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Abbreviated Title 

Recellularization of Cartilage via Elastin Fibre Channels 

 

Abstract 

Decellularized tissue matrices are promising substrates for tissue generation by stem 

cells to replace poorly regenerating tissues such as cartilage. However, the dense 

matrix of decellularized cartilage impedes colonisation by stem cells. Here, we show 

that digestion of elastin fibre bundles traversing auricular cartilage creates channels 

through which cells can migrate into the matrix. Human chondrocytes and bone 

marrow-derived mesenchymal stromal cells efficiently colonize elastin-treated 

scaffolds through these channels, restoring a glycosaminoglycan-rich matrix and 

improving mechanical properties while maintaining size and shape of the restored 

tissue. The scaffolds are also rapidly colonized by endogenous cartilage-forming cells 

in a subcutaneously implanted osteochondral biopsy model. Creating channels for 

cells in tissue matrices may be a broadly applicable strategy for recellularization and 

restoration of tissue function. 

 

1. Introduction 

Cartilage consists of a single cell type, the chondrocyte, embedded in a flexible yet 

sturdy matrix [1,2]. It lacks blood vessels, nerves, as well as lymphatics, and in adults 

heals poorly after injury [1]. The combination of perceived structural simplicity and 

substantial clinical demand has made a prime tissue-engineering target for scientists. 

However, the mechanical characteristics of cartilage result from a complex matrix 

architecture that has been challenging to replicate [2–4].   
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One experimental approach to engineering tissue with the mechanical characteristics 

of cartilage has been to introduce chondrogenic cells into decellularized allogeneic or 

xenogeneic cartilage. Not only would this yield a scaffold with low immunogenicity, but 

the native cartilage environment may promote chondrogenesis in the newly introduced 

cells and thus facilitate restoration of the mechanical properties [reviewed in [5]]. 

Multiple protocols to remove cells from cartilage, using enzymes, detergents, 

denaturing chemicals, physical forces and combinations thereof have been developed 

[6–12]. However, the dense cartilage matrix has impeded the migration of cells into 

decellularized cartilage [reviewed in [13]].  

Here we explore whether specific structural features of auricular cartilage would allow 

the introduction of cells into the matrix. Hyaline cartilage as found in the trachea, ribs, 

nasal septum and joints consists of a dense uninterrupted collagen type II matrix. 

Elastic cartilage, as found in the epiglottis, outer ear and eustachian tubes, contains a 

collagen type II matrix but is additionally traversed by elastin fibre bundles [1]. Due to 

the high prevalence of joint defects and the severity of tracheal injury, most research 

has focussed on the decellularization of hyaline cartilage. In this work, we aim to show 

that removal of the elastic fibre bundles traversing elastic cartilage generates channels 

through which cells can access the inner matrix and secrete glycosaminoglycans in 

situ, generating a cartilage-like tissue.  

 

2. Materials and Methods  

2.1 Decellularization with Elastase 

Auricular cartilage was harvested from the ears of a human donor post-mortem [age 

64] (body donation to Erasmus MC) or bovine calves [age: < eight months] (T. Boer & 

Zn. Nieuwerkerk aan den IJssel, the Netherlands). After washing the ears with water, 
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skin and muscle tissue were removed with a scalpel. Biopsies were taken using ∅6 or 

∅8 mm biopsies punches (Stiefel Laboratories Nederland, Zeist, the Netherlands) and, 

where indicated, the perichondrium was removed using a scalpel. Subsequently, the 

cartilage was washed three times with deionized water (ISO 3696 Grade I), three times 

freeze-thawed in deionized water [-80°C to 37°C] and subsequently sterilized by 

incubation in 5% H2O2 (Sigma-Aldrich, Zwijndrecht, the Netherlands) at 37°C for at 

least one hour. The cartilage was then rinsed three times with sterile deionized water 

for five minutes and incubated for 24 hours rotating at 37°C in elastase solution: 3 

units [Type IV] (Sigma-Aldrich) or 10 units (Gold Biotechnology Inc., St. Louis, USA) 

porcine pancreatic elastase per ml of 0.2 M tris(hydroxymethyl)-aminomethane [TRIS] 

HCl (Sigma-Aldrich) in water, set to a pH of 8.6. After elastase treatment, scaffolds 

were washed three times in sterile deionized water for five minutes. To hasten removal 

of cell debris, cartilage was exposed to physical strain: a snap freeze-thaw cycle [-

190°C to 37°C], two eight-minute sonication rounds at 42 kHz [70-Watt water bath 

sonicator] and vortexing three times, in absence of liquid, for about 30 seconds at 

2,500 RPM. Scaffolds were stored in sterile deionized water at -20°C until further 

processing. Matristypt™ collagen meshes (Dr Sulawek Skin & Healthcare AG, 

Billerbeck, Germany) were used as control scaffolds for cell seeding. 

To test sterility of the decellularized cartilage, samples were incubated in MEM-α 

[Gibco brand] (Thermo-Fisher, Waltham, US) containing 10% heat-inactivated foetal 

calf serum [FCS] (Lonza, Basel, Switzerland) for 24 hours at 37°C, rotating at 30 RPM. 

Afterwards presence of bacteria and fungi was evaluated by light microscopy and 

unsterile samples were discarded. 
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2.2 Cell Sourcing and Culture 

2.2.1 Bone Marrow-derived Multipotent Stem Cells  

Human bone marrow-derived multipotent stem cells [BMSCs] were isolated from 

femoral marrow aspirates of adults undergoing total hip replacement (MEC-2004-142 

& MEC-2015-644; age: 49-71; informed consent provided) or left-over iliac crest bone 

chips of children undergoing palate cleft reconstruction (MEC-2014-16; age: 9-13; 

implicit consent). Bone chips were swirled twice in 10 ml expansion medium and the 

medium than plated in 175cm2 culture flasks, whereas bone marrow aspirates were 

diluted with expansion medium to 20 ml and plated in 175 cm2 culture flasks. BMSCs 

expansion medium consisted of: MEM-α (Thermo-Fisher), containing 10% heat-

inactivated FCS [Gibco brand] (Thermo-Fisher), 50 μg/mL gentamicin [Invitrogen Life 

Technologies brand] (Thermo-Fisher), 1.5 μg/ml amphotericin B [Fungizone™] 

(Thermo-Fisher), 0.1 mM L-ascorbic acid 2-phosphate and 1 ng/mL basic Fibroblast 

Growth Factor 2 [FGF2] (R&D Systems, Minneapolis, USA). After 24 hours, the flasks 

were gently washed with PBS containing 1% FCS and adherent cells expanded in 

expansion medium (refreshed every three days) till ca. 80% confluence. Afterwards 

cells were passaged to 2,300 cells/cm2 into expansion medium with 250 ng/ml WNT3A, 

made in house by genetically modified Schneider Drosophila melanogaster S2 cells 

and purified as previously described [14]. Medium was refreshed daily and cells 

passaged once cells reached ca. 80% confluence. BMSCs were used for 

recellularization at passages two to four.  

 

2.2.2 Articular Chondrocytes Sourcing and Culture 

Human articular chondrocytes (ACs) were isolated from knee joints of patients 

undergoing total knee replacement (MEC-2011-371 [surgical waste material], age: 58-
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68). Small chips were cut from macroscopically healthy areas of the cartilage using a 

scalpel and rinsed twice in PBS. The chips were then digested for 1 hour with 2 mg/ml 

protease (Sigma-Aldrich) in PBS followed by 0.5 mg/ml collagenase B (Roche 

Diagnostics, Rotkreuz, Switzerland) in DMEM (Lonza) with 10% heat-inactivated FCS 

(Thermo-Fisher) gentamicin [50 µg/mL] (Thermo-Fisher), and 1.5 µg/mL amphotericin 

B [Fungizone™] (Thermo-Fisher), rotating for at least twelve hours at 37°C.  

Afterwards, the solution was filtered through a 100 µm strainer (BD Biosciences, 

Franklin Lakes, USA), centrifuged, and the pellet washed twice in PBS. Chondrocytes 

were then plated at 7,500 cells/cm2, expanded in the above mentioned DMEM-based 

medium (refreshed twice a week) and passaged when 80% confluence was reached. 

Chondrocytes were used for recellularization after one or two passages.  

 

2.3 Cell Seeding  

2.3.1 Onto the Scaffold Surface  

Scaffolds without perichondrium were placed in the lids of 2 ml polypropylene 

microcentrifuge tubes (Thermo-Fisher) to ensure that seeded cells would settle on the 

scaffold only. Per mm3 of sample, ca. 8,500 BMSCs or ACs were seeded statically, 

unless otherwise indicated, in the appropriate expansion medium (see above) and 

incubated in the inverted tubes for 24 hours at 37°C. When bilateral seeding was 

desired, scaffolds were turned after ca. twelve hours. Afterwards samples were 

transferred into 1/2 cm2 wells of 48/24-well cell culture plates. To compare static and 

rotating seeding, scaffolds were placed into 2 ml polypropylene microcentrifuge tubes 

filled with cell suspensions of the indicated cell concentrations and incubated at 37°C 

either statically or rotating at a 45° angle. 
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2.3.2 Injection into the Scaffolds  

For scaffolds with perichondrium, the ∅8 mm scaffolds were held tightly with tweezers 

and a concentrated cell suspension of less than 100 µl injected using a 27-gauge 

needle at three points (total ca. 8,500 cells/mm3 scaffold volume). The scaffolds were 

then washed twice in PBS to remove cells on the surface and transferred to 2-4 cm2 

wells of 24/12-well cell culture plates.  

 

2.4 Pellet-based Chondrogenicity Assay and Chondrogenic Differentiation  

To evaluate chondrogenic differentiation potential, at least three pellets from each 

donor were formed by centrifuging 200,000 BMSCs or ACs in conical non-adherent 

polypropylene 15 ml tubes (Thermo-Fisher) at 300 g for eight minutes. Pellets were 

then cultured in 0.5 ml/tube chondrogenic differentiation medium; recellularized 

cartilage in 0.5 to 2 ml depending on volume.  Chondrogenic differentiation medium 

contained: high glucose DMEM [Gibco GlutaMAX+] (Thermo-Fisher), 1:100 ITS+ plus 

mix [insulin, transferrin and selenous acid] (BD Biosciences), 40 μg/ml L-proline 

(Sigma-Aldrich), 1 mM sodium pyruvate (Thermo-Fisher), 10 ng/ml TGF-β1 (R&D 

Systems), 1.5 µg/mL amphotericin B [Fungizone™] (Thermo-Fisher) and 50 μg/ml 

gentamicin (Thermo-Fisher). For BMSC chondrogenic differentiation 100 nM 

dexamethasone (Sigma-Aldrich) was added [15]. Medium was refreshed twice a week 

for 35 days, after which the samples were harvested, rinsed in PBS and fixed in 4% 

formalin for 24 hours. 

 

2.5 Migration Assays 

2.5.1Migration in Response to a Serum Gradient 
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To serve as a serum reservoir, two ∅8 mm Matristypt™ collagen meshes (Dr Sulawek 

Skin & Healthcare AG) were placed at the bottom of 0.33 cm2 wells (96 well plate). 

Then 15 µl FCS (Lonza) or 15 µl BMSC expansion medium were added to the meshes 

and allowed to soak in. Onto the collagen meshes, 1 mm thick, ∅8 mm elastase-

treated auricular cartilage scaffolds were stacked and the 150 µl expansion medium 

without or with 10% FCS respectively added. Subsequently, ca. 2,500 cells/mm2 were 

added into the well and allowed to settle onto the scaffolds. Since the diameter of the 

scaffolds was ca. 1 mm larger than that of the well, the scaffolds sealed the collagen 

meshes off, limiting cell migration to the cartilage. Scaffolds were then incubated for 

six days before harvest and processed as paraffin block sections, described below.  

 

2.5.2 Migration in Serum-containing versus TGFβ1-containing Media 

BMSCs were unilaterally seeded at 2,500 cells/mm2 onto ca. 1 mm deep, ∅8 mm 

elastase-treated auricular cartilage scaffolds without perichondrium. The seeded 

scaffolds were cultured in either the serum-free, TGFβ1-containing medium we used 

for chondrogenic differentiation of BMSCs (chondrogenic medium, see above) with the 

serum-containing or the TGFβ1-free medium used for BMSC expansion (expansion 

medium). The scaffolds were incubated statically at 37°C and the appropriate medium 

refreshed daily. To visualize viable cells, on the day of harvest (one day or three days 

after seeding) Calcein AM (Thermo-Fisher) was added into the medium to 0.5 µM and 

the samples incubated for 30 minutes at 37°C in the dark. Subsequently, scaffolds 

were washed in PBS, harvested and then processed as cryosections as described 

below.  

 

2.6 Articular Joint Defect Model 
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To evaluate articular cartilage defect closure we used a bovine osteochondral biopsy 

model system, developed previously by our lab [16,17]. In brief, we employed a hollow 

drill (DePuy Synthes, Palm Beach Gardens, USA) to create ∅8 mm osteochondral 

biopsies of four proximal sesamoid bones from fresh metacarpophalangeal joints from 

calves [age <8 months] (T. Boer & Zn.). The biopsies were rinsed twice with saline, 

then cut to about 5 mm in length and incubated overnight in full expansion medium.  

Using a ∅6 mm dermal biopsy punch (Stiefel Laboratories) and a scalpel, chondral or 

osteochondral defects were created. The defects were then washed twice in saline 

and ∅6 mm elastase-treated auricular cartilage scaffolds of ca. 0.7-1 mm [chondral] 

or 1.2-1.5 mm [osteochondral] height placed into the defects. The cartilage side of 

each biopsy was covered with an ∅8 mm Neuro-Patch™ membrane (B. Braun AG, 

Melsungen, Germany) to prevent murine tissue ingrowth. The samples were incubated 

for less than two hours in expansion medium until subcutaneous implantation into 

female NMRI nu/nu mice [ethical approval: DEC EMC3284] (Taconic Biomedical, 

Rensselaer, USA). Handling and housing of the mice was carried out in accordance 

with the EU Directive 2010/63/EU for animal experiments, with at least two mice 

housed together in one cage. Per mouse, four randomized chondral or osteochondral 

biopsies were implanted under isoflurane anaesthesia. In total n=12 elastase-treated 

auricular cartilage scaffolds were transplanted into n=4 chondral and n=8 

osteochondral biopsies, distributed over two experiments with n=4 and n=6 mice 

respectively. Mice received 0.05 mg/kg bodyweight of Temgesic (Reckitt Benckiser, 

Slough, UK) one hour before and six to ten hours after surgery and 25 mg/kg 

bodyweight of amoxicilline (Dopharma Nederland, Raamsdonksveer, the Netherlands) 

during surgery. After two, four or ten weeks as indicated mice were euthanized by 

cervical dislocation. Cylinders were carefully explanted, surrounding tissue inspected 
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for macroscopic signs of inflammation and damage, fixed in 4% formalin for five days, 

subsequently decalcified using 10% formic acid (Sigma-Aldrich) for two weeks and 

embedded in paraffin.  

 

2.7 Histological and Immunohistochemical Stainings 

Paraffin embedded samples were sectioned at 6 μm thickness, placed on glass slides, 

dried and rehydrated. Frozen samples were sectioned at 10 μm thickness, frozen for 

at least 24 hours, then slowly thawed, air-dried and fixed using 100% acetone (Sigma-

Aldrich). Both cryosections and paraffin block sections were stained with Haematoxylin 

(Sigma-Aldrich) and 2% Eosin (Merck Group, Darmstadt, Germany), 0.04% Thionin 

solution (Sigma-Aldrich) or Resorcin-Fuchsin solution [Klinipath brand] (VWR 

International, Breda, the Netherlands) according to manufacturer’s instruction. 

Sections were subsequently dehydrated by increasing concentrations of ethanol 

(Sigma-Aldrich) and Xylene (Sigma-Aldrich) and sealed under a glass coverslip with 

PERTEX™ (HistoLab Products, Askim, Sweden). 

For elastin staining, sections were incubated in 0.25% trypsin dissolved in PBS for 20 

minutes at 37°C. Subsequently, non-specific binding sites were blocked with 10% goat 

serum in PBS and sections were stained for one hour with a monoclonal anti-elastin 

antibody [BA-4] (Sigma) diluted to 10 ug/ml in PBS. Sections were then incubated for 

30 minutes at room temperature with an anti-mouse biotin labelled antibody diluted 

1:50 in PBS with 5% FCS. Afterwards, sections were incubated for 30 minutes at room 

temperature with HRP–streptavidin conjugate (Biogenex, California, USA) diluted 1:50 

in PBS/1% BSA. Labelling was detected using enzymatic turnover of a Neu Fuchsin 

substrate (Chroma, Köngen, Germany). Sections were then airdried overnight and 
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sealed under a glass coverslip with Vectamount [#H5000] (Vector Laboratories, 

Burlingame, USA). 
 
2.8 Imaging, Cell Migration and Cell Density Quantification 

Stained sections were imaged using cellSens™ Standard software (Olympus Europe, 

Hamburg, Germany) with a 5-megapixel digital 14-bit colour camera [model UC50] 

(Olympus Europe) attached to an upright light microscope for slides [model BX 40] 

(Olympus Europe). Cell migration distance was measured by creating bins of 250 µm 

height and 2,250 µm width (0.5 mm2) with the linear measurement tool in cellSens™ 

and cell numbers were counted manually in ImageJ (NIH, Bethesda, USA) [18]. The 

first 25 µm from the cartilage surface were excluded to discount cells adherent but not 

migrating.  Cell density was determined by counting cells per 0.1 mm2 field, with six 

(seeding) or twelve (injection) fields per sample and depth. Cell distance distribution 

was determined by measuring n=60 nuclei-nuclei distances per donor on H&E, 

excluding cells sharing lacunae or within 25 µm of the scaffold surface. The maximum 

width of cell distributions for an injection side was determined by measuring the 

distance between the cells furthest apart either perpendicular or parallel to the 

perichondrium in six different areas per sample.  All quantification of cell numbers was 

performed blinded by one person (J.L.), with the exception of supplementary figure 

2(b), which was scored unblinded.  

 

2.9 Mechanical Testing of Native, Elastase-treated and Recellularized Cartilage 

Nanoindentation of bovine auricular cartilage scaffolds was performed using a 

displacement-controlled nanoindenter [model name Piuma] (Optics11, Amsterdam, 

the Netherlands) with a spherical probe [stiffness: 58.3 N/m; radius: 51 µm] using a 

measurement protocol based on Moshtagh [19]. Force-displacement curves were 
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generated based on cantilever deflection and indentation depth as controlled by a 

piezoelectric motor. For indentation, each cartilage biopsy was submerged in PBS 

within a glass petridish, held in place by an agarose mould. The probe was calibrated 

and then for each scaffold a square matrix of 16 indentation points [250 µm apart] 

were measured. For each indentation, the probe was held above the surface for 0.5 

seconds, followed by indentation to 15 µm for 1 second, holding the probe at 15 µm 

seven seconds, unloading over 20 seconds and then pausing for 0.5 seconds prior to 

moving to the next indentation point. The Piuma software (Optics11) then calculated 

the effective elastic modulus based on the slope of the stress-strain curve using the 

Oliver-Pharr theory[19] Minimal variability between different measurement sessions 

was ensured by indenting a set [n=3] of control scaffolds (decellularized, untreated) 

during every session.  Since removal of elastin with elastase can dramatically alter the 

viscoelastic behaviour of auricular cartilage [20], we refer to the measured values as 

stress-strain modulus. In total 8x untreated, 10x decellularized and 44x recellularized 

(>3 per donor) cartilage scaffolds were indented.   

 

2.10 Statistics 

Analysis of numerical data was performed in SPSS 20 (IBM, North Castle, USA). 

Migration in expansion and chondrogenic medium were compared pairwise for day 

three using the Mann-Whitney-U test. Migration into different depths in presence and 

absence of serum were tested, paired by depth, using the Wilcoxon signed-rank test. 

The stress-strain modulus values were compared pairwise for all samples using the 

Kruskal-Wallis Test (indicated significance is for the pairwise comparison of all 

scaffolds to decellularized-only scaffolds). We set p=0.05 as cut-off for significant 
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differences for all tests, with the p-values given in the figure legends (rounded up if 

p<0.01).  
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3. Results 

3.1 Recellularization of auricular cartilage after removal of elastin fibres 

To determine if removal of elastin permits recellularization of cartilage, we digested 

elastin in devitalized bovine auricular cartilage scaffolds by treatment with 3 U/ml 

pancreatic elastase for 24 hours. Staining with resorcin-fuchsin showed that the 

treatment removed elastin fibres, opening the otherwise dense pericellular matrix 

containing the chondrocytes (lacunae) and leaving behind channels traversing the 

collagen network (figure 1(a)). The elastase treatment was also sufficient to remove 

most cell remnants and deplete glycosaminoglycans (figure 1(b)). Elastin depletion 

was elastase dose-dependent, with 3 to 10 U/ml (brand-dependent) elastase 

completely depleting elastin fibres as detected by resorcin-fuchsin staining in bovine 

auricular cartilage (supplementary figure 1(a), (b)). To confirm depletion of elastin seen 

on resorcin-fuchsin staining, we performed immunohistochemistry with a monoclonal 

elastin-specific antibody ((supplementary figure 1(c)). Moreover, loss of 

glycosaminoglycans, as indicated by thionin staining, as well as cell remnants, visible 

on thionin and H&E stainings, were associated with elastin depletion (supplementary 

figure 1(a), (b)). Elastase treatment was equally efficient in clearing elastin in human 

and bovine auricular cartilage, but glycosaminoglycan depletion required higher 

elastase concentrations in human compared to bovine cartilage (supplementary figure 

1(d), (e)). Overall, elastase treatment renders bovine and human auricular cartilage 

porous, decellularizes it and depletes glycosaminoglycans.  
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Figure 1. Elastase treatment removes elastin fibres and glycosaminoglycans, permitting 

recellularization. (a, b) Bovine auricular cartilage before and after treatment with elastase, stained 

with (a) resorcin-fuchsin (highlights elastic fibres) or (b) thionin (marking glycosaminoglycans). Scale 

bars = 200 µm. White arrowheads indicate lacunae where cells are/were located in, black arrowheads 

elastin fibre bundles/channels. (c) Bovine auricular cartilage treated with elastase stained with 

haematoxylin and eosin (H&E) six days after being unilaterally seeded with BMSCs. Cells tunnelling 

through the channels left behind after elastin fibre removal are highlighted in the insets. Scale bars = 

100 µm; horizontal dotted white lines in (c) ca. 200 µm, 400 µm and 600 µm from seeded surface. 

(d) H&E staining of two bovine auricular cartilage scaffolds not exposed to elastase but undergoing 

all other steps of the decellularization protocol and then cultured for six days after seeding with 

BMSCs. Magnified panels show nuclei of resident chondrocytes (white arrowheads) remaining in the 

matrix and seeded BMSCs (black arrowheads) not invading. Scale bars = 200 µm. (e) H&E staining 

of a bovine auricular cartilage scaffold treated with 0.1 U/ml elastase to partially remove elastin and 

then cultured for six days after seeding with BMSCs. Black arrowheads indicate cells that have 

entered the matrix furthest. Scale bar = 200 µm (f)H&E staining showing cells adherent to elastase-
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treated bovine articular and nasal cartilage scaffolds cultured for six days after seeding with BMSCs. 

Black arrowheads highlight cells incapable of invading the articular and nasal cartilage matrix. 

Highlighted by a white arrowhead are cells that invaded the lacunae cut open during processing but 

did not migrate further into the scaffold. Scale bars = 200 µm. . (g, h) Depletion of glycosaminoglycans 

and lack of elastin fibres visible on (g) rescorcin-fuchsin and (h) thionin stained elastase treated 

bovine articular and nasal cartilage scaffolds. Scale bars = 200 um. 

 

To determine if the channels created by elastase treatment allowed cell migration, we 

seeded the elastase-treated auricular cartilage scaffolds with 8,500 human bone 

marrow-derived multipotent stem cells [BMSCs] (expanded for two to three passages 

with WNT3A and FGF2) per mm3 scaffold. BMSCs are attractive for articular cartilage 

repair, since they are highly chondrogenic they can be expanded, and the donor site 

morbidity caused by bone marrow aspiration is limited [21]. We have previously shown 

that culturing with WNT3A and FGF2 maintains BMSC’s chondrogenic capacity during 

expansion [22]. The ca. 1 mm thick scaffolds were seeded unilaterally for 24 hours, 

leading to the deposition of cell layers on the scaffold surface. We sectioned scaffolds 

six days after seeding with BMSCs to investigate the extent of cell invasion (figure 

1(c)). We found that cells invaded the scaffolds with 53 ± 15% of invading cells having 

migrated up to 200 µm from the surface, 25 ± 4% 200 to 400 µm, 14 ± 9% 400 to 600 

µm and 7 ± 8% 600 to 800 µm. Cells that invaded were frequently found stretched 

within the channels, radiating from the seeding surface, indicating migration along the 

voids created by elastin fibre removal (figure 1(c)). On the other hand, bovine auricular 

cartilage not treated with elastase and therefore lacking channels, was not invaded by 

cells (figure 1(d)). Moreover, when exposure to elastase was limited and therefore 

elastin only removed from part of the biopsy, cell invasion was limited to areas where 

elastin fibres were cleared (figure 1(e)). This suggests that removal of elastin by 
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elastase treatment is responsible for rendering auricular cartilage permeable to cells. 

To further confirm that elastase allowed recellularization by removing elastin fibre 

bundles, we treated bovine nasal and articular cartilage, which are hyaline and lack 

elastin fibre bundles, with elastase. While this depleted glycosaminoglycans from both 

nasal and articular cartilage, no visible channels formed, and cells did not invade into 

the matrix (figure 1(f)-(h)). In summary, this indicates removal of elastin fibre bundles 

allows cells to invade auricular cartilage.   

 

3.2 Static Seeding and Chondrogenic Differentiation Conditions Facilitate Uniform 

Recellularization of Elastase-treated Auricular Cartilage  

We observed that the number of cells invading the scaffold correlated with the number 

of cells on the closest scaffold surface. We therefore compared static and rotating 

seeding at different cell concentrations to identify under which condition cells adhered 

densely and uniformly to the scaffold surface. Rotating the scaffolds continuously or 

intermittently during seeding induced cell clumping as well as irregular seeding and 

was not further explored. Maintaining a consistent total seeded cell number, we found 

that a 500 cells/µl suspension yielded a good combination of cell density and uniformity, 

with other concentrations yielding significantly lower cell densities or showing large 

sample variation (supplementary figure 2(a), (b)). Exposing the scaffold to the cell 

suspension for longer than 24 hours did not yield higher cell densities [data not shown]. 

BMSCs remained viable and attached to the scaffold throughout a culture period of at 

least 30 days (supplementary figure 2(c)). Culture-expanded chondrocytes also allow 

generation of autologous cartilage, and might be favourable for small defects or when 

donor site morbidity is not of concern (e.g. in microtia, where cells can be derived from 
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the to-be-reconstructed malformed auricle) [23–25]. Expanded, dedifferentiated adult 

human articular chondrocytes (ACs) adhered well to elastase-treated auricular 

cartilage and remained viable for at least 30 days (supplementary figure 2(d), offering 

an alternative to BMSCs.  Given that 24-hour seeding with 500 cells/µl yielded a high 

average cell density with low variation, we continued with this set-up for all subsequent 

experiments. 

We observe that cell density within the scaffold declined with distance to the seeding 

surface (figure 1(c)). BMSCs and chondrocytes migrate towards attractants contained 

in foetal calf serum [26,27]. We therefore tested whether a serum gradient encouraged 

BMSCs migration by placing a serum-laden sponge against the scaffolds, opposite to 

the cell seeding surface. The serum gradient significantly increased the number of 

BMSCs migrating into the tissue (figure 2(a)). Notwithstanding, distribution of cells 

within the scaffolds remained skewed towards areas within 500 µm of the seeding 

surface.  

In vivo, transforming growth factor 1 beta (TGFβ1) stimulates migration of BMSCs 

through tissues [28,29]. TGFβ1 also induces chondrogenic differentiation in BMSCs 

and de-differentiated chondrocytes [15,30,31], which is required to restore the 

decellularized matrix.  Because chondrogenic medium may thus enhance both 

migration of seeded cells and matrix regeneration, we compared migration in a serum-

free, TGFβ1-containing medium commonly used for chondrogenic differentiation of 

BMSCs [15] (chondrogenic medium) with the serum-containing, TGFβ1-free medium 

we used for BMSC expansion (expansion medium). Three days after seeding, 

significantly more BMSCs (2.9 ± 0.7-fold increase) migrated into the scaffolds in 

chondrogenic compared to expansion medium (figure 2(b), (c)).  



19 
 

Since BMSCs migrated through the scaffold in chondrogenic medium, we assessed 

if in a timeframe sufficient for chondrogenic differentiation and matrix synthesis in 

vitro (35 days) [22], BMSCs would recellularize the scaffolds to cell densities 

comparable to native cartilage. Scaffolds (height 1mm, ∅8 mm, ca. 50 mm3) were 

seeded with 450,000 BMSCs and cell density quantified on H&E stained 6 µm 

sections after 35 days culture in chondrogenic medium. Cell density averaged 150 

cells/mm2 and varied little between BMSC donors (figure 2(d)). The average cell 

density of recellularized scaffolds was lower than that of native bovine (239 ± 53 

cells/mm2) or human (306 ± 67 cells/mm2) auricular cartilage as well as that of 

human septal nasal cartilage (226 cells/mm2) [32], but higher than that of human 

femoral condylar articular (layer dependently 32-76 cells/mm2) [33] or costal 

cartilage (27 cells/mm2) [33] (figure 2(d)). Cell density was slightly higher near the 

seeding surface, with the innermost areas containing on average 23% less cells than 

areas below the surface. Average cell-cell distance in the recellularized scaffolds 

was 63 ± 28 µm, slightly higher than the 57 ± 21 µm in native bovine auricular 

cartilage (supplementary figure 3(a)). These findings indicate that BMSCs 

recellularize the elastase-treated auricular cartilage scaffolds to levels comparable 

to native cell density and distribution. 
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Fig. 2 In chondrogenic differentiation conditions cells rapidly distribute through the matrix to near 

native densities. (a) Plot showing the number of BMSCs that have migrated into zones at different 

depths from the seeding surface after six days culture in DMEM with 10% serum on both sides of the 

scaffold (no gradient) or DMEM with no serum and an 10%-equivalent volume serum on the side 

opposite of the cells (gradient). For each of n=3 samples per depth the counts of four 100µm-apart 

sections were averaged. Error bars = SD. * p <0.01 (Wilcoxon signed-rank test, paired by depth). (b) 

Plot showing the number of BMSCs that have migrated into the scaffold (>25 μm from scaffold 

surface) after one- or three-days of culture in chondrogenic or expansion medium. n=4 scaffolds, 

error bars = SD, Mann-Whitney-U test, 2-tailed significance * p=0.03. (c) Representative micrographs 

of day three samples from (b) stained with CalceinAM to mark live cells and merged with brightfield 

images to show matrix boundaries or stained with H&E. Scale bars = 100 µm. (d) Cells per mm2 

plotted for native bovine and human auricular cartilage as well as elastase-treated bovine auricular 

cartilage scaffolds superficially seeded with BMSCs and cultured 35 days culture in chondrogenic 

medium. For each of the three donors six non-overlapping fields of 0.1 mm2 were counted for the 

core (inner 250 um) or in the outer areas (>25 μm from surface) of the scaffold. Error bars = SD.  

Blue bars indicate cell densities from literature for human nasal [32], articular (range of all depths) 

[33] as well as costal cartilage [33]. 

 

3.3 Overcoming the Perichondral Barrier by Cell Injection  

Plastic surgery of the auricle (outer ear), the nasal septum or alar nasi is one area 

where auricular cartilage matrix scaffolds could be employed. Since these cartilage 

structures are lined by perichondrium which contributes to integration with the 
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surrounding tissues as well as to mechanical properties of the structure, we studied 

grafts with perichondrium intact.  However, in the cellular (cambium) layer  of the 

perichondrium surrounding the auricular cartilage that lacks elastin fibres (figure 3(a)), 

no channels formed after elastase treatment (figure 3(b)). Furthermore, no cells could 

be detected in the cambium layer or the underlying cartilage after recellularization 

(figure 3(c)). However, when the perichondrium was removed from one side prior to 

recellularization, cells were observed below the cambium layer on the other side 

(figure 3(d)), showing that the seeded cells were able to migrate to the cambium layer 

but could not cross the perichondrium. To find a method to recellularize full thickness 

cartilage, we assessed whether BMSCs would distribute throughout the matrix upon 

injection into scaffolds without removal of the perichondrium. Histology indicated that 

the matrix was minimally distorted after injection, with visible damage far smaller than 

the needle diameter (figure 3(e)). As with superficial seeding, we compared cell 

migration in chondrogenic with expansion medium. Six days after injection, BMSCs 

were found throughout the matrix surrounding the injection sites and average cell 

density at the centre of the scaffold was 193 ± 88 cells/mm2 for culture in chondrogenic 

and 197 ± 80 cells/mm2 for expansion medium (figure 3(f)). 800 µm from the centre of 

the scaffold, average cell density was 214 ± 124 cells/mm2 for culture in chondrogenic 

and 168 ± 60 cells/mm2 for expansion medium. There were no significant differences 

between either the media nor between central and peripheral areas within the scaffold 

(figure 3(f)). Overall cell density in scaffolds cultured in chondrogenic medium (193 ± 

88 cells/mm2) was not significantly different (p = 0.24, Mann-Whitney-U test) from that 

of native bovine auricular cartilage (239 ± 53 cells/mm2), but significantly lower (p 

<0.01) than native human auricular cartilage human (306 ± 67 cells/mm2). Moreover, 
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cell density after injection for both media was higher than that of human costal and 

articular cartilage, but lower than that of human nasal septal cartilage (figure 3(f)).  

To estimate what scaffold area would be recellularized per injection, we measured cell 

spread from visible injection sites on histology. Cells spread approximately 2 mm 

parallel to the perichondrium, with little difference between media (supplementary 

figure 3(b)). Perpendicular to the perichondrium cells spread 849 ± 174 µm in 

chondrogenic medium (covering 86% of the entire inter-perichondral distance of 997 

± 251 µm of those samples) and 871 ± 49 µm(representing 91% of the entire inter-

perichondral distance of 953 ± 55 µm of those samples) in expansion medium 

(supplementary figure 3(c)). Together, these data indicate that injection of cells allows 

uniform recellularization of elastase-treated auricular cartilage scaffolds with intact 

perichondrium on both sides.  

 

Figure 3 Prevention of  cell invasion by perichondrium can be overcome by injecting cells. 

(a) Fibrous (FP) and cambium layer (CP) of the perichondrium in a section of untreated bovine 

auricular cartilage stained for elastin. Dotted lines indicate borders between FP and CP (black) and 

CP and cartilage (white). (b) H&E staining of a full thickness elastase-treated bovine auricle with 

many channels present in the centre (black arrowheads) but not in the FP or CP. (c) H&E staining 

of elastase-treated auricular cartilage recellularized from the perichondrium side. Cells (black 
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arrowheads) adhere to and migrate into the FP, but do not cross into the underlying CP or cartilage. 

(d) H&E staining of elastase-treated auricular cartilage with perichondrium removed from one side 

(bottom) but left intact on the other side (top) after 21 days of recellularization from the side without 

perichondrium. Cells (black arrowheads) migrate through the matrix but stop where cartilage and 

CP meet. (e) H&E staining of full thickness (height >3mm, ∅ 8 mm) scaffolds injected with BMSCs 

and cultured six days culture in chondrogenic or expansion medium. Stars highlight injection sides, 

note that each scaffold was injected at three different points, but not all are visible in the sections 

shown. (f) Plot showing cells per mm2 in scaffolds with intact perichondrium injected with BMSCs 

after six days culture in chondrogenic or expansion medium. For each of three scaffolds twelve 

non-overlapping 0.1 mm2 fields were counted either on a section of the scaffold centre or a section 

800 μm further towards the outer perimeter. Error bars = SD. Blue bars indicate cell densities from 

literature for human nasal (n) [32], articular (range of all depths) (a) [33] as well as costal (c) 

cartilage [33]. (a)-(e) Scale bars = 200 µm. 
 
3.4 Restoration of glycosaminoglycans content and mechanical properties in a 

recellularized matrix that retains its size and shape 

Synthetic collagen-based scaffolds have been explored for cartilage tissue 

engineering but frequently shrink and distort due to cell contractions, especially during 

chondrogenic differentiation [34,35]. To estimate scaffold contraction, we compared 

the size of untreated auricular cartilage scaffolds to elastase-treated scaffolds 

recellularized with BMSCs or culture expanded ACs and then cultured in chondrogenic 

differentiation medium. As a reference for cell contraction, we seeded the same 

number of cells from the same donors onto an equally-sized collagen mesh 

(Matristypt™) used for tissue engineering [36]. The auricular cartilage scaffolds 

retained their shape and size after elastase treatment and during chondrogenic 

differentiation of BMSC or ACs, while the collagen mesh shrank severely (figure 4(a)). 

The height of elastase-treated and recellularized scaffolds (827 ± 102 µm) was similar 

to that of untreated scaffolds (735 ± 22 µm) (figure 4(b)). This indicates that elastase-
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treated auricular cartilage scaffolds resist distortion following reseeding and 

chondrogenic differentiation.   

The unique compressibility of articular cartilage is explained largely by 

glycosaminoglycans attracting fluid while trapped within a collagen network [20]. 

These glycosaminoglycans are however removed by elastase treatment 

(supplementary figure 1(a), (b)). We therefore investigated whether reseeded cells 

would restore the glycosaminoglycans of the matrix. After chondrogenic differentiation 

for 35 days, both BMSCs (figure 4(c)) and expanded ACs (figure 4(d), (e)) secreted 

glycosaminoglycans into the surrounding matrix. Thionin staining was localised to 

areas near cells, indicating that glycosaminoglycans are produced by the seeded cells 

and that their mobility is limited (figure 4(c)). We tested, using nanoindentation, 

whether local restoration of glycosaminoglycans would also restore mechanical 

properties. The stress-strain modulus increased from 27 kPa in unseeded matrix to 

between 39 kPa and 64 kPa, depending on the BMSC donor used, after 

recellularization and chondrogenic differentiation, and was significant (p<0.01) for 

BMSCs from 9 out of 10 donors (figure 4(f)). Mechanical properties and 

glycosaminoglycan secretion varied considerably between donors, with highly-

chondrogenic paediatric BMSCs [donor 1] showing the strongest thionin staining as 

well as the highest stress-strain modulus (figure 4(f), (g)). Although still significantly 

lower than the stress-strain modulus of 230 kPa for native bovine auricular cartilage 

(figure 4(f)), our findings suggest that restoration of glycosaminoglycans with 

recellularization promotes compression resistance of the elastase-treated auricular 

cartilage scaffolds, depending on the chondrogenic potential of the cells.  
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Figure 4. Elastase-treated auricular cartilage scaffolds retain size and shape and seeded cells 

restore glycosaminoglycans and mechanical properties. (a) H&E staining showing the full height of 

biopsies (∅6 mm) of bovine auricular cartilage (top row) and a collagen scaffold (Matristypt™) 

(bottom row) either untreated (first image) or seeded with 250,000 cells per sample (four different 

BMSC donors, one AC donor, matched in columns) and cultured for 35 days in chondrogenic 

medium. Scale bars = 200 µm. (b) Plot of mean height for three untreated bovine auricular cartilage 

and five recellularized, elastase-treated bovine auricular cartilage scaffolds after 30 days of culture. 

Per sample the shortest distance between the upper and lower sample sides was measured at 
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points 200 µm apart. Error bars = SD. (c) Stress-strain modulus determined by nanoindentation for 

untreated and elastase-treated bovine auricular cartilage as well as elastase-treated bovine 

auricular cartilage scaffolds recellularized with BMSCs from different donors and cultured in 

chondrogenic medium for 35 days. Values from a 16-point/sample indentation matrix for n=8 

(untreated), n=10 (elastase-treated) and per donor n>3 (recellularized) scaffolds. Two-tailed, 

asymptotic Kruskal-Wallis Test: pairwise comparison to elastase-treated scaffolds, adjusted 

significance: * p<0.01. (d) Thionin staining of scaffolds reseeded with BMSCs and chondrogenically 

differentiated for 35 days. Three representative scaffolds with windows highlighting superficial and 

central areas. Dotted lines indicate the border between scaffold and new matrix generated by 

seeded cells ex situ. Scale bars = 200 µm. (e), (f) Thionin staining of scaffolds with intact 

perichondrium injected with ACs and chondrogenically differentiated for 35 days. Dotted lines 

indicate the cartilage outer border, stars highlight injection sites. (e) Central area of a sample 

sectioned parallel to the perichondrium, (f) central area of different sample cut perpendicularly to 

the perichondrium. Scale bars = 200 µm. (g) Thionin staining for untreated and elastase-treated 

bovine auricular cartilage as well as representative elastase-treated bovine auricular cartilage 

scaffolds recellularized with adult and paediatric BMSCs from different donors and cultured in 

chondrogenic medium for 35 days (donor numbering as (c)). Scale bars = 200 µm. 
 
3.5 Chondrogenic cells invade elastase-treated auricular cartilage in vivo 

So far, we have shown that elastase-treated auricular cartilage scaffolds are rapidly 

recellularized in vitro. However, in some clinical applications, such as articular 

cartilage repair using matrix assisted chondrogenesis in combination with 

microfracture, in vivo recellularization is possible [37] and favourable requiring only 

one surgery and no in vitro culture. We therefore investigated if elastase-treated 

auricular cartilage scaffolds would be recellularized in vivo in an established articular 

cartilage defect model [16,17,38]. Osteochondral and chondral defects in bovine 

metacarpophalangeal joint biopsies were filled with cell-free elastase-treated bovine 

auricular cartilage scaffolds of thickness matching the defect size and then 

transplanted under the skin of immunocompromised mice. In chondral defects, cells 
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from the surrounding bovine articular cartilage entered the borders of the scaffold over 

ten weeks and formed cartilage de novo within (figure 5(a)) or adjacent to the scaffold 

(figure 5(b)). The amount of glycosaminoglycan synthesis however differed 

considerably between samples and none showed complete defect closure within this 

time frame. In osteochondral defects, cells invading from the bone marrow side 

distributed throughout the scaffold and formed new cartilage in situ within four weeks, 

connecting the scaffold to the surrounding cartilage (figure 5(c), (d)). After ten weeks, 

the cartilage tended to become hypertrophic (figure 5(e)) and in some areas was 

replaced by marrow-containing bone (figure 5(f)). Whereas this led to restoration of 

the subchondral defect area, the bone-like tissue extended throughout the defect up 

to the articular cartilage level, conceivably because this model lacks synovial fluid and 

mechanical loading. In osteochondral defects not filled with a scaffold, neither 

hypertrophic cartilage nor bone formed, instead the subchondral area was distorted, 

and the defect was filled by mostly sparse fibrous tissue (figure 5(g)). These findings 

indicate that in a joint defect model, elastase-treated bovine auricular cartilage 

scaffolds are rapidly invaded by chondrogenic cells.   
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Figure 5. Chondrogenic cells invade the elastase-treated auricular cartilage scaffold in vivo. (a)-(f) 

H&E and thionin staining of defects in osteochondral biopsies taken from bovine 

metacarpophalangeal joints, filled with elastase-treated auricular cartilage scaffolds and implanted 

subcutaneously into immunodeficient mice. (a), (b) Chondral defects after ten weeks and (c) 

osteochondral defects after two weeks, (d) four weeks and (e)/(f) ten weeks. (g) A control 

osteochondral defect left empty and harvested after ten weeks in vivo. Insets showing magnified area 

from a consecutive section stained for thionin shown for (a), (b), (e) and (f). Dotted lines indicate 

defect borders, scale bars = 200 µm. 
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Figure 6. Schematic Representation of Recellularization via Elastase-Generated Channels 

Elastase treatment of (xenogeneic) cartilage depletes elastin fibres as well as glycosaminoglycans 

from the matrix, resulting in a decrease in compression resistance, and facilitates removal of 

resident (xenogeneic) chondrocytes. Seeding of (autologous) chondrogenic cells then allows even 

recellularisation of the cartilage matrix via the channels left behind after elastin fibre removal. When 

induced to undergo chondrogenic differentiation, the invading cells rapidly generate new 

glycosaminoglycans within the matrix, partially restoring compression resistance.  

 

4. Discussion 

The dense matrix of cartilage is the principal hindrance to recellularization [13]. This 

study presents a method to make a cartilage-derived scaffold that is permeable to cells 

by the removal of elastin fibres from auricular cartilage (figure 6). We observed cells 

rapidly migrating along the channels left behind after elastin removal and distributing 

throughout the scaffold in vitro and in vivo. The invaded cells partially restored the 

glycosaminoglycans, with the scaffolds increasingly resembling cartilage in 

morphology and mechanics. While cartilage decellularization protocols permitting 

chondrogenesis of seeded cells have been reported previously, cell invasion was 

limited to less than 100 µm from the surface or perforations, presumably because 

migration occurred via lacunae that had been cut  open [8,39]. Our work significantly 

expands the applicability of cartilage recellularization approaches. The channels we 

create by removing elastin fibres extend through the entire auricular cartilage with the 
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exception of the perichondrium, allowing cells to rapidly recellularize the complete 

tissue. Articular and nasal septum cartilage defects less than 3 mm thick could be filled 

with a single layer of elastase-treated bovine auricular cartilage [40,41]. In order to 

imitate the zonal architecture of articular cartilage, it may be possible to retard cell 

migration unilaterally by taking advantage of the decrease of elastin fibre density 

towards the perichondrium. The complex shapes of ear and tracheal cartilage or 

thicker articular cartilage defects would likely require combining multiple scaffolds.  

While cartilage defects cause pain, they are, with the exception of those in the trachea, 

not life-threatening and thus rarely warrant the added risk inherent to immune 

suppression. We show that the scaffold can be derived from bovine or human auricular 

cartilage, with preliminary evidence indicating that the protocol is also applicable to 

porcine auricular cartilage [data not shown]. Elastase-treatment caused 

decellularization, which when combined with treatments to remove disease vectors 

and residual nucleic acids provides, in principle, non-immunogenic human allografts. 

Xenografts are not limited by donor material scarcity and the bovine auricle is 

considerably thicker and more plane than the human auricle, facilitating the design of 

larger scaffolds. While cellular bovine or porcine cartilage xenografts are immunogenic 

[42], xenogenic collagen matrices are routinely used for articular cartilage defect repair 

[43] and five decades of experience with porcine and bovine heart valves indicates 

that acellular xenografts have acceptable immunogenicity after reducing xenoantigens 

enzymatically [44]. Transplantation experiments in immunocompetent animals should 

be performed to confirm the low immunogenic nature of the decellularized scaffold 

before clinical application. 

Getting sufficient chondrogenic donor cells is a bottleneck for cartilage tissue 

engineering [45]. It is thus an asset that few cells efficiently recellularize large areas 
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and continue to proliferate within the scaffold. Extrapolating from ca. 8,500 cells we 

seeded per mm3 scaffold, a large 3 mm deep, 2.5 cm diameter (1470 mm3) articular 

cartilage defect would require 12 x 106 BMSCs, a number we routinely gain from 15 

ml bone marrow aspirates within ten days culture [22]. Similar numbers can be 

obtained for chondrocytes by expanding cells from a 1 mm diameter nasal septum 

biopsy [46] or directly from 7 g of articular cartilage [47].  Moreover, we show that 

elastase-treated auricular cartilage scaffold is directly suitable for defect shape-

matched cell-free implantation, permitting in vivo recellularization. Once treated with 

elastase the scaffold can be stored frozen and then cut to size and used off-the-shelf 

in clinical scenarios where chondrogenic cells are accessible in situ, e.g. 

microfracture-based articular cartilage repair [37].  

When placed in situ, cartilage scaffolds are exposed to considerable forces acting on 

the cartilage. When recellularized in vitro or in vivo, the elastase-treated auricular 

cartilage scaffolds showed only minor distortion while permitting in situ chondrogenic 

differentiation. This is a considerable benefit because balancing scaffold stiffness – 

high enough to prevent contraction, but not too high as to repress chondrogenic 

differentiation – is one of the most challenging aspects of cartilage scaffold design [48]. 

As expected, the chondrogenic potential of the seeded cells determined 

glycosaminoglycan restoration and thus compression resistance. We and others have 

shown that chondrogenic potential of cells varies greatly between donors, age groups 

and culture protocols [22,49–51]. In earlier studies, we found that WNT signalling 

agonists prevent the loss of chondrogenic potential during BMSCs expansion, and 

therefore we expanded all BMSCs with WNT3A [22,52]. Additional methods to improve 

glycosaminoglycan synthesis, e.g. sorting out the most potent cells, transient genetic 

manipulation, adjusting culture conditions or providing mechanical stimulation [53–58] 
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might further enhance restoration of glycosaminoglycan content. Combining these 

methods with elastase-treated auricular cartilage scaffolds may yield tissue 

engineered cartilage that approaches the properties of native cartilage. Whether the 

origin of the chondrogenic cells affects the properties of the generated cartilage, e.g. 

if nasal septum repair requires nasal chondrocytes, still needs to be explored. The 

tissue formed by ACs and BMSCs resembled hyaline cartilage, and we have shown 

earlier that neither auricular nor nasal chondrocytes express elastin in vitro [24]. 

However, auricular chondrocytes form structured elastin fibres in collagen scaffolds 

when transplanted in vivo [59].  

A prominent argument for decellularized scaffolds is that the matrix guides cell 

behaviour in a tissue-specific manner. While the effect on chondrogenic differentiation 

of aspects such as soluble matrix molecules, structural proteins, glycosaminoglycans, 

topography and mechanical force transmission have been studied [10,20,60–67], it 

remains unclear whether cartilage matrix itself stimulates chondrogenesis. Elastase 

treatment, while chemically mild compared to other decellularization procedures, 

depletes glycosaminoglycans, thereby likely removing soluble molecules, such as 

growth factors, bound to them. However, the complex type II collagen network appears 

to remain intact after elastin removal. Collagen matrices improve chondrogenesis by 

chondrocytes [68]. Moreover, type II collagen, which is unique to cartilage, has been 

suggested to increase chondrogenesis in BMSCs [69]. On a larger scale, fibres can 

guide cell migration and define cell shape [70]. Analysis of the collagen network in 

elastase-treated auricular cartilage may provide further insight into its role in 

chondroinduction.  

 

5. Conclusion 
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Elastase treatment of auricular cartilage provides a scaffold with channels that allow 

cell migration in the cartilage matrix and guide cells into a distribution resembling that 

of chondrocytes in native cartilage. When the invading cells, in vitro or in vivo, restore 

the glycosaminoglycans lost during elastase treatment, the resulting mixture of native 

and de novo generated matrix partly resembles that of intact articular cartilage. 

Moreover, the elastase-treated auricular cartilage appears resistant to deformation by 

cell contraction in vitro and in vivo, facilitating patient-tailored scaffold design. Our work 

addresses a major hurdle for cartilage-derived scaffolds: allowing recellularization 

while keeping the overall cartilage tissue architecture intact. Future research will need 

to show whether orthotopic zonal structures form upon implantation. 

 

Author Contributions 

J.L. conceived the method, designed and ran the experiments, analysed the data 

and drafted the manuscript. D.t.B, G.J.v.O. and R.N. supervised the project, guided 

experimental design and manuscript preparation. W.J.L.M.K., N.K. and R.N. assisted 

with experiment execution. G.J.v.O., S.N., and J.L. developed the concept of the use 

of elastin channels for auricular cartilage matrix reseeding. S.N. provided feedback 

on the experimental design. B.C.J.v.d.E. assisted in indentation measurements. K.S. 

provided feedback on indentation data analysis and experimental set-up.  

This research was funded by a bridge grant by the Austrian Research Promotion 

Agency FFG awarded to S.N. and G.J.v.O. as well as an Erasmus MC grant awarded 

to G.J.v.O. and D.t.B.  

All authors approved the final manuscript. 

 



34 
 

Acknowledgments 

We would like to thank Eric Farrell and colleagues from the Department of Oral & 

Maxillofacial Surgery at the Erasmus MC for providing paediatric bone marrow-derived 

mesenchymal stem cells.  We would like to thank Cornelia Schneider, Florian Hildner, 

Susanne Wolbank, Lizette Utomo and Heinz Redl for helpful discussions.  

The research was financially supported by a bridge grant from Austrian Research 

Promotion Agency FFG (project Cartiscaff, grant number 842455). J.L., G.J.v.O. and 

S.N. are listed as inventors on a patent application for the recellularization of cartilage 

using elastase described in this manuscript. The remaining authors declare no 

competing financial or other conflicts of interests. 

References  

[1] A.L. Mescher, L.C.U. Junqueira, Cartilage, in: Junqueira’s Basic Histol. Text 

Atlas, 14th ed., McGraw-Hill Education, 2015: pp. 129–134. 

[2] H. Muir, The chondrocyte, architect of cartilage. Biomechanics, structure, 

function and molecular biology of cartilage matrix macromolecules, BioEssays. 

17 (1995) 1039–1048. doi:10.1002/bies.950171208. 

[3] J.M. Mansour, Biomechanics of Cartilage, in: Kinesiol. Mech. Pathomechanics 

Hum. Mov. Second Ed., 2013: pp. 69–83. 

[4] A.J. Sophia Fox, A. Bedi, S. a Rodeo, The basic science of articular cartilage: 

structure, composition, and function., Sports Health. 1 (2009) 461–8. 

doi:10.1177/1941738109350438. 

[5] E.A. Kiyotake, E.C. Beck, M.S. Detamore, Cartilage extracellular matrix as a 

biomaterial for cartilage regeneration, Ann. N. Y. Acad. Sci. 1383 (2016) 139–

159. doi:10.1111/nyas.13278. 



35 
 

[6] C. Schneider, J. Lehmann, G.J.V.M. van Osch, F. Hildner, A. Teuschl, X. 

Monforte, D. Miosga, P. Heimel, E. Priglinger, H. Redl, S. Wolbank, S. 

Nürnberger, Systematic Comparison of Protocols for the Preparation of Human 

Articular Cartilage for Use as Scaffold Material in Cartilage Tissue 

Engineering, Tissue Eng. Part C Methods. 22 (2016) 1095–1107. 

doi:10.1089/ten.tec.2016.0380. 

[7] K.E.M. Benders, P.R. van Weeren, S.F. Badylak, D.B.F. Saris, W.J.A. Dhert, J. 

Malda, Extracellular matrix scaffolds for cartilage and bone regeneration, 

Trends Biotechnol. 31 (2013) 169–176. doi:10.1016/j.tibtech.2012.12.004. 

[8] S. Schwarz, L. Koerber, A.F. Elsaesser, E. Goldberg-Bockhorn, A.M. Seitz, L. 

Dürselen, A. Ignatius, P. Walther, R. Breiter, N. Rotter, Decellularized cartilage 

matrix as a novel biomatrix for cartilage tissue-engineering applications., 

Tissue Eng. Part A. 18 (2012) 2195–209. doi:10.1089/ten.TEA.2011.0705. 

[9] M. Zang, Q. Zhang, E.I. Chang, A.B. Mathur, P. Yu, Decellularized tracheal 

matrix scaffold for tracheal tissue engineering: in vivo host response., Plast. 

Reconstr. Surg. 132 (2013) 549e–559e. doi:10.1097/PRS.0b013e3182a013fc. 

[10] E.C. Beck, M. Barragan, T.B. Libeer, S.L. Kieweg, G.L. Converse, R.A. 

Hopkins, C.J. Berkland, M.S. Detamore, Chondroinduction from Naturally 

Derived Cartilage Matrix: A Comparison Between Devitalized and 

Decellularized Cartilage Encapsulated in Hydrogel Pastes, Tissue Eng. Part A. 

22 (2016) 665–679. doi:10.1089/ten.tea.2015.0546. 

[11] J. Visser, P.A. Levett, N.C.R. te Moller, J. Besems, K.W.M. Boere, M.H.P. van 

Rijen, J.C. de Grauw, W.J.A. Dhert, P.R. van Weeren, J. Malda, Crosslinkable 

Hydrogels Derived from Cartilage, Meniscus, and Tendon Tissue, Tissue Eng. 



36 
 

Part A. 21 (2015) 1195–1206. doi:10.1089/ten.tea.2014.0362. 

[12] L. Luo, R. Eswaramoorthy, K.J. Mulhall, D.J. Kelly, Decellularization of porcine 

articular cartilage explants and their subsequent repopulation with human 

chondroprogenitor cells, J. Mech. Behav. Biomed. Mater. 55 (2016) 21–31. 

doi:10.1016/j.jmbbm.2015.10.002. 

[13] Z. Huang, O. Godkin, G. Schulze-Tanzil, The Challenge in Using 

Mesenchymal Stromal Cells for Recellularization of Decellularized Cartilage, 

Stem Cell Rev. Reports. 13 (2017) 50–67. doi:10.1007/s12015-016-9699-8. 

[14] K. Willert, J.D. Brown, E. Danenberg, A.W. Duncan, I.L. Weissman, T. Reya, 

J.R. Yates, R. Nusse, Wnt proteins are lipid-modified and can act as stem cell 

growth factors, Nature. 423 (2003) 448–452. doi:10.1038/nature01611. 

[15] B. Johnstone, T.M. Hering, A.I. Caplan, V.M. Goldberg, J.U. Yoo, In 

VitroChondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells, 

Exp. Cell Res. 238 (1998) 265–272. doi:10.1006/excr.1997.3858. 

[16] M.L. de Vries-van Melle, E.W. Mandl, N. Kops, W.J.L.M. Koevoet, J.A.N. 

Verhaar, G.J.V.M. van Osch, An osteochondral culture model to study 

mechanisms involved in articular cartilage repair, Tissue Eng. Part C Methods. 

00 (2011). doi:10.1089/ten.tec.2011.0339. 

[17] M.L. de Vries-van Melle, M.S. Tihaya, N. Kops, W.J.L.M. Koevoet, J.M. 

Murphy, J.A.N. Verhaar, M. Alini, D. Eglin, G.J.V.M. van Osch, Chondrogenic 

differentiation of human bone marrow-derived mesenchymal stem cells in a 

simulated osteochondral environment is hydrogel dependent., Eur. Cell. Mater. 

27 (2014) 112–23; discussion 123. 

http://www.ncbi.nlm.nih.gov/pubmed/24488855. 



37 
 

[18] C.A. Schneider, W.S. Rasband, K.W. Eliceiri, NIH Image to ImageJ: 25 years 

of image analysis., Nat. Methods. 9 (2012) 671–5. doi:22930834. 

[19] P.R. Moshtagh, B. Pouran, N.M. Korthagen, A.A. Zadpoor, H. Weinans, 

Guidelines for an optimized indentation protocol for measurement of cartilage 

stiffness: The effects of spatial variation and indentation parameters, J. 

Biomech. 49 (2016) 3602–3607. doi:10.1016/j.jbiomech.2016.09.020. 

[20] L. Nimeskern, L. Utomo, I. Lehtoviita, G. Fessel, J.G. Snedeker, G.J.V.M. van 

Osch, R. Müller, K.S. Stok, Tissue composition regulates distinct viscoelastic 

responses in auricular and articular cartilage, J. Biomech. 49 (2016) 344–352. 

doi:10.1016/j.jbiomech.2015.12.032. 

[21] H. Nejadnik, J.H. Hui, E.P. Feng Choong, B.-C. Tai, E.H. Lee, Autologous 

bone marrow-derived mesenchymal stem cells versus autologous chondrocyte 

implantation: an observational cohort study., Am. J. Sports Med. 38 (2010) 

1110–6. doi:10.1177/0363546509359067. 

[22] R. Narcisi, M.A. Cleary, P.A.J. Brama, M.J. Hoogduijn, N. Tüysüz, D. ten 

Berge, G.J.V.M. van Osch, Long-Term Expansion, Enhanced Chondrogenic 

Potential, and Suppression of Endochondral Ossification of Adult Human 

MSCs via WNT Signaling Modulation, Stem Cell Reports. (2015). 

doi:10.1016/j.stemcr.2015.01.017. 

[23] R.M. Thiede, Y. Lu, M.D. Markel, A review of the treatment methods for 

cartilage defects, Vet. Comp. Orthop. Traumatol. 25 (2012) 263–272. 

doi:10.3415/VCOT-11-05-0070. 

[24] C.A. Hellingman, E.T.P. Verwiel, I. Slagt, W. Koevoet, R.M.L. Poublon, G.J. 

Nolst-Trenité, R.J.B. De Jong, H. Jahr, G.J.V.M. Van Osch, Differences in 



38 
 

Cartilage-Forming Capacity of Expanded Human Chondrocytes from Ear and 

Nose and Their Gene Expression Profiles, Cell Transplant. 20 (2011) 925–

940. doi:10.3727/096368910X539119. 

[25] H. Yanaga, K. Imai, T. Fujimoto, K. Yanaga, Generating Ears from Cultured 

Autologous Auricular Chondrocytes by Using Two-Stage Implantation in 

Treatment of Microtia, Plast. Reconstr. Surg. 124 (2009) 817–825. 

doi:10.1097/PRS.0b013e3181b17c0e. 

[26] A.L. Ponte, E. Marais, N. Gallay, A. Langonné, B. Delorme, O. Hérault, P. 

Charbord, J. Domenech, The in vitro migration capacity of human bone 

marrow mesenchymal stem cells: comparison of chemokine and growth factor 

chemotactic activities., Stem Cells. 25 (2007) 1737–45. 

doi:10.1634/stemcells.2007-0054. 

[27] Y. Mishima, M. Lotz, Chemotaxis of human articular chondrocytes and 

mesenchymal stem cells, J. Orthop. Res. 26 (2008) 1407–1412. 

doi:10.1002/jor.20668. 

[28] M.J. Dubon, J. Yu, S. Choi, K.-S. Park, Transforming growth factor β induces 

bone marrow mesenchymal stem cell migration via noncanonical signals and 

N-cadherin, J. Cell. Physiol. 233 (2018) 201–213. doi:10.1002/jcp.25863. 

[29] N. Shinojima, A. Hossain, T. Takezaki, J. Fueyo, J. Gumin, F. Gao, F. Nwajei, 

F.C. Marini, M. Andreeff, J.-I. Kuratsu, F.F. Lang, TGF- Mediates Homing of 

Bone Marrow-Derived Human Mesenchymal Stem Cells to Glioma Stem Cells, 

Cancer Res. 73 (2013) 2333–2344. doi:10.1158/0008-5472.CAN-12-3086. 

[30] A.M. Mackay, S.C. Beck, J.M. Murphy, F.P. Barry, C.O. Chichester, M.F. 

Pittenger, Chondrogenic Differentiation of Cultured Human Mesenchymal 



39 
 

Stem Cells from Marrow, Tissue Eng. 4 (1998) 415–428. 

doi:10.1089/ten.1998.4.415. 

[31] G.J. van Osch, S.W. van der Veen, P. Buma, H.L. Verwoerd-Verhoef, Effect of 

transforming growth factor-beta on proteoglycan synthesis by chondrocytes in 

relation to differentiation stage and the presence of pericellular matrix., Matrix 

Biol. 17 (1998) 413–24. http://www.ncbi.nlm.nih.gov/pubmed/9840443. 

[32] M.R. Homicz, K.B. McGowan, L.M. Lottman, G. Beh, R.L. Sah, D. Watson, A 

compositional analysis of human nasal septal cartilage., Arch. Facial Plast. 

Surg. 5 (n.d.) 53–8. http://www.ncbi.nlm.nih.gov/pubmed/12533140. 

[33] R.A. Stockwell, The cell density of human articular and costal cartilage., J. 

Anat. 101 (1967) 753–63. http://www.ncbi.nlm.nih.gov/pubmed/6059823. 

[34] C.R. Lee, H.A. Breinan, S. Nehrer, M. Spector, Articular cartilage chondrocytes 

in type I and type II collagen-GAG matrices exhibit contractile behavior in 

vitro., Tissue Eng. 6 (2000) 555–65. doi:10.1089/107632700750022198. 

[35] L. Zhou, I. Pomerantseva, E.K. Bassett, C.M. Bowley, X. Zhao, D.A. Bichara, 

K.M. Kulig, J.P. Vacanti, M.A. Randolph, C.A. Sundback, Engineering Ear 

Constructs with a Composite Scaffold to Maintain Dimensions, Tissue Eng. 

Part A. 17 (2011) 1573–1581. doi:10.1089/ten.tea.2010.0627. 

[36] S. Röker, S. Diederichs, Y. Stark, S. Böhm, I. Ochoa, J.A. Sanz, J.M. García-

Aznar, M. Doblaré, M. van Griensven, T. Scheper, C. Kasper, Novel 3D 

biomaterials for tissue engineering based on collagen and macroporous 

ceramics, Materwiss. Werksttech. 40 (2009) 54–60. 

doi:10.1002/mawe.200800413. 



40 
 

[37] R.M. Thiede, Y. Lu, M.D. Markel, A review of the treatment methods for 

cartilage defects., Vet. Comp. Orthop. Traumatol. 25 (2012) 263–72. 

doi:10.3415/VCOT-11-05-0070. 

[38] A. Lolli, R. Narcisi, E. Lambertini, L. Penolazzi, M. Angelozzi, N. Kops, S. 

Gasparini, G.J.V.M. van Osch, R. Piva, Silencing of Antichondrogenic 

MicroRNA-221 in Human Mesenchymal Stem Cells Promotes Cartilage Repair 

In Vivo, Stem Cells. 34 (2016) 1801–1811. doi:10.1002/stem.2350. 

[39] C.A. Bautista, H.J. Park, C.M. Mazur, R.K. Aaron, B. Bilgen, Effects of 

Chondroitinase ABC-Mediated Proteoglycan Digestion on Decellularization 

and Recellularization of Articular Cartilage, PLoS One. 11 (2016) e0158976. 

doi:10.1371/journal.pone.0158976. 

[40] D.E.T. Shepherd, B.B. Seedhom, Thickness of human articular cartilage in 

joints of the lower limb, Ann. Rheum. Dis. 58 (1999) 27–34. 

doi:10.1136/ard.58.1.27. 

[41] K. Hwang, F. Huan, D.J. Kim, Mapping Thickness of Nasal Septal Cartilage, J. 

Craniofac. Surg. 21 (2010) 243–244. doi:10.1097/SCS.0b013e3181c5a203. 

[42] K.R. Stone, A.W. Walgenbach, J.T. Abrams, J. Nelson, N. Gillett, U. Galili, 

Porcine and bovine cartilage transplants in cynomolgus monkey: I. A model for 

chronic xenograft rejection., Transplantation. 63 (1997) 640–5. 

http://www.ncbi.nlm.nih.gov/pubmed/9075831 (accessed January 27, 2014). 

[43] J. Gille, P. Behrens, A.P. Schulz, R. Oheim, B. Kienast, Matrix-Associated 

Autologous Chondrocyte Implantation, Cartilage. 7 (2016) 309–315. 

doi:10.1177/1947603516638901. 



41 
 

[44] R.A. Manji, W. Lee, D.K.C. Cooper, Xenograft bioprosthetic heart valves: Past, 

present and future, Int. J. Surg. 23 (2015) 280–284. 

doi:10.1016/j.ijsu.2015.07.009. 

[45] P.K. Bos, M. van Melle, G.J.V.M. van Osch, Articular cartilage repair and the 

evolving role of regenerative medicine, Open Access Surg. (2010) 109. 

doi:10.2147/OAS.S7192. 

[46] M. Mumme, A. Barbero, S. Miot, A. Wixmerten, S. Feliciano, F. Wolf, A.M. 

Asnaghi, D. Baumhoer, O. Bieri, M. Kretzschmar, G. Pagenstert, M. Haug, D.J. 

Schaefer, I. Martin, M. Jakob, Nasal chondrocyte-based engineered 

autologous cartilage tissue for repair of articular cartilage defects: an 

observational first-in-human trial, Lancet. 388 (2016) 1985–1994. 

doi:10.1016/S0140-6736(16)31658-0. 

[47] N.C. Hidvegi, K.M. Sales, D. Izadi, J. Ong, P. Kellam, D. Eastwood, P.E.M. 

Butler, A low temperature method of isolating normal human articular 

chondrocytes, Osteoarthr. Cartil. 14 (2006) 89–93. 

doi:10.1016/j.joca.2005.08.007. 

[48] A.J. Steward, D.J. Kelly, Mechanical regulation of mesenchymal stem cell 

differentiation, J. Anat. 227 (2015) 717–731. doi:10.1111/joa.12243. 

[49] S. Yanada, M. Ochi, K. Kojima, P. Sharman, Y. Yasunaga, E. Hiyama, 

Possibility of selection of chondrogenic progenitor cells by telomere length in 

FGF-2-expanded mesenchymal stromal cells., Cell Prolif. 39 (2006) 575–84. 

doi:10.1111/j.1365-2184.2006.00397.x. 

[50] N. Baker, L.B. Boyette, R.S. Tuan, Characterization of bone marrow-derived 

mesenchymal stem cells in aging, Bone. 70 (2015) 37–47. 



42 
 

doi:10.1016/j.bone.2014.10.014. 

[51] C.A. Knuth, C.H. Kiernan, V. Palomares Cabeza, J. Lehmann, J. Witte-Buoma, 

D. ten Berge, P.A.J. Brama, E.B. Wolvius, E.M. Strabbing, M. Koudstaal, R. 

Narcisi, E. Farrell, Isolating paediatric mesenchymal stem cells with enhanced 

expansion and differentiation capabilities, Tissue Eng. Part C Methods. (2018) 

ten.TEC.2018.0031. doi:10.1089/ten.TEC.2018.0031. 

[52] R. Narcisi, O.H. Arikan, J. Lehmann, D. ten Berge, G.J.V.M. van Osch, 

Differential Effects of Small Molecule WNT Agonists on the Multilineage 

Differentiation Capacity of Human Mesenchymal Stem Cells, Tissue Eng. Part 

A. 22 (2016) 1264–1273. doi:10.1089/ten.tea.2016.0081. 

[53] M.K. Majumdar, E. Wang, E. a Morris, BMP-2 and BMP-9 promotes 

chondrogenic differentiation of human multipotential mesenchymal cells and 

overcomes the inhibitory effect of IL-1., J. Cell. Physiol. 189 (2001) 275–84. 

doi:10.1002/jcp.10025. 

[54] C.C. Tsai, Y.J. Chen, T.L. Yew, L.L. Chen, J.Y. Wang, C.H. Chiu, S.C. Hung, 

Hypoxia inhibits senescence and maintains mesenchymal stem cell properties 

through down-regulation of E2A-p21 by HIF-TWIST, Blood. 117 (2011) 459–

469. doi:10.1182/blood-2010-05-287508. 

[55] E.A. Makris, D.J. Responte, N.K. Paschos, J.C. Hu, K.A. Athanasiou, 

Developing functional musculoskeletal tissues through hypoxia and lysyl 

oxidase-induced collagen cross-linking, Proc. Natl. Acad. Sci. 111 (2014) 

E4832–E4841. doi:10.1073/pnas.1414271111. 

[56] A. Lolli, E. Lambertini, L. Penolazzi, M. Angelozzi, C. Morganti, T. 

Franceschetti, S. Pelucchi, R. Gambari, R. Piva, Pro-chondrogenic effect of 



43 
 

miR-221 and slug depletion in human MSCs., Stem Cell Rev. 10 (2014) 841–

55. doi:10.1007/s12015-014-9532-1. 

[57] K. Sivasubramaniyan, A. Harichandan, P. Boss, H.-J. Buehring, G. van Osch, 

Isolation of phenotypically and functionally distinct endogeneous human bone 

marrow-derived mesenchymal stem/stromal cell subsets, Osteoarthr. Cartil. 24 

(2016) S464. doi:10.1016/j.joca.2016.01.846. 

[58] D. Schumann, R. Kujat, M. Nerlich, P. Angele, Mechanobiological conditioning 

of stem cells for cartilage tissue engineering., Biomed. Mater. Eng. 16 (2006) 

S37-52. http://www.ncbi.nlm.nih.gov/pubmed/16823112. 

[59] X. Zhao, D.A. Bichara, L. Zhou, K.M. Kulig, A. Tseng, C.M. Bowley, J.P. 

Vacanti, I. Pomerantseva, C.A. Sundback, M.A. Randolph, Conditions for 

seeding and promoting neo-auricular cartilage formation in a fibrous collagen 

scaffold, J. Cranio-Maxillofacial Surg. 43 (2015) 382–389. 

doi:10.1016/j.jcms.2014.12.007. 

[60] A.J. Sutherland, E.C. Beck, S.C. Dennis, G.L. Converse, R.A. Hopkins, C.J. 

Berkland, M.S. Detamore, Decellularized Cartilage May Be a Chondroinductive 

Material for Osteochondral Tissue Engineering, PLoS One. 10 (2015) 

e0121966. doi:10.1371/journal.pone.0121966. 

[61] V. Gupta, K.M. Tenny, M. Barragan, C.J. Berkland, M.S. Detamore, 

Microsphere-based scaffolds encapsulating chondroitin sulfate or 

decellularized cartilage, J. Biomater. Appl. 31 (2016) 328–343. 

doi:10.1177/0885328216655469. 

[62] B.O. Diekman, C.R. Rowland, D.P. Lennon, A.I. Caplan, F. Guilak, 

Chondrogenesis of adult stem cells from adipose tissue and bone marrow: 



44 
 

induction by growth factors and cartilage-derived matrix., Tissue Eng. Part A. 

16 (2010) 523–33. doi:10.1089/ten.TEA.2009.0398. 

[63] N.W. Garrigues, D. Little, J. Sanchez-Adams, D.S. Ruch, F. Guilak, 

Electrospun cartilage-derived matrix scaffolds for cartilage tissue engineering, 

J. Biomed. Mater. Res. Part A. 102 (2014) 3998–4008. 

doi:10.1002/jbm.a.35068. 

[64] N.-C. Cheng, B.T. Estes, H.A. Awad, F. Guilak, Chondrogenic Differentiation of 

Adipose-Derived Adult Stem Cells by a Porous Scaffold Derived from Native 

Articular Cartilage Extracellular Matrix, Tissue Eng. Part A. 15 (2009) 231–241. 

doi:10.1089/ten.tea.2008.0253. 

[65] Y.Y. Gong, J.X. Xue, W.J. Zhang, G.D. Zhou, W. Liu, Y. Cao, A sandwich 

model for engineering cartilage with acellular cartilage sheets and 

chondrocytes, Biomaterials. 32 (2011) 2265–2273. 

doi:10.1016/j.biomaterials.2010.11.078. 

[66] G.C. Ingavle, A.W. Frei, S.H. Gehrke, M.S. Detamore, Incorporation of 

Aggrecan in Interpenetrating Network Hydrogels to Improve Cellular 

Performance for Cartilage Tissue Engineering, Tissue Eng. Part A. 19 (2013) 

1349–1359. doi:10.1089/ten.tea.2012.0160. 

[67] Y. Zhang, S. Chen, M. Pei, Biomechanical signals guiding stem cell cartilage 

engineering: from molecular adaption to tissue functionality., Eur. Cell. Mater. 

31 (2016) 59–78. http://www.ncbi.nlm.nih.gov/pubmed/26728499. 

[68] M.H. Cha, S.H. Do, G.R. Park, P. Du, K.-C. Han, D.K. Han, K. Park, Induction 

of Re-Differentiation of Passaged Rat Chondrocytes Using a Naturally 

Obtained Extracellular Matrix Microenvironment, Tissue Eng. Part A. 19 (2013) 



45 
 

978–988. doi:10.1089/ten.tea.2012.0358. 

[69] Y.-N. Wu, Z. Yang, J.H.P. Hui, H.-W. Ouyang, E.H. Lee, Cartilaginous ECM 

component-modification of the micro-bead culture system for chondrogenic 

differentiation of mesenchymal stem cells, Biomaterials. 28 (2007) 4056–4067. 

doi:10.1016/j.biomaterials.2007.05.039. 

[70] M.P. Lutolf, J.A. Hubbell, Synthetic biomaterials as instructive extracellular 

microenvironments for morphogenesis in tissue engineering, Nat. Biotechnol. 

23 (2005) 47–55. doi:10.1038/nbt1055. 

 




	A Lehmann
	Recellularization of auricular cartilage via elastase-generated channels J. Lehmann1,2, S. Nürnberger3,4,9, R. Narcisi5, K. S. Stok6,7, B. C. J. van der Eerden8, W.J.L.M. Koevoet1, N. Kops5, D. ten Berge2*, G.J. van Osch1,5*^
	Abbreviated Title Recellularization of Cartilage via Elastin Fibre Channels
	References

	B Lehmann corr fig.5

