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Chapter 1 

 

 

Introduction 

 

Avian influenza viruses 

Avian influenza (AI) viruses are negative sense single-stranded RNA viruses of the 

Orthomyxovirus family. The genome comprises eight gene segments [1]. Influenza A 

viruses are classified based on two surface glycoproteins, the haemagglutinin (HA) 

and neuraminidase (NA), encoded by the HA gene and the NA gene respectively. The 

internal gene cassette consists of six gene segments that code for the polymerase 

complex (polymerase basic 2 [PB2], polymerase basic 1 [PB1] and polymerase acidic 

[PA]), the nucleoprotein (NP), the matrix proteins (M1 and M2), and the non-

structural proteins (NS1 and NS2) [1]. Currently, 18 HA subtypes (H1 – H18) and 11 NA 

subtypes (N1 – N11) have been recognised [2-7]. The wild bird reservoir, in particular 

wild waterfowl, harbours most of the combinations of 16 HA (H1 – H16) and 9 NA (N1 

– N9) subtypes [6, 8-10]. Viruses of the subtypes H17 and H18 together with N10 and 

N11 have been detected solely in bats [7]. Influenza viruses evolve rapidly by 

mutation or reassortment, i.e. the exchange of gene segments.  

 

Highly pathogenic avian influenza viruses 

Avian influenza viruses pose a constant threat to both animal and human health and 

are therefore pathogens of major global concern. Avian influenza viruses exist in two 

forms, as low pathogenic avian influenza (LPAI) or highly pathogenic avian influenza 

(HPAI) viruses. Wild birds, mainly wild waterfowl of the orders Anseriformes (mainly 

ducks, geese and swans) and Charadriiformes (mainly gulls and shorebirds) [8] are 

the natural hosts for LPAI viruses, that circulate enzootically in these species with 

main tropism for the gastro-intestinal tract [11-13] without obvious signs of disease 

[14]. Occasionally, these LPAI viruses are introduced into poultry, with mild or no 

signs of disease [15-17]. LPAI viruses of the subtypes H5 and H7 can become highly 

pathogenic upon introduction in poultry [8, 18], by the insertion of several 

nucleotides coding for basic amino acids at the cleavage site of the HA protein, 

resulting in a so-called multi-basic cleavage site. This multi-basic cleavage site enables 

the viral HA to be cleaved (activated) by ubiquitous furin-like proteases, leading to 

systemic virus replication [19-22] with severe signs of disease in poultry [23], and to 
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variable extent in wild birds [24-29]. In contrast, the cleavage of the HA protein of 

LPAI viruses is dependent on the presence of host proteases such as trypsin-like 

enzymes, and thus restricted to locations where these proteases are present, i.e. the 

intestinal tract and respiratory tract. The definition of HPAI versus LPAI was formerly 

based on the lethality in chickens inoculated experimentally via the intravenous 

route [30], but currently the molecular criterion of the presence of a multi-basic 

cleavage site is sufficient. The exact mechanism of this LPAI to HPAI virus 

transformation is still unrevealed, but there is strong evidence this transformation is 

related to multiple nucleotide insertions and substitutions or by recombination [31] 

that is thought to occur in poultry (chickens and turkeys) hosts only [32-34]. Thus, it 

is generally accepted that HPAI viruses detected in wild birds are spill-over infections 

from poultry. The economic impact and animal welfare issues that are associated 

with outbreaks of HPAI in poultry are tremendous, hence detections of viruses of the 

H5 and H7 subtype in poultry are notifiable [30]. In addition, the introduction of 

these viruses into the wild bird population can result in a fast and wide geographical 

spread [35, 36]. Several avian influenza virus subtypes have been associated with 

human infections. HPAI H5N1 viruses caused 800-900 human infections between 

1997 and 2017, part of which resulted in severe disease or death [37, 38], but recently 

HPAI and LPAI H7N9 and HPAI H5N6 viruses have become the biggest concern for 

human health, having caused approximately 1,567 [39] and 23 [38] recent human 

infections respectively, since 2013. 

 

Global emergence of highly pathogenic avian influenza viruses of the H5 subtype  

One of the first HPAI H5 virus detections dates back to 1959, when an HPAI H5N1 

virus was detected in chickens in Scotland [40]. Until 1996, six additional detections 

of HPAI H5 virus have been reported from South Africa, Canada, the United States of 

America, Ireland, the United Kingdom, and Mexico. Most likely, these were all 

separate transformations from LPAI to HPAI H5 viruses, without subsequent spread 

[41, 42]. In 1996, an HPAI H5N1 virus called A/Goose/Guangdong/1/1996 (GSGD) was 

detected in China [43]. In contrast to the earlier single detections of HPAI H5 viruses, 

descendants of this 1996 virus, referred to as GSGD-lineage viruses, were 

occasionally detected in Asia between 1996 and 2003 [44]. From 2003, these viruses 

have circulated enzootically in poultry in several countries in South and Southeast 

Asia, the Middle East and Africa [45]. Periodically, these HPAI H5 viruses have been 

introduced into wild birds with subsequent spread to other geographical areas, likely 

through bird migration [35, 36]. Viruses of the GSGD-lineage have genetically 

diversified into different genetic “clades” leading also to antigenic differences. In 

2008, 10 different main clades (clade 0 to clade 9) were identified [46]. Viruses of 

most of these clades have circulated only for a limited time frame and with limited 

geographical spread. However, some, like clade 2, have evolved into several 
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subclades with subsequent subdivisions, e.g. clade 2.1.1.1. Since 2012, only viruses of 

clade 1, 2, and 7 have been detected [44].  

It is likely that specific aspects of the poultry production sector in Asia have 

contributed to the conditions where the GSGD-lineage viruses could be maintained 

and spread in poultry populations. The poultry sector in Asia has greatly expanded in 

recent decades. Although chickens are a common poultry type, Asia has by far the 

largest number of domestic ducks in the world. Farms in Asia range in size from small 

backyard farms to large commercial farms, which combination might facilitate a 

good environment for HPAI H5 viruses to be maintained [47]. Many poultry farms 

keep livestock outside, free-ranging in close contact with wild waterfowl and their 

environment [48]. Furthermore, there is a lively poultry trade in Asia where farmers 

from diverse regions bring live poultry to local and regional wet markets. This 

aggregation of live poultry from different geographical locations facilitates virus 

transmission and dissemination among poultry populations from different locations 

[49, 50]. GSGD-lineage viruses have been detected in (migratory) wild birds 

frequently, most likely as a consequence of mingling with free-ranging poultry. The 

combination of a dense and diverse poultry sector, wet markets with live poultry 

trade, high contact rates with wild migratory waterfowl, suboptimal veterinary 

service and poor biosecurity forms an ideal environment for influenza viruses to be 

maintained, evolve and disperse [51]. HPAI H5N1 viruses of the GSGD-lineage clade 

2.2 emerged after 2003, leading to a massive number of outbreaks in Asia in 

2003/2004 with subsequent spread to Europe in 2005 [45, 52], infecting poultry and 

wild bird populations. This virus clade disappeared from Europe in 2009/2010 [45, 

53]. From 2008 onwards a new subclade of HPAI H5N1 virus, clade 2.3.2.1c, gained 

prevalence in China and Southeast Asia [53], subsequently expanding from China to 

Mongolia, Russia and Eastern Europe [54] in early 2010 [55]. In 2015, clade 2.3.2.1c 

viruses were again detected in Eastern Europe, China, Russia and Africa [56, 57]. 

Since 2014, HPAI H5 clade 2.3.4.4 viruses with different NA subtypes have emerged 

(e.g. H5N8, H5N6, H5N3, H5N2, H5N5 [58-60]), which have been circulating in 

Southeast Asia alongside HPAI viruses of other clades like 2.3.2 [56] and 2.2. These 

novel clade 2.3.4.4 viruses caused three waves of intercontinental spread, starting in 

2014 and still ongoing.  

 

Diagnostics and virus characterization 

Traditionally, influenza virus diagnostics depended on virus isolation, by inoculating 

clinical material (e.g. oropharyngeal or cloacal swab material) into 11-day-old 

embryonated chicken eggs (or Madin-Darby Canine Kidney cells) to obtain a virus 

isolate. The virus isolate’s HA and NA subtypes were determined with 

haemagglutination inhibition (HI) assays and neuraminidase inhibition assays, 
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respectively. Nowadays, newer, faster and more sensitive viral detection methods 

based on genetics are commonly used, like Polymerase Chain Reaction (PCR) 

techniques that are able to specifically detect the presence of the influenza virus 

genes (e.g. matrix, H5 gene or H7 gene). Subsequently, the genetic code of the full 

viral genome can be obtained by sequencing methods like Sanger sequencing or 

next-generation sequencing (NGS) methods. In contrast to Sanger sequencing that 

generates a consensus (i.e. majority) sequence, NGS methods can obtain sequences 

of individual genomic segments in a sample, enabling the identification of minority 

variants [61, 62]. The increasing popularity and decreasing costs of NGS methods 

have led to the development of many different sequencing platforms (sample 

preparation and sequencing machines) with different bioinformatics workflows to 

process the raw sequence data.  

Antibodies are markers for immune response to infections, allowing the diagnosis of 

past infections. In response to an influenza virus infection, the immune system 

generates responses that help eliminate the virus and provide a certain level of 

protection for future encounters with similar viruses. Serological assays like HI 

assays, enzyme-linked immunosorbent assays (ELISA), and microneutralisations 

(MN) assays are commonly used to detect antibodies in the blood that are formed 

upon infection with an influenza virus in humans and domestic animals. However, 

there are currently no validated serological assays for testing wild bird sera, although 

NP-ELISAs, HI assays and MN assays are most commonly used with proteins micro-

arrays gaining popularity. In addition to the ability to distinguish for subtype-specific 

antibodies, the rapid diversification of HPAI H5 viruses have led to the ability to 

distinguish between H5 clade and subclade specific antibodies [63]. However, taking 

into consideration that wild birds’ initial antibody responses are weak and may be 

short-lived, antibodies may be only detectable for a limited timeframe of months 

[64].  

 

Avian influenza surveillance in wild birds 

Since 1997, an increasing number of countries have established avian influenza 

surveillance programmes in wild birds. Some of these national wild bird surveillance 

programmes were set up to serve as an early warning system for the presence of 

HPAI viruses, in order to prevent further spread to poultry. Most of those 

programmes cover passive surveillance activities, i.e. testing of diseased or dead 

animals. In some countries, like the United States (Delaware Bay), Canada (Alberta) 

[8, 65, 66], Germany, Sweden (Ottenby [67]), and the Netherlands [68], additional 

more continuous active surveillance programmes are implemented in which living 

and clinically healthy birds are tested for virus and/or antibody presence. In the 

Netherlands, active surveillance is performed by the Department of Viroscience of 
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the Erasmus MC in collaboration with ornithologists, testing approximately 10,000-

15,000 birds in the Netherlands and 2,000 birds from other countries annually. To 

date, it is unknown which wild bird species are involved in long-distance dispersal of 

HPAI viruses, although the involvement of terrestrial birds is less likely [69-71]. The 

flyways used by migratory birds to migrate between wintering and breeding sites 

further complicate influenza surveillance studies in wild birds. Although eight major 

flyways have been described these are only rough abstractions, and are highly 

variable due to factors like the weather, availability of food or human activities [72-

74]. Despite these challenges, active avian influenza surveillance projects in wild 

birds have proved to be valuable in providing new information with regard to host 

species, seasonal trends, population dynamics, and virus subtype diversity for both 

HPAI and LPAI viruses.  

 

Thesis outline 

It is important to characterise and understand the emergence and dynamics of avian 

influenza virus infections in wild birds, that are able to transport these viruses over 

large distances. In this thesis, we investigated the involvement of wild birds and 

discussed the virus dynamics in three subsequent incursions of emerging HPAI H5 

clade 2.3.4.4 viruses in Europe after 2014 based on virological and serological results 

(chapter 2.1, 2.2 and 3). In addition, we studied the applicability of NGS for 

epidemiological studies in outbreak situations by evaluating the repeatability and 

comparability of NGS results from HPAI H5N8 viruses (chapter 4). The information 

we gathered by studying these outbreaks have contributed to the knowledge of 

HPAI circulation in wild birds, and to our vision on an evidence-based optimal 

combination of national and international surveillance efforts to serve as a system 

that would better fulfil the purpose of an early warning system for these HPAI 

viruses entering Europe (chapter 5).  
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Abstract 

In 2014, H5N8 clade 2.3.4.4 highly pathogenic avian influenza (HPAI) viruses of the 

A/Goose/Guangdong/1/1996 lineage emerged in poultry and wild birds in Asia, Europe 

and North America. Here,wild birds were extensively investigated in the Netherlands 

for HPAI H5N8 virus (real-time polymerase chain reaction targeting the matrix and 

H5 gene) and antibody detection (haemagglutination inhibition and virus 

neutralisation assays) before, during and after the first virus detection in Europe in 

late 2014.Between 21 February 2015 and 31 January 2016, 7,337 bird samples were 

tested for the virus. One HPAI H5N8 virus-infected Eurasian wigeon (Anas penelope) 

sampledon 25 February 2015 was detected. Serological assays were performed on 

1,443 samples, including 149 collected between 2007 and 2013, 945 between 14 

November 2014 and 13 May 2015, and 349 between 1 September and 31 December 

2015. Antibodies specific for HPAI H5 clade 2.3.4.4 were absent in wild bird sera 

obtained before 2014 and present in sera collected during and after the HPAI H5N8 

emergence in Europe, with antibody incidence declining after the 2014/15 winter. Our 

results indicate that the HPAI H5N8 virus has not continued to circulate extensively 

in wild bird populations since the 2014/15 winter and that independent maintenance 

of the virus in these populations appears unlikely. 
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Introduction 

Wild birds are the natural hosts of low pathogenic avian influenza (LPAI) viruses, 

which generally do not cause clinical signs of disease in these host species [1]. So far, 

virus subtypes H1 to H16 and N1 to N9 have been detected in wild birds, of which 

viruses of subtypes H5 and H7 have shown the ability to evolve to highly pathogenic 

avian influenza (HPAI) viruses in poultry, causing severe disease with high mortality 

in such animals. These HPAI viruses were historically mainly detected in rapidly 

contained sporadic outbreaks in poultry, until H5N1 viruses of the 

A/Goose/Guangdong/1/1996 (GsGd) lineage emerged in Asia in 1997. Subsequently, 

these viruses have continuously circulated in poultry with frequent detections in wild 

birds [2] and with significant expansion in global range. 

HPAI H5N8 viruses of the GsGd lineage of clade 2.3.4.4 emerged in poultry and wild 

birds on multiple continents in 2014. The ancestral influenza H5N8 virus to the strains 

causing outbreaks from 2014 onwards was first detected in China in 2010 in a captive-

held mallard (Anas platyrhynchos) [3]. In early 2014, HPAI H5N8 GsGd virus of clade 

2.3.4.4 occurred for the first time in poultry in South Korea, soon after causing 

outbreaks also in Japan [4]. From late 2014 onwards, this virus spread to other areas 

of the world including Europe, North America, Russia and Taiwan [5-8]. The HPAI 

H5N8 virus detections in Europe were limited to sporadic cases in wild birds and a 

relatively small number of unrelated outbreaks in poultry. However in North America 

HPAI H5N8 viruses reassorted with co-circulating LPAI viruses, giving rise to new 

HPAI H5N1 and H5N2 virus subtypes that caused a large number of outbreaks in 

poultry with numerous detections in wild birds [9]. Despite mild clinical symptoms 

caused by infection with HPAI H5N8 viruses of clade 2.3.4.4 in experimentally 

infected mammals [10-12] and ducks [11], the widespread detection and rapid global 

spread of HPAI H5 clade 2.3.4.4 viruses pose a potential threat to domestic and wild 

animals and should be studied further. 

The major challenges in understanding the epidemiology of emerging influenza 

viruses in wild birds are the large numbers of potential host species and the usually 

short period of viral shedding, combined with the difficulty of catching and sampling 

representative numbers per species. For instance, mallards that were experimentally 

infected with HPAI H5N8 virus shed infectious virus in tracheal swabs for only up to 5 

days post infection [11]. These impediments result in a low probability of detecting 

newly emerging avian influenza viruses in wild birds through active virological 

surveillance and result in a delay of implementation of effective control measures. 

Nevertheless, to date HPAI H5N8 virus has been detected in 30 wild bird species. In 

addition to the host species previously described [13,14], HPAI H5N8 viruses have 

been detected in wild bird species belonging to the orders Anseriformes in Asia 

(Aythya spp.) and North America (Branta spp.) [6]. In Europe, HPAI H5N8 viruses 
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have been detected in bird species of the orders Anseriformes (Anas spp. and Cygnus 

spp.) and Charadriiformes (Larus spp.) [5,6,14]. 

To estimate the likelihood of the involvement of live wild birds in local and long 

distance movement of HPAI H5 viruses, information on recent exposure of wild bird 

populations to HPAI H5N8 viruses using serology, in addition to virology, would add 

substantial power to surveillance programmes. Studies with ferret sera have shown 

serological tests to have substantial discriminative power between antibodies 

directed to HPAI H5 viruses of different clades and LPAI H5 viruses using 

haemagglutination inhibition (HI) assays [12,15]. Although less is known about 

serology in wild birds, a study on wild birds sampled in Europe and Mongolia showed 

that antigenic differences between the haemagglutinin (HA) of classical Eurasian 

LPAI H5 viruses and GsGd lineage HPAI H5 viruses can be used to define bird 

populations in which HPAI viruses have previously been circulating [16]. With regard 

to HPAI H5N8 viruses specifically, a 2014 South Korean serology study showed 

evidence of a rise of H5 virus antibodies occurring in long distance migratory duck 

species after the onset of the HPAI H5N8 virus emergence in South Korea [4]. 

In this study, in response to the emergence of HPAI H5N8 virus in Europe, we 

present data on wild bird surveillance activities in the Netherlands, including results 

of virological and serological assays.  

 

Methods 

Ethical statement 

The capture of free-living birds was approved by the Dutch Ministry of Economic 

Affairs based on the Flora and Fauna Act (permit number FF/75A/2009/067 and 

FF/75A/2014/054). Handling and sampling of free-living birds was approved by the 

Animal Experiment Committee of the Erasmus Medical Centre (permit number 122–

11–31). Free-living birds were released into the wild after sampling and all efforts 

were made to minimise animal suffering throughout the studies. 

 

Study population 

Immediately after the first detection of HPAI H5N8 virus in poultry in Europe, 

ongoing influenza surveillance activities in migrating and overwintering wild birds in 

the Netherlands were intensified (14 November 2014–13 May 2015). Hereafter, this 

period will be referred to as ‘during the outbreak’. Surveillance activities in wild birds 

in the Netherlands were again intensified from the onset of the arrival of wild 

migrating birds a year after the initial HPAI H5N8 virus detection in Europe (1 

September–31 December 2015). This period will be referred to as ‘after the outbreak’. 
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Sampled populations consisted of resident birds, partial migrants and long distance 

migrants. During both periods of intensified surveillance, blood samples were 

obtained in addition to samples for virus detection. A matching historical set of 

serum samples was compiled based on similarity in species and family, hereafter 

referred to as ‘before the outbreak’ (2007–2013). 

 

Sample collection 

Wild birds were captured using duck decoys, clap nets, cannon nets, mist nets, leg-

nooses, swan hooks, or manually. Birds were sampled routinely for virus detection 

using cloacal and/or oropharyngeal swabs as described elsewhere [14]. In addition, 

faecal samples were collected from a limited number of species for virus detection. 

Blood samples were collected for antibody detection. Blood samples were collected 

from the brachial or metatarsal vein and centrifuged at 3,000 rpm for 10 min in 0.8 

mL gel separation tubes (MiniCollect tubes, Greiner). Serum samples were stored 

below -20 °C until analysis. 

 

Virus detection, isolation and characterisation 

Samples for virus detection were analysed for the presence of HPAI H5(N8) virus 

using matrix- and H5-specific real-time polymerase chain reaction (RT-PCR) assays 

followed by H5 and neuraminidase sequencing as previously described [14]. Samples 

testing positive in matrix specific RT-PCR were inoculated in embryonated chicken 

eggs as described previously [17]. 

 

Antibody detection 

Serum samples were first tested for the presence of H5-specific antibodies in an HI 

assay according to standard procedures [18]. Briefly, serum samples were incubated 

for 16 hours at 37 °C with Vibrio cholerae filtrate containing receptor-destroying 

enzyme to remove non-specific inhibitors of haemagglutination activity, followed by 

incubation for 1 hour at 56 °C. Twofold serial dilutions of serum samples with a start 

dilution of 1:20 were prepared using phosphate-buffered saline (PBS) in U-bottomed 

96 well microtitre plates. Serum dilutions were incubated with four 

haemagglutinating units (HAU) of Madin–Darby canine kidney (MDCK) (all HPAI H5 

clade viruses) or egg (A/Mallard/Netherlands/3/1999) cultured virus for 30 min at 

37 °C. A suspension of 1% turkey red blood cells (TRBC) was added to the serum-virus 

dilutions. After incubation for 1 hour at 4 °C, haemagglutination patterns were read. 

Negative controls, based on serum incubation without virus, were used to measure 

non-specific haemagglutination of each serum sample. Sera showing high 
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background (i.e. high non-specific haemagglutination) were pre-treated with 10% 

TRBC for 1 hour at 4 °C and retested for the presence of H5-specific antibodies as 

described above. Serum samples from experimentally inoculated ferrets [12,15], a 

domestic duck, and a domestic goose were used as positive controls. 

All serum samples were initially screened for antibodies specific for classical Eurasian 

LPAI H5N2 virus A/Mallard/Netherlands/3/1999 and clade 2.3.4.4 HPAI H5N8 virus 

A/Chicken/Netherlands/EMC-3/2014. Serum samples that tested positive for HPAI H5 

clade 2.3.4.4-specific antibodies were further tested against HPAI viruses of the H5 

clades 1 (A/Viet Nam/1194/2004), 2.1 (A/Indonesia/5/2005), 2.2 

(A/Turkey/Turkey/1/2005), and 2.3 (A/Anhui/1/2005), and retested against the clade 

2.3.4.4 virus. Samples showing more than threefold differences in titre or testing 

negative in the second assay after showing initial titres were tested a third time. The 

viruses used were recombinant viruses based on an A/PR/8/34 virus backbone, 

containing the HA and neuraminidase (NA) of the representative H5 strains. The 

sequences of the HA genes were modified to remove the multi-basic cleavage site to 

enable this study within biosafety level 2 laboratories. HPAI H5 virus of clade 0 was 

excluded from the analyses due to high overall reactivity with all avian positive 

control sera as previously described [16] and thus of limited discriminative value. 

A representative selection (based on titre and serum availability) of serum samples 

that tested positive for HPAI H5 clade 2.3.4.4 antibodies were sent to the Animal and 

Plant Health Agency (APHA) (Weybridge, UK) for confirmation of HPAI H5 clade 

2.3.4.4-specific antibodies using an HI assay. The HI assay procedure used by the 

APHA differed from the HI assay described above and was carried out in accordance 

to the World Organisation for Animal Health (OIE) [19]. In short, twofold serial 

dilutions of serum samples with a start dilution of 1:12 were made using phosphate-

buffered saline (PBS) and prepared in V-bottomed microtitre plates. Serum dilutions 

were incubated with four HAU of egg cultured virus for 30 min at room temperature. 

A solution of 1% chicken red blood cells (CRBC) was added to the serum–virus 

dilutions. After incubation for 30 min at room temperature, haemagglutination 

patterns/streaming of red cells were read. Polyclonal chicken sera raised against the 

same clade 2.1, 2.2, 2.3, and 2.3.4.4 viruses as mentioned above were used as positive 

controls, supplemented with LPAI H5N3 virus A/Teal/England/7394–2805/2006 and 

clade 2.3.4.4 HPAI H5N8 virus A/Duck/England/36254/2014. 

All samples that tested positive for HPAI H5 clade 2.3.4.4-specific antibodies in the 

initial HI assay were tested in a virus neutralisation (VN) assay if sufficient amounts of 

serum were available. The VN assay was performed as described previously [20], 

using titrated virus stocks of clade 2.1, 2.3, and 2.3.4.4. Briefly, serum was heat 

inactivated for 30 min at 56 °C and twofold serial dilutions of the sera starting at a 

1:20 dilution were prepared and 100 median tissue culture infectious dose (TCID50) 

was added. After incubating antigen and serum for 1 hour at 37 °C with 5% CO2, the 
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mixtures were transferred to 96 well flat bottom plates containing MDCK cells, 

which were washed once with infection medium before inoculation. The plates were 

incubated for 1 hour at 37 °C with 5% CO2, after which the cells were washed once 

with 100 μL infection medium and the medium was replaced by 200 μL infection 

medium. Three days later, a haemagglutination assay was performed with the 

supernatant to determine the antibody titres. 

 

Results 

Study population 

A total of 11,355 birds were sampled for virus detection during and after the first 

detection of HPAI H5N8 viruses in poultry and wild birds in Europe. Of those, 5,387 

birds were sampled during the outbreak and 5,968 after the outbreak. This report 

describes the results on 7,337 samples obtained from 21 February 2015 onwards in 

addition to the previously reported 4,018 samples obtained until 20 February 2015 

[14]. Sampled species mainly belonged to the orders Anseriformes, Charadriiformes 

and Gruiformes (Table 1). 

For antibody detection, 1,443 serum samples were analysed. Among these, 945 

samples from 25 avian species were obtained during the outbreak, while 349 

samples from 15 species originated from after the outbreak. A total of 149 serum 

samples from 15 species sampled before the HPAI H5N8 virus emergence, obtained 

between 2007 and 2013, served as controls (Table 2). The majority of these samples 

were collected from birds wintering in Dutch wetlands. 

 

Table 1. Wild bird species sampled for virus detection during and after the emergence of highly 
pathogenic avian influenza H5N8 virus in Europe, the Netherlands, 21 February 2015–31 January 2016 
(n = 7,337 animals) 

Order Family Species During outbreak: 21 Feb 2015–13 May 
2015 

After outbreak: 14 May 2015–31 Jan 2016 
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 Ducks Common pochard 

(Aythya ferina) 
0 0 0 NA 1 0 0 NA 

Common teal  
(Anas crecca) 

8 0 0 NA 221 39 4 LPAI 

Egyptian goose 
(Alopochen 
aegyptiaca) 

58 0 0 NA 136 0 0 NA 
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Order Family Species During outbreak: 21 Feb 2015–13 May 
2015 

After outbreak: 14 May 2015–31 Jan 2016 
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Eurasian wigeon 
(Anas penelope) 

175 1 1 HPA
I 

1,034 101 2 LPAI 

Gadwall  
(Anas strepera) 

1 0 0 NA 175 15 0 NA 

Mallard  
(Anas platyrhynchos) 

748 50 0 NA 2,464 354 15 LPAI 

Mandarin duck 
(Aix galericulata) 

2 0 0 NA 0 0 0 NA 

Northern pintail 
(Anas acuta) 

0 0 0 NA 7 3 0 NA 

Northern shoveler 
(Anas clypeata) 

0 0 0 NA 17 2 0 NA 

Tufted duck  
(Aythya fuligula) 

0 0 0 NA 1 0 0 NA 

Geese Barnacle goose 
(Branta leucopsis) 

96 5 4 LPAI 926 3 0 NA 

Bean goose  
(Anser fabalis) 

0 0 0 NA 8 0 0 NA 

Brent goose  
(Branta bernicla) 

54 0 0 NA 0 0 0 NA 

Canada goose 
(Branta canadensis) 

3 0 0 NA 72 0 0 NA 

Greylag goose 
(Anser anser) 

59 0 0 NA 239 0 0 NA 

Pink-footed goose 
(Anser 
brachyrhynchus) 

0 0 0 NA 1 0 0 NA 

Greater white-
fronted goose 
(Anser albifrons) 

0 0 0 NA 55 0 0 NA 

Swans Mute swan  
(Cygnus olor) 

3 0 0 NA 31 1 0 NA 

Ch
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ad
ri
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o

rm
es

 Gulls Black-headed gull 
(Chroicocephalus 
ridibundus) 

84 0 0 NA 392 53 0 NA 

Caspian gull  
(Larus cachinnans) 

4 0 0 NA 4 0 0 NA 

Common gull  
(Larus canus) 

1 0 0 NA 18 0 0 NA 

Great black-backed 
gull (Larus marinus) 

1 0 0 NA 0 0 0 NA 

Herring gull (Larus 
argentatus) 

15 0 0 NA 32 2 0 NA 

Lesser black-backed 
gull (Larus fuscus) 

0 0 0 NA 33 2 0 NA 

Mediterranean gull 
(Larus 
melanocephalus) 

1 0 0 NA 3 1 0 NA 

Yellow-legged gull 
(Larus michahellis) 

0 0 0 NA 1 0 0 NA 

Lapwin
gs 

Northern lapwing 
(Vanellus vanellus) 

6 0 0 NA 0 0 0 NA 

Terns Black tern 
(Chlidonias niger) 

0 0 0 NA 0 0 0 NA 

Common tern 
(Sterna hirundo) 

0 0 0 NA 0 0 0 NA 
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Order Family Species During outbreak: 21 Feb 2015–13 May 
2015 

After outbreak: 14 May 2015–31 Jan 2016 
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Co
lu

m
b

if
o

rm
es

 Pigeons Common wood-
pigeon  
(Columba palumbus) 

1 0 0 NA 0 0 0 NA 

G
ru

if
o

rm
es

 Coots Common coot 
(Fulica atra) 

46 0 0 NA 92 0 0 NA 

Rails Little crake  
(Porzana parva) 

0 0 0 NA 1 0 0 NA 

Common moorhen 
(Gallinula chloropus) 

3 0 0 NA 4 0 0 NA 

Total 1,369 56 5 NA 5,968 576 21 NA 

AIV: avian influenza virus; HPAI: highly pathogenic avian influenza; LPAI: low pathogenic avian 
influenza; N: number; NA: not applicable. Surveillance activities were intensified from 21 February to 
13 May 2015 (n = 1,369) and 1 September to 31 December 2015 (n = 3,736). 

 
Table 2. Wild bird species sampled for H5-specific antibody detection before, during and after the 
emergence of highly pathogenic avian influenza H5N8 virus in Europe, the Netherlands, 2007–2015 
(n = 1,443) 

Order Family Species Number of individuals sampled 

Before outbreak 
(before 2014) 

During outbreak 
(14 Nov 2014 – 
13 May 2015) 

After outbreak 
(1 Sep 2015 –  
31 Dec 2015) 

A
n

se
ri

fo
rm

es
 Ducks Common teal (Anas crecca) 0 15 111 

Egyptian goose  
(Alopochen aegyptiaca) 

9 62 28 

Eurasian wigeon (Anas penelope) 0 78 46 

Gadwall (Anas strepera) 1 3 1 

Mallard (Anas platyrhynchos) 21 93 18 

Mandarin duck (Aix galericulata) 1 2 0 

Northern pintail (Anas acuta) 0 0 1 

Northern shoveler (Anas clypeata) 0 2 3 

Ruddy shelduck  
(Tadorna ferruginea) 

1 0 0 

Geese Barnacle goose (Branta leucopsis) 20 19 0 

Bean goose (Anser fabalis) 5 0 0 

Brent goose (Branta bernicla) 0 19 0 

Greylag goose (Anser anser) 0 2 0 

Lesser white-fronted goose  
(Anser erythropus) 

0 3 0 

Pink-footed goose  
(Anser brachyrhynchus) 

0 1 0 

Greater white-fronted goose 
 (Anser albifrons) 

20 77 0 
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Order Family Species Number of individuals sampled 

Before outbreak 
(before 2014) 

During outbreak 
(14 Nov 2014 – 
13 May 2015) 

After outbreak 
(1 Sep 2015 –  
31 Dec 2015) 

Swans Bewick's swan  
(Cygnus columbianus bewickii) 

0 20 0 

Mute swan (Cygnus olor) 10 90 29 

Whooper swan (Cygnus cygnus) 0 1 0 

Ch
ar

ad
ri

if
o

rm
es

 Gulls Black-headed gull  
(Chroicocephalus ridibundus) 

20 262 31 

Caspian gull (Larus cachinnans) 0 6 3 

Common gull (Larus canus) 12 34 17 

Great black-backed gull  
(Larus marinus) 

0 1 0 

Herring gull (Larus argentatus) 7 61 28 

Lesser black-backed gull  
(Larus fuscus) 

1 3 8 

Mediterranean gull  
(Ichthyaetus melanocephalus) 

2 1 0 

Yellow-legged gull  
(Larus michahellis) 

0 0 1 

Gruiformes Rails Common coot (Fulica atra) 19 84 24 

Moorhen (Gallinula chloropus) 0 6 0 

Total 149 945 349 

 

Virus detection, isolation and characterization 

In addition to the two previously reported HPAI H5N8 virus-infected Eurasian 

wigeons detected in the Netherlands in November 2014 [14], the virus was detected 

in a third Eurasian wigeon faecal sample obtained on 25 February 2015 (1/1,369 birds 

sampled in 21 February–13 May 2015), near Ilpendam (52°28′N 4°57′E) (GenBank 

accession numbers: AKH14448–AKH14459). Since then, no HPAI H5N8 virus has been 

detected in any of the samples tested (0/5,968 birds sampled in 14 May 2015–31 

January 2016) (Table 1). 

 

Influenza A H5 virus clade-specific antibody detection 

As shown previously, ferret antisera raised against prototype strains representing 

LPAI and HPAI H5 viruses of various clades showed almost exclusive reactivity with 

homologous viruses in HI assays [12] (Table 3). Importantly, a ferret antiserum raised 

against the clade 2.3.4.4 virus did not react with other H5 viruses, and antisera raised 

against other prototype H5 strains did not react with the clade 2.3.4.4 virus 

A/Chicken/Netherlands/EMC-3/2014. Sera obtained upon inoculation of a domestic 

duck and a domestic goose with the clade 2.3.4.4 virus 

A/Turkey/Germany/AR2487/2014 reacted similar to the ferret clade 2.3.4.4 antiserum; 

no cross-reactivity was seen with other prototype H5 strains (Table 3). These data 
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indicate that the antigenic differences between clade 2.3.4.4 HA and HA of LPAI and 

HPAI viruses belonging to other clades were sufficiently large to allow serological 

discrimination by HI assay. 

 

Influenza A virus H5-specific antibody detection in wild birds 

Haemagglutination inhibition assays 

Of the serum samples initially tested in the HI assay with LPAI H5N2 

(A/Mallard/Netherlands/3/1999) and HPAI H5 clade 2.3.4.4 H5N8 

(A/Chicken/Netherlands/EMC-3/2014) virus, LPAI H5-specific antibodies were 

detected in 31 of 1,443 serum samples and HPAI H5 clade 2.3.4.4-specific antibodies in 

53 of 1,443 serum samples (Table 4). Among these, seven samples tested positive for 

both LPAI H5- and HPAI H5 clade 2.3.4.4-specific antibodies. The incidence of LPAI 

H5-specific antibodies was similar before, during and after the HPAI H5N8 virus 

emergence in Europe (Fisher exact test, p = 0.76 before vs during the outbreak; 

p = 0.39 during vs after the outbreak), while HPAI H5 clade 2.3.4.4-specific antibodies 

were detected exclusively in sera from five bird species, obtained during and after 

the HPAI H5N8 virus emergence in Europe (Table 4, Table 5). The incidence of HPAI 

H5 clade 2.3.4.4-specific antibodies a year after the outbreak (10/329 (20 samples 

with high background excluded), 3.0%) was lower than during the outbreak (43/940 

(5 samples with high background excluded), 4.6%) (Fisher exact test, p = 0.27). 

Serum samples obtained during (43/940 (5 samples with high background excluded), 

4.6%) and after (10/329 (20 samples with high background excluded), 3.0%) the 

outbreak that tested positive for HPAI H5 clade 2.3.4.4-specific antibodies were 

subsequently tested in an HI assay against prototype viruses of clades 1, 2.1, 2.2, 2.3, 

and 2.3.4.4. Of the sera collected during the outbreak, 29/90 mute swans (Cygnus 

olor), 12/78 Eurasian wigeons, 1/3 lesser white-fronted geese (Anser erythropus) and 

1/84 common coots (Fulica atra) tested positive for HPAI H5 clade 2.3.4.4-specific 

antibodies (Table 5). In these HPAI H5 clade 2.3.4.4-specific antibody positive sera, no 

cross-reactivity was observed in sera of Eurasian wigeons (12/12) and the lesser 

white-fronted goose (1/1). In contrast, the common coot (1/1) serum showed an 

additional titre to the clade 2.3 virus and sera of mute swans showed cross-reactivity 

to clade 2.3 (27/29), 2.1 (23/29), 1 (9/29) and 2.2 (4/29) viruses. In the majority of 

samples (22/29), titres to clade 2.1 and 2.3 exceeded those detected to clade 2.3.4.4 

(Table 6). 
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Table 3. Details of positive control sera titres from experimentally infected ferrets, a domestic duck, 
and a domestic goose with one low pathogenic (LPAI) H5 and different highly pathogenic avian 
influenza (HPAI) H5 clades (n = 8 antisera) 

Antiserum raised against Characteri
stics 

Species Haemagglutination inhibition assay Virus neutralisation 
assay 

Viruses Viruses 

LP
A

I 

HPAI clade HPAI clade 

1a 2.
1b

 

2.
2c 

2.
3d

 

2.
3.

4
.4

e  

2.
1b

 

2.
3d

 

2.
3.

4
.4

e  

A/Mallard/Netherlands/3/1999 LPAI H5N2 Ferret 16
0 

< 1
0 

< 1
0 

< 1
0 

< 1
0 

< 10 ND ND ND 

A/Viet Nam/1194/2004 HPAI H5N1 
clade 1 

Ferret < 1
0 

80 < 1
0 

< 1
0 

< 1
0 

< 10 ND ND ND 

A/Indonesia/5/2005 HPAI H5N1 
clade 2.1 

Ferret < 1
0 

< 1
0 

12
0 

< 1
0 

6
0 

< 10 80 < 1
0 

< 10 

A/Turkey/Turkey/1/2005 HPAI H5N1 
clade 2.2 

Ferret < 1
0 

< 1
0 

< 1
0 

1,2
80 

6
0 

< 10 ND ND ND 

A/Anhui/1/2005 HPAI H5N1 
clade 2.3 

Ferret < 1
0 

< 1
0 

< 1
0 

20 32
0 

< 10 < 1
0 

16
0 

< 10 

A/Chicken/Netherlands/EMC-
3/2014 

HPAI H5N8 
clade 
2.3.4.4 

Ferret < 1
0 

< 1
0 

< 1
0 

< 1
0 

< 1
0 

160 < 1
0 

< 1
0 

40 

Turkey/Germany/AR2487/2014 HPAI H5N8 
clade 
2.3.4.4 

Domestic 
duck 

< 1
0 

< 1
0 

< 1
0 

< 1
0 

< 1
0 

160 ND ND ND 

Turkey/Germany/AR2487/2014 HPAI H5N8 
clade 
2.3.4.4 

Domestic 
goose 

< 1
0 

< 1
0 

< 1
0 

< 1
0 

< 1
0 

80 ND ND ND 

HPAI: highly pathogenic avian influenza; LPAI: low pathogenic avian influenza; ND: not determined. 
Lowest serum dilution tested was 10. Titres indicating the reactivity of sera to viruses homologous to 
the viruses, which the sera were raised against are in bold. a A/Viet Nam/1194/2004, b 

A/Indonesia/5/2005, c A/Turkey/Turkey/1/2005, d A/Anhui/1/2005, e A/Chicken/Netherlands/EMC-3/2014. 

 

Table 4. Detected haemagglutination inhibition antibody titres to low pathogenic avian influenza H5 
virusa and to highly pathogenic avian influenza H5 clade 2.3.4.4 H5N8 virusb in birds, before, during, 
and after detection of the highly pathogenic avian influenza H5N8 virus in Europe, the Netherlands, 
2007–2015 (n = 1,443 birds) 

Strain Period relative to the 
outbreakc 

Haemagglutination inhibition titre High 
back 
ground 

Total 
tes 
ted 

Total 
posi 
tives BLD 10 –

40 
40 –
80 

80 –
160 

160 –
320 

320 –
640 

≥ 640 

LPAI 
H5N2a 

Before 121 1 0 1 0 0 0 26 149 2 

During 903 16 5 2 1 0 0 18 945 24 

After 324 2 1 0 2 0 0 20 349 5 

HPAI 
H5N8b 

Before 123 0 0 0 0 0 0 26 149 0 

During  897 7 20 6 4 5 1 5 945 43 

After 319 4 3 2 1 0 0 20 349 10 

BLD: below limit of detection; LPAI: low pathogenic avian influenza; HPAI: highly pathogenic avian 
influenza. Lowest serum dilution tested was 10. a A/Mallard/Netherlands/3/1999, b 
A/Chicken/Netherlands/EMC-3/2014,       c The ‘outbreak’ refers to the six months following the 
detection of the highly pathogenic avian influenza H5N8 virus in Europe and this extends from 14 
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November 2014 to 13 May 2015. The period before the ‘outbreak’ is from 2007 to 2013, while the 
period after the ‘outbreak’ is from 1 September to 31 December 2015. 

 

Table 5. Birds species with antibodies to highly pathogenic avian influenza H5 clade 2.3.4.4 H5N8 
virusa, and number of respective animals, according to their haemagglutination inhibition antibody 
titres to the virus, during and after detection of highly pathogenic avian influenza H5N8 virus in 
Europe, the Netherlands, 14 November 2014–31 December 2015 (n = 382 birds) 

Species Period 
relative to 
the 
outbreakb 

HI titre to HPAI H5 clade 2.3.4.4 (H5N8) virus High 
back 
ground 

Total 
tested 

BLD 10 – 
40 

40 – 
80 

80 – 
160 

160– 
320 

320 – 
640 

≥ 640 

Eurasian wigeon  
(Anas penelope) 

During 66 6 4 2 0 0 0 0 78 

Lesser white-fronted 
goose  
(Anser erythropus) 

During 2 0 1 0 0 0 0 0 3 

Mute swan  
(Cygnus olor) 

During 59 1 14 4 4 5 1 2 90 

Common coot  
(Fulica atra) 

During  83 0 1 0 0 0 0 0 84 

Eurasian wigeon  
(Anas penelope) 

After 42 2 1 0 0 0 0 1 46 

Egyptian goose  
(Alopochen aegyptiaca) 

After 27 1 0 0 0 0 0 0 28 

Mute swan  
(Cygnus olor) 

After 19 1 2 2 0 0 0 5 29 

Common coot  
(Fulica atra) 

After 21 0 0 0 1 0 0 2 24 

BLD: below limit of detection; HI: haemagglutination inhibition; HPAI: highly pathogenic avian 
influenza. Lowest serum dilution tested was 10. a A/Chicken/Netherlands/EMC-3/2014. b The 
‘outbreak’ refers to the six months following the detection of the highly pathogenic avian influenza 
H5N8 virus in Europe and this extends from 14 November 2014 to 13 May 2015. The period after the 
‘outbreak’ is from 1 September to 31 December 2015. 

 
Table 6. Titres of confirmatory haemagglutination inhibition and virus neutralisation assays for sera 
positive for highly pathogenic avian influenza H5 clade 2.3.4.4-specific antibodies in the initial 
screening, the Netherlands, 14 November 2014–31 December 2015 (n = 53 serum samples) 

Period Speciesa 

Haemagglutination inhibition assay 
Virus neutralisation 
assay 

Initial Confirmatory 

LP
A

I 

H
5 

HPAI clade 

LP
A

I 
H

5 

HPAI clade HPAI clade 

1 2.1 2.2 2.3 
2.3. 
4.4

b
 

2.1 2.2 2.3 
2.3.
4.4 

2.1 2.3 
2.3.
4.4 

During the 
outbreak: 
2014/15 

Eurasian 
wigeon 

< 10 < 10 < 10 < 10 < 10 50 ND ND ND ND ND ND ND ND 

Eurasian 
wigeon 

< 10 < 10 < 10 < 10 < 10 100 ND ND ND ND ND ND ND ND 

Eurasian 
wigeon 

20 < 10 < 10 < 10 < 10 15 ND ND ND ND ND ND ND ND 

Eurasian 
wigeon 

< 10 < 10 < 10 < 10 < 10 60 ND ND ND ND ND ND ND 80 

Eurasian 
wigeon 

< 10 < 10 < 10 < 10 < 10 20 < 6 < 6 < 6 < 6 < 6 ND ND 20 

Eurasian 
wigeon 

< 10 < 10 < 10 < 10 < 10 40 < 6 < 6 < 6 < 6 < 6 ND ND 20 

Eurasian 
wigeon 

< 10 < 10 < 10 < 10 < 10 25 ND ND ND ND ND ND ND 40 
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Period Species
a
 

Haemagglutination inhibition assay 
Virus neutralisation 
assay 

Initial Confirmatory 

LP
A

I 

H
5 

HPAI clade 

LP
A

I 
H

5 

HPAI clade HPAI clade 

1 2.1 2.2 2.3 
2.3. 
4.4

b
 

2.1 2.2 2.3 
2.3.
4.4 

2.1 2.3 
2.3.
4.4 

Eurasian 
wigeon 

< 10 < 10 < 10 < 10 < 10 15 ND ND ND ND ND ND ND 20 

Eurasian 
wigeon 

< 10 < 10 < 10 < 10 < 10 15 ND ND ND ND ND ND ND 10 

Eurasian 
wigeon 

< 10 < 10 < 10 < 10 < 10 20 ND ND ND ND ND ND ND 20 

Eurasian 
wigeon 

< 10 < 10 < 10 < 10 < 10 40 < 6 < 6 < 6 < 6 < 6 ND ND 40 

Eurasian 
wigeon 

< 10 < 10 < 10 < 10 < 10 120 ND ND ND ND ND ND ND 160 

Common 
coot 

< 10 40 < 10 < 10 30 40 ND ND ND ND ND ND ND < 10 

Lesser 
white-
fronted 
goose 

20 < 10 < 10 < 10 < 10 70 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 10 120 320 < 30 640 40 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 10 160 160 < 30 640 200 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 30 < 18
0 

320 < 180 960 60 ND ND ND ND ND ND ND ND 

Mute swan < 120 < 120 120 < 120 320 240 ND ND ND ND ND < 10 < 10 80 

Mute swan < 30 30 160 40 640 480 ND ND ND ND ND < 10 < 10 60 

Mute swan < 60 < 60 < 40 < 40 60 480 ND ND ND ND ND < 10 < 10 240 

Mute swan < 60 < 40 240 < 30 640 70 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 120 < 60 160 < 60 640 960 12 < 6 < 6 < 6 192 < 10 10 240 

Mute swan < 10 < 40 320 < 40 1,280 70 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 10 60 480 30 2,560 60 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 30 < 120 240 < 120 480 70 ND ND ND ND ND ND ND < 10 

Mute swan < 60 < 120 320 < 120 640 50 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 60 < 120 320 < 120 640 80 ND ND ND ND ND < 10 < 10 20 

Mute swan < 10 < 60 320 < 60 960 70 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 120 160 640 30 2,560 240 < 6 < 6 < 6 < 6 < 6 < 10 < 10 < 10 

Mute swan < 60 40 320 30 1,280 120 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 30 30 160 < 30 640 50 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 10 ND ND ND ND 50 ND ND ND ND ND ND ND 20 

Mute swan < 120 < 120 160 < 120 640 70 ND ND ND ND ND 20 < 10 < 10 

Mute swan < 10 160 320 < 120 1,280 70 ND ND ND ND ND ND ND ND 

Mute swan < 60 < 120 160 < 120 640 50 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 30 40 160 < 60 640 50 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 30 < 30 160 < 30 320 35 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 10 < 18
0 

320 < 180 640 100 ND ND ND ND ND < 10 < 10 < 10 

Mute swan 40 < 60 160 < 60 640 80 ND ND ND ND ND ND ND ND 

Mute swan < 60 < 60 < 60 < 60 160 240 ND ND ND ND ND < 10 < 10 10 

Mute swan < 60 < 24
0 

< 24
0 

< 240 < 240 480 12 < 6 < 6 < 6 96 < 10 < 10 60 

Mute swan < 60 < 30 < 30 < 30 60 480 < 6 < 6 < 6 < 6 96 < 10 < 10 240 

Mute swan < 120 < 120 < 120 < 120 320 480 ND ND ND ND ND < 10 < 10 60 

After the 
outbreak: 

Eurasian 
wigeon 

< 10 < 10 < 10 < 10 < 10 20 ND ND ND ND ND ND ND 160 
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Period Species
a
 

Haemagglutination inhibition assay 
Virus neutralisation 
assay 

Initial Confirmatory 

LP
A

I 

H
5 

HPAI clade 

LP
A

I 
H

5 

HPAI clade HPAI clade 

1 2.1 2.2 2.3 
2.3. 
4.4

b
 

2.1 2.2 2.3 
2.3.
4.4 

2.1 2.3 
2.3.
4.4 

2015 Eurasian 
wigeon 

< 10 < 10 < 10 < 10 < 10 10 ND ND ND ND ND ND ND 20 

Eurasian 
wigeon 

< 10 < 10 < 10 < 10 < 10 40 ND ND ND ND ND ND ND 80 

Common 
coot 

< 10 80 60 60 320 160 ND ND ND ND ND ND ND 20 

Egyptian 
goose 

< 10 < 10 < 10 < 10 80 25 ND ND ND ND ND ND ND < 10 

Mute swan 160 80 60 < 30 160 120 ND ND ND ND ND < 10 < 10 40 

Mute swan 40 80 80 80 320 45 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 10 < 10 < 10 < 10 30 15 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 10 80 80 80 320 60 ND ND ND ND ND < 10 < 10 < 10 

Mute swan < 10 160 160 240 320 80 ND ND ND ND ND 80 20 < 10 

HPAI: highly pathogenic avian influenza; LPAI: low pathogenic avian influenza; ND: not determined. 
Lowest serum dilution tested was 10 for the initial haemagglutination inhibition (HI) and virus 
neutralisation assay and 6 for the confirmatory HI assay. a Species included common coot (Fulica 
atra), Egyptian goose (Alopochen aegyptiaca), Eurasian wigeon (Anas penelope), lesser white-fronted 
goose (Anser erythropus), mute swan (Cygnus olor). b Mean titre of in duplo tested samples. 

 

Of the sera collected after the outbreak, 5/29 mute swans, 3/46 Eurasian wigeons, 

1/28 Egyptian geese (Alopochen aegyptiaca) and 1/24 common coots tested positive 

for HPAI H5 clade 2.3.4.4-specific antibodies (Table 5). The sera of the Eurasian 

wigeons reacted with HPAI H5N8 virus exclusively. However, the common coot as 

well as 1/5 mute swans showed HI titres to all five H5 clades. The other 3/5 mute 

swans showed HI titres to multiple but not all H5 clades, while 1/5 mute swans and 1/1 

Egyptian goose only showed an additional titre to clade 2.3 (Table 6). Seven of the 

HPAI H5 clade 2.3.4.4-seropositive bird sera obtained during the outbreak, from four 

mute swans and three Eurasian wigeons, were retested in an HI assay at the APHA. 

Here, 3/4 mute swan samples with high initial HI antibody titres against HPAI H5 

clade 2.3.4.4 (H5N8) virus were confirmed. However, 1/4 mute swan sera could not 

be confirmed, and HPAI H5 clade 2.3.4.4-specific antibodies were also not detected 

in 3/3 sera of the Eurasian wigeons that had low antibody titres in the initial tests 

(Table 6). 

 

Virus neutralisation assays 

For 37/43 HPAI H5 clade 2.3.4.4-positive sera collected during and 10/10 sera collected 

after the outbreak, sufficient serum volumes were available for retesting in a VN 
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assay. In this assay, HPAI H5 clade 2.3.4.4-specific antibodies were detected in sera of 

9/9 Eurasian wigeons and of 10/26 mute swans obtained during the outbreak. Sera of 

the mute swans did not react with viruses of other H5 clades. HPAI H5 clade 2.3.4.4-

specific antibodies were not detected in the sera of the common coot and the lesser 

white-fronted goose by VN assay. HPAI H5 clade 2.3.4.4-specific antibodies were 

confirmed by VN assay in sera from 3/3 Eurasian wigeons, 1/5 mute swans, 1/1 

common coot and 0/1 Egyptian goose collected after the outbreak (Table 6). 

 

Discussion 

In this report surveillance data for HPAI H5N8 in birds in the Netherlands are 

presented. In addition to bird samples previously investigated for the virus from 14 

November 2014 to 20 February 2015, a new set of 7,337 samples obtained between 21 

February 2015 and 31 January 2016 is analysed. One faecal sample obtained from a 

Eurasian wigeon (Anas penelope) on 25 February 2015 tested positive for the HPAI 

H5N8 virus, adding to the previous finding of the virus in two Eurasian wigeons in the 

country in late 2014 [14]. Virological surveillance moreover suggests that only very 

limited numbers of wild bird species were identified as potential hosts in Europe. 

Importantly, to the best of our knowledge, there are no reports of additional 

findings of HPAI H5N8 viruses in wild birds and poultry in Europe, since the last 

detection of the virus in February 2015 in the Netherlands.  

Given the difficulty of detecting newly emerging HPAI virus strains in wild birds 

however, the application of a more sensitive and cost-effective method to detect 

potential host species is warranted. For this purpose, we performed serological 

assays specifically aimed to detect antibodies specific to HPAI H5 clade 2.3.4.4 

viruses in a substantial number of sera obtained before, during, and after HPAI H5N8 

emergence in the Netherlands. Three potential HPAI H5N8 host species were 

identified by HI assays and confirmed by VN assays; Eurasian wigeons, mute swans 

and common coots. Considering the results of virological studies performed 

worldwide since the onset of the HPAI H5N8 virus emergence in early 2014, the 

detection of HPAI H5 clade 2.3.4.4-specific antibodies in these species is not 

surprising. HPAI H5N8 virus was isolated from Eurasian wigeons in Russia [8] and the 

Netherlands [14], from mute swans in Sweden [6], and from a common coot in South 

Korea [21].  

The serological results reported here were not entirely consistent between HI and 

VN assays and between HI assays performed in two different laboratories. Although 

low HI titres (e.g. in Eurasian wigeons) were reproducible within a laboratory with 

the same HI assay and a VN assay, they were not detected by HI assay in a second 

laboratory, potentially due to differences in the methods used and hence differences 

in sensitivity and specificity. High antibody titres in mute swan sera were reproduced 
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by HI assay in a second laboratory and by VN assay, but low antibody titres in mute 

swans were not always reproduced. While it is thus clear that individual HI titres in 

avian sera obtained from a single test cannot be used reliably for diagnosis, use of 

serum panels from cohorts of birds, use of multiple tests to cross-validate results, a 

panel of relevant viruses and use of collections of control antisera may still enable 

the use of serological tests in support of HPAI H5 surveillance studies. 

Previously, HI assays were shown to be discriminative enough to detect antibodies in 

serum samples collected from free-living wild birds in Europe and Asia to be directed 

to either HPAI or LPAI H5 viruses. However, widely varying results were obtained as 

far as HPAI H5 clade-specific antibodies were concerned [16]. In this study, most 

birds that tested positive for HPAI H5 clade 2.3.4.4-specific serum antibodies showed 

relative low HI titres. This is in accordance with findings based on experimental HPAI 

H5N8 virus infections of ferrets [10-12], possibly indicating low immunogenicity upon 

infection. In addition, there is limited knowledge about the longevity of avian 

antibodies after naturally occurring infection with avian influenza viruses. Antibodies 

specific to LPAI viruses were detected up to several months after experimental or 

natural infection [22-24], whereas little is known about the duration of detection of 

antibodies specific to HPAI viruses with a reported maximum of detection of 28 days 

after experimental infection in domestic ducks [25]. To date, there is no knowledge 

on the effect of a prior exposure to an unrelated subtype or on the phenomena of 

antigenic sin in avian species. Hypothetically, low immunogenicity in combination 

with decreasing titres in time could be an explanation for the low incidence and 

relative low titres of antibodies detected in wild bird sera in this study. 

In conclusion, our results provide evidence that clinically unaffected long distance 

migratory and local wild birds sampled in the Netherlands during the H5N8 outbreak 

late 2014 and early 2015, and again late 2015, have been exposed to HPAI H5N8 or 

closely related HPAI H5 clade 2.3.4.4 viruses and seroconverted upon exposure. 

Since HPAI H5N8 virus has not been detected in Europe since early 2015 and because 

HPAI H5 clade 2.3.4.4-specific antibody incidence decreased in time, we conclude 

that the virus has not circulated extensively at the breeding grounds in summer and 

upon the return of the birds to their wintering areas in the 2015/16 winter. As a 

consequence, the newly emerging HPAI H5N8 clade 2.3.4.4 virus subtype appears to 

have already disappeared from European wild birds indicating that sustained 

transmission and independent maintenance may be less likely. This is an important 

consideration in the ongoing evolution and ecology of these viruses in wild birds and 

the potential risks they pose for introduction to poultry and the pathways through 

which they might spread. Finally we recommend that serological tools be further 

optimised, harmonised, and validated for avian influenza surveillance studies in wild 

birds. 
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Abstract 

Highly pathogenic avian influenza (HPAI) viruses of subtype H5N8 were re-

introduced into the Netherlands by late 2016, after detections in southeast Asia and 

Russia. This second H5N8 wave resulted in a large number of outbreaks in poultry 

farms and the deaths of large numbers of wild birds in multiple European countries. 

Methods: Here we report on the detection of HPAI H5N8 virus in 57 wild birds of 12 

species sampled during active (32/5,167) and passive (25/36) surveillance activities, 

i.e. in healthy and dead animals respectively, in the Netherlands between 8 

November 2016 and 31 March 2017. Moreover, we further investigate the 

experimental approach of wild bird serology as a contributing tool in HPAI outbreak 

investigations. Results: In contrast to the first H5N8 wave, local virus amplification 

with associated wild bird mortality has occurred in the Netherlands in 2016/17, with 

evidence for occasional gene exchange with low pathogenic avian influenza (LPAI) 

viruses. Discussion: These apparent differences between outbreaks and the 

continuing detections of HPAI viruses in Europe are a cause of concern. With the 

current circulation of zoonotic HPAI and LPAI virus strains in Asia, increased 

understanding of the drivers responsible for the global spread of Asian poultry 

viruses via wild birds is needed. 
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Introduction 

Highly pathogenic avian influenza (HPAI) viruses of the H5 subtype, originating from 

the A/Goose/Guangdong/1/1996 (GsGd) lineage, have been circulating continuously in 

poultry in south-east Asia since 1997 and have also been detected frequently in wild 

birds [1]. In 2014, a new HPAI H5N8 virus of this GsGd lineage of clade 2.3.4.4 

emerged globally. This first intercontinental wave of HPAI H5N8 started with virus 

detections in south-east Asia from early 2014 onwards in both poultry and wild birds 

[2-4]. By the end of 2014, this HPAI H5N8 virus simultaneously spread to Europe and 

North America through long distance migratory birds [5]. In North America, the virus 

reassorted with local low pathogenic avian influenza (LPAI) viruses causing a massive 

number of outbreaks and associated economical loss [6]. In Europe, this first wave 

caused a relative limited number of outbreaks in poultry holdings, and was detected 

in some wild birds between November 2014 and February 2015 [7,8]. During the 

spring and summer of 2015, occasional detections of HPAI H5N8 were reported in 

south-east Asia [9]. To assess the risk of virus re-introduction by wintering birds 

arriving in Europe by the autumn of 2015, intensified active surveillance (i.e. 

surveillance in living birds) was performed in the Netherlands from September to 

December 2015. This surveillance provided virological and serological evidence that 

the HPAI H5N8 virus had disappeared from the European (wintering) wild bird 

population with no virus detections in any of the tested birds and a decreased 

seroprevalence of HPAI H5 clade 2.3.4.4-specific antibodies,  suggesting no massive 

viral replication in the 2015 breeding season [10].  

However, in June 2016, the detection of HPAI H5N8 in wild birds of multiple species 

on their breeding grounds was reported around Uvs-Nuur Lake in Russia [11]. In 

contrast to the 2014 emerging strains, which belong to group A (A/broiler 

duck/Korea/Buan2/2014-like), this virus belonged to group B (A/breeder 

duck/Korea/Gochang1/2014-like) viruses [4,11]. These group B viruses had been 

detected previously in China and South Korea in 2014, but had not been reported 

since [3,12]. From mid-October 2016 onwards, group B lineage HPAI H5N8 viruses 

were detected in both India [13] and in European countries. Unlike the 2014/15 group 

A viruses, group B viruses caused local die-offs of wild birds in many countries, often 

resulting in wild bird deaths preceding those in poultry [14-16]. The introduction of 

these group B HPAI H5N8 viruses in the Netherlands was marked by a die-off of 

tufted ducks (Aythya fuligula) and great crested grebes (Podiceps cristatus) in the 

Gouwzee (52°27’09”N, 5°04’07”E), a large fresh water lake, on 8 November 2016 

[14,17]. Most of the internal genes of this ‘second wave’ HPAI H5N8 virus were 

derived from Eurasian LPAI viruses via reassortment, after their original detection in 

China and South Korea in 2014 and Russia in May 2016 [11,15]. Occasional 

reassortment of the neuraminidase (NA) gene also led to a few detections of clade 

2.3.4.4 HPAI H5N5 and H5N6 viruses [18].  
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Wild migratory birds were shown to be the most probable vectors for the first global 

spreadof HPAI H5N8 in 2014 that coincided with the timing and flyways of the 

autumn migration, based on a recent worldwide phylogenetic study of HPAI H5N8 

viruses [5,19]. These avian influenza viruses constitute a constant animal and human 

health threat, where the risk in part is determined by the (evolving) genomic 

constitution of the circulating viruses. It is therefore of crucial importance to actively 

monitor influenza viruses and their evolution in wild bird populations, to monitor 

trends and diversity of circulating viruses, and to assess the risk of spread for strains 

that are unusual in their genetic make-up and/or spread for animal and human 

health. In this study we have performed intense active surveillance in wild birds in 

the Netherlands in response to the HPAI H5N8 introduction in Europe in late 2016. 

We performed both virological and serological studies to attempt to identify wild 

bird species that might contribute to the spread and maintenance of this virus. 

 

Methods 

Ethical statement 

The capture of free-living birds was approved by the Dutch Ministry of Economic 

Affairs based on the Flora and Fauna Act (permit number FF/75A/2009/067, 

FF/75A/2014/054 and licence number 951 to Vogeltrekstation NIOO-KNAW). Handling 

and sampling of free-living birds was approved by the Animal Experiment Committee 

of the Erasmus Medical Center (permit number 122–11–31). Free-living birds were 

released into the wild after sampling and all efforts were made to minimise animal 

suffering throughout the procedures. 

 

Study population 

A continuous active surveillance programme of resident and migrating wild birds for 

avian influenza viruses is in place in the Netherlands. The ongoing surveillance efforts 

were intensified in response to the first detection of HPAI H5N8 virus in the 

Netherlands in 2016 between 13 November and 31 December 2016, the period during 

which mortality among wild birds and outbreaks in poultry holdings were occurring 

in the country, and from 8 February until 19 February 2017, when die-offs of wild 

birds and outbreaks in poultry had ceased. On 1 March and 23 October 2016, as well 

as approximately during the first period of intensified surveillance (13 November to 

21 December 2016), and on 8 February 2017, blood samples were obtained in addition 

to samples for virus detection. 
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Sample collection 

Live wild birds were captured using duck decoys, cannon nets, leg nooses, swan 

hooks, or manually. Birds were sampled routinely for virus detection using 

oropharyngeal and cloacal swabs as described elsewhere [10]. In addition, fresh 

faecal samples were collected from Eurasian wigeons (Anas penelope) for virus 

detection. Fresh faecal samples were collected by trained ornithologists able to 

distinguish species-specific droppings from locations where large homogeneous 

groups of Eurasian wigeons were foraging in the field. Blood samples were collected 

for serum antibody detection as described previously [10]. In addition to active 

surveillance, oropharyngeal and/or cloacal swabs of a limited number of freshly dead 

wild birds were opportunistically collected for virus detection (i.e. passive 

surveillance). 

 

Virus detection, isolation and characterisation 

Samples for virus detection were analysed for the presence of HPAI H5(N8) virus 

using matrix- and H5-specific real-time reverse-transcription PCR (RRT-PCR) assays, 

followed by haemagglutinin (HA) and NA gene sequencing as previously described 

[7]. Samples testing positive in matrix and H5 specific RRT-PCR were inoculated in 

Madin–Darby canine kidney (MDCK) cells. Samples were characterised as HPAI H5 

virus by detection of a multi-basic cleavage site upon Sanger sequencing of the HA 

gene.  

 

Virus sequencing and phylogeny 

Full length HA and NA sequences of all virus isolates and full genome sequences for a 

subset of these were obtained by Sanger sequencing. All sequences were deposited 

in a public database (http://www.gisaid.com). Primer sequences are available upon 

request. For HA and NA phylogeny, sequences obtained in this study were 

supplemented with publicly available sequences of HPAI H5 viruses of clade 2.3.4.4 

detected globally between 2014 and 2017. These additional sequences were obtained 

from the Global Initiative on Sharing Avian Influenza Data database 

(http://www.gisaid.com) on 20 May 2017 (Table 1). Maximum  likelihood (ML) 

phylogenetic trees were constructed based on the HA (1,637 nt: position 49–1,685) 

and NA (1,227 nt: position 64–1,291) genes. ML trees were generated using PhyML 

version 3.1 using the general time-reversible (GTR) model, performing subtree 

pruning and regrafting (SPR) searches [20]. The reliability of the phylogenetic 

grouping was assessed with 250 bootstrap replicates. Trees were visualised using 

Figtree version 1.4.3 (http://tree.bio.ed.ac.uk/software/figtree). ML trees of HA and 

NA were used in Dendroscope version 3.5.9 (http://dendroscope.org/) [21] to display 
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a tanglegram between the HA and NA midpoint rooted phylogenies. The twines 

were colourcoded according to wave and location. 

 

Table 1. Acknowledgements of authors, and originating and submitting laboratories providing the 
sequences used for phylogenetic analysis 

Isolat
e ID Isolates name 

Colle
ction 
date Originating laboratory 

Submitting 
Laboratory Authors 

EPI_I
SL_25
7700 

A/Mute_Swan/Czec
h_Republic/1813–

17/2017 
5 Feb 
2017 Not listed 

State Veterinary 
Institute Prague Nagy, A. 

EPI_I
SL_25
0885 

A/Mute_Swan/Czec
h_Republic/54–

17_2/2017 
2 Jan 
2017 Not listed 

State Veterinary 
Institute Prague Nagy, A. 

EPI_I
SL_24
8663 

A/Mallard/Czech_R
epublic/722–

17_2/2017 

15 
Jan 
2017 Not listed 

State Veterinary 
Institute Prague Nagy, A. 

EPI_I
SL_24
7713 

A/Tufted_Duck/Den
mark/17740–1/2016 

8 
Nov 
2016 

Technical University of 
Denmark 

Animal and Plant 
Health Agency 

(APHA) 

Hjulsager CK, Krog JS, Larsen LE, 
Kvisgaard LK, Essen S 

EPI_I
SL_23
8197 

A/Mute_Swan/Croa
tia/78/2016 

12 
Nov 
2016 Not listed 

Croatian Veretinary 
Institute 

Not listed 

EPI_I
SL_23
8196 

A/Mute_Swan/Croa
tia/70/2016 

30 
Oct 
2016 Not listed 

Croatian Veretinary 
Institute 

Not listed 

EPI_I
SL_23
7945 

A/Tufted_Duck/Ger
many/AR8459-

L01988/2016 

8 
Nov 
2016 Not listed 

Friedrich-Loeffler-
Institut 

Not listed 

EPI_I
SL_23
7944 

A/Tufted_Duck/Ger
many/AR8444-

L01987/2016 
7 Nov 
2016 Not listed 

Friedrich-Loeffler-
Institut Not listed 

EPI_I
SL_23
7732 

A/Tufted_Duck/Ger
many-

SH/R8446/2016 
7 Nov 
2016 Not listed 

Friedrich-Loeffler-
Institut 

Not listed 

EPI_I
SL_23
8039 

A/Chicken/Germany
-SH/R8758/2016 

11 
Nov 
2016 Not listed 

Friedrich-Loeffler-
Institut 

Not listed 

EPI_I
SL_23
7921 

A/Wild_Duck/Polan
d/82A/2016 

2 Nov 
2016 Not listed 

National Veterinary 
Research Institut 

Poland 
Świętoń E, Śmietanka K 

EPI_I
SL_17
5535 

A/MuteSwan/Swed
en/SVA150313KU01

41/SZ543/2015 
5 Mar 
2015 

National Veterinary 
Institute, Sweden 

National Veterinary 
Institute, Sweden 

Zohari S, Ullman K, Olofsson A 

EPI_I
SL_23
8896 

A/Chicken/Sweden/
SVA161122KU0453/S

Z0209321/2016 

21 
Nov 
2016 

National Veterinary 
Institute, Sweden 

National Veterinary 
Institute, Sweden 

Not listed 

EPI_I
SL_23
1685 

A/Black-
headed_Gull/Tyva/4

1/2016 

25 
May 
2016 

State Research Center 
of Virology and 
Biotechnology 

(VECTOR) 

WHO National 
Influenza Centre 

Russian Federation 

Fadeev A, Komissarov A, Egorova A, 
Sintsova K, Musaeva T, Susloparov I, 

Marchenko V, Ryzhikov A 

EPI_I
SL_23
1684 

A/Wild_Duck/Tyva/3
5/2016 

25 
May 
2016 

State Research Center 
of Virology and 
Biotechnology 

(VECTOR) 

WHO National 
Influenza Centre 

Russian Federation 

Fadeev A, Komissarov A, Egorova A, 
Sintsova K, Musaeva T, Susloparov I, 

Marchenko V, Ryzhikov A 

EPI_I
SL_22
4580 

A/Great_Crested_G
rebe/Tyva/341/2016 

25 
May 
2016 

Research Institute of 
Experimental and 
Clinical Medicine 

Research Institute of 
Experimental and 
Clinical Medicine 

Sharshov K, Kurskaya O, Sobolev I, 
Alekseev A, Alikina T, Kabilov M, 

Shestopalov A 

EPI_I
SL_23
4057 

A/grey_heron/Uvs-
Nuur_Lake/20/2016 

25 
May 
2016 

Research Institute of 
Experimental and 
Clinical Medicine 

Research Institute of 
Experimental and 
Clinical Medicine 

Sharshov K, Kurskaya O, Sobolev I, 
Alekseev A, Shestopalov A 

EPI_I
SL_23
4058 

A/common_tern/Uv
s-

Nuur_Lake/26/2016 

25 
May 
2016 

Research Institute of 
Experimental and 
Clinical Medicine 

Research Institute of 
Experimental and 
Clinical Medicine 

Sharshov K, Kurskaya O, Sobolev I, 
Alekseev A, Alikina T, Kabilov M, 

Shestopalov A 

EPI_I
SL_26

A/Eurasian_Herring
_Gull/Netherlands/2

20 
Dec 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 
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9601 /2016 2016 Fouchier,RAM et al. 

EPI_I
SL_26
8916 

A/Caspian 
_Gull/Netherlands/1

/2016 

20 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_25
5910 

A/Mew 
Gull/Netherlands/1/2

016 

23 
Nov 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9602 

A/Lesser_Black-
backed_Gull/Nether

lands/1/2016 

20 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9697 

A/Great_Black-
backed_Gull/Nether

lands/2/2016 

23 
Nov 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9599 

A/Great_Black-
backed_Gull/Nether

lands/4/2016 

14 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9598 

A/Great_Black-
backed_Gull/Nether

lands/3/2016 

23 
Nov 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9597 

A/Great_Black-
backed_Gull/Nether

lands/1/2016 

23 
Nov 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_25
5892 

A/Great Black-
backed 

Gull/Netherlands/2/
2016 

23 
Nov 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9600 

A/Great_Crested_G
rebe/Netherlands/2/

2016 

21 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9696 

A/Eurasian_Wigeon
/Netherlands/23/201

6 

05 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9694 

A/Eurasian_Wigeon
/Netherlands/1/2016 

04 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ,Müskens,G.J.D.M, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9596 

A/Eurasian_Wigeon
/Netherlands/13/201

6 

14 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9595 

A/Eurasian_Wigeon
/Netherlands/12/201

6 

14 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9594 

A/Eurasian_Wigeon
/Netherlands/22/201

6 

14 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9593 

A/Eurasian_Wigeon
/Netherlands/11/201

6 

13 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9592 

A/Eurasian_Wigeon
/Netherlands/8/201

6 

09 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9591 

A/Eurasian_Wigeon
/Netherlands/6/201

6 

09 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
8937 

A/Eurasian_Wigeon
/Netherlands/10/201

6 

08 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_25
5914 

A/Eurasian 
Wigeon/Netherland

s/9/2016 

04 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_25
5912 

A/Eurasian 
Wigeon/Netherland

s/4/2016 

09 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9703 

A/Eurasian_Wigeon
/Netherlands/25/201

6 

05 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9695 

A/Eurasian_Wigeon
/Netherlands/21/201

6 

05 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 
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EPI_I
SL_26
9692 

A/Mallard/Netherla
nds/3/2017 

11 Jan 
2017 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9604 

A/Mallard/Netherla
nds/1/2017 

07 
Jan 
2017 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9603 

A/Mallard/Netherla
nds/51/2016 

20 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_25
5913 

A/Mallard/Netherla
nds/2/2017 

07 
Jan 
2017 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
8927 

A/Common_Buzzar
d/Netherlands/1/201

6 

07 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_25
5891 

A/Tufted 
Duck/Netherlands/1

/2016 

25 
Nov 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
8866 

A/Back-
headed_Gull/Nethe

rlands/9/2016 

20 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
8800 

A/Black-
headed_Gull/Nethe

rlands/17/2016 

20 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
8799 

A/Back-
headed_Gull/Nethe

rlands/8/2016 

20 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
8929 

A/Common_Eider/N
etherlands/2/2016 

20 
Dec 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

EPI_I
SL_26
9693 

A/Common_Pochar
d/Netherlands/1/201

6 

25 
Nov 
2016 

Erasmus Medical 
Center 

Erasmus Medical 
Center 

Poen,MJ, Van Der Jeugd,HP, 
Vuong,O, Scheuer,RD, 

Fouchier,RAM et al. 

 

Antibody detection 

Serum samples were initially screened for the presence of clade 2.3.4.4 H5(N8)-

specific (A/Chicken/Netherlands/EMC-3/2014 and A/Great Black-backed 

Gull/Netherlands/3/2016) and LPAI H5(N2)-specific (A/Mallard/Netherlands/3/1999) 

antibodies in a haemagglutination inhibition (HI) assay according to standard 

procedures [10,22]. Due to the generally high non-specific haemagglutination 

induced by wild bird sera in previous HI assays [10], all sera were pre-treated with 10% 

turkey red blood cells for 1 hour at 4 °C before analysis. Negative controls, based on 

incubation of serum without virus, were used to measure non-specific 

haemagglutination of each serum sample. Serum samples from experimentally 

inoculated ferrets [23] were used as positive controls. Serum samples that tested 

positive for either LPAI H5N2 or HPAI H5 clade 2.3.4.4-specific antibodies were 

further tested in an HI assay against HPAI viruses of the H5 clades 1 (A/Viet 

Nam/1194/2004), 2.1 (A/Indonesia/5/2005), 2.2 (A/Turkey/Turkey/1/2005), and 2.3.4 

(A/Anhui/1/2005), and retested against the 2016 clade 2.3.4.4 virus (A/Great Black-

backed gull/Netherlands/3/2016). The viruses used, except the 2016 HPAI H5N8 virus 

and the LPAI H5N2 virus, were recombinant viruses based on an A/PR/8/34 virus 
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backbone, containing the HA (without the multi-basic cleavage site) and NA of the 

representative H5 strains to enable this study within biosafety level 2 laboratories. 

Assays with the wild type 2016 HPAI H5N8 virus were performed simultaneously in 

biosafety level 3 conditions. Subsequently, samples were tested in a virus 

neutralisation (VN) assay as described previously [10], using titrated virus stocks of 

the same LPAI H5N2 and HPAI H5 clade 1, 2.1, 2.2, 2.3.4, and 2016 2.3.4.4 

representatives. Sera were categorised as being either LPAI or HPAI biased or 

ambiguous, where a bias is defined as a cutoff of > 1 log2 differences in titre in HI 

assays [24]. 

 

Results 

Study population 

Here we report the data of 5,167 wild birds that were tested for the presence of 

avian influenza viruses between 8 November 2016 and 31 March 2017 in response to 

the re-introduction of HPAI H5N8 viruses in the Dutch wild bird population on 8 

November 2016 [17]. In addition, we report on all data obtained in our routine active 

surveillance activities before the first evidence of re-introduction of HPAI H5N8 virus 

into the Netherlands, 1 February until 7 November 2016 (n = 5,523) (Table 2, Figure 1). 

All birds were caught alive and did not show clinical signs of disease. Also, samples 

were obtained from 36 birds belonging to 17 species that were sampled post 

mortem (Table 2). For antibody detection, serum samples from 459 birds of various 

species were analysed (Table 3). The majority of these samples were obtained 

between 13 November and 21 December 2016 (n = 367, 18 species) and on 8 February 

2017 (n = 23 mallards (Anas platyrhynchos)). In addition, we included blood samples 

from Eurasian wigeons obtained on 1 March (n = 28) and 23 October 2016 (n = 41) 

that were not analysed previously (Table 3). 

 

Virus detection, isolation and characterisation 

There was no evidence for the presence of HPAI H5(N8) virus in any of the birds (n = 

5,523) sampled during routine active surveillance between 1 February and 7 

November 2016. In the subsequent period (between 8 November 2016 and 31 March 

2017), samples from 145 birds (2.8%) tested positive for the presence of H5HA by RRT-

PCR. The presence of HPAI H5 clade 2.3.4.4 virus was confirmed in samples of 57 

birds (Table 2). Of these, 23 birds (17 mallards, 5 Eurasian wigeons and one common 

buzzard (Buteo buteo)) were caught and sampled alive without clinical signs, and 

from nine birds (Eurasian wigeons) fresh droppings were tested positive. (Table 4). 

In total, viruses were isolated in MDCK cells from 48 samples from 33 birds. All 

cultured viruses belonged to the HPAI H5N8 subtype. The last detection of HPAI 
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clade 2.3.4.4 virus in living birds was in mallards on 28 January 2017. Since then, no 

additional HPAI clade 2.3.4.4 H5 viruses have been detected in this study. 

 

Table 2. Wild bird species sampled for virus detection in the Netherlands before and during the 
second wave of highly pathogenic avian influenza H5N8 virus in Europe and results of virological 
assays, February 2016–March 2017 (n = 10,726) 
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Anseri-
formes D

u
ck

s 

Common 
eider  
(Somateria 
mollissima) 

0 0 0 NA 0 0 0 NA 1 1 1 
1x 
HPAI 

Common 
pochard  
(Aythya 
ferina) 

0 0 0 NA 0 0 0 NA 1 1 1 n.i. 

Common 
shelduck  
(Tadorna 
tadorna) 

2 0 0 NA 0 0 0 NA 0 0 0 NA 

Domestic 
duck  
(Anas 
platyrhynchos 
domesticus) 

0 0 0 NA 1 0 0 NA 0 0 0 NA 

Egyptian 
goose  
(Alopochen 
aegyptiaca) 

30 0 0 NA 17 0 0 NA 0 0 0 NA 

Eurasian teal  
(Anas crecca) 

46 21 0 NA 42 5 1 1x LPAI 0 0 0 NA 

Eurasian 
wigeon 
 (Anas 
penelope) 

63
9 

33
9 

10 
6x n.i., 
4x 
LPAI 

2,
63
4 

11
8 

37 
14x HPAI 
23x n.i. 

7 7 7 
7x 
HPAI 

Gadwall  
(Anas 
strepera) 

13
1 

65 0 NA 11 1 1 1x n.i. 1 1 0 NA 

Garganey  
(Anas 
querquedula) 

2 2 0 NA 0     NA 0 0 0 NA 

Greater scaup  
(Aythya 
marila) 

1 0 0 NA 2 1 0 NA 0 0 0 NA 

Mallard  
(Anas 
platyrhynchos
) 

3,1
69 

55
5 

20 
4x n.i., 
16x 
LPAI 

1,
82
4 

33
8 

7
8 

17x HPAI 
5x LPAI 
56x n.i. 

3 3 2 
2x 
HPAI 

Northern 
pintail  
(Anas acuta) 

12 9 0 NA 6 0 0 NA 0 0 0 NA 

Northern 
shoveler  
(Anas 
clypeata) 

14 4 0 NA 3 0 0 NA 0 0 0 NA 
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Tufted duck  
(Aythya 
fuligula) 

2 1 0 NA 2 0 0 NA 1 1 1 
1x 
HPAI 

G
e

e
se

 

Barnacle 
goose  
(Branta 
leucopsis) 

58
9 

0 0 NA 0     NA 0 0 0 NA 

Bean goose  
(Anser 
fabalis) 

0 0 0 NA 1 0 0 NA 0 0 0 NA 

Canada goose  
(Branta 
canadensis) 

23 0 0 NA 3 0 0 NA 0 0 0 NA 

Great white-
fronted 
goose 
(Anser 
albifrons) 

27 0 0 NA 40 0 0 NA 0 0 0 NA 

Greylag 
goose  
(Anser anser) 

31
0 

3 1 
1x 
LPAI 

0     NA 0 0 0 NA 

S
w

an
s 

Bewick's 
swan  
(Cygnus 
columbianus 
bewickii) 

0 0 0 NA 92 3 0 NA 0 0 0 NA 

Mute swan  
(Cygnus olor) 

0 0 0 NA 36 0 0 NA 0 0 0 NA 

Whooper 
swan  
(Cygnus 
cygnus) 

0 0 0 NA 3 0 0 NA 0 0 0 NA 

Chara-
driifor-
mes 
  
  

Gulls 

Black-headed 
gull  
(Chroicocepha
lus 
ridibundus) 

43
2 

59 0 NA 
28
7 

2 0 NA 4 4 3 
3x 
HPAI 

Caspian gull  
(Larus 
cachinnans) 

0 0 0 NA 1 0 0 NA 1 1 0 NA 

Eurasian 
herring gull  
(Larus 
argentatus) 

24 0 0 NA 20 1 0 NA 2 2 2 
1x 
HPAI, 
1x n.i. 

Great black-
backed gull  
(Larus 
marinus) 

0 0 0 NA 0 0 0 NA 8 8 5 
5x 
HPAI 

Lesser black-
backed gull  
(Larus fuscus) 

66 0 0 NA 0 0 0 NA 1 1 1 
1x 
HPAI 

Mew gull  
(Larus canus) 

2 0 0 NA 13 0 0 NA 1 1 1 
1x 
HPAI 

Yellow-
legged gull  
(Larus 
michahellis) 

0 0 0 NA 0 0 0 NA 1 0 0 NA 

Grui-
formes 
  

Coot
s 

Common 
coot  
(Fulica atra) 

2 0 0 NA 
10
0 

0 0 NA 0 0 0 NA 
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  Common 
moorhen  
(Gallinula 
chloropus) 

0 0 0 NA 4 0 0 NA 0 0 0 NA 

Water rail  
(Rallus 
aquaticus) 

0 0 0 NA 20 0 0 NA 0 0 0 NA 

Pelicani
formes 

Arde
idae 

Grey heron  
(Ardea 
cinerea) 

0 0 0 NA 3 0 0 NA 0 0 0 NA 

Podici-
pedifor
mes 

Gre 
bes 

Great crested 
grebe  
(Podiceps 
cristatus) 

0 0 0 NA 0 0 0 NA 1 1 1 
1x 
HPAI 

Sulifor
mes 

Cor
mor
ants 

Great 
cormorant  
(Phalacrocora
x carbo) 

0 0 0 NA 0 0 0 NA 1 0 0 NA 

Passeri
formes 

Corvi
dae 

Eurasian 
magpie  
(Pica pica) 

0 0 0 NA 1 0 0 NA 0 0 0 NA 

Falconi
formes 

Falc
ons 

Peregrine 
falcon  
(Falco 
peregrinus) 

0 0 0 NA 0 0 0 NA 1 1 1 
1x 
HPAI 

Accipi-
trifor-
mes 

Acci
pitri
dae 

Common 
buzzard  
(Buteo buteo) 

0 0 0 NA 1 1 1 1x HPAI 1 1 1 
1x 
HPAI 

Total NA  NA  

5,
52
3 

1,
05
8 31 NA  

5,1
67 

47
0 

11
8 32x HPAI 36 34 27 

25x 
HPAI 

AIV: avian influenza virus; HPAI: highly pathogenic avian influenza; LPAI: low pathogenic avian 
influenza; NA: not applicable; n.i.: not identifiable because of low virus load. 

 

Virus sequencing and phylogenetic analysis 

Full length HA and NA sequences of all 48 isolates were obtained by Sanger 

sequencing. Analysis of these 48 samples showed no differences between 

sequences obtained from cloacal and oropharyngeal swabs from the same bird, so 

only one sequence per bird was included in further analyses. In accordance with 

previous reports [11,15,25], our phylogenetic analysis (Figure 2) shows a clear 

distinction for both HA and NA between the 2014/15 group A HPAI H5N8 viruses and 

the 2016/17 group B viruses. Also, the Russian viruses from May 2016 were 

distinguishable from the ones that entered eastern European countries (Croatia and 

Czech Republic) and subsequently more western European counties like Germany 

and the Netherlands for both HA and NA. The subclade consisting only of Dutch duck 

and gull viruses might indicate more local virus evolution within the Netherlands. In 
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support, the viruses detected in live mallards in early 2017 appear as offspring from 

Eurasian wigeon viruses that were detected 3 weeks earlier and were highly similar 

to other Dutch viruses that caused mortality in other bird species (Figure 2). 

However, the number of sequences from other outbreaks in Europe at present is too 

limited to draw solid conclusions.  

 
Table 3. Wild bird species sampled in the Netherlands for antibody detection in response to the 
second wave of highly pathogenic avian influenza (HPAI) H5N8 virus in Europe, 2016/2017 (n = 459) 
and those showing HPAI H5 clade 2.3.4.4-specific antibodies (n = 20) based on repeated 
haemagglutination inhibition assays (HI), March 2016–February 2017 

Order Family Species 

Number of individuals 

1 March 2016 23 October 2016 
13 November 2016 – 

8 February 2017 

T
e

st
e

d
 

H5 clade 
2.3.4.4- 
specific 

antibodies T
e

st
e

d
 

H5 clade 
2.3.4.4- 
specific 

antibodies T
e

st
e

d
 

H5 clade 
2.3.4.4- 
specific 

antibodies 

Anserifor- 
mes 

Ducks 

Egyptian goose (Alopochen 
aegyptiaca) 

0 0 0 0 10 0 

Eurasian teal (Anas crecca) 0 0 0 0 22 0 

Eurasian wigeon  
(Anas penelope) 

28 2 41 1 63 2 

Gadwall (Anas strepera) 0 0 0 0 5 0 

Mallard  
(Anas platyrhynchos) 

0 0 0 0 72 11 

Northern pintail  
(Anas acuta) 

0 0 0 0 6 0 

Tufted duck  
(Aythya fuligula) 

0 0 0 0 1 0 

Swans 

Bewick's swan (Cygnus 
columbianus bewickii) 

0 0 0 0 20 0 

Mute swan (Cygnus olor) 0 0 0 0 24 3 

Whooper swan  
(Cygnus cygnus) 

0 0 0 0 3 0 

Charadriifor-mes Gulls 

Black-headed gull 
(Chroicocephalus ridibundus) 

0 0 0 0 88 1 

Caspian gull  
(Larus cachinnans) 

0 0 0 0 1 0 

Eurasian herring gull  
(Larus argentatus) 

0 0 0 0 15 0 

Mew gull (Larus canus) 0 0 0 0 7 0 

Gruiformes Rails 

Common coot (Fulica atra) 0 0 0 0 35 0 

Water rail 
(Rallus aquaticus) 

0 0 0 0 16 0 

Passerifor- 
mes 

Corvidae Eurasian magpie (Pica pica) 0 0 0 0 1 0 

Pelicanifor-mes Ardeidae Grey heron (Ardea cinerea) 0 0 0 0 1 0 

Total  NA NA  28 2 41 1 390 17 

NA: not applicable. 
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Full genome sequences were obtained for six isolates by Sanger sequencing. The six 

isolates shared 99.1–99.7% nt sequence identity across all of the eight genes in the 

genome. Basic local alignment search tool (BLAST, 

https://www.ncbi.nlm.nih.gov/blast/) search results for earlier detected viruses 

showed the highest identity (97.8–99.0%) with the HPAI H5N8 group B viruses for 

HA, NA and non-structural protein (NS). The remaining five gene segments 

(polymerases PB2, PB1 and PA, nucleoprotein (NP) and matrix protein (MP))  showed 

the highest identity with Eurasian LPAI viruses (Table 5). New reassortment events 

were observed for the PA and NP genes since the original detection of the HPAI 

H5N8 virus in Russia in May 2016. 

 

Influenza A virus H5-specific antibody detection in wild birds 

Seroreactivity of 459 wild bird sera was determined for different influenza H5 

viruses. In a total of 29 sera, antibody titres directed to LPAI H5(N2) 

(A/Mallard/Netherlands/3/1999) or 2016 HPAI H5 clade 2.3.4.4 (A/Great Black-backed 

Gull/Netherlands/3/2016) or to both of these viruses were detected. There was good 

correspondence for high reacting sera (HI titre ≥ 40) between the HI antibody titres 

generated with the 2014 HPAI H5 clade 2.3.4.4 virus and the 2016 virus, suggesting 

that there has been limited antigenic drift of HPAI H5N8 viruses since 2014. In sera 

with lower HI titres, there was a strong bias to only react with the 2016 H5 clade 

2.3.4.4 virus. When the HI assay for H5 clade 2.3.4.4-specific antibody positive sera 

was repeated, all but three titres were reproduced. Of the 10 sera showing antibody 

titres to both LPAI H5 and HPAI H5 clade 2.3.4.4 virus, one was LPAI-biased, two 

were HPAI-biased and seven showed ambiguous titres. Overall, 4.2% (18/431) of the 

sera obtained from October 2016 showed evidence of the presence of HPAI clade 

2.3.4.4 H5-specific antibodies based on HI assays in duplo (Table 6) which was 

confirmed by VN assays in 14/18 samples from October 2016 onwards and 1/2 from 1 

March 2016. The overall HPAI H5 antibody incidence between October and 

December 2016 was 2.0% (8/408). However, in mallards sampled on 8 February 2017 

this was 43.5% (10/23) compared with 2.0% (1/49) in mallards sampled between 

October and December 2016. Comparing the 2016/17 winter with the same seasons in 

previous years, indicated that mallards and black-headed gulls (Chroicocephalus 

ridibundus) first tested positive for HPAI H5 clade 2.3.4.4-specific antibodies in the 

2016/17 winter. In contrast, for Eurasian wigeons, common coots (Fulica atra) and 

mute swans (Cygnus olor) the detected incidence appeared to be lower in 2016/17 

compared to the 2014/15 winter (Table 7). Taking into account all the bird species 

considered by the surveillance over the different winters, a preliminary incidence of 

HPAI H5 clade 2.3.4.4.-specific antibodies can be calculated as 0% before 2014, rising 

to 4.6% during the first outbreak of HPAI H5N8 virus, decreasing to 3.5% in the 2015/16 

winter and rising to 4.2% in the 2016/17 winter (Table 7). 
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Figure 1. Overview of wild bird surveillance activities in the Netherlands between 1 February 2016 and 

31 March 2017, with intensified surveillance from 13 November–31 December 2016 and 8–19 February 

2017. RRT-PCR: real-time reverse-transcription PCR. Displayed over time are the number of birds 

tested for virus presence (green line), the number of birds positive for H5 in the RRT-PCR (dark red 

line) with the number of confirmed HPAI H5N8 cases (blue line), and the number of birds included 

for serology (purple line). In addition, the period with the largest wild-bird die-offs (light grey box) 

and the HPAI H5N8 detections in commercial poultry in the Netherlands (orange stars) are displayed. 



Chapter 2.2 | 61  

 

Table 4. Overview of wild birds or wild birds’ droppings, which were sampled in the Netherlands 
during active surveillance, and positive for highly pathogenic avian influenza H5N8 virus, 23 
November 2016–28 January 2017 (n = 32 birds) 

Species Location Status Date 
Number of 
animals 

Eurasian wigeon Echtenerburg Dropping 
23 November 
2016 

1 

Eurasian wigeon Warder Live without clinical signs 
04 December 
2016 

3 

Common buzzard Hippolytushoef Live without clinical signs 
07 December 
2016 

1 

Eurasian wigeon Oud Alblas Live without clinical signs 
08 December 
2016 

1 

Eurasian wigeon Oud Alblas Live without clinical signs 
12 December 
2016 

1 

Eurasian wigeon Nijkerk Dropping 
12 December 
2016 

3 

Eurasian wigeon Nijkerk Dropping 
14 December 
2016 

2 

Eurasian wigeon Nijkerk Dropping 
21 December 
2016 

3 

Mallard Oud Alblas Live without clinical signs 
07 January 
2017 

6 

Mallard Oud Alblas Live without clinical signs 
09 January 
2017 

4 

Mallard Oud Alblas Live without clinical signs 
10 January 
2017 

2 

Mallard Oud Alblas Live without clinical signs 
11 January 
2017 

2 

Mallard Oud Alblas Live without clinical signs 
24 January 
2017 

1 

Mallard Oud Alblas Live without clinical signs 
25 January 
2017 

1 

Mallard Oud Alblas Live without clinical signs 
28 January 
2017 

1 
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Table 5. Search results for sequencesa with high similarity to the eight genes found in the full 
genomes of six highly pathogenic avian influenza H5N8 virus isolates from the Netherlands, 2016/17 

Gene BLAST result Identity Classification 

PB2 [6/6] A/duck/Bangladesh/26920/2015(H3N6) >98,7% LPAI 

PB1 
  

[5/6] A/chicken/Hunan/S1267/2010(H4N6) >97,7% LPAI 

[1/6] A/duck/Mongolia/179/2015(H3N8) 97,5% LPAI 

PA [6/6] A/duck/Mongolia/129/2015(H3N3) >98,0% LPAI 

HA [6/6] A/duck/Eastern China/S1109/2014(H5N8) >98,7% HPAI H5 clade 2.3.4.4 

NP [6/6] A/Mallard/Netherlands/15/2011(H6N8) >99,2% LPAI 

NA [6/6] A/duck/Eastern China/S1109/2014(H5N8) >98,6% HPAI H5 clade 2.3.4.4 

MP [6/6] A/duck/Mongolia/179/2015(H3N8) >98,1% LPAI 

NS 
  

[3/6] A/duck/Eastern China/S1109/2014(H5N8) >98.8% HPAI H5 clade 2.3.4.4 

[3/6] A/goose/Yangzhou/0420/2014(H5N8) >97.9% HPAI H5 clade 2.3.4.4 

BLAST: basic local alignment search tool; HA: haemagglutinin; MP: matrix protein; NA: 
neuraminidase; NP: nucleoprotein; NS: non-structural protein; PA or PB: polymerases (PA, PB2, PB1). 
a Searches were carried out using the National Center for Biotechnology Information (NCBI) 
nucleotide-BLAST. 

 

Table 6. Details of the results on low pathogenic (LPAI) H5- and highly pathogenic avian influenza 
(HPAI) H5 clade 2.3.4.4-specific antibody positive sera using haemagglutination inhibition assays and 
the resulting HPAI/LPAI bias, Netherlands, 2016/17 (n = 29) 

Sample ID Species Collection date LPAI HPAI H5 clade 2.3.4.4 Bias 

C320-297 Black-headed gull 29 November 2016 <10 20 HPAI 

320-312 Black-headed gull 05 December 2016 <10 20a HPAI 

309-9 Eurasian wigeon 01 March 2016 <10 20 HPAI 

309-13 Eurasian wigeon 01 March 2016 <10 10 Ambiguous 

309-23 Eurasian wigeon 01 March 2016 <10 20a HPAI 

C309-51 Eurasian wigeon 23 October 2016 40 40 Ambiguous 

318-57 Eurasian wigeon 04 December 2016 <10 10a Ambiguous 

318-63 Eurasian wigeon 04 December 2016 40 640 HPAI 

318-70 Eurasian wigeon 04 December 2016 20 <10 LPAI 

318-75 Eurasian wigeon 04 December 2016 10 80 HPAI 

320-55 Mallard 09 December 2016 320 40 LPAI 

314-1813 Mallard 08 February 2017 <10 20 HPAI 

314-1815 Mallard 08 February 2017 30 20 Ambiguous 
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Sample ID Species Collection date LPAI HPAI H5 clade 2.3.4.4 Bias 

314-1817 Mallard 08 February 2017 40 20 Ambiguous 

314-1819 Mallard 08 February 2017 <10 40 HPAI 

314-1820 Mallard 08 February 2017 30 <10 LPAI 

314-1821 Mallard 08 February 2017 <10 10 Ambiguous 

314-1823 Mallard 08 February 2017 40 <10 LPAI 

314-1824 Mallard 08 February 2017 <10 120 HPAI 

314-1825 Mallard 08 February 2017 40 20 Ambiguous 

314-1826 Mallard 08 February 2017 40 40 Ambiguous 

314-1827 Mallard 08 February 2017 10 <10 Ambiguous 

314-1832 Mallard 08 February 2017 10 20 Ambiguous 

314-1835 Mallard 08 February 2017 30 20 Ambiguous 

320-295 Mute swan 05 December 2016 <10 30 HPAI 

320-641 Mute swan 07 December 2016 <10 30 HPAI 

320-699 Mute swan 14 December 2016 30 <10 LPAI 

320-729 Mute swan 15 December 2016 <10 20 HPAI 

320-355 Whooper Swan 20 December 2016 80 <10 LPAI 

HPAI H5 clade 2.3.4.4: highly pathogenic avian influenza A/Great-black backed 
gull/Netherlands/3/2016 (H5N8); LPAI: low pathogenic avian influenza A/Mallard/Netherlands/3/1999 
(H5N2).  aTitre could not be confirmed in a second haemagglutination inhibition HI assay. 
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Figure 2. Tanglegram of highly pathogenic avian influenza H5 clade 2.3.4.4 virus (left) and the 
accompanying N8 genes (right) based on 250 bootstraps Only bootstrap values above 70% are 
shown. The 2014/15 group A H5 viruses with their N8 genes (pink) are phylogenetically distinct from 
the 2016/17 group B viruses first detected in Russia (Tyva and Uvs-Nuur Lake) in May–June 2016 
(blue) and later in other European countries (green) and the Netherlands (orange). 

 

Table 7. Overview of highly pathogenic avian influenza H5 clade 2.3.4.4-specific antibody incidence in 
the Netherlands based on haemagglutination inhibition assays starting from the first wave of this 
virus in 2014/2015 up to February 2017 

  
Species 

2014/15a 2015/16 b 2016/17c 

Positive/ 
total Percentage 

Positive/ 
total Percentage 

Positive/ 
total Percentage 

Eurasian wigeon 12/78 15.4% 5/73 6.8% 3/104 2.9% 

Lesser white-fronted goose 1/3 33.3% 0 U 0 U 

Mute swan 29/88 33.0% 5/24 20.8% 3/24 12.5% 

Common coot 1/84 1.2% 1/22 4.5% 0/35 0% 

Black-headed gull 0/262 0.0% 0/31 U 1/88 1.1% 

Mallard 0/93 0.0% 0/18 U 11/72 15.3% 

Egyptian goose 0/62 0.0% 1/28 3.6% 0/10 0% 

Total 43/940 4.6% 12/347 3.5% 18/431 4.2% 

U: unknown. aData previously published [10]. bData (partly) previously published [10] and 
supplemented with Eurasian wigeon data from this study (n = 28) from 1 March 2016. cData obtained 
in the current study from 23 October 2016 to 8 February 2017. 

 

Discussion 

Here, we report on our virological findings in wild birds during the second wave of 

European HPAI H5(N8) outbreaks in 2016/17 and further investigate the use of 

serology in addition to virology in an outbreak situation. In this study we detected 

HPAI H5N8 viruses in 57 birds of 12 species. Initially, HPAI H5N8 virus was detected in 

dead wild birds by passive surveillance in mainly tufted ducks and Eurasian wigeons, 

followed by scavengers [16]. After these die-offs, the virus was detected in live wild 

birds and shifted from being found mostly Eurasian wigeons early in the outbreak 

towards mallards later in the outbreak, despite the fact that both species were 

screened throughout time. Although the number of HPAI H5(N8) infected wild birds 

identified by passive surveillance in this study and others [16-18] was much higher 

because of the massive die-offs and subsequent mandatory testing, the high virus 

prevalence in mallards would have been missed in passive surveillance studies since 
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hardly any mallards were found dead and infected [16]. Likewise, the period of time 

of virus detection lasted longer in active surveillance compared with passive 

surveillance. Our results show that the mallard viruses from January 2017 were 

largely indistinguishable from the other HPAI H5N8 viruses, including those of tufted 

ducks, indicating that mallards might be more resistant to disease compared with 

other duck species, similarly to previous findings for HPAI H5N1 in mallards [26] and 

might therefore act as a reservoir species. 

Results of analyses at the whole genome level indicated that the HA, NA and NS 

genes of Dutch H5N8 viruses were most closely related to 2014 HPAI H5N8 group B 

Eastern China viruses, while the other five genes were derived from Eurasian LPAI 

viruses. This genetic makeup is similar to viruses detected in Russia (May 2016) and 

Germany (autumn/winter 2016) [11,15]. Compared with the May 2016 Russian viruses, 

viruses in the Netherlands showed similar new reassortment events for the NP and 

PA genes as was described for the German viruses [15] (Table 5).  

In contrast to the 2014/15 European emergence of HPAI H5N8, when a single lineage 

of HPAI spread across Europe, the chain of events during the 2016/17 HPAI H5 

emergence shows more similarities to the 2014/15 situation in the United States (US), 

where the HPAI H5N8 group A viruses reassorted with local LPAI viruses causing 

massive and long lasting detection in both poultry and wild birds and local die-offs in 

wild birds [6]. While this manuscript was in preparation, detections of HPAIH5 clade 

2.3.4.4 virus in Europe were still reported in Belgium, Luxembourg, the Netherlands 

and the United Kingdom [18], even though migrating birds had largely left their 

European wintering sites, suggesting that virus amplification was now occurring in 

local resident birds. This is a cause of concern, as establishment of HPAI viruses 

among wild birds is difficult to control and may give rise to a situation comparable to 

that in Asia with new outbreaks in wild birds and poultry not being caused by novel 

introductions of HPAI viruses from distant areas, but from within the local 

populations. It remains unclear, however, what drivers are responsible for the 

duration of virus circulation in a wild bird population, either long (US 2014/15 and 

Europe 2016/17) or short (Europe 2014/15), and based on current knowledge we 

cannot predict how the H5 situation among wild birds in Europe will evolve. 

In case of introduction of new HPAI viruses, it would be highly beneficial to be able 

to target active surveillance to key species for virus detection to avoid excessive 

costs, sampling efforts, and inclusion of unnecessarily large numbers of animals. We 

therefore examined the use of experimental approaches for serology for the second 

time in an outbreak situation. To confirm serological data and to be able to 

determine the HPAI/LPAI and HPAI clade bias with some accuracy, we performed 

both HI and VN assays. Sera of 12 birds showed exclusive titres or a bias towards 

HPAI virus, seven to LPAI virus and seven remained ambiguous [24]. VN assays 

confirmed the presence of HPAI H5 clade 2.3.4.4-specific antibodies in 14/18 sera 
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from October 2016 onwards and 1/2 from 1 March 2016. High cross-reactivity patterns 

and low initial titres in both assays showed that specifying biases towards one of the 

different HPAI H5 clades is very difficult. Further optimisation and validation of the 

assays are required to provide rough estimates of the seropositivity in subsequent 

years. Preliminary  comparisons between the winters using the same HI assay 

starting from the 2014/15 winter show an outbreak-related incidence of HPAI H5 

clade 2.3.4.4.-specific antibodies of 0% before 2014, rising to 4.6% during the first 

outbreak of HPAI H5N8 virus, decreasing to 3.5% in the 2015/16 winter and rising to 

4.2% in the 2016/17 winter. Despite a similar antibody incidence between both 

outbreak periods, an apparent decreasing antibody incidence in two species 

detected throughout all three screening periods (Eurasian wigeons and mute swans) 

can be observed. This might be a consequence of differences in timing in peak 

prevalence between the first wave in 2014, with a very limited number of wild birds 

detected with a HPAI H5N8 infection (i.e. local virus amplification) [27,28] but high 

antibody incidence, and the current second wave, with substantial local virus 

replication and lower incidence of antibodies. These data could suggest that virus 

amplification in wigeons in 2014/15 took place before arrival of these birds in the 

Netherlands, whereas in 2016/17 virus amplification primarily took place within the 

Netherlands resulting in associated die-offs [14,16]. Unfortunately, we were unable 

to collect sera from wigeons late in the season in 2016/17 to confirm increasing 

antibody incidence. However, the mallards that were tested later in the outbreak 

(February 2017) showed an increase in antibody incidence after a peak in virus 

detections a few weeks earlier compared with those tested earlier in the outbreak 

(November–December 2016). 

Recently, clade 2.3.4.4 H5N6 viruses started to circulate in both poultry and wild 

birds in south-east Asian counties [29] after their original detection in China [30], 

resembling HPAI H5N8 dispersion of 2014. In contrast to HPAI H5N8 viruses, these 

H5N6 viruses have caused sporadic human infections, including fatalities [31]. Hence 

it will be important to monitor the movements of these viruses by intense 

monitoring of wild bird populations in the coming winter seasons. In terms of 

multiple intracontinental spread of HPAI H5 viruses, global outbreaks were preceded 

by detections on breeding sites in Russia (Uvs-Nuur Lake district) and China (Qinghai 

Lake) after their initial detections in south-east Asia [11,32-35]. Increasing global 

collaborations and performing annual targeted active surveillance in China and on 

Russian breeding sites, and in Europe as autumn migration starts, will be important 

to provide early warning signals of HPAI virus dissemination. 
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Abstract 

Highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.4 viruses were first 

introduced into Europe in late 2014 and re-introduced in late 2016, following 

detections in Asia and Russia. In contrast to the 2014-15 H5N8 wave, there was 

substantial local virus amplification in wild birds in Europe in 2016-17 and associated 

wild bird mortality, with evidence for occasional gene exchange with low pathogenic 

avian influenza (LPAI) viruses. Since December 2017, several European countries 

have again reported events or outbreaks with HPAI H5N6 reassortant viruses in both 

wild birds and poultry respectively. Previous phylogenetic studies have shown that 

the two earliest incursions of HPAI H5N8 viruses originated in Southeast Asia and 

subsequently spread to Europe. In contrast, this study indicates that recent HPAI 

H5N6 viruses evolved from the H5N8 2016-17 viruses during 2017 by reassortment of 

a European HPAI H5N8 virus and wild host reservoir LPAI viruses. The genetic and 

phenotypic differences between these outbreaks and the continuing detections of 

HPAI viruses in Europe are a cause of concern for both animal and human health. The 

current co-circulation of potentially zoonotic HPAI and LPAI virus strains in Asia 

warrants the determination of drivers responsible for the global spread of Asian 

lineage viruses and the potential threat they pose to public health. 
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Introduction 

Highly pathogenic avian influenza (HPAI) viruses cause outbreaks of disease, often 

resulting in mortality in poultry and wild bird species. Since 2003, HPAI H5 viruses of 

the A/Goose/Guangdong/1/1996 (GsGd) lineage have been circulating enzootically in 

poultry in several countries in South and Southeast Asia, and Africa. Periodically, 

these HPAI H5 viruses have been introduced into wild birds with subsequent spread 

to other geographic areas, likely through bird migration (1, 2). Since late 2013, HPAI 

viruses with an H5 heamagglutinin (HA) from clade 2.3.4.4 viruses with different 

neuraminidase (NA) subtypes (e.g. H5N8, H5N6, H5N1) have been circulating in 

Southeast Asia. Clade 2.3.4.4 (H5N8) viruses of two distinct groups, commonly 

referred to as group A (Buan-like) and group B (Gochang-like), were first detected in 

China and South Korea in late 2013/early 2014 (3-5). Viruses belonging to group A 

emerged in late 2014 and spread to North America and Europe almost 

simultaneously. After their initial detection, clade 2.3.4.4 group B (H5N8) viruses 

were not detected in Southeast Asia until May 2016, when they were detected at 

Lake Uvs-Nur, Russia (6) and Qinghai lake, China (7). From May 2016, the clade 2.3.4.4 

group B H5N8 viruses subsequently spread to most European countries causing 

numerous outbreaks in poultry (8) and massive die-offs in wild birds (9-11), and 

infected both poultry and wild birds in multiple African countries (8, 12, 13). Several 

reassortment events also occurred, leading to the emergence and detection of HPAI 

H5N5 in several European countries, Georgia and Israel between November 2016 and 

June 2017 (14) and HPAI H5N6 in Greece in February 2017 (12). HPAI H5N6 first 

emerged in poultry in early 2014, having previously been detected in an 

environmental sample in late 2013 and in a live duck, sampled in early 2014 in China. 

Genetic analysis showed this HPAI H5N6 virus to be a reassortant consisting of a 

clade 2.3.4.4 HA, an NA related to Chinese low pathogenic avian influenza (LPAI) 

H6N6 duck viruses, and an internal gene cassette closely related to 2011 HPAI H5 

clade 2.3.2.1 viruses (15-17). The first viruses were later assigned to groups C and D. 

Currently, clade 2.3.4.4 group C (H5N6 viruses from China in 2013 (18), Laos and 

Vietnam in 2014 and Hong Kong in 2015, and H5N1 viruses from China and Vietnam in 

2014) and group D (H5N6 viruses from China and Vietnam 2013-14, including human 

strains) viruses have also been classified as sub-groups (19, 20) although this 

nomenclature has not been formally adopted. HPAI H5N6 viruses belonging to clade 

2.3.4.4 group B were first detected in late 2017 in Japan, South Korea (21, 22) and the 

Netherlands (23). From mid-December 2017, HPAI H5N6 group B viruses were also 

detected in wild birds in Switzerland, the United Kingdom, Germany, Sweden, 

Ireland, Denmark, Iran, Slovakia and Finland (Figure 1). In the Netherlands and 

Germany, the virus was also detected in poultry. In the same period, HPAI H5N6 

viruses of clade 2.3.4.4 group B, along with clade 2.3.4.4 groups C and D have been 

detected in East Asian countries (22).  
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Figure 1. Overview of the number of wild birds reported to be infected with HPAI H5N6 based on the 
OIE Update on Avian influenza in animals (types H5 and H7) list 2017/2018 (12, 26) per week starting 
from the first detection on 7 December 2017. The colours represent the country of detection. The 
asterisks (*) indicate the detections of HPAI H5N6 viruses in commercial (green) and backyard (blue) 
poultry. 

 

HPAI H5 viruses pose a significant threat to not only animal health, particularly to 

poultry, but also to human health owing to their zoonotic potential (24, 25). In April 

2014, the first fatal human case of HPAI H5N6 virus infection was identified in China 

(26), with these viruses phylogenetically clustering in unofficially-defined clade 

2.3.4.4 group C and 2.3.4.4 group D (19), and one case in group B (27). To date, (5 

October 2018), a total of 21 H5N6 human cases have been reported in China with a 

high case fatality rate in diagnosed individuals (28, 29). Ferret studies showed that 

although Asian ‘zoonotic’ HPAI H5N6 viruses replicated to high titres in the 

respiratory tract, there was no evidence for airborne transmissibility of these viruses 

(30).  

In this study, we attempt to determine the source of all eight influenza virus gene 

segments, and the estimates for the time to the most recent common ancestors 

(TMRCA) for the H5 HA and N6 NA gene segments to investigate when and where 

these viruses have evolved. We report the genetic relationships between the latest 

HPAI H5N6 viruses isolated from both European and Asian wild birds and poultry by 

using whole genome sequencing and characterize the emerging strains relative to 

other circulating viruses in the region.  
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Materials and methods 

Wild bird surveillance and sequencing  

Active surveillance programs in wild birds, i.e. sampling of living healthy birds, are 

limited and often project-based, and resulting data are often not publicly available. 

Here, continuous active surveillance activities of influenza virus circulation in wild 

birds are reported for the Netherlands and the Republic of Georgia. Wild birds of 

various species were caught and sampled for virus detection as described previously 

(31-33). Briefly, samples were tested for the presence of avian influenza A H5 viruses 

using a matrix gene specific and H5 HA gene specific real-time RT-PCR analysis 

followed by either Sanger sequencing, as described before (31) (primer sequences 

are available upon request), or by MinION sequencing (Oxford Nanopore 

technologies). For MinION sequencing, RNA was extracted using the QIAamp Viral 

RNA Mini Kit (52904, Qiagen, UK) and a multi segment RT-PCR amplification was 

performed using the Superscript III high-fidelity RT-PCR kit (12574-035, 

Invitrogen,USA) according to manufacturer’s instructions using the Opti1 primer set 

with influenza-specific universal primers complementary to the conserved 12–13 

nucleotides at the end of all 8 genomic segments: Opti1-F1 5’ 

GTTACGCGCCAGCAAAAGCAGG, Opti1-F2 5’GTTACGCGCCAGCGAAAGCAGG and Opti1-

R1 5’GTTACGCGCCAGTAGAAACAAGG. MinION sequencing was performed according 

to manufacturer’s instructions using the ID Native barcoding genomic DNA kit (EXP-

NBD103 and SQK-LSK108, Oxford Nanopore, UK). Raw sequence data were 

demultiplexed using Porechop (https://github.com/rrwick/Porechop), and a 

reference-based alignment was performed using CLC Genomics software, 

workbench 8 (CLC Bio), and the full genome Sanger sequence of A/Black-

headed_Gull/Netherlands/29/2017 served as a reference (EPI_ISL_289714). Primers 

and adaptors were trimmed from the raw sequence data and the Phred score for 

alignment was set to 8 and minimum require coverage was set to 100 reads per 

position. Discrepancies in the sequences (insertions or deletions) compared to close 

reference strains occurred only in homopolymeric regions, and were manually 

checked and resolved by incorporating an “N” at these positions. 

 

Strains of Interest  

To better understand the newly emerging HPAI H5N6 viruses from the 2.3.4.4 group 

B lineage, viruses of the H5N6 subtype isolated in or after October 2017 were 

assigned as strains of interest (SOI). Depending on the continent of isolation, they 

were further classified as Asia-SOI or Europe-SOI (Table 1). Whole genome sequences 

for these viruses were obtained from public databases (GISAID and Genbank). 
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European countries and non-European collaborators were asked to contribute any 

additional HPAI H5N6 and recent HxN6 sequence data via FLU-LAB-NET (European 

Union) or personal communication. HxN6 viruses were not considered SOI but 

included in the general set to test if any SOI N6s were closely related to them. In 

addition, the Animal and Plant Quarantine Agency (APQA) from South Korea shared 

three whole genomes from HPAI H5N6 detections since November 2017 (GISAID 

accession numbers EPI_ISL_288436, EPI_ISL_288437, EPI_ISL_292349). Sequences of 

NA genes from recent (2016-2017) LPAI HxN6 viruses from wild birds from the 

Netherlands, Belgium, Hungary and Croatia were also obtained for the general set. 

Further, sequences of H5N6 viruses that were isolated from humans (HUM) in China 

in 2015, 2016 and 2017 (Table 1) were collected from GISAID (Supplemental Table 1) to 

test whether the genes of any of the emerging SOI were related to those zoonotic 

strains.  

 

Table 1. Overview of our strains of interest (SOI) of highly pathogenic avian influenza viruses H5N6 
divided in Asia-SOI, Europe-SOI and human H5N6 viruses. Viruses marked with an asterisk (*) were 
obtained and sequenced within the surveillance activities described in this manuscript. 

Set Strainname Isolation date 

  A/mute_swan/Shimane/3211A001/2017 05 November 2017 

Asia-SOI 

A/chicken/Vietnam/QuangBinh/BoTrach1113/2017 13 November 2017 

A/mallard/Korea/Jeju-H24/2017 17 November 2017 

A/duck/Korea/HD1/2017 17 November 2017 

A/spoonbill/Taiwan/DB645/2017 01 December 2017 

A/duck/Korea/H35/2017 10 December 2017 

A/Mallard/Korea/H17-1825/2017 22 December 2017 

A/Mandarin_duck/Korea/K17-1815/2017 22 December 2017 

A/Mandarin_duck/Korea/K17-1817/2017 22 December 2017 

A/Mandarin_duck/Korea/K17-1826/2017 22 December 2017 

A/Mandarin_duck/Korea/K17-1828/2017 22 December 2017 

A/Mandarin_duck/Korea/K17-1862/2017 23 December 2017 

A/Mandarin_duck/Korea/K17-1866/2017 23 December 2017 

A/Mandarin_duck/Korea/K17-1869/2017 23 December 2017 

A/Mandarin_duck/Korea/K17-1873/2017 23 December 2017 

A/Mandarin_duck/Korea/K17-1879/2017 23 December 2017 

A/Mandarin_duck/Korea/K17-1881/2017 23 December 2017 
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Set Strainname Isolation date 

A/Mandarin_duck/Korea/K17-1885/2017 23 December 2017 

A/Mandarin_duck/Korea/K17-1887/2017 23 December 2017 

A/Mandarin_duck/Korea/K17-1889/2017 23 December 2017 

A/Mandarin_duck/Korea/K17-1891/2017 23 December 2017 

A/Mandarin_duck/Korea/K17-1893/2017 23 December 2017 

A/Mandarin_duck/Korea/K17-1894/2017 23 December 2017 

A/Mandarin_duck/Korea/K17-1896/2017 23 December 2017 

A/Armenian_Gull/Republic_of_Georgia/4/2017* 27 December 2017 

A/Mandarin_duck/Korea/K18-3/2018 18 January 2018 

A/Mallard/Republic of Georgia/1/2018* 28 January 2018 

A/duck/Vietnam/QuangBinh/QN530206/2018 06 February 2018 

A/jungle_crow/Hyogo/2803E011/2018 03 March 2018 

A/jungle_crow/Hyogo/2803E022/2018 06 March 2018 

Europe-SOI 

A/Duck/Netherlands/17017236-001005/2017 07 December 2017 

A/Duck/Netherlands/17017237-001-005/2017 07 December 2017 

A/Tufted_Duck/Netherlands/17017367-007/2017 09 December 2017 

A/Mute_Swan/Netherlands/17017367-012/2017 09 December 2017 

A/Mute_Swan/Netherlands/17017377-001/2017 09 December 2017 

A/Great_Black-backed_Gull/Netherlands/1/2017* 18 December 2017 

A/Black-headed_gull/Netherlands/29/2017* 18 December 2017 

A/common_pochard/Germany-BY/AR09-L02421/2017 28 December 2017 

A/mute_swan/England/SA21_180652/2018 02 January 2018 

A/Canada_Goose/England/AV58_18OPpoolEP1/2018 05 January 2018 

A/pochard_duck/England/AVP_18_003254/2018 10 January 2018 

A/Great_Black-backed_Gull/Netherlands/1/2018* 23 January 2018 

A/Eurasian wigeon/Netherlands/1/2018* 07 February 2018 

A/White-tailed_Eagle/Denmark/3073-1w/2018 13 February 2018 

A/Chicken/Netherlands/EMC-1/2018 26 February 2018 

A/Domestic_duck/Netherlands/EMC-6/2018 13 March 2018 

Human 

A/Guangdong/ZQ874/2015 31 December 2015 

A/Shenzhen/1/2016 07 January 2016 

A/Anhui/33162/2016 28 April 2016 

A/Anhui/33163/2016 29 April 2016 
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Set Strainname Isolation date 

A/Hunan/55555/2016 18 November 2016 

A/Guangxi/55726/2016 24 November 2016 

A/Fujian-Sanyuan/21099/2017 25 December 2017 

 

Reassortment analyses - Visualisation of phylogenetic incongruence 

To study the evolution and gene reassortment events of HPAI H5N6 viruses, a 

phylogenetic incongruence analysis was performed by aligning maximum likelihood 

(ML) trees for all influenza virus gene segments, except NA. Publicly available 

sequences of all eight segments of avian influenza viruses isolated between 1 

January 2007 and 30 September 2017 were downloaded from Genbank. This formed 

a set of 61,842 sequences including all segments from all strains namely - HA:8278, 

MP:6464, NA:7779, NP:7382, NS:6933, PA:8346, PB1:8410, PB2:8250. This set of 

sequences was supplemented with the additional H5N6 and HxN6 sequences 

contributed by collaborators.  

Sequences were first subjected to a quality control step where all duplicate 

sequences, and sequences bearing duplicate IDs, were removed. They were then 

separated into individual sequence datasets for each segment (PB2, PB1, PA, HA, NP, 

NA, MP and NS). Python scripts obtained from 

https://github.com/ballesterus/Utensils.git were used to concatenate all segments 

from each strain. Only those viral strains which had sequences from all eight gene 

segments (4000 strains) were selected. This concatenated sequence data was down-

sampled using CD-HIT-EST (Cluster Database at High Identity with Tolerance) (34, 35) 

to remove sequences with >95%, 90% and 80.0% sequence identity across the whole 

genome (all 8 segments). An 80% threshold was chosen as it provided the best 

compromise between retaining maximum possible diversity of sequences while 

retaining the ability to visualize. The resulting list of 141 strain names was used to 

extract sequences from those strains from each individual gene segment separately 

– resulting in the reduced whole-genome (WG) dataset for each segment.  

Sequences of all segments from the strains of interest (SOI) were also subjected to 

the same down-sampling procedure separately before being added to their 

respective WG-segment dataset. However, they were down-sampled to 99.5% 

sequence identity (39 strains) to retain as much of the current diversity as possible. 

Sequences of all segments from all three strains that were isolated from humans 

(HUM) were also added, giving a total of 183 strains.  
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Final datasets were aligned using MAFFT v7.305b (36), and trimmed to only retain 

nucleotides from the starting ATG until the final STOP codon. We inferred Maximum 

Likelihood (ML) phylogenetic trees for each gene segment using IQ-TREE, 1.5.5 (37) 

and ModelFinder (38) and obtained branch supports with Shimodaira-Hasegawa 

(SH)-like approximate Likelihood Ratio Test (aLRT, 1,000 replicates) and standard 

non-parametric bootstrap (100 replicates).  

BALTIC (backronymed adaptable lightweight tree import code) was used to compare 

the phylogenetic structure of the internal genes of the SOI. The phylogenetic 

position of each strain was traced, coloured according to the HA (Asia-SOI, Europe-

SOI, H5N8 2016/17 clade, H5N6 Chinese, human H5N6 (HUM), other H5Nx, and LPAI) 

across unrooted ML trees for HA and all internal gene segments. Figures were 

generated by modifying scripts from a similar analysis (39) and editing in Adobe 

Illustrator. We selected a qualitative palette of colours using 

http://colorbrewer2.org/. The modified version of all scripts are available in a github 

repository (https://github.com/delfinut/phylogenetic-incongruence).  

 

Analysis of the H5 and N6 genes 

For the H5 analysis, 1,251 HA sequences of strains isolated between January 2016 and 

March 2018 were downloaded from GISAID (Supplemental Table 1). For the N6 tree, 

NA gene sequences of 1,680 strains of LPAI HxN6 viruses from Genbank, isolated 

between January 2007 and January 2018, were used. BLAST was used to find the 

closest related sequences to the HA and NA sequences from the SOI in the entire 

influenza virus resource database in FluDB (www.fludb.org). GISAID has the most up-

to-date HPAI sequences – hence this database was used to acquire HPAI H5 HA 

sequences; Genbank has a better representation of HPAI and LPAI strains taken 

together, which is why this database was used for N6 NA sequences which may or 

may not be associated with HPAI HAs.  

The individual H5 and N6 datasets described above were first subjected to a quality 

control step where all duplicate sequences and sequences bearing duplicate IDs 

were removed. These datasets were first analyzed with the SOI and HUM strains. 

Sequences were aligned using MAFFT v7.305b (36), and used in the FastTree 

program (40, 41) to generate an initial tree. Since both HA and NA of SOI viruses 

formed two monophyletic clades each (excluding all other strains), with robust 

support (>0.80), the downloaded sequences were then subjected to down sampling 

to a cut-off of 99.5% identity before further analysis. SOI HA and NA sequences were 

also down-sampled to 99.9% identity respectively. All sequences from taxa which 

were found outside of the fully supported (100%) cluster with SOI were discarded. 
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Ten further sequences were discarded after analysis of the H5 HA ML tree with 

tempest v1.5, which identified them as outliers and did not conform to clock-likeness 

as suggested by the authors in (42). Similarly, nine further sequences were removed 

as outliers after analysis of the N6 NA ML tree with tempest v1.5. The H5 HA dataset 

included representatives from the HPAI clade 2.3.4.4 group B (H5N8) 2016-17 clade, 

European and Asian HPAI clade 2.3.4.4 group B, C and D H5N6 viruses, other HPAI 

H5Nx viruses, as well as the separate lineage of the group C and D Chinese H5N6 

strains, to form a new dataset of 153 sequences from which a final H5 ML tree was 

inferred using IQ-TREE. The N6 NA dataset included a total of 183 sequences from 

the H5N6 SOI as well as the most closely related sequences that were from LPAI 

viruses, primarily from wild birds. The final N6 ML tree was inferred from this dataset 

using IQ-TREE.  

Bayesian phylogenetic trees were inferred using BEAST v1.10.1 (43) to determine the 

time of emergence of SOI and the viruses they likely arose from. Path sampling/ 

stepping stone sampling (PS/SS) (44) was used to select the appropriate site 

substitution and clock models. BEAST calculates log marginal likelihood estimates 

(MLE) for each run from which log Bayes factors (BF) (which indicate support for 

one model over another) were calculated as the difference between the log MLEs. 

SRD06, i.e., the standard HKY site model with estimated base frequencies and 

gamma site heterogeneity with 4 gamma categories and 2 codon partitions (1+2, 3) 

was chosen over GTR with the empirical base frequencies and gamma categories 

with no codon partition (> 180 log BF) (45). An uncorrelated relaxed lognormal clock 

was used to allow for rate variation along different branches with GMRF Bayesian 

Skyride population prior (chosen over constant prior with > 20 log BF) and random 

starting tree. All other priors were set to default. MCMC was set to 70,000,000 

generations. Two separate runs were performed to ensure convergence between 

runs. Log files were analyzed in Tracer v1.7.1 to determine convergence, and to check 

that ESS values were beyond threshold (>200). Log and trees files from both runs 

were combined using Log Combiner v 1.10.1. Tree annotator v1.10.1 was used to 

generate a maximum credibility tree (MCC) using 10% burn in and median node 

heights. The MCC tree was then annotated to include posterior probability values 

and time scales and plotted in R v 3.5 using the ggtree package (46).  

 

Results 

Wild bird surveillance and sequencing 

Continuous active surveillance activities resulted in the screening of 2,769 wild birds 

in the Netherlands and 2,190 in the Republic of Georgia between 9 December 2017 
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and 30 June 2018. HPAI H5 viruses were detected in 10 Eurasian Wigeons (Anas 

penelope, February 2018) in the Netherlands, and in a Mallard (Anas platyrhynchos, 28 

January 2018) and an Armenian Gull (Larus armenicus, 27 December 2017) in the 

Republic of Georgia. In addition, during opportunistic sampling of a small number of 

dead birds (passive surveillance) the virus was detected in two Great Black-backed 

Gulls (Larus marinus, 18 December 2018 and 23 January 2018) and a Black-headed Gull 

(Chroicocephalus ridibundus, 18 December 2017) that were found dead in the 

Netherlands (Table 2). Full genome sequences were obtained from one of the HPAI 

H5N6 infected Dutch Eurasian Wigeons and the three dead gulls, and from both 

Georgian birds. All obtained sequences have been uploaded to GISAID with 

accession numbers EPI_ISL_289713, EPI_ISL_289714, EPI_ISL_302823, 

EPI_ISL_302824, EPI_ISL_303520, EPI_ISL_312376. During the mentioned surveillance 

period no additional LPAI HxN6 viruses were detected. 

 

Table 2. Wild bird species sampled for virus detection during the 2017/18 outbreaks of highly 
pathogenic avian influenza H5N6 virus in the Netherlands (n= 2,816), and the Republic of Georgia 
(n=2,190), 9 December 2017 - 30 June 2018. 
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 Hen harrier  

(Circus cyaneus) 
0 0 0 NA 1 0 0 NA 0 0 0 NA 

A
n

se
ri
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rm

es
 

D
u

ck
s 

Common shelduck 
(Tadorna tadorna) 

0 0 0 NA 2 0 0 NA 1 0 0 NA 

Eurasian teal  
(Anas crecca) 

86 43 0 NA 236 54 2 
2x 

LPAI 
0 0 0 NA 

Eurasian wigeon 
(Anas penelope) 

4 2 0 NA 332 64 32 

10x 
HPAI 

3x 
LPAI 

19xn.i. 

0 0 0 NA 

Gadwall  
(Anas strepera) 

12 6 0 NA 114 33 2 
1x 

LPAI 
1x n.i. 

0 0 0 NA 

Garganey Spatula 
querquedula) 

32 16 0 NA 0 0 0 NA 0 0 0 NA 

Mallard (Anas 
platyrhynchos) 

454 227 1 
1x 

HPAI 
2021 131 10 

3x 
LPAI 

7x n.i. 
2 0 0 NA 

Northern pintail 
(Anas acuta) 

22 11 0 NA 2 0 0 NA 1 1 0 NA 

Northern shoveler 
(Spatula clypeata) 

0 0 0 NA 3 0 0 NA 0 0 0 NA 

Ruddy shelduck 
(Tadorna 
ferruginea) 

2 1 0 NA 0 0 0 NA 0 0 0 NA 

Tufted duck  
(Aythya fuligula) 

8 4 0 NA 12 0 0 NA 0 0 0 NA 
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 Duck spp.  
(Anas spp.) 

0 0 0 NA 21 1 0 NA 0 0 0 NA 

G
e

e
se

 

Greylag goose 
(Anser anser) 

0 0 0 NA 0 0 0 NA 1 0 0 NA 

Pink-footed goose 
(Anser 
brachyrhynchus) 

0 0 0 NA 1 0 0 NA 0 0 0 NA 

S
w

an
s 

Bewick's swan 
(Cygnus 
columbianus 
bewickii) 

0 0 0 NA 15 0 0 NA 0 0 0 NA 

Mute swan  
(Cygnus olor) 

0 0 0 NA 0 0 0 NA 1 0 0 NA 

Ch
ar

ad
ri

if
o

rm
es

 

G
u

lls
 

Armenian Gull 
 (Larus armenicus) 

234 117 1 
1x 

HPAI 
0 0 0 NA 0 0 0 NA 

Black-headed gull 
(Chroicocephalus 
ridibundus) 

1,0 
36 

518 0 NA 0 0 0 NA 8 2 1 
1x 

HPAI 

Eurasian herring 
gull (Larus 
argentatus) 

0 0 0 NA 0 0 0 NA 
2
5 

0 0 NA 

Great black-backed 
gull (Larus marinus) 

0 0 0 NA 0 0 0 NA 6 2 3 
2x 

HPAI 
1xn.i. 

Mediterranean Gull 
(Ichthyaetus 
melanocephalus) 

2 1 0 NA 0 0 0 NA 0 0 0 NA 

Mew gull  
(Larus canus) 

2 1 0 NA 1 0 0 NA 1 0 0 NA 

Slender-billed Gull 
(Chroicocephalus 
genei) 

4 2 0 NA 0 0 0 NA 0 0 0 NA 

Yellow-legged Gull 
(Larus michahellis) 

282 141 0 NA 0 0 0 NA 0 0 0 NA 

W
ad

e
rs

 

Common snipe 
(Gallinago 
gallinago) 

0 0 0 NA 2 0 0 NA 0 0 0 NA 

G
av

iiF
o

r

m
es

 

 Northern lapwing 
(Vanellus vanellus) 

0 0 0 NA 2 0 0 NA 0 0 0 NA 

 
Arctic Loon  
(Gavia arctica) 

2 1 0 NA 0 0 0 NA 0 0 0 NA 

G
ru

if
o

rm
es

 

R
ai

ls
 

Common moorhen 
(Gallinula 
chloropus) 

0 0 0 NA 2 0 0 NA 1 0 0 NA 

Water rail 
(Rallus aquaticus) 

0 0 0 NA 2 0 0 NA 0 0 0 NA 

P
o

d
ic

ip
ed

if
o

rm
es

  

Eared Grebe 
(Podiceps 
nigricollis) 

4 2 0 NA 0 0 0 NA 0 0 0 NA 

 

Great crested 
grebe (Podiceps 
cristatus) 

2 1 0 NA 0 0 0 NA 0 0 0 NA 

P
ro

ce
lla

ri
i 

fo
rm

es
 

 

Levantine 
Shearwater 
(Puffinus yelkouan) 

2 1 0 NA 0 0 0 NA 0 0 0 NA 

Total 
2,1 
90 

1,0 
95 

2 
 

2,7 
69 

283 46 
 

4
7 

5 4 
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No.: number; NA: not applicable; AIV: Avian influenza virus; HPAI: highly pathogenic avian influenza 
virus; n.i: not identifiable 

 

Phylogenetic analyses of the HA segment 

Previously, H5 clades have been somewhat geographically restricted with only 

intermittent incursion of Asian lineage viruses into Europe. However, here 

phylogenetic clustering of the Europe-derived H5N6 SOI was observed with H5N6 

strains derived from Asia, such as those isolated from ducks in South Korea, a Black-

faced Spoonbill (Platalea minor) in Taiwan, and a Mute Swan (Cygnus olor) in Japan in 

November/December 2017 (Asia-SOI). These latest H5N6 strains were also 

phylogenetically similar to recent European/Russian HPAI H5N8 viruses rather than 

Asian-derived H5N6 viruses such as the Chinese H5N6s that have been associated 

with zoonotic infections (Supplemental figure 1A). The recent, and to date, only, 

human H5N6 group B strain (27) (A/Fujian-Sanyuan/21099/2017(H5N6)) clustered 

closer to, but was still distinct from the recent European H5N6 strains (Figure 2, 

Supplemental figure 1A).  

With the exception of two Vietnamese viruses 

(A/duck/Vietnam/QuangBinh/QN530206/2018 and 

A/chicken/Vietnam/QuangBinh/BoTrach1113/2017, figure 2 marked with §) that 

clustered together with the Chinese HPAI H5N6 viruses, both the European-SOI and 

Asian-SOI sets of H5N6 viruses had an estimated common ancestor that circulated in 

early July 2016 (95% confidence interval April – September 2016). The H5N6 virus 

isolated from a single poultry outbreak in Greece during the 2016-17 HPAI H5N8 

epizootic (A/chicken/Greece/39_2017a/2017) clustered with other 2016-17 European 

H5N8 viruses, suggesting this strain was not ancestral to the SOI (Figure 2, 

Supplemental figure 1A).  

However, additional heterogeneity was observed within the SOI. Phylogenetically 

clustering within the Europe-SOI were two Asia-SOI strains; these two Asia-SOI 

strains were isolated in the Republic of Georgia. The Republic of Georgia is located in 

western Central Asia, on the eastern side of the Black Sea, and here, these viruses 

showed a closer phylogenetic relationship with European strains than with Asian 

strains. The Europe-SOI and the Georgian strains had a common ancestor that 

circulated in early September 2017 (95% confidence interval July – October 2017), 

suggesting that there were likely multiple genetically distinct H5 segments, whose 

subsequent diffusion within the wild bird population was not uniform across Eurasia. 

Similar finer grain heterogeneity was observed with the four recent Asian strains, 

isolated from South Korea in late 2017 and early 2018. These four South Korean 

strains were phylogenetically closer to the European-SOI but distinct from other 
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recent Asian H5N6 2.3.4.4 group B viruses, isolated from birds in Japan, South Korea 

and Taiwan in late 2017/early 2018. The Korean and European viruses shared a 

common ancestor that circulated in July 2017 (95% confidence interval May – 

September 2017). This suggests that potentially two separate HA reassortment 

events led to heterogenous H5N6 viruses circulating within Eurasia from July 2016 

and co-circulating in South Korea in late 2017 (Figure 2). 

 

Phylogenetic analyses of the NA segment 

Since the H5N6 HA arose from the recent H5N8 strains, attempts were made to trace 

the reassortment event or events that potentially led to the emergence of these 

H5N6 viruses. All N6 NA segments derived from LPAI and HPAI viruses from 2007-

January 2018 were collected and combined with the SOI to trace the origin of N6. 

The closest genetically related N6 to all HPAI H5N6 strains appeared to be LPAI 

H4N6 strains from the Republic of Georgia in 2016 (Figure 3, Supplemental figure 1B).  

BEAST analysis estimated that a common ancestor for all N6 genes related to HPAI 

H5 viruses that circulated in early January 2016 (albeit with a large 95% confidence 

interval between April 2015 to October 2016). The N6 segments of the Korean and 

European/Georgian viruses seemed to have diverged right at the beginning of 2017. 

The most recent common ancestor for the N6 related to only the European/Georgian 

HPAI H5N6 viruses that circulated in April 2017 (95% confidence interval December 

2016 – August 2017). The N6 from the Greek H5N6 strain from February 2017 

phylogenetically clustered alone and diverged from its closest relatives, some of the 

Asia-SOI, in late summer 2016, indicating that this Greek virus was an unrelated 

reassortment event that did not continue to circulate and was not ancestral to the 

currently circulating N6 genes related to the HPAI H5 viruses (Figure 3). 
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Figure 2. BEAST trees from viral sequences of HA (H5) gene sequences isolated from avian hosts 

between January 2016 and April 2018 with the addition of four H5N6 HA genes isolated from humans 
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and seven co-circulating HPAI H5N2/H5N8 viruses (purple). Tip symbols are coloured according to the 

HA origin displaying our European-SOI (blue), Asian-SOI (red), the Chinese HPAI H5N6 viruses 

(orange) with the Chinese human-derived viruses (black), the 2016-17 HPAI H5N8 viruses (green) and 

other HPAI H5Nx viruses (purple) . Tip symbols depict the location: Central Asia/Russia (●), 

Eastern/Southern Asia (▲), Europe (■) and other (+). Presence of node symbol () indicates 

posterior probability > 0.85. The numbers above the nodes represent the time to most recent 

common ancestor (tMRCA), the grey bars display the accompanying 95% confidence interval. Viruses 

marked with an asterisk (*) were obtained and sequenced within the surveillance activities described 

in this manuscript. HPAI: highly pathogenic avian influenza. NB! Only a part of the tree is shown in 

detail for the purpose of printing it in this thesis. The original trees will be published online with the 

manuscript, or are available upon request. 

 

Full genome phylogeny 

BALTIC (backronymed adaptable lightweight tree import code) was used to compare 

the phylogenetic structure of the internal genes of the SOI compared to other HPAI 

H5 and LPAI viruses. Supplemental Figures 1A-H show the ML trees for all eight gene 

segments of the SOI together with a down-sampled set of all avian viruses isolated 

between 2007 and 2018. To visualise incongruence, the phylogenetic position of each 

sequence (coloured according to the origin of its HA) was traced across all seven 

trees (Figure 4). The eighth gene segment, NA, is excluded from this because not all 

viruses were N6 viruses, hence this tree would rather show the obvious genetic 

differences between different NA subtypes, than tracing the N6.  

The HA of the recent European/Asian SOI clustered within the 2016/17 HPAI H5N8 

cluster, and the NA segments were most closely related to LPAI N6s, as described 

above (Figures 2 and 3, Supplemental figure 1A and 1B). 

A/Mallard/Republic_of_Georgia/1/2018 (H5N6) showed a closer relationship to recent 

European viruses than to Asian viruses for all eight gene segments (Figure 4, 

Supplemental figure1). The MP, NP, NS and PB1 segments of recent Asian and 

European SOI were related to respective internal genes from 2016-17 clade 2.3.4.4 

(H5N8) strains (Supplemental figure 1). In contrast, although 

A/Armenian_Gull/Republic_of_Georgia/4/2017 (H5N6) was closely related to the 

European H5N6 viruses for the HA and NA segments, all of its internal genes 

clustered with those of LPAI and other HPAI H5 viruses, indicating extensive 

reassortment (Figure 2-4, Supplemental figure 1).  

For PA, SOI from Europe and the Republic of Georgia (except A/Great_Black-

backed_Gull/Netherlands/1/2017) phylogenetically clustered with LPAI H7, H3 and H4  
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Figure 3. BEAST trees from viral sequences of NA (N6) gene sequences isolated from avian hosts 
between January 2007 and April 2018. Tip symbols are coloured according to the HA origin with 
recent Asian (red) and European (blue) HPAI H5N6 viruses, the early 2017 Greek (GRC) HPAI H5N6 
(green), and (non-H5) HxN6 (grey) viruses. Symbols depict the location: Central Asia/Russia (●), 

Eastern/Southern Asia (▲) and Europe (■). Presence of node symbol () indicates posterior 
probability > 0.85. The numbers above the nodes represent the time to most recent common 
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ancestor (tMRCA), the grey bars display the accompanying 95% confidence interval. Viruses marked 
with an asterisk (*) were obtained and sequenced within the surveillance activities described in this 
manuscript. HPAI: highly pathogenic avian influenza. NB! Only a part of the tree is shown in detail for 
the purpose of printing it in this thesis. The original trees will be published online with the 
manuscript, or are available upon request. 

 

viruses from Bangladesh, the Netherlands and the Republic of Georgia from 2014 to 

2016. Phylogenetically distinct from this PA group, the A/Great_Black- 

backed_Gull/Netherlands/1/2017 and all Asia-SOI (except the H5N6 virus from the 

Republic of Georgia) clustered together with 2016/17 Russian/European HPAI H5N8 

viruses. These different PA clusters likely represent separate reassortment events. 

(Supplemental figure 1F).  

 

 

Figure 4. Phylogenetic incongruence analysis. Maximum likelihood trees for the HA segment and all 
internal genes MP, NP,NS,PA,PB1 and PB2 from equivalent strains were connected across the trees. 
Tips and connecting lines are coloured according to HA clade. HPAI: highly pathogenic avian 
influenza; LPAI: low pathogenic avian influenza.  
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Phylogeny based on the PB2 gene resulted in similar clustering patterns as compared 

with PA. However, the closest-related PB2 genes to the Europe-SOI/Republic of 

Georgia cluster arose from viruses that circulated in 2014-15 in domestic birds in 

Europe. In contrast, PB2 segments of the Asia-SOI and A/Great_Black-

backed_Gull/Netherlands/1/2017 clustered with PB2 segments from 2016/17 

Russian/European H5N8 (Supplemental figure 1H). None of the H5N6 SOI gene 

segments were associated with respective segments found in or near the Chinese 

group C and D viruses (Figure 4). However, the recent group B human H5N6 virus 

(A/Fujian-Sanyuan/21099/2017(H5N6)) isolated in China in 2017 was more similar to 

HPAI H5N8 clade viruses with a PA segment that is closely related to both HPAI H5N8 

clade and HPAI H5N6 European clade viruses.  

 

Discussion 

New reassortant HPAI clade 2.3.4.4 group B H5N6 viruses have been detected in 

both wild birds and poultry in several European and Asian countries from December 

2017 onwards. Phylogenetic analyses of these viruses showed that although they 

were related to the 2016-17 European HPAI H5N8 viruses, they were not the result of 

continued circulation of the single HPAI clade 2.3.4.4 group B H5N6 virus that was 

detected in Greece in early 2017 during the 2016-17 clade 2.3.4.4 group B H5N8 

European outbreak. Based on these results, we conclude that these European and 

some recent Asian HPAI H5N6 viruses are new reassortant viruses of HPAI H5 clade 

2.3.4.4 group B viruses with LPAI virus segments likely derived from wild birds rather 

than from LPAI viruses in poultry or from introductions of the (zoonotic) Asian HPAI 

H5N6 viruses that have been frequently detected in Southeast Asia since 2014. The 

common ancestors of the HA and NA gene segments of the recent European HPAI 

H5N6 viruses were estimated to have circulated in early September 2017 (confidence 

interval: July - October) and April 2017 (confidence interval: December 2016 – August 

2017), respectively. Previously published time estimates for the most recent common 

ancestors for these HPAI H5N6 viruses detected in the Netherlands (23) and 

Europe/Korea (47) were January – September 2016 and January – October 2016 for 

HA, and December 2014 – July 2016 and September 2015 (confidence interval: August 

2014 – August 2016) for NA, respectively. These estimates are different from these 

new estimates and with much broader confidence intervals. This can be explained by 

the more extensive dataset in the present study, including both a representative set 

of circulating HPAI H5 viruses and a large number of LPAI viruses, that enabled us to 

narrow the time estimates of when reassortment events with other viruses may 

have occurred.  
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Although wild birds are generally not considered as a long-term maintenance 

reservoir for HPAI viruses, bird diversity, density, the aggregation of birds from 

different geographical areas and the high density of immune-naïve birds on breeding 

sites can all contribute to both temporary HPAI virus maintenance and to the 

potential generation of novel reassortants with LPAI gene segments. Previous 

phylogenetic studies have shown that both HPAI clade 2.3.4.4 H5N8 viruses that 

caused outbreaks in Europe in 2014-15 and 2016-17 originated in Southeast Asia and 

subsequently spread to Europe (1, 10), with diffusion mediated by wild birds (1). 

However, in contrast to previous epizootics where an HPAI H5 progenitor was 

derived from poultry and diffused in wild birds, it is more plausible that these recent 

H5N6 viruses evolved during 2017 by reassortment of a European HPAI H5N8 virus 

and wild host reservoir LPAI viruses, within the wild bird reservoir itself, given the 

more restricted gene pool in poultry. We therefore hypothesize that these 

reassortment events occurred either during 2017 on the Palearctic breeding grounds 

where birds from Europe and Asia gather when a large number of hatch-year birds 

entered the wild bird population, or just after breeding, when naïve hatch-year birds 

and adults dispersed from the breeding grounds to aggregate in large numbers, 

particularly to moult (48).  

Previously, differences in mortality rates were found in HPAI H5 epizootics mediated 

by wild birds (14). Here, the combination of enzootic presence of LPAI viruses, a 

large immunologically heterogenous population, with possible pre-existing immunity 

to clade 2.3.4.4 group B viruses from the previous HPAI waves, and the start of 

migration might have enabled multiple novel reassortants to emerge and to disperse 

both east and west to the wintering grounds, resulting in co-circulation of 

reassortants of different genotypes in both Europe and East Asia. The timing of the 

first detection of the new H5N6 viruses was later (mid-December) (23) compared 

with both H5N8 outbreaks (early November (49) and late October (8) respectively) 

but the variation in detection was likely within normal ecological variation of wild 

bird movements and population dynamics. Possible ecological and population-based 

explanations for such outbreak timing variation include the presence of pre-existing 

immunity to clade 2.3.4.4 group B viruses possibly leading to less severe infections, 

the potential for partial immunity to facilitate co-infection and recovery rather than 

mortality, with reassortment and onwards transmission resulting from these altered 

population factors. Additionally partial or pre-existing immunity might lead to a 

relative reduction in disease burden and the number of infected birds, fewer infected 

wild birds without obvious increased mortality, differences in climatic factors 

between years that influenced the dispersal of wild birds (50) and thus relative 

prevalence, or the alteration of the structure and size of the wild bird population by 

the previous incursion (9) and the relative proportion of susceptible birds in the 

population differed across years. 
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Although some HPAI H5 viruses were associated with mortality in wild birds (9, 10, 

51, 52), serological evidence and the detections of HPAI H5 viruses in clinically healthy 

birds (53-55) indicate that infections can be non-lethal, enabling the spread of these 

viruses over longer distances with flight. To the authors’ knowledge all previous 

reports on HPAI H5N6 detections in Europe have been from either diseased or dead 

birds. Here, the detection of HPAI H5N6 virus from a clinically healthy Armenian Gull 

(December 2017) and a Mallard (January 2018) in the Republic of Georgia, and in 

clinically healthy Eurasian Wigeons in February 2017 in the Netherlands are reported. 

Wild birds are considered to be a temporary spill-over host for HPAI viruses that 

originate from poultry, and HPAI viruses are generally considered to be unable to 

become endemic in the wild bird population. The present results and those 

previously published (23, 47) indicate that the recent HPAI clade 2.3.4.4 group B 

H5N6 viruses were reassortants from several wild bird viruses, and time estimates 

for these reassortment events suggested that reassortment happened in wild birds 

without the involvement of poultry. In addition, HPAI H5N6 viruses have been 

detected in wild birds in Europe over the course of 2018, although there were no 

detections in commercial poultry after March 2018, nor in backyard poultry between 

March and September 2018 (56, 57). These viruses may indeed have adapted to wild 

birds by causing non-lethal infections, and thereby enabled themselves to be 

maintained in the wild bird population. To date the precise wild bird species involved 

in the long-distance dispersal of these viruses are still unknown, but with expanding 

genetic heterogeneity in both wild birds and poultry the risk of diffusion of HPAI 

variants among geographic areas is an ever-present threat. 

Clade 2.3.4.4 group A and B H5N8 viruses have not been associated with human 

infections, and pathogenesis and transmission studies in ferrets showed that these 

viruses are not of current concern for human health (58-60). In contrast, clade 

2.3.4.4 group B, C and D H5N6 viruses have been reported to cause human infections 

in China (26, 61), and show a high genetic variability (17). Based on the present 

phylogenetic results, all eight gene segments of the currently circulating European 

and most Asian H5N6 viruses, with the exception of some Chinese and Vietnamese 

viruses, clustered with either HPAI H5N8 or LPAI viruses, and showed a clear 

separation from the human clade 2.3.4.4 group C and D viruses. Recently the WHO 

reported a human infection with a clade 2.3.4.4 group B virus (A/Fujian-

Sanyuan/21099/2017(H5N6)) (27) though this is to date, a single isolation. However, 

the evolutionary dynamics characterized in this study highlight the potential for 

rapid virus evolution, alterations in host susceptibility even within an H5 subclade 

and demonstrate the necessity to continually assess the risk of emerging variants to 

both animal and human health. It is also important to understand the underlying 

principles and drivers that enable global HPAI virus migration through both active 
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and passive, ecologically-targeted and longitudinal surveillance in wild birds and 

poultry.  
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Supplemental figure 1. Maximum likelihood tree for all 8 gene segments namely HA, NA, MP, NP, NS, 
PA, PB1, PB2 (A-H respectively). Tips are coloured according to HA clade: The Europe-SOI (blue), Asia-
SOI (red), Chinese (orange) and human (black) HPAI H5N6 viruses, 2016-17 H5N8 viruses (green), 

other HPAI H5 viruses (purple) and LPAI viruses (grey). Node symbols () are shown only where 
support value (alrt – approximate likelihood ratio test) is above 85%. The blue arrow in C-H point at 
A/Armenian_Gull/Republic_of_Georgia/1/ 18. NB! Only parts of the trees are shown in detail for the 
purpose of printing them in this thesis. The original trees will be published online with the 
manuscript, or are available upon request. 
 

Supplemental Table 1. Acknowledgements of authors, and originating and submitting laboratories 
providing the sequences to Gisaid used for phylogenetic analysis. NB! Supplemental Table 1 is not 
shown due to the size. It will be published online with the manuscript.  
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Abstract 

As high-throughput sequencing technologies are becoming more widely adopted for 

analysing pathogens in disease outbreaks there needs to be assurance that the 

different sequencing technologies and approaches to data analysis will yield reliable 

and comparable results. Conversely, understanding where agreement cannot be 

achieved provides insight into the limitations of these approaches and also allows 

efforts to be focused on areas of the process that need improvement. This 

manuscript describes the next-generation sequencing of three closely related 

viruses, each analysed using different sequencing strategies, sequencing instruments 

and data processing pipelines. In order to determine the comparability and 

repeatability of consensus sequences and minority (sub-consensus) single nucleotide 

variants (mSNV) identification the biological samples, the sequence data from 3 

sequencing platforms and the *.bam quality-trimmed alignment files of raw data of 3 

influenza A/H5N8 viruses were shared. This analysis demonstrated that variation in 

the final result could be attributed to all stages in the process, but the most critical 

were the well-known homopolymer errors introduced by 454 sequencing, and the 

alignment processes in the different data processing pipelines which affected the 

consistency of mSNV detection. However, homopolymer errors aside, there was 

generally a good agreement between consensus sequences that were obtained for 

all combinations of sequencing platforms and data processing pipelines. 

Nevertheless, minority variant analysis needs a different level of careful 

standardization and awareness about the possible limitations, as shown in this study.  
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Introduction 

Over the past decade, high-throughput sequencing technologies have evolved, 

providing faster, cheaper, and less laborious alternatives to obtain (whole genome) 

DNA and RNA sequences compared to traditional Sanger sequencing [1, 2]. The use 

of next-generation sequencing (NGS) technologies is continuously expanding and 

has revolutionized the field of genomics and molecular biology.  

In many fields of infectious disease research, nucleotide changes in DNA or RNA 

sequences are used to monitor genetic adaptions indicative of evolution, the 

emergence of drug resistance, immune evasion or as a tool in epidemiological 

tracing [3]. In clinical settings, sequencing information is used to improve diagnostics 

and prognosis. NGS technologies play an increasingly important role in these 

processes as clinically or epidemiologically important nucleotide changes can be 

present in the minority of DNA or RNA sequences only, which might be missed with 

more traditional (consensus) sequencing methods which determine the most 

abundant sequence variants in a population. Minority Single Nucleotide Variants 

(mSNVs) are present in less than 50% of the sequenced virus population. These 

variants, initially occurring due to replication errors, can become fixed in the 

population when they have some sort of evolutionary advantage, for instance, 

mutations related to drug resistance. Furthermore, mSNVs can be also used for high-

resolution molecular epidemiology, which becomes more and more important for 

outbreak assessment [4, 5]. Traditional Sanger sequencing for instance has been 

described to detect minority variants provided they are present in at least 10% of the 

analysed DNA or RNA strands within a sample [6, 7]. Hence, the use of traditional 

sequencing methods is usually restricted to obtaining consensus sequences or to 

determine heterozygosity in diploid organisms. In contrast, NGS technologies are 

able to detect low frequency mSNVs in sequence fragments or even whole genomes. 

Typically, NGS sensitivity for minority sequence variant identification is restricted to a 

level of variation of 0.1–1%, mainly due to sequencing related background errors [8-

10], but sensitivity can be increased using sophisticated approaches like circle 

sequencing [11] or improved bioinformatic analysis workflows [10]. The reliability of 

mSNV analysis using NGS methods is influenced by many factors, like the quantity 

and quality of the input sample, the laboratory procedures, the type of sequencing 

platform and the software and settings used to analyse the raw sequence data. 

Due to the technical improvements, NGS technologies have become more important 

as diagnostic tools to characterize pathogens in outbreak situations. However, the 

increasing use of these technologies to address new and important (outbreak 

related) research and surveillance questions emphasizes the need to determine the 

reproducibility of, and the important technical considerations affecting, outcomes 

obtained by different laboratories following different protocols. Given this, 

comparative studies focusing on different platforms and data analysis methods are 
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essential to cross-validate different methodologies and determine the reliability of 

newly obtained data. In addition, there is a growing need (as exemplified by the 

recent Ebola and Zika virus outbreaks) to share also comprehensive sequencing data 

as quickly as possible to help with source attribution and developing control 

strategies. However, the underlying technologies and methods used for NGS are still 

diverse and there is a strong demand for harmonization of laboratory procedures 

and approaches for a reliable and optimized analysis of the data. 

This study is part of the European Union’s HORIZON 2020 project “COMPARE” 

(http://www.compare-europe.eu/), aiming to improve the analytical tools for 

emerging zoonotic pathogens and its underpinning research. Here, both 

comparability and repeatability of NGS output data obtained from different 

sequence approaches were evaluated and demonstrated suitable sharing strategies 

for comprehensive NGS data sets. In November 2014, a newly emerging strain of 

highly pathogenic avian influenza (HPAI) virus was detected in several European 

countries [12, 13]. In the United Kingdom [14], Germany [15], and The Netherlands 

[16-18] this subtype was detected in commercial poultry farms within a few days of 

one another. In each of those countries, NGS was used to generate whole-genome 

sequences rapidly after detection, but as the laboratories in each country were 

working independently, different approaches were used for both sequencing and 

data analysis, and the data were shared as part of a wider study to determine the 

likely source of the outbreak [19]. It is important to determine whether the different 

analytical approaches have any impact on the outcome. Therefore, the aim of this 

study was to determine how comparable consensus and minority variant results 

were between laboratories performing their standard analyses, and whether 

discrepancies could be attributed to the SP, DPP or a combination of both. With the 

lack of a ground truth/gold standard, all datasets obtained were compared amongst 

each other. The hypothesis we test in this study is that outputs from NGS analysis of 

viruses will be comparable irrespective of laboratory, sequencing platform and data 

analysis platform. 

Therefore, virus isolates obtained in each of the three countries (United Kingdom, 

Germany and the Netherlands) were shared between these three partners and 

subsequently sequenced and analysed in each of the three laboratories according to 

local procedures. In addition, the use of a specially designed data sharing platform, a 

COMPARE “Data Hub” at EMBL-EBI, Hinxton UK, was evaluated. This study presents 

genome coverage data, consensus sequences, the analysis of the comparability and 

repeatability of mSNV identifications of the different sequence platforms (SPs), and 

data processing pipelines (DPPs). 

Our hypothesis was confirmed at the consensus sequence level, since consensus 

sequences could be reproduced independent of the combination of SP and DPP 



Chapter 4 | 114 

 

used. However, the identification of minority variants appeared to be poorly 

reproducible, primarily due to the well-known errors in 454 sequencing, and due to 

differences induced by the alignment processes in the different DPPs. The 

interpretation of minority variant analysis thus needs a different level of careful 

standardization and awareness about the possible limitations as shown in this study. 

 

Materials and Methods 

Experimental design 

Three avian influenza A virus isolates that were obtained from three different avian 

species during the 2014/15 outbreak of HPAI H5N8 virus in Europe were shared 

among three institutions in the United Kingdom (Animal Plant and Health Agency 

[APHA]), Germany (Friedrich-Loeffler-Institut [FLI]) and the Netherlands (Erasmus 

Medical Center [EMC]), later referred to as anonymized institutions I, II and III 

(Figure 1). All three institutions sequenced all three virus isolates according to their 

own standard procedures. Adaptors used in the sequencing processes were trimmed 

off before the raw sequence data files were shared. The sequence data files (*.fastq 

files), alignment files (*.bam files), sample metadata and experimental metadata 

were shared between the three laboratories and analysed in their own DPPs yielding 

sequence datasets for each virus (Table 1). Data sharing was facilitated via a “Data 

Hub” provided by the EMBL-EBI’s European Nucleotide Archive (ENA) in the 

framework of the COMPARE collaborative project; all data were stored and 

subsequently published in ENA [20] (https://www.ebi.ac.uk/ena, for the accession 

numbers, see Table 1). ENA is an open repository for sequence and related data and a 

member of the International Nucleotide Sequence Database Collaboration (INSDC; 

http://www.insdc.org/) [21]. A full description of the COMPARE Data Hub system is 

provided in a preprint version of Amid et al. [22]. First, consensus sequences derived 

from a preliminary analysis were compared and one overarching consensus 

sequence was determined for each gene segment for each virus. This custom-made 

consensus was used by all three institutions as the reference genome for 

undertaking mSNV analysis. The resulting nine mSNV reports (originating from three 

whole-genome raw data sequences times three DPPs) were combined for all three 

viruses to check the reproducibility of mSNV identification when using different 

combinations of SP and DPP. The experimental design is summarized in figure 1. 

 

Samples 

All samples were obtained from outbreaks in commercial poultry holdings. Isolate 

A/duck/England/36254/2014 was obtained from pooled intestinal material from index 

case ducks (Anas platyrhynchos domesticus). Tissue homogenate material was 

http://www.insdc.org/
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inoculated into embryonated chicken eggs and allantoic fluid was harvested at 1 day 

post-inoculation [14]. The Dutch isolate (A/chicken/Netherlands/EMC-3/2014) was 

obtained by passaging lung material of a dead commercial layer hen (Gallus gallus 

domesticus) in MDCK cells twice and harvesting the supernatant after approximately 

40 hours post-inoculation [23]. The German isolate (A/turkey/Germany/AR2485/2014) 

originated from lung tissue of a commercially kept turkey (Meleagris gallopavo) and 

was passaged in embryonated chicken eggs [15]. (Table 1).  

 

Table 1. Sample characteristics and accession details 

  UKDD DETU NLCH 

Virus strain A/duck/England/36254/2014 
A/turkey/Germany/AR2485-

L01478/2014 A/chicken/Netherlands/EMC-3/2014 
Isolation 
source Pooled intestines Lung tissue Lung tissue 
Host Scientific 
Name Anas platyrhynchos Meleagris gallopavo Gallus gallus domesticus 
Host Common 
Name Domestic duck Turkey Chicken 
Collection 
Date 14 November 2014 04 November 2014 23 November 2014 
Collection 
Country United Kingdom Germany Netherlands 
Collection 
Region East Yorkshire Mecklenburg-Western Pomerania Ter Aar 
Influenza Test 
Method MP gene RRT-PCR, H5 RRT-PCR MP gene RRT-PCR, H5 RRT-PCR MP gene RRT-PCR, H5 RRT-PCR 
Culture Status 
Sample Egg passage 1 Egg passage 1 MDCK passage 2 

                          

  

Insti 
tu 

tion I 

Insti 
tu 

tion II Institution III 

Insti 
tu 

tion I 

Insti 
tu 

tion II Institution III 

Insti 
tu 

tion I 

Insti 
tu 

tion II Institution III 

Study 
Accession* 

PRJE
B984

6 
PRJEB
12582 PRJEB9687 

PRJE
B984

6 
PRJEB
12582 PRJEB9687 

PRJE
B984

6 
PRJEB
12582 PRJEB9687 

Run 
Accession* 

ERR9
72805 

ERR12
93054 

ERR
9267

12 

ERR
9267

13 

ERR1
35402

0 
ERR12
93053 

ERR
9267

14 

ERR
9267

15 

ERR1
35402

1 
ERR12
93055 

ERR
9267

17 

ERR
9267

18 
DPP1 *.bam 
file run 
accession* 

ERR3
0937
46 

ERR3
09375
2 ERR9033756 

ERR3
0937
44 

ERR3
09375
3 ERR3093757 

ERR3
0937
45 

ERR3
09375
4 ERR3093758 

DPP2 *.bam 
file run 
accession* 

ERR2
9926

76 

ERR2
99267

7 ERR2992675 

ERR2
9926

79 

ERR2
99268

0 ERR2992678 

ERR2
9926

82 

ERR2
99268

3 ERR2992681 
DPP3 *.bam 
file run 
accession* 

ERR2
9858

03 

ERR2
98580

4 
ERR2985802 

ERR2
9858

06 

ERR2
98580

7 
ERR2985805 

ERR2
9858

09 

ERR2
98581

0 
ERR2985808 

Experiment 
Accession 
100k* 

ERX31
5615 

ERX2
9868

48 NA NA 
ERX31
5616 

ERX2
9868

47 NA NA 
ERX31
5617 

ERX2
9868

49 NA NA 

Run Accession 
100k * 

ERR3
0907
88 

ERR2
98427

6 NA NA 

ERR3
0907
89 

ERR2
98427

5 NA NA 

ERR3
0907
90 

ERR2
98427

7 NA NA 

 * Using the Study Accession numbers in the European Nucleotide Archive all related data files can be 
accessed, or accessed directly from https://www.ebi.ac.uk/ena/data/view/accession, e.g.: 
https://www.ebi.ac.uk/ena/data/view/PRJEB9846 (Study Accession Institution I), 
https://www.ebi.ac.uk/ena/data/view/ERR972805 (Run Accession UKDD Institution I). 
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Sequencing 

Institution I: SP1 

RNA was extracted using a Qiagen QIAamp viral RNA mini kit (Qiagen, Germany) 

according to the manufacturers’ instructions except that carrier RNA was omitted 

from the AVL lysis buffer and the sample was eluted in 50µl RNAse-free water. RNA 

was then processed to double-stranded cDNA (cDNA Synthesis System, Roche) using 

random hexamers and purified using magnetic beads (AmpureXP, Beckman Coulter, 

USA). The double-stranded cDNA was diluted to 0.2 ng/µl and used to produce a 

sequencing library using the NexteraXT kit (Illumina, USA). Libraries were then 

sequenced in paired-end mode on an Illumina MiSeq (Illumina, USA), with run 

lengths varying from 2 x 75 bases (UKDD virus) to 2 x 150 bases (NLCH and DETU 

viruses) depending on whether time-constraints were implemented to provide a 

rapid response to an outbreak. Demultiplexing and removal of sequencing adapters 

was done by the MiSeq RTA software to generate raw fastq files. SP1 process 

included a limited 12-cycle PCR enrichment of the library.  Post-hoc analysis showed 

that duplication levels were less than 0.02% of the total reads which were considered 

to have negligible impact on the results. 

 

 

 

Figure 1. Flowchart of the experimental design. SP: sequence platform; DPP: data processing pipeline 

 

Institution II: SP2 

RNA was extracted using a combined approach with TRIzol (Thermo Fisher Scientific, 

USA) and an RNeasy Kit (Qiagen, Germany). Further concentration and cleaning was 

done with Agencourt RNAClean XP magnetic beads (Beckman Coulter, USA). RNA 
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was quantified using a Nanodrop UV spectrometer ND-1000 (Peqlab, Germany) and 

used as template for cDNA synthesis with a cDNA Synthesis System (Roche, 

Germany) with random hexamers. Fragmentation of the cDNA applying a target size 

of 300 bp was done with a Covaris M220 ultrasonicator. The sonicated cDNA was 

used for library preparation using Illumina indices (Illumina, USA) on a SPRI-TE library 

system (Beckman Coulter, USA) using a SPRIworks Fragment Library Cartridge II (for 

Roche FLX DNA sequencer; Beckman Coulter, USA) without automatic size selection. 

Subsequently, upper and lower size exclusion of the library was done with Ampure 

XP magnetic beads (Beckman Coulter, USA). The libraries were quality checked using 

High Sensitivity DNA Chips and reagents on a Bioanalyzer 2100 (Agilent Technologies, 

Germany) and quantified via qPCR with a Kapa Library Quantification Kit (Kapa 

Biosystems, USA) on a Bio-Rad CFX96 Real-Time System (Bio-Rad Laboratories, USA). 

SP2 did not amplify sample nor library. Sequencing was done on an Illumina MiSeq 

using MiSeq reagent kit v3 (Illumina, USA) resulting in paired end sequences with a 

read length of 300. Demultiplexed and adapter-trimmed reads were used to 

generate raw fastq files. 

 

Institution III: SP3 

RNA was extracted using the High Pure RNA isolation kit (Roche Diagnostics, 

Germany) according to manufacturer’s instructions. RNA was converted to cDNA 

using the SuperScript III Reverse Transcriptase kit (Invitrogen, Thermo Fisher, USA) 

as described previously [24], and amplified by PCR using primers covering the full 

viral genome (Supplemental material). All 32 PCR fragments from approximately 

400-600 nucleotides in length, were sequenced using the 454/Roche GS-FLX 

sequencing platform. The PCR fragments were pooled in equimolar ratio and 

purified using the MinElute PCR Purification kit (Qiagen, Germany) according to the 

manufacturer’s instructions. Rapid Library preparation, Emulsion PCR and Next 

Generation 454-sequencing were performed according to instructions of the 

manufacturer (Roche Diagnostics, Germany). Protocols are described in the 

following manuals: Rapid Library Preparation Method Manual (Roche; May 2010), 

emPCR Amplification Method Manual –Lib-L (Roche; May 2010) and Sequencing 

Method Manual (Roche; May 2010). All three samples were sequenced in one run. 

Samples were pooled using MID adaptors to determine which sequences came from 

which sample, each sample was assigned two different MID’s. Demultiplexing and 

basic trimming was done by CLC-bio software to generate raw fastq files (for 

detailed information, see supplemental material). 
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Data processing 

Institution I: DPP1 

In the FluSeqID script (https://github.com/ellisrichardj/FluSeqID) the following steps 

are run automatically: the mapping of raw sequence data to the host genome (BWA 

[25]), extracting reads that do not map to the host (Samtools [26]), assembling non-

host reads (Velvet [27]), identification of the closest match for each genome 

segment (BLAST), mapping original data to the top reference segments (BWA), 

calling new consensus sequences (vcf2consensus.pl), performing further iterations 

of the last two steps to improve new consensus (IterMap), and finally outputting the 

genome consensus sequence. The data processing pipeline has in-build defaults for 

k-mer and coverage cut-off for de novo assembly, and the e-value cut-off for BLAST, 

which can be changed via command line options (see 

https://github.com/ellisrichardj/FluSeqID). For mSNV analysis, the reads were 

mapped to the unified consensus using BWA. Samtools was used to generate a 

pileup file which was then analysed using custom python and R scripts to determine 

the depth of coverage and basecalls at each position (available at 

https://github.com/ellisrichardj/MinorVar). In order to be included in the final output 

the minimum basecall quality was 20 and the minimum mapping quality was 50. 

 

Institution II: DPP2 

Raw sequence data were analysed and mapped using the Genome Sequencer 

software suite (v. 3.0; Roche, Mannheim, Germany) and the Geneious software suite 

(v. 9.0.5; Biomatters, Auckland, New Zealand). Raw reads were trimmed and subsets 

of each trimmed dataset were assembled de novo to generate reference sequences 

for each data set (Newbler Assembler of Genome Sequencer software suite v. 3.0; 

Roche, Mannheim, Germany). The trimmed raw influenza virus reads were mapped 

to the reference sequences (Newbler Mapper of Genome Sequencer software suite 

v. 3.0; Roche, Mannheim, Germany). The output assemblies were imported into the 

Geneious software suite (v. 9.0.5; Biomatters, Auckland, New Zealand) for further 

analysis and processing. Regions of low and high coverage and regions of low quality 

(minimum quality/phred score 20) were evaluated and if necessary, excluded from 

further analyses. Consensus sequences were generated and annotated. Trimmed 

raw reads of the datasets or subsets thereof were mapped to the consensus, 

mapping was fine-tuned and mSNVs were determined using generic SNP finder of 

the Geneious software suite, applying parameters of maximum p-value of 10-5 and 

filter for strand bias. The threshold for SNP identification was set at 1%, and variants 

were checked manually for accuracy. 
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Institution III: DPP3 

Raw sequence data were analysed and mapped using the CLC Genomics software 

package, workbench 8 (CLC Bio). Reads obtained by 454 sequencing were sorted by 

MID adaptor and analysed using the parameters as shown in Supplemental material. 

In short, after sorting by MID, the sequence reads were trimmed at 30 nucleotides 

from the 3′ and 5′ ends to remove all primer sequences. Data from the shared 

Illumina sequence files had already been trimmed and were imported in CLC Bio 

without additional processing steps (see supplemental material for detailed CLC 

settings). Reads were initially aligned to the reference Sanger sequence of the HPAI 

virus A/chicken/Netherlands/EMC-3/2014 (H5N8). For the mSNV analysis the raw data 

were mapped to the custom-made consensus sequence per gene segment per 

sample. The threshold for mSNV identification was set at 1%, and registered minority 

variants were checked manually for accuracy (minimal quality/phred score 20). Those 

fastq files were shared with the other institutions.  

 

Determining the influence of the DPP alignment steps versus DPPs mSNV identification 

methods 

Data processing pipelines process raw data in several steps, roughly divided into 

trimming, aligning data to a reference sequence, and variant calling (the mSNV 

identification procedure). In order to determine to what extent the trimming and 

subsequent alignment processes contributed to the observed differences the 

nucleotide coverage results obtained by the three DPPs when aligning the same SP 

raw datasets were compared. To study the influence of the mSNV identification 

process, quality-trimmed alignment files that had been generated by each DPP and 

shared as *.bam files were subjected to the mSNV identification process used in 

DPP3 to determine the differences in mSNV detection output when only the 

alignment processes differed. DPP3 mSNV detection parameters were set to the 

institutions default settings for mSNV identification using CLC-bio software and can 

be seen in the Supplemental material.  

 

Data sharing 

To test the applicability of real-time sequence data sharing within the COMPARE 

network, all raw sequence data used in this study were uploaded to and shared via a 

“Data Hub” in the environment of the European Nucleotide Archive (ENA). Each 

institution received its own study accession in which all raw sequence data files and 

metadata files were assigned with individual experimental accession numbers (Table 

1). In addition to the sequence data, all trimmed alignment files (*.bam) have been 

uploaded to the ENA. Using these hubs, sharing between institutions was facilitated 
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and immediate access to the data prior to the public release was possible to enable 

joint evaluation and comparison. All data files have been made publicly available via 

the ENA (https://www.ebi.ac.uk/ena). 

 

mSNV analysis comparison 

For the mSNV analyses the custom-made consensus for each virus isolate was used 

as a reference for mapping, thereby standardizing positions within the genome to 

make comparison between institutions easier. To avoid unnecessary increases in 

analytical time and memory, datasets were down-sampled to 100.000 reads per 

sample when needed. Each DPP produced a report on the identified mSNVs in a 

tabulated format. The analysis output files were filtered for mSNVs only, thereby 

ignoring detected nucleotide insertions and deletions (InDels). For the identification 

of mSNVs a minimum coverage threshold was applied. This minimum nucleotide 

coverage (i.e. number of reads per nucleotide after trimming) was determined using 

a basic sample size calculation method, n= log β / log p’. Here β represents the 

required power (e.g. for 95% chance of detecting something β = 0.05), and p’ is 1 - the 

proportion of events that you want to detect. For a 95% certainty of detecting a 

variant at 1%, a minimum coverage of 298 reads per position is needed. For variants 

that occur in ≥5% of reads, the number of reads required is >58, and for variants that 

occur in ≥10% of the reads the minimum coverage is >28. For the mSNV identification 

literature commonly uses the arbitrary mSNV cut-off frequencies of ≥10%, ≥5% and 

≥1%. However, it needs to be noted that these cut-off values are arbitrary. Therefore, 

where depth of coverage was sufficient, this study will report mSNV detected with a 

frequency of ≥1%.  

 

Results 

In order to determine the comparability and repeatability of consensus sequences 

and mSNV identification the biological samples, the sequence data from 3 SPs and 

the *.bam quality-trimmed alignment files of raw data of 3 influenza A/H5N8 viruses 

were shared. All data sets were subsequently analysed in 3 different DPPs. The 

resulting 9 mSNV reports per virus (3 SP data sets each analysed in 3 DPPs) were 

evaluated for comparability and the repeatability of mSNV identification using 

different combinations of SP and DPP. 

 

Data sharing 

Data sharing using the COMPARE “Data Hub” provided by ENA proved to be easy, 

quick and successful. The “Data Hub” enables the File Transport Protocol (FTP) 
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protected upload and download of large data files and facilitates sharing between 

collaborators with the possibility to evaluate and compare all data prior to their 

public release by generating and specifically sharing accession numbers using 

standard ENA procedures. The Data Hub used an influenza virus sample checklist. In 

addition, data sets are ultimately made publicly and through the INSDC network 

globally available and accessible in real-time as required without further upload to a 

different repository. Full details of the COMPARE Data Hub system are available in a 

submitted manuscript [22]. In summary, this process was suitable for quick data 

sharing in an outbreak scenario. 

 

Designing custom-made consensus sequences 

Each institution produced a consensus sequence for the 8 influenza gene segments 

(PB2, PB1, PA, HA, NP, NA, MP, NS) for each of the three viruses. The obtained 

consensus sequences were aligned using the BioEdit sequence alignment editor 

(version 7.2.0) [28]. For each of the 8 gene segments of the 3 viruses separately, 9 

initial consensus sequences (3 SPs x 3 DPPs) were generated, resulting in 72 

consensus sequences per virus. The custom-made consensus sequence per virus and 

per gene segment was 1) trimmed to a length represented by all 9 initial consensus 

sequences and 2) nucleotides had to be identical to at least 6/9 consensus sequences 

to be included. This resulted in a unique custom-made consensus for each gene 

segment for all three viruses. 

 

Consensus sequences 

When ignoring insertions and deletions in the homopolymer regions of the 454 data 

for most gene segments the identified consensus sequences did not differ between 

the different SP and DPP combinations used (Table 2). However, the number of 

insertions and deletions in homopolymer regions of the SP3 sequences were 

considerable in all 3 viruses. There was no clear difference in the number of 

insertions and deletions related to homopolymer regions between the different 

DPPs (20, 17 and 18 for DPP 1, 2 and 3 respectively). Nucleotide differences that were 

not related to homopolymer regions were only observed for sequences obtained in 

SP3 and SP2 data when processed in DPP1.  

In summary, the homopolymer errors inherent in the 454 dataset caused problems 

for all DPPs, as expected. Consensus sequences generated by DPP1 from SP3 (454) 

data showed some unexpected differences, but it performed well with the SP1 data 

formats it was designed for and reasonably well with SP2 data. Overall, the 

consensus sequences can be reproduced by all DPPs using Illumina data but that the 

analysis of the 454 data from SP3 was more problematic, as it would require editing 
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of the sequences at homopolymer regions. Consensus sequences from this study can 

be found in the supplemental material. 

 

Table 2. The differences in consensus sequences obtained from each SP/DPP combination, sorted per 
virus and per gene segment. 

Virus Segment Start* End 
Number of InDels at 
homoplymer regions** 

Other nucleotide 
differences*** 

NLCH 

PB2 1 2280 
2 (DPP1) C506A (SP3) 

2 (DPP3) G2101R (SP3) 

PB1 1 2277 

1 (DPP1/DPP2/DPP3)   

1 (DPP1/DPP2) A949W (SP3) 

1 (DPP2/DPP3) 2272 ins AAG (SP2) 

1 (DPP3)    

PA -6# 2190 
1 (DPP1/DPP2) 

ND 
2 (DPP1) 

HA 7 1704 1 (DPP2/DPP3) A427W (SP2) 

NP 1 1497 1 (DPP1) C420Y (SP3) 

NA 4 1419 ND ND 

MP -5# 982 ND ND 

NS 1 838 ND ND 

DETU 

PB2 1 2287 
1 (DPP1/DPP2/DPP3) 

2272 Del A (SP3) 
3 (DPP1) 

PB1 1 2277 

1 (DPP1/DPP2/DPP3) 

T956C (SP3) 
1 (DPP1) 

1 (DPP2) 

1 (DPP3) 

PA 7 2189 1 (DPP1/DPP2) ND 

HA 1 1728 1 (DPP2/DPP3) ND 

NP 1 1497 2 (DPP3) ND 

NA 1 1413 1 (DPP1) 778 ins CCA (SP3) 

MP -1# 982 1 (DPP2) ND 

NS 2 838 ND ND 

UKDD PB2 1 2298 
1 (DPP1/DPP2/DPP3) C504T (SP3) 

1 (DPP3) C506M (SP3) 
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PB1 1 2277 
1 (DPP1/DPP2/DPP3) 

T951W (SP3) 
1 (DPP2/DPP3) 

PA 1 2151 
2 (DPP1) 

ND 
1 (DPP2) 

HA 1 1704 1 (DPP2/DPP3) ND 

NP 1 1497 1 (DPP3) T1003Y (SP2) 

NA 4 1420 ND 782 del TA (SP3) 

MP -5# 982 1 (DPP2) ND 

NS -5# 849 ND ND 

The letter in brackets represents the DPP (column 5) or the SP (column 6) where the 
insertions/deletions or mutations were detected. InDel: insertions or deletion; SP: Sequence 
platform; DPP: Data processing pipeline; ND: not detected. * Start is counted from the ATG start 
codon; ** Exclusively identified in SP3 sequence data, InDels related to homopolymer regions; *** 
Exclusively identified in DPP1; # '-' indicates the number of nucleotides before the ATG start codon 
included in the consensus 

 

mSNV analysis comparison 

Nucleotide coverage and the influence of DPP-dependent alignment 

The observed nucleotide coverages showed near to identical profiles for all three 

viruses. The coverage results obtained from the three different SPs and DPPs for the 

NLCH virus (Fig 2) and for the other two viruses (S1 Figure) were plotted. In general, 

lower nucleotide coverage was observed at the termini of each gene segment. The 

SP3 data showed more variation in nucleotide coverage within gene segments 

compared to SP1 and SP2 data, due to the sequencing of 32 PCR amplicons. The non-

normalised number of raw sequence reads and influenza virus reads per virus per SP 

can be found in the S3 Table.  

The differences in nucleotide coverage were visualized for the three different SP raw 

datasets analysed with the same DPP (Figure 2A). Overall, SP3 data (green lines) 

showed a lower coverage compared to SP1 (purple) and SP2 data (yellow). The 

overall coverage for SP1 and SP2 data was similar with small variations for different 

viruses and DPPs. The shorter read lengths in SP1 virus data did not appear to have 

influenced the overall nucleotide coverage substantially.  

The differences in nucleotide coverage introduced by different alignment 

procedures were also assessed, by comparing the coverage results for each SP raw 

dataset analysed with the three different DPPs (Figure 2B). DPP2 (orange lines) 

generally retained the highest nucleotide coverage for data from the different SPs. 

However, DPP3 (grey lines) generally also retained high coverage for SP3 data, for 
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which it was optimized. The nucleotide coverage of SP3 data showed larger variation 

between the three different DPPs, leading to differences in nucleotide coverage up 

to 50% depending on the DPP, because DPP1 and DPP2 were not optimized for this 

SP. Data from SP2 were handled very similar by all three DPPs.  

In conclusion, both the SP and the DPP influenced the number of reads per 

nucleotide position. SP3 showed the lowest output in number of reads compared to 

SP1 and SP2 Illumina data. The influence of the DPP depended highly on the data 

input, with best DPP performance for the SP dataset for which it was optimized. 

 

The mSNV identification 

The mSNV identification thresholds were set to ≥1% in all DPPs. Because of the high 

number of mSNVs identified, the comparison of these mSNVs started with a 

manually set arbitrary threshold of ≥10% that was subsequently decreased to ≥5%, 

and ≥1%. A mSNV position was identified when at least 1 of the SP/DPP combinations 

showed a variant that exceeded the frequency threshold, and when the coverage at 

that position exceeded the minimum number of reads needed to detect that variant 

with a 95% probability, as described previously. The presence of mSNV and coverage 

for all SP/DPP combinations were compared for each of the positions in which a 

mSNV had been detected in at least one of the combinations. The coverages 

indicated for those positions where no mSNVs were detected were derived from the 

alignment files and were not subjected to possible additional read filtering 

parameters in the mSNV identification process. The average quality (Q-score/phred 

score) was set to or exceeding 20. 

Ten positions across the three virus genomes were identified with mSNVs occurring 

in ≥10% of reads. Three of the mSNVs (NLCH:PB2 G1879A , NLCH:PB2 G2101A and 

DETU:HA T963C) were detected in all SP/DPP combinations but with slightly different 

relative abundance. The other mSNVs were identified in only one (n=6) or two (n=1) 

of the SP/DPP combinations (Table 3).  
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Fig 2: Nucleotide coverage. The non-normalised nucleotide coverage displayed as number of 
nucleotides per position for full genome sequences of the NLCH virus reads mapped to the NLCH 
reference sequences. Panel A shows the coverage results for the same SP dataset in the three 
different DPPs (DPP1: purple; DPP2: orange; DPP3 grey) for each of the SP datasets. Panel B shows 
the coverage when the same DPP is used to analyse data from the three different SPs (SP1: lilac; SP2: 
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yellow; SP3: green) for each of the DPPs. The X-axis represents the position in the genome, the Y-axis 
represents the number of sequence reads per position. 

 

 

Table 3. The minority variants occurring in at least one of the sequence platform - data processing 
pipelines as a ≥5% variant.  
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Data processing pipeline 
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Percen 
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Minor 
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Percen 
tage 

Minor 
variants 

Percen 
tage 

N
LC

H
 

P
B

2.
18

79
 

G
→

A
 

1 81/1301 6,20% 246/2716 9,10% 112/1203 9,30% 

2 47/956 4,90% 117/1137  10,30% 114/1064 10,70% 

3 49/530 9,20% 131/1341 9,80% 129/1338 9,60% 

P
B

2.
21

0
1 

G
→

A
 

1 53/1118 4,70% 261/2704 9,70% 110/897 12,30% 

2 21/1578 1,30% 125/1875 6,70% 121/1463 8,30% 

3 13/542 2,40% 199/1433 13,90% 199/1435 13,90% 

P
B

2.
22

77
 

T
→

G
 

1 ND/479 <1% 86/1008 8,50% 33/190 17,40% 

2 ND/557 <1% ND/623 <1% ND/534 <1% 

3 ND/680 <1% ND/1117 <1% ND/1024 <1% 

P
B

1.
8

7 
 

A
→

G
 

1 ND/818 <1% ND/1754 <1% ND/1114 <1% 

2 25/230 10,90% ND/376 <1% ND/328 <1% 

3 ND/275 <1% ND/537 <1% ND/537 <1% 

P
B

1.
22

4
0

 

G
→

C
 

1 ND/664 <1% 54/1341 4,00% 38/418 9,10% 

2 ND/1231 <1% ND/1271 <1% ND/1233 <1% 

3 ND/161 <1% ND/277 <1% ND/276 <1% 

P
B

1.
22

6
8

 

A
→

G
 

1 ND/336 <1% 29/641 4,50% 11/176 6,30% 

2 ND/993 <1% ND/1026 <1% ND/1002 <1% 

3 ND/53 <1% ND/159 <1% ND/148 <1% 

H
A

.1
0

4
 

A
→

G
 

1 ND/733 <1% ND/1761 <1% ND/1151 <1% 

2 ND/437 <1% ND/1370 <1% ND/1156 <1% 

3 ND/1 <1% ND/105 <1% 12/105 11,40% 

H
A

.1
6

8
9

 

T
→

C
 

1 ND/390 <1% ND/694 <1% 11/217 5,10% 

2 ND/2018 <1% ND/4083 <1% ND/3979 <1% 

3 ND/937 <1% ND/1669 <1% ND/1680 <1% 
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V
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Data processing pipeline 

1 2 3 

Minor 
variants 

Percen 
tage 

Minor 
variants 

Percen 
tage 

Minor 
variants 

Percen 
tage 

N
P

.1
0

5 
 

A
→

G
 

1 ND/182 <1% ND/449 <1% ND/343 <1% 

2 83/1507 5,50% ND/1890 <1% ND/1804 <1% 

3 ND/89 <1% ND/704 <1% ND/702 <1% 

N
P

.1
23

9
 

A
→

T
 

1 32/2428 1,30% 279/5410 5,20% ND/3092 <1% 

2 ND/2345 <1% ND/2643 <1% ND/2453 <1% 

3 ND/1711 <1% ND/2111 <1% ND/2117 <1% 

N
P

.1
4

8
9

 

G
→

A
 

1 ND/182 <1% 26/336 7,70% ND/172 <1% 

2 ND/436 <1% ND/452 <1% ND/444 <1% 

3 ND/1320 <1% ND/1799 <1% ND/1799 <1% 

N
S

.8
33

 

A
→

T
 

1 ND/187 <1% ND/287 <1% 5/88 5,70% 

2 ND/1224 <1% ND/1327 <1% ND/1284 <1% 

3 ND/1367 <1% ND/2430 <1% ND/2333 <1% 

D
E

T
U

 

P
B

2.
10

54
 

T
→

C
 

1 69/1369 5,00% 168/2637 6,40% 97/1304 7,40% 

2 60/1477 4,10% 115/1836 6,30% 99/1605 6,20% 

3 6/392 1,50% 94/2038 4,60% 48/1054 4,60% 

P
B

2.
22

57
  

A
→

C
 

1 ND/867 <1% ND/1563 <1% 24/463 5,20% 

2 ND/531 <1% ND/581 <1% ND/378 <1% 

3 ND/893 <1% ND/2286 <1% ND/1346 <1% 

P
B

2.
22

77
 

T
→

G
 

1 ND/644 <1% 52/1150 4,50% 27/307 8,80% 

2 ND/418 <1% ND/472 <1% ND/284 <1% 

3 ND/1208 <1% ND/1948 <1% ND/1209 <1% 

P
B

1.
14

  

C
→

T
 

1 ND/144 <1% 48/433 11,10% ND/239 <1% 

2 ND/90 <1% ND/355 <1% ND/304 <1% 

3 ND/562 <1% ND/792 <1% ND/496 <1% 

P
B

1.
23

  

T
→

G
 

1 ND/207 <1% 30/535 5,60% ND/315 <1% 

2 ND/103 <1% ND/365 <1% ND/319 <1% 

3 ND/699 <1% ND/950 <1% ND/609 <1% 

P
B

1.
8

7 

A
→

G
 

1 ND/744 <1% ND/1644 <1% ND/1076 <1% 

2 49/365 13,40% ND/677 <1% ND/576 <1% 

3 ND/721 <1% ND/1156 <1% ND/793 <1% 
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Data processing pipeline 

1 2 3 

Minor 
variants 

Percen 
tage 

Minor 
variants 

Percen 
tage 

Minor 
variants 

Percen 
tage 

P
B

1.
22

4
0

 

G
→

C
 

1 ND/757 <1% 23/1517 1,50% 26/515 5,00% 

2 ND/944 <1% ND/985 <1% ND/806 <1% 

3 ND/274 <1% ND/439 <1% ND/253 <1% 

P
B

1.
22

6
8

 

A
→

G
 

1 5/470 1,10% 33/928 3,60% 22/278 7,90% 

2 ND/798 <1% ND/829 <1% ND/671 <1% 

3 ND/109 <1% ND/259 <1% ND/123 <1% 

P
B

1.
22

71
 

A
→

G
 

1 12/446 2,70% 59/901 6,50% 16/263 6,10% 

2 ND/729 <1% 47/810 5,80% 40/649 6,20% 

3 1/32 3,10% ND/123 <1% 2/83 2,40% 

H
A

.8
6

7 

C
→

T
 

1 59/1533 3,80% 206/3183 6,50% 104/1537 6,80% 

2 59/2031 2,90% 150/2525 5,90% 127/2253 5,60% 

3 11/180 6,10% 48/647 7,40% 28/385 7,30% 

H
A

.9
6

3 

T
→

C
 

1 122/1401 8,70% 446/3071 14,50% 189/1419 13,30% 

2 90/1517 5,90% 318/2189 14,50% 247/1828 13,50% 

3 5/1969 7,20% 107/606 17,70% 47/293 16,00% 

N
P

.1
4

9
1 

C
→

A
 

1 ND/278 <1% 71/583 12,20% ND/206 <1% 

2 ND/723 <1% ND/769 <1% ND/692 <1% 

3 ND/799 <1% ND/2031 <1% ND/1206 <1% 

N
A

.6
5 

 

T
→

C
 

1 19/503 3,80% 52/1229 4,20% 16/467 3,40% 

2 20/662 3,00% 50/1104 4,50% 45/992 4,50% 

3 24/557 4,30% 53/1099 4,80% 37/727 5,10% 

N
A

.7
8

  

T
→

C
 

1 23/599 3,80% 57/1403 4,10% 20/557 3,60% 

2 21/692 3,00% 55/1147 4,80% 50/1033 4,80% 

3 23/580 4,00% 51/1124 4,50% 37/735 5,00% 

N
A

.8
9

  

T
→

C
 

1 23/713 3,20% 55/1670 3,30% 22/651 3,40% 

2 23/798 2,90% 56/1261 4,40% 50/1134 4,40% 

3 24/580 4,10% 55/1196 4,60% 40/775 5,20% 

N
A

.1
17

 T
→

C
 1 37/908 4,10% 87/2140 4,10% 36/818 4,40% 

2 28/1102 2,50% 67/1631 4,10% ND/1459 <1% 

3 22/531 4,10% 57/1276 4,50% 42/812 5,20% 
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Data processing pipeline 

1 2 3 

Minor 
variants 

Percen 
tage 

Minor 
variants 

Percen 
tage 

Minor 
variants 

Percen 
tage 

N
A

.1
26

  

T
→

C
 

1 37/983 3,80% 83/2294 3,60% 36/876 4,10% 

2 31/1126 2,80% 72/1676 4,30% 65/1502 4,30% 

3 26/519 5,00% 62/1395 4,40% 43/812 5,30% 

U
K

D
D

 

P
B

2.
22

77
 

T
→

G
 

1 ND/415 <1% 28/507 5,50% ND/475 <1% 

2 ND/589 <1% ND/620 <1% ND/601 <1% 

3 ND/1140 <1% ND/1996 <1% ND/2065 <1% 

P
B

1.
8

7 
 

A
→

G
 

1 ND/387 <1% ND/440 <1% ND/439 <1% 

2 26/327 8,00% 32/395 8,10% ND/351 <1% 

3 ND/617 <1% ND/1133 <1% ND/1136 <1% 

P
B

1.
72

8
 

C
→

A
 

1 ND/750 <1% ND/832 <1% ND/836 <1% 

2 ND/776 <1% 52/928 5,60% ND/829 <1% 

3 ND/2459 <1% ND/4290 <1% ND/4293 <1% 

P
B

1.
73

0
 

C
→

T
 

1 ND/742 <1% ND/824 <1% ND/826 <1% 

2 ND/767 <1% 57/1008 5,70% ND/832 <1% 

3 ND/2339 <1% ND//4286 <1% ND/4289 <1% 

P
B

1.
8

8
3 

G
→

C
 

1 ND/942 <1% ND/997 <1% ND/997 <1% 

2 ND/1689 <1% ND/1865 <1% ND/1760 <1% 

3 ND/2479 <1% 47/690 6,80% ND/3681 <1% 

P
A

.4
9

  

G
→

C
 

1 ND/103 <1% 6/117 5,10% ND/115 <1% 

2 ND/337 <1% ND/435 <1% ND/392 <1% 

3 ND/111 <1% ND/207 <1% ND/204 <1% 

P
A

.8
2 

 

C
→

T
 

1 ND/155 <1% ND/180 <1% ND/177 <1% 

2 ND/695 <1% ND/809 <1% ND/745 <1% 

3 ND/64 <1% ND/247 <1% 30/248 12,10% 

N
S

.8
11

  

G
→

T
 

1 ND/221 <1% 17/270 6,30% ND/249 <1% 

2 ND/2452 <1% ND/2725 <1% ND/2557 <1% 

3 ND/3117 <1% ND/4125 <1% ND/4139 <1% 

Colours display the variant frequency with ≥10% (black), 5-10% (dark grey) and <5% (light grey). ND: 
not detected 
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Thirty-seven positions were identified with mSNVs occurring in ≥5% of reads. Of 

those, the same mSNV was identified in all SP/DPP combinations for 9 positions 

(24,3%), in seven or eight of the SP/DPP combinations for 2 positions (5,4%) and in at 

least two SP/DPP combinations for 19 positions (51.4%), although not always in a 

frequency of ≥5%. However, for 18 positions (48.6%) the mSNV was not reproduced 

at a ≥1% frequency in any of the other SP/DPP combinations (Table 3). Focussing on 

the separate SP data analysed in the 3 DPPs, most of the identified positions with 

≥5% mSNVs in at least 1 SP/DPP combination were identified in SP1 data (47%) 

followed by SP2 (29%) and SP3 (24%) data.  

Looking at the ≥5% mSNV reproducibility per SP dataset in all three DPPs within these 

thirty-seven positions, forty-eight SP datasets showed a ≥5% mSNV in at least one of 

the DPP outputs. Additionally, for eleven positions, all in the DETU virus, the variant 

was reproduced by all DPPs, however at a <5% frequency (for instance SP3 data at 

PB2.1054, and SP1 and SP2 data at NA.65) In 53% (31/59) of cases the same mSNVs 

from 1 SP dataset was reproduced in all three DPP’s in at least a ≥1% frequency, in 31% 

(18/59) of cases the variant was only detected in 1 DPP even though coverage in the 

other DPPs was theoretically high enough to detect variants at a 1% level.  

Lowering the threshold value to a mSNV frequency of ≥1% resulted in a large increase 

in the number of positions identified with mSNVs. To investigate the reproducibility 

of these mSNVs, the data for all 3 viruses was combined per SP in the three DPPs 

(influence of DPP), and per DPP analysing data from the three SPs (influence of SP) 

(Figure 3). The reproducibility of ≥1% variants using one SP dataset in all three DPPs 

was 10.3%, 8.9% and 23.3% for SP1, SP2 and SP3 sequences, respectively. The 

reproducibility of ≥1% variants using raw data of a virus sequenced in three different 

SPs was 15.1%, 6.5% and 15.1% for DPP1, DPP2 and DPP3 respectively. Most ≥1% variants 

were not reproduced by any of the other DPPs processing the same SP data (~75%) 

for SP1 and SP2 data. This was less for SP3 data but this might be due to the fact that 

many positions identified in SP3 data did not meet the minimum coverage criteria 

and were therefore discarded.  

For brevity, the detailed results for the HA gene segment of the DETU virus are 

shown in Table 4. This virus segment was chosen because it showed the best 

reproducibility of results for ≥5% minority variants in all SP/DPP combinations. In the 

DETU HA segment, 33 positions containing a mSNV occurring in ≥1% of reads with 

sufficient coverage (≥298 reads) were identified. Only 3 of these positions (9%) were 

identified in all SP/DPP combinations. The majority of the positions (25/33, 76%) were 

only identified in one of the nine SP/DPP combinations. However, it needs to be 

noted that the SP3 data coverage was insufficient in all three DPPs to detect ≥1% 

variants for 11 of those positions (Table 4). 
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Figure 3. The reproducibility of ≥1% variants with sufficient coverage for all sequence data combined. 
Each figure shows the number of ≥1% variants detected per sequence platform (SP, top row) and 
data processing pipeline (DPP, bottom row) for SP1/DPP1 (left column), SP2/DPP2 (middle column), 
and SP3/DPP3 (right column). The colours represent the different DPPs and SPs respectively, in 
which the >1% variants were detected: SP1/DPP1 (purple), SP2/DPP2 (yellow) and SP3/DPP3 (green). 
Positions with ≥1% variants that were identified in more than one of the SPs or DPPs respectively are 
displayed in the overlapping coloured areas, the centre part representing the number of ≥1% variants 
that were detected with all three DPPs (top row) or SPs (bottom row). The total number of positions 
with ≥1% variants detected was 271in SP1, 236 in SP2, 73 in SP3, and 86 in DPP1, 429 in SP2, 152 in SP3. 
This figure was produced using Venny 2.1. 

 

Table 4. The minority variants occurring in at least one of the sequence platform - data processing 
pipelines as a ≥1% variant in the HA segment of the DETU sample with a minimum coverage of 298 
reads at that position.  

Position 
Sequence 
platform 

Data processing pipeline 

1 2 3 

Minor 
variants 

Percentage 
Minor 

variants 
Percentage 

Minor 
variants 

Percentage 

H
A

.1
70

  

T
→

A
 

1 ND/935 <1% ND/2191 <1% ND/1348 <1% 

2 ND/300 <1% 11/693 1,59% ND/551 <1% 

3 ND/82 <1% ND/245 <1% ND/210 <1% 
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Position 
Sequence 
platform 

Data processing pipeline 

1 2 3 

Minor 
variants 

Percentage 
Minor 

variants 
Percentage 

Minor 
variants 

Percentage 

H
A

.1
70

  

T
→

C
 

1 ND/935 <1% ND/2191 <1% ND/1348 <1% 

2 ND/300 <1% 18/693 2,60% ND/551 <1% 

3 ND/82 <1% ND/245 <1% ND/210 <1% 

H
A

.1
71

  

C
→

A
 

1 ND/931 <1% ND/2184 <1% ND/1339 <1% 

2 ND/323 <1% 12/698 1,72% ND/558 <1% 

3 ND/82 <1% ND/245 <1% ND/210 <1% 

H
A

.1
9

4
 

C
→

A
 

1 ND/991 <1% ND/2397 <1% ND/1455 <1% 

2 ND/353 <1% 22/701 3,14% ND/553 <1% 

3 ND/58 <1% ND/250 <1% ND/212 <1% 

H
A

.1
9

5 
 

C
→

A
 

1 ND/995 <1% ND/2390 <1% ND/1464 <1% 

2 ND/356 <1% 20/701 2,85% ND/553 <1% 

3 ND/55 <1% ND/250 <1% ND/212 <1% 

H
A

.2
6

8
 

C
→

T
 

1 ND/1140 <1% ND/2580 <1% ND/1626 <1% 

2 ND/1293 <1% 25/1563 1,60% ND/1338 <1% 

3 ND/88 <1% ND/252 <1% ND/212 <1% 

H
A

.2
72

 

A
→

T
 

1 ND/1156 <1% ND/2593 <1% ND/1639 <1% 

2 17/1424 1,19% 20/1563 1,28% ND/1404 <1% 

3 ND/81 <1% ND/253 <1% ND/213 <1% 

H
A

.4
0

7 

G
→

T
 

1 ND/1144 <1% ND/2364 <1% ND/1553 <1% 

2 ND/1773 <1% 31/2121 1,46% ND/1855 <1% 

3 ND/74 <1% ND/237 <1% ND/212 <1% 

H
A

.4
0

7 

G
→

A
 

1 ND/1144 <1% 27/2364 1,14% ND/1553 <1% 

2 ND/1773 <1% ND/2121 <1% ND/1856 <1% 

3 ND/74 <1% ND/237 <1% ND/212 <1% 

H
A

.4
18

 

A
→

G
 

1 ND/1111 <1% ND/2319 <1% ND/1492 <1% 

2 29/2195 1,32% 38/2513 1,51% ND/2197 <1% 

3 ND/69 <1% ND/237 <1% ND/212 <1% 

H
A

.4
53

 

T
→

G
 

1 ND/1339 <1% 29/2736 1,06% ND/1811 <1% 

2 ND/2342 <1% ND/2695 <1% ND/2384 <1% 

3 ND/91 <1% ND/193 <1% ND/179 <1% 
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Position 
Sequence 
platform 

Data processing pipeline 

1 2 3 

Minor 
variants 

Percentage 
Minor 

variants 
Percentage 

Minor 
variants 

Percentage 

H
A

.5
6

0
 

A
→

G
 

1 43/1587 2,71% 113/3385 3,34% 55/1517 3,63% 

2 56/2397 2,34% 145/2912 4,98% 113/2495 4,53% 

3 21/884 2,38% 72/1754 4,10% 43/1245 3,45% 

H
A

.7
15

  

C
→

T
 

1 ND/1663 <1% 62/3832 1,62% 24/1582 1,52% 

2 26/2283 1,14% 55/2722 2,02% 50/2420 2,07% 

3 ND/531 <1% 20/1883 1,06% 15/1245 1,20% 

H
A

.8
6

7 

C
→

T
 

1 59/1533 3,85% 206/3183 6,47% 104/1537 6,77% 

2 59/2031 2,90% 150/2525 5,94% 127/2253 5,64% 

3 11/180 6,11% 48/647 7,42% 28/385 7,27% 

H
A

.9
6

3 

T
→

C
 

1 122/1401 8,71% 446/3071 14,52% 189/1419 13,32% 

2 90/1517 5,93% 318/2189 14,53% 247/1828 13,51% 

3 5/69 7,25% 107/606 17,66% 47/293 16,04% 

H
A

.1
0

0
0

 

A
→

C
 

1 ND/1409 <1% 48/2962 1,62% ND/1873 <1% 

2 ND/1629 <1% ND/1919 <1% ND/1645 <1% 

3 ND/84 <1% ND/614 <1% ND/293 <1% 

H
A

.1
17

7 

G
→

A
 

1 ND/1222 <1% ND/2224 <1% ND/1597 <1% 

2 ND/1652 <1% 34/1901 1,79% ND/1724 <1% 

3 ND/289 <1% ND/549 <1% ND/270 <1% 

H
A

.1
18

3 

A
→

G
 

1 ND/1210 <1% ND/2226 <1% ND/1589 <1% 

2 ND/1770 <1% ND/1892 <1% ND/1723 <1% 

3 ND/280 <1% 6/547 1,10% ND/268 <1% 

H
A

.1
19

9
 

T
→

G
 

1 ND/1182 <1% ND/2124 <1% ND/1518 <1% 

2 ND/1615 <1% 27/1899 1,42% ND/1732 <1% 

3 ND/296 <1% ND/545 <1% ND/266 <1% 

H
A

.1
26

3 

A
→

G
 

1 16/963 1,66% 57/1841 3,10% 26/954 2,73% 

2 26/1924 1,35% 56/2207 2,54% 41/1967 2,08% 

3 ND/1161 <1% 63/2226 2,83% 33/1350 2,44% 

H
A

.1
4

30
 

A
→

G
 

1 ND/1311 <1% ND/2870 <1% ND/1827 <1% 

2 ND/1498 <1% 36/1924 1,87% ND/1659 <1% 

3 ND/955 <1% ND/2391 <1% ND/1452 <1% 
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Position 
Sequence 
platform 

Data processing pipeline 

1 2 3 

Minor 
variants 

Percentage 
Minor 

variants 
Percentage 

Minor 
variants 

Percentage 

H
A

.1
4

55
 

C
→

T
 

1 ND/1333 <1% ND/2753 <1% 14/1233 1,14% 

2 ND/1846 <1% ND/2242 <1% ND/1895 <1% 

3 ND/1093 <1% ND/2373 <1% ND/1449 <1% 

H
A

.1
54

3 

A
→

G
 

1 25/1209 2,07% 94/2757 3,41% 37/1142 3,24% 

2 ND/1660 <1% 56/1857 3,02% 41/1585 2,59% 

3 ND/1182 <1% ND/3324 <1% ND/1972 <1% 

H
A

.1
6

24
 

C
→

A
 

1 ND/998 <1% ND/2174 <1% ND/1478 <1% 

2 ND/1173 <1% 25/1291 1,94% ND/1120 <1% 

3 ND/2218 <1% ND/3654 <1% ND/2244 <1% 

H
A

.1
6

34
 

C
→

A
 

1 ND/930 <1% ND/2032 <1% ND/1388 <1% 

2 ND/1091 <1% 16/1218 1,31% ND/1048 <1% 

3 ND/2616 <1% ND/3704 <1% ND/2269 <1% 

H
A

.1
6

38
 

C
→

A
 

1 ND/932 <1% ND/1991 <1% ND/1368 <1% 

2 ND/1083 <1% 15/1180 1,27% ND/1010 <1% 

3 ND/2600 <1% ND/3709 <1% ND/2276 <1% 

H
A

.1
6

4
3 

T
→

A
 

1 ND/875 <1% ND/1892 <1% ND/1291 <1% 

2 ND/1028 <1% 13/1110 1,17% ND/944 <1% 

3 ND/2612 <1% ND/3703 <1% ND/2278 <1% 

H
A

.1
6

4
3 

T
→

G
 

1 ND/875 <1% ND/1892 <1% ND/1291 <1% 

2 ND/1028 <1% 12/1110 1,08% ND/944 <1% 

3 ND/2612 <1% ND/3703 <1% ND/2278 <1% 

H
A

.1
6

9
1 

G
→

A
 

1 ND/596 <1% ND/1110 <1% 7/404 1,73% 

2 ND/767 <1% ND/873 <1% ND/696 <1% 

3 ND/2499 <1% ND/3575 <1% ND/2222 <1% 

H
A

.1
6

9
3 

A
→

T
 

1 ND/582 <1% ND/1081 <1% 7/391 1,79% 

2 ND/751 <1% ND/864 <1% ND/690 <1% 

3 ND/2310 <1% ND/3569 <1% ND/2219 <1% 

H
A

.1
6

9
5 

T
→

C
 

1 ND/555 <1% ND/1030 <1% 7/366 1,91% 

2 ND/779 <1% ND/3557 <1% ND/688 <1% 

3 ND/1767 <1% ND/3557 <1% ND/2220 <1% 
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Position 
Sequence 
platform 

Data processing pipeline 

1 2 3 

Minor 
variants 

Percentage 
Minor 

variants 
Percentage 

Minor 
variants 

Percentage 

H
A

.1
6

9
8

 

C
→

T
 

1 ND/537 <1% ND/977 <1% ND/601 <1% 

2 ND/758 <1% 11/852 1,29% ND/681 <1% 

3 ND/2260 <1% ND/3520 <1% ND/2113 <1% 

H
A

.1
70

5 

A
→

G
 

1 ND/492 <1% ND/883 <1% ND/528 <1% 

2 ND/733 <1% 11/832 1,32% ND/660 <1% 

3 ND/1709 <1% ND/3300 <1% ND/2016 <1% 

Positions with ≥1% variants are marked in black, positions with a too low coverage (<298 
reads/position) to detect ≥1% variants are marked in light grey. Numbers are displayed as [number of 
variants]/[number of reads on that position]. ND: not detected. 

 

Determining the influence of the minor variant detection method 

To isolate the effect of just the mSNV identification step in the DPP, independent of 

quality-trimmed alignment files (*.bam files) of the raw data (subdivided per virus, 

per SP and per DPP) were shared and subjected to the mSNV detection process used 

in DPP3 and compared to the original outcomes from DPP1 and DPP2 (Table 5).  In 

the majority of positions, the different mSNV identification processes did not 

influence the results, as 84% (119/142) of the mSNVs were identified regardless of the 

mSNV identification process. Twenty-three mSNVs that were not reproduced by 

DPP3 mSNV identification analysis, were reproduced when the ‘Direction and 

position Filters’ in DPP3 were ignored (Table 5, marked with # of ##). These 

parameters filter out mSNVs when the set criteria for the read direction (variant 

must occur in both forward and reverse reads), relative read direction (statistical 

approach of forward/reverse balance) and read position (removal of systemic errors) 

are not met. This indicates different DPPs deal differently with quality parameters, 

and data could be excluded or included based on the DPP used. In addition, 9 

additional mSNVs were identified in the *.bam files compared to the original mSNV 

outputs. It needs to be noted that the coverage of SP data analysed by DPP1 for 

positions identified with mSNVs was considerably lower compared to the coverage 

at that position in the input *.bam files, suggesting additional quality filtering in the 

mSNV detection step of DPP1. However, the influence on mSNV identification was 

limited most likely due to the initial high nucleotide coverage. 

To better visualise the differences in coverages and allele counts a graphical display 

of the data for four positions showing mSNVs in different frequencies for each 
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SP/DPP combination is included in the supplemental material (S2 figure) In general, 

SNVs were rarely missed due to low coverage. 

 

Table 5. The reproducibility of positions with at least one ≥5% variant when alignment files from the 
respective DPPs are all uploaded into DPP3 for only the mSNV identification process versus when the 
mSNV identifications are fully performed by the respective DPPs. 
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deleting DPP3s default 'Direction and position filters' are marked in black, with those exactly 
reproduced (#) and those approximately reproduced but with different coverages and/or variants 
(##). 

 

Discussion 

NGS data are used for different applications. Although sequence technologies and 

the accompanying analysis tools are subjected to rapid development, a lot of follow-

up research is based on initial findings. Accuracy and repeatability are key values for 

proper scientific research but the impact of NGS results also reaches beyond science 

to clinical settings where important clinical management and treatment decisions 

are based on such results. In this study the comparability and repeatability of NGS 

data analyses were analysed using identical input material per virus but different 

laboratory workflows from nucleic acid extraction and sequencing to data analysis. 

In addition, the COMPARE “Data Hub” platform was tested for the purpose of 
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sharing large raw datafiles between institutions in an outbreak situation. Using this 

platform, raw sequence data files up to the size of 8 Gigabytes, alignment files and 

metadata files of three influenza A/H5N8 viruses were successfully shared in real-

time among 3 institutions to allow independent sequencing and analysis procedures, 

including mSNV identification, to be performed. The Data Hub is available for all 

institutions. 

The aim of this study was to determine how comparable consensus and minority 

variant results were between laboratories performing their standard analyses, and 

whether discrepancies could be attributed to the SP, DPP or a combination of both. 

With the lack of a ground truth/gold standard, all data obtained were compared 

amongst each other. Importantly, reliable consensus sequences were generated 

independently of the SP/DPP combination used, although the well-known artefactual 

InDels in homopolymer regions in SP3 (Roche 454 genome sequencer) sequence 

data required manual editing. Such consensus sequences routinely form the basis for 

a detailed characterization of the influenza strain in an outbreak situation, as they 

are used for the prediction of pathogenicity and pandemic potential of influenza 

strains.   

In contrast to the reproducible generation of consensus genome sequences, the 

hypothesis that minority variants could be identified reproducibly has to be rejected. 

The observed differences were mainly attributed to the alignment processes in the 

different DPPs. The interpretation of minority variant analysis thus needs a different 

level of careful standardization and awareness about the possible limitations as 

shown in this study. Reproducibility of mSNV results appeared to be influenced by 

both the different SPs and DPPs. There was limited reproducibility of mSNV 

identification data, even for relative high frequency mSNVs. As expected, the 

reproducibility was best (30%) for mSNVs occurring in high frequency (≥10%), and 

least for the low frequent (≥1%) mSNVs (8.9% to 23.3%). Also, the number of positions 

with 1-5% mSNVs (with sufficient coverage) was much higher (223 in SP1 data, 236 in 

SP2 data, and 74 in SP3 data) than the number of positions with >5-10% mSNVs (n=27) 

or >10% mSNVs (n=10). 

The set-up of this study allowed many variables to influence the final result. The 

differences from first laboratory procedures and sample preparations up to the final 

analysis methods can all have contributed to the observed differences in mSNV 

identification. At this level, especially with lacking an NGS gold standard, it becomes 

difficult to determine which identified mSNVs are ‘true variants’ and which could be 

due to systematic errors introduced by RNA isolation methods, amplification, 

sequencing or manipulated by data processing pipeline settings. Unsurprisingly, the 

results of this study imply that the choice of SP influences the final output, but the 

results from this study also indicate that the DPP, especially the alignment process, 
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influences coverage and thereby mSNV frequencies. Although the aim of this study 

was to explicitly compare the three institutions own standard workflows, some 

parameters (like the phred score and detection limit) were synchronized between 

the different DPPs. Moreover, the data from each SP were re-processed in each DPP. 

However, all DPPs use different underlying algorithms and interpret the set 

parameters differently which might all contribute to the observed differences. These 

results are partly in line with previous research that showed the need of NGS result 

validation and concluded that only those mSNVs with a coverage >100 and a 

frequency of >40% could be identified by NGS methods without secondary 

confirmation [29], however, this conclusion was based on using the same sample 

preparation method within a single laboratory. Another recent study sets the cut-off 

for intrahost virus diversity at 3% with input of at least 1000 RNA copies and a read 

depth of at least 400x at each genome position for Illumina sequencing [30]. 

Although some studies have been published on SP error rates [31-34] and PCR 

amplification induced variants [35-38], a gold standard system for mSNV analysis is 

lacking. In addition, the DPPs can alter the data due to elimination or inclusion of 

certain sequences based on the set quality parameters. Allowing too many low-

quality reads or being too stringent on the data will influence the coverage per 

position and might also influence the accuracy of the mSNV identification rate, 

especially when the coverage is low [39, 40]. Although a low comparability of mSNVs 

identified in the different SP and DPP combinations was observed, it can be 

concluded that 454 (SP3) sequencing has approximately the same accuracy as 

Illumina (SP1 and 2) sequencing based on the number and percentage of 

reproducibility of mSNVs when ignoring InDel errors in homopolymer regions. 

Although, Roche 454 sequencing machines are no longer in production, it added 

value to include 454 sequencing as an alternative sequence platform to Illumina. In 

addition, because Roche 454 was the first commercially successful next generation 

sequencing system, it was used in research that served as a fundament for follow-up 

studies [41]. A comparison of Illumina with newer third or fourth generation 

sequencing platforms (e.g. Nanopore or Pac Bio) would be interesting in the future. 

In addition, it would be interesting to compare mSNV results of SPs outputting small 

sequence reads (like Illumina, 454 and Ion Torrent) to new sequencing techniques 

that output full-length sequence data (e.g. Nanopore [42]). The latter might be less 

vulnerable to quality trimming parameters compared to small reads and might 

provide a more consistent nucleotide coverage over complete gene segment. 

However, the overall error rate remains higher than the shorter read technologies 

and recent work concludes that it is not currently suitable for the detection of minor 

variants [30]. 
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For mSNV analyses by different labs, very stringent SP/DPP protocols need to be 

evaluated, for instance by cross-validating results. To allow a better comparison it 

would be recommended to create some kind of gold standard by for instance 

evaluating parameters based on sequencing of technical replicates, and controlled 

mixes of clones. The mSNV analysis can be valuable for epidemiological tracing, to 

monitor early evolutionary events, or drug resistance, possibly host adaptation, but 

this would require reproducibility of study outcomes within and between 

laboratories. As this is currently not that case, more understanding of biases and 

errors generated by sample processing (enrichment procedures), sequencing 

strategy (amplicons, shotgun), sequencing chemistry (each of which have their own 

internal error rates) and the approach to data processing and analysis is needed. 

Understanding the parameters and thresholds in the software can be difficult and a 

systematic study using a pipeline where the effect of changing each of these 

parameters both individually and in combination is required to determine the 

optimal settings for minor variant analysis. 

As alternate high-throughput sequencing technologies arise there will be a need to 

understand inherent error profiles and how those are handled in data processing 

approaches. Cross-validation should be supported by international proficiency tests 

on NGS techniques including mSNV analyses that would be instrumental in validation 

of results and may foster the trust in NGS-based diagnostics. 

 

Acknowledgements 

The authors would like to thank the staff of the European Nucleotide Archive and all 

technical staff involved in the supporting laboratory and avian surveillance work. 

This work was supported by the European Union’s Horizon 2020 research and 

innovation program under grant agreements No 643476 (COMPARE), No 653316 

(EVAg), and NIAID/NIH contract HHSN272201400008C. 

 

References 

1. Heather JM, Chain B. The sequence of 
sequencers: The history of sequencing DNA. 
Genomics. 2016;107(1):1-8. 

2. Van Dijk EL, Auger H, Jaszczyszyn Y, 
Thermes C. Ten years of next-generation 
sequencing technology. Trends Genet. 
2014;30(9):418-26. 

3. Ekblom R, Galindo J. Applications of next 
generation sequencing in molecular ecology 

of non-model organisms. Heredity (Edinb). 
2011;107(1):1-15. 

4. Koser CU, Holden MT, Ellington MJ, 
Cartwright EJ, Brown NM, Ogilvy-Stuart AL, 
et al. Rapid whole-genome sequencing for 
investigation of a neonatal MRSA outbreak. 
N Engl J Med. 2012;366(24):2267-75. 

5. Mellmann A, Harmsen D, Cummings CA, 
Zentz EB, Leopold SR, Rico A, et al. 
Prospective genomic characterization of the 



Chapter 4 | 144 

 

German enterohemorrhagic Escherichia coli 
O104:H4 outbreak by rapid next generation 
sequencing technology. PLoS One. 
2011;6(7):e22751. 

6. Leitner T, Halapi E, Scarlatti G, Rossi P, 
Albert J, Fenyo EM, et al. Analysis of 
heterogeneous viral populations by direct 
DNA sequencing. Biotechniques. 
1993;15(1):120-7. 

7. Tsiatis AC, Norris-Kirby A, Rich RG, Hafez 
MJ, Gocke CD, Eshleman JR, et al. 
Comparison of Sanger sequencing, 
pyrosequencing, and melting curve analysis 
for the detection of KRAS mutations: 
diagnostic and clinical implications. J Mol 
Diagn. 2010;12(4):425-32. 

8. Glenn TC. Field guide to next-generation 
DNA sequencers. Mol Ecol Resour. 
2011;11(5):759-69. 

9. Li Y, Gu J, Schageman J, Brinza D, Lea K, 
Jasti M, et al. Ion Torrent™ Next Generation 
Sequencing – Detect 0.1% Low Frequency 
Somatic Variants and Copy Number 
Variations simultaneously in Cell-Free DNA. 
Thermo Fisher Scientific. 2017. 

10. Schirmer M, D'Amore R, Ijaz UZ, Hall N, 
Quince C. Illumina error profiles: resolving 
fine-scale variation in metagenomic 
sequencing data. BMC Bioinformatics. 
2016;17:125. 

11. Lou DI, Hussmann JA, McBee RM, 
Acevedo A, Andino R, Press WH, et al. High-
throughput DNA sequencing errors are 
reduced by orders of magnitude using circle 
sequencing. Proc Natl Acad Sci U S A. 
2013;110(49):19872-7. 

12. World Organisation for Animal Health 
OIE. Update on highly pathogenic avian 
influenza in animals (typeH5 and H7). 2014. 

13. World Organisation for Animal Health 
OIE. Update on highly pathogenic avian 
influenza in animals (typeH5 and H7). 2015. 

14. Hanna A, Banks J, Marston DA, Ellis RJ, 
Brookes SM, Brown IH. Genetic 
Characterization of Highly Pathogenic Avian 
Influenza (H5N8) Virus from Domestic Ducks, 
England, November 2014. Emerg Infect Dis. 
2015;21(5):879-82. 

15. Harder T, Maurer-Stroh S, Pohlmann A, 
Starick E, Horeth-Bontgen D, Albrecht K, et 

al. Influenza A(H5N8) Virus Similar to Strain 
in Korea Causing Highly Pathogenic Avian 
Influenza in Germany. Emerg Infect Dis. 
2015;21(5):860-3. 

16. Bouwstra R, Heutink R, Bossers A, 
Harders F, Koch G, Elbers A. Full-Genome 
Sequence of Influenza A(H5N8) Virus in 
Poultry Linked to Sequences of Strains from 
Asia, the Netherlands, 2014. Emerg Infect 
Dis. 2015;21(5):872-4. 

17. Verhagen JH, van der Jeugd HP, Nolet BA, 
Slaterus R, Kharitonov SP, de Vries PP, et al. 
Wild bird surveillance around outbreaks of 
highly pathogenic avian influenza A(H5N8) 
virus in the Netherlands, 2014, within the 
context of global flyways. Euro Surveill. 
2015;20(12). 

18. Poen MJ, Bestebroer TM, Vuong O, 
Scheuer RD, van der Jeugd HP, Kleyheeg E, 
et al. Local amplification of highly 
pathogenic avian influenza H5N8 viruses in 
wild birds in the Netherlands, 2016 to 2017. 
Euro Surveill. 2018;23(4). 

19. Global Consortium for H5N8 and Related 
Influenza Viruses. Role for migratory wild 
birds in the global spread of avian influenza 
H5N8. Science, 2016. 354(6309): p. 213-217 

20. Harrison PW, Alako B, Amid C, Cerdeño-
Tárraga A, Cleland I, Holt S, et al. The 
European Nucleotide Archive in 2018. Nucleic 
Acids Research. 2019;47(D1):D84-D8. 

21. Karsch-Mizrachi I, Takagi T, Cochrane G, 
on behalf of the International Nucleotide 
Sequence Database C. The international 
nucleotide sequence database collaboration. 
Nucleic Acids Research. 2018;46(D1):D48-D51. 

22. Amid, C., et al., The COMPARE Data Hubs. 
bioRxiv, 2019: p. 555938 

23. Richard M, Herfst S, van den Brand JM, 
Lexmond P, Bestebroer TM, Rimmelzwaan 
GF, et al. Low Virulence and Lack of Airborne 
Transmission of the Dutch Highly Pathogenic 
Avian Influenza Virus H5N8 in Ferrets. PLoS 
One. 2015;10(6):e0129827. 

24. Linster M, van Boheemen S, de Graaf M, 
Schrauwen EJA, Lexmond P, Manz B, et al. 
Identification, characterization, and natural 
selection of mutations driving airborne 
transmission of A/H5N1 virus. Cell. 
2014;157(2):329-39. 



Chapter 4 | 145  

 

25. Li H. Aligning sequence reads, clone 
sequences and assembly contigs with BWA-
MEM. arXiv. 2013. 

26. Li H, Handsaker B, Wysoker A, Fennell T, 
Ruan J, Homer N, et al. The Sequence 
Alignment/Map format and SAMtools. 
Bioinformatics. 2009;25(16):2078-9. 

27. Zerbino DR, Birney E. Velvet: algorithms 
for de novo short read assembly using de 
Bruijn graphs. Genome Res. 2008;18(5):821-9. 

28. Hall TA. BioEdit: a user-friendly biological 
sequence alignment editor and analysis 
program for Windows 95/98/NT. Nucleic 
Acids Symposium Series. 1999;41:95-8. 

29. Mu W, Lu HM, Chen J, Li S, Elliott AM. 
Sanger Confirmation Is Required to Achieve 
Optimal Sensitivity and Specificity in Next-
Generation Sequencing Panel Testing. J Mol 
Diagn. 2016;18(6):923-32. 

30. Grubaugh ND, Gangavarapu K, Quick J, 
Matteson NL, De Jesus JG, Main BJ, et al. An 
amplicon-based sequencing framework for 
accurately measuring intrahost virus 
diversity using PrimalSeq and iVar. Genome 
Biol. 2019;20(1):8. 

31. Golan D, Medvedev P. Using state 
machines to model the Ion Torrent 
sequencing process and to improve read 
error rates. Bioinformatics. 2013;29(13):i344-
51. 

32. Manley LJ, Ma D, Levine SS. Monitoring 
Error Rates In Illumina Sequencing. J Biomol 
Tech. 2016;27(4):125-8. 

33. Nakamura K, Oshima T, Morimoto T, 
Ikeda S, Yoshikawa H, Shiwa Y, et al. 
Sequence-specific error profile of Illumina 
sequencers. Nucleic Acids Res. 
2011;39(13):e90. 

34. Shao W, Boltz VF, Spindler JE, Kearney 
MF, Maldarelli F, Mellors JW, et al. Analysis 
of 454 sequencing error rate, error sources, 
and artifact recombination for detection of 

Low-frequency drug resistance mutations in 
HIV-1 DNA. Retrovirology. 2013;10:18. 

35. Acinas SG, Sarma-Rupavtarm R, Klepac-
Ceraj V, Polz MF. PCR-induced sequence 
artifacts and bias: insights from comparison 
of two 16S rRNA clone libraries constructed 
from the same sample. Appl Environ 
Microbiol. 2005;71(12):8966-9. 

36. Gorzer I, Guelly C, Trajanoski S, 
Puchhammer-Stockl E. The impact of PCR-
generated recombination on diversity 
estimation of mixed viral populations by 
deep sequencing. J Virol Methods. 
2010;169(1):248-52. 

37. Judo MS, Wedel AB, Wilson C. Stimulation 
and suppression of PCR-mediated 
recombination. Nucleic Acids Res. 
1998;26(7):1819-25. 

38. Meyerhans A, Vartanian JP, Wain-Hobson 
S. DNA recombination during PCR. Nucleic 
Acids Res. 1990;18(7):1687-91. 

39. Quail MA, Smith M, Coupland P, Otto TD, 
Harris SR, Connor TR, et al. A tale of three 
next generation sequencing platforms: 
comparison of Ion Torrent, Pacific 
Biosciences and Illumina MiSeq sequencers. 
BMC Genomics. 2012;13:341. 

40. Sims D, Sudbery I, Ilott NE, Heger A, 
Ponting CP. Sequencing depth and coverage: 
key considerations in genomic analyses. Nat 
Rev Genet. 2014;15(2):121-32. 

41. Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. 
Comparison of next-generation sequencing 
systems. J Biomed Biotechnol. 
2012;2012:251364. 

42.Keller MW, Rambo-Martin BL, Wilson MM, 
Ridenour CA, Shepard SS, Stark TJ, et al. 
Direct RNA Sequencing of the Coding 
Complete Influenza A Virus Genome. Sci Rep. 
2018;8(1):14408. 

 

 

 

 

 

 



Chapter 4 | 146 

 

Supplemental Material 

 

S1 Table. PCR primers used in SP3 to cover the influenza A H5N8 gene segments  
Due to the size, this table was excluded from this thesis. This table will be published online with the 
manuscript or is available upon request  
S2 Table. SP/DPP overarching consensus sequences 
Due to the size, this table was excluded from this thesis. This table will be published online with the 
manuscript or is available upon request  
 
S3 Table. Number of raw sequences and influenza virus reads per SP per virus. 
Due to the size, this file was excluded from this thesis. This file will be published online with the 
manuscript  or is available upon request  
 
S1 File. DPP3 Sequence analysis protocol 
Due to the size, this file was excluded from this thesis. This file will be published online with the 
manuscript or is available upon request  
 
S1 Figure. Nucleotide coverage. The non-normalised nucleotide coverage displayed as number of 
nucleotides per position for full genome sequences of the UKDD and DETU virus reads mapped to 
the corresponding reference sequences.  
Due to the size, this file was excluded from this thesis. This file will be published online with the 
manuscript or is available upon request  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Chapter 4 | 147  

 

S2 Figure. Graphical display of the coverage and allele counts for four positions, showing mSNVs in 
different frequencies for each SP/DPP combination. Arrows indicate the approximate percentages 
in which the mSNVs were detected; 1-5% (pink), 5-10% (purple) and >10% (green)  
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Chapter 5 

 

 

Summarising discussion 

 

Avian influenza (AI) viruses are pathogens that occasionally jump to humans and 

non-avian species, and as a consequence represent pathogens of major concern for 

both animal and human health. Most AI viruses are low pathogenic avian influenza 

(LPAI) viruses, but two subtypes, H5 and H7, occasionally mutate to highly 

pathogenic avian influenza (HPAI) viruses in poultry [Chapter 1]. HPAI viruses are 

associated with variable signs of disease in wild birds and high mortality rates in 

poultry. HPAI H5 viruses of the GSGD-lineage were first detected in China in 1996 and 

have circulated continuously in poultry since with frequent spill-overs to wild birds 

and subsequent virus emergence elsewhere in the world. These GSGD-lineage H5 

viruses are subdivided in 10 different clades (clade 0-9) and multiple subclades 

[Chapter 1]. This thesis describes research efforts to determine the role of wild birds 

in three successive outbreaks of HPAI H5 viruses in Europe since 2014 [Chapter 2.1, 2.2 

and 3]. In addition, we studied the applicability of serological assays to determine 

HPAI H5 host-species based on H5-specific antibody presence [Chapter 2.1 and 2.2]. 

Lastly, we studied the applicability of next-generation sequencing (NGS) data for 

epidemiological studies in outbreak situations by evaluating the repeatability and 

comparability of NGS results from HPAI H5N8 viruses [Chapter 4]. Based on the 

newly gained perspectives from this research, a number of proposals are provided to 

further improve surveillance efforts and related scientific output. 

 

The role of wild birds in HPAI H5 outbreaks 2005-2018 

Europe has been confronted with several outbreaks of Asian HPAI H5 viruses since 

2005. The first outbreak was caused by a clade 2.2 H5N1 virus in 2005/06, followed by 

the detection of clade 2.3.2.1c H5N1 viruses in Eastern Europe in 2010. In 2014, clade 

2.3.4.4 group A H5N8 viruses caused outbreaks across Europe, with a second 

introduction of clade 2.3.2.1c H5N1 virus in Eastern Europe in early 2015. Multiple 

outbreaks in Europe were caused by clade 2.3.4.4. group B H5N8 viruses in 2016/17 

and clade 2.3.4.4 group B H5N6 viruses in 2017/18. Below we discuss our virological 

and serological findings from the three HPAI H5 clade 2.3.4.4 outbreaks and compare 

these to published data on previous HPAI H5 incursions, especially regarding the 

involvement and potential role of wild birds in these outbreaks. 
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2005/06: HPAI Clade 2.2 H5N1 viruses 

The 2005/06 outbreak of HPAI H5 clade 2.2 viruses was preceded by virus detections 

in poultry and wild birds in Southeast Asia in late 2003/early 2004, with occasional 

detections in humans in China. From there, the virus was transported to Qinghai 

Lake, China where it was isolated from migratory birds during the spring of 2005 [1, 

2]. By July 2005, these H5N1 viruses had spread to Russia and Kazakhstan [3, 4]. In 

October, the H5N1 virus was reported from Turkey, Romania [5] and Croatia [6], and 

from Ukraine in December 2005. Starting early 2006, the virus rapidly spread to 

central Europe, infecting poultry and wild birds, mainly mute swans (41% of dead 

birds) and tufted ducks (5% of birds) [7]. During the same period, related H5N1 

viruses were also reported in wild birds and poultry in the Middle East and Africa.  

 

2010: HPAI Clade 2.3.2.1c H5N1 viruses 

In March 2010, viruses of clade 2.3.2.1c were detected in poultry and wild birds in 

Romania and Bulgaria, respectively [8]. These viruses had preceding detections in 

wild birds in Japan in 2008 and spread further into Qinghai Lake, China in the spring 

of 2009 [9], to Mongolia in the summer [10] and to Russia by October 2009 [11]. 

Phylogenetic studies showed that the European virus lineage was directly related to 

the clade 2.3.2.1 viruses detected at Qinghai Lake, China [8].  

 

2014/15: HPAI clade 2.3.4.4 H5N8 group A viruses 

HPAI GSGD-lineage H5 viruses of clade 2.3.4 were first identified in poultry in China in 

2005 [12], and subsequently evolved into different subclades [13-15]. These viruses 

reassorted with other HPAI H5N1 viruses and Eurasian LPAI viruses, leading to the 

circulation of different subclades such as 2.3.4.4 in Southeast Asia since 2008 [15], 

although this subclade was not officially recognised until 2015 [16].  

Group A (Buan-like) viruses were first identified in China and South Korea in early 

2014 [13, 17]. Migratory birds were suspected to have transported these viruses from 

Eastern China to South Korea, leading to virus detections in poultry and wild birds 

near Donglim Lake, a wintering site for migratory birds in South Korea [18]. In late 

2014, several outbreaks of group A viruses were reported by South Korea, China and 

Japan [19]. Meanwhile, group A H5N8 virus had also been identified in a Eurasian 

wigeon (Anas penelope), a long-distance migrant, in Eastern Siberia in September 

2014 [20]. Group A viruses further spread to Europe and North America in November 

and December 2014, respectively [21, 22]. In North America, these group A H5N8 

viruses reassorted with local LPAI viruses leading to new reassortant viruses of the 

subtypes H5N1, H5N2, and H5N8 that caused major problems in the poultry industry 

until they disappeared in June 2015 [23]. The first detection of group A viruses in 
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Europe was in a German turkey farm on 4 November 2014, with 10 subsequent 

detections in poultry in Germany [24], the Netherlands [25], the United Kingdom 

[26], Italy [27], and lastly in Hungary on 23 February 2015 [27]. In response to these 

outbreaks, wild bird surveillance activities in the Netherlands were intensified, 

leading to the detection of HPAI H5N8 virus in droppings of three Eurasian wigeons 

in November 2014 [28] and February 2015 [Chapter 2.1]. Considering the number of 

poultry farms infected, the number of detections in wild birds was very limited 

without any substantial mortality events observed. Also, from other European 

countries the number of detections in wild birds was limited to a hunted common 

teal (Anas crecca) [29], several dead mallards (Anas platyrhynchos) and a sick gull in 

Germany (Larus spp.) [19, 30-32]), and two dead mute swans (Cygnus olor) in Sweden 

[27]. A previous serological study had demonstrated that haemagglutination 

inhibition (HI) assays could be used to discriminate HPAI-exposed birds from LPAI-

exposed birds based on H5-specific antibodies [33]. Serological testing specific for 

HPAI H5 clade 2.3.4.4 antibodies was first performed and validated with wild bird 

sera collected between November 2014 and May 2015 in the Netherlands [Chapter 

2.1]. These HI assays showed an overall HPAI H5 clade 2.3.4.4-specific antibody 

incidence of 4.6% (43/940 birds of 29 species). Antibodies were detected in 12 

Eurasian wigeons, 29 mute swans, 1 lesser white-fronted goose (Anser erythropus) 

and 1 common coot (Fulicia atra) [Chapter 2.1]. Confirmatory testing with a virus 

neutralisation (VN) assay confirmed antibodies in all species except the lesser white-

fronted goose. The serological results were in agreement with results from 

virological studies showing the presence of virus in Eurasian wigeons in Russia [20] 

and the Netherlands [28] [Chapter 2.2], mute swans in Sweden [27], and a common 

coot in South Korea [34]. Although discrepancies between HI and VN assays were 

observed, and low titres could not always be detected by confirmatory testing by a 

second laboratory, serology showed promise as a cost-effective tool to identify HPAI 

H5 virus exposed host species [Chapter 2.1]. The low number of virus-positive birds 

and the antibody incidence of 4.6% was strongly indicative for non-lethal or possibly 

even subclinical HPAI H5 infections in these four species. The limited active 

surveillance activities performed in Europe in 2014/15 and the possibility of non-lethal 

infections might explain this low number of wild birds found infected given that 

most countries in Europe relied on passive surveillance, if any at all. In response to 

this outbreak, a global phylogeny study [21] confirmed the previously published 

hypothesis [35] that wild birds were most likely responsible for this global dispersal 

of HPAI H5 clade 2.3.4.4 viruses. 

 

2014/15: HPAI clade 2.3.2.1c H5N1 viruses 

During 2014/15, a different clade 2.3.2.1c H5N1 virus was detected in captive wild birds 

in Dubai [36] after it had been detected in Russia in the spring of 2014 [37]. This virus 
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from Dubai detected in December 2014 clustered with viruses detected shortly 

thereafter in West African countries and Bulgaria and Romania in early 2015 [36, 37]. 

This virus seems to have been dispersed by wild migratory birds from Asia, although 

the early introduction into Dubai may have been caused by falconry activities [36, 38, 

39].  

 

2016/17: HPAI clade 2.3.4.4 H5N8 group B and reassortant viruses 

Simultaneously with group A viruses, group B (Gochang-like) viruses were first 

identified as H5N8 viruses in China in 2013/14 [40] and in South Korea in 2014 [17]. In 

China, several group B viruses that had reassorted with Eurasian LPAI viruses were 

reported in domestic ducks and wild waterbirds during 2013/14 [13, 40-42]. Hereafter, 

the virus was not detected until it reappeared at Qinghai Lake, China [43] and Uvs-

Nuur Lake, Russia, both in May 2016 [44]. Starting in October 2016, group B H5N8 

viruses spread further to Europe, Africa [45], the Middle East [46], and became more 

widespread in Asia [47, 48]. In Europe, the deaths of many wild birds, mainly tufted 

ducks (Aythya fuligula), great crested grebes (Podiceps cristatus) and Eurasian 

wigeons [49-51] [Chapter 2.2] preceded a number of virus outbreaks in poultry [52, 

53]. Later, a relative high number of birds of prey were found dead as well [51]. 

Despite the large number of wild birds that died during this outbreak, the virus was 

also detected in 32/5,167 live and clinically healthy birds sampled between 23 

November 2016 and 28 January 2017 in the Netherlands [Chapter 2.2]. The virus-

positive species detected in active surveillance activities were largely in agreement 

with those found in passive surveillance [52, 53], although the non-lethal infections in 

mallards from January 2017 would have been missed without active surveillance 

efforts. Genetic analyses of the Dutch HPAI H5N8 viruses showed that these viruses 

were reassortants between group B viruses as detected in Eastern China in 2014 and 

Eurasian LPAI viruses [Chapter 2.2]. This genetic constellation was similar to that of 

viruses detected in Russia in May 2016 and in Germany in late 2016, although 

additional local reassortment events of the NP and PA genes were observed, similar 

to those described for German viruses [49]. In contrast to the 2014/15 outbreak, 

viruses of group B showed frequent reassortment with local LPAI viruses, resembling 

the 2014/15 situation in the United States [22, 23]. During the 2016/17 outbreak, these 

local reassortment events led to the emergence and detection of multiple group B 

H5N5 and one H5N6 virus [53]. Recently, group B H5N8 viruses continued to be 

reported, but less frequently from Europe and more frequently from the Middle East 

and Africa [53, 54]. Serological assays performed on sera obtained during the winter 

of 2015/16 and 2016/17 revealed an antibody incidence of 3.5% (12/347) and 4.2% 

(18/431), respectively [Chapter 2.1 and 2.2]. In contrast to the 2014/15 outbreak, the 

antibody incidence at the start of the 2016/17 outbreak was rather low (2.0%) but 

increased over time. This might be indicative for a different timing of virus 
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amplification, before arrival at the European wintering grounds in 2014/15, versus at 

the European wintering grounds in 2016/17 [Chapter 2.1 and 2.2]. The avian species 

identified to have been infected by serological methods were similar to those 

detected in virological assays; Eurasian wigeons, mute swans, mallards and black-

headed gulls (Chroicocephalus ridibundus) [Chapter 2.2]. To date, group B clade 

2.3.4.4 viruses have caused the largest global HPAI H5 epidemic in number of poultry 

outbreaks, and rate of mortality in wild birds [7, 49, 51, 55].  

 

2017/18: HPAI clade 2.3.4.4 H5N6 group B viruses 

HPAI group B H5N6 viruses were first detected in Japan, South Korea [56-58] and the 

Netherlands [59] [Chapter 3] in late 2017. Starting in mid-December 2017, HPAI H5N6 

group B viruses were also detected in wild birds in Iran and other European countries 

including Switzerland, the United Kingdom, Germany, Sweden, Ireland, Denmark, 

Slovakia and Finland [53, 54]. Outbreaks in poultry were only reported in the 

Netherlands and Germany. Although most H5N6 virus detections in wild birds were 

based on passive surveillance activities, these viruses did not cause mass mortality 

events in wild birds, in contrast to the group B H5N8 viruses circulating the previous 

year [51] [Chapter 2.2]. Interestingly, birds of prey were frequently found dead and 

infected, mainly white-taled eagles (Haliaeetus albicilla). Group B H5N6 viruses were 

also detected in living and clinically healthy Eurasian wigeons in the Netherlands and 

a mallard and an Armenian gull (Larus armenicus) in the Republic of Georgia [Chapter 

3]. Genetic analyses of these group B H5N6 viruses have shown that they most likely 

did not originate in Southeast Asia, but were new reassortant viruses between 

European group B H5N8 viruses and Eurasian LPAI viruses, most likely originating on 

the Palearctic breeding grounds during 2017. This would explain the simultaneous 

first detections of these viruses in wild birds in late 2017 in both Europe and 

Southeast Asia [Chapter 3; [57, 59].  

 

The applicability of NGS in outbreak situations 

In recent years, sequencing has been applied routinely in virus diagnostics and virus 

characterization, enabling comparison analyses of avian influenza viruses at the 

genome level for epidemiological studies. Especially in outbreak situations, like those 

of clade 2.3.4.4 viruses, sequence analysis was an indispensable tool to determine 

the source of the virus and the individual gene segments [Chapter 2.2 and 3]. Next-

generation sequencing (NGS) methods have facilitated sequencing of hundreds to 

thousands of avian influenza virus particles in real-time from a single sample, 

enabling the detection of single nucleotide variants (SNVs) that are used for genetic 

tracking of viruses, and minority SNVs (mSNV) that could potentially be used for 
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more detailed epidemiological tracking of viruses, to identify host adaptation 

markers, or explain differences in clinical presentation of infection [Chapter 1]. 

Despite the lack of a gold standard technique, the number of studies cross-validating 

NGS data generated with different sequence platforms (SP) and bio-informatics 

data-processing pipelines (DPP) is very limited. In the light of the EU Horizon 2020 

COMPARE programme, the reproducibility of NGS data analyses between three 

laboratories was tested using HPAI H5N8 group A outbreak viruses. To determine 

the comparability and reproducibility of generating consensus sequences and 

identifying mSNVs, the raw sequence data from three SPs and three DPPs were 

shared between the laboratories [Chapter 4]. Consensus sequences were reliably 

determined regardless of the SP/DPP combination used. However, the 

reproducibility of mSNVs was suboptimal, with only 40% of high frequent minority 

variants (occurring in >10% of the sequences) confirmed in any of the other tested 

SP/DPP combinations. This is not surprising considering the many factors influencing 

all stages of NGS data generation. In addition to SP-dependent error-profiles [60-63], 

PCR-amplification steps [64-67], differences in nucleotide coverage (number of 

reads) [68, 69], and individually set quality parameters for data inclusion and mSNV 

identification have large influences on the resulting data [Chapter 4]. In conclusion, 

NGS technologies can be reliably used to generate consensus sequence data in an 

outbreak situation. In the future, mSNV detection might prove to be a valuable tool 

for more detailed tracing of viruses, host-adaptation or clinical manifestation. 

However, before mSNV data can be reliably used, NGS techniques need further 

(cross-) validation to improve the reproducibility between workflows and 

laboratories [chapter 4].  

 

Recommendations to optimise (inter)national surveillance efforts 

The joint worldwide efforts made in avian influenza surveillance programmes have 

provided many insights that formed the basis of evidence-based hypotheses about 

the epidemiology of HPAI viruses. However, we currently lack a true early warning 

system for incursions of HPAI viruses. In order to further improve surveillance and 

scientific output, some challenges with regard to location of surveillance, timing of 

surveillance, species responsible for long-distance dispersal of virus, surveillance 

strategies, host migratory behaviour, avian influenza diagnostics, and data sharing 

need addressing.  

Reviewing the most recent three incursions of HPAI H5 viruses in Europe and 

comparing the dynamics to the earlier ones revealed insights into the earliest virus 

detection patterns, in agreement with those previously described [37], that may be 

considered as ‘early warning signals’. Generally, the HPAI H5 outbreaks in Europe 

were preceded by detections of the virus in Southeast Asia, followed by virus spread 
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to other Asian countries in the first months of the year. This was followed by 

spreading west to north-central China (Qinghai Lake), Mongolia including the Russia-

Mongolia border area (Uvs-Nuur and Khovsgol Lake), and the Kazakhstan-Russia 

border area in the spring, with subsequent further geographical spread westwards. 

Early detection sites in Europe were the Black Sea area, the Baltic Sea area and Lake 

Constance. Increased surveillance activities at the Asian and Russian early detection 

sites may provide an early warning system for future virus spread to Europe. 

Moreover, other, possibly currently unsurveyed, early detection sites may exist. For 

instance, the widespread Palearctic (post-) breeding sites are suspected to serve as 

virus hotspots, because of the aggregation of many birds from different 

geographical locations and the birth of many immunologically naïve juveniles. 

Although monitoring for virus prevalence during the breeding period is close to 

impossible at these sites, post-breeding moulting sites could provide insight into the 

virus events that occurred during breeding, and might be used to catch birds that are 

impossible to catch otherwise.  

Preceding detections in previous HPAI H5 incursions also provided leads about the 

optimal timing for surveillance. After Southeast Asia, Qinghai Lake is the first early 

detection site visited by spring migrants in May/June. Thereafter, birds continue their 

migration to the Palearctic breeding sites, with detections in Russia/Mongolia both 

before (May/June) and after (July – September) breeding. The timing of the first 

virus detections in Europe coincided with the early arrival of long-distance migrants 

in September/October.  

Long-distance migrants identified in previous HPAI H5 incursions, including Eurasian 

wigeons, tufted ducks, common coots and Eurasian teals, might act as key species 

for global virus spread. Although many avian species have been found infected with 

HPAI H5 viruses, most are local species or short-distant migrants, probably playing 

only a limited role in global virus dispersal. This information should be better 

represented in the EU law. This currently only contains a high-risk species list (EU 

Commission Decision 2005-726) for passive surveillance, that has not been updated 

since 2005, although a more up-to-date lists for passive surveillance has already been 

published [70], and mentions species that deserve extra attention if found diseased 

or dead. For instance, large gulls, mute swans and birds of prey seem to act as 

sentinels, even in the absence of mortality in wild duck species. However, neither of 

these lists mention species that should be tested live because of their possible 

involvement in long-distance dispersal of the virus, or species to test in case of 

absence of observed mortality in wild birds. An alternative list prioritising species 

likely involved in long-distance virus movement versus species likely acting as local 

sentinels should be made to guide active surveillance programmes for true early 

warning purposes. 
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Passive surveillance efforts on Asian early detection sites, including the Asian part of 

Russia, should in spring and summer be complemented with active surveillance 

activities, especially in the absence of wild bird mortality [70]. To maximise the 

chance of early detection of viruses entering Europe, European national surveillance 

programmes should focus on sampling long-distance migratory species upon early 

arrival from early autumn through early winter, guided by detections of HPAI viruses 

at early detection sites if available. Environmental sampling (fresh faeces) of these 

species provides a cost-effective and statistically high-powered sampling system [71]. 

In case live birds can be caught, taking blood samples in addition to cloacal and 

oropharyngeal swabs would enable to determine both the current and recent HPAI 

H5 infection status.  

With the revision of the identification of high-risk species for HPAI dispersal, 

additional knowledge on their migratory behaviour, including inter- and intra-species 

differences is needed. Recent developments in GPS-tagging techniques now enable 

accurate, long-term and cost-effective tracking of birds (e.g. www.movebank.org). 

The low costs of GPS-tagging may also allow the tracking of populations tested 

positive for HPAI virus at Asian early detection sites (including the Asian part of 

Russia), to track virus vector movements in real time. This information might also 

reveal a more optimal timing or more accessible locations for surveillance.  

With regard to diagnostics, there is a need for accurate, quicker and more cost-

effective methods. The development of rapid (subtype specific) diagnostic tests 

(equivalent to human point of care [POC] tests) to detect the presence of avian 

influenza viruses in diagnostic material is needed to allow for cheap, real-time on-site 

screening under field conditions. Secondly, there is a need for sequencing/NGS 

methods that are practical under field conditions and/or to enable cheap and real-

time genotype determination in a laboratory setting (e.g. Oxford Nanopores 

MinION). Also, to determine target species for surveillance, there is a need for 

robust, quick and cheap validated serological assays.  

Avian influenza epidemiology studies are highly dependent on the public availability 

of genome sequence data and associated metadata. Although platforms like GISAID 

provide safe environments to share genomic data, some researchers and countries 

remain hesitant to do so, which negatively influences accurate and real-time 

epidemiological tracing of viruses and risk-evaluation. Additionally, sharing clinical 

samples and viruses across borders is a cumbersome process that limits and 

sometimes even prohibits sharing of materials and thereby international 

collaboration.  
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Conclusion 

Various surveillance programmes have provided substantial new knowledge on avian 

influenza in wild birds since the first European outbreak with Asian HPAI H5 viruses in 

2005. This knowledge can guide the optimization of future surveillance programmes 

and maximize the accompanying scientific output. Despite currently remaining gaps 

in knowledge, future evidence-based hypothesis-driven studies can reveal additional 

crucial insights into the dynamics of HPAI viruses. Such future studies would benefit 

from interdisciplinary international collaborations between virologists, 

ornithologists, ecologists, epidemiologists, pathologists, wildlife health experts, 

veterinarians and immunologists to work towards a global understanding of HPAI 

virus epidemiology and the design of appropriate preventive measures. International 

(animal) health organisations, national and international policy makers and 

politicians, and legal experts should facilitate such “One World, One Health” 

approaches on influenza. 
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Chapter 6 

 

 

Nederlandstalige samenvatting 
 

Vogelgriepvirussen (aviaire influenzavirussen) staan wereldwijd in de belangstelling 

doordat deze virussen een constante bedreiging vormen voor de gezondheid van 

mens en dier. Vogelgriepvirussen kennen twee verschijningsvormen, als 

laagpathogene aviaire influenza (LPAI) en als hoogpathogene aviaire influenza 

(HPAI) virussen. Wilde vogels, met name soorten behorende tot de ordes 

Anseriformes (vooral eenden, ganzen en zwanen) en Charadriiformes (onder andere 

meeuwachtigen), zijn de natuurlijke gastheersoorten voor LPAI virussen. LPAI 

virussen van de subtypen H5 en H7 kunnen in pluimvee veranderen (muteren) naar 

de gevaarlijker HPAI vorm. In tegenstelling tot LPAI virussen zorgen HPAI virussen 

voor snelle en massale sterfte in pluimvee en wisselende sterfte in wilde vogels. Ook 

zijn sommige HPAI virussen in staat om mensen te infecteren. In Zuidoost-Azië 

circuleren sinds 1996 HPAI H5 virussen die afstammen van het virus 

A/Goose/Guangdong/1/1996 (GSGD). Virussen die tot de GSGD groep behoren 

hebben zich in de tijd verder ontwikkeld waardoor ze in verschillende subgroepen in 

te delen zijn, ‘clades’ geheten (hoofdstuk 1). Sinds 2014 hebben HPAI H5 virussen van 

subclade 2.3.4.4 gezorgd voor drie opeenvolgende virusuitbraken in Europa. Vóór 

2014 is Europa twee keer getroffen door HPAI virussen uit de GSGD groep: in 2005/06 

hebben clade 2.2. virussen veel schade aangericht in heel Europa en in 2010 zijn clade 

2.3.2.1 virussen in Oost-Europa gevonden. Gebaseerd op de epidemiologie en de 

verspreidingspatronen van deze virussen werden wilde vogels verdacht als mogelijke 

vectoren. Migrerende wilde vogels zijn in staat om in korte tijd grote afstanden af te 

leggen, met name tijdens de migratie tussen de broedgebieden in Siberië en de 

overwinteringsgebieden in Europa, Azië, het Midden-Oosten of Afrika. Het 

samenkomen van grote aantallen vogels afkomstig uit verschillende gebieden biedt 

de mogelijkheid voor virussen om zich verder te verspreiden. Dit proefschrift 

beschrijft het onderzoek dat verricht is naar de rol die wilde vogels spelen in de 

verspreiding van vogelgriep in drie opeenvolgende Europese virusuitbraken vanaf 

2014. Daarnaast is er gekeken naar de bruikbaarheid van serologie en ‘next-

generation sequencing’ (NGS) als diagnostische methoden in uitbraaksituaties. 

 

De eerste uitbraak van clade 2.3.4.4 virussen: HPAI H5N8 groep A 

Vanaf begin 2014 veroorzaakten clade 2.3.4.4 H5N8 virussen uitbraken in pluimvee 

en wilde vogels in Azië. Deze virussen werden ingedeeld in twee groepen op basis 

van hun genetische samenstelling, groep A en groep B. Na de eerste detectie hebben 

virussen van groep A zich verder verspreid naar Europa en Noord-Amerika, 
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respectievelijk in november en december 2014. In tegenstelling tot de grote 

problemen die dit virus in Noord-Amerika heeft veroorzaakt in met name pluimvee, 

bleef het aantal detecties van dit virus in pluimvee en wilde vogels in Europa relatief 

gering, zonder waarneembare sterfte van wilde vogels. De laatste waarneming van 

dit virus in Europa was in februari 2015. Naar aanleiding van de eerste virusdetectie in 

Europa werd het in Nederland lopende actieve wildevogelsurveillanceprogramma, 

het testen van levende en gezonde dieren, geïntensiveerd. Wilde vogels van vele 

soorten werden getest op aanwezigheid van het H5N8 virus ten tijde van de uitbraak 

(n=5.389) en gedurende het opvolgende jaar (n=5.968). Het virus werd gevonden in 

drie smienten in december 2014 en februari 2015 (hoofdstuk 2.1). Deze resultaten 

kwamen overeen met de bevindingen in andere Europese landen waar ook weinig 

viruspositieve wilde vogels werden gevonden. Wanneer een vogel een infectie 

doormaakt, kunnen antistoffen tegen het virus gevormd worden die in het bloed 

komen. Eerder onderzoek had aangetoond dat met serologische testen (het testen 

van antistoffen in het bloed) onderscheid gemaakt kon worden tussen antistoffen 

die gevormd waren tegen verschillende specifieke HPAI H5 clades. Om de 

toepasbaarheid van deze serologische testen in een uitbraaksituatie te testen, 

werden ten tijde van de uitbraak bloedmonsters van wilde vogels genomen (n=945) 

om te bepalen welke vogelsoorten een infectie hadden doorgemaakt en mogelijk 

gastheersoorten zijn die een rol kunnen hebben in de verspreiding van het virus. Om 

de serologische test te valideren werden ook bloedmonsters van vóór de uitbraak en 

een jaar erna meegenomen. Antistoffen specifiek gericht tegen deze clade 2.3.4.4 

virussen waren zoals verwacht afwezig in bloedmonsters die genomen waren vóór 

2014, maar aanwezig in bloedmonsters genomen tijdens (4,6%) en in mindere mate 

een jaar na de uitbraak (3,5%) (hoofdstuk 2.1). De resultaten van de serologie en 

virologie wezen erop dat HPAI H5N8 virussen na de winter van 2014/15 niet in hoge 

mate in wilde vogels hadden gecirculeerd en dat het niet aannemelijk was dat deze 

virussen zich zouden handhaven in de wildevogelpopulatie.  

 

De tweede uitbraak van clade 2.3.4.4 virussen: HPAI H5N8 groep B 

Eind 2016 doken er opnieuw HPAI H5N8 virussen van clade 2.3.4.4 op in Europa na 

eerdere detecties van dit virus in Azië (inclusief het Aziatische deel van Rusland). 

Genetische analyses van dit virus toonden aan dat het tot groep B behoorde. Dit 

werd daarmee de tweede onafhankelijke introductie van een Aziatische clade 2.3.4.4 

virus in Europa. In tegenstelling tot de 2014/15 uitbraak vertoonden deze H5N8 

virussen uitwisseling van gensegmenten (‘reassortment’) met lokaal circulerende 

LPAI virussen. Deze tweede uitbraak van H5N8 virussen ging gepaard met hoge 

sterfte van wilde vogels in meerdere Europese landen. De vogelgroepen die vaak 

dood gevonden werden waren eendachtigen, meeuwen en roofvogels. De laatste 

groep raakte waarschijnlijk geïnfecteerd door het eten van zieke of dode 

watervogels. Ook in reactie op deze tweede uitbraak van H5N8 virussen werd de 
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surveillance in wilde vogels in Nederland geïntensiveerd. HPAI H5N8 virussen konden 

worden aangetoond in 57 wilde vogels van 12 soorten tijdens actieve (32/5.167) en 

passieve (25/36) surveillance-activiteiten, respectievelijk het testen van levende en 

dode vogels, tussen november 2016 en april 2017 (hoofdstuk 2.2). De vogelsoorten 

die viruspositief werden gevonden in actieve en passieve surveillance kwamen 

grotendeels overeen. Ook de soorten waarin antistoffen tegen deze clade 2.3.4.4 

virussen werden gevonden kwamen grotendeels overeen met de soorten die 

positief werden gevonden tijdens de eerste uitbraak; smienten, knobbelzwanen, 

kokmeeuwen en wilde eenden. Opvallend was dat het percentage dieren met 

antilichamen aan het begin van deze tweede uitbraak erg laag lag (2,0%) en 

gedurende de uitbraak steeg naar een gemiddelde incidentie van 4,2% (hoofdstuk 

2.2). Tijdens de 2014/15 uitbraak werden in een relatief hoog percentage vogels 

antistoffen gevonden terwijl het virus maar in een zeer laag aantal vogels werd 

gevonden. In tegenstelling daarmee werden er in de 2016/17 uitbraak in minder 

vogels antistoffen gevonden terwijl het virus juist in veel vogels werd aangetoond. 

Dit kan duiden op een andere timing van de piek in virusinfecties; in 2014/15 vóór 

aankomst en in 2016/17 na aankomst op de Europese overwinteringsgebieden. 

 

De derde uitbraak van clade 2.3.4.4 virussen: HPAI H5N6 groep B 

Vanaf december 2017 werden meerdere Europese landen getroffen door HPAI H5N6 

clade 2.3.4.4 virussen die uitbraken in (hobby)pluimvee en wilde vogels 

veroorzaakten. Tegelijkertijd kwamen er meldingen uit Zuid Korea en Japan waar 

deze virussen ook voor het eerst werden aangetroffen.  In tegenstelling tot de 

eerste twee uitbraken met H5N8 virussen, was dit H5N6 virus niet eerder ontdekt in 

Zuidoost Azië of Rusland. Genetische analyses van dit virus toonden aan dat dit virus 

waarschijnlijk tijdens 2017 ontstaan is uit een combinatie van genen afkomstig van 

het  2016/17 Europese HPAI H5N8 virus en Europees/Aziatische LPAI virussen 

(hoofdstuk 3). HPAI H5N6 virussen werden in Nederland gevonden in levende 

gezonde smienten en in de Republiek Georgië in een levende Armeense meeuw en 

een gejaagde wilde eend (hoofdstuk 3). Hoewel er geen massale sterfte van onder 

wilde vogels is opgetreden, viel het op dat er relatief vaak melding gemaakt werd 

solitair gevonden zieke of dode roofvogels. 

 

Het gebruik van next-generation sequencing methoden in uitbraaksituaties 

De genetische code van vogelgriepvirussen kan worden verkregen door de 

sequentie te bepalen van het erfelijk materiaal (RNA). De genetische code kan 

gebruikt worden voor fylogenetische analyses waarmee bepaald kan worden waar 

en wanneer de meest verwante virussen/virusgenen vóórkwamen. Traditionele 

sequencing methoden bepalen de consensussequentie, d.w.z. de genetische code 

die in de meerderheid van de virusdeeltjes in een (klinisch) monster aanwezig is. 

Nieuwere technieken, zogeheten ‘next-generation sequencing’ (NGS) technieken, 
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zijn in staat om de genetische code van individuele virusdeeltjes in een monster te 

bepalen. Hierdoor kunnen ook variaties die in een minderheid van de virusdeeltjes 

voorkomen achterhaald worden, de zogeheten minderheid single nucleotide 

varianten (mSNV). NGS technieken worden steeds populairder om virusgenomen te 

analyseren in uitbraaksituaties. Met name het bepalen van mSNVs kan helpen bij 

epidemiologisch traceren van virussen, d.w.z. het opsporen van de bron. Echter, er is 

weinig onderzoek gedaan naar de invloed van verschillende technieken en data-

analyse methoden op de betrouwbaarheid en vergelijkbaarheid van de resultaten. 

Om hier meer inzicht in te krijgen zijn drie HPAI H5N8 virussen, de NGS data en de 

analyse resultaten gedeeld en vergeleken tussen drie laboratoria (hoofdstuk 4).  

Deze studie toonde aan dat consensussequenties betrouwbaar waren, ongeacht de 

gebruikte sequencingtechniek of analysemethode, maar dat de vergelijkbaarheid en 

reproduceerbaarheid van mSNVs suboptimaal was (hoofdstuk 4). Voor het gebruik 

van mSNV data in onder andere epidemiologische studies moeten NGS technieken 

dus verder worden gestandaardiseerd en gevalideerd. 

 

Conclusie 

Wereldwijd wordt er veel onderzoek gedaan naar vogelgriep, dat heeft geleid tot 

kennis die de wetenschappelijke basis vormt van nieuwe hypotheses over de 

epidemiologie van HPAI virussen. Om surveillanceactiviteiten te optimaliseren en 

onze wetenschappelijke kennis verder te vergroten behoeven een paar gebieden 

verbetering, zoals de kennis omtrent de locatie van surveillance, de timing van 

surveillance, de vogelsoorten betrokken bij de spreiding van vogelgriep, de methode 

van surveillance, gastheersoortgedrag, diagnostische methoden en het delen van 

data.  
 

Europa is meerdere keren getroffen door uitbraken van Aziatisch hoog pathogene 

vogelgriepvirussen. Het is opvallend dat er overeenkomstige patronen zijn waarin 

deze virussen hun weg richting Europa vonden. Na circulatie van het virus in 

Zuidoost Azië spreidde het ten tijde van de voorjaarsmigratie naar meer noordelijke 

gebieden zoals het Qinghaimeer in China (mei/juni) en de Russische grensgebieden 

met Mongolië (de meren Uvs Nuur en Hövsgöl Nuur) en Kazachstan. Op de 

Russische grensgebieden werd het virus zowel gevonden vóór het broedseizoen 

(mei/juni) als na het broedseizoen (juli tot september). Verdere spreiding van het 

virus vanaf oktober/november naar Europa werd vaak in een vroeg stadium gezien 

op locaties zoals de Zwarte Zee, de Oostzee en het Bodenmeer. Deze Aziatische, 

Russische en Europese locaties kunnen daarom gezien worden als zogeheten “early 

detection sites” voor vogelgriepvirussen.  
 

Vogelsoorten die een rol spelen in de verspreiding van HPAI virussen zijn trekvogels 

die over lange afstanden migreren, zoals smienten, kuifeenden, meerkoeten en 

wintertalingen. Andere vogelsoorten die vaak besmet zijn gevonden, zoals 
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knobbelzwanen en meeuwen, zijn in Nederland standvogels of vogels die alleen over 

kortere afstanden migreren waardoor hun rol in lange-afstandsspreiding van 

vogelgriepvirussen minder groot zal zijn. Het is sterk aanbevolen om recente 

inzichten, zoals de hiervoor genoemde vogelsoortprioritering, te verwerken in de EU 

wetgeving. De huidige “Lijst van in het wild levende vogelsoorten die een hoger 

risico op aviaire influenza opleveren” (EU Beschikking van de Commissie 2005-726), 

is verouderd en alleen gericht op passieve surveillance. Ook vogelsoorten, zoals 

grote meeuwen, knobbelzwanen en roofvogels, die vaak ziek of dood gevonden 

worden in uitbraaksituaties, ook wanneer er geen duidelijke sterfte van 

eendachtigen wordt gezien, zijn hier niet allemaal in opgenomen. Het zou goed zijn 

een tweede lijst toe te voegen met daarin soorten die een mogelijke rol spelen in de 

verspreiding van HPAI virussen, zodat deze gebruikt kan worden in actieve 

surveillance programma’s als een “early warning system”, met name in afwezigheid 

van wilde vogel sterfte. 
   

De surveillance-activiteiten op de Aziatische en Russische “early detection sites” 

richten zich voornamelijk op passieve surveillance. Idealiter zou dit in de lente en 

zomer worden aangevuld met actieve surveillance-activiteiten, met name wanneer 

er geen wildevogelsterfte wordt gezien, om zo de kans op vroege detectie van HPAI 

virussen te vergroten. Om de detectiekans van binnenkomend virus in Europa in een 

vroeg stadium te vergroten, moeten nationale surveillanceprogramma’s zich richten 

op het testen van lange afstand vliegende trekvogels vanaf het eerste moment dat 

zij Europa binnenkomen in de herfst/winter. Vogelsoorten die hetzelfde jaar op 

andere locaties geïnfecteerd zijn gevonden kunnen hierbij als leidraad dienen. Om dit 

systeem kosteneffectief te houden kunnen verse fecesmonsters verzameld en 

getest worden. In het geval levendevogelvangsten mogelijk zijn, zal het nemen van 

een bloedmonster ten behoeve van serologie naast keel- en cloacaswabs inzicht 

geven in de huidige en recente HPAI H5 infectiestatus.       
 

Met de toenemende kennis over de gastheersoorten voor HPAI virussen, komen er 

ook meer vragen over hun migratiepatronen. Met het steeds makkelijker en 

goedkoper worden van technieken om vogels te voorzien van GPS zenders, zou dit 

kunnen worden ingezet om meer kennis te vergaren over migratiegedrag in het 

algemeen, of om vogelsoorten die positief worden getest voor HPAI virussen in Azië 

of Rusland te voorzien van een GPS zender om zo de gastheer te kunnen vervolgen 

op zijn weg naar Europa.  

Qua diagnostiek is er behoefte aan de ontwikkeling van goedkope en snelle 

methoden die in veldomstandigheden uit te voeren zijn en direct resultaat geven, 

zoals influenzasneltesten (point of care tests [POC]) en snelle sequening/NGS 

technieken zoals bijvoorbeeld MinION sequencing (Oxford Nanapope Technologies) 

om een direct inzicht te krijgen in het genotype van de circulerende virussen. In 

toevoeging hierop moeten er voor het toespitsen van surveillance robuuste, snelle, 
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goedkope en gevalideerde serologische assays komen waarin mogelijke 

gastheersoorten snel en betrouwbaar geïdentificeerd kunnen worden. 

Vervolganalyses zoals epidemiologische en fylogenetische studies zijn sterk 

afhankelijk van de hoeveelheid publiekelijk toegankelijke data. Ondanks dat er 

platforms zijn, zoals GISAID, die een veilige omgeving bieden om data te delen, lijken 

sommige onderzoekers terughoudend om virus- en gastheerdata onvertraagd te 

delen, hetgeen snelle en accurate epidemiologische analyses en risicoanalyses sterk 

negatief beïnvloed. Daarnaast is ook het delen van de virussen en klinische monsters 

zelf tussen landen een lastig proces dat vaak traag verloopt of soms zelfs onmogelijk 

blijkt waardoor internationale samenwerkingen worden bemoeilijkt.  
 

Internationale (dier)gezondheidsorganisaties, nationale en internationale politici, 

beleidsmakers en juristen dienden zich hard te maken voor het faciliteren van een 

“One World, One Health” aanpak met betrekking tot (vogel)griep. 
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