main IO subnuclei. This is demonstrated 
in Fig. 1g, where morphologies from different sources are 
shown at their anatomical locations approximated at two 
different levels of the anterio-posterior axis (see “Meth-
ods”). These results demonstrate extensive morphological 
heterogeneity in IO neuron dendritic morphologies across 
all subdivisions of the nucleus.

Quantitative analyses reveal a continuum 
in neuronal morphology

While the ambiguity of dendritic morphologies seemed to 
rule out clear classification, we investigated whether features 
distinguishing between IO cell classes could be revealed 
using a quantitative approach. To this end we measured 25 
morphometric parameters from each of the reconstructed 
neurons (see Table 1 and “Methods” for measurement defini-
tions). The measured parameters included basic ones such as 
the number of dendrite stems, number of branches, dendritic 
path length and maximal reach (see Fig. 2a). We also meas-
ured a number of parameters aimed at describing the overall 
shape of the dendritic trees; most prominent among these 
(as explained below) is “straightness”, which was defined as 
maximal reach divided by the longest single dendrite path 
length.

Examining the distributions of morphological parameter 
values, we noted that there are some differences between 
the three groups of neurons reconstructed from material 
obtained using different labeling methods. The outcome of 
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Fig. 1   Fluorescent labeling of 
IO neurons reveals complex 
morphologies. a Maximal 
projection of a 100 µm-thick 
confocal image stack of a 
coronal brain stem slice labeled 
sparsely by viral transfection 
(1:3500 dilution of cre-
expression virus). IO borders 
are marked with a white dotted 
line. Scale bar 100 µm. b as 
in a, but with 1:4000 dilution. 
c–e Confocal image z-stacks 
exemplifying “very curly” IO 
neurons as revealed by viral 
(c), Alexa-594 (d) or biocytin 
(e) staining. Scale bar 20 µm. 
f Examples of reconstructed 
morphologies from the three 
data sets (as in c–e) ranging 
from “very curly” (left column, 
same examples as shown in 
c–e) to “straight” (rightmost 
column). Note that the scale 
varies between subpanels and 
perspective; scale bars represent 
20 µm in the xy plane. Encircled 
numbers denote reconstruction 
IDs as referred to in the text. g 
A composite drawing showing 
the shape and orientation of a 
selection of the morphologies 
within the volume of the IO. 
Note the presence of curly and 
straight neurons in all subnuclei 
(abbreviations: PO principal 
olive, DAO dorsal accessory 
olive, MAO medial accessory 
olive)
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statistical tests performed to assess differences across groups 
are summarized in Table 2 and show that group means were 
significantly different on almost all measures. Thus, we per-
formed quantitative analyses of morphometric measures on 
each of the three data sets separately.

In an ideal and simple case, a distinction between groups 
is implied by a clear bi- or multimodal distribution in one 
or more features. However, we observed no immediately 

apparent groupings in the distributions of any of the meas-
ured parameters. To exemplify the variability in morpho-
logical parameter distributions, histograms of maximal 
reach, number of stems, number of branches, total dendrite 
length and straightness are shown in Fig. 2b–e for each data 
set as indicated in the legend, demonstrating that there are 
no clear multimodal distributions in any of the data sets. 
Nonetheless, it was evident that IO neurons do not form a 

Fig. 2   Morphological proper-
ties of IO neurons quantified. a 
Schematic illustration of some 
of the basic morphological 
parameters used to character-
ize the dendritic morphologies. 
Maximal dendritic reach is 
defined as the furthest reach of 
the dendritic tree away from the 
soma; the longest single path 
length is defined as the longest 
soma-to-tip path length on a 
dendritic tree; and straight-
ness is defined as the maximal 
dendritic reach divided by 
the longest single dendrite 
path length. For a list of all 
morphometric parameters and 
their definitions, see Table 1. 
Distributions of maximal 
dendritic reach (b), number of 
dendrite stems emerging from 
the soma (c), number of branch 
points on the dendritic trees 
(d) and straightness (e) in each 
of the three data sets; shadings 
refer to morphologies recovered 
using different labeling methods 
as indicated. Distributions of 
number of dendrite stems (f), 
number of branch points (g) 
and total dendritic length (h) 
with respect to straightness in 
the viral-labeled data; the same 
distributions in the Alexa- and 
biotin-labeled data sets are 
displayed in Supplementary 
Fig. 1. Reported correlation 
statistics represent the strength 
and direction (Rho) and signifi-
cance level (p) calculated using 
Spearman’s rank correlation test 
(see “Methods”). Correlations 
between straightness and all 
other morphological measures 
are reported in the right half 
of Table 2 for each of the three 
data sets
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single population with normally distributed inter-individual 
variability: as shown in Table 3, we found that in each data 
set, the null-hypothesis that data are sampled from a single 
normal distribution should be rejected for almost all meas-
ures except number of stems and local bifurcation angle. To 
enumerate the distributions of the measured morphological 
parameters, Table 4 displays the minimal, mean, median 
and maximal values of each parameter distribution in each 
data set. Taken together, while we should conclude that the 
observed morphological heterogeneity is unlikely to result 
from normally distributed inter-individual variability in a 
single neuronal population, we did not find any single mor-
phometric parameter that would clearly distinguish between 
morphologically different classes of neurons.

We then asked which of the objectively defined mor-
phological parameters could best be used to describe the 
subjectively perceived range of variability from “curly” to 
“straight” by calculating the Spearman correlation between 
the subjectively assigned categories (curly, ambiguous and 

straight) and each of the measured parameters (Table 5, left 
side). Of all the different measures describing dendritic 
tree shape, straightness best corresponded to our subjec-
tive categorization across all three datasets; therefore, we 
chose this measure as an objective representation of a neu-
ron’s position along the curly–straight continuum. Notably, 
besides measures directly aimed at describing the dendritic 
tree shape we found that in each data set at least one other 
measure was also correlated with the subjectively assigned 
classes (see Table 5); for example, in all three datasets the 
number of dendrite tips was significantly correlated with 
subjective class such that the “straight” neurons had the few-
est tips. Similarly, these correlations could be found with 
the straightness-parameter instead of subjective class; for 
example, the number of stems and branches are strongly 
correlated both to subjective class and straightness in the 
viral- and Alexa-labeled datasets (see Table 5). Correlation 
statistics between straightness and all other morphometric 
parameters are reported on the right side in Table 5, and 

Table 2   Significance of group-
level differences in mean (left 
column) and variance (right 
column)

Values reflect p levels calculated using Welch’s ANOVA (left) and Levene’s test (right), for each of the 
morphological parameters as indicated in each row. Values highlighted in bold indicate measures on which 
morphological parameter distributions across the three data sets were significantly different in their mean/
variance, respectively

Measure names Welch’s ANOVA Levene’s test for 
equality of vari-
ance

Number of stems < 0.0001 0.2562
Stem diameter—mean 0.0129 0.7094
Stem diameter—sum < 0.0001 0.0071
Stem diameter—maximum 0.0004 0.4644
Stem directionality 0.5522 0.8356
Dendrites—total length < 0.0001 0.0743
Dendrite diameter—mean 0.0005 0.6540
Dendrites—longest single path length < 0.0001 0.3177
Number of bifurcations < 0.0001 < 0.0001
Local bifurcation angle—mean 0.2153 0.1322
Remote bifurcation angle—mean 0.7173 0.1410
Number of branches < 0.0001 < 0.0001
Branch order—maximum 0.0002 0.0295
Number of tips 0.0065 0.0460
Number of cut tips 0.0006 0.1199
Number of tips—total < 0.0001 0.0332
Soma area < 0.0001 0.0279
Hull volume 0.0152 0.3412
Soma-to-hull distance 0.0076 0.0862
Soma-to-center of gravity distance 0.0138 0.2072
Reach—maximum 0.0522 0.3715
Straightness 0.0543 0.0755
Mean contraction < 0.0001 0.2088
Hausdorff dimension 0.0002 0.0123
Mean fragmentation 0.0016 0.3353
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as examples, correlations of straightness to the number of 
stems, branches and total length are shown in Fig. 2f–h for 
the data obtained from viral-labeled morphologies; correla-
tions between these parameters in the other two data sets fol-
low the same trends and are shown in Supplementary Fig. 1.

Taking another approach to assessing which properties 
might best distinguish “curly” from “straight” morpholo-
gies we performed principal component analysis (PCA) and 
K-means clustering on the quantified morphological data 
(see “Methods”). If distinct morphological classes could be 
defined based on a combination of parameters, then dimen-
sionality reduction of the data through PCA would result in 
a gap between groups of data points belonging to different 
classes. Due to the previously mentioned quantitative differ-
ences between the three data sets, the PCA-decomposition 
and K-means clustering results also vary quantitatively 
across data sets; nonetheless, the obtained results were 
qualitatively similar in each case, and are shown for viral-
labeled data in Fig. 3 while the results of the same analyses 
performed on the patch-filled data sets are provided in Sup-
plementary Fig. 2.

As shown in Fig. 3a, we found that a clear gap between 
groups of data points did not become apparent in the distri-
bution of the data along the first two principal components 
(PC1 and PC2) of the PCA-decomposed morphometric data. 
To get an objective distinction into two groups despite this 
result, we applied a K-means clustering algorithm to the 
data as represented along the principal component axes 
(see “Methods”) and found that the algorithmic distinction 
between groups was defined almost exclusively along PC1; 
this is shown in Fig. 3a by the almost vertical grey dashed 
line marking the border between the two clusters. More 
than that, PC1 appeared to follow our subjective classifica-
tion of the IO neuron morphological types; this is appar-
ent in Fig. 3a in that most morphologies that were subjec-
tively classified as being “curly” are found on the left side, 
while subjectively “straight” morphologies are all found 
on the right and “ambiguous” morphologies are mostly in 
between. Thus, it seems that PC1 closely follows the curly-
to-straight continuum, and that “curly” and “straight” are 
indeed relevant descriptors of the morphological variability 
among IO neurons, i.e., a classification based on features 

Table 3   Likelihoods of 
normality

Values reflect p levels calculated using the Shapiro–Wilk normality test for each measure as indicated in 
each row, for each of the three data sets as indicated on the top of each column. Distributions that are 
unlikely to reflect a normal distribution are highlighted in italics (p < 0.1) and bold (p < 0.05)

Measure names Viral-labeled Alexa-labeled Biotin-labeled

Number of stems 0.1355 0.1881 0.1440
Stem diameter—mean 0.1712 0.0078 0.0366
Stem diameter—sum 0.8794 0.5099 0.0007
Stem diameter—maximum 0.0068 0.0097 0.0298
Stem directionality 0.1491 0.0814 0.6311
Dendrites—total length 0.0003 0.0689 0.1586
Dendrite diameter—mean 0.2036 0.6204 0.0056
Dendrites—longest single path length 0.0010 0.2313 0.0009
Number of bifurcations 0.0012 0.1020 0.0007
Local bifurcation angle—mean 0.2128 0.7908 0.5166
Remote bifurcation angle—mean 0.2437 0.0913 0.7735
Number of branches 0.0015 0.1663 0.0010
Branch order—maximum 0.0812 0.0066 0.0052
Number of tips 0.0892 0.0368 0.0040
Number of cut tips 0.0826 0.2140 0.0004
Number of tips—total 0.0144 0.1568 0.0003
Soma area 0.8722 0.0006 0.0408
Hull volume < 0.0001 0.0059 < 0.0001
Soma-to-hull distance 0.0043 0.0039 0.0011
Soma-to-center of gravity distance < 0.0001 < 0.0001 0.0613
Reach—maximum 0.0019 0.2754 0.0099
Straightness 0.0349 0.3158 0.0946
Mean contraction 0.0453 0.0892 0.1451
Hausdorff dimension 0.0545 0.5955 0.1031
Mean fragmentation 0.0101 0.6274 0.0132
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unrelated to morphological “straightness” was not found. 
This idea was also reflected in the strong and significant cor-
relation between PC1 and straightness (Fig. 3b, Rho = 0.84, 
p < 0.0001).

Our quantified morphometric data set contains mul-
tiple parameters aimed at describing the overall shape of 
dendritic trees; such parameters are correlated with each 
other by definition, and this may artificially cause the main 
principal component to follow measures of dendritic tree 
shape. However, as depicted in Fig. 3c where the relative 
contribution of each measure to the first two PCs is displayed 
on a scale from 0 to 1 for the viral-labeled morphologies, 
measures such as the number of stems and branches also 
contributed strongly to the separation along PC1. This shows 
that properties not directly describing dendritic tree shape 
also vary systematically with the measured straightness of 
the morphologies, and further strengthens our confidence 
that the curly–straight axis is the most relevant descriptor 
of morphological variability in the IO neuron population.

Taken together, the results described so far do not support 
the idea that IO neurons could or should be classified into 
subtypes based on their morphological appearance. Further-
more, these results indicate that a description of the morpho-
logical variability based on the simple straightness-measure 
is as informative as a description based on a decomposition 
of the quantified data.

Non‑isomorphic IO dendrite fields

Non-isomorphic, or “pyriform” IO neuron dendritic fields 
have been described as early as the anatomical work of 
Ramón y Cajal (first published between 1905 and 1911); 
however, it has been assumed that such directionality arises 
only in the proximity of borders of the IO or its different 

subnuclei and that IO neurons residing within the main IO 
volume have roughly spherical shapes with somata sur-
rounded by dendrites on all sides (Ramón y Cajal 1995; 
Scheibel and Scheibel 1955). Contrary to this description 
we found that neurons with directionally extended den-
dritic trees were also regularly encountered at distances far 
(> 75 µm) removed from boundaries of IO subnuclei (see 
Fig. 1a, g). In the following paragraphs we present two 
descriptors of dendritic directionality in IO neurons, one 
pertaining to the distribution of dendrites within the 3D 
volume occupied by the neuron (Fig. 4a), and one pertain-
ing to the location of the soma within the dendritic volume 
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Fig. 3   Algorithmic classification does not reveal clearly separated 
clusters. a Algorithmic classification shown as a scatter along the first 
two principal components (PCs) of separation for the viral-labeled 
data set. The grey dashed line marks the division into “curly” and 
“straight” groups as determined by a K-means algorithm; fill color 
represents subjective classification, as indicated. Note that the separa-
tion along the first principal component (PC1) appears to correspond 
to the subjective classification into morphological subtypes: subjec-
tively “straight” neurons occupy the far-right side of the distribution 
while “ambiguous” and “curly” neurons are found in the middle and 
to the left. The slight mismatch between the subjective and algorith-
mic classification into “curly” and “straight” morphological types is 
another indication that seeking a quantitative justification for the sub-
jective typification is futile. b Correlation of the main axis of separa-
tion to “straightness” in the viral-labeled data set; fill color represents 
subjective classification as indicated. c Relative contributions of the 
25 morphometric parameters to the principal component separation in 
the viral-labeled data set. Numbers in circles correspond to the meas-
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(Fig. 4b). As no more correlation statistics will be presented, 
data acquired using different labeling methods are shown 
overlaid in the same panel, using different symbols to mark 
the different data sets as indicated.

There are two distinct ways in which the dendritic 
arrangement of an individual IO neuron can be non-homoge-
neous. First, the neuron’s dendrites are not distributed evenly 

within a spherical volume. We quantified this by perform-
ing PCA on the x-, y-, z-coordinates of the dendritic tree 
of each individual morphology. The relative proportions of 
variance explained along each of the three principal com-
ponents (PCs) of a decomposed morphology represent the 
“stretchedness” of the dendritic tree along the axes of 3D 
space; if dendrites are distributed evenly within a spherical 
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Fig. 4   IO neuron morphologies with spherical dendritic fields and 
somata in the center are rare. a Scatter plot showing the percent-
age of variance explained by the first two principal components of 
the decomposition of IO neuron morphologies. The schematic line 
drawing insets in the plot illustrate the transition from “spherical” 
to “directional” dendritic field shapes. Colored points correspond to 
examples shown in panel d, while numbered points refer to examples 
shown in Fig. 1f. Symbols correspond to morphologies from the three 
datasets as indicated. b Scatter plot showing the distance from the 
soma to the extrapolated border of the neuron’s dendritic field (soma-
border (SB) distance) relative to the distance from the soma to the 
center of mass of the dendritic arbor (S-CoM distance). Schematic 
line drawings illustrate the transition from “eccentric” to “centered” 
somata within an idealized, ovaloid dendritic field shape. Dotted line 
depicts unity, highlighting that the majority of neurons have somata 
much closer to the border than to the center of the volume they 
occupy. Numbers, symbols and colors used as in a. c Distribution of 

dendritic stem directionality with respect to number of stems. Insets 
in the plot schematically depict the variation from isomorphic (left) to 
directional (right). Note that the morphologies shown as examples in 
Figs. 1f and 4d have mostly isomorphically extending dendrite stems. 
Numbers, symbols and colors used as in a. d Additional examples of 
IO neuron morphologies. Colored circles denote morphologies from 
the viral-labeled data set; colored x’s denote morphologies from the 
biotin-labeled data. The orange and red morphologies are the only 
two examples in our library in which dendrites densely surround the 
soma on all sides. The morphologies marked with green and pink 
exemplify extreme (though not infrequent) examples of soma eccen-
tricity. The morphologies marked with blue and cyan are examples 
of extremely extensive IO neuron morphologies with dendritic trees 
spreading far and wide in almost every direction around the soma. 
Note that the scale in the reconstructions varies according to viewing 
angle; somata are 15–18 µm in diameter
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volume, each PC would explain 33% of the variance. Fig-
ure 4a shows that a large portion of neurons occupy a highly 
uneven volume with the first PC explaining more than 60% 
of their ‘variance in space’, whereas very few neurons are 
even roughly spherically shaped. As the examples shown 
in Fig. 4d illustrate, there is a continuum of dendritic tree 
shapes ranging from spherical (orange, red, and pink exam-
ples) to ellipsoid (green) to conical (blue) and even flat 
(cyan) morphologies. Notably, while the “straightest” mor-
phologies were almost always highly elongated (see posi-
tions of examples 7–9 from Fig. 1 and the examples marked 
with blue and cyan in Fig. 4d), very “curly” morphologies 
also tended to have elongated shapes (see Fig. 1, example 3 
and the example marked with green in Fig. 4d).

Second, IO neuron somata are usually not located in the 
center of mass (CoM) of the dendrites; instead, we found 
that in more than 90% of all neurons the shortest distance 
between the soma and the border of the volume they occupy 
(soma-border (SB) distance) is smaller than the soma-CoM 
distance (Fig. 4b). This means that IO neuron dendrites do 
not uniformly occupy the space around the soma, but instead 
extend into a preferred direction. In contrast to the direc-
tionality of the overall dendritic mass, the directionality in 
the positioning of dendrite stems on the soma is distributed 
randomly (Fig. 4c), so that directionality arises because den-
drites take a sharp turn as they emerge from the soma and 
branch profusely only in the main direction.

Taken together, these results show that IO neuron den-
dritic trees are directional and indicate that this directionality 
is a relevant feature of the network’s architecture.

Influence of dendrite directionality on network 
connectivity

As a final step in this anatomical investigation, we exam-
ined how the morphological variability and dendritic 
directionality might interplay in determining connectiv-
ity in the IO network. To this end, we first examined the 
distribution of IO neuron somata within the volume of 
the nucleus by manually reconstructing all 11,800 somata 
from one side of an entire rostro-caudal extent of an IO 
(Fig. 5a, “Methods”). While we found that the distribution 
of IO neuron somata is less homogeneous than would be 
expected if they were distributed uniformly within the IO 
volume (Fig. 5b), the inhomogeneities in the somata dis-
tribution were too weak to define anatomically segregated 
groups of neurons based on inter-soma distances alone. 
In fact, distance-based algorithmic clustering of somata 
showed that anatomically, somata are all grouped together 
into a single large cluster for inter-soma distances as small 
as 40 µm (Fig. 5c). Since all reconstructed morphologies 
have a reach of at least 35 µm, and the majority reach 
beyond 100 µm (see Fig. 2b), this result would indicate 
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that IO neurons form a single, large interconnected mesh 
network. However, this assessment does not take into con-
sideration that IO neuron dendritic trees can be strongly 
directional, as described in the previous paragraphs.

What connectivity properties may be bestowed on the 
IO network by the directionality in dendritic trees? We 
obtained data indicative of an answer to this question in 
experiments where labeling was less sparse than described 
so far, allowing us to occasionally visualize pairs or groups 
of neighboring neurons. In this material we observed 
that pairs of neighboring, directional morphologies were 
arranged such that their dendritic fields either expressly 
overlapped (Fig. 6a) or avoided each other nearly entirely 
(Fig. 6b). Furthermore, in rare cases where many nearby 
neurons could be reconstructed, their dendrites extensively 
overlapped and somata were located at the outer rim of the 
group of neurons (Fig. 6c). Thus, an attractive possibility 
is that the directionality of IO neuron dendritic trees, as 
well as their varying dendritic tree shapes, delineate ana-
tomically segregated areas of mostly dense or more sparse 
connectivity.

Discussion

In this study we provide a detailed, quantitative descrip-
tion of the morphological properties of a large sample 
of individual IO neurons and show that the heterogene-
ity in dendritic tree shapes spans a continuum between 
the “curly” and “straight” morphological types, defying 
this classical categorization. Furthermore, we find that IO 
neuron dendritic arbors are often clearly directional. In 
combination with our examination of their spatial distribu-
tion within the IO volume and their orientation relative to 
each other this leads to new ideas regarding the layout of 
connectivity within the IO network.

In the following paragraphs, we will first discuss some 
issues related to the description and classification of 
IO neuron morphologies, before delving into questions 
related to the significance of our findings for IO network 
architecture.

Morphological characterization of IO neurons

Defining cell types has always been a major undertaking 
in neuroscience, as the layout of neuronal structures is of 
direct consequence to the connectivity, and thereby the 
function, of neuronal systems (Mukamel and Ngai 2018). 
Neurons in the IO network have classically been described 
as belonging either to the “curly” or “straight” subtype; 
however, this classification has always been subjective, 
and generalizable quantitative definitions of the classes 
are lacking. In this study, we give a detailed quantitative 
description of IO neuron morphological properties and 
find that the inter-individual variability is best described 
as encompassing a continuum along the curly-to-straight 
axis. To our knowledge, the included 90 morphologies 
form the most extensive collection of IO neuron recon-
structions to date. Nonetheless, there are several issues 
pertaining to the labeling, sampling and statistical analysis 
of our library of IO neuron morphologies that need to be 
addressed.

First, it should be noted that the different methods for 
staining individual IO neurons lead to slightly differ-
ing data sets. Sparse viral transfection with fluorescent 
reporter proteins effectively reveals full individual neurons 
with minimal staining in the background; thus, even the 
most densely twisting, extremely “curly” morphologies 
could be reconstructed in fine detail. In contrast, recon-
structions made of neurons patch-filled with either Alexa 
or biocytin may often underestimate the full extent of the 
dendritic arborizations, as incomplete penetration of the 
dye can leave parts of dendrites invisible. In our library, 
this is reflected in the overall lower number of branches in 

Fig. 6   IO neuron dendritic tree arrangements relative to their neigh-
bors suggest anatomical clustering of dendro-dendritic connectivity 
in the network. Schematic illustrations of dendritic field positioning 
are shown on the left, while the two right panels show reconstructed 
morphologies from two different viewing angles (a–c). a A pair of 
neurons with overlapping, directional dendritic trees. b A pair of neu-
rons with proximally placed somata, but non-overlapping dendritic 
fields. c A group of neurons with somata residing at the outer rim of 
their overlapping dendritic fields
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both patch-filled data sets, and the relatively short over-
all length of Alexa-filled morphologies (see Fig. 2b–e; 
Table 2). Furthermore, the different sample preparation 
methods used for viral-labeled and patch-filled cells may 
result in geometrical inconsistencies due to tissue shrink-
ing and/or deformation during the experiment. Neverthe-
less, the general similarity of measurement distributions 
across the three datasets strongly suggests that even some-
what incomplete and deformed morphologies provide reli-
able information on the extent of a neuron’s “curliness”.

Another point requiring consideration is that we selected 
neuron morphologies for reconstruction based on the com-
pleteness of their being contained within the slice (see “Meth-
ods”); and since “curlier” neurons tend to occupy smaller vol-
umes, they were less likely than their “straighter” counterparts 
to be excluded based on having multiple dendrites cut off at 
the slice surface. This issue is particularly prominent in the 
neurons labeled with biocytin which were often very close to 
the slice surface and selected for reconstruction only if their 
dendrites could be seen to extend down into the slice, while 
being much less apparent in the Alexa-labeled data because 
care was taken to patch neurons residing deeper (> 40 µm) in 
the slice. In addition, and in contrast to the more homogenous 
tissue sample set obtained from perfusion-fixed brains, the 
shape of post-fixed acute slices is affected by details of the 
in vitro experiment, making it difficult to ascertain uniform 
geometry especially in z-dimension.

Given the extensive morphological heterogeneity and 
the fact that the morphologies in our library were selected 
for inclusion based on the completeness of the reconstruc-
tion, it should be noted that our sample encompassing 90 
morphologies does not necessarily reflect the distribution 
of morphological properties in the IO neuron population in 
an accurate and statistically representative manner. It is pos-
sible that overlapping, yet distinct morphological categories 
could be characterized in the full population encompassing 
more than 20,000 neurons in a single mouse IO (see Fig. 5). 
The reasons enumerated above also preclude us from mak-
ing any claims about the relative proportions of “curlier” 
and “straighter” morphologies in the IO neuron population 
based on the samples included in our library. Nevertheless, 
as our investigation uncovered the same trend of continuity 
in morphological properties in each of three independently 
acquired data sets, we can confidently state that if a catego-
rization of IO neuron types does exist, the type of an indi-
vidual IO neuron cannot be deduced with certainty from its 
morphological properties alone.

Significance of morphological variability 
and directionality for network architecture

The IO network is often implicitly considered as a homo-
geneously coupled mesh of neurons. However, such an 

organization would be computationally inefficient, and 
possibilities for delineating functional neuronal subgroups 
through modulation of GJ coupling between IO neurons 
have been examined through theoretical and experimental 
approaches alike (Benardo and Foster 1986; De Zeeuw et al. 
1998; Tokuda et al. 2013; Pereda et al. 2013; Kazantsev 
et al. 2003; Blenkinsop and Lang 2006; Chaumont et al. 
2013; de Zeeuw et al. 2011). For example, functional sub-
groups could be defined by inhibitory inputs shunting GJ 
currents between IO neurons, thereby effectively decoupling 
them (Llinas 1974; Lefler et al. 2014). The results presented 
in this paper are relevant to our understanding of the mech-
anisms generating synchronized activity in groups of IO 
neurons because they suggest that alongside the dynamic 
modulation of electrical coupling, the layout of coupling 
in the IO network is also defined in the variable density of 
dendro-dendritic overlap between neighboring IO neurons. 
Specifically, our results show that IO neuron morphologies 
have directional shapes (see Fig. 4a) and that somata are 
most often found at an eccentric location within the dendritic 
volume (see Fig. 4b). Importantly, such directionality occurs 
regardless of the distance between an IO neuron’s soma and 
the border of the subnucleus it resides in (see Fig. 1a, g). 
Thus, it is evident that the distribution of IO neuron somata 
(see Fig. 5) by itself is not directly indicative of the layout 
of functional connectivity between individual IO neurons.

Further evidence for a structured layout of electrical 
coupling in the IO network comes from examining the ori-
entation of IO neuron dendritic trees relative to those of 
their neighbors. Examples where nearby directional neu-
rons are labeled imply that IO neurons with closely situated 
somata need not necessarily form electrical connections 
(see Fig. 6b), and that dendritic directionality can deline-
ate small subsets of IO neurons whose dendrites overlap 
with each other (see Fig. 6c). Thus, it is likely that the den-
dritic directionality delineates boundaries between groups of 
neurons, such that neurons residing within the same group 
are coupled to each other more tightly than to other neu-
rons in the network. A network architecture like this has 
been previously proposed (Torben-Nielsen et al. 2012) as 
a mechanistic explanation for experimental observations of 
synchronized activity in groups of nearby IO neurons and 
propagating waves of oscillatory activity in slices (Leznik 
et al. 2002; Rekling et al. 2012; Kølvraa et al. 2014). Fur-
thermore, experiments using tracer-diffusion as a measure 
of GJ-connectivity between IO neurons have shown that the 
extent and strength of coupling is heterogeneous and that 
coupled neurons usually reside within the dendritic field 
of the primary labeled neuron (Hoge et al. 2011), which is 
in line with the idea that there exist anatomical boundaries 
between groups of neurons in the IO network.

In the same way that dendritic directionality likely under-
lies functional clustering of IO neurons, dendritic curliness 
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is likely to be the structural correlate of especially extensive 
dendro-dendritic coupling. Considering this, we propose that 
the straighter and less-directional neurons may function to 
provide weaker electrical coupling across different clus-
ters in the network, effectively forming “bridges” between 
them. In this scenario, “cluster neurons” and “bridge neu-
rons” form functionally distinct IO neuron subtypes whose 
morphological appearance may coarsely correspond to the 
“curly” and “straight” morphological subtypes. However, 
variability in the cluster sizes and in the strength and remote-
ness of bridge-connections results in considerable variability 
in “cluster” and “bridge” neuron shapes, giving rise to a 
continuum of morphological properties rather than clearly 
defined classes.

A tantalizing example in line with such “cluster-bridge 
connectivity” is shown in Fig. 7. In this sample, a sin-
gle patched neuron (Fig. 7b, reconstructed in orange) is 
accompanied by a number of densely overlapping dendritic 
arbors forming a compact cluster of neurons in a volume 
spanning the extent of the primary neurons’ dendritic field. 
Additionally, two neurons located further away from the 
primary labeled cell (indicated by blue arrows in Fig. 7c) 

were also labeled and could be resolved well enough to 
be partially reconstructed (blue and cyan reconstructions 
in Fig. 7d), revealing a location where a dendrite passes 
close by that of the directly labeled neuron (marked with 
a green dot in Fig. 7c, d). This raises the possibility of 
GJ-mediated coupling between the dense cluster and the 
“bridge neurons”.

In summary, our anatomical investigation of IO neu-
rons showed that a binary classification into the classi-
cally described “curly” and “straight” morphological types 
is not justified as morphological heterogeneity is better 
described as varying along a continuous straightness-axis. 
In addition, the prevalence of directional over isomorphic 
dendritic fields implies that connectivity in the IO network 
is structured to support functional clustering. We propose 
that borders between anatomical clusters are delineated 
in the dense electrical coupling within groups of “cluster 
neurons”, and that coupling across such clusters is medi-
ated by dedicated “bridge neurons”. The specific morphol-
ogy of individual neurons forming clusters and bridges can 
both vary considerably, resulting in an apparent continuum 
of morphological properties.

However, the density of IO neuropil and the limitations 
of the present random-sampling approach preclude strong 
conclusions to be drawn from anatomical evidence alone, 
and further electrophysiological and imaging experiments 
detailing the relationship between the structure and activ-
ity of IO neurons will be required to confirm and refine 
any hypothesis about the hard-wired connectivity of the 
IO network.
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