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1 |  INTRODUCTION

Since deciding whether or not to take a risk can have large 
consequences for personal and professional ventures, risk‐
taking propensity is examined in multiple scientific fields, 
such as neuroscience, psychology, criminology, economics, 
and management. For this purpose, several (computerized) 

behavioral tasks for measuring the construct have been de-
veloped. Well‐known tasks include the Iowa Gambling Task 
(IGT; Bechara, Damasio, Damasio, & Anderson, 1994), the 
Balloon Analogue Risk Task (BART; Lejuez et al., 2002), the 
Cambridge Gambling Task (CGT; Rogers et al., 1999), and 
the Game of Dice Task (GDT; Brand et al., 2005). Recently, 
Figner, Mackinlay, Wilkening, and Weber (2009) introduced 
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Abstract
Given the importance of risk‐taking in individuals’ personal and professional life, 
several behavioral tasks for measuring the construct have been developed. Recently, 
a new task was introduced, the Columbia Card Task (CCT). This task measures par-
ticipants’ risk levels and establishes how sensitive participants are to gains, losses, 
and probabilities when taking risk. So far, the CCT has been examined in behavioral 
studies and in combination with several (neuro)biological techniques. However, no 
electroencephalography (EEG) research has been done on the task. The present study 
fills this gap and helps to validate this relatively new experimental task. To this end, 
n = 126 students were asked to complete self‐reports (reward responsiveness, im-
pulsiveness, and sensation‐seeking) and to perform the CCT (and other risk tasks) in 
an EEG setup. The results show that feedback appraisal after risky decision‐making 
in the CCT was accompanied by a feedback‐related negativity (FRN) and a P300, 
which were stronger in response to negative than positive feedback. Correlations 
between the FRN and P300 difference wave on the one hand and risk‐related self‐
reports and behavior on the other were nonsignificant and small, but were mostly in 
the expected direction. This pattern did not change after excluding participants with 
psychiatric/neurological disorders and outliers. Excluding participants with reversed 
(positive > negative) difference waves strengthened FRN correlations. The impact 
such individuals can have on the data should be taken into account in future studies. 
Regarding the CCT in particular, future studies should also address its oddball struc-
ture and its masking of true values (censoring).
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a new computer task to measure risk‐taking propensity: the 
Columbia Card Task (CCT).

In the CCT, participants turn virtual cards from a 32‐card 
array. Most of these cards are win cards, which earn partici-
pants points. However, a small number of cards are loss cards, 
which make them lose points. In every trial, participants are 
given three information parameters to help them decide how 
many cards to turn: (1) the number of points they gain when 
turning a win card, (2) the number of points they lose when 
encountering a loss card, and (3) the number of loss cards 
present in the trial. The way in which cards are turned differs 
across task versions. In the so‐called “hot” CCT, participants 
turn the cards one by one (thereby accumulating points) until 
they voluntarily stop and cash the points or until they turn a 
loss card, at which point the specified loss amount is sub-
tracted from the points earned (and the remainder is cashed). 
In the “cold” CCT, however, participants indicate at the 
start of every trial how many cards they want to turn, after 
which the computer determines the trial's outcome, unseen 
by the participant. The key difference between the versions 
is whether or not participants receive feedback following 
their choices. In the cold CCT, participants get to see only the 
final result of the game, which elicits deliberative decision‐
making. In the hot CCT, they receive feedback after every 
card turn, eliciting affective decision‐making. Later work by 
Huang, Wood, Berger, and Hanoch (2013) introduced a third, 
“in‐between” version: the “warm” CCT. Here, participants 
select the cards they would like to turn at the start of a trial 
and then press a button that prompts the selected cards to 
turn, thereby providing delayed feedback.

Regardless of which version, the CCT is characterized by 
two advantages. First, since the task gives participants infor-
mation on the probability of losing (i.e., the number of loss 
cards present in a trial), it is an apparent risk task that leaves 
no room for conceptual ambiguity (de Groot & Thurik, 2018). 
This is different from, for example, the BART (where people 
are unaware of probabilities and therefore decide under un-
certainty) and the IGT (where people learn the probabilities 
while progressing through the task and thus gradually shift 
from making decisions under uncertainty to making deci-
sions under risk). The second advantage of the CCT is its use 
of a so‐called full factorial design, which independently var-
ies the three information parameters given to participants (the 
number of points awarded for turning win cards, the number 
of points subtracted when turning a loss card, and the number 
of loss cards present) across trials so that all possible combi-
nations are presented a given number of times. This design 
prevents risk and expected value from being confounded. In 
the IGT, BART, CGT, and GDT, (presumed) riskier options 
have a lower expected value than less risky options (Figner 
et al., 2009; Schonberg, Fox, & Poldrack, 2011). This causes 
a decomposition problem, since it is unclear to what extent 
someone's observed level of risk‐taking is driven by risk 

attitude (information on probabilities), sensitivity to reward 
(information on gains), or sensitivity to loss (information on 
losses). Its full factorial design enables the CCT to establish 
the extent to which these factors separately affect a partici-
pant's level of risk‐taking.

The CCT's advantages have so far been used in several 
behavioral studies and in combination with various (neuro)
biological techniques. For example, increased risk‐taking in 
the cold CCT has been associated with higher impulsivity 
(Penolazzi, Gremigni, & Russo, 2012) and more errors in an 
executive function task (Buelow, 2015). Increased risk‐taking 
in the hot CCT has been related to high grandiosity (Brunell 
& Buelow, 2017) and reward responsiveness (Penolazzi et al., 
2012). Using both the cold and hot CCT, several studies have 
found dissociations. For example, adolescents took more 
risk than adults in the hot but not in the cold CCT (Figner  
et al., 2009). A similar pattern was observed for patients with 
ventromedial prefrontal cortex (VMPFC) lesions compared 
to healthy controls (Spaniol, di Muro, & Ciaramelli, 2018). 
Biological dissociations have also been reported: electroder-
mal activity (EDA) only increased from baseline to decision 
phase in the hot and not the cold version of the task (Figner 
et al., 2009). Extending this finding, Holper and Murphy 
(2014) showed an opposite pattern for EDA and brain activ-
ity as measured with functional near‐infrared spectroscopy 
(fNIRS): whereas skin conductance was larger in the hot 
than in the cold CCT, prefrontal total hemoglobin concen-
tration (tHb) changes were larger in the cold version of the 
task. Another dissociation was reported in a study on hemi-
spheric asymmetry using transcranial direct current stimula-
tion (tDCS), showing that anodal left/cathodal right but not 
anodal right/cathodal left stimulation over the dorsolateral 
prefrontal cortex (DLPFC) decreased risk‐taking in the cold 
CCT, which fits with the hypothesized involvement of the 
left DLPFC in deliberative information processing (Pripfl, 
Neumann, Köhler, & Lamm, 2013).

In addition to these findings on absolute risk levels, sev-
eral studies have examined how individuals use the informa-
tion (on gains, losses, and probabilities) that is provided to 
them in every trial. Distinctive patterns of information use 
have, for example, been observed in adolescents (Figner  
et al., 2009) and older adults (Huang, Wood, Berger, & Hanoch,  
2015): both were shown to take less information into account 
than young and middle‐aged adults when making decisions 
in the hot and warm CCT, respectively. Aberrant sensitiv-
ity to information has also been observed in several patient 
groups: compared to healthy controls, crack cocaine users 
(Kluwe‐Schiavon, Viola, Sanvicente‐Vieira, Pezzi, & Grassi‐
Oliveira, 2016), heroin‐dependent persons (Saleme et al., 
2018), and individuals with lesions in the VMPFC (Spaniol 
et al., 2018) paid less attention to probabilities. Decreased 
information sensitivity has also been reported in healthy in-
dividuals. For example, the positive association between the 
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use of habitual cognitive reappraisal and risk‐taking in the 
cold CCT as reported by Panno, Lauriola, and Figner (2013) 
was accompanied by reduced sensitivity to loss and proba-
bility information, suggesting that reappraisal operates via 
decreasing the attention to the negative aspects of a choice. 
Likewise, Penolazzi et al. (2012) showed that the association 
between reward responsiveness and risk‐taking in the hot 
CCT interacted with information on gains and losses in such 
a way that individuals who scored high on reward responsive-
ness were sensitive to high gains while neglecting concomi-
tant high loss. These studies, among others, clearly illustrate 
the benefits of the CCT's full factorial design by examining 
not only risk behavior itself but also the motives that drive it.

Whereas many of the older decision tasks (such as the 
BART and the IGT) have been explored with electroenceph-
alography (EEG), no EEG research has yet been done on the 
CCT. Previous EEG research on the BART (e.g., Kardos  
et al., 2016; Kessler, Hewig, Weichold, Silbereisen, & Miltner, 
2017; Takács et al., 2015) and the IGT (e.g., Mapelli, Di 
Rosa, Cavalletti, Schiff, & Tamburin, 2014; Oberg, Christie, 
& Tata, 2011; Tamburin et al., 2014) primarily focused on the 
feedback phase of the tasks in which the rapid appraisal of the 
decision outcomes is usually captured by two event‐related 
potentials (ERPs): the feedback‐related negativity (FRN) and 
the feedback‐related positivity 300 (P300). Since previous 
(neuro)biological research on the CCT employed measures 
with lower temporal resolution (EDA [Figner et al., 2009; 
Holper & Murphy, 2014], fMRI [van Duijvenvoorde et al., 
2015], and fNIRS [Holper & Murphy, 2014]) or focused on 
stimulating rather than recording brain activity (tDCS; Pripfl 
et al., 2013), examining the ERPs for the CCT could aid in 
validating this relatively new experimental task.

The first ERP of interest, the FRN, is a negative deflec-
tion peaking at frontocentral sites, and reaches its maximum 
200–300 ms after feedback presentation (Holroyd & Coles, 
2002; Miltner, Braun, & Coles, 1997). Generation of the po-
tential is closely linked to the mesolimbic dopaminergic sys-
tem (Nieuwenhuis, Holroyd, Mol, & Coles, 2004; Walsh & 
Anderson, 2012). When an outcome is worse than expected, 
mesencephalic dopaminergic firing decreases (Holroyd & 
Coles, 2002). These transient dopaminergic dips signal dis-
inhibition of apical dendrites in the anterior cingulate cortex 
(ACC), which uses the signal to determine the most suitable be-
havior for the situation at hand. The FRN reflects an early and 
rapid bad versus good evaluation of feedback. Accordingly, it 
is influenced by only the valence and not by the magnitude 
of rewards, showing stronger amplitudes following negative 
than following positive feedback (Hajcak, Moser, Holroyd, & 
Simons, 2006; Miltner et al., 1997; Yeung & Sanfey, 2004). 
With regard to risk‐taking, stronger amplitudes have been 
related to increased risk aversion (Schuermann, Endrass, & 
Kathmann, 2012); blunted absolute and relative (difference) 
waves have been observed in individuals who typically take 

more risk, such as people dealing with borderline personality 
disorder (Endrass, Schuermann, Roepke, Kessler‐Scheil, & 
Kathmann, 2016), family alcohol problems (Fein & Chang, 
2008), or problematic internet use (Yau, Potenza, Mayes, & 
Crowley, 2015). These findings suggest a relationship be-
tween increased risk‐taking and underdeveloped internal 
models and warning signals. In line with this, larger FRN 
difference waves have been associated with higher executive 
function (Kóbor et al., 2015) and a preference for low‐risk 
decisions (Endrass et al., 2016).

The FRN is typically followed by the second ERP of in-
terest: the P300, a positive, parietally distributed deflection 
that peaks approximately 300–500 ms after feedback presen-
tation (Kopp & Wolff, 2000; Sutton, Braren, Zubin, & John, 
1965). This potential is linked to the noradrenergic system and 
hence to locus coeruleus activity (Nieuwenhuis, Aston‐Jones, 
& Cohen, 2005; Polich, 2007). Candidate regions for its neural 
basis are the cingulate cortex and adjacent areas involved in 
the circuit between frontal and parietal regions (Linden, 2005; 
Nieuwenhuis et al., 2005). Contrary to the FRN, the P300 re-
flects elaborate appraisal of feedback, varies with the motiva-
tional significance of this feedback (Kleih, Nijboer, Halder, & 
Kübler, 2010; Nieuwenhuis et al., 2005), and is sensitive to 
top‐down attentional control (Gray, Ambady, Lowenthal, & 
Deldin, 2004; Nieuwenhuis et al., 2005; Polich, 2007). The 
literature is inconsistent as to whether the P300 is sensitive 
to valence. Some studies indicate no effect (Yeung & Sanfey, 
2004), whereas others show a stronger P300 following posi-
tive feedback (Wu & Zhou, 2009; Zhou, Yu, & Zhou, 2010) 
or negative feedback (Crowley et al., 2009; Endrass et al., 
2016; Euser, Evans, Greaves‐Lord, Huizink, & Franken, 2013; 
Euser, Greaves‐Lord, et al., 2013; Fein & Chang, 2008; Kóbor 
et al., 2015; Schuermann et al., 2012). With regard to risk‐tak-
ing, absolute amplitudes are larger for high‐risk than for low‐
risk decisions (Endrass et al., 2016; Schuermann et al., 2012). 
These higher amplitudes, especially in response to negative 
feedback, are related to greater risk avoidance. Reduced (abso-
lute and difference) waves are observed in risk‐prone people, 
such as people who are alcohol‐intoxicated (Euser, van Meel, 
Snelleman, & Franken, 2011) and individuals who have a pa-
rental history of substance abuse (Euser, Greaves‐Lord, et al., 
2013), show features of problematic internet use (Yau et al., 
2015), or are diagnosed with borderline personality disorder 
(Endrass et al., 2016). Blunted absolute P300s may reflect a 
diminished ability to engage in feedback appraisal, outcome 
prediction, and cognitive control. Reduced difference scores 
can be the result of a heightened response to gains and/or a 
weaker response to losses.

The present study aids in validating the CCT by exam-
ining ERPs in response to feedback in the hot version of the 
task. The hot version is particularly suitable for this purpose, 
since the cold CCT does not provide feedback, and since the 
later‐developed warm CCT (which does provide feedback) is 
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still in a pioneering phase. First, we examine the FRN and 
P300, two ERPs that are commonly observed during feed-
back appraisal in other behavioral risk tasks, such as the 
BART and the IGT (Kessler et al., 2017; Oberg et al., 2011). 
Based on this literature, we expected that feedback appraisal 
in the hot CCT would also by accompanied by an FRN and a 
P300, and that both potentials would be more potent follow-
ing negative than following positive feedback. Second, we 
examine the correlations between the observed CCT ERPs 
and risk‐related self‐reports and behavior. Here, the absolute 
ERPs are transformed into difference waves by subtracting 
the positive feedback‐locked waveform from the negative 
one (see, e.g., Fein & Chang, 2008; Kóbor et al., 2015). The 
advantage of doing so is twofold: it eliminates exogenous 
components—that is, elements that are elicited in response 
to all stimuli and hence across all conditions (Miltner et al., 
1997)—and it corrects for individual differences in general 
wave amplitude, given that absolute waves may reflect a 
general tendency for small or large amplitudes, rather than 
the underlying construct (which is especially problematic for 
correlations). Correlations are calculated between the ERP 
difference waves and the following variables: behavioral 
measures derived from the hot CCT itself (average number 
of card turns; number of loss card encounters; sensitivity to 
gain, loss, and probability); risk‐taking on the cold CCT and 
the BART (which has been shown to correlate with risk‐tak-
ing on the hot CCT: Buelow & Blaine, 2015; Saleme et al., 
2018); gender (which has been shown to correlate with sev-
eral tasks and types of risk‐taking and which has been related 
to the FRN and P300: Byrnes, Miller, & Schafer, 1999; Ding 
et al., 2017; Hirayasu, Samura, Ohta, & Ogura, 2000); and 
three self‐report constructs that have been related to either 
hot CCT behavior itself or to behavior and electrophysiol-
ogy in other tasks probing affective decision‐making: reward 
responsiveness (Penolazzi et al., 2012) and impulsivity and 
sensation‐seeking (Euser et al., 2011; Lejuez et al., 2002). 
Based on this literature, we hypothesized that reduced FRN 
and P300 difference scores (i.e., smaller differences between 
responses to negative and positive feedback) are associated 
with the following variables: being male; higher risk‐taking 
in the BART, the cold CCT, and the hot CCT; a higher num-
ber of loss cards encountered; higher reward responsiveness, 
impulsivity, and sensation‐seeking; increased sensitivity to 
gains; and lower sensitivity to losses and probabilities.

2 |  METHOD

2.1 | Participants
The sample consisted of n = 126 students (52.38% female) re-
cruited from two universities, with a mean age of M = 21.01 
(SD  =  2.62), range 17–31  years. Most participants were 

studying social sciences (38.89%), economics (26.19%), or 
management (19.84%), although all main fields of study (in-
cluding law, mathematics, and medicine) were represented. 
In exchange for participation, students received either course 
credit or a standard fee of €25. They were informed that they 
could earn extra money (up to €7.50) based on their task 
performance. All participants provided written informed 
consent. The study was approved by the institutional review 
board, and all procedures performed were in accordance with 
the 1964 Helsinki declaration and its later amendments.

2.2 | Procedure
The measures were part of a larger study on decision‐making 
under uncertain and risky conditions. Participants signed up 
online based on a brief description of the study design, after 
which they received an email with more elaborate information 
and the request to not drink alcohol, coffee, or energy drinks 
on the day of the appointment to prevent these substances 
from impacting the measurements. This email also contained 
a link to a web‐based survey including the self‐report meas-
ures, which participants were required to complete before 
their appointment at the laboratory. During the appointment 
itself, the procedure was explained to the participant, and the 
participant was asked to provide written informed consent. 
Then the participant was seated in a light‐ and sound‐attenu-
ated EEG room, was wired to the electrodes, and was pre-
sented with the BART and both CCTs. The order in which 
the tasks were presented was counterbalanced across partici-
pants. After finishing the tasks, the participant was debriefed. 
The full session lasted approximately 1.5 hr.

2.3 | Self‐report measures

2.3.1 | Reward responsiveness
Reward responsiveness (RR) was measured using the RR 
subscale of the Behavioral Approach System (BAS) ques-
tionnaire (Carver & White, 1994). This subscale consists of 
five items (4, 7, 14, 18, and 23) and is answered on a 4‐point 
scale with labels “completely disagree,” “disagree,” “agree,” 
and “completely agree.” The RR score ranges from 5 to 20, 
with higher scores indicating higher trait reward respon-
siveness. In the present study, scores ranged from 9 to 20. 
Cronbach's alpha was α = 0.68.

2.3.2 | Impulsiveness
Impulsiveness was measured using the Barratt Impulsiveness 
Scale 11 (BIS‐11; Patton, Stanford, & Barratt, 1995), which 
consists of 30 items that are answered on a 4‐point scale 
with labels “rarely/never,” “occasionally,” “often,” and 



   | 5 of 16DE GROOT anD Van STRIEn

“almost always/always.” The BIS‐11 score ranges from 30 
to 120, with higher scores being indicative of higher trait 
impulsiveness. Scores in the present study ranged from 43 
to 87. Cronbach's alpha was α = 0.76.

2.3.3 | Sensation‐seeking
Sensation‐seeking was measured using the Brief Sensation 
Seeking Scale (BSSS; Hoyle, Stephenson, Palmgreen, 
Lorch, & Donohew, 2002), which consists of eight items 
that are answered on a 5‐point scale with labels “strongly 
disagree,” “disagree,” “neither disagree nor agree,” “agree,” 
and “strongly agree.” The BSSS scale ranges from 8 to 40, 
with higher scores indicating higher trait sensation‐seeking. 
Scores in the present study ranged from 11 to 37. Cronbach's 
alpha was α = 0.77.

2.4 | Behavioral tasks

2.4.1 | Automatic Balloon Analogue Risk 
Task (BART)
In the automatic BART (Euser, Evans, et al., 2013; Euser, 
Greaves‐Lord, et al., 2013; Pleskac, Wallsten, Wang, & 
Lejuez, 2008; Yau et al., 2015), participants pump up a 
virtual balloon. More pumps equal more points but also 
increase the chance that the balloon pops, in which case 
all points accumulated in that trial are lost. The task setup 
is presented in Figure 1. On the left side of the screen, the 
explosion point of the previous balloon is shown. On the 
right, three parameters are provided: how many points are 
at stake in the present trial (blue box), how many points 
have been accumulated so far (green box), and the trial 

F I G U R E  1  Task setup of the Balloon Analogue Risk Task (BART). The left screen shows the starting position. The upper right screen shows 
a situation in which the participant receives positive feedback. The lower right screen shows a situation where negative feedback is provided
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number (red box). In the middle, a number dial is shown. 
Participants had to pump up 60 balloons. Via the num-
ber dial, participants first indicated how many times they 
wanted to pump the balloon, ranging from 1 to 128. Then, 
they pressed “P”, after which the balloon started inflating. 
After inflation, either positive or negative feedback fol-
lowed. In case of positive feedback, the balloon remained 
intact and a green dollar sign appeared (Figure 1, upper 
right). In case of negative feedback, the balloon popped 
and a red cross appeared (Figure 1, lower right). The ex-
plosion likelihood distribution was equal for every possi-
ble pump, with an average of 64 pumps, and was the same 
for all participants. As in the original BART, participants 
were not informed about the explosion likelihood distribu-
tion. The variable of interest for the BART was the average 
number of pumps across all trials.

2.4.2 | Cold and hot Columbia Card Task 
(CCT)
In the cold and hot CCT (Figner et al., 2009), participants are 
presented with a virtual array of 32 (4 × 8) cards. The major-
ity of these cards earn the participant points (win cards), but 
in every array a small number of loss cards is hidden, for 
which points are subtracted. In the cold CCT, participants 
choose the total number of cards they would like to turn at 
the start of every round by clicking a number from 0 to 31. 
After selecting a number, a message appears, informing par-
ticipants that they are continuing to the next round. This task 
setup is presented in Figure 2. No feedback is provided during 
the cold CCT; participants are only informed about their final 
points after finishing the task. In the hot CCT, in contrast, 
participants turn over cards one by one in a self‐paced man-
ner and receive immediate feedback (i.e., without delay) in 
the form of a happy face (win card) or a sad face (loss card). 
Participants can decide to stop turning cards at any point, 

terminating the round. However, if they encounter a loss card 
(which is shown for 2,000 ms), the round terminates auto-
matically, and the specified loss amount is subtracted from 
the points earned in that round. The task setup of the hot CCT 
is presented in Figure 3. In both the cold and the hot CCT, 
participants are given three information parameters to help 
them decide how many cards to turn: (1) the number of points 
they gain when turning a win card, (2) the number of points 
they lose when turning a loss card, and (3) the number of loss 
cards hidden in a round. These parameters are presented at 
the top of the screen and are independently varied across tri-
als by means of a full factorial design. The number of levels 
within a parameter differs across studies, with most studies 
using two levels per parameter: 250 or 750 loss, 10 or 30 win, 
and 1 or 3 chance (Brunell & Buelow, 2017; Buelow, 2015; 
Holper & Murphy, 2014; Huang et al., 2013; Panno et al., 
2013; Penolazzi et al., 2012; Pripfl et al., 2013; Schumpe et 
al., 2017). In the present study, we ran this 2 × 2 × 2 factorial 
six times, resulting in 48 trials ([2×2×2]×6). Given that the 
focus of the present study is on the hot CCT, the only vari-
able of interest extracted from the cold CCT was the absolute 
risk level (i.e., the number of cards chosen). The variables 
of interest for the hot CCT were the average number of card 
turns; the number of loss card encounters; and sensitivity to 
gains, losses, and probabilities. Since data from the hot CCT 
are inherently censored (i.e., people's observed risk level in 
trials that randomly forcedly end when turning a loss card 
does not necessarily reflect their true risk level), the variables 
of interest were in addition calculated using only data from 
trials in which participants voluntarily stopped turning cards.

2.5 | Electrophysiological recordings and 
signal processing
EEG was recorded using a 32‐channel amplifier and 
ActiveTwo data acquisition software (Biosemi, Amsterdam, 

F I G U R E  2  Task setup of the cold Columbia Card Task (CCT). The left screen represents the initial setup in which the participant indicates 
how many cards he/she wants to turn by clicking a number from 0 to 31. The right screen shows the message participants see after selecting a 
number, which informs them that the next round is about to start and that the information parameters may change
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the Netherlands). Ag/AgCl active electrodes were placed on 
the scalp by means of a head cap according to the 10–20 plac-
ing system. The electrooculogram (EOG) was recorded by 
placing flat electrodes above and below the left eye (vertical 
EOG) and at the outer canthi of both eyes (horizontal EOG). 
Two reference electrodes were placed on the mastoids. An 
active (common mode sense) and passive (driven right leg) 
electrode comprised a feedback loop for amplifier referenc-
ing. All signals were digitized with a sampling rate of 512 Hz.

The data were analyzed offline using Brain Vision Analyzer 
2 (Brain Products, Gilching, Germany). First, all EEG chan-
nels were referenced to the mathematically linked mastoid 
electrodes. Then we applied a high‐pass filter of 0.10 Hz, a 
low‐pass filter of 30.00  Hz, and a notch filter of 50.00  Hz 
(to filter out powerline artifacts). Data were segmented into 

epochs ranging from 100 ms before onset of the feedback pre-
sentation to 1,000 ms after onset of the feedback presentation. 
Then ocular artifact correction (Gratton, Coles, & Donchin, 
1983) and baseline correction (using the 100 ms pre‐feedback 
presentation window) were applied. Finally, extreme ampli-
tudes (below –75 µV or above 75 µV) were removed using 
automatic artifact rejection. The average number of segments 
used for calculating individuals’ total ERP was M = 172.80 
following positive feedback (a happy icon) and M = 8.52 fol-
lowing negative feedback (a sad icon). The time window used 
for analyzing the FRN was 220–300 ms; the P300 was ana-
lyzed across a time window of 300–450 ms. All epochs were 
averaged across midline (Fz, Cz, Pz, Oz) and adjacent (F3, 
F4, C3, C4, P3, P4, O1, O2) electrodes in order to minimize 
myogenic artifacts.

F I G U R E  3  Task setup of the hot Columbia Card Task (CCT). The left screen represents the initial setup the participant encounters. The 
upper right screen shows the setup during turning the cards. The lower right screen shows the setup when a loss card is encountered
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2.6 | Analyses
The first aim of the study was examining whether feedback 
appraisal after risky decision‐making in the CCT was accom-
panied by an FRN and P300, and whether these ERPs dif-
fered between positive and negative feedback. To this end, 
the averaged absolute and difference waves as recorded from 
100 ms before to 1,000 ms after feedback presentation were 
plotted. In addition, two repeated‐measures analyses of vari-
ance (ANOVAs) (2 [valence: positive, negative] × 4 [clus-
ter: frontal, central, parietal, occipital]) were performed to 
examine whether the ERP in response to positive feedback 
significantly differed from the ERP in response to negative 
feedback for the 220–300 FRN time period and for the 300–
450 P300 time period. A Bonferroni‐corrected 5% alpha level 
was used. Since repeated‐measures ANOVAs are suscepti-
ble to violation of the sphericity assumption, this assumption 
was tested using Mauchly's test of sphericity. Preempting 
the findings, the observed violations were relatively severe 
(�̂� < 0.75). Therefore, following the advice of Field (2013), 
these violations were corrected for by adjusting the degrees 
of freedom using the Greenhouse‐Geisser estimate.

The second research aim was to examine the validity of 
the CCT by pairwise correlating the EEG difference waves 
with risk‐related self‐reports and behavioral constructs: 
gender; average number of hot CCT card turns; number of 
hot CCT loss card encounters; sensitivity to gain, loss, and 
probability information (calculated using per‐trial correla-
tions between gain/loss/probability values and the number of 
cards chosen); average number of cold CCT cards; average 
number of BART balloon pumps; and self‐reported reward 
responsiveness, impulsiveness, and sensation‐seeking. Given 
the relatively large number of correlations (22), we would 
expect one correlation to be wrongly marked as “significant”. 
Because of the limitations associated with significance test-
ing (Cohen, 1990), we also focused on the magnitude of the 
effects (the correlation coefficients).

Finally, three sets of robustness analyses were performed. 
The first robustness check examined whether the correlational 
findings lasted when the behavioral CCT data were solely 
based on trials in which participants voluntarily stopped 
turning cards (hence trials for which data was uncensored). 
A second check examined the robustness of the ERPs itself 
and their correlations with the self‐reports and behavioral con-
structs when excluding (1) individuals who reported a current 
psychiatric or neurological disorder, (2) individuals whose 
FRN and/or P300 difference scores were “reversed” (i.e., the 
opposite of what was expected, namely a stronger response 
to positive than negative feedback), and (3) individuals with 
univariate and/or bivariate outlying values as detected via vi-
sual inspection of the histograms, boxplots, and scatterplots, 
and by checking for extreme (> |3.29|) standardized residuals. 
In a third check, we abandoned the difference wave approach 
and examined correlations between self‐report/behavioral 

measures and absolute ERPs (i.e., the separate measures for 
FRN gain, FRN loss, P300 gain, and P300 loss). Given that a 
difference score is computed using absolute scores, its correla-
tion may be conflated, and its interpretation may be unclear 
(Meyer, Lerner, de los Reyes, Laird, & Hajcak, 2017). In par-
ticular, if the gain and loss ERPs correlate with each other but 
are correlated with risk‐taking in opposite directions, individ-
ual correlations are suppressed when using difference scores. 
This last robustness check examined whether this was the case 
for the present data.

3 |  RESULTS

3.1 | Visual representation and 
interpretation of the ERPs
Figures 4 and 5 show the scalp distributions of respec-
tively the FRN and the P300 for positive feedback, negative 
feedback, and the difference wave. FRN activity peaked at 
frontocentral sites, while its difference activity was located 
more parietally. P300 activity showed a central‐parietal 
distribution.

The grand averaged ERP waveforms are presented in 
Figure 6. The waveform appeared robust, with a clear FRN in 
the 220–300 ms window and a clear P300 in the 300–450 ms 
window, both of which were stronger following negative 
than following positive feedback. These observations were 
confirmed by the repeated‐measures ANOVAs, which were 
(after discarding ERP segments in the preprocessing phase) 
based on data from n = 121 individuals. For the FRN, the 
Greenhouse‐Geisser correction was applied to the main effect 
of cluster (χ2(5) = 269.65, p < 0.001, �̂� = 0.50) and to the 
interaction (χ2(5) = 214.20, p < 0.001, �̂�= 0.56). The main 
effects showed that the potential was stronger in response 
to negative than to positive feedback (∆2.70 µV, F(1, 120) 
= 31.72, p < 0.001, η2

p = 0.21), and that it differed across 
clusters (F(1.50, 179.96) = 25.55, p  <  0.001, η2

p = 0.18). 
These factors interacted as well (F(1.68, 201.97) = 28.24, 
p < 0.001, η2

p = 0.19): the effect of valence was strongest 
at central (∆4.53  µV) and parietal (∆3.77  µV) electrodes, 
and weaker at frontal (∆1.24 µV) and occipital (∆1.25 µV) 
ones. For the P300, the Greenhouse‐Geisser correction was 
again applied to the main effect of cluster (χ2(5) = 215.28, 
p < 0.001, �̂�= 0.62) and to the interaction (χ2(5) = 204.98, 
p < 0.001, �̂�= 0.60). The main effects confirmed that the po-
tential was stronger in response to negative than to positive 
feedback (∆10.57  µV, F(1, 120) = 352.87, p  <  0.001, η2

p 
= 0.75), and that it differed across clusters (F(1.87, 223.94) 
= 85.60, p  <  0.001, η2

p = 0.42). The interaction (F(1.80, 
215.69) = 126.95, p < 0.001, η2

p = 0.51) showed that the 
difference in valence was weaker at occipital (∆4.90 µV) than 
at central (∆14.57  µV), frontal (∆11.72  µV), and parietal 
(∆11.09 µV) sites.



   | 9 of 16DE GROOT anD Van STRIEn

3.2 | Correlational analyses
Table 1 shows the correlations between the FRN and P300 
difference waves on the one hand and the risk‐related self‐re-
ports and behavioral constructs on the other. The correlations 
involving gender are point‐biserial (rpb); the remaining cor-
relations are bivariate (r). Analyses were performed pairwise 
on an n between 119 and 121, with most missing values re-
sulting from incomplete surveys or missing ERP data. None 
of the correlations was significant at a 5% level, which was 
fewer than the one significant correlation that was expected 
by chance. The majority of the effects were small but had the 
expected direction.

Since the FRN is a negative potential, its difference score 
is generally negative. Therefore, we expected a positive cor-
relation with risk‐taking (i.e., the more negative the FRN 
difference score, the smaller self‐reported or behavioral risk‐
taking, and vice versa). In line with this, smaller FRN differ-
ence scores (reflecting reduced electrophysiological response 
to the feedback) were correlated with encountering more loss 
cards in the hot CCT (r = 0.05), choosing more cards in the 
cold (r = 0.10) and hot (r = 0.03) CCT, pressing more bal-
loon pumps in the BART (r = 0.09), being less sensitive to 
information on losses (r  =  0.14), and reporting higher im-
pulsiveness (r  =  0.13) and sensation‐seeking (r  =  0.09). 
Three correlations were in the opposite direction of what was 

F I G U R E  4  Topographical distribution of FRN activity across 
the scalp for positive feedback, negative feedback, and the difference 
between these two (negative minus positive)

F I G U R E  5  Topographical distribution of P300 activity across 
the scalp for positive feedback, negative feedback, and the difference 
between these two (negative minus positive)
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expected, namely those for gender (r = 0.09), sensitivity to 
gains (r = –0.10), and reward responsiveness (r = –0.08).

Since the P300 is a positive potential, its difference scores 
are generally positive, and hence negative correlations were 

expected between this difference score and risk‐taking (i.e., 
the more positive the P300 difference score, the smaller self‐
reported or behavioral risk‐taking, and vice versa). In line 
with this, smaller P300 difference scores (reflecting reduced 

F I G U R E  6  Grand averaged ERPs for the hot Columbia Card Task (CCT). The dash‐dotted line represents the electrophysiological response 
to positive feedback; the dashed line represents the electrophysiological response to negative feedback; and the solid line is the calculated 
difference wave
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electrophysiological response to the feedback) were correlated 
with encountering more loss cards in the hot CCT (r = –0.06), 
being less sensitive to information on losses (r = –0.05) and 
probabilities (r = –0.05), and reporting higher reward respon-
siveness (r = –0.16), impulsiveness (r = –0.03), and sensa-
tion seeking (r = –0.04). Four correlations were in opposite 
direction of what was expected, namely those for gender 
(r = –0.04), sensitivity to gains (r = 0.16), cold CCT cards 
chosen (r = 0.07), and BART balloon pumps (r = 0.13).

3.3 | Robustness checks
The first robustness analysis examined whether the correla-
tional findings lasted when only using uncensored behavioral 
CCT data. To this end, eight correlations were rerun, namely 
those including the average number of card turns in the hot 
CCT, gain sensitivity, loss sensitivity, and probability sen-
sitivity. Half of these correlations (most relatively large) re-
mained similar in size and direction; three (all of them small) 
changed direction; and one changed substantially in size, 
namely the correlation between hot CCT card turns and the 
P300 difference wave, which changed from –0.01 to –0.10 
and thereby became more in line with the hypothesis that a 
smaller P300 difference wave is associated with taking more 
risk (see Table S1).

A second set of robustness checks examined the effect of 
participant exclusion (Tables S2–S4, Figures S1–S3). The ex-
clusion of individuals with psychiatric or neurological disorders 
(n = 5) did not impact the direction of the correlations, nor did 
it substantially change correlation size. The same was true for 
exclusion of individuals with outlying values (n = 5), except for 
the correlation of the P300 difference wave with impulsiveness 
(which changed direction: from r = –0.03 to r = 0.05) and with 

the BART (which turned significant: from r = 0.13 to r = 0.20). 
Neither exclusion impacted the grand averaged waveform or 
the topographical distribution of the ERPs. The largest change 
in findings was observed when excluding individuals with re-
versed difference scores (n = 48). This caused a moderate in-
crease in FRN amplitude and in most FRN difference score 
correlations, which became more in line with our hypotheses, 
such as the correlation with hot CCT card turns (from r = 0.03 
to r = 0.20), loss card encounters (from r = 0.05 to r = 0.20), 
and loss sensitivity (from r = 0.14 to r = 0.30). The correlations 
for the P300 difference wave, however, changed in a less con-
sistent manner and overall became less in line with our hypoth-
eses. Since most exclusions resulted from reversed FRN scores, 
the impact on P300 correlations may indeed have been more 
equivocal (by also discarding “regular” scores).

The third and final set of robustness checks examined 
whether the use of difference scores suppressed the correla-
tions between the absolute ERPs and the risk‐related self‐re-
ports and behavioral constructs. The gain and loss FRN ERPs 
were correlated with each other (r = 0.31), as were the gain 
and loss P300 ERPs (r = 0.37). However, few of the gain and 
loss ERPs correlated with risk‐related constructs in opposite 
direction (5 out of 11 for the FRN and 3 out of 11 for the 
P300), hence indicating no major risk of conflated difference 
scores. Examination of the individual correlations (Table S5) 
showed that the majority of FRN loss and P300 gain cor-
relations were not in line with expectations, and hence did 
not outperform the correlations based on difference scores. 
However, most FRN gain and P300 loss correlations were in 
line with expectations. A stronger FRN in response to gains 
was associated with being male (r  =  0.19), higher self‐re-
ported and behavioral risk‐taking (r = –0.02 to r = –0.23), 
and lower focus on loss (r = –0.19) and probability (r = 

M SD Min Max

Correlations

FRN CCT differ-
ence wave

P300 CCT difference 
wave

Gender (male = 0) 0.52 0.50 0.00 1.00 0.09a –0.04a

Hot CCT average card turns 7.25 2.18 1.65 12.65 0.03 –0.01

Hot CCT loss card encounters 22.21 8.31 6.00 44.00 0.05 –0.06

Hot CCT gain sensitivity 0.16 0.18 –0.22 0.57 –0.10 0.16

Hot CCT loss sensitivity –0.22 0.18 –0.64 0.22 0.14 –0.05

Hot CCT probability sensitivity –0.51 0.12 –0.86 –0.11 0.01 –0.05

Cold CCT number of chosen cards 8.57 3.71 1.60 21.81 0.10 0.07

BART number of chosen pumps 58.49 11.72 13.42 85.25 0.09 0.13

Reward responsiveness 16.63 2.15 9.00 20.00 –0.08 –0.16

Impulsiveness 65.46 8.32 43.00 87.00 0.13 –0.03

Sensation seeking 25.48 5.62 11.00 37.00 0.09 –0.04
aPoint‐biserial correlations (rpb). 

T A B L E  1  Correlations between the FRN and P300 difference waves and risk‐related self‐reports and behavioral constructs
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–0.10) information. A stronger P300 in response to losses 
was associated with being female (r = 0.05), lower self‐re-
ported and behavioral risk‐taking (r = –0.06 to r = –0.13), 
and a stronger focus on information on loss (r = –0.10) and 
probability (r = –0.07). Thus, the FRN gain and P300 loss 
correlations provided information beyond that offered by the 
correlations for the difference scores.

4 |  DISCUSSION

The present study examined ERPs in response to feedback 
in the hot version of the CCT (Figner et al., 2009). In line 
with research on feedback‐related ERPs in for example the 
IGT and the BART, feedback appraisal in the CCT was ac-
companied by a clear FRN and P300, which were stronger 
in response to losses than to gains. This pattern did not 
change after excluding individuals with psychiatric or neu-
rological disorders, individuals with outlying scores, or 
individuals with reversed (positive > negative) ERP differ-
ence scores. Hence the ERPs appeared robust. Despite this, 
correlations between the ERP difference waves and risk‐re-
lated self‐reports and behavioral measures were nonsignifi-
cant and small. Most correlations did show an effect in the 
expected direction though: for example, smaller FRN dif-
ference scores were associated with taking more risk in the 
cold CCT, decreased sensitivity to information on losses, and 
higher impulsiveness; smaller P300 difference scores were 
most strongly associated with higher reward responsiveness. 
When correlating absolute instead of difference scores, the 
FRN gain and P300 loss (but not the FRN loss and P300 gain) 
also showed effects in the expected direction. Excluding in-
dividuals with reversed ERP difference waves strengthened 
most FRN correlations, thereby bringing the findings more in 
line with the hypotheses. Several possible explanations exist 
why individuals show such a reversed pattern. First, they may 
respond very weakly to losses and/or very strongly to gains, 
resulting in a more potent ERP in response to gains than to 
losses. Alternatively, these reversed waves may result from 
individuals’ expectations. Especially the FRN has been sug-
gested to represent a reward prediction error, an indicator 
of the difference between expected and observed outcomes 
(Holroyd & Coles, 2002; Sambrook & Goslin, 2015). Hence, 
encountering losses may elicit only modest ERPs when they 
are expected, compared to cases in which they are not. Given 
the impact participants with reversed scores had on the corre-
lations in the robustness analyses, future studies may want to 
address this phenomenon and examine its underlying causes.

This study's results combined with previous findings also 
illustrate some challenges that are more specific to the CCT 
and that would benefit from further investigation. First, for 
studies using the CCT in combination with EEG, it will be 
key to have a more elaborate understanding of which (task) 

characteristics influence the ERPs, and whether such influ-
ence is desirable. In addition to the large sample size, one 
factor possibly influencing the strength and robustness of the 
CCT's potentials concerns the reward structure. Risk tasks can 
offer participants different types of incentive, such as mone-
tary rewards (Xu et al., 2016), social rewards (Op de Macks et 
al., 2017), or sexual rewards (Lawyer, 2013). Moreover, tasks 
differ in how participants are penalized when losing a trial: it 
may result in not receiving any reward, or in losing a reward 
that was acquired before. In the CCT, the points participants 
earn are truly at stake since turning a loss card means that the 
specified loss amount is subtracted from the points earned. 
Furthermore, participants in the present study were offered 
real (vs. hypothetical) money, which increased the ecologi-
cal validity of the task and which has been shown to elicit a 
stronger FRN for negative feedback (Xu et al., 2016). This 
combination of losing points that represent real money may 
induce a larger prediction error and therefore stronger ERPs. 
This contribution to the presently observed robust ERPs can 
be deemed desirable as it reflects the constructs presumed to 
underlie these ERPs. A second factor that may have influ-
enced the ERPs seems less desirable: the stimulus‐sequence 
history. In the CCT, most loss‐card encounters are preceded 
by a series of win card encounters, with losses being roughly 
20 times less frequent than wins. Such oddball structures 
have been shown to impact ERPs: FRN amplitudes tend to 
be larger when successive encounters with a stimulus are fol-
lowed by feedback of opposite valence compared to feedback 
of the same valence (Holroyd & Coles, 2002), and P300 am-
plitudes are larger after presenting a deviant or salient stim-
ulus, especially when this stimulus is preceded by a series of 
other stimuli (Nieuwenhuis et al., 2005; Squires, Wickens, 
Squires, & Donchin, 1976). The oddball‐like structure of the 
CCT can reasonably have contributed to the strength of the 
ERPs (especially the negative‐feedback waveform), thereby 
adding unintended systematic variance that future studies 
may want to mitigate.

In addition to this EEG‐related concern, the hot version 
of the CCT poses a more general challenge: censoring. 
As briefly discussed in the method section, data from the 
hot CCT are inherently censored as people's observed risk 
level in trials in which they turn a loss card does not nec-
essarily reflect their true risk level, since they might have 
taken more risk (i.e., turned more cards) if they had had the 
chance to do so. In the present study, we accommodated 
for censoring by running two sets of analyses: the main 
analyses, using data from all trials; and robustness analy-
ses, using only data from trials in which participants had 
voluntarily stopped turning cards. A similar approach was 
employed by Kluwe‐Schiavon et al. (2015), who reported 
no major changes in their final results. In the present study, 
one of eight rerun correlations substantially changed in 
size, demonstrating the effect that censoring can have on 
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a study's findings. An alternative solution to censoring is 
offered by Figner et al. (2009), who prevented censoring 
ex ante by rigging the task. In their task setup, 54 exper-
imental trials are supplemented by nine trick trials. In the 
experimental trials, the loss card is programmed to be the 
last possible card, so that participants never encounter it 
and so that all stopping points are voluntary. These uncen-
sored data are used for analysis. Credibility is upheld by 
randomly interspersing the nine trick trials, which are pro-
grammed in such a way that participants quickly encoun-
ter a loss card. However, Figner et al.’s (2009) solution to 
censoring seems problematic, as the rigged percentage of 
trials in which participants encounter a loss card seems un-
realistically low: 9÷[54+9] )×100≈14.29. In the present 
unrigged study, participants on average encountered a loss 
card in 22.21÷48×100≈46.27 percent of trials, which was 
shown to be significantly higher using a one sample t‐test: 
t(125) = 20.73, p  <  0.001. Arguably, presenting people 
with (too) little negative feedback could cause them to take 
more risk. Tentative evidence for this conjecture is found 
in the large difference between risk levels found in stud-
ies using a rigged CCT (~23 cards [Figner et al., 2009], 
27 cards [Markiewicz & Kubińska, 2015], and 21 cards 
[Penolazzi et al., 2012]) and studies in which the cards are 
truly shuffled (7.25 [8.48 uncensored] in the present study, 
and ~12 in Holper & Murphy, 2014).

A final, easier solution to censoring is omitting the hot 
CCT altogether and instead using the warm CCT, which 
also measures affective risk‐taking but delays the feedback, 
so that participants first decide how many cards they want to 
turn and only then observe the (per‐card) outcome of their 
decision. Although this does solve the issue of censoring, it 
offers no solution to the other challenge we discussed with 
regard to the CCT, that is, its oddball structure. Notably, 
the rigged design by Figner et al. (2009) does solve the odd-
ball problem (at least within the trial). Whereas loss card 
encounters in an unrigged design are generally preceded 
by a series of win cards, loss card encounters in Figner et 
al.’s (2009) design are artificially positioned at the start of 
trials, thereby mitigating the oddball effect. This does not 
change the fact that win cards are more frequent than loss 
cards across the task but does impact the local probability. 
Therefore, if the percentage of rigged trials in which partic-
ipants encounter a loss card in Figner et al.’s (2009) design 
were set to a more plausible, naturalistic value, both chal-
lenges observed in the present study would be resolved: the 
influence of the hot CCT's oddball structure on its ERPs 
and its masking of true values in trials that forcedly end 
(censoring). We recommend future studies to keep these 
two challenges and our proposed solutions to them in mind 
when further validating or using the CCT either in a be-
havioral study or in combination with a (neuro)biological 
measure such as EEG.
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