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Using existing data-sources for assessment of vaccine safety: a focus on methods 

Vaccines as a public health intervention 

Vaccination is widely accepted as one of the foremost public health achievements of the last century, with the 

United States Centers for Disease Control reporting in 2014 that vaccines have prevented 322 million illnesses, 21 

million hospitalizations, and 732,000 deaths over the lifespan of children born between 1984 and 2014 (1) .  

Vaccines confer this degree of protection only when a large enough proportion of the population is vaccinated to 

produce herd immunity, or protection of the unvaccinated by the vaccinated (2). Because vaccines serve as a 

primary prevention measure, they are principally administered to healthy individuals.    This means that public 

expectations for measurement of the safety and effectiveness of vaccines may be more stringent in terms of 

timeliness and accuracy than those for drugs which treat illness.  

The vaccine product life cycle 

Vaccines are rigorously tested for safety and effectiveness in clinical trials before receiving market authorization 

(3).  Because clinical trials are limited in size and scope, however, adverse events and unexpected benefits may go 

undetected in trials and arise only when the vaccine is administered to large populations. Chen et al, in their paper 

describing the then newly-initiated Vaccine Adverse Events Reporting System (VAERS), displayed the cycle of 

vaccine confidence in an often-cited figure (figure 1).  The figure displays how increasing vaccination coverage is 

paired with decreasing incidence of the vaccine-preventable disease but also potentially with increasing reports of 

vaccine-associated (either causally or temporally) adverse events.  This increased reporting of adverse events 

following vaccination can lead to decreased confidence in the vaccine and associated decreases in coverage and 

effectiveness.  The Vaccine Confidence Project, led by the London School of Hygiene and Tropical Health, has found 

that concern about vaccine safety is the primary cause of vaccine hesitancy in Europe (4).  It is of utmost 

importance to public health that any adverse reactions or deficiencies in efficacy are detected and addressed 

quickly and accurately in order to maintain public confidence in vaccines(5).   

The phases of vaccine development, pharmacovigilance, and communication can be described using figure 1.  

Period one (Prevaccine) represents all phases of development and testing prior to market authorization of a 

vaccine while period two (Increasing Coverage) represents post-authorization vaccination of targeted populations.  

I focus in this thesis on time periods three (Loss of Confidence) and four (Resumption of Confidence) during which 

safety signals may be detected and verified, additional hypotheses regarding safety and efficacy may be tested, 

public health implications are assessed, and scientists, public health agencies, and healthcare providers 

communicate with the public about the benefits and risks of vaccines.  Period five (Eradication), or complete 

elimination of the vaccine preventable disease, will not be addressed in this thesis. 
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Figure 1. Potential stages in the evolution of immunization program, showing the dynamics of the interaction 

between vaccine coverage, disease incidence and vaccine adverse events, as the program matures from pre-

vaccine to disease eradication (6, 7) 

Methodological challenges of assessing vaccine safety 

There are many methodological challenges inherent to the assessment of vaccine safety.  First, adverse events 

following vaccinations are often rare (less than 1 per 1000 vaccine recipients) and/or non-specific (meaning that 

symptoms may be attributed to multiple syndromes), making them difficult to capture and retrieve in existing data 

sources that may have been assembled for other reasons (8).  Rarity of some events can also lead to a limitation in 

statistical power, even in large databases, necessitating collaboration among data sources to obtain a sufficient 

number of cases for analysis (9).  This type of collaboration can lead to challenges in and of itself, related to 

heterogeneity and pooling of estimates.  Non-specificity of adverse events may mean absence of specific codes or 

definitions for the event.  In addition, some reported adverse events may have long periods between onset of 

symptoms and diagnosis by a physician, complicating causality assessments (10).   

Additional challenges are created by public insistence on vaccine safety and public awareness of potential risks 

associated with vaccination which may impact individual behavior.  These behavioral changes may include 

increased or decreased healthcare seeking as well as increased or decreased motivation to report events associated 

with vaccination.  These changes in behavior can lead to various forms of bias including ascertainment bias 

(meaning some subjects are more likely than others to be included in a study), recall bias (meaning that subjects 

inaccurately report exposures or symptoms), and effects such as the ‘healthy vaccinee effect’ in which subjects who 

have experienced an adverse event may delay or forego vaccination when ill (11-13).  Additionally, vaccines are 

given on an age and sometimes seasonal schedule, meaning entanglement of these effects with the effects of the 

vaccine itself.  For example, while Guillain-Barré Syndrome (GBS) has been repeatedly investigated as an adverse 

event following seasonal influenza vaccination, respiratory infections, which spike in the fall and winter when 

seasonal vaccines are also administered, are a known cause of GBS (14, 15).   Studies which aim to elucidate the 

association must take into account this seasonally fluctuating rate of infection (16, 17).  This association and the 

impact of seasonality is addressed in chapter 5 of this thesis using the example of pandemic H1N1 influenza 

vaccines.  Finally, vaccination programs alter the host-pathogen relationship due to their scale via indirect effects 

such as shifts in the age at which peak incidence occurs, protection from sequelae following infection, and herd 

immunity.  I attempt in this thesis to assess the scale and understand the impact of some of these challenges. 

Assessment of vaccine safety using existing data-sources 
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While risks of vaccines may go undetected or prove difficult to estimate correctly in pre-licensure trials due to 

sample size and time limitations, other data sources are often used to detect and analyze risks and benefits post-

licensure (18).  These data sources include claims, hospital, and general practitioner databases, registries, birth 

cohorts, and spontaneous reporting systems. The advantages of using electronic health data are the scale of the 

population that is captured, the flexibility in design, and the fact that rapid retrospective analyses may be 

performed. Two pioneering projects which illustrate the utility of existing data sources for assessment of vaccine 

safety are the Vaccine Safety Datalink (VSD) and the Post-licensure Rapid Immunization Safety Monitoring (PRISM) 

program.  The VSD, a collaboration founded in 1990  among healthcare organizations and the US Centers for 

Disease Control and Prevention, links medical records on over 8 million subjects from nine healthcare providers in 

order to perform rapid analysis of vaccine safety and to quickly deploy studies when a new safety signal emerges 

(19).  Similarly, the PRISM program is the vaccine safety component of the US Food and Drug Administration’s 

Sentinel system which was initiated in 2008 and links claims data on over 200 million Americans from national 

insurance providers in a distributed data model (20).  This network is used to sequentially monitor vaccines and to 

address vaccine safety concerns rapidly.  This thesis will focus specifically on spontaneous reporting databases, 

general practitioner databases, and collaboration of databases in multinational studies as well as simulated data to 

assess bias and heterogeneity in these types of data sources.  

Signal detection in Spontaneous Reporting System Databases  

Spontaneous Reporting System databases are those to which consumers, physicians, and others may report 

suspected adverse events following exposure to a drug or vaccine (21).  These databases have the benefits of being 

relatively inexpensive to set up and maintain and may provide the opportunity for investigators and public health 

institutions to detect adverse events quickly.  Additionally, the databases maintained by US agencies (the FDA 

Adverse Events Reporting System and the CDC and FDA Vaccine Adverse Event Reporting System) are publically 

available (22). However, they are also rife with shortcomings (23).  Data are self-reported with no verification of 

exposures or diagnoses.  Additionally, important data fields that could aid in more accurate assessment of risks, like 

time from exposure to onset of symptoms, outcome of the event, and vaccine manufacturer are often incomplete.  

Because these databases contain data only on suspected cases, no underlying population denominators exist, 

forcing researchers to use the database itself (i.e. all other reports) as the denominator in any calculations(24).  

Typically, when assessing spontaneous reports, the number of observed reports of the vaccine/AEFI association of 

interest is compared to the number expected in the absence of a causal association (i.e. observed vs. expected) 

using a 2x2 table such as the one below.  In other words, the number of reports of the drug or vaccine together 

with the event of interest is compared to the number of reports of the drug-event combination we would expect if 

reports involving the drug or vaccine of interest were statistically independent from reports involving the event of 

interest (25). 

Table 1. 2x2 table used in analysis of spontaneous reporting systems 

 Experienced AEFI Y Did Not Experience AEFI Y but 
other AEFI 

Received Vaccine X A B 

Received other Vaccine than X C D 

 

These shortcomings mean that spontaneous reporting databases can be used quite efficiently to detect safety 

signals or to strengthen signals that arise elsewhere (i.e. a published case series) but is not suitable for hypothesis 

testing (26, 27). 
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Many methods have been proposed to diminish the impact of the well-recognized shortcomings of spontaneous 

reporting databases, some of which will be discussed in this thesis.  The first which will be addressed is the 

Empirical Bayes Geometric Mean.  While most signal detection algorithms (SDAs) use an expected count calculated 

from the counts in the cells of the table above, the Empirical Bayes Geometric Mean uses a Bayesian model of 

expected counts to shrink effect estimates toward the null, especially when counts of the drug-event combination 

of interest are low(25).  We tested the performance of the EBGM in a drug-specific reporting database and a 

vaccine-specific reporting database.  In the drug-specific database (FAERS), we sought to understand the impact of 

age stratification on the performance of SDAs in pediatrics while in the vaccine-specific database (VAERS), we 

compared performance of the EBGM with a new method which exploits time-to-onset distributions of vaccine-

associated reports. 

Since adverse reactions to vaccines or drugs may be specific to a certain age group, especially in pediatrics where 

ontogenic changes occur which may change susceptibility, stratification by age when conducting signal detection, 

has been recommended (28). Stratification is a method to assess confounding by age and to explore effect 

modification. The lack of stratification  may either mask true signals or lead to false positives (29). Where 

confounding by age is suspected, the typical strategy is to stratify by age categories and subsequently pool stratum-

specific estimates if no evidence of effect modification is seen.   If differences in association are seen across strata, 

effect modification is present, and pooling should not be done. While stratification and subsequent adjustment by 

age has been advocated by some researchers (30), adjustment is routinely implemented in some Bayesian but not 

in frequentist  SDAs. (25, 31, 32) Few studies have systematically addressed the impact of age stratification or 

adjustment and the results are contradictory (29, 33, 34). Another reason for confounding or effect modification is 

the presence of vaccine related reports. Vaccines are usually administered to healthy individuals, occur in early 

childhood (highly associated with age) and because of their intramuscular administration, do not have the same 

adverse events as drugs that are metabolized through the gastro-intestinal system. We therefore investigated how 

to deal with masking of positive associations in a spontaneous reporting database that comprises reports for 

therapeutics as well as vaccines.  

Finally, Van Holle et al have developed a new method for detecting signals of disproportionate reporting in 

databases of vaccine reports using the reported time from administration of the vaccine to onset of the symptoms 

(35).  In this methodology, three distributions are estimated:  time from administration of the vaccine of interest to 

onset of the event of interest is (Vaccine AEFI), time from administration of the vaccine of interest to any other 

event (Other AEFI) and time from administration of any other vaccine to the event of interest (Other Vaccine).  The 

latter two distributions (Other Vaccine or Other AEFI) are compared to the Vaccine/AEFI time to onset distribution 

using a Kolmogorov-Smirnov Test of the equality of probability distributions (See Figure 2) (36).  In this thesis, we 

apply the time-to-onset method to the VAERS and EudraVigilance databases and compare its performance to an 

established SDA (See Chapter 2). 
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Figure 2. Two-sample Kolmogorov-Smirnov Test: The continuous curve represents the Vaccine/AEFI time-to-onset 

distribution, the dashed lines provide the critical distance from this distribution, and the step function represents 

the observed (Other Vaccine TTO or Other AEFI TTO) distribution.  Reject unless the step function lies between the 

two dashed curves (37).   

As depicted in figure 3, SDAs represent a first-pass screening after which biological plausibility and case series 

review must take place before proceeding to any further action.  Each of the studies in this thesis using 

spontaneous reporting system data  were conducted within the Global Research in Pediatrics (GRiP) Network of 

Excellence (38). 

 

Figure 3.  Schematic overview of the signal detection process. SRS = spontaneous reporting system (39) 

Whenever new safety issues are detected, next steps are rapid assessment of impact and plausibility and 

subsequently full in-depth evaluation. 

Rapid assessment & Sequential Methods 

In order to arrest the potential process of public loss of confidence when safety issues occur for vaccines, these 

safety concerns must be addressed quickly and accurately.  Several methods have been proposed to do so, 

including running of modular programs in large data networks such as the VSD and PRISM which are maintained 

(amongst other goals) to allow for rapid assessment at the population level using ecological methods and 

sequential methods (19, 40).  
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One approach to rapid detection of an adverse event is to quantify drug or vaccine effects sequentially within a 

population based electronic data source. This was developed and is still applied in the VSD.   Specifically, Lieu et al 

proposed in 2007 that sequential surveillance was needed to detect safety concerns early and applied their newly 

developed method, maximized sequential probability ratio testing (maxSPRT), to the test case of meningococcal 

conjugate vaccine using VSD data (41).  When using sequential methods to assess a drug or vaccine, evidence in a 

data source or sources is accumulated and tested sequentially until a predefined threshold is met.  Sequential 

methods have been applied for vaccine safety primarily using variations on the sequential probability ratio test 

such as the MaxSPRT and conditional MaxSPRT to monitor the safety of numerous vaccines in the VSD (42-45) and 

more recently in the FDA PRISM system (46). 

Alternatively, ecological methods make use of data on the population as a whole rather than individual exposure 

and outcome data.  They are generally easier to implement than other designs because individual-level privacy is 

not a concern and data at the population level is often easily available.  For use in the study of vaccinations, 

ecological methods can be used to compare the rate of an event – either a vaccine-preventable disease or an 

adverse event – in periods before and after a targeted vaccination campaign, licensure of a new vaccine, or change 

in vaccination schedule.  Ecological designs such as these are complicated by the fact that changes over time can be 

driven by other factors such as changes in policy or diagnostic practices, growing awareness in the population, or 

the background incidence of an event. Also ecological studies cannot deal with confounding factors, but can serve 

as a way for rapid assessment. In this thesis we looked at the ability of ecological methods to assess risk of 

narcolepsy following exposure to different pandemic influenza vaccines on a global scale using fluctuating 

background incidence of the event in the Systematic Observational Method for Narcolepsy and Influenza 

Immunization Assessment (SOMNIA) project (See Chapter 3). Ecological methods were also used in the VAESCO 

project in Europe to monitor changes in narcolepsy rates using a distributed model (47). 

Single database studies to study vaccine effects 

Single database studies were the most prevalent in the study of post-licensure vaccine effects and have therefore 

been well-reviewed in the literature (48-51) .  Electronic healthcare records and specifically general practitioner 

databases are powerful in that they contain data typically on large numbers of subjects often over a long period of 

time.  An advantage of limiting a study to a single database is that the database has a consistent structure and 

generally makes use of one coding system.  If the database represents a geographical area (as is usually the case), 

certain assumptions about the underlying population can be made.  General practitioner databases that span a long 

period of time may also offer the possibility to study effects in periods before and after introduction of a vaccine, 

outbreak of an infectious disease, or change in legislation.   

While single database studies have long been the primary approach for assessing risks of vaccines, they are often 

limited in size and scope.  Individual database systems have proven to be underpowered to detect rare adverse 

events, especially for subpopulations, reinforcing the need for collaborative studies (52).  The withdrawal of Vioxx 

in 2004 following detection of an increased risk of heart attack in long-term users prompted the US FDA to set up 

the Sentinel system in accordance with a US Congress mandate (53, 54).  The 2009 H1N1 influenza pandemic 

required active surveillance for rare adverse events following worldwide vaccination.  The FDA PRISM program, in a 

proof-of-concept study, system successfully linked data from health plans and immunization registries to monitor 

vaccine safety, significantly reducing the time to data generation (55).  Similarly, Izurieta et al have called for a 

collaborative monitoring system for vaccines, especially those scheduled to be introduced in low and middle 

income countries in the near future (56).  Collaborative vaccine safety studies will be addressed in Chapter 5 of this 

thesis. 
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Collaborative studies to assess vaccine safety 

In the field of vaccine safety, collaborative studies allow researchers to gain power to study a rare outcome or to 

investigate differences in vaccine types and schedules which vary by region or country.  In preparation for the 2009 

H1N1 pandemic, the Vaccine Adverse Event Surveillance and Communication network (VAESCO) was formed to 

conduct collaborative vaccine safety studies in Europe and following the pandemic, the Accelerated Development 

of VAccine beNefit-risk Collaboration in Europe (ADVANCE) consortium was initiated to monitor the benefits and 

risks of licensed vaccines (57, 58). As pandemic preparedness has become a priority for governments, collaborative 

studies allow public health institutions to understand infectious diseases before they spread globally and to study 

the implications of decisions made either at the policy-maker or individual level before implementing vaccination or 

surveillance programs.  Finally, as many vaccines currently in development are targeted for pathogens prevalent in 

the developing world, collaboration to build capacity for data collection and sharing in those countries which will 

introduce new vaccines becomes crucial (56, 59). 

While collaborative studies are essential, they also present methodological challenges.  First, data sharing across 

borders and even institutions is often restricted due to privacy concerns, meaning that new tools and processes 

which ensure anonymity must be developed to enable collaboration.  In recent years, many of these tools and 

processes have been developed within European and global projects.  For example, within the Exploring and 

Understanding Adverse Drug Reactions by Integrative Mining of Clinical Records and Biomedical Data (EU-ADR) 

project, purpose-built Java software was developed to read and process common input files locally at each data-

contributing site, producing encrypted data which can be analyzed centrally (60).  Within the aforementioned 

SOMNIA, VAESCO, and ADVANCE projects, common protocols were used across databases. Within ADVANCE, 

coding systems were harmonized using a newly developed tool which exploits the Unified Medical Language 

System to link user-defined concepts to codes in multiple coding systems (61).  Data sources vary widely from 

institution to institution and country to country meaning that harmonization of event and exposure coding is often 

the longest and most challenging phase of a collaborative study.  Finally, methodological challenges when 

combining data must be addressed.  Heterogeneity in data sources and database-specific estimates must be 

assessed before data can be pooled.   

In this thesis, collaborative studies are addressed in chapter 5 with a study assessing the risk of Guillain-

Barré Syndrome following pandemic H1N1 vaccines in The Global H1N1 GBS Consortium (62),  a case-control study 

of narcolepsy following pandemic H1N1 vaccines in the SOMNIA study (63), and a proof-of-concept study assessing 

the capacity for a hospital-based vaccine safety active surveillance system in the WHO Global Vaccine Safety Multi-

Country Collaboration (59).  

Heterogeneity in collaborative studies 

As described above, there are many advantages to conducting collaborative studies of vaccine effects.  However, 

there are significant challenges, one of which is heterogeneity in data sources.  Data sources which may be utilized 

in collaborative studies may have their own data capture methods, coding practices, and data structure.  In order 

for data to be shared, these factors must be taken into account. In recent years, many collaborative groups have 

worked to develop solutions to these problems.  Heterogeneity was encountered in each of the collaborative 

projects addressed in this thesis: SOMNIA, ADVANCE, The Global H1N1 GBS Consortium, and the WHO Global 

Vaccine Safety-Multi Country Collaboration (GVS-MCC). Types of heterogeneity include heterogeneity in data 

sources and coding systems, differences in vaccine schedules and vaccine types utilized in populations.  These 

collaborations all required pooling either heterogeneous data from different data structures or heterogeneous 

database-specific results.  

http://www.sciencedirect.com/science/article/pii/S0264410X17306205#!
http://www.sciencedirect.com/science/article/pii/S0264410X17306205#!
http://www.sciencedirect.com/science/article/pii/S0264410X17306205#!
http://www.sciencedirect.com/science/article/pii/S0264410X17306205#!


15  

Many groups have addressed these issues of heterogeneity and developed a variety of solutions.  In the EU-ADR 

project, as previously mentioned, purpose-built software was designed to process common input files.  Within the 

VAESCO project, a data entry tool (Chameleon) was developed to allow researchers to enter data into a common 

report form, after which the data is anonymized and transmitted to a data processing center, maintaining the 

original data locally and allowing for common input files (64).  This same software was used in the SOMNIA and 

WHO GVS-MCC projects for data sharing and case validation.  The Pharmacoepidemiological Research on Outcomes 

of Therapeutics by a European ConsorTium (PROTECT) project alternatively made use of common data 

specifications implemented by each database rather than common input files or data entry software (65).  In the US 

FDA PRISM project, researchers have tested algorithms for outcome detection and the effect of misclassification on 

time to detection of safety signals in heterogeneous databases within the network (66) .  Many projects use a 

distributed data model with common input files to reduce heterogeneity among databases and allow for rapid 

launch of studies using common analysis scripts and/or a remote research environment (RRE) within which to 

securely share data and scripts.  Among these are PRISM, VSD and the Observational Medical Outcomes 

Partnership (OMOP) (9, 67).  A remote research environment (Octopus) that was built to allow for datashring in the 

ARITMO project (9) by Erasmus Medical Center has been re-used in the studies within SOMNIA, GRiP, ADVANCE, 

GVS-MCC, and The Global H1N1 GBS Consortium included in this thesis. 

In the collaborative studies included in this thesis, challenges were encountered in defining events in a harmonized 

manner.  In order to address this challenge, we make use in chapter 5 of a new method for extracting events from 

existing data sources using combinations of disease, laboratory, and treatment codes.  Typically, events of interest 

are extracted from data sources using a list of pre-defined diagnostic codes which may be more sensitive or specific 

in some databases as compared to others.  The component analysis method attempts to address this shortcoming 

by using the combination of codes from multiple domains that maximizes the positive predictive value in each data 

source.  Within the EMIF project, Roberto et al developed a strategy to combine codes or ‘components’ from 

different data domains to improve identification of events in databases (68).  This methodology, the ‘component 

algorithm strategy’ is used in chapter 5 of this thesis. 

Collaborative studies also often have, as one of their objectives, the comparison of effects across data sources.  This 

becomes difficult or impossible if exposures are recorded in a different manner in different databases – or not 

recorded at all.  In a multi-database study of vaccine effects, exposure data may be obtained from patient records 

or, depending upon the health care system and database structure, it is may be necessary to obtain exposure data 

from secondary sources such as a registry or individual vaccination cards.  These differences in availability and 

quality of vaccine exposure data invariably lead to heterogeneity.  In the studies included in this thesis, we make 

use of common data entry tools to minimize the impact of heterogeneous exposure data.  More specifically, 

exposures of interest may be unknown or missing.  In chapter five of this thesis, we report a methodological study 

conducted within ADVANCE which tests four methods for estimating incidence of an adverse event following 

vaccination in a multi-database study when data on vaccination is incomplete or missing for a subset of databases. 

Bias in studies of vaccine effects 

As in all epidemiological studies, bias and confounding must be taken into account in studies of vaccine effects.  

Bias can take the form of reporting  (i.e. subjects or their physicians are more or less likely to report an event or 

exposure due to other underlying factors), ascertainment (i.e. events and exposures become more or less easy to 

identify in the data due to underlying factors), recall (i.e. subjects or physicians recall exposures or events 

differentially based upon other factors) and selection (i.e. subjects are more or less likely to be included/excluded 

in a study due to factors such as healthcare seeking behavior, socioeconomic status, or underlying health status) 

(69).  Confounding must also be taken into account.  These sources of bias and confounding are typically addressed 
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through matching, stratification, control for covariates, and use of case-only designs.  In database studies, 

variations on propensity score methodologies have become prevalent in recent years while in vaccine safety, the 

self-controlled case series (SCCS) and variations on this method are dominant for control of bias and confounding 

(70, 71).  However, these measures and designs cannot completely remove the effects of bias.  In order to address 

the impact of two specific forms of bias: ascertainment and recall, in chapter 5 we present a simulation study in 

which behavior of subjects was modified to mimic these two sources of bias and the impact of these behavior 

changes on effect estimates was measured. 

Aims and Outline of this thesis 

In Chapter Two, Methods for signal detection in spontaneous reporting system databases:  The thesis begins with 

assessment of the impact of stratification by age in the FDA FAERS database using a pediatric-specific drug-adverse 

event reference set (72).  We then proceed to assess how the presence of vaccine exposures in a mixed 

vaccine/therapeutic database affects performance of SDAs in pediatric age strata within the EudraVigilance 

database using the same pediatric drug reference set.  Finally, we use a vaccine-adverse event reference set to 

assess the suitability of standard SDAs for reports associated with vaccines in the US VAERS and EudraVigilance 

databases by comparing EBGM to the vaccine-specific time-to-onset method(35). 

In Chapter Three: Methods for rapid signal assessment, we describe use of population-level incidence data to 

assess the association between Pandemic H1N1 vaccines and narcolepsy globally.  Because the vaccination 

campaign of the 2009 pandemic was targeted, we were able to calculate incidence of narcolepsy before and after 

the vaccination campaign.  We discuss suitability of population-based ecological methods for rapid assessment of 

vaccine safety concerns. 

In Chapter Four: Single database studies for study of vaccine effects, we use the United Kingdom The Health 

Information Network (THIN) database to study the potential association between pandemic H1N1-containing 

vaccines and facial paralysis.  We then use the same database to study the effectiveness of measles-containing 

vaccines by exploiting the reduced MMR uptake and subsequent measles cases in the UK following the since 

disproved claim of a MMR-autism link. 

In Chapter Five: Collaborative studies to assess vaccine effects, we again focus on pandemic influenza vaccine in 

studies of the association of pH1N1 vaccine and Guillain-Barré Syndrome (GBS) and subsequently of pH1N1 vaccine 

and narcolepsy.  These studies address many of the issues inherent to collaborative studies – namely power 

considerations, heterogeneity, and pooling – and approach them in different ways.  The GBS study uses a case-only 

approach as proof of concept for the WHO that sentinel based studies are possible on a global scale. The 

narcolepsy global study went much further and used a case-control study to be conducted within each site with 

one common protocol, data collection methods and use of a remote research environment for pooling. While these 

two studies include only developed countries, the final study of this chapter is a proof-of-concept study, based on 

sentinel sites, which aimed to evaluate known adverse events  in order to prove the suitability of the collaborative 

framework as well as the data sources for conduct of vaccine safety studies in the future. This study employed a 

common protocol, data collection tool and secure sharing of data for pooling. 

In Chapter Six: Methods for dealing with heterogeneity and bias, we look further into some of the sources of 

heterogeneity and bias acknowledged in the other chapters of this thesis.  In the first manuscript, conducted in 

response to the VAESCO narcolepsy studies and in conjunction with the SOMNIA study, data was simulated to 

mimic hypothesized reporting patterns of narcolepsy following pH1N1 vaccine which may have changed due to 

public awareness of the purported association (47, 73).  We then analyzed the simulated data to understand how 
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such changes in reporting may bias effect estimates.  Second, within ADVANCE, we investigate a new method for 

better identifying events in electronic health records by combining codes and records from various domains such as 

diagnosis, prescribing, and laboratory tests.  For our test case, we use pertussis, a vaccine-preventable disease.  

Finally, within ADVANCE and reusing data from the first ADVANCE proof-of-concept study, we test four methods to 

obtain estimates of adverse events following vaccine exposure when data on exposure is incomplete or missing. 

 

Chapter Title Project Data Source(s) 
Purpose-built 
Tools Used 

2.1 

Drug safety monitoring in children: 
Performance of signal detection 
algorithms and impact of age 
stratification  GRiP FAERS RRE 

2.2 

Masking by vaccines in pediatric signal 
detection: A study in the 
EudraVigilance database GRiP EudraVigilance  Vacc-O, RRE 

2.3 

Signal detection in VAERS and 
Eudravigilance using disproportionality 
analysis and time to onset GRiP VAERS 

GRiP Common 
Data Model, RRE 

3.1 

Incidence rates of narcolepsy 
diagnoses in Taiwan, Canada, and 
Europe: methods for assessment of 
potential safety issues on a population 
level in the SOMNIA study SOMNIA 

Global data sources 
using common protocol 
and harmonized event 
definitions Jerboa, RRE 

4.1 

Bell’s palsy and influenza(H1N1)pdm09 
containing vaccines: a self-controlled 
case series N/A THIN N/A 

4.2 

The impact and longevity of measles-
associated immune suppression: a 
population-based matched cohort 
study  N/A THIN N/A 

5.1 

International Collaboration to Assess 
the Risk of Guillain Barré Syndrome 
Following Influenza A (H1N1) 2009 
Monovalent Vaccines 

The Global 
H1N1 GBS 
Consortium 

Global data sources 
using common protocol 
and harmonized event 
definitions Common protocol 

5.2 

Narcolepsy and adjuvanted pandemic 
influenza A (H1N1) 2009 vaccines: a 
global investigation  SOMNIA 

Global data sources 
using common protocol, 
common data entry 
tools, and harmonized 
event definitions 

Chameleon, 
Jerboa, RRE 

5.3 

Enhancing global vaccine 
pharmacovigilance: Proof-of-concept 
study on aseptic meningitis and 
immune thrombocytopenic purpura 
following measles-mumps containing 
vaccination  

WHO GVS-
MCC 

Global data sources 
using common protocol, 
common data entry 
tools, and harmonized 
event definitions 

Chameleon, 
Jerboa, RRE 

6.1 

Pandemic Influenza vaccine & 
Narcolepsy: Simulations on the 
potential impact of bias SOMNIA Simulated data  

6.2 
Heterogeneity in disease 
misclassification: the component ADVANCE 

European ADVANCE 
partners using Codemapper, RRE 

http://www.sciencedirect.com/science/article/pii/S0264410X17306205#!
http://www.sciencedirect.com/science/article/pii/S0264410X17306205#!
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analysis harmonized code lists, 
common input files, and 
common analysis scripts 

6.3 

Title: Estimating incidence of adverse 
events following vaccination in 
observational databases with 
incomplete exposure data ADVANCE 

European ADVANCE 
partners using 
harmonized code lists, 
common input files, and 
common analysis scripts 

Codemapper, 
Advance common 
data model, 
Common protocol, 
RRE 
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CHAPTER 2.  METHODS FOR SIGNAL DETECTION IN SPONTANEOUS REPORTING 

SYSTEM DATABASES 
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2.1 DRUG SAFETY MONITORING IN CHILDREN: PERFORMANCE OF SIGNAL DETECTION 

ALGORITHMS AND IMPACT OF AGE STRATIFICATION  
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Abstract 

Introduction: Spontaneous reports of suspected adverse drug reactions (ADRs) can be analysed to yield additional 

drug safety evidence for the pediatric population. Signal detection algorithms (SDAs) are required however the 

performance of SDAs in the pediatric population specifically is unknown. We tested the performance of two SDAs 

on pediatric data from the US FDA Adverse Event Reporting System (FAERS) and investigated the impact of age 

stratification and age adjustment on SDAs’ performance. 

Methods: We tested the performance of two established SDAs: Proportional Reporting Ratio (PRR) and Empirical 

Bayes Geometric Mean (EBGM) on a pediatric dataset from FAERS (2004 to 2012). We compared SDAs' 

performance to a published pediatric-specific reference set, by calculating diagnostic-test related statistics 

including the area under the Receiver Operating Characteristics curve (AUC). Impact of age stratification and age-

adjustment SDAs’ performance was assessed. Age adjustment was performed by pooling (Mantel-Hanszel) stratum-

specific estimates.   

Results: A total of 115,674 pediatric reports (patients aged 0-18 years) comprising 893,587 drug-event 

combinations (DECs) were analysed. Crude values of the AUC were similar for both SDAs: 0.731 (PRR) and 0.745 

(EBGM). Stratification unmasked four DECs, for example ‘ibuprofen and thrombocytopenia’.  Age-adjustment did 

not improve performance.  

Conclusion: The performance of the two tested SDAs was similar in the pediatric population. Age adjustment does 

not improve performance and is therefore not recommended to be performed routinely. Stratification can reveal 

new associations, therefore is recommended when either drug use is age-specific or when an age-specific risk is 

suspected.  
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Introduction  

Spontaneous reports of suspected adverse drug reactions (ADRs) can yield important information regarding the 

safety of drugs [1]. Usually, such reports are screened for emerging safety issues by applying statistical methods 

called signal detection algorithms (SDAs). Current SDAs compare the reporting rate of a drug-event combination 

(DEC) of interest with the expected count calculated from the overall reporting rate of that reaction in the entire 

database [1, 2]. Although SDAs are routinely applied to reports pertaining to the general population, the 

performance of SDAs in the pediatric population specifically has not been investigated to date. Compared to adults, 

the pattern of drug use and occurrence of ADRs in pediatrics may differ [3-5] since the latter population comprises 

a heterogeneous group of subjects at various stages of development with age-dependent organ maturation and 

hormonal changes [6]. Several studies investigating ADR reporting in children identified different reporting patterns 

in this population compared to adults [3, 5, 7, 8]. Since ADRs may be age–specific, adjustment for age seems to be a 

logical step when investigating pediatric ADRs and has been advocated by some researchers [4]. The major aim of 

stratification is verification of confounding and effect modification which otherwise may mask true signals [9]. 

Confounding by age can be dealt with by stratifying for age categories and pooling stratum-specific estimates. 

However if age specific estimates differ (in case of effect modification) pooling/adjustment should not be done, but 

instead, a verification of each individual stratum. While stratification has been investigated by some researchers 

[10], adjustment is routinely implemented in some Bayesian but not in frequentist SDAs [11-13] Few studies have 

systematically addressed the impact of age stratification or adjustment and the results are contradictory [9, 14, 15].  

Within the context of the Global Research in Pediatrics (GRiP) – Network of excellence [16], we aimed to evaluate 

the performance of two well-established SDAs in the pediatric population and determine if age stratification or 

adjustment impacts signal detection in this population.   

Methods 

Data source 

Data was retrieved from the publicly available version of the US FDA Adverse Event Reporting System (FAERS), 

which comprises spontaneous reports of suspected ADRs submitted by manufacturers, healthcare professionals 

and patients. FAERS is one of the largest repositories of spontaneous reports in the world [17, 18]. In this study, we 

analyzed reports received from the first quarter of 2004 through the third quarter of 2012.  

For performance analysis, only reports of ADRs occurring in children and adolescents (<18 years of age) were 

retained. The ADRs in FAERS are coded according to the Medical Dictionary for Regulatory Activities 

(MedDRA®)[19].  

To improve the quality of the dataset, we excluded reports with missing age, the main variable in our study. Also, 

reports with reported age equal to zero and with a MedDRA® preferred term indicating prenatal exposure were 

removed, as these imply in-utero drug exposure and were therefore not relevant for our study. We minimized the 

number of duplicates (i.e. the same report submitted by different reporters) by applying an algorithm based on 

case identifier, report identifier, drug and event names. For multiple reports (i.e. the same report is reported at a 

later time, with additional and updated information) [20], the most recent (and most updated) report was retained 

for analysis.  

As drug names included in FAERS are not standardized, a harmonization procedure was implemented. Briefly, this 

consisted of removing superfluous characters and applying a generalized edit distance matching algorithm [21] to 
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map free text drug names to synonyms and finally to the corresponding active substance and World Health 

Organization-Anatomic Therapeutic Chemical (WHO-ATC) code.  

In this study, only those drugs reported as primary or secondary suspect in the FAERS database were retained for 

analysis. Analysis was performed at Drug-Event Combination (DEC) level, meaning that within each report, every 

suspect drug was combined with all reported ADRs. Thus, one report may comprise more than one DEC.  

Signal detection algorithms (SDAs) 

We tested two well established SDAs which are routinely used by various national and international regulatory 

and/or research institutions for signal detection: the proportional reporting ratio (PRR) [2]  and the empirical Bayes 

geometric mean (EBGM) [13]  (see Table 1). We also tested count of reports, as a positive control. In order to 

define a signal of disproportionate reporting (SDR) [22, 23], we selected thresholds that are currently applied in 

routine practice. We applied the SDAs at the end of the study period, when the maximum number of reports had 

accrued.  

Table 1 Signal detection algorithms and corresponding thresholds applied 

Signal Detection 

Algorithm   
Applied Thresholda Institution where the method and the 

respective threshold is currently used  

  Number of reports  n ≥5 NA 

   PRR PRR lower bound 95% CI ≥ 1 & n ≥ 5 reports European Medicines Agency  

EBGM EB05 CI≥ 1.8 and n≥ 3 reports & EBGM ≥2.5 Medicines and Healthcare products 

Regulatory Agency (MHRA) 

PRR= Proportional reporting ratio; EBGM= Empirical Bayes Geometric Mean; CI=confidence interval; NA= Not 

available; EB05= Lower bound of the 95% confidence interval 

a Thresholds were obtained from Candore et al [23] 

Performance assessment measures 

The performance of the SDAs was assessed by calculating diagnostic-test related statistics, namely specificity and 

sensitivity, positive predictive value (PPV), and negative predictive value (NPV) [24][25]. Sensitivity is the ability of 

the method to correctly identify true signals while specificity is the ability to correctly exclude false signals. PPV and 

NPV are posterior probabilities, describing how many of the signals classified as positive or negative are indeed 

correctly classified [24, 25].  

Since diagnostic-test related statistics are dependent on the threshold choice, their individual comparison has only 

limited, albeit practical value. Therefore, we also estimated the area under the curve (AUC) of receiver operating 

characteristics (ROC) in order to compare the performance of the SDAs [32]; the AUC incorporates both sensitivity 

and specificity across all the possible values for a certain SDA.  Calculation of AUCs was conducted by varying only 

the point estimate of each SDA and did not take into account the other components of the SDA. 
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For the purpose of performance evaluation, a previously constructed pediatric-specific GRIP reference set of 

positive and negative drug-event associations was used. It consists of 37 positive and 90 negative DECs and includes 

drugs that are administered to children and events that are regarded as important for this population. The positive 

DECs are those that were confirmed to occur based on evidence from Summary of Product Characteristics (SmPC) 

and the published literature, while the negative DECs are those that could not be confirmed at the time of 

literature review by neither the SmPC nor the published literature. For a full description of the reference set, see 

Osokogu et al [26]. 

Stratification and adjustment for age 

The impact of age stratification and adjustment on the performance of the SDAs was investigated. First, we 

checked for possible effect modification across age strata, by stratifying the data according to age categories 

defined by the International Conference on Harmonization (ICH) [27] and calculating stratum-specific measures for 

each SDA.  

Secondly, we calculated age-adjusted estimates for PRR and EBGM by combining the stratum-specific estimates in 

an overall measure [28]. The performance of each SDA was reassessed after adjustment.  

Statistical analysis 

Differences in the performance (AUC) of each SDA, crude versus age-adjusted and crude versus  count of reports 

(positive control) were tested using paired chi-squared tests. Stratum-specific  contingency tables were tested for 

homogeneity using the Breslow Day Tarone test [29]. The Mantel-Haenszel approach was used for pooling and 

calculating age-adjusted estimates [28]. The lower bound of the EBGM 95% confidence interval (EBGM05) was 

calculated using the EB05 for each stratum and then computing a Mantel-Haenszel average based upon Zeinoun 

[30]. Statistical significance was defined by p value < 0.05.  

Analysis was performed using SAS software version 9.2. Graphs were made in SAS software version 9.2 and R 

version 3.1.3.  

Results 

Descriptive analysis  

For the study period (first quarter of 2004 through the third quarter of 2012), a total of 4,285,088 reports were 

retrieved from FAERS. After eliminating duplicates (n=43,125), removal of adult reports (n=2,686,530) and reports 

with missing age (n=1,419,524) or age equal to zero with a MedDRA® preferred term indicating prenatal exposure 

(n=20,235), 115,674 reports corresponding to 893,587 individual DECs were retained for analysis of pediatric 

spontaneous reports (see Table 2).     

Table 2 Description of pediatric reports by age categories 

Age group Number of reports, n (%) 

Neonates: 0-27 days 5,091 (4.40%) 
Infants: 28 days-23 months 12,566 (10.86%) 
Children: 2-11 years 49,982 (43.21%) 
Adolescents: 12-17 years 48,035 (41.53 %) 
Total  115,674 (100%) 
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The total number of pediatric reports that included the investigated drugs and ADRs from the reference set can be 

observed in Fig. 1, which also shows data regarding adults (for comparison purposes). The number of children 

exposed to the drugs of interest, for whom any of the investigated ADRs was reported, varied from 26 patients (for 

praziquantel) to 7,535 patients (for ibuprofen) with a median of 781 patients exposed across all drugs. The number 

of events of interest in FAERS ranged from 164 reports (ventricular arrhythmia) to 14,777 (anaphylaxis), with a 

median of 1,004 reports across all events. For a more detailed description of reports counts please refer to 

Electronic Supplementary material Table 1.   

Fig. 1 Count of reports in pediatric and adult population for the investigated ADRs and drugs, cumulatively for the 

period Q1 2004 -Q3 2012a   

 

a -Number of reports in children is represented by bars and plotted on the left axis, while the number of reports in 

adults is represented by the red line and plotted on the right axis; Reports with missing age or age=0 were 

excluded. Only reports mentioning any of the drugs or events in the reference set were considered.  
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Overall performance of SDAs  

 Both SDAs showed high specificity and low sensitivity. They both had similar specificity values (PRR:83.8% and 

EBGM:91.9%), while sensitivity was lower for EBGM than for PRR (17.2% vs. 37.9%). The NPV and PPV were similar 

for both SDAs. When we applied the threshold-independent (AUC-based) approach, the tested SDAs showed 

similar performance in the pediatric population although the AUC value for EBGM (0.745) was slightly higher than 

for PRR (0.731).  None of the SDAs performed better than the simple report count (AUC=0.634, p-values: PRR=0.27 

and EBGM=0.14) 

Stratification and adjustment for age and its impact on performance  

Upon calculating SDA values per age stratum and testing for heterogeneity across strata, we observed effect 

modification for some associations.  Some false negatives (positive DECs which failed to be highlighted as signals 

when analyzing data pertaining to the entire pediatric population) were unmasked in some strata. Four DECs were 

unmasked in total: ibuprofen-thrombocytopenia and isoniazid-seizure (by PRR) and clarithromycin-erythema 

multiforme and ibuprofen-erythema multiforme (by EBGM). Conversely, ‘ibuprofen-acute liver injury’, also a 

positive DEC, was highlighted when we analyzed data pertaining to the entire pediatric population but after 

stratifying, it became clear that this DEC was highlighted  only in older children (adolescents), and  not highlighted 

in younger children (see Fig. 3). For an overview of SDA values across age strata and results of heterogeneity tests 

please refer to the Electronic Supplementary material figures 1A and 1B.  

Fig. 2 Performance of signal detection algorithms within the entire pediatric population  

SDA Sensitivity Specificity PPV NPV AUC  p-valueb  

Number of reports   58.62 67.57 58.62 67.57 0.634 reference 
PRR 37.93 83.78 64.71 63.27 0.731 0.266 
EBGM 17.24 91.89 62.50 58.62 0.745 0.144 

After age 
adjustment a   

     (reference-
crude 

PRR/EBGM) 

PRR  34.48 86.49 66.67 62.75 0.688 0.267 
EBGM  10.34 97.30 75.00 58.06 0.683 0.216 

 

SDA-signal detection algorithm; PRR= Proportional reporting ratio; EBGM= Empirical Bayes Geometric Mean; 

AUC=area under the curve; PPV=positive predictive value; NPV-negative predictive value 
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a adjusted PRR/ROR values calculated by combining the individual estimates from each age stratum into one 

measure according to the Mantel-Haenszel approach. 

b paired chi-square test  

 

We evaluated the performance of the methods within individual age strata (see Table 3). On average, performance 

of the SDAs was lower within age strata compared to the entire pediatric population and performance improved 

with increasing stratum size. For infants and neonates, the performance was very low, not better than chance (p-

value > 0.5 for both SDAs). The adolescent group exhibited the best performance which was similar to the overall 

performance.   

Table 3 Performance of signal detection algorithms across age strata 

Age groups Signal Detection Algorithms Size of the age 
stratum (number of 
reports) 

AUC 

Neonates  5,091  

 

Number of Reports 

 

0.625 

 

EBGM 

 

0.600 

 

PRR 

 

0.65 

Infants   12,566  

 

Number of Reports 

 

0.667 

 

EBGM 

 

0.548 

 

PRR 

 

0.554 

Children   49,982   

 

Number of Reports 

 

0.654 

 

EBGM 

 

0.698 

 

PRR 

 

0.649 

Adolescents   48,035   

 

Number of Reports 

 

0.698 

 

EBGM 

 

0.771 

 

PRR 

 

0.718 

Entire pediatric population  115,674  
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 Number of Reports  0.634 

 EBGM  0.746 

 PRR  0.733 

PRR= Proportional reporting ratio; EBGM= Empirical Bayes Geometric Mean; AUC=area under the curve   

After adjusting for age by pooling the stratum-specific estimates, the performance of the SDAs decreased, although 

not significantly (see Fig. 2; crude vs. adjusted AUC for PRR 0.731 vs. 0.688, p-value = 0.267; crude vs. adjusted AUC 

for EBGM 0.745 vs. 0.683, p-value = 0.216).  

Fig. 3 Variation of PRR and EBGM estimates across pediatric specific strata –selected examples  

 

     p-values were calculated with Breslow Day Tarone test for homogeneity 

Discussion  

In this study, we have demonstrated that age stratification for detection of drug safety signals in children may 

unmask some signals that do not appear in neither crude nor adjusted analysis. Adjustment for age does not 

improve performance of the PRR and EBGM.  

For the investigated events, similar reporting patterns were observed for children and adults while the investigated 

drugs appeared to have different reporting patterns (see Figure 1). Different drug-related reporting patterns in 

children vs adults were previously reported [5].Consequently, reported drug-event associations for children may 

differ from adults [3, 5], underlining the need for pediatric-specific approaches to signal detection especially when 

we consider that even within the pediatric population, reported drugs may vary by age group [3, 31].   

Overall, the PRR and EBGM showed good performance although results were slightly lower than results 

reported on other (not pediatric-specific) reference sets [32, 33]. The similarity in performance between PRR and 

EBGM is in accordance with recent results from the PROTECT project [23].  The fact that the performance (based on 

AUC) of PRR and EBGM was not statistically significantly better than simple report count may be due to the lack of 

power. Within age strata, performance seemed to correlate with stratum size: the poorest results were observed 

for infants and neonates (the smaller groups), slightly improving for children while the best performance was 

observed for adolescents, the age stratum with the highest number of tested DECs. Decrease in power due to 

fewer reports and therefore DECs may account for this observation. The fact that we used lower bounds of 

confidence intervals for signaling instead of point estimates might have exacerbated the influence of sample size on 

the results, since smaller strata will have higher variability. In neonates and infants for whom expected counts were 

p<0.0001 p=0.001 p=0.339 
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difficult to calculate because of few reports, we observed that simple report counts performed similar or even 

better than the SDAs and might be an alternative to commonly used SDAs. The fact that simple report count 

performed better than SDAs may have been because the reference set comprised known DECs (which in turn may 

have influenced reporting) rather than emerging safety issues, a hypothesis proposed by Noren et al [34].  

Inspection of SDA values across child specific strata (age-stratification) revealed some heterogeneity in estimates 

pointing to some effect modification. For example, ‘ibuprofen-thrombocytopenia’, was found as a signal in the 

adolescents’ group but not detected in the entire pediatric population or the younger age categories. This suggests 

that age-specific SDA calculations are sometimes needed, rather than age-adjusted SDA estimates. The age-

adjusted estimates did not improve performance; in fact even PPV unexpectedly decreased. Simulation studies 

have shown that when adjusted for strata, Bayesian methods such as EBGM tend to be underestimated when there 

are sparse strata [15]; this was also the case in our study. Previous studies in adults show contradictory results, with 

some showing a beneficial effect [9] while others did not [15]. The reason for our finding is not entirely clear; a 

possible explanation is that age is not a strong confounder for the investigated DECs. Also, the method of weighting 

(Mantel-Haenszel approach) may have played a role since more weight was assigned to age groups with more 

reports (adolescents and children). This may have masked signals occurring in age groups with fewer reports. 

The limitations of data mining in FAERS include those inherent to spontaneous reporting databases: 

underreporting, lack of denominator data and control group, biases in reporting, as well as missing and poor quality 

data [35]. Missing information regarding age substantially reduced the study sample size since we could not 

determine whether these reports described patients aged less than 18 years old. While these biases are well 

acknowledged and have a definite impact, they cannot be completely avoided. Compared to adults, there are fewer 

reports and different reporting patterns for children [3, 36, 37] which may complicate signal detection in the 

pediatric population.   

Evaluating performance of SDAs is a constant challenge due to lack of standard methodologies, imperfect reference 

standards and uncertainty regarding the best thresholds (See supplementary material for measures of performance 

using alternative thresholds). Some of the drugs and events in the reference set are specific to one age group 

within pediatrics and this is obvious in Fig. 1, even though the reference set was designed to be relevant for the 

entire pediatric population. We acknowledge that the reference set used, although specifically constructed for this 

purpose, does not include all the ADRs that are highly specific for pediatrics. This highlights the need for pediatric-

specific approaches to signal detection; accounting for not just the entire pediatric population but also the different 

age strata within pediatrics. Still, the reference set captures various drug use and ADRs patterns [38]  and is 

currently the only available pediatric-specific reference set. The thresholds applied to define a signal were obtained 

from previous publications and other cut-off points may generate better results; further research on pediatric-

specific thresholds should be encouraged.  

Conclusion 

Our study revealed that age adjustment did not improve performance of the SDAs. However, stratification revealed 

some variation in SDAs’ values across strata (effect modification) and inspection of stratum-specific estimates 

might sometimes yield useful information during routine surveillance.  
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Supplementary Material 

Supplementary Table 1 Counts of reports DECs from reference set in pediatrics 

True Positive Associations a 

Drug Event A B C Db 

Clarithromycin Erythema Multiforme 11 778 540 113446 

Clarithromycin Liver Injury 18 771 2216 111770 

Clarithromycin Psychosis 9 780 1323 112663 

Clarithromycin QT prolongation 6 783 511 113475 

Clarithromycin Sudden death 1 788 276 113710 

Clarithromycin Thrombocytopenia 11 778 1689 112297 

Clarithromycin Ventricular arrhythmia 3 786 243 113743 

Domperidone Sudden death 1 78 276 114420 

Doxycycline Erythema Multiforme 1 208 550 114016 

Doxycycline Thrombocytopenia 3 206 1697 112869 

Flucloxacillin Liver Injury 3 14 2231 112527 

Ibuprofen Acute Renal failure 247 3015 1262 110251 

Ibuprofen Anaphylaxis 547 2715 14296 97217 

Ibuprofen Erythema Multiforme 36 3226 515 110998 

Ibuprofen Liver Injury 86 3176 2148 109365 

Ibuprofen Thrombocytopenia 52 3210 1648 109865 

Isoniazid Liver Injury 13 344 2221 112197 

Isoniazid Psychosis 3 354 1329 113089 

Isoniazid Seizure 37 320 9198 105220 

Isotretinoin Psychosis 99 3130 1233 110313 

Isotretinoin Suicide 197 3032 2023 109523 

Lopinavir Liver Injury 5 202 2229 112339 
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Mebendazole Liver Injury 2 56 2232 112485 

Montelukast Psychosis 95 2316 1237 111127 

Montelukast Suicide 130 2281 2090 110274 

Quinine Agranulocytosis 1 96 528 114150 

Quinine Liver Injury 2 95 2232 112446 

Quinine Thrombocytopenia 1 96 1699 112979 

Quinine Ventricular arrhythmia 1 96 245 114433 

True Negative Associations a 

Drug Event A B C Db 

Clarithromycin Suicide 3 786 2217 111769 

Clarithromycin Thromboembolism 1 788 697 113289 

Cyproterone Anaphylaxis 2 17 14841 99915 

Domperidone Acute Renal failure 2 77 1507 113189 

Domperidone Agranulocytosis 2 77 527 114169 

Domperidone Anaphylaxis 5 74 14838 99858 

Domperidone Aplastic anemia 1 78 994 113702 

Domperidone Liver Injury 2 77 2232 112464 

Domperidone Sepsis 2 77 2012 112684 

Domperidone Suicide 3 76 2217 112479 

Domperidone Thrombocytopenia 4 75 1696 113000 

Doxycycline QT prolongation 1 208 516 114050 

Doxycycline Suicide 5 204 2215 112351 

Doxycycline Thromboembolism 3 206 695 113871 

Fluticasone Acute Renal failure 2 1703 1507 111563 

Fluticasone Liver Injury 3 1702 2231 110839 
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Fluticasone QT prolongation 1 1704 516 112554 

Fluticasone Sepsis 3 1702 2011 111059 

Fluticasone Thrombocytopenia 6 1699 1694 111376 

Ibuprofen Sepsis 79 3183 1935 109578 

Isoniazid Sepsis 1 356 2013 112405 

Isoniazid Ventricular arrhythmia 6 351 240 114178 

Isotretinoin Anaphylaxis 230 2999 14613 96933 

Isotretinoin QT prolongation 2 3227 515 111031 

Isotretinoin Sepsis 28 3201 1986 109560 

Loperamide Acute Renal failure 2 166 1507 113100 

Loperamide Liver Injury 1 167 2233 112374 

Loperamide Sepsis 3 165 2011 112596 

Loperamide Suicide 21 147 2199 112408 

Loperamide Thrombocytopenia 11 157 1689 112918 

Mebendazole Anaphylaxis 13 45 14830 99887 

Montelukast Anaphylaxis 142 2269 14701 97663 

Montelukast Aplastic anemia 4 2407 991 111373 

Montelukast QT prolongation 1 2410 516 111848 

Montelukast Sepsis 4 2407 2010 110354 

Montelukast Thrombocytopenia 15 2396 1685 110679 

Montelukast Thromboembolism 1 2410 697 111667 

a Reference set associations with no reports in pediatrics not presented 
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b A, B, C, and D represent the following cell counts: 

A = Reports related to the drug of interest and the event of interest 

B = Reports of the exposure of interest associated with a different event  

C = Reports of the event of interest associated with a different exposure  

D = Reports related to exposures and events other than those of interest 
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Abstract 

Post-marketing drug safety surveillance relies upon measures of disproportionate reporting in spontaneous 

reporting systems.  It has been hypothesized that products or events reported frequently may ‘mask’ signals. 

We analyzed the masking effect of vaccines in pediatrics in the EudraVigilance database by conducting 

disproportionality analysis in the full database (containing vaccine exposures) and in a restricted set (excluding 

vaccine exposures).  We measured performance of the reporting odds ratio (ROR) in both data sets using a 

pediatric-specific drug reference set and in the absence of a reference set.  We assessed masking effects across age 

groups and conducted a classification tree (CART) analysis.  

Removal of vaccines decreased the ROR values both in negative and positive controls. Exceptions were drug-event 

combinations including outcomes frequent in vaccine reports. When restricted to positive control associations, 

removal of vaccine-related events resulted in increased ROR values for events commonly reported following 

vaccination. For events rarely associated with vaccination, ROR values decreased for all age groups, especially 

infants.  Analysis in the absence of a reference set showed decrease in ROR following vaccine removal and CART 

revealed that change in ROR with vaccine removal depended upon age and proportion of reports including a 

vaccine. 

Removal of vaccines for signal detection in a pediatric population has an impact on ROR, dependent upon the 

reporting frequency of the event of interest in combination with vaccines. We recommend stratification by age and 

removal of vaccine exposures if the investigated ADRs include those typically reported in association with vaccines 

for the age strata. 
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Introduction 

The paucity of clinical studies in the pediatric population is well known, resulting in lack of direct evidence 

regarding drug safety in this vulnerable population (1).  Consequently, legislation has been introduced in the last 

decade, aimed at stimulating pediatric-specific drug research (2,3). The Global Research in Pediatrics (GRiP) 

Network of Excellence (2) was conceptualized with one of the aims being to improve global pediatric 

pharmacoepidemiology and pharmacovigilance.  

Post-marketing drug safety surveillance relies to a large extent on spontaneous reporting systems  (SRSs).  To 

automatically estimate if a specific drug-event combination (DEC) is a potential signal, statistical disproportionality 

analysis is usually applied (4). Such analysis consists of computing an observed to expected event ratio, obtained by 

comparing a specific DEC with the background reporting rate for that event in relation to all other drugs. SRSs lack 

real, population-based denominator data or an appropriate control group, and are subject to various biases in 

reporting (5).  The denominator in this case is represented by the background reporting rate in the database. For 

disproportionality calculation, the background reporting rate in the database has a large impact on the results and 

it is hypothesized that products or events which are present in large numbers due to frequent reporting may induce 

a masking effect for certain associations (6).  

A masking effect might occur when the signal for a given DEC is suppressed by the presence of other known DECs 

that are overrepresented in the reporting database, thereby increasing the threshold for detection (7,8). The extent 

and impact of masking on the detection of new signals of public health relevance is not fully understood; some 

studies suggest that its effect is limited (9,10) while others have demonstrated that removal of masking can lead to 

discovery of new relevant signals (7). Maignen et al. created an algorithm for detection and quantification of the 

masking effect, which is a ratio of the value of the signal-detection algorithm (SDA) in the presence of the 

hypothesized masking agent(s) divided by the value of the SDA after the removal of the hypothesized masking 

agent(s) (8). Masking was shown to occur more frequently in small databases (11), compared to larger databases 

(9,11). The reason for that might be that larger databases have a larger and more diverse denominator, which 

seems to be more robust to masking. Additionally, masking is reported to have a larger impact on events that are 

rarely reported compared to frequent events (8).  

The highest masking effect is induced by products for which the reaction (event) is known, or extensively reported 

(8). Since vaccines are frequently administered in the pediatric population and vaccine-related reports constitute 

up to 50% of the pediatric reports within spontaneous reporting databases (11-13), it is plausible that in the 

younger population, vaccine-related reports might induce a masking effect for safety signals arising from use of 

small molecules and non-vaccine biologicals (non-vaccines). On the other hand, it is widely accepted that vaccines 

are often administered to healthy subjects unlike non-vaccines, possibly making the set of adverse events reported 

following vaccines distinct enough from those of non-vaccine medicines to avoid a masking effect (14). 

In this study we aimed to achieve the following: first, to analyze the masking effect of vaccines in the pediatric 

population in an European SRS (EudraVigilance) database; second, to investigate any differential masking effect 

across different pediatric age groups; and third, to compare our findings to those reported by others who have 

investigated masking by vaccines.  

Methods  

Study setting and data source  
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The study was conducted within EudraVigilance, the European spontaneous reporting database maintained by the 

European Medicines Agency, which contained approximately 6.2 million spontaneous reports of suspected adverse 

drug reactions (ADRs) at the end of 2015 (15). Only reports of ADRs pertaining to the pediatric population (<18 

years of age) during the study period of 2002-2015 were requested through an academic agreement for the GRiP 

project. Subsequently, a subset of anonymized data fields was provided. For classification of the pediatric 

population in age groups, we applied the International Conference on Harmonization (ICH) categories with the 

exception that neonates (<1 month) and infants (1-23 month(s)) were pooled into one category due to the 

sparseness of reports, resulting in the following categories: neonates and infants (0-23 months), children (24 

months-11 years) and adolescents (12-17 years) (16). 

Drug and event mapping 

All events in EudraVigilance are coded according to the Medical Dictionary for Regulatory Activities (MedDRA®) (17). 

Drug and vaccine exposures are coded according to the EudraVigilance medicinal product dictionary (XEVMPD or 

Article 57 database) but in the dataset that we obtained through the academic agreement most drugs had no 

corresponding codes. Therefore we developed, evaluated, and applied an algorithm to automatically map drug 

entries in EudraVigilance into World Health Organization-Anatomic Therapeutic Chemical (WHO-ATC) codes. First, 

we constructed a dictionary of WHO-ATC codes and related drug terms (including trade names and ingredients) 

based on the Unified Medical Language System (UMLS), version 2016AA (18). Secondly, we applied the Solr search 

engine (http://lucene.apache.org/solr/) to match EudraVigilance entries to the dictionary. 

Reports of vaccine exposures in EudraVigilance were also mapped to WHO-ATC codes using the Solr engine, but 

with a slightly different approach that was developed as part of the vaccine ontology development in the ADVANCE 

(Accelerated Development of Vaccine benefit-risk Collaboration in Europe) project (http://www.advance-

vaccines.eu/). In EudraVigilance, combination vaccines may be reported with all antigens in one row, or with each 

antigen in a separate row. If reported separately, a combination vaccine against measles, mumps and rubella, for 

example, would be assigned to J07BD (measles vaccine), J07BE (mumps vaccine), and J07BJ (rubella vaccine), 

instead of to J07BD72 (measles-mumps-rubella vaccine). For this reason, we developed an algorithm to group 

separately recorded antigens within reports according to existing combination vaccines, leaving jointly recorded 

antigens unchanged, resulting in the lowest possible number of unique exposures per report.  

De-duplication 

We minimized the number of duplicate reports by applying an algorithm based on report identifier, drug, and event 

names. For multiple reports (i.e., the same report is reported at a later time, with additional and updated 

information), the most recent (and most updated) report based upon date of the report was retained for analysis. 

All reports indicating antenatal exposure (preferred terms ‘Maternal exposure during pregnancy’, ‘Foetal exposure 

during pregnancy’, and ‘Exposure via father’) were excluded.  

One report usually contains more than one suspect drug and more than one reaction. All suspect drugs and 

vaccines were considered in combination with all reported ADRs and analyzed at the drug/vaccine event 

combination (DEC/VEC) level. 

Analysis 

For assessing the association between drug and outcome, we applied a signal detection algorithm - the reporting 

odds ratio (ROR), using all DECs in the database as the comparator and defined as ad/cb (Table 1). Multiple studies 

have found little substantive difference among performance of various SDAs (4, 18, 19); therefore for simplicity of 

http://lucene.apache.org/solr/
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interpretation, we limited our investigations to the ROR. We applied thresholds that are currently applied in 

routine regulatory signal detection practice (19), which is lower 95% limit of the ROR above 1 and the number of 

reports of the DEC of interest (cell a) at least 3.   

Table 1. Contingency table for a drug or vaccine and adverse event pair in spontaneous reporting dataa 

 
Experienced adverse event 
of interest 

Experienced another 
adverse event 

Total 

Exposed to drug or 
vaccine of interest 

a b (a+b) 

Exposed to other drug or 
vaccine 

c d (c+d) 

Total (a+c) (b+d) (a+b+c+d) 

             aROR = ab/cd 

The impact of masking of associations in non-vaccine reports due to vaccine related reports was assessed via two 

approaches. First, we assessed the change in performance of the ROR, when applied to the full (vaccine and drug 

DECs retained) versus restricted (vaccine DECs removed) setting. The analysis was also stratified by age group. For 

this approach, we used the GRiP pediatric-specific drug-event reference set for non-vaccines which comprises 256 

unique DECs, 37 of which are classified as positive control pairs, 90 as negative control pairs, and the remainder 

unclassifiable (20). We calculated standard performance metrics: area under the curve (AUC) (calculated by varying 

the threshold for the ROR value), sensitivity, specificity, positive predictive value, and negative predictive value at 

the predefined threshold of ROR > 1 and number of reports ≥ 3 in the full and restricted settings. Since the AUC 

assesses performance based upon the entire reference set and may potentially hide different patterns across DECs, 

we also looked at the change per DEC for the positive and negative controls. Since the amount of confounding will 

be best observed in DECs where we would expect to observe an association (positive controls) we subsequently 

calculated the percent change in ROR between the full and restricted settings for the DECs that were indicated as 

positive controls in the GRiP reference set for non-vaccines, per age stratum. 

The second performance assessment was conducted independent of any reference set. We calculated SDA values 

for all DECs occurring in relation to the top-15 most frequently reported pediatric drugs (non-vaccines) in each 

pediatric age group. The selection of top-15 drugs was based on convenience and to increase the sample size. The 

concordance between the ROR values in the full and restricted setting (only non-vaccines) was evaluated by 

plotting all ROR values against each other in each age group. A slope equal to one would indicate equivalence of 

the ROR values between the different settings (including vs. excluding vaccine-related reports). A lack of 

concordance, as defined by deviation from the line of identity, would indicate that removal of vaccine-related 

reports impacts the ROR value and thereby potential signal detection. This non-concordance was tested by fitting a 

regression line to the plotted values and assessing whether the 95% confidence interval for its slope included one.  

In order to understand which types of associations are mostly affected by masking, we conducted a classification 

tree analysis on all non-vaccine DECs in the full data set for which an ROR value could be calculated. Classification 

and regression trees (CART) is a non-parametric method for determining class membership based upon a set of 

variables. Briefly, the algorithm attempts to predict a target variable by splitting the data recursively according to 

categories of the predictor variables and repeating until no further gain in group ‘purity’ can be achieved or until a 

user-specified stopping rule is reached. We used algorithms which minimized entropy (or maximized node 

homogeneity) while growing the classification tree and balanced cost (misclassification) with complexity (tree size) 

while ‘pruning’ or reducing the tree (20). In this case, the classification tree algorithm was used to split all DECs into 

the classes ‘increased ROR’, ‘decreased ROR’ or ‘no change’. An increase in ROR was defined as >10% increase in 
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ROR value and a decrease was defined as >10% decrease (21). The selected predictor variables were age group and 

proportion of DECs within the age group containing the event of interest for which the event was reported in 

association with a vaccine.  We also conducted a regression analysis of the impact of vaccine removal by regressing 

the change in ROR (ROR restricted - ROR full) on age strata, proportion of DECs for the event of interest reported in 

association with a vaccine, and the interaction of these terms. 

Results  

A total of 448,364 pediatric reports describing 1,115,324 events and 794,713 exposures were initially retained. 

Seventy-one reports pertaining to adults or with missing age and 10,589 events indicating exposure in utero were 

excluded. Following removal of duplicate DECs and DECs with missing exposure data (N=121,205), we analyzed 

366,062 reports comprising 1,177,375 DECs involving 479,595 suspect drugs/vaccines (Table 2).  

Table 2. Description of all ADR reports in pediatrics in EudraVigilance by age categories  

Age group Number of DECs, n (%) non-

vaccines & biologicals 

Number of DECs, n (%) related to 

vaccines 

Infants: 0 days-23 months 402,817 (34.21%) 208,658 (61.19%) 

Children: 2-11 years 406,136 (34.49%) 72,271 (21.19%) 

Adolescents: 12-17 years 368,422 (31.29%) 60,064 (17.61%) 

Total  1,177,375 340,993 

 

In figure 1 we report the events mentioned in the GRiP drug reference set, comparing their frequency in the 

vaccine vs. non-vaccine drug reports. In infants, most events were commonly reported in association with vaccines 

except suicide and QT prolongation. Anaphylaxis, seizure and sudden death were mentioned more commonly in 

vaccine reports in infants unlike in children and adolescents for whom the same events were mentioned more 

commonly in non-vaccine drug reports.  

 

Figure 1 Percentage of each event from reference set reported in combination with vaccines (orange) or 

nonvaccines (blue) by age strata 
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Events like acute renal failure, agranulocytosis, aplastic anemia, liver injury, psychosis, QT prolongation, suicide, 

and thromboemobolism occur in less than 5% of the vaccine-related reports in children and adolescents (Figure 1). 

For the entire pediatric age range, we could calculate ROR estimates for 28 of 37 positive controls and 34 of 90 

negative controls (see Supplementary table 1). The AUC for the full dataset was 0.887 and when we excluded 

vaccine reports, the AUC was reduced slightly to 0.881. Results of performance assessment using the full reference 

set can be found in the supplementary material (Supplementary table 2). In comparison of ROR values from the full 

and restricted data sets for reference set DECs, removal of vaccines from the dataset generally decreased the ROR 

values both in negative controls as well as positive DECs - with the exception of those DECs that included outcomes 

that were also relatively frequently reported in vaccine-related reports such as seizure, anaphylaxis, or erythema 

multiforme (bullous eruption) (Figure 2).  For these events the ROR increased upon removal of the vaccines.  

 

Figure 2 Reporting odds ratio values for drug‐event combinations in the Global Research in Pediatrics reference set 

estimated from the full EudraVigilance pediatric data set (vaccine and nonvaccine) or after exclusion of vaccine‐

related reports. Symbols represent reporting odds ratio values while vertical bars represent lower 95% confidence 

bounds  

When the analyses were restricted to the positive DECs and stratified by age, we observed that removal of vaccine-

related events resulted in an increase in the ROR values for DECs related to seizure, anaphylaxis, or bullous 

eruption and particularly in infants (Figure 3). For events rarely associated with vaccination such as 
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thrombocytopenia, liver injury, QT prolongation, and renal failure, the ROR value decreased for all age groups with 

the most pronounced decrease in infants (Figure 3). 

 

Figure 3 Percent change in reporting odds ratio values for drug‐event combinations from the Global Research in 

Pediatrics reference set that were indicated as positive controls, after removal of vaccine‐related reports from the 

EudraVigilance data set, stratified by age: Pediatrics (0 to <18), infant (0 to <2), child (2 to <12), adolescent (12 to 

<18)  

Analyzing all events related to the top-15 used drugs, showed that in general, vaccine removal decreased the ROR 

values for DECs (see Figure 4). Regression slopes for infants (0-2 years) and adolescents (12-18) were lower than 

those in children (2-12 years of age). Regression slopes and their corresponding 95% confidence intervals by age 

strata are displayed in table 3. 
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Figure 4 Reporting odds ratio (ROR) values for any event reported for the 15 most frequently reported drugs in 

EudraVigilance per age category, upon exclusion of vaccine‐related reports. The x‐axis represents ROR values in the 

full (vaccine and nonvaccine) database while the y‐axis represents ROR values for the same drug‐event 

combinations following removal of vaccine reports 

Table 3. Regression slopes of reporting odds ratio (ROR) calculated using full (drug + vaccine) vs nonvaccine (drug) 

data sets in all drug‐event combinations reported for top 15 drugsa 

 Neonates & Infants Children Adolescents Total Pediatrics 

Regression Slope 
(95% CI) 

0.472  
(0.471, 0.474) 

0.816  
(0.814, 0.818) 

0.788  
(0.787, 0.789) 

0.696  
(0.695, 0.697) 

aRegression Model: ROR (non-vaccine) = a + b*ROR (vaccine) 

In the classification-tree analysis of all DECs in the database, we found that increase in ROR estimate with removal 

of vaccines was dependent upon age group and the proportion of reports for each event that included a vaccine 

exposure.  For infants and adolescents, this proportion was quite high, at 58%; the ROR values were predicted to 

remain unchanged if this proportion was between 48 and 57% and to decrease if 47% or less. For children, the 

proportion of reports for each event which included a vaccine exposure was lower at 27%; the ROR values were 

predicted to remain unchanged if this proportion was between 12 and 27%; and to decrease following vaccine 

removal if this proportion was less than 11%. See supplementary material for further details.  In regression analysis, 

we found a significant interaction between the proportion of DECs for the event of interest reported in association 

with a vaccine and age strata on the change in ROR between full and restricted data sets.  Removal of vaccine 

exposures tended to reduce ROR estimates for infants and adolescents when considering all events reported in the 

database. However, as shown in other analyses presented here, this effect does not hold for those events 

commonly reported in association with vaccines. 
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Discussion 

In this study we demonstrated that in a spontaneous reporting database that contains vaccines and non-vaccine 

related adverse reactions, exclusion of vaccines has an important impact on the measures of association in the 

pediatric population. The direction of the impact differs by age and the frequency of reporting of the event after 

vaccine exposure. For events mostly reported in non-vaccines, the ROR decreased upon removal of vaccines, 

whereas it increased for those events that are frequently reported after vaccination. The change was most 

pronounced in infants (0-2 years), the age group with most vaccine-related reports. Beyond this major finding we 

observed several other important issues: first, events that were listed in the reference set were reported at very 

different frequencies, depending on age group, and varied between vaccine and non-vaccine reports. Many events 

were seldom reported for vaccine-related reports, whereas others had high rates (especially in infants) in vaccine-

related reports.  In infants, for example, only suicide, which should be non-existent in infants (we assume these 

reports are errors), and QT prolongation, which is usually not diagnosed in that age range, were not reported in 

association with vaccines. This imbalance and “association” of exposure and outcome is the pre-condition for 

confounding/effect modification which we were investigating. Secondly, for the majority of negative controls, we 

indeed could not calculate a ROR, because there were no reports in children in EudraVigilance for that 

combination, thereby validating the reference set. For some negative controls however, we actually observed a 

significant association (lower bound of the ROR 95% confidence interval > 1 and number of reports ≥ 3), indicating 

a signal. This suggests that the classification of DECs based on the literature may have been wrong or may have 

changed due to newly occurring evidence. Thirdly, the masking/confounding did not have the same impact when 

we investigated the change in ROR. For the positive controls specifically, the ROR decreased when vaccines were 

excluded and for events that were not mentioned in vaccine-related reports. The ROR increased (masking effect) 

following removal of vaccine reports, when it concerned events that frequently occurred with vaccines. The change 

in ROR was highest in infants, which is expected since most vaccine-related reports concern infants. True positive 

associations involving seizure, bullous eruption and anaphylaxis were generally signals whether vaccine exposures 

were present in the data set or not, although with a lower ROR value in the full data set.  While this does not 

indicate masking, it does indicate risk for lower ROR values when vaccine exposures are retained in the data set. 

In the common 2x2 table upon which most SDAs are based, removal of vaccine-associated reports will not alter cell 

a (reports of the DEC of interest) or b (reports of the drug of interest in association with other events). However, 

cells c (reports of the event of interest with other drugs) and d (reports of other events with other drugs) will 

decrease. If this decrease is more extreme in cell d than in cell c, the effect will be a decrease in the SDA value. This 

is exactly what we observed: for most associations, removal of vaccine-associated DECs reduces the number of 

reports in cell d – vaccines in this case – with other events without simultaneously reducing the number of reports 

of the event of interest in association with other drugs. This suggests that, in general, the adverse events reported 

in association with vaccines are different than those reported in association with the non-vaccines included in our 

reference set or with the most commonly reported non-vaccines in pediatrics. This is supported by the effect we 

see in the ROR values for the reference set. The only associations for which the SDA values increase with removal of 

vaccines are those including events frequently reported following vaccination: bullous eruption, seizure, and 

anaphylaxis (see Supplementary table 1). Blake et al. have reported the preponderance of vaccine-associated 

reports in pediatrics while Juhlin et al. have reported the considerable impact of some vaccine-adverse event pairs 

in signal detection, specifically common adverse events like fever (2,22). This effect is most pronounced in infants 

and adolescents who are the target groups for most routine childhood vaccinations.  
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Regarding the analysis without a reference set, we found that removal of vaccine exposures typically decreases the 

value of SDAs, especially in infants.  In the decision-tree analysis, we found that the impact of vaccine removal on 

ROR values was dependent upon age group and the proportion of reports for an event which included a vaccine 

exposure. Since drug-event associations for events that occur frequently after vaccination may be underestimated 

for non-vaccine drugs we recommend that vaccines be removed from the data set when the event of interest is a 

known adverse event following vaccination. 

Other studies that specifically investigated masking by vaccine-related reports had similar results. De Bie et al., 

after analyzing a large international spontaneous reports database (Vigibase), found that vaccines have a large and 

mathematically predictable impact on signal detection in the pediatric population, also after stratification by age 

(12,23). Specifically, they found that in analysis of non-vaccine DECs, when the non-vaccine proportion ratio 

(defined as the ratio between the proportion of non-vaccine-related pairs in cell c and the proportion of non-

vaccine-related pairs in cell d in the full database) was < 1, additional ADRs were detected after restriction to non-

vaccine DECs. Similar to the present study, they found that the masking effect was most pronounced in infants.  

Another study performed on a smaller company-owned vaccine-specific database (9) found a rather modest 

masking effect.  While the findings of this study may be generalizable to any database containing reports of 

vaccines and non-vaccines in children, because other databases vary in size, completeness and type of reports 

contained, generalizability cannot be assumed. Our study is limited in its focus on only one frequentist SDA.  

Performance of a Bayesian SDA may differ from that of the ROR but due to the preponderance of studies 

demonstrating little difference in performance among SDAs (4,22,23) and in the interest of ease of interpretation, 

we chose to limit our focus to the ROR. Method-wise there were other methods proposed in the literature to 

evaluate masking, for example the masking ratio developed and validated by Maignen (8, 24).  This method, when 

conducted at the DEC level, is conceptually similar to the percent change in ROR which we have reported..   

In conclusion, removal of vaccines prior to performing signal detection in a pediatric population has an impact on 

ROR, dependent upon the frequency with which the event of interest is reported in combination with vaccines. We 

recommend removal of vaccine exposures only if the investigated ADRs include those typically reported in 

association with vaccines, such as anaphylaxis, fever, and convulsions.  Because the impact of masking differed by 

age group due both to frequency of vaccination and diversity of adverse events experienced in each age group, we 

additionally recommend stratification by age. Since we could not assess if the gain in specificity offsets the loss in 

sensitivity, we recommend further evaluation using a larger pediatric-tailored reference set.   
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Supplementary Material 

Supplementary Table 1. Reporting odds ratio values in EUDRAVIGILACE in population 0-18 years of age for GRiP reference set associations (true positive = green 

cells, true negative = red cells) 

BULLOUS ERUPTION APLASTIC ANEMIA AGRANULOCYTOSIS THROMBOCYTOPENIA PSYCHOSIS SUICIDE VENTRICULAR ARRHYTHMIA SUDDEN DEATH QT PROLONGATION THROMBOEMBOLISM ANAPHYLAXIS SEIZURE ACUTE KIDNEY INJURY LIVER INJURY SEPSIS SIDS

ROR 5.77 4.15 2.45 2.09 0.36 6.39 2.75

ROR NO 

VACCINES

6.27 2.95 1.99 2.27 0.45 4.42 1.94

ROR 6.26 0.60 1.21 0.92 1.21 0.31 0.80 2.91 0.19 2.18 0.45 1.23 2.35 0.21

ROR NO 

VACCINES
6.87 0.42 0.86 0.75 0.86 0.21 0.58 2.01 0.13 2.38 0.56 0.85 1.66 0.17

ROR 2.49 5.09 2.27 1.67 1.63 5.07 0.75 0.61 1.12

ROR NO 

VACCINES
2.70 3.58 1.61 1.36 1.16 3.49 0.82 0.75 0.79

ROR 3.87 22.04 0.56 2.83

ROR NO 

VACCINES
3.14 21.85 0.61 2.34

ROR 0.80 0.92 1.48 3.13 2.68 1.96 0.69 1.09 1.51 20.10

ROR NO 

VACCINES
0.87 0.65 1.05 2.54 1.91 1.35 0.75 1.34 1.04 14.21

ROR 9.61 4.48 2.69

ROR NO 

VACCINES
6.76 3.63 2.92

ROR 0.70 0.79 8.21 1.04 0.21 0.79

ROR NO 

VACCINES
0.57 0.54 8.14 1.13 0.26 0.56

ROR 2.65 99.87 39.26 0.38 2.60 9.30

ROR NO 

VACCINES
2.15 72.41 27.23 0.41 3.20 6.43

ROR 1.97 0.39 1.33

ROR NO 

VACCINES
2.13 0.42 1.64

ROR 0.92 0.26 0.37 5.07 4.18 0.28 0.28 0.07 0.43 0.63 1.03 0.07

ROR NO 

VACCINES
1.00 0.18 0.30 3.61 2.86 0.20 0.28 0.05 0.47 0.77 0.73 0.06

ROR 0.40 0.34 0.84 0.88 4.69 6.06 0.16 1.43 0.40 0.25 3.13 0.28

ROR NO 

VACCINES
0.43 0.23 0.59 0.71 3.33 4.13 0.12 1.00 0.44 0.30 2.19 0.23

ROR 10.41 0.92 0.54 0.25 1.31

ROR NO 

VACCINES
7.16 0.99 0.66 0.17 1.08

ROR 0.95 0.98 0.68 0.31 8.26 2.55 0.53 1.82 1.46 0.94 0.63

ROR NO 

VACCINES
0.68 0.80 0.49 0.21 8.23 1.76 0.57 2.24 1.01 0.66 0.52

ROR 0.14 0.63 1.01 1.23 8.39 2.57 2.95 3.38 2.62 0.21 0.25 0.74 0.27 1.12 0.05

ROR NO 

VACCINES
0.15 0.44 0.71 0.99 5.97 1.76 2.12 3.41 1.80 0.14 0.27 0.92 0.18 0.79 0.04

ROR 3.52 2.87 7.91 0.81 0.28 6.61

ROR NO 

VACCINES
3.82 2.32 5.44 0.88 0.35 4.57

ROR 0.57 1.03 0.24 0.37 0.69 0.46

ROR NO 

VACCINES
0.62 0.71 0.26 0.46 0.48 0.38

FLUCLOXACILLIN

PRAZIQUANTEL

ISONIAZID

LOPINAVIR

DOXYCYCLINE

CLARITHROMYCIN

ISOTRETINOIN

MONTELUKAST

FLUTICASONE

QUININE

MEBENDAZOLE

CYPROTERON

IBUPROFEN

METHYLPHENIDATE

DOMPERIDONE

LOPERAMIDE
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Supplementary Table 2. Overall performance of ROR signal detection algorithm using the GRiP drug 

reference set on data in EUDRAVIGILACE in population 0-18 years of age 

Age group  Set  AUC SENSITIVITY SPECIFICITY 

0-18 years Vaccine & non-vaccine 0.887 0.671 0.939 

Non-vaccine only 0.881 0.607 0.939 

0-<2 years Vaccine & non-vaccine 0.861 0.583 0.889 

Non-vaccine only 0.898 0.500 1.000 

2-<12 years Vaccine & non-vaccine 0.856 0.421 0.913 

Non-vaccine only 0.860 0.421 0.957 

12-<18 years Vaccine & non-vaccine 0.815 0.609 0.917 

Non-vaccine only 0.817 0.565 0.917 

SDA=signal detection algorithm; Non-vaccine=data set with all vaccine-adverse event pairs removed; 

Sensitivity and Specificity calculated using reporting odds ratio (ROR) threshold of  lower confidence 

interval of ROR > 1 and number of reports ≥ 3 
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Supplementary figure 1. Classification tree for vaccine removal.  RORs for reference set 

associations following vaccine removal classified as DECREASE (> -10% change in ROR), 

INCREASE (> +10% change in ROR), NO CHANGE (-10% > change in ROR < +10%) 
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Node Information 

ID Path 

Training Data 

Count DECREASE  INCREASE  NO CHANGE  

3 (DECREASE) Root Node 193E3 0.5878  0.2463  0.1659  

 prop_with_vacc < 0.109476 93741 0.9082  0.0670  0.0249  

 AGE = CHILD,INFANTS 77868 0.9887 * 0.0000  0.0113  

B (NO CHANGE) Root Node 193E3 0.5878  0.2463  0.1659  

 prop_with_vacc >= 0.109476 99018 0.2845  0.4160  0.2995  

 AGE = CHILD 39884 0.0006  0.4062  0.5932  

 prop_with_vacc < 0.268714 23658 0.0010  0.0003  0.9987 * 

C (INCREASE) Root Node 193E3 0.5878  0.2463  0.1659  

 prop_with_vacc >= 0.109476 99018 0.2845  0.4160  0.2995  

 AGE = CHILD 39884 0.0006  0.4062  0.5932  

 prop_with_vacc >= 0.268714 16226 0.0000  0.9979 * 0.0021  

H (DECREASE) Root Node 193E3 0.5878  0.2463  0.1659  

 prop_with_vacc >= 0.109476 99018 0.2845  0.4160  0.2995  

 AGE = ADOL,INFANTS 59134 0.4760  0.4226  0.1013  

 prop_with_vacc < 0.477714 37907 0.7183  0.2428  0.0389  

 AGE = INFANTS 22063 0.9998 * 0.0000  0.0002  

K (INCREASE) Root Node 193E3 0.5878  0.2463  0.1659  

 prop_with_vacc >= 0.109476 99018 0.2845  0.4160  0.2995  

 AGE = ADOL,INFANTS 59134 0.4760  0.4226  0.1013  

 prop_with_vacc >= 0.477714 21227 0.0433  0.7439  0.2128  

 prop_with_vacc >= 0.577238 14086 0.0210  0.9719 * 0.0071  

P (NO CHANGE) Root Node 193E3 0.5878  0.2463  0.1659  

 prop_with_vacc >= 0.109476 99018 0.2845  0.4160  0.2995  

 AGE = ADOL,INFANTS 59134 0.4760  0.4226  0.1013  

 prop_with_vacc >= 0.477714 21227 0.0433  0.7439  0.2128  

 prop_with_vacc < 0.577238 7141 0.0872  0.2941  0.6187  

 AGE = INFANTS 4438 0.0023  0.0489  0.9489 * 

Q (INCREASE) Root Node 193E3 0.5878  0.2463  0.1659  

 prop_with_vacc >= 0.109476 99018 0.2845  0.4160  0.2995  

 AGE = ADOL,INFANTS 59134 0.4760  0.4226  0.1013  

 prop_with_vacc >= 0.477714 21227 0.0433  0.7439  0.2128  

 prop_with_vacc < 0.577238 7141 0.0872  0.2941  0.6187  

 AGE = ADOL 2703 0.2268  0.6966 * 0.0766  

* Selected target level 
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2.3  PEDIATRIC VACCINE SAFETY SIGNAL DETECTION IN VAERS AND EUDRAVIGILANCE USING 

DISPROPORTIONALITY ANALYSIS, TIME TO ONSET, AND THEIR COMBINATION 
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Abstract 

Background 

Adverse events following immunization (AEFIs) may be monitored in spontaneous reporting systems using signal 

detection algorithms which compare the frequency of reports of a specific vaccine-AEFI combination  to the 

frequency of all other reports in the database. Alternatively, a recently developed method uses distribution tests of 

reported time-to-onset (TTO) to detect vaccine safety signals with unexpected reported temporal relationship. 

Objectives 

To compare performance of the Empirical Bayes Geometric Mean (EBGM), the TTO method, and their combination 

in pediatric vaccine reports in the databases (DBs) of the US Vaccine Adverse Event Reporting System (VAERS) and 

EU EudraVigilance (EV) as part of the Global Research in Pediatrics project. 

Methods 

Following EV and VAERS  conversion to a common data model, EBGM and TTO methods were applied to all 

pediatric vaccine reports in VAERS, EV, and their union.  Performance of each method was assessed using a 

previously published vaccine reference set comprising 18 true positive and 113 true negative associations to 

calculate area under the receiver operating characteristic curve (AUC).  The method of Pepe & Thompson (2000) 

was used to determine the linear combination of EBGM and TTO which maximized the AUC in the EV database,  

VAERS database, and their union (EV + VAERS). 

Results 

VAERS contained 1.56 million pediatric vaccine-AEFI combinations, 7% of which were missing TTO data.  EV 

contained 228,181 pediatric vaccine-AEFI combinations, 54% of which were missing TTO data. In VAERS, the TTO 

method AUCs was 0.86 while EBGM AUC was 0.77.  Performance in EV was similar across methods with TTO and 

EBGM AUCs of 0.83 and 0.86, respectively.  In the union of VAERS and EV the TTO AUC was 0.86 while the EBGM 

AUC was 0.80.  The linear combination of TTO and EBGM increased AUC to 0.90 in VAERS, 0.94 in EV, and 0.92 in 

the union  (EV + VAERS) database. 

Conclusion 

The EBGM method performed better than the TTO method in EV while TTO performed better than EBGM in VAERS 

and the union of the two databases.  Unifying pediatric reports from the EV and VAERS databases did not improve 

performance over the best performing method in each DB alone. The combination of EBGM and TTO methods 

improved performance over either method alone in both databases and their union.  When time to onset data is 

available, the TTO method is recommended.  Linearly combining methods to make use of the most available data 

may improve performance over each method alone while unifying spontaneous reporting databases to conduct 

signal detection does not offer obvious benefit. 
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Introduction 

Vaccines have been demonstrated to be very effective and have prevented more deaths than any other medical 

intervention (1). Administration of vaccines differs from that of other medicines in that vaccines are mostly 

administered to healthy rather than diseased persons and, for most vaccines, to large segments of the population, 

usually in childhood.  While vaccines are tested for quality, efficacy and safety in clinical trials, the sample size and 

duration of follow-up is generally limited.  Additionally, assessment of concomitant administration of other 

vaccines is not studied in clinical trials.  Consequentially, additional safety concerns must be monitored in a post-

marketing setting. 

The traditional way to identify potential safety issues is through the analysis of spontaneously reported case 

reports that are submitted to systems to which physicians, consumers, and others can report suspected adverse 

events following immunization (AEFIs). Databases of this type contain only reports of suspected adverse reactions 

and lack data on the number of exposed persons. The absence of the number of exposed persons has led to the 

development of signal detection algorithms (SDAs) based on the reported cases only. These algorithms assess 

disproportionality of reporting by comparing the frequency with which a specific vaccine-AEFI combination is 

reported to all other vaccine-AEFI combinations in the database.  

While SDAs developed for detection of safety signals associated with drugs have been extensively studied, little 

attention has been paid in the literature to the appropriateness of applying these methods to vaccine exposures, or 

to the development of vaccine-specific SDAs (2-4).  One notable exception to this is the time-to-onset (TTO) 

method developed by Van Holle et al., which uses reported time from vaccination to onset of symptoms to detect 

safety signals (5).   

The performance of an SDA is often tested by determining the area under the curve (AUC) of a receiver operator 

curve (ROC), which is a common practice in testing the performance of diagnostic tests. In the field of diagnostic 

testing much research has been done regarding the combination of test results to increase predictive accuracy (6-

8).  In contrast, while SDAs have been extensively tested and compared, little work to date has been done on the 

combination of SDA estimates to increase performance.  With the exception of the 2014 study by Van Holle et al. 

which employs logistic regression to combine SDA estimates, the work which has been done is limited to combining 

signals from different data sources, such as spontaneous reporting systems and observational healthcare data (9-

11).  We were interested in the potential to increase performance of signal detection by combining different SDA 

methodologies within the same data source as well as in unifying multiple data sources. 

As part of the Global Research in Pediatrics (GriP) project, which was funded by the European Commission Seventh 

Framework Programme, we used the public versions of the United States Food and Drug Administration (FDA) 

Vaccine Adverse Event Reporting System (VAERS) and a subset of the European Medicines Association (EMA) 

EudraVigilance (EV) system which was obtained through an academic agreement. We developed a common data 

model (CDM), which means that the structure and variable names of the databases are harmonized  . This  allows 

similar analysis and pooling. Both the EV and VAERS database were converted to this CDM (Supplementary 

material).  We used the data to address three research questions: first, to compare the performance of the 

Empirical Bayes Geometric Mean (EBGM), a commonly used SDA, to the TTO method. Second, to investigate 

whether performance of signal detection changes when the VAERS and EV databases were united as compared to 

keeping them single. Third, to derive a linear combination of EBGM and TTO thresholds to investigate whether this 

would alter performance. 

 



68 
 

Methods 

Data sources 

VAERS database 

The United States FDA together with the US Centers for Disease Control maintain the Vaccine Adverse Event 

Reporting System (VAERS) database (12).  VAERS was set up in 1990 in response to The National Childhood Vaccine 

Injury Act of 1986 which required physicians to report suspected AEFIs (13).  The data contained in VAERS is 

publically available for download and is updated monthly.  Reports for serious events occurring outside the United 

States must also be reported to VAERS by vaccine manufacturers (14). From its inception until 2007, AEFIs in VAERS 

were coded using the FDA’s Coding Symbols for a Thesaurus of Adverse Reaction Terms (COSTART) system but have 

since been coded using the Medical Dictionary for Regulatory Activities (MedDRA) coding system.  All events 

reported prior to 2007 have been converted from COSTART to the MedDRA coding system.  Vaccine exposures are 

coded using a VAERS-specific coding system with separate values for vaccine type which groups vaccines containing 

the same antigens together regardless of manufacturer, additives, or year with additional variables such as 

manufacturer, dose and route.  As of December 2017, VAERS contained 541,018 reports, 43% of which pertained to 

events occurring in children, defined as those with non-missing age less than 18 years. 

EudraVigilance database 

The European Medicines Agency (EMA) maintains the EudraVigilance (EV) database since December 2001 with data 

dating back to 1995.  Like VAERS, EV was set up in response to legislation requiring reporting of all serious adverse 

drug and vaccine reactions in Europe.  Marketing authorization holders and sponsors of clinical trials must submit 

suspected adverse events occurring after exposure to products licensed in the EU - regardless of the location of 

exposure or event - to the EMA.  The database has since been expanded in 2015 to include non-serious reactions; 

in 2017 reporting of non-serious reactions was made mandatory and the database was also expanded to include 

literature reports. EV data can be queried online with standard methods, for research  a dataset can be requested 

from EMA (15).  For the current study, we obtained individual case safety reports for spontaneous reports following 

drug and vaccine exposures only in which the subject was identified as pediatric based upon reported or calculated 

age less than 18 or reported age group of neonate, infant, child, or adolescent.  For the current study, only events 

reported in association with vaccine exposures are considered.  As of December 2017, EudraVigilance contained 

12.45 million safety reports, 34% of which originated in Europe and 66% of which originated elsewhere (16).  The 

EV data obtained for the Global Research in Pediatrics (GriP) project, which extends through the end of 2016, 

contains 0.5 million pediatric safety reports. 

Common data model 

Within the GRiP project, we developed a common data model for spontaneous reporting systems in order to 

combine data and compare systems.  We transformed the publicly available VAERS database as well as the GriP 

pediatric subset of the EV database into this common data model (see appendix 1)    

Vaccines in VAERS are coded using a standardized dictionary developed for the VAERS database while all drugs and 

vaccines within EV are reported using the non-proprietary substance name (17, 18).   

Using an algorithm described previously (19), reports of vaccine exposures in EV were mapped to WHO-ATC codes 

using the Solr search engine (http://lucene.apache.org/solr/). The approach was part of the vaccine ontology 

development in the ADVANCE (Accelerated Development of Vaccine benefit-risk Collaboration in Europe) project 

(ADVANCE Deliverable 5.5: https://goo.gl/hkvAV4) (20). In EV, combination vaccines may be reported with all 

http://lucene.apache.org/solr/)
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antigens in one row, or with each antigen in a separate row. If reported separately, a combination vaccine against 

measles, mumps and rubella, for example, would be assigned to J07BD (measles vaccine), J07BE (mumps vaccine), 

and J07BJ (rubella vaccine), instead of to J07BD72 (measles-mumps-rubella vaccine). For this reason, we developed 

an algorithm to group separately recorded antigens within the same case report (defined by report id and date) 

according to existing combination vaccines, leaving jointly recorded antigens unchanged, resulting in the lowest 

possible number of unique exposures per report.  

Following conversion to the CDM, the VAERS and EV datasets were separately de-duplicated using a combination of 

report id, substance name, vaccine type, age, sex, outcome, event, country and year of the event. When duplicates 

were detected, the record with the lower proportion of missing data was retained. Using the common data model 

(see supplementary material), we were able to combine the de-duplicated pediatric subset of the VAERS database 

with the pediatric vaccine-related reports from EudraVigilance.  Because both databases contain reports for events 

occurring outside of their jurisdiction, the resulting data set was de-duplicated again using the same combination of 

variables with the exception of report id.  In a sensitivity analysis, the impact of deduplication was assessed by 

performing a subset of analyses on the union of EV and VAERS without deduplication. 

Reference Set 

In order to test the performance of SDAs in spontaneous databases, we used a reference set that was developed in 

the GRIP project. This reference set contains 182 vaccine-AEFI pairs, 18 of which are classified as positive controls 

(true relation between vaccine and AEFI), 113 as negative controls (no known relation between the vaccine and 

AEFI), and 51 as unclassifiable (21).  Mappings from AEFIs to MedDRA preferred terms can be found in 

supplementary material (Supplementary material). The number of reports of each reference set vaccine-AEFI pair 

was described by database and age group as defined by the International Conference on Harmonization (ICH), with 

the exception that neonates and infants were combined due to the paucity of vaccine exposures in neonates.  

Resulting age groups were infants (0 to < 2 years), children (2 to < 12 years), and adolescents (12 to < 18 years) (22).   

Signal Detection Algorithms 

The EBGM is a well-established SDA originally developed by DuMouchel for use in the US FDA Adverse Event 

Reporting System (FAERS) (23).  Briefly, the method uses a Bayesian framework in which ratios of observed to 

expected counts are assumed to be drawn from a prior distribution which is the mixture of two gamma 

distributions.  This method serves to shrink estimates toward the null, especially when observed or expected 

counts are small (24).  We calculated EBGM values for each vaccine-AEFI combination and categorized each 

reference set association as a signal based upon a predefined threshold.  The threshold used by the Medicines and 

Healthcare products Regulatory Agency (MHRA) for declaring a vaccine-AEFI pair a signal is: EBGM lower 90% 

credibility interval bound (EB05) ≥ 1.8, number of reports ≥ 3, and EBGM ≥ 2.5 (25). Under the null assumption of 

no association between a and AEFI and no confounding or bias we would expect  an EBGM of 1.  In a sensitivity 

analysis, we calculated age-stratified EGBM values using the Mantel-Haenszel approach for weighting of each ICH 

age strata and subsequent pooling (26). 

Van Holle et al have developed an alternative vaccine safety signal detection method.  This method makes use of 

the reported time from exposure to onset of symptoms (TTO) (5).  Briefly, for each vaccine/AEFI combination of 

interest, three distributions are constructed using the recorded times in the reports in the database: 1. Time to 

onset from the vaccine of interest to the AEFI of interest (Vaccine/AEFI), 2. Time to onset from the vaccine of 

interest to any AEFI other than that of interest (Vaccine/Other events), and 3. Time to onset from any other vaccine 

to the AEFI  of interest (Other vaccines/AEFI).  Subsequently, distributions 2 (Vaccine/Other events) and 3 (Other 

vaccines/AEFI) are compared to distribution 1 (Vaccine/AEFI) using the Kolmogorov-Smirnov (KS) two sample test.  

http://www.itl.nist.gov/div898/software/dataplot/refman1/auxillar/ks2samp.htm
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The KS statistic tests whether two distributions come from the same underlying distribution (27).  In the TTO 

method, if p-values from both KS-tests (Vaccine/AEFI vs. Vaccine/Other  events and Vaccine/AEFI vs. Other vaccines 

/AEFI) are below a predefined threshold, the association of interest is determined to be a signal.  We calculated 

both KS-test p-values for each vaccine-AEFI combination and categorized each reference set association as a signal 

based upon the threshold  of a p-value < 0.05 for both KS tests.  Under the null assumption of no association 

between that vaccine and AEFI, the reported time-to-onset distribution is assumed to be similar to what is 

observed for that event following other vaccines. That assumption is tested by one of the aforementioned KS test 

(Vaccine/AEFI vs. Other vaccines/AEFI). The other KS test (Vaccine/AEFI vs. Vaccine/Other events) serves to 

increase specificity and therefore has less predictive value (9) 

Performance of the EBGM and TTO methods was assessed in EV and VAERS separately and in the union of the 

VAERS and EV databases using the reference set as ‘gold standard’.  First, detection of true positives at the MHRA 

recommended threshold for EBGM (>2.5, EBGM05 ≥ 1.8, number of reports ≥ 3) and the p-value < 0.05 threshold of 

the TTO method  was assessed.  Subsequently, performance of both the EBGM and TTO test was measured via area 

under the receiver operating characteristic (ROC) curve.  True positives were the 18 associations in the reference 

set listed as positive controls; true negatives were the 113 listed as negative controls, while the remaining 51 

associations with conflicting evidence or absence of evidence were excluded from performance assessments. For 

vaccine-AEFI combinations in the reference set without any observations in the database, a null value of 0 for 

EBGM and 1 for TTO p-values was imputed prior to AUC calculation.  For the EBGM based ROC analysis, the 

threshold of the EBGM test statistic was varied from 0 to infinity.  For the ROC the number of reports and lower 

90% credibility interval bound of the EBGM test statistic  (which are used by MHRA) were not considered.  For the 

ROC analysis of the TTO method, p-value thresholds for both KS tests were varied simultaneously and identically 

from 0 to 1.  

To find the optimal combination of the EBGM test statistic and the two TTO KS p-values, we applied the 

methodology of Pepe and Thompson (19). This method uses a distribution-free rank-based approach to find the 

linear combination of test results (in our study: the log-transformed EBGM results and log-transformed p-values of 

the two KS tests in TTO) which maximizes the area under the ROC curve (28).  The three test results were submitted 

to the maximization algorithm sequentially, and all six possible sequences of three tests were analyzed.  The 

sequence yielding the maximum AUC was retained.   

Results 

The public VAERS database that was downloaded on 31 March 2017 contained 258,241 reports comprising 

2,184,765 vaccine-AEFI combinations reported in children 0 to < 18 years of age.  De -duplication removed 158,048 

(7.2%) vaccine-AEFI combinations from VAERS. The EV database contained 448,364 reports related to pediatrics (0-

< 18 years) and 77,679 of those related to vaccines.  These 77,679 reports comprised 325,148 vaccine-AEFI 

combinations.  De-duplication within EV removed 33,239 duplicate (10.2%) vaccine-AEFI combinations.  Following 

concatenation of the de-duplicated pediatric VAERS and EV vaccine data, we obtained 2,318,627 vaccine-AEFI 

combinations.  533,783 (23.0%) additional duplicate vaccine-AEFI combinations were removed, leading to a final 

analysis data set containing 1,784,844 vaccine-AEFI combinations (Table 1).  For our sensitivity analysis of data 

without de-duplication, we concatenated the EV and VAERS data sets without any deduplication, leading to an 

analysis data set with 2,509,913 vaccine-AEFI combinations.  Data on time-to-onset was missing in less than 10% of 

VAERS reports but in over half of EV reports, meaning that either exposure date, onset date, or both was missing.  

Missingness was lowest in infants and highest in adolescents (Table 1).   
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Table 1.  Number of vaccine/AEFI combination and  missingness of time-to-onset by database and age 

Database Age Strata Number of Vaccine/AEFI 
combinations (%) 

Number of Missing Time-to-
onset values 

% Missing Time-
to-onset 

VAERS Infants 848,365 (54.5%)  58,173 6.9% 

 Children 437,082 (28.1%) 33,059 7.6% 

 Adolescents 271,216 (17.4%) 23,465 8.7% 

 Total 1,556,663  114,697 7.4% 

EudraVigilance Infants 139,922 (61.3%) 69,811 49.9% 

 Children 53,122 (23.3%) 28,914 54.4 % 

 Adolescents 35,137 (15.4%) 25,095 71.4% 

 Total 228,181 123,820 54.3% 

VAERS + EV Infants 988,287 (55.4%) 127,984 12.2% 

 Children 490,204 (27.5%) 61,973 14.0% 

 Adolescents 306,353 (17.2%) 48,560 16.2% 

 Total 1,784,844 238,517 13.4% 

 

Each of the events in the GriP positive and negative reference set were reported at least once in both VAERS and 

EV, with anaphylaxis, HHE and seizure being most commonly reported in both data sources while disseminated 

tuberculosis was reported least frequently (Table 2).  Most events were most frequently reported for the age group 

0-23 months (infants), except for arthritis which was most frequently reported in adolescents. Across both 

databases and all age groups, 82-86 percent of events reported were events not included in the reference set 

(Table 2).  Naturally, reports were mostly related to routine childhood vaccines and seasonal vaccines while reports 

related to BCG vaccine (a travel vaccine or risk group vaccine) were less frequent (Table 3).  The percentage of 

reports of vaccines not in the reference set was higher in EV (25%) than in VAERS (14%).  Adolescents had a higher 

percentage of non-reference set vaccine reports, the majority of which (79%, data not shown) were related to HPV 

vaccines (Table 3).The number of reports for all reference set associations by database can be found in 

supplementary material (Supplementary Table 1). 

Table 2. Number of reports for events in the GriP reference set of positive and negative controls in association 

with any vaccine in VAERS and EUDRAVIGILANCE by age group (infants: 0-2 years, children 2-11, adolescents: 12- 

< 18) 

 
 

VAERS EudraVigilance Overall 

Infants Children Adolescents Total 
Pediatrics 

Infants Children Adolescents Total 
Pediatrics 

Total 

ANAPHYLAXIS  73,560 56,324 21,251 151,135 12,180 4,558 2,405 19,143 170,278 

ARTHRITIS 3,074 2,665 3,231 8,970 474 431 454 1,359 10,329 

BELLS PALSY 46 47 104 197 16 22 36 74 271 

DIABETES MELLITUS 239 219 192 650 65 56 42 163 813 

DISSEMINATED OKA 
VZV 

1,074 653 134 1,861 14 100 5 119 1,980 

DISSEMINATED TB 1 0 1 2 5 3 1 9 11 

ENCEPHALITIS 1,027 468 414 1,909 228 160 113 501 2,410 

GUILLAIN BARRÉ 
SYNDROME 

512 411 570 1,493 46 65 74 185 1,678 

HHE 23,142 6,105 4,243 33,490 6,759 882 666 8,307 41,797 
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Table 3. Number of reports for vaccines in the GriP reference set that we reported in association with any event 

for VAERS and EUDRAVIGILANCE by age group (infants: 0-2 years, children 2-11, adolescents: 12-< 18) 

 

VAERS EudraVigilance Overall 

Infants Children Adolescents Total 
Pediatrics 

Infants Children Adolescents Total 
Pediatrics 

Total 

BCG 1,360 123 141 1,624 796 61 121 978 2,602 

DTAP 123,217 83,248 26,239 232,704 12,302 3,049 971 16,322 249,026 

DTWP 35,154 13,634 175 48,963 647 128 17 792 49,755 

FLU 
25,335 53,449 24,799 103,583 2,772 5,261 1,664 9,697 113,280 

HAV 22,011 26,090 20,198 68,299 461 1,289 1210 2,960 71,259 

HBV 66,701 20,582 22,275 109,558 14,543 3,277 2,104 19,924 129,482 

HIB 159,902 14,988 636 175,526 7,981 3,812 7,676 19,469 194,995 

MMR 66,623 57,340 12,564 136,527 11,180 6,226 940 18,346 154,873 

MV 5,631 13,360 42,258 61,249 1,967 2,160 1,801 5,928 67,177 

OPV 35,631 19,544 958 56,133 695 280 6 981 57,114 

PV 134,175 20,776 3,678 158,629 42,907 5,713 272 48,892 207,521 

RV 60,914 518 22 61,454 14,409 363 11 14,783 76,237 

VZV 48,427 56,602 19,279 124,308 2,962 7,232 1,394 11,588 135,896 

Vaccines 
Not in GriP 
Reference 
Set 

63,284 
(7.5%) 

56,828 
(13.0%) 

97,994 
(36.1%) 

218,106 
(14.0%) 

26,300 
(18.8%) 

14,271 
(26.9%) 

16,950 
(48.2%) 

57,521 
(25.2%) 

275,627 (15.4%) 

Total 
848,365 437,082 271,216 1,556,663 139,922 53,122 35,137 228,181 1,784,844 

 

In VAERS,  only 2 (11%) of the positive controls met MHRA criteria (EBGM >2.5, EB05 > 1.8, N ≥ 3)   (Figure 1) while 

111 (97%) of the negative controls did not meet MHRA criteria (Supplementary Figure 1).  Using TTO and the 

standard p-value threshold of 0.05 for testing similarity in distributions, 15 (83%) of the positive controls were 

classified  to be a signal (Figure 2) and 83 (72%) of the negative controls were had at least one p-value above the 

0.05 threshold (Supplementary Figure 2).  

 

 

 

INTUSSUSCEPTION 3,448 23 3 3,474 1150 19 2 1,171 4,645 

SEIZURE  29,398 7,898 6,709 44,005 3,832 1,173 894 5,899 49,904 

THROMBOCYTOPENIA  2,824 779 485 4,088 451 160 66 677 4,765 

VAPP 98 18 4 120 6 6 0 12 132 

WHEEZING, R. 
AIRWAY 

1,431 1,555 471 3,457 134 104 34 272 3,729 

Events Not in GriP 
Reference Set 

708,491 
(83.5%) 

359,917 
(82.3%) 

233,404 
(86.1%) 

1,301,812 
(83.6%) 

114,562 
(81.9%) 

45,383 
(85.4%) 

30,345 
(86.4%) 

190,290 
(83.4%) 

1,492,102 
(83.6%) 

TOTAL 848,365 437,082 271,216 1,556,663 139,922 53,122 35,137 228,181 1,784,844  
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Figure 1.  EBGM values for true positive associations in VAERS 

 

In EV, EBGM classified 5 (28%) of the positive associations as signals according to MHRA criteria (Figure 1) and 113 

(98%) did not meet the criteria (Supplementary Figure 1).  The TTO method flagged 6 (33%) of the true positive 

associations as signals (Figure 2) and 111 (97%) of true negatives had at least one p-value above the 0.05 threshold 

(Supplementary Figure 2).   
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Figure 2.  Time-to-onset Kolmogorov-Smirnov test p-values for true positive associations in VAERS 

 

In the union of VAERS and EV, the EBGM method with MHRA criteria detected 3 (17%) of positive controls and 112 

(97%) of the negative controls did not meet MHRA criteria for EBGM (Supplementary Figure 1).  The TTO method 

correctly detected 15 (83%) of the true positives while 87 (76%) of true negatives had at least one p-value above 

the 0.05 threshold (Supplementary Figure 2).   

In VAERS, the performance of the EBGM method was lower than that of the TTO method with AUCs (95% CI) of 

77.2 (68.7, 85.7) and 86.4 (75.3, 97.5), respectively.  Combining the EBGM and TTO methods led to an increased 

AUC of 90.9 (83.2, 98.6).  In EV, EBGM performed slightly better than TTO with AUCs of 86.4 (79.9, 93.0) and 82.9 

(73.6, 92.1), while the combination of EBGM and TTO markedly improved performance, producing an AUC of 94.4 

(90.4, 98.5) (Figure 3, Table 4). 
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Figure 3. ROC Curves of the signal detection methods in pediatrics by database 

 

 TTO = Time To Onset, EBGM = Empirical Bayes Geometric Mean 

In the union of the EV and VAERS  databases, performance of the EBGM method was lower than that of TTO, with 

AUCs of 80.1 (71.9, 88.3) and 85.7 (75..3, 96.1).  The combination of methods in the unified database improved 

performance over either method alone, producing an AUC of 92.3 (86.8, 97.9) (Figure 3, Table 4). 

In sensitivity analyses retaining duplicate reports, the performance of EBGM improved slightly in  both databases 

and their union.  The performance of the TTO method improved in EV and the unified database with retention of 

duplicate reports but marginally decreased in VAERS (Table 4).   

In EBGM analysis by age strata, performance in each DB and their union was similar for adolescents (AUC EV: 0.83, 

VAERS: 0.80, Union: 0.83), children (AUC EV: 0.83, VAERS: 0.80, Union: 0.87), and infants (AUC EV: 0.87, VAERS: 

0.74, Union: 0.77).  Area under the curve for age-adjusted EBGM in EV, VAERS, and their Union were 0.83, 0.76, and 

0.79, respectively (Table 4).  In TTO analysis stratified by age, performance in each DB and their union was similar 

for adolescents (AUC EV: 0.78, VAERS: 0.81, Union: 0.82), children (AUC EV: 0.86, VAERS: 0.88, Union: 0.91), and 

infants (AUC EV: 0.78, VAERS: 0.83, Union: 0.85) (Table 4).   
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Table 4. Performance of different signal detection algorithms expressed by area under the curve (AUC) of the 

receiver operating curve (ROC) in the different datasets 

 EBGM TTO EBGM + TTO  

Database Primary 
analysis  
(with 
deduplicaiton) 

Sensitivity 
analysis 1 
(without 
deduplication) 

Sensitivity 
analysis 2 
(with age-
adjustment) 

Primary analysis 
(with 
deduplicaiton) 

Sensitivity  
(without 
deduplication) 

Primary  
 (with 
deduplicaiton) 

Equation for linear 
combination of EBGM and 
TTO thresholds 

VAERS 77.2 (68.7, 
85.7) 

78.4 (70.1, 
86.6) 

76.3 (67.2, 
85.3) 

86.4(75.3, 97.5) 85.2 (74.0, 96.4) 90.9 (83.2, 98.6) = EBGM – 
0.27*ln(TTO_Other_Event) -- 
0.33* ln(TTO_Other_Vaccine)  

EudraVigilance 86.4 (79.9, 
93.0) 

86.7 (80.2, 
93.2) 

82.8 (75.3, 
90.2) 

82.9 (73.6, 92.1) 83.3 (73.7, 93.0) 94.4 (90.4, 98.5) = EBGM – 
0.04*ln(TTO_Other_Event ) – 
0.09*ln(TTO_Other_Vaccine) 

Union (VAERS + 
EudraVigilance) 

80.1 (71.9, 
88.3) 

81.4 (73.4, 
89.4) 

79.3 (70.9, 
87.8) 

85.7 (75.3, 96.1) 85.8 (75.4, 96.2) 92.3 (86.8, 97.9) = EBGM –
0.09*ln(TTO_Other_Event) – 
0.08 *ln(TTO_Other_Vaccine) 

 

Discussion 

This study aimed to compare the performance of the EBGM and TTO methods separately and in combination on 

the Eudravigilance and VAERS databases focusing on pediatric vaccine reports separately and pooled (unified). We 

have several key findings. First of all we noted that there is a significant duplication of reports between EV and 

VAERS(23%). Of the reports in EV, 35% originate from the European Union and 65% originate from the rest of the 

world while relating to products licensed in Europe (29). Second, we showed based on the GriP reference set as 

gold standard that the TTO method performed better than the EBGM in VAERS whereas EBGM performed better 

than the TTO method in Eudravigilance. When Eudravigilance pediatric vaccine reports and VAERS pediatric reports 

were combined, the TTO method performed better than EBGM.  

Lower performance of the TTO method in EV is likely  related to the higher percentage of missing values in that 

database. As fewer reports can be used by the TTO method, it results into a lower power to flag time-to-onset 

distributions.  In EV, time to onset is not requested from the reporter but is calculated from the reported reaction 

start and exposure dates only if these are both provided in a valid date format.  In VAERS, vaccination date and 

onset date are required fields from which CDC calculates the interval prior to making data available.   

Better performance of the EBGM method in EV may be due to the fact that there is greater diversity of events in 

the vaccine-specific subset of the EV database (3,774 unique events/228,181 reports in EV vs. 6,641 unique 

events/1,556,663 reports in VAERS)  Because adverse events following both drug and vaccine exposures are 

reported to EV, sometimes within the same report, there is a larger number of distinct non-reference set events 

present in the EV database than in VAERS, which is vaccine-specific.   

Unification of the two databases did not improve performance over the better performing method in each 

database alone.  This seems to indicate that performance is driven not by the increased power provided by a larger 

database but by the selection of the best method for a database. While the size of the database increased,  the 

absence of performance improvement in adding EV to VAERS could potentially be due to the fact that the pediatric 

EV data represents only 14.7% of the size of the pediatric subset of VAERS with TTO data of poorer quality.  

The linear combination of methods improved performance over either method alone, particularly in EV where 

time-to-onset data was frequently missing.   
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There are several limitations to this study. First, because of absence of other reference sets in pediatrics we used 

the  reference set published by Pernus et al. as gold standard; this reference set includes only 18 positive controls. 

The positive controls were identified as such because they displayed obvious signs of causality including a strong 

temporal relationship (30). Because of a proven causality, reporting may be aligned to this which  could potentially 

make the TTO signal detection look artificially more performant than it will be in prospective signal detection 

setting. It is to be noted though, that a similar performance assessment was done for the GSK Vaccines 

spontaneous report data using events included in the summary of product characteristics for GSK vaccines as 

positive controls and it provided similar conclusions with higher performance for the TTO signal detection 

compared to the EBGM (11(30)).   

Second, the reference set contains associations which are not applicable to the total pediatric age group.  Positive 

controls associated with MMR vaccine, for example, are not likely to be detected in adolescents who will only 

receive MMR vaccine in unusual situations such as a catch-up vaccination.  Age stratification, however, served to 

decrease overall performance of the EBGM method.  Previous studies have shown that age stratification may serve 

to decrease performance for Bayesian methods such as EBGM when some strata are sparse, as was the adolescent 

age strata in our study (31, 32). 

Conclusion 

In databases in which time to onset data is available, the TTO method, as opposed to EBGM, should be used for 

vaccine signal detection.  Databases such as EudraVigilance with a large proportion of missing times to onset 

benefit from the linear combination of EBGM and TTO methods.  The pooling of VAERS and EudraVigilance data did 

not lead to improved performance for any of the tested methods, since it was dominated by VAERS data and time 

to onset was often missing in Eudravigilance.  We suggest that spontaneous reporting systems rigorously collect 

time to onset data , especially for reports of AEFIs.  
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Supplemenatry Material 

Supplementary Table 1. Counts of GRiP reference set associations reported in the pediatric subsets of EudraVigilance and VAERS 

 

 

 

 

ANAPHYLAXIS ARTHRITIS BELLS PALSY CONVULSIONS DISSEMINATED BCG-ITIS DISSEMINATED OKA VZV ENCEPHALITIS GBS HHE IDDM INTUSSUSCEPTION THROMBOCYTOPENIA VAPP WHEEZING/REACTIVE AIRWAY DISEASE

BCG EUDRAVIGILANCE 36 2 0 6 8 0 3 0 14 0 17 5 0 1

VAERS 33 8 0 13 1 0 2 1 25 0 6 8 1 2

DTAP EUDRAVIGILANCE 999 63 8 500 0 0 39 7 641 13 45 0 12

VAERS 18469 1148 17 5438 0 140 183 158 3769 60 592 353 7 572

DTPW EUDRAVIGILANCE 36 2 0 34 0 0 3 0 40 0 0 3 0 1

VAERS 2814 145 0 2107 0 0 60 13 1922 9 6 34 16 0

HAV EUDRAVIGILANCE 194 26 1 119 0 0 4 6 61 6 1 7 0 53

VAERS 6785 391 13 1610 0 189 73 76 950 24 4 120 0 212

HBV EUDRAVIGILANCE 1191 103 13 381 0 0 47 18 666 13 137 70 2 19

VAERS 7850 794 11 2680 0 22 171 102 2490 90 251 278 7 192

HIB EUDRAVIGILANCE 1544 196 3 387 0 1 18 7 503 15 15 39 0 20

VAERS 11489 611 3 5601 0 89 193 95 4181 27 660 361 24 247

INFLUENZA EUDRAVIGILANCE 503 77 6 278 0 0 31 33 212 0 8 29 0 22

VAERS 7454 536 40 2278 0 72 146 211 1242 31 57 122 1 494

MMR EUDRAVIGILANCE 2070 143 4 624 1 5 71 11 275 26 7 159 0 22

VAERS 14013 855 11 3313 0 266 244 77 1946 104 11 569 3 340

MV EUDRAVIGILANCE 419 50 2 141 0 0 21 17 118 3 2 18 0 7
VAERS 3600 627 23 1359 0 26 75 133 942 27 6 83 0 109

OPV EUDRAVIGILANCE 44 5 1 21 0 0 8 5 47 0 11 1 5 1

VAERS 3820 198 0 2033 0 6 85 22 1910 13 10 69 50 10

PV EUDRAVIGILANCE 4040 121 5 1089 0 0 34 7 1571 15 71 92 0 52

VAERS 9396 567 10 3544 0 126 135 110 2389 37 656 393 2 338

RV EUDRAVIGILANCE 476 13 0 92 0 0 6 1 373 3 793 26 0 10

VAERS 1811 132 2 922 0 0 24 57 972 7 854 113 0 91

VZV EUDRAVIGILANCE 915 47 2 0 110 50 6 101 13 3 43 3 18

VAERS 14973 449 10 2029 0 868 123 50 1086 43 9 287 0 378

Positive Control

Negative Control

Unclassifiable
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Supplementary Figure 1. EBGM values of true negative associations in EudraVigilance, VAERS, and their union. 
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Supplementary Figure 2. TTO values of true negative associations in EudraVigilance, VAERS, and their union 
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Supplementary Material.  GRiP Common Data Model 

GRiP COMMON DATA MODEL 

Reference document 

 

Authors: Alexandra Pacurariu, Caitlin Dodd, Florentia Kaguelidou, Marius Gheorghe 

 

Table definitions 

Report table 

ID_REPORT (character) – Primary Key 

FOLLOW_UP (numeric) – the version of the report (1 = initial, 2, 3…) 

REPORTER (character) – qualification of the reporter – extracted as reported in each database. (Data will be further 

classified as: MD= physician; PH+ pharmacist; OT= other health professional; LW= lawyer; CN=consumer) 

DATE (date) – the date of registration of the report in the database (DDMMYYYY) 

COUNTRY (character) – the country, region or state of origin of the report, this is not the country where the event 

occurred. 

TYPE_SERIOUSNESS(character) – the type of seriousness of the report based on the WHO categories(Hospitalization 

or prolongation of existing hospitalization; Life-threatening; Death; Significant or persistent disability/incapacity; 

Congenital anomalies; other relevant conditions). More than one criterion may be present per report (to be put in 

same variable:  later choose the most relevant) 

Drug table 

ID_DRUG (numeric) – Primary Key 

ID_REPORT (character) – Foreign Key (FK) from Report table 

NAME (character)- international nonproprietary name (when possible) = active substance name 

MANUFACTURER (character) – this information will be extracted only for vaccines 

ATC (character) - code assigned to an active substance  

DOSE_AMOUNT (character) – the quantity of active substance per intake = drug dose per intake 

DOSE_UNIT (character) – the unit of the drug dose per intake 

DOSE_FREQ (character) – the frequency of drug administration 

CUMULATIVE_DOSE (numeric) – the quantity of active substance until first event 
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CUMULATIVE_DOSE_UNIT (character) – the unit of the drug cumulative dose  

RECHALLENGE (character) – this variable is defined as follows: positive= event reoccurred when drug therapy was 

restarted; negative= event did not reoccur when drug therapy was restarted; unknown; does not apply  

DECHALLENGE (character) – this variable is defined as follows: positive= event abated when drug therapy stopped; 

negative= event did not abate when drug therapy stopped; unknown; does not apply 

ROUTE (character) – the route of administration (to be classified as: topical, enteral and parenteral) 

DOSE_NB (numeric) –current number of administrations at the occurrence of event. This information will be 

extracted only for vaccines. 

LOT_NUMBER (numeric) – this information will be extracted only for vaccines. 

ROLE (character) – drug’s reported role in the event (will be classified as suspect, concomitant, interacting)  

Indication table 

ID_REPORT (character) – FK from the Drug table 

ID_DRUG (numeric) – FK from the Drug table 

IND_DESC (character) – MedDRA preferred term (PT) describing the indication for the use of the drug  

IND_CODE (numeric) – MedDRA code corresponding to the PT for drug indication 

Event table 

ID_REPORT (character) – Foreign Key (FK) from the Report table 

FOLLOW_UP (numeric) – FK from the Report table 

DATE (date) – the date of occurrence of the eventOUTCOME (character) - reported outcome of the (Fully 

recovered/resolved; Recovering/resolving; Not recovered/not resolved; Recovered/resolved with sequelae; Caused 

death; Unknown) 

PT_DESC (character) – preferred term (PT) of the MedDRA terminology describing the reported adverse event 

PT_CODE (numeric) –MedDRA code corresponding to the PT term 

SOC_DESC (character) – system organ class (SOC) of the MedDRA terminology of the reported adverse event  

SOC_CODE (numeric) –MedDRA code corresponding to the SOC 

Therapy table 

ID_REPORT (character) – Foreign Key (FK) from the Report table 

ID_DRUG (numeric) – Foreign Key from Drug table 

START (date) – the date the therapy begins 

To be extracted in a SOC table and only the 

SOC_CODE column to be left as FK what does that 

mean? 
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END (date) – the date the therapy ends 

DURATION (numeric) – the length of the therapy in days 

START_UNTIL_EVENT (numeric) – difference between START (Therapy) and DATE (Event) (where missing, to be 

calculated) 

END_UNTIL_EVENT (numeric) – difference between END (Therapy) and DATE (Event) (where missing, to be 

calculated)(allowed to be negative) 

Demographics table (a.k.a Patient table) 

ID_REPORT (character) - FK from the Report table 

FOLLOW_UP (numeric) – the version of the report (if not present: to be calculated) 

CALCULATED_AGE – age at occurrence of the eventalready calculated by the database 

UNIT_CALCULATED_AGE – unit of calculated age 

REPORTED_AGE – age at occurrence of the event provided in the report 

UNIT_REPORTED_AGE – unit of reported age 

AGE_GROUP (character) – as provided by the database (variable to be created as: newborn <= 27; infant/toddler = 

28d – 2y; child = 2y+1d – 11y; adolescent = 12y - <18y; unknown) 

AGE (numeric) – in months, either from ‘calculated_age’ or ‘reported_age’; if both provided, ‘calculated age’ is to 

be kept 

SEX(character) – choice between FEMALE, MALE, UNKNOWN 

 

MAPPING Eudravigilance 

Report table 

ID_REPORT – EV_LOCAL_NUMBER (grip_cases) 

FOLLOW_UP – create from EV_LOCAL_NUMBER (grip_cases) and MESSAGEGATEWAYDATE (grip_cases) (sorted 

dates and based on those figure out initial = first date and so on) 

REPORTER – QUALIFICATION_TXT (grip_cases) 

DATE – MESSAGEGATEWAYDATE (grip_cases) 

COUNTRY –to be calculated from REPORTERSUBREGION(grip_cases) 

TYPE_SERIOUSNESS – N/A – can be assumed that all is to be considered serious  
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Drug table 

ID_DRUG -FK_DRUG_SUBSTANCE or FK_DRUG_PRODUCT  (grip_drugs)- to be chosen 

ID_REPORT – EV_LOCAL_NUMBER (grip_drugs) 

NAME - ACTIVESUBSTANCENAME_REC (grip_drugs).  

MANUFACTURER  –only for vaccines N/A 

ATC – ATCCODE (grip_drugs) – mostly empty – Eric mapping subsequently 

DOSE_AMOUNT – DRUGSTRUCTUREDDOSAGENUMB (grip_drugs) 

DOSE_FREQ– DRUGSEPARATEDOSAGENUMB+ DRUGINTERVALDOSAGEUNITNUMB + 

DRUGINTERVALDOSAGEDEFINITION_TXT (grip_drugs) 

DOSE_UNIT – DRUGSTRUCTUREDOSAGEUNIT_TXT (grip_drugs) 

CUMULATIVE_DOSE – DRUGCUMULATIVEDOSAGENUMB (grip_drugs) 

CUMULATIVE_DOSE_UNIT – DRUGCUMULATIVEDOSAGEUNIT_TXT (grip_drugs) 

RECHALLENGE – DRUGRECURREADMINISTRATION_TXT (grip_drugs) 

DECHALLENGE – N/A -combination between ACTIONDRUG_TXT (grip_drugs) and REACTIONOUTCOME_TXT 

(grip_reactions) 

ROUTE – DRUGADMINISTRATIONROUTE_TXT(grip_drugs) and if DRUGPARADMINISTRATION_TXT has value then fill 

“Transplacental” 

DOSE_NB – N/A 

LOT_NUMBER – N/A 

ROLE – DRUGCHARACTERIZATION_TXT(grip_drugs) 

Indication table 

ID_REPORT – FK from the Drug table 

ID_DRUG – FK from theDrug table 

IND_CODE – N/A 

IND_DESC – N/A  

Event table 

ID_REPORT – EV_LOCAL_NUMBER (grip_reactions) 

FOLLOW_UP – N/A - to be calculated from MESSAGEGATEWAYDATE and ID_REPORT – sorted dates 
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DATE–N/A  

OUTCOME – reactionoutcome_txt (GRIP_REACTIONS) 

PT_CODE – pt_code (GRIP_REACTION) 

PT_DESC– N/A - will be taken from MedDRA based on the code 

SOC_CODE– N/A - will be completed by biosemantics based on the code 

SOC_DESC – N/A - will be taken from MedDRA based on the code 

Therapy table 

ID_DRUG – FK Drugtable 

START – N/A 

END – N/A 

DURATION – DRUGTREATMENTDURATION_CALC(grip_drugs) 

START_UNTIL_EVENT – DRUGSTARTPERIOD(grip_drugs) 

END_UNTIL_EVENT – DRUGLASTPERIOD(grip_drugs) 

Demographics table (a.k.a Patient table) 

ID_REPORT - EV_LOCAL_NUMBER  (grip_cases) 

FOLLOW_UP – N/A 

AGE – AGEREACTION_CALC_MIN + PATIENTONSETAGE+PATIENTONSETAGEUNIT_TXT(grip_patients) – to be 

converted into months 

AGE_GROUP – PATIENTAGEGROUP_TXT(grip_patients) 

SEX – PATIENTSEX_Txt(grip_patients) 

 

MAPPING FAERS 

Report table 

ID_REPORT- ISR (demographic file) 

FOLLOW_UP – Create using ISR and FDA_DT (demographic file) 

DATE – FDA_DT (demographic file) 

REPORTER – OCCP_COD (demographic file) 
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COUNTRY  –REPORTER_COUNTRY (demographic file) 

REPORTER_COUNTRY is only available starting from 2005Q3 

SERIOUSNESS – OUTC_COD (outcome file) 

Drug table 

ID_DRUG – own generated  identifier 

ID_REPORT –ISR (drug file) 

ISR is used up till (and including) 2012Q3 

NAME – DRUGNAME (drug file)  

MANUFACTURER – N/A 

ATC – N/A, to be added by Erik 

DOSE_AMOUNT – DOSE_AMT (drug file)  

DOSE_UNIT – DOSE_UNIT (drug file) 

DOSE_FREQ – DOSE_FREQ (drug file)  

RECHALLENGE  - RECHAL (drug file) 

DECHALLENGE  - DECHAL  (drug file) 

ROUTE – ROUTE (drugs file) 

DOSE_NB – N/A 

LOT_NUMBER – LOT_NUM(drug file) 

ROLE – ROLE_COD (drug file) 

Indication table 

ID_REPORT – FK from the Drug table 

ID_DRUG – FKfrom theDrug table 

IND_CODE – N/A (to be mapped) 

IND_DESC – INDI_PT (indication file)  

 

Event table 

ID_REPORT –ISR (reaction file) 
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FOLLOW_UP  N/A 

DATE  –EVENT_DT (demographicfile) 

OUTCOME  –N/A 

PT_CODE – N/A 

PT_DESC  –PT (reaction file) 

SOC_CODE  –N/A 

SOC_DESC –  N/A 

Therapy table 

ID_DRUG  – FK Drugtable 

START –START_DT (therapy file) – sometimes only year and month 

END –END_DT (therapy file) – most of the times missing 

DURATION  – DUR + DUR_COD (therapy table) 

START_UNTIL_EVENT – N/A  

END_UNTIL_EVENT – N/ 

Demographics table (a.k.a Patient table) 

ID_REPORT –ISR (demographicfile) 

FOLLOW_UP  –CREATE FROM ISR AND FDA_DT (demographic file) 

CALCULATED_AGE – N/A 

UNIT_CALCULATED_AGE – N/A 

REPORTED_AGE –  AGE (demographic file)age at occurrence of the event provided in the report 

UNIT_REPORTED_AGE – GE_COD (demographic file) 

AGE_GROUP  – N/A  

AGE – N/A  

SEX – GNDR_COD (demographic file) 
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MAPPING VAERS 

Report table 

ID_REPORT  - VAERS_ID (vaersdata, vaerssymptoms, vaersvax) 

FOLLOW_UP – Create from VAERS_ID + RECVDATE (vaersdata) 

DATE – RECVDATE (vaersdata) 

REPORTER – N/A 

COUNTRY  – STATE (vaersdata) 

TYPE_SERIOUSNESS – DIED (vaersdata) + L_THREAT (vaersdata) + ER_VISIT (vaersdata) + HOSPITAL (vaersdata) + 

X_STAY (vaersdata) + DISABLE (vaersdata) + congenital anomalies that have to be extracted from the 

vaerssymptoms via PT 

Drug table 

ID_DRUG – own generated identifier 

ID_REPORT – VAERS_ID (vaersdata) 

NAME – VAX_NAM (vaersvax) 

MANUFACTURER – VAX_MANU (vaersvax) 

ATC – N/A 

DOSE_AMOUNT – N/A 

DOSE_FREQ – N/A 

DOSE_UNIT – N/A 

CUMULATIVE_DOSE – N/A 

CUMULATIVE_DOSE_UNIT – N /A 

RECHALLENGE  - N/A 

DECHALLENGE  - N/A 

ROUTE – VAX_ROUTE (vaersvax) 

DOSE_NB – VAX_DOSE (vaersvax) 

LOT_NUMBER – VAX_LOT (vaersvax) 

ROLE – N/A 
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Indication table 

ID_REPORT – FK from the Drug table 

ID_DRUG – FK from theDrug table 

IND_CODE –N/A 

IND_DESC – N/A  

 

Event table 

ID_REPORT  – VAERS_ID (one of the following vaersdata, vaerssymptoms, vaersvax) 

FOLLOW_UP  – Create from VAERS_ID + recvdate (vaersdata) 

DATE  – ONSET_DATE (vaersdata) 

OUTCOME  –DIED, RECOVD (vaersdata), if no info in DIED or RECOVD the value is ‘unknown’) 

PT_CODE – add PT_CODE from symptom1-symptom5 (vaerssymptoms) 

PT_DESC  – SYMPTOM1 – SYMPTOM5 (vaerssymptoms) 

SOC_CODE  –add from Symptom (vaerssymptoms) 

SOC_DESC –  add from Symptom (vaerssymptoms) 

 

Therapy table 

ID_DRUG  – FK from the Drug Table 

START – N/A 

END – N/A 

DURATION  – N/A 

START_UNTIL_EVENT –  NUMDAYS (vaersdata) – days from vaccination to  onset 

END_UNTIL_EVENT – N/A 

 

Demographics table (a.k.a Patient table) 

ID_REPORT - VAERS_ID (one of the following vaersdata, vaerssymptoms, vaersvax) 

FOLLOW_UP  –  Create from VAERS_ID + recvdate (vaersdata) 
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AGE  – AGE_YRS (vaersdata) + CAGE_YR (if calculated age is missing (CAGE), AGE_YRS is to be kept)+ CAGE_MO 

(both CAGE_YRS and CAGE_MO necessary to create Calculated age variables) – to be converted into months 

AGE_GROUP  –N/A – to be created from AGE 

GENDER – SEX (vaersdata) 
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CHAPTER 3. METHODS FOR RAPID ASSESSMENT 
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Abstract 

Vaccine safety signals require investigation, which may be done rapidly at the population level using ecological 

studies, before embarking on hypothesis-testing studies. Incidence rates were used to assess a signal of narcolepsy 

following AS03-adjuvanted monovalent pandemic H1N1 (pH1N1) influenza vaccination among children and 

adolescents in Sweden and Finland in 2010. We explored the utility of ecological data to assess incidence of 

narcolepsy following exposure to pandemic H1N1 virus or vaccination in 10 sites that used different vaccines, 

adjuvants, and had varying vaccine coverage.  

We calculated incidence rates of diagnosed narcolepsy for periods defined by influenza virus circulation and 

vaccination campaign dates, and used Poisson regression to estimate incidence rate ratios (IRRs) comparing the 

periods during which wild-type virus circulated and after the start of vaccination campaigns vs. the period prior to 

pH1N1 virus circulation. We used electronic health care data from Sweden, Denmark, the United Kingdom, Canada 

(3 provinces), Taiwan, Netherlands, and Spain (2 regions) from 2003 to 2013. We investigated interactions between 

age group and adjuvant in European sites and conducted a simulation study to investigate how vaccine coverage, 

age, and the interval from onset to diagnosis may impact the ability to detect safety signals. 

Incidence rates of narcolepsy varied by age, continent, and period. Only in Taiwan and Sweden were significant 

time-period-by-age-group interactions observed. Associations were found for children in Taiwan (following pH1N1 

virus circulation) and Sweden (following vaccination). Simulations showed that the individual-level relative risk of 

narcolepsy was underestimated using ecological methods comparing post- vs. pre-vaccination periods; this effect 

was attenuated with higher vaccine coverage and a shorter interval from disease onset to diagnosis. 

Ecological methods can be useful for vaccine safety assessment but the results are influenced by diagnostic delay 

and vaccine coverage. Because ecological methods assess risk at the population level, these methods should be 

treated as signal-generating methods and drawing conclusions regarding individual-level risk should be avoided.     
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Introduction 

In August 2010, a safety signal of narcolepsy following AS03-adjuvanted pdm(09)H1N1 influenza vaccine 

Pandemrix was reported in Finland and Sweden among children and adolescents [1]. Other rapid risk assessment 

studies conducted in the European Union (EU) did not show changes in incidence rates of narcolepsy diagnoses, 

except in Finland, Sweden, and Norway [2], all countries that achieved high coverage rates with Pandemrix. 

Subsequent hypothesis-testing studies showed associations; these had high within- and between-study variation 

[3]. In China, where vaccine coverage was very low, a 3-fold increase in narcolepsy onset was reported following 

the peak of the pandemic [4].  

Narcolepsy is a rare disease with a long interval from onset of symptoms to diagnosis, especially in adults. Several 

possible explanations for the purported pdm(09)H1N1 and narcolepsy link have been proposed but none 

confirmed. Hypotheses range from a causal effect of the AS03 adjuvant, the manufacturing process, presence of 

nucleoproteins in Pandemrix, and molecular mimicry, to awareness and assessment biases, and residual 

confounding [5-10]. Based upon simulation studies conducted by Wijnans et al., in the absence of a causal 

association but in the presence of accelerated diagnosis due to awareness, we would expect to see an increased 

incidence of narcolepsy diagnosis following awareness of the association followed by a decrease, even to levels 

below the background incidence, due to depletion of cases[8]. This effect may be particularly important in 

conditions with a long delay to diagnosis such as in narcolepsy where the delay in diagnosis from initial symptoms 

can be 10-20 years [11].    

The SOMNIA (Systematic Observational Method for Narcolepsy and Influenza Immunization Assessment) study was 

funded by the US Centers for Disease Control and Prevention (CDC) and used information from countries that used 

different types of adjuvanted pandemic influenza vaccines to assess whether the pdm(09)H1N1 influenza vaccine 

and specifically the MF59 and AS03 adjuvants were associated with narcolepsy.   

One of the goals of SOMNIA was to assess patterns of incidence rates of narcolepsy in multiple geographic areas 

and to understand changes in incidence rates of narcolepsy diagnoses before, during, and after the pdm(09)H1N1 

influenza pandemic by using electronic health care data, which may be rapidly available. In this paper, we explore 

whether assessment of safety signals based on ecological methods and population-based electronic health care 

data are suitable for vaccine safety risk assessment, by exploiting the heterogeneity in vaccine coverage, types of 

vaccines, and vaccination programs across countries. We assess what strength of signals can be detected using 

population-level data collected before and after a hypothetical targeted vaccination campaign. 

Ecological studies can be defined as those that measure exposure and outcomes at the group level rather than at 

the individual level [12, 13]. In such a study, groups are defined by a naturally occurring difference in space or time 

such as a change in the vaccination schedule [14] or the beginning and end of a targeted vaccination campaign [15].   

This study may serve as an example of the utility of ecological methods to assess vaccine safety signals, particularly 

regarding events with long onset-to-diagnosis intervals. 

 Materials and Methods 

Narcolepsy diagnosis incidence rates were evaluated in ten sites representing seven countries spanning three 

continents (Taiwan (TW), Canada (CA) [Manitoba, Alberta, and British Columbia], The Netherlands (NL), The United 

Kingdom (UK), Sweden (SE), Denmark (DK), and Spain (ES) [Valencia and Cataluña]) using population-based 

electronic healthcare databases originating from general practitioners (GPs) (UK, ES, NL) or claims/record linkage 

databases (SE, DK, TW [16-18], and CA) (Supplementary Table 1).     
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Study population and follow-up 

For data sources in which individual linkage can be made between population and diagnoses (all sites except 

Sweden and British Columbia, Canada), the study population comprised all individuals registered within each of the 

databases during the study period. Observation time began on the date of first registration of an individual in the 

database, the start of the study period (January 2003), or the start date of data collection for the database, 

whichever was the latest and ended on the date of death, the date registration was terminated, the end of data 

collection, or the end of the study period (December 2013), whichever was the earliest. Sweden and British 

Columbia, Canada used census data to calculate person-time denominators. We used a harmonized approach in 

which databases locally extracted their data into simple input files in a common format that could be locally 

analyzed and aggregated using SAS or JAVA-based software [2, 19]. 

Case identification and validation 

Cases were persons with a new diagnosis of narcolepsy with or without cataplexy. Validation of the diagnostic 

codes using patient discharge letters and medical records was conducted in the GP databases in the Netherlands 

and Valencia, Spain. For these two sites, only validated cases were used in the analysis. The other sites used 

algorithms combining diagnostic codes for narcolepsy with claims for multiple sleep latency tests (MSLTs) to reduce 

the false positive rate. The same method was used at each site over the entire time period. No further validation 

was done in other sites (Supplementary Table 1).   

Analysis 

To investigate the purported narcolepsy-pandemic vaccine effect, incidence rates of narcolepsy diagnosis were 

calculated by calendar year and month and also categorized into three periods based on specific 

circulation/vaccination periods in each country: 1) pre-pandemic (from January 2003 until the start of the period of 

pH1N1 circulation); 2) during pH1N1 wild-type virus circulation until the start of the country’s pH1N1 vaccination 

campaign; and 3) from the start of the pH1N1 influenza vaccination campaign through the end of the study 

(Supplementary Table 1). Pandemic H1N1 virus circulation was defined as the period during which weekly influenza 

test positivity for pH1N1 infection exceeded 10%. Dynamic age groups were categorized as <5 years, 5-19 years, 20-

59 years, and ≥60 years at the time of diagnosis. These age groups were motivated by differences in diagnosis for 

each age group, and particularly the challenges of differential diagnosis in young children and the elderly [20, 21].  

Incidence rates of narcolepsy diagnoses were calculated by dividing the number of narcolepsy cases by the 

accumulated person-time. Ninety-five percent confidence intervals (CIs) were calculated assuming a negative 

binomial distribution. Following confirmation of homogeneity in incidence rates among databases within the same 

country, further analyses were conducted at the level of the country rather than the site. 

Within each country, we estimated incidence rate ratios (IRRs) and 95% CIs for each time period using Poisson 

regression, with the pre-circulation period as a reference. We included terms for age strata, time periods, and an 

age*time period interaction using time periods as defined by pH1N1 circulation and vaccination campaign dates.   

We conducted additional analyses restricted to European countries to estimate the impact of vaccine coverage and 

adjuvant among children and adolescents and separately among adults. For this analysis, a composite variable 

summarizing vaccine coverage classified as low (<20%) or high (≥20%) and adjuvant (MF59 or AS03) was created, 

and incidence in the period after vaccination had started was compared to the pre-pH1N1 circulation period. 

Because the composite adjuvant/coverage variable was collinear with database and country, neither database nor 

country was included in the European model. 
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Simulation 

To better understand the utility of ecological methods for assessing vaccine safety signals and whether an 

association in one age group may be masked in a population-level analysis, we conducted statistical simulations 

population of 10,000 subjects aged 0 to 100 years.  Baseline narcolepsy incidence in these subjects was simulated 

based on reported estimates of incidence by decade of age [22].  We then varied vaccine coverage and the 

individual-level relative risk of the association between vaccination and narcolepsy. Using vaccine coverage ranging 

from 1 to 99 percent, part of the population was given a vaccination date in the period from October to December 

2009.  Pre-vaccination campaign observation time was held constant at 2466 days (6.75 years). Total observation 

time was varied between 2739 days (7.5 years) to allow for 6 months of observation time following the simulated 

90-day vaccination campaign, and 3625 days (10 years) to allow for 3 years post-vaccination and to mimic the 

current study period of 2003-2013.  Relative risk of narcolepsy onset was varied from 0.5 to 10 in the six months 

following vaccination in subjects aged <20 years and held constant at 1 for subjects aged ≥20 years. . The median 

time from onset to diagnosis was initially set at 4 years for adults and at 1.5 years for children (aged ≤18 years) 

based on SOMNIA data (not shown). The effect of the length of the interval from onset to diagnosis was also tested 

by varying a scale parameter, with 0 removing the interval (i.e. immediate diagnosis following onset), 0.5 halving 

the interval, and 1 retaining the full simulated interval (see table 1 for description of simulation parameters). For 

each set of simulation parameters, 500 replications were run. The population-level incidence rate ratio for the 

period following the vaccination campaign vs. the period prior to the vaccination campaign was estimated using 

Poisson regression and compared to the simulated individual-level relative risk associated with vaccination. The 

estimated median incidence rate ratio from the 500 replications, as well as differences by age group and overall 

between each median IRR and the simulated relative risk for that age group were calculated and plotted against 

vaccine coverage. Using the median IRRs estimated from the simulated data, percent bias was calculated by 

subtracting the simulated relative risk from the estimated IRR and dividing by the simulated IRR.   

Table 1. Simulation Parameters 

Parameter Definition Levels 

Scale  Reduction of onset to diagnosis interval 0 (Immediate diagnosis following onset),  
0.5 (Halving of the onset-to-diagnosis interval),  

1 (Full onset-to-diagnosis interval is retained) 

Vaccine 
Coverage 

Probability of vaccination .01, .05, .10, .25, .50, .75, .90, .95, .99 

Relative Risk Relative risk of narcolepsy onset in first 6 
months after vaccination 

0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 

Observation 
Length 

Total length of observation time following 
start of observation in January 2003 

2739 days (pre-vaccination campaign time + 90 days 
vaccination campaign + 6-month risk period), 3625 days (10 

years) 

Calibration 

A model was constructed using the simulation input parameters and results to predict individual-level relative risk 

among those aged 5-19 years, based on median estimated IRR, vaccine coverage, scale parameter, and the 

interaction of these terms (Model: Simulated individual-level true RR = Estimated IRR + Simulated vaccine coverage 

+ Simulated onset-to-diagnosis scale + Interactions). Calibration was restricted to the 5-19 year age group as this 

group was the source of the safety signal and the only subjects for whom an increased risk was simulated. This 

prediction model was then applied to results obtained from the observed data along, using known values for 

vaccine coverage and diagnostic delay (Supplementary Table 1), in order to calculate the underlying relative risks in 
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5- to 19-year olds, that would have been necessary to produce the IRRs we found in the SOMNIA study in the 

absence of other sources of bias.  

This study was conducted under the principles of the Helsinki declaration and each site was responsible for 

obtaining appropriate ethical approvals. The overall study was also approved by the central institutional review 

board for this study at Cincinnati Children’s Hospital, Cincinnati, Ohio, USA. 

Results  

Observed Incidence 

Incidence rates of narcolepsy diagnoses ranged from 0.22 to 1.52 per 100,000 person-years by site (table 2).   

Incidence rates in databases within the same country (Canada and Spain) were similar so for further analysis 

country-specific data were pooled.  

Table 2: Crude Incidence Rates by Site 

Site Period Events Person-years IR 

EU 
    

Denmark 2003-2013 269 17,850,129 1.50 (1.33-1.69) 

United Kingdom 2003-2013 467 42,897,721 1.09 (0.99-1.19) 

ES, Valencia (validated) 2009-2013 46 20,458,082 0.22 (0.17-0.28) 

ES, Cataluña 2007-2013 240 34,861,809 0.69 (0.50-0.78) 

Sweden 2003-2013 1536 102,027,209 1.52 (1.43-1.59) 

The Netherlands (validated) 2003-2013 14 2,879,712 0.49 (0.29-0.76) 

North  America 
    

CA, British Columbia 2003-2013 278 47,857,684 0.58 (0.32-0.64) 

CA, Alberta 2003-2013 427 51,885,946 0.82 (0.74-0.90) 

CA, Manitoba 2003-2010 42 6,335,257 0.66 (0.50-0.86) 

Asia     

Taiwan 2003-2012 472 161,407,503 0.29 (0.27-0.32) 

 

Abbreviations: IR (Incidence Rate), EU (European Union), ES (Spain), CA (Canada) 

Due to very low rates observed among the very young (<5 years) and the elderly (≥60 years) in age-stratified 

analysis and known differences in diagnosis which precluded collapsing of strata, these age groups were not 

included in further stratified analyses. In Figure 1, IRs are shown stratified by age group and time period. In 

investigation of age group and time period and the interaction of these factors, IRRs were significantly elevated in 

both age groups in Taiwan (where MF59-adjuvanted vaccine coverage was 59% for those <19 years and 11% for 

those >19 years) in the period during circulation of wild-type virus prior to vaccination. For those aged 5-19 years, 

the IRR was 2.50 (95%CI 1.46, 4.28), and for those aged 20-59 years, the IRR was 2.23 (95%CI 1.26, 3.94). This 

continued in the period after the vaccination campaign had started, with IRR 1.60 (95%CI 1.20, 2.13) for those aged 

5-19 years and IRR 2.13 (95%CI 1.62, 2.79) for those aged 20-59 years (Table 3). In Sweden, where AS03-adjuvanted 

Pandemrix vaccine coverage was 60%, in the period after vaccination incidence rates among those aged 5-19 years 

and 20-59 years were elevated [IRR=9.01 (95%CI 6.89, 11.80) and IRR=1.69 (95%CI 1.46, 1.95)], respectively (Figure 

1, Table 3). None of the other countries showed significant time-period-by-age-group interactions.   
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Figure 1.  Incidence rates of narcolepsy pre-circulation and post-vaccination in children (05-19 yrs) and adults (20-

59 yrs) 

In the analysis restricted to Europe and including a vaccine coverage/adjuvant composite variable, IRRs were 

elevated in the period following start of vaccination in the high-coverage AS03 (Sweden) and low-coverage AS03 

groups for children and adolescents (Supplementary Table 3). In adults, an elevated incidence in the period 

following vaccination was detected in the AS03 high-coverage group, which was limited to Sweden. In this analysis, 

no changes in the incidence of narcolepsy in the post-vaccination period were seen in sites using MF59-adjuvanted 

vaccine, all of which had low coverage (Supplementary Table 3).   

Table 3: IRs and IRRs by country, age and period 

Site Age Period* Cases Person 
years 

IR IRR† 95%CI 
 

United Kingdom 5-19 Pre-Circulation 26 4247239 0.61 Ref -- 

Circulation 0 229303 0.00 NA -- 

Vaccination & Post 28 2752486 1.02 1.66 0.97, 2.83 

20-59 Pre-Circulation 183 13782669 1.33 Ref -- 

Circulation 9 744620 1.21 0.91 0.47, 1.78 

Vaccination & Post 90 8706262 1.03 0.78 0.61, 1.00 

Denmark 5-19 Pre-Circulation 26 1941950 1.34 Ref -- 

Circulation 3 160562 1.87 1.40 0.42, 4.61 

Vaccination & Post 28 1352428 2.07 1.55 0.91, 2.64 

20-59 Pre-Circulation 103 5258884 1.96 Ref -- 

Circulation 8 416864 1.92 0.98 0.48, 2.01 
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Vaccination & Post 58 3492758 1.66 0.85 0.62, 1.17 

The Netherlands 5-19 Pre-Circulation 2 103950 1.92 Ref  

Circulation 0 29453 0.00 NA  

Vaccination & Post 1 394895 0.25 0.13 0.01, 1.45 

20-59 Pre-Circulation 2 306773 0.65 Ref  

Circulation 1 87315 1.15 1.76 0.16, 19.37 

Vaccination & Post 7 1144346 0.61 0.94 0.20, 4.52 

Spain 5-19 Pre-Circulation 7 1617473 0.43 Ref  

Circulation 4 1488771 0.27 0.62 0.18, 1.13 

Vaccination & Post 26 4715178 0.55 1.27 0.55, 2.94 

20-59 Pre-Circulation 48 6847254 0.70 Ref -- 

Circulation 33 610444 0.54 0.77 0.50, 1.20 

Vaccination & Post 125 18915104 0.27 0.94 0.68, 1.31 

Sweden 5-19 Pre-Circulation 62 10381883 0.60 Ref -- 

Circulation 1 819877 0.12 0.20 0.03, 1.47 

Vaccination & Post 369 6854603 5.38 9.01 6.89, 11.80 

20-59 Pre-Circulation 338 29823712 1.13 Ref -- 

Circulation 26 2418238 1.08 0.95 0.64, 1.41 

Vaccination & Post 401 20992445 1.91 1.69 1.46, 1.95 

Canada 5-19 Pre-Circulation 67 10107116 0.66 Ref -- 

Circulation 6 1261204 0.48 0.72 0.31, 1.70 

Vaccination & Post 53 6378494 0.83 1.25 0.87, 1.80 

20-59 Pre-Circulation 265 34413993 0.77 Ref -- 

Circulation 36 4574717 0.79 1.02 0.72, 1.45 

Vaccination & Post 182 24228401 0.75 0.98 0.81, 1.18 

Taiwan 5-19 Pre-Circulation 81 13985353 0.58 Ref -- 

Circulation 16 1103680 1.45 2.50 1.46, 4.28 

Vaccination & Post 110 11867183 0.93 1.60 1.20, 2.13 

20-59 Pre-Circulation 78 46806947 0.17 Ref -- 

Circulation 14 3768896 0.37 2.23 1.26, 3.94 

Vaccination & Post 158 44542437 0.35 2.13 1.62, 2.79 

 

*Periods are as follows: Pre-Circulation = January 2003-the beginning of wild-type H1N1 circulation (defined per 

country); Circulation = Period from the beginning of wild-type H1N1 circulation until the start of the vaccination 

campaign (defined per country); Vaccination & Post = Period from the beginning of the vaccination campaign 

through December 2013. 

† IRR comparing the period to the pre-circulation period, within the age group 

Simulation 

The simulation study showed that in an analysis such as the one described above, the true RR is consistently 

underestimated when it is greater than one and overestimated when less than one (Figure 2).  Underestimation of 

true relative risks greater than one is attenuated as vaccination coverage increases but remains about 6%-26% 

underestimated even with vaccination coverage as high as 99% with no delay from onset to diagnosis and a 10 year 

observation period(Figure 3). As the interval from onset to diagnosis decreases, the estimated relative risk 

approaches the true relative risk; performance is improved if the observation time captures only the period of 

increased risk (data not shown). When the time from onset to diagnosis was set equal to empirical estimates (4 

years for adults and at 1.5 years for children), no increased risk was detected for any set of simulation parameters 
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(data not shown). Stratification by age group was effective in elucidating the group that was the source of the 

increased risk.   

Calibration 

When using a model derived from the results of the simulation study to predict which should have been the true 

(calibrated) IRR to produce the estimates found in the SOMNIA study, these true IRRs were always considerably 

higher than the estimates. Notably, according to the model, the required individual-level relative risk underlying a 

9-fold IRR which was found in 5-19 year olds in Sweden should have been  36.04 (95% CI: 27.79, 46.90) (table 4). . 

 

Figure 2: IRR estimates in simulated data, immediate diagnosis (scale = 0). Population-level incidence rate ratio 

estimated from simulated data with observation time equal to 3625 days and true individual-level relative risk 

equal to .05, 1, 2, 5, or 10 (columns).  Gray horizontal reference lines represent the true simulated individual-level 

relative risk of narcolepsy diagnosis.  The scale parameter is set equal to zero (meaning immediate diagnosis 

following onset of symptoms).  Vaccination coverage increases within each column along the x-axis.  Colored lines 

represent age group-specific IRRs as noted in the legend and colored bands represent associated 95% confidence 

intervals.   
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Figure 3: Percent Bias of IRR estimates in simulated data, immediate diagnosis (scale = 0). Population-level percent 

bias estimated from simulated data with observation time equal to 3625 days and true individual-level relative risk 

equal to .05, 1, 2, 5, or 10 (columns).  Gray horizontal reference lines represent the absence of bias (the estimated 

IRR = the simulated RR).  The scale parameter is set equal to zero (meaning immediate diagnosis following onset of 

symptoms).  Vaccination coverage increases within each column along the x-axis.  Colored lines represent age 

group-specific bias as noted in the legend.   

Table 4: IRRs calibrated using model derived from simulated data 

 

Country Age 
Group 

Observed 
Ecological 

IRR 

95% CI Gamma 
Scale 

Vaccine 
Coverage 

Simulation-
predicted 

individual-level RR 

95% CI 

UK 5-19 1.66 0.97,  2.83 1 .05 7.76 4.95, 12.53 
Denmark 5-19 1.55 0.91,  2.64 1 .05 7.31 4.71, 11.76 
Netherlands 5-19 0.13 0.01, 1.45  1 .1 1.64 1.16, 6.84 
Spain 5-19 1.27 0.55, 2.94  1 .05 6.17 3.24, 12.98 
Sweden 5-19 9.01 6.89, 11.80  0.5 .12 36.04 27.79, 46.90 
Canada 5-19 1.25 0.87,  1.80 1 .35 5.87 4.62, 7.68 
Taiwan 5-19 1.60 1.20, 2.13 0 .65 2.75 1.75, 4.07 

 

Discussion 

Evaluation of incidence rates on a population level can be done relatively quickly in countries/regions with 

accessible population-based electronic health care databases. This is useful for assessing potential vaccine safety 

signals. In order to calculate rates quickly in a standardized manner, harmonization of data into simple input files in 
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a common format allowed for the pooling and sharing of data across three continents. The method was capable of 

identifying the signal in Sweden in 5- to 19-year olds.    

In the analysis by country, elevated rates of narcolepsy were only detected in Taiwan during wild-type virus 

circulation through the period following vaccination with MF59-adjuvanted and non-adjuvanted vaccines, and in 

Sweden following vaccination with AS03-adjuvanted vaccines. The finding in Taiwan may be due to circulation of 

wild-type influenza virus prior to the start of the vaccination campaign [17]. This is consistent with the finding of a 

3-fold increase in narcolepsy onset in China following the peak of the pH1N1 pandemic in a population with very 

low vaccine coverage [4]. Taiwan vaccinated children aged <1 year with MF59-adjuvanted vaccine and adults and 

school children with mainly non-adjuvanted vaccine. In Sweden, where the signal of a narcolepsy safety concern 

was originally detected [23] and where patients diagnosed with narcolepsy are being compensated [7], rates were 

much higher than in the other countries. This could be due to differential reporting due to increased awareness of 

the putative association, a true causal effect in this population with this vaccine, or some combination of these 

factors. As shown in simulations, reduction in the time from onset to diagnosis due to awareness of an association 

can lead to artificial inflations in risk estimates [8]. In Canadian provinces, with around 40% vaccine coverage of a 

different AS03-adjuvanted vaccine (ArepanrixTM), no effect was seen in any of the age groups or periods.This study, 

which is by necessity observational, has several limitations. Data were collected according to a shared protocol but 

using locally derived algorithms, which may have led to differences in sensitivity and specificity. Case validation in 

some sites revealed low specificity of the original extraction, which may be the case in other sites as well. In our 

analysis by adjuvant and vaccine coverage, high coverage with AS03-containing vaccine was only present in 

Sweden, making Sweden and this adjuvant/coverage group collinear. This makes it impossible to determine 

whether we are seeing the effects of the vaccine itself or of the reporting and detection patterns in each country. 

Additionally, the manufacturing process of ArepanrixTM differed from that of PandemrixTM, leading to vaccines 

containing different quantities of influenza virus components[24].  The potential effects of these differences in 

manufacturing cannot be differentiated from adjuvant specific-effects or from other country-specific effects using 

an ecological design such as the one presented here.  Similarly, the countries in which MF59 was used were the 

same countries in which case validation was conducted. This limits comparability between these countries and 

others and, therefore, between MF59-containing vaccines and other pandemic vaccines.  

Differences in case ascertainment could also have impacted our estimates. For example, it has been noted 

elsewhere that the safety signal originated in Sweden and that this, together with compensation for cases, may 

have impacted diagnosis patterns [6, 7]. Additionally, due to the healthcare system in Taiwan, children complaining 

of excessive daytime sleepiness are seen by a specialist quickly, making the interval from onset to diagnosis for 

these children shorter. A median time from symptom onset to MSLT referral of 60 days has been reported for 

pediatric narcolepsy cases in Taiwan[25]. While it is not possible to rule out a causal association, it is important to 

note that these factors undoubtedly contributed to the estimates obtained in this study.  Differences in the 

prevalence of the underlying risk allele for narcolepsy, which has been reported to vary widely by country, may 

affect the incidence at the population level but is unlikely to have affected relative risk estimates [26]. 

Ecological methods, when applied to assessment of a signal association with a targeted vaccination campaign and a 

disease with a potentially long interval from onset to diagnosis, can provide an unbiased estimate of vaccine-

associated risk in a very limited set of circumstances. Obtaining an unbiased estimate in the absence of an 

association is possible even with very low vaccine coverage and a long onset to diagnosis interval. However, in the 

presence of a true vaccine-associated risk, all estimates will be biased toward one; this bias is reduced when cases 

are detected quickly and vaccination coverage is high. Based upon simulations, the estimates we obtained in the 

current study appear to be underestimations of true relative risks greater than one. However, the simulations did 
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not take into account the possibility of increased reporting due to an awareness of the association, which has been 

shown in previous simulations to inflate risk estimates [8].   

The predicted underlying individual-level relative risk obtained using models derived from simulated data, given the 

low vaccine coverage attained in most sites, are remarkably high. It is very unlikely that the true relative risk in 

Sweden, for example, is 36-fold. Calibrated estimates for The United Kingdom, however, are only slightly lower 

than those reported by Miller et al in their study of narcolepsy following PandemrixTM vaccination in children aged 

4-18 [27].  In general, these predicted relative risks are not in line with results found in the case-control study 

conducted within SOMNIA, in which no increased risk following pH1N1 vaccines was detected [28]. It is important 

to note that while the case-control portion of the SOMNIA study did not include any pediatric cases exposed to 

PandemrixTM, the case-coverage sub-study of pediatric cases in The Netherlands did not find an association with 

PandemrixTM [28]. These inconsistencies may be an illustration of the ecological fallacy, namely that associations 

detected at the population level may not be causal  at the individual level [29]. In fact, as coverage in our 

simulations approached 100%, our population-level analysis also approached an individual-level analysis with 

accurate exposure data for all subject, explaining why increased vaccine coverage in simulations leads to more 

accurate estimates of the simulated relative risk.   

Previous simulations have shown that reduction in the time from onset to diagnosis following awareness of an 

association increase risk estimates [8]. Our simulation did not take into account factors that may have changed 

over the course of the study period such as awareness of narcolepsy and of the pH1N1-narcolepsy association as 

well as changes in diagnostic and coding practices. Each of these likely contributed to the IRR estimates we 

obtained. What our simulations do show is that in the absence of factors that increase case detection in the post-

exposure period, detection of increased population-level risk of a disease with a long onset to diagnosis interval 

using ecological methods requires an extreme underlying individual-level risk. 

The ecological approach fails to detect any increased risk unless the time from onset to diagnosis is short and both 

coverage and the true relative risk are high. Because of this, we recommend that population-level methods be used 

in assessment of outcomes with a delay from onset to diagnosis only to generate hypotheses or to strengthen 

signals when population-level exposure is high. Analysis of the full population when increased risk is only present in 

one age stratum performs as well as stratified analysis in terms of the magnitude of risk detected, but fails to 

identify the source of the increased risk.  Therefore, if increased risk is suspected in a subset of the population, 

analyses should be stratified. 

Conclusions 

Ecological methods can be useful in assessment of vaccine safety but it is important for investigators to understand 

the impacts of masking by strata not at risk, patterns of onset and diagnosis, and vaccine coverage. What appears 

to be an estimate of no effect could be valid or, as shown in our simulations, could be an underestimation.    
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Supplementary Material 

Supplementary Table 1: Characteristics of the Databases in this study 

Data site & 
source   

Type of 
data* 

Algorithm 
used 

H1N1 virus 
circulation 
(weeks) 

Vaccination Coverage by 
age group 

Adjuvant Used by age 
group 

UK THIN1 Linked 
Medical 
Records 

Read 
codes 
F27.00, 
F270.00, 
F271.00, 
F27z.00 

2009: 26-52 6 mo-5yr (20%) 
5-18 yr (4%) 
>65yr (35%) 

05-19: AS03 (Pandemrix) 
20-59: AS03 (Pandemrix) 

NL IPCI2 Linked 
Medical 
Records 

Free text 
narcolepsy 
& MSLT. 
Followed 
by manual 
review  

2009: 30-50 < 5yr  (75%) 
Risk groups (70%) 

05-19: MF59 
20-59: MF59 

DK 
AARHUS3 

Population
-based 
registry 

ICD-10 
code 
G47.4 
(primary 
and 
secondary) 
diagnosis 

2009: 29-45  
>18yr (20%) 

05-19: AS03 (Pandemrix) 
20-59: AS03 

SIDIAP  
(Spain, 
Catalunya)
4 

Linked 
Medical 
Records 

 ICD-10 
code 
G47.4 
diagnosis 

2009: 31-50 < 18yr (1%)  
all population (3.5%) 

05-19: MF59 
20-59: AS03 (Pandemrix) 

FISABIO 
(Spain, 
Valencia)5 

Linked 
Medical 
Records 

ICD-9CM 
codes 
347.* with 
Manual 
validation 

2009: 31-50 6mo-14yr, risk groups 
(11%) 
15-59yr, risk groups (13%) 
>60yr, risk groups (28%) 
Pregnant women (9%) 
Healthcare workers (30%) 

05-19: MF59  
20-59: AS03 (Pandemrix) 

Sweden6 Medical 
Record 
diagnoses 
+ Census 
Population 

ICD-10 
code 
G47.4 
diagnosis 

2009: 30-50 < 18 yr (12%) 

> 18 yr (13%)  
 

05-19: AS03 (Pandemrix) 
20-59: AS03 (Pandemrix) 

Taiwan7 Linked 
Medical 
Records 

ICD9-CM 
codes 
347.* with 
MSLT 
procedure 

2009: 30-52 6mo-18yr (59%) 
> 19yr (11%) 

05-19: MF59  
20-59: MF59 

Canada, 
Alberta8 

Linked 
Medical 
Records 

ICD9-CM 
codes 
347.* with 
MSLT 
procedure 

2009: 19-27 ≥12 yr (37%) 05-19:  AS03 (Arepanrix) 
20-59: AS03 
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Canada, 
Manitoba9 

Linked 
Medical 
Records 

ICD9-CM 
codes 
347.* with 
MSLT 
procedure 

2009: 19-27 ≥12 yr (37%) 05-19:  AS03 (Arepanrix) 
20-59: AS03 

Canada, 
British 
Columbia10 

Medical 
Record 
diagnoses 
+ Census 
Population 

ICD9-CM 
codes 
347.* with 
MSLT 
procedure 

2009: 19-27 <10yr (46%) 
10-18yr (32%) 
19-39yr (33%) 
40-64yr (45%)  
>64 (58%) 

05-19:  AS03 (Arepanrix) 
20-59: AS03 

* Linked Medical Records = Population based medical records (GP and specialist diagnoses), directly linked; Population-based 
registry = Population based registries (emergency room, in and out patient diagnoses); Medical Record diagnoses + Census 
Population = In and outpatient diagnoses, case counts and population counts (census); 

1. http://www.epic-uk.org/our-data/our-data.shtml 

2. http://www.erasmusmc.nl/med_informatica/research/555688/?lang=en# 

3. http://www.kea.au.dk/en/ResearchRegistries.html 

4. http://www.sidiap.org/index.php/en 

5. http://fisabio.san.gva.es/en/fisabio;jsessionid=AFE38E9ACF0A380A692A9739E88F2FF4 

6. http://www.socialstyrelsen.se/english 

7. http://www.mohw.gov.tw/CHT/DOS/DM1.aspx?f_list_no=812 (Chinese) 

8. http://www.health.alberta.ca/documents/Research-Health-Datasets.pdf 

9. http://umanitoba.ca/faculties/health_sciences/medicine/units/chs/departmental_units/mchp/resources/repository/i

ndex.html 

10. https://www.popdata.bc.ca/data 

Supplementary Table 2: incidence rates by continent, country, age and period  

Continent Site Age Period* Cases Person 
years 

IR IRR† 95%CI 
 

Europe United Kingdom 0-4 Pre-Circulation 0 1,438,688 0.00 Ref -- 

Circulation 0 82033 0.00 NA -- 

Vaccination & Post 1 986145 0.10 NA -- 

5-19 Pre-Circulation 26 4247239 0.61 Ref -- 

Circulation 0 229303 0.00 NA -- 

Vaccination & Post 28 2752486 1.02 1.66 0.97, 2.83 

20-59 Pre-Circulation 183 13782669 1.33 Ref -- 

Circulation 9 744620 1.21 0.91 0.47, 1.78 

Vaccination & Post 90 8706262 1.03 0.78 0.61, 1.00 

60+ Pre-Circulation 84 5738919 1.46 Ref -- 

Circulation 8 331682 2.41 1.65 0.80, 3.40 

Vaccination & Post 38 3857675 0.99 0.67 0.46, 0.99 

Denmark 0-4 Pre-Circulation 0 625074 0.00 Ref -- 

Circulation 0 51527 0.00 NA -- 

Vaccination & Post 2 426447 0.47 NA -- 

5-19 Pre-Circulation 26 1941950 1.34 Ref -- 

Circulation 3 160562 1.87 1.40 0.42, 4.61 

Vaccination & Post 28 1352428 2.07 1.55 0.91, 2.64 

20-59 Pre-Circulation 103 5258884 1.96 Ref -- 

Circulation 8 416864 1.92 0.98 0.48, 2.01 

Vaccination & Post 58 3492758 1.66 0.85 0.62, 1.17 

http://www.epic-uk.org/our-data/our-data.shtml
http://www.erasmusmc.nl/med_informatica/research/555688/?lang=en
http://www.kea.au.dk/en/ResearchRegistries.html
http://www.sidiap.org/index.php/en
http://fisabio.san.gva.es/en/fisabio;jsessionid=AFE38E9ACF0A380A692A9739E88F2FF4
http://www.socialstyrelsen.se/english
http://www.mohw.gov.tw/CHT/DOS/DM1.aspx?f_list_no=812
http://www.health.alberta.ca/documents/Research-Health-Datasets.pdf
http://umanitoba.ca/faculties/health_sciences/medicine/units/chs/departmental_units/mchp/resources/repository/index.html
http://umanitoba.ca/faculties/health_sciences/medicine/units/chs/departmental_units/mchp/resources/repository/index.html
https://www.popdata.bc.ca/data


112 
 

60+ Pre-Circulation 25 2189220 1.14 Ref -- 

Circulation 3 195788 1.53 1.34 0.41, 4.44 

Vaccination & Post 13 1738626 0.75 0.66 0.34, 1.28 

The Netherlands 0-4 Pre-Circulation 0 41272 0.00 Ref -- 

Circulation 0 10442 0.00 NA -- 

Vaccination & Post 0 129291 0.00 NA -- 

5-19 Pre-Circulation 2 103950 1.92 Ref  

Circulation 0 29453 0.00 NA 
 Vaccination & Post 1 394895 0.25 0.13 0.01, 1.45 

20-59 Pre-Circulation 2 306773 0.65 Ref  

Circulation 1 87315 1.15 1.76 0.16, 19.37 

Vaccination & Post 7 1144346 0.61 0.94 0.20, 4.52 

60+ Pre-Circulation 0 111122 0.00 Ref -- 

Circulation 0 35025 0.00 NA -- 

Vaccination & Post 1 488348 0.20 NA -- 

Spain 0-4 Pre-Circulation 0 755198 0.00 Ref -- 

Circulation 0 601869 0.00 NA -- 

Vaccination & Post 0 1647061 0.00 NA -- 

5-19 Pre-Circulation 7 1617473 0.43 Ref  

Circulation 4 1488771 0.27 0.62 0.18, 1.13 

Vaccination & Post 26 4715178 0.55 1.27 0.55, 2.94 

20-59 Pre-Circulation 48 6847254 0.70 Ref -- 

Circulation 33 610444 0.54 0.77 0.50, 1.20 

Vaccination & Post 125 18915104 0.27 0.94 0.68, 1.31 

60+ Pre-Circulation 7 2728360 0.26 Ref -- 

Circulation 11 2372937 0.46 1.82 0.70, 4.76 

Vaccination & Post 25 7526241 0.33 1.29 0.56, 2.99 

Sweden 0-4 Pre-Circulation 13 3166715 0.41 Ref -- 

Circulation 4 274111 1.46 3.56 1.16, 10.90 

Vaccination & Post 7 2418815 0.29 0.71 0.28, 1.77 

5-19 Pre-Circulation 62 10381883 0.60 Ref -- 

Circulation 1 819877 0.12 0.20 0.03, 1.47 

Vaccination & Post 369 6854603 5.38 9.01 6.89, 11.80 

20-59 Pre-Circulation 338 29823712 1.13 Ref -- 

Circulation 26 2418238 1.08 0.95 0.64, 1.41 

Vaccination & Post 401 20992445 1.91 1.69 1.46, 1.95 

60+ Pre-Circulation 200 13550206 1.48 Ref -- 

Circulation 12 1158116 1.04 0.70 0.39, 1.26 

Vaccination & Post 103 10168490 1.01 0.69 0.54, 0.87 

North America Canada 0-4 Pre-Circulation 1 2669395 0.04 Ref -- 

Circulation 0 346294 0.00 NA -- 

Vaccination & Post 3 2021834 0.15 3.96 0.41, 38.08 

5-19 Pre-Circulation 67 10107116 0.66 Ref -- 

Circulation 6 1261204 0.48 0.72 0.31, 1.70 

Vaccination & Post 53 6378494 0.83 1.25 0.87, 1.80 

20-59 Pre-Circulation 265 34413993 0.77 Ref -- 

Circulation 36 4574717 0.79 1.02 0.72, 1.45 

Vaccination & Post 182 24228401 0.75 0.98 0.81, 1.18 

60+ Pre-Circulation 77 10259739 0.75 Ref -- 

Circulation 8 1481882 0.54 0.72 0.35, 1.49 

Vaccination & Post 49 8335817 0.59 0.78 0.55, 1.12 

Asia Taiwan 0-4 Pre-Circulation 0 3647009 0.00 Ref -- 

Circulation 0 256532 0.00 NA -- 

Vaccination & Post 0 2526902 0.00 NA -- 

5-19 Pre-Circulation 81 13985353 0.58 Ref -- 

Circulation 16 1103680 1.45 2.50 1.46, 4.28 
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Vaccination & Post 110 11867183 0.93 1.60 1.20, 2.13 

20-59 Pre-Circulation 78 46806947 0.17 Ref -- 

Circulation 14 3768896 0.37 2.23 1.26, 3.94 

Vaccination & Post 158 44542437 0.35 2.13 1.62, 2.79 

60+ Pre-Circulation 8 17512300 0.05 Ref -- 

Circulation ‡ ‡ 0.08 1.72 0.22, 13.76 

Vaccination & Post ‡ ‡ 0.04 0.93 0.32, 2.68 

*Periods are as follows: Pre-Circulation = January 2003-the beginning of wild-type H1N1 circulation (defined per country); 
Circulation = Period from the beginning of wild-type H1N1 circulation until the start of the vaccination campaign (defined per 
country); Vaccination & Post = Period from the beginning of the vaccination campaign through December 2013. 
† IRR comparing the period to the pre-circulation period, within the age group 
‡The count has been suppressed either because (1) the observed number of events is very small (n ≤ 2) and not appropriate for 
publication; or (2) it could be used to calculate the number in a cell that has been suppressed. 
 

Supplementary Table 3: IRRs Post-Vaccination vs. Pre-Circulation in categories of Coverage and Adjuvant 

Age Group Adjuvant Coverage Countries  IRR  95% CI 

Children (5-19 years)  MF59 Low Netherlands 
Spain 

1.01 0.45, 2.25 

 AS03 Low Denmark 
United Kingdom 

1.62 1.09, 2.42 

 AS03 High Sweden 9.01 6.78, 11.99 

Adults (20-59 years)  MF59 Low Netherlands 0.94 0.18, 4.97 

 AS03 Low Spain 
Denmark 
United Kingdom 

0.68 0.57, 0.81 

 AS03 High Sweden 1.69 1.45, 1.97 

 

 

 

 

 

 

 

 

 

 

 

 

 



114 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

115 
 

CHAPTER 4. SINGLE DATABASE STUDIES FOR THE ASSESSMENT OF VACCINE EFFECTS 
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4.1. BELL’S PALSY AND INFLUENZA(H1N1)PDM09 CONTAINING VACCINES: A SELF-CONTROLLED 

CASE SERIES 
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Abstract 

Background 

An association between AS03 adjuvanted pandemic influenza vaccine and the occurrence of Bell’s palsy was found 

in a population based cohort study in Stockholm, Sweden. To evaluate this association in a different population, we 

conducted a self-controlled case series in a primary health care database, THIN, in the United Kingdom. The aim of 

this study was to determine whether there was an increased risk of Bell’s palsy following vaccination with any 

influenza vaccine containing A/California/7/2009 (H1N1)-like viral strains. Secondly, we investigated whether risks 

were different following pandemic influenza A(H1N1)pdm09 vaccines and seasonal influenza vaccines containing 

the influenza A(H1N1)pdm09 strain. 

Methods 

The study population comprised all incident Bell’s palsy cases between 1 June 2009 and 30 June 2013 identified in 

THIN. We determined the relative incidence (RI) of Bell’s palsy during the 6 weeks following vaccination with either 

pandemic or seasonal influenza vaccine. All analyses were adjusted for seasonality and confounding variables. 

Results 

We found an incidence rate of Bell’s palsy of 38.7 per 100,000 person years. Both acute respiratory infection (ARI) 

consultations and pregnancy were found to be confounders. When adjusted for seasonality, ARI consultations and 

pregnancies, the RI during the 42 days after vaccination with an influenza vaccine was 0.85 (95% CI: 0.72– 1.01). 

The RI was similar during the 42 days following seasonal vaccine (0.96, 95%CI: 0.82-1.13) or pandemic vaccine 

(0.73, 95%CI: 0.47-1.12).  

Conclusion 

We found no evidence for an increased incidence of Bell’s palsy following seasonal influenza vaccination overall, 

nor for monovalent pandemic influenza vaccine in 2009.  
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Introduction 

Bell’s palsy is an idiopathic peripheral-nerve palsy affecting the cranial nerve and the most common cause for facial 

paralysis (1) with an incidence between 15 to 50 cases per 100,000 people per year (1-3). It is characterized by 

acute onset, unilateral facial paralysis, numbness or pain around the ear, reduction in taste and hypersensitivity to 

sounds. The diagnosis is made after excluding other possible causes for facial paralysis, including congenital, 

genetic and acquired causes. Standard diagnostic criteria are not available (4). Bell’s palsy resolves spontaneously 

without treatment in most patients within 6 months. Some patients experience long-term sequelae with 

incomplete return of facial motor function and synkinesis (1). The cause of Bell’s palsy is unknown. Inflammation is 

thought to play an important role in the aetiology of Bell’s palsy (1) and an auto-immune aetiology has also been 

suggested (5). Known risk factors for Bell’s palsy include diabetes, a weakened immune system and pregnancy (1, 

6).  

Bell’s palsy has been associated with influenza vaccines in the past (7-12). A large population-based study in the UK 

did not detect a relationship between inactivated influenza vaccines and Bell’s palsy (13), nor did a recent study in 

the US in children (14). Due to the earlier associations and the unknown aetiology, Bell’s palsy remains an adverse 

event of interest following influenza vaccination. 

Following the 2009/2010 influenza A(H1N1) pandemic, an association with Bell’s palsy was found with an AS03 

adjuvanted pandemic influenza vaccine, Pandemrix, in a population based cohort study in Stockholm, Sweden with 

a hazard ratio (HR) of 1.25, 95% CI 1.06 to 1.48 (15). The risk was highest during the first 6 weeks following 

vaccination (HR: 1.60, 1.25 to 2.05) and particularly present in those vaccinated early in the campaign (HR: 1.74, 

95% CI 1.16 to 2.59), which were those with more (severe) underlying co-morbidity. Similarly, a signal was detected 

for monovalent pandemic influenza vaccines used in the Vaccine Safety Datalink (VSD) Project in the US in adults 

over the age of 25 years with a relative risk of 1.6 (16). This last signal was not verified in a case centred analysis 

which found and odds ratio of 1.21 (95% CI: 0.93 – 1.57). Finally, a signal of an increased risk of Bell’s palsy during 

the 42 days after vaccination with pandemic (H1N1) 2009 vaccine was detected in Taiwan (17). 

In order to evaluate the potential association of Bell’s palsy following influenza A(H1N1)pdm09 vaccination in a 

different population, we conducted a self-controlled case series study. The aim of this study was to determine 

whether there was an increased risk of Bell’s palsy following vaccination with any influenza vaccine containing 

A/California/7/2009 (H1N1)-like viral strains. Secondly, we looked whether risks were different following pandemic 

influenza A(H1N1)pdm09 vaccines and seasonal influenza vaccines containing the influenza A(H1N1)pdm09 strain. 

Methods 

We used a self-controlled case series (SCCS) (18, 19) design in The Health Improvement Network (THIN) database. 

THIN includes data from 562 general practices across the UK and the population covered by THIN is representative 

of the UK population. The data in THIN have been validated for pharmacoepidemiology studies (20, 21). 

Study population, study period and outcome 

The study population comprised all incident Bell’s palsy cases between 1 June 2009 and 30 June 2013 identified in 

THIN, from a total population in this time period of nearly 6 million. A Bell’s palsy case was defined as a person who 

had a consultation with a READ diagnosis code for Bell’s palsy (F310.00). Multiple cases per person were allowed. If 

diagnosis dates were more than 6 months apart, they constituted two separate cases. Considering the relatively 

high predictive value of over 75% of READ diagnosis codes for Bell’s palsy (13) no validation on identified cases was 

performed. 
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Exposures 

Influenza vaccination was identified through relevant codes and recorded by year and vaccine type (seasonal or 

pandemic), including pandemic influenza vaccination and seasonal influenza vaccinations for the years 2009/2010, 

2010/2011, 2011/2012 and 2012/2013. In the UK both Pandemrix and Celvapan were used during the 2009-2010 

influenza A(H1N1) pandemic, and information on brand was retrieved if available. Moreover, during the 2009-2010 

season, persons could have received both a seasonal vaccine and a pandemic influenza vaccine. In theory these 

could have been given on the same day or close together making it difficult to attribute the risk to either. 

Considering the study by Stowe et al (13) no increased risk was expected for the seasonal vaccine, therefore this 

was disregarded in the primary analysis.  

Because each person serves as his or her own control, stable confounders such as gender, genetics, socio-economic 

status, and underlying disease are controlled for. Covariates that were considered as potential confounders were 

calendar time, occurrence of acute respiratory infections (ARI), influenza diagnoses, and pregnancy. Considering 

the short observation period, no age effect was expected. ARI episodes and influenza diagnoses were identified by 

relevant READ codes (provided in annex table). Consultations for ARI or influenza occurring within 28 days of a 

previous consultation were excluded as likely related to the same episode. The risk window for ARI and influenza 

was 0 to 7 days following the date of infection. Pregnancies were identified by the date of delivery. The risk period 

was the 270 days (9 months) before the date of delivery.   

Analysis  

We used means and standard deviations to describe continuous variables. For categorical variables, we used counts 

and percentages. We calculated the incidence rate of codes for Bell’s palsy using all person time in the database 

within the study period and similarly determined vaccination rates per season using all subjects in the database. 

All descriptive statistics were compared between vaccinated cases and unvaccinated cases using t-tests for 

continuous variables and chi-squared tests for categorical variables. Associations between pregnancy, ARI 

consultations and influenza diagnoses and Bell’s palsy and influenza vaccination were determined. We determined 

the relative incidence (RI) of Bell’s palsy during the 6 weeks following vaccination with either pandemic or seasonal 

influenza vaccine using a conditional Poisson regression conducted on Bell’s palsy cases only. The risk period of 

interest was from days one to 42 following vaccination (D1 to D42), as this was the period with the highest risk 

found by Bardage et al (15). As vaccination could be delayed following an episode of Bell’s palsy, the 14 days prior 

to vaccination were treated as a separate risk period in the analysis. The day of vaccination (D0) was also regarded 

as a separate risk period. Relative incidence of Bell’s palsy associated with pregnancy, influenza diagnosis, and ARI 

were estimated using the SCCS method (18). If these univariate associations were significant, pregnancy, influenza, 

and ARI would be included as additional exposures in the primary analysis. All analyses were adjusted for calendar 

time by quarter.  

Relative incidences were calculated separately for pandemic and for seasonal influenza vaccines, and for each 

season (vaccination period). All person time was included in analysis of risk following any pH1N1-containing vaccine 

exposure while person time was limited to October 1 to 61 days following the last administration in separate 

analyses of pandemic H1N1 vaccine and seasonal vaccines. As less than 0.1% of vaccinated cases received Celvapan 

during the 2009/2010 pandemic (22), we consider the findings with pandemic vaccines in our study to be applicable 

to Pandemrix. Age and sex specific relative incidences of Bell’s palsy within 6 weeks of influenza vaccination were 

calculated. 
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To further account for the risk of deferral of vaccination after receiving a diagnosis of Bell´s palsy, we performed 

sensitivity analyses in which only the observation time after vaccination was considered.  

All analyses were conducted using SAS 9.2. 

Results 

We identified 6381 Bell’s palsy cases in 6288 persons. Of these, 6198 persons had one code for Bell’s palsy, 87 

persons had two and three persons had three consultations with a Bell’s palsy code during the study period. The 

incidence rate was 38.7 per 100,000 person years (Table 1) 

Table 1. Main characteristics of THIN population overall and by case status 

 Non-Case Case Total 
 n=5,726,368 n=6,288 n=5,732,656 

Demographics       
Female (n (%)) 2,913,751 (50.88) 3,194 (50.80) 2,917,343 (50.88) 
Follow Up Time in 
years (SD) 

3.13  (1.58) 3.72  (1.27) 3.13 (1.58) 

Mean age in years 
(SD) 

37.10 (23.32) 45.00 (20.20) 37.11 (23.32) 

Age (n (%))       
<45 yrs 3,646,538 (63.68) 3,217 (51.16) 3,650,127 (63.67) 

45 – 65 yrs 1,289,596 (22.52) 1,949 (31.00) 1,291,825 (22.53) 
>65 yrs 790,234 (13.80) 1,122 (17.84) 791,495 (13.80) 

≥1 ARI episode (n 
(%)) 

1,489,391 (26.01) 2231  (35.48) 1,491,622 (26.02) 

≥ 1Pregnancy (n (%)) 122,878 (2.15) 158 (2.51) 123,036 (2.15) 
2009 Pandemic 
(n(%)) 

524059 (9.15) 901 (14.33) 524960 (9.16) 

Seasonal 2009-2010 
(n(%)) 

913,250 (15.95) 1660 (26.40) 914,910  (15.96) 

Seasonal 2010-2011 
(n(%)) 

789912 (13.79) 1529 (24.32) 791,411  (13.80) 

Seasonal 2011-2012 
(n(%)) 

856684 (14.93) 1747 (27.78) 856,684  (14.94) 

Seasonal 2012-2013 
(n(%)) 

817751 (14.28) 1702 (27.07) 819,453  (14.29) 

 

The characteristics of the cases by vaccination status (seasonal and pandemic) are presented in table 2. Cases who 

were vaccinated with either pandemic or seasonal influenza vaccine were older and had more consultations for ARI 

during the study period. Moreover, cases who received seasonal influenza vaccines were more likely to be female. 

The distribution of Bell’s palsy dates relative to vaccination dates is presented in figure 1. 
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Figure 1. Distribution of Bell’s palsy diagnosis dates and dates of vaccination during the observation period 

Table 2. Main characteristics of cases occurring between 1 June 2009 and 30 June 2013 by vaccination status 

 Received seasonal vaccine* Received pandemic vaccine 
 Yes No  Yes No  
 n=2408 n= 3880 p-

value 
n=901 n= 5387 p-

value 
Demographics           
Female (n (%)) 131

3 
(54.5

3) 
188

1 
(48.4

8) 
<.000

1 
454 (50.3

9) 
274

0 
(50.8

6) 
0.79 

Mean age in years 
(SD) 

58.5
9 

(18.0
7) 

36.5
6 

(16.5
1) 

<.000
1 

56.7
5 

(19.6
4) 

43.0
3 

(19.6
1) 

<.000
1 

Age (n (%))           
<45 yrs 532 (22.0

9) 
268

5 
(69.2

0) 
 212 (23.5

3) 
300

5 
(55.7

8) 
 

45 – 65 yrs 897 (37.2
5) 

105
2 

(27.1
1) 

 357 (39.6
2) 

159
2 

(29.5
5) 

 

>65 yrs 979 (40.6
6) 

143 (3.69) <.000
1 

332 (36.8
5) 

790 (14.6
6) 

<.000
1  

Of cases, 14% received the monovalent pandemic influenza vaccine whilst seasonal vaccines were received by 24 to 

28% of cases dependent on the year. Thirty-five percent (2232 persons) experienced at least one episode of ARI 

during follow-up. In total, 3.5% (220 cases) received an influenza diagnosis. During follow-up 155 women had one 

pregnancy (4.85%) and three women had two pregnancies (0.09%). 
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We found that pregnancy was associated with a higher risk of Bell’s palsy (RR 1.75, 95% CI 1.19 – 2.57) and that 

pregnant women had a higher likelihood of receiving an influenza vaccine ( RR 5.05, 95% CI 3.26-7.82). An episode 

of ARI was strongly associated with Bell’s palsy on the day of consultation (RR 6.99, 95% CI: 4.39- 11.13), but also in 

the 7 days following a consultation for ARI (RR 2.44, 95% CI 1.81 – 3.30). In addition, an episode of ARI was 

associated with an increased incidence of vaccination on the day of consultation for ARI (RR 2.93, 95% CI 1.58 – 

5.46) and a reduced incidence of vaccination during the week following a consultation for ARI (RR 0.50, 95% CI 0.28 

– 0.89). The distribution of ARI dates relative to vaccination dates over calendar time is given in figure 2.  

 

Figure 2. Distribution of acute respiratory infection dates and dates of vaccination during the observation period 

There was no statistical evidence of an association between Bell’s palsy and a consultation for influenza (RR 2.41, 

95% CI 0.76 – 7.58). 

The crude RI of Bell’s palsy during the 42 days after vaccination with an influenza vaccine was 0.88 (95% CI: 0.74 – 

1.04). On the day of vaccination the relative incidence was 2.15 (95% CI: 1.12 – 4.14). The RI was reduced in the 

fourteen days prior to vaccination, 0.70 (95% CI: 0.51 – 0.96). When adjusted for seasonality, episodes of ARI and 

pregnancies, the RI during the 42 days after vaccination with an influenza vaccine was 0.85 (95% CI: 0.72 – 1.01). At 

the date of vaccination the adjusted RI was 2.08 (95% CI: 1.08 - 4.01), during the 14 days preceding vaccination the 

adjusted RI was 0.68 (95% CI: 0.50 - 0.93).  

When considering the type of vaccine (i.e. seasonal vs. pandemic) the adjusted RI was similar during the 42 days 

following seasonal vaccine (0.96, 95%CI: 0.82-1.13) or pandemic vaccine (0.73, 95%CI: 0.47-1.12).  

The adjusted (for ARI and seasonality in men; for ARI, seasonality, and pregnancy in women) RI during the 42 days 

following influenza vaccination (any) was slightly lower in women (0.77, 95% CI: 0.61 – 0.99) compared to men 

(0.94, 95% CI: 0.74 – 1.19), with confidence intervals overlapping.  
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The adjusted relative incidence of Bell’s palsy within 42 days of influenza vaccine stratified by vaccine and age can 

be found in Table 3.  

Table 3. Age and season specific relative incidences (95% CI) of Bell’s palsy within 42 days of influenza vaccination 

(adjusted for seasonality, ARI consultations and pregnancy) 

Risk Period  All age groups Age <45 Age 45 to 64 Age 65 + 

 
Person 
Time (yrs) 

N  RI 95% CI N RI 95% CI N RR 95% CI N RR 95% CI 

Any 
vaccine* 

             

Day -14 to -
1 

244  41 0.68 
0.50-
0.93 

7 
0.

92 
0.43-
1.95 

1
5 

0.
73 

0.44-
1.23 

1
9 

0.
58 

0.36-
0.92 

Day 0 17 9 2.08 
1.08-
4.01 

2 
3.

58 
0.89-
14.40 

2 
1.

36 
0.34-
5.44 

5 
2.

12 
0.88-
5.15 

Day 1 to 42 733 154 0.85 
0.72-
1.01 

25 
1.

07 
0.71-
1.62 

4
5 

0.
73 

0.53-
1.00 

8
4 

0.
86 

0.67-
1.10 

Non-Risk 23,031 5629 
           

2009 
Pandemic 

  
           

Day -14 to -
1 

39 2 0.18 
0.05-
0.74 

1 
0.

41 
0.06-
2.98 

1 
0.

23 
0.03-
1.65 

0 
N
A 

NA 

Day 0 3.2 0 NA NA 0 
N
A 

NA 0 
N
A 

NA 0 
N
A 

NA 

Day 1 to 42 118 24 0.73 
0.47-
1.12 

3 
0.

40 
0.12-
1.28 

9 
0.

70 
0.35-
1.43 

1
2 

0.
93 

0.50-
1.74 

Non-Risk 5076 3681            

Season 
2010-2011 

  
           

Day -14 to -
1 

52 7 0.64 
0.29-
1.39 

0 
N
A 

NA 1 
0.

36 
0.05-
2.68 

6 
0.

90 
0.37-
2.17 

Day 0 4.4 2 2.25 
0.55-
9.18 

0 
N
A 

NA 1 
4.

36 
0.58-
32.57 

1 
1.

86 
0.25-
13.64 

Day 1 to 42 198 53 1.28 
0.90-
1.80 

11 
1.

58 
0.73-
3.42 

1
6 

1.
44 

0.75-
2.76 

2
6 

1.
03 

0.62-
1.72 

Non-Risk 2705 635            

Season 
2011-2012 

  
           

Day -14 to -
1 

54 17 1.23 
0.73-
2.08 

3 
1.

28 
0.36-
4.53 

7 
2.

17 
0.91-
5.16 

7 
0.

76 
0.34-
1.72 

Day 0 4.9 1 0.83 
0.12-
5.98 

1 
5.

39 
0.71-
41.15 

0 
N
A 

NA 0 
N
A 

NA 

Day 1 to 42 224 45 0.81 
0.57-
1.16 

5 
0.

59 
0.21-
1.60 

1
4 

1.
12 

0.58-
2.19 

2
6 

0.
67 

0.41-
1.10 
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Non-Risk 2522 537            

Season 
2012-2013 

             

Day -14 to -
1 

54 8 0.62 
0.30-
1.30 

3 
1.

82 
0.51-
6.50 

2 
0.

34 
0.08-
1.44 

3 
0.

58 
0.17-
1.93 

Day 0 4.8 3 2.87 
0.91-
9.09 

1 
6.

86 
0.89-
52.67 

1 
2.

22 
0.30-
16.25 

1 
2.

33 
0.32-
17.23 

Day 1 to 42 217 44 0.90 
0.63-
1.28 

9 
1.

33 
0.58-
3.07 

9 
0.

43 
0.21-
0.88 

2
6 

1.
28 

0.74-
2.20 

Non-Risk 2627 547            
 

All Bell’s palsy cases regardless of vaccination status included.  All analyses adjusted for seasonality by quarter, ARI 

consultations, and pregnancy in strata that contained pregnant cases.    

In the analysis in which only observation time after vaccination was included, exposure to 2009 pH1N1 vaccine with 

control for ARI, seasonality, and pregnancy produced a RI of 0.88 (95% CI: 0.47, 1.65) while exposure to 2010-11, 

2011-12, and 2012-13 seasonal vaccines produced RIs of 1.56 (0.95, 2.57); 0.69 (0.45, 1.06); and 0.91 (0.57, 1.46), 

respectively.  

The main analysis disregarded seasonal influenza vaccines during the 2009-2010 season. We considered the receipt 

of seasonal influenza vaccines during the 2009-2010 season as a separate risk factor in a sensitivity analysis. The 

results showed a RI of 1.14 (0.86, 1.51) in the 42 days following vaccination. 

Discussion 

Bell’s palsy is a syndrome for which the exact cause is unclear. As a result it could have multiple triggers, of which – 

considering the hypothetical autoimmune aetiology – influenza and influenza vaccination could be one. Clusters of 

Bell’s palsy cases have been reported following influenza vaccination in the past. An association was reported for 

Bell’s palsy and Pandemrix, an AS03 adjuvanted pandemic influenza vaccine in Sweden (15), and a signal was 

reported from Taiwan (17). In this study, we evaluated the risk of Bell’s palsy following vaccination with influenza 

vaccines containing A/California/7/2009 (H1N1)-like viral strains, including pandemic vaccines, in the UK. 

The increased risk of Bell’s palsy on the day of influenza vaccination was expected, based upon the findings of 

Stowe et al (13), and a likely opportunistic recording of cases.  

We found no evidence of an increased incidence of Bell’s palsy consultations following seasonal influenza 

vaccination overall, nor for monovalent pandemic influenza vaccine in 2009. Therefore our study does not confirm 

the results identified by Bardage et al (15) in Sweden. While Bardage et al. controlled for sex, age, and health 

utilization as measured by contacts within the year prior to vaccination, they were unable to control for 

unmeasured within-person confounders or for seasonality.  Given the association we found here between ARI and 

Bell’s palsy, failure to control for infection and/or seasonality could lead to the increased HR found by Bardage et 

al. When adjusted for seasonality, episodes of ARI and pregnancies, the RI during the 42 days after vaccination with 

an influenza vaccine was 0.85 (95% CI: 0.72 – 1.01). 

Other than mild protective effects in women following exposure to any H1N1-containing vaccine and in 45-64 year 

olds following exposure to the 2012-13 seasonal vaccine, all estimated RIs associated with vaccine exposure were 

non-significant. Given the number of associations assessed together with the upper limits of the confidence 
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intervals being nearly equal to one, we did not further investigate these apparent protective effects, as these could 

reasonably be due to chance. 

One of the more restrictive assumptions of the SCCS method is that the distribution of exposure after a certain 

time must be independent of the event history prior to that time (18). Bell’s palsy is not a contra-indication for 

influenza vaccination. Nonetheless, it is possible that people will delay vaccination after Bell’s palsy, which can 

represent a violation of the assumption of the SCCS. Generally, this delay in vaccination would bias RI estimates 

upward by producing a scarcity of cases in control intervals. In our main analysis we fixed the 14 days prior to 

vaccination as a separate risk period. The reduced incidence found during this risk period demonstrates that 

persons will delay vaccination when diagnosed with Bell’s palsy. We assumed that a 14 day period would be 

sufficient to exclude any bias resulting from this delay. As evidenced by the sensitivity analysis which only 

considered observation time after vaccination and produced estimates very similar to those produced with a 14-

day low risk period, this 14-day period was sufficient to control for a potential healthy vaccinee effect. 

A second restrictive assumption of the SCCS method is that events are either recurrent and independent within 

individuals or not-recurrent and uncommon (18). Bell’s palsy can recur, however this is rare (1) and is reported to 

do after a latency period of approximately 10 years (5, 13). In our study we considered any second consultation of 

Bell’s palsy within 6 months to belong to a single episode. We found that 1.4% of persons had more than one 

episode within our relatively short observation period. As recurrent events are rare we assume the bias is negligible 

(23). 

Our study has limitations that could impact the observed results. 

Whilst the SCCS inherently deals with measured and unmeasured fixed confounding variables, time varying 

confounders will still need to be measured and adjusted for. We adjusted for seasonality by quarter, consultations 

for ARI and pregnancies, as these factors were identified as confounders in our study. Although both ARI and 

pregnancies were association with exposure and outcome, adjusting for them had minimal impact on estimates. As 

we identified pregnancies by date of delivery we did not capture all pregnancies. Similarly, consultations for ARI do 

not reflect all the ARIs actually occurring. We could not adjust for time varying factors that were not measured such 

as changes in medical coding practice, healthcare seeking behaviour, or vaccination policy.  

Finally, persons who develop Bell’s palsy may consult their GP only after prolonged persistence of symptoms or not 

at all, making incomplete reporting of cases possible in our study. If reporting was differential by vaccination status, 

meaning if persons who develop Bell’s palsy shortly following vaccination were more likely or less likely to consult 

their GP, this would have introduced bias in this study.  

In conclusion, our study did not provide evidence of an increased risk of Bell’s palsy following vaccination with any 

influenza vaccine containing A/California/7/2009 (H1N1)-like viral strains, either pandemic or seasonal vaccines.  
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Supplementary Material 

ANNEX 1: READ CODES FOR DATA EXTRACTION 

Read code for Bell’s palsy 

F31..00 Facial nerve disorders 

F310.00 Bell's (facial) palsy 

 

AHD codes for influenza vaccination 

1002090105 Influenza A H1N1v 

1002090104 Influenza A H1N1v unknown brand (other health provider) 

1002090103 Influenza A H1N1v (other health provider) 

1002090102 Influenza A H1N1v (other health provider) 

1002090101 Influenza A H1N1v 

1002090100 Influenza A H1N1v unknown brand 

1002090000 Influenza 

 

READ codes for influenza vaccination 

65E..00 Influenza vaccination 

65E0.00 First pandemic influenza vaccination 

65E1.00 Second pandemic influenza vaccination 

65E2.00 Influenza vacc othr hlth prov 

65E3.00 1st pan flu vac othr hlth prov 

65E4.00 2nd pan flu vac othr hlth prov 

65E5.00 CELVAPAN - first influenza A (H1N1v) 2009 vaccination given 

65E6.00 CELVAPAN - second influenza A (H1N1v) 2009 vaccination given 

65E7.00 CELVAPAN - 1st flu A (H1N1v) 2009 vacc by othr hlth provider 

65E8.00 CELVAPAN - 2nd flu A (H1N1v) 2009 vacc by othr hlth provider 
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65E9.00 PANDEMRIX - first influenza A (H1N1v) 2009 vaccination given 

65EA.00 PANDEMRIX - second influenza A (H1N1v) 2009 vaccination give 

65EB.00 PANDEMRIX - 1st flu A (H1N1v) 2009 vac by othr hlth provider 

65EC.00 PANDEMRIX - 2nd flu A (H1N1v) 2009 vac by othr hlth provider 

 

READ codes for  ARI 

'H00..00' 'H03..00' 'H042000' 'H060700' 'H01yz00' 'H040000' 'H053.00' 'H061200' 

'H00..11' 'H03..11' 'H042100' 'H060800' 'H01z.00' 'H040100' 'H055.00' 'H061300' 

'H00..12' 'H03..12' 'H042z00' 'H060900' 'H02..00' 'H040200' 'H05y.00' 'H061400' 

'H00..13' 'H030.00' 'H043.00' 'H060A00' 'H02..11' 'H040300' 'H05z.00' 'H061500' 

'H00..15' 'H031.00' 'H043.11' 'H060B00' 'H02..12' 'H040400' 'H05z.11' 'H061600' 

'H00..16' 'H032.00' 'H043000' 'H060C00' 'H02..13' 'H040500' 'H05z.12' 'H061z00' 

'H01..00' 'H033.00' 'H043100' 'H060D00' 'H020.00' 'H040600' 'H06..00' 'H062.00' 

'H01..11' 'H034.00' 'H043200' 'H060E00' 'H021.00' 'H040w00' 'H060.00' 'H06z.00' 

'H010.00' 'H035.00' 'H043211' 'H060F00' 'H022.00' 'H040x00' 'H060.11' 'H06z000' 

'H010.11' 'H035000' 'H043z00' 'H060v00' 'H023.00' 'H040z00' 'H060000' 'H06z011' 

'H011.00' 'H035100' 'H044.00' 'H060w00' 'H023000' 'H041.00' 'H060100' 'H06z100' 

'H012.00' 'H035z00' 'H04z.00' 'H060x00' 'H023100' 'H041000' 'H060200' 'H06z111' 

'H013.00' 'H036.00' 'H05..00' 'H060z00' 'H023z00' 'H041100' 'H060300' 'H06z112' 

'H014.00' 'H03z.00' 'H050.00' 'H061.00' 'H024.00' 'H041z00' 'H060400' 'H07..00' 

'H01y.00' 'H04..00' 'H051.00' 'H061000' 'H025.00' 'H042.00' 'H060500' 'H0y..00' 

'H01y000' 'H040.00' 'H052.00' 'H061100' 'H02z.00' 'H042.11' 'H060600' 'H0z..00' 

 

READ codes for delivery date 

'63...00' '63...00' '639..00' '63A..00' '632..00' '63D..00' 

'6331.00' '633..00' '633a.00' '6341.00' '6342.00' '63E2.00' 
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'635..11' '7F10.00' '7F10000' '7F10100' '7F10y00' '7F10z00' 

'7F10z11' '7F10z12' '7F11.00' '7F11000' '7F11100' '7F11200' 

'7F11300' '7F11y00' '7F11z00' '7F12.00' '7F12000' '7F12100' 

'7F12111' '7F12y00' '7F12z00' '7F13.00' '7F13000' 
7F13100 

' 

'7F13111' '7F13200' '7F13300' '7F13y00' '7F13z00' 7F14.00'  

'7F14100' '7F14y00' '7F14z00' '7F15.00' '7F15000' '7F14000' 

'7F15100' '7F15y00' '7F15z00' '7F16.00' '7F16000' '7F16200' 

'7F16300' '7F16400' '7F16500' '7F16600' '7F16700' '7F16800' 

'7F16900' '7F16A00' '7F16B00' '7F16y00' '7F16z00' '7F17.00' 

'7F17000' '7F17100' '7F17200' '7F17300' '7F17y00' '7F17z00' 

'7F18.00' '7F18000' '7F18100' '7F16100' '7F18y00' '7F18z00' 

'7F19.00' '7F19000' '7F19100' '7F19y00' '7F19z00' '7F1A.00' 

'7F17.11' '7F17.12' 'L34..00' 'L398.00' 'L398300' 'L398400' 

'Ly0..00'           

 

READ codes for influenza  

H27.. H27z. H270z H270. 

Hyu06 H27yz H27y. H2710 

H2711 H27yz H27y. H2710 

H2711 Hyu07 H27y1 Hyu05 

H271. H27y0 H271z  
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4.2 THE IMPACT AND LONGEVITY OF MEASLES-ASSOCIATED IMMUNE SUPPRESSION: A MATCHED 

COHORT STUDY USING DATA FROM THE THIN GENERAL PRACTICE DATABASE IN THE UNITED 

KINGDOM 
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ABSTRACT 

Objective 

To test the hypothesis that measles infection increases susceptibility to and incidence of infectious diseases over a 

prolonged period of time. 

Design 

A population-based matched cohort study.  

Data Sources 

This study examined children aged 1 to 15 years in the Health Improvement Network (THIN) UK general practice 

medical records database. Participants included 2,228 patients with measles diagnosed between 1990 and 2014. 

They were matched on age, sex, GP-practice and calendar year with   19,930 children without a measles diagnosis. 

All controls had received at least one measles vaccination. Children with a history of immune-compromising 

conditions or with immune-suppressive treatment were excluded.  

Primary outcome measures 

Incidence rate ratio (IRR) of infections, anti-infective prescriptions and all-cause hospitalisations following measles 

in pre-determined periods using multivariate analysis to adjust for confounding variables. 

Results 

In children with measles, the incidence rate for non-measles infectious disease was significantly increased in each 

time period assessed up to 5 years post-measles: 43% in the first month (IRR: 1.43; 95%CI: 1.22 to 1.68), 20% from 

month one to the first year (IRR: 1.22; 95%CI: 1.14 to 1.31), 10% from year 1 to 2.5 years (IRR: 1.10; 95%CI: 1.02 to 

1.19), and 15% (IRR: 1.15; 95%CI: 1.06 to 1.25) in years 2.5 to 5 years of follow-up. Children with measles were 

more than three times as likely to receive an anti-infective prescription in the first month and 15%-24% more likely 

between the first month and 5 years. The rate of hospitalization in children with measles was increased only in the 

month following diagnosis but not thereafter (IRR: 2.83; 95%CI: 1.72 to 4.67). 

Conclusion 

Following measles, children suffered from increased rates of diagnosed infections, requiring increased prescribing 

of antimicrobial therapies. This population-based matched cohort study supports the hypothesis that measles has a 

prolonged impact to increase susceptibility to non-measles infectious diseases. 
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Introduction 

Measles is a highly contagious childhood disease.1 During the pre-vaccine era, nearly every child acquired measles 

before the age of 15 years.2 A key characteristic of the disease is a transient immune suppression, causing 

increased susceptibility to opportunistic infections. As a result, measles is often complicated by pneumonia, 

diarrhoea or otitis media, which may lead to severe and even fatal disease.3 4 The introduction of measles-

containing vaccines has reduced measles incidence,1 as well as childhood mortality.5 Interestingly, this reduction in 

childhood mortality is stronger than what would have been expected based on measles mortality in unvaccinated 

populations.6 Recent studies into the mechanism of measles immune suppression, based on observations in 

experimentally infected non-human primates, showed that measles virus preferentially replicates in CD150+ 

memory lymphocytes. It was hypothesised that viral cytotoxicity and immune-mediated clearance resulted in 

depletion of these cells, leading to a loss of acquired immunological memory.4 Consistent with this hypothesis, a 

subsequent ecological study using population level data from England and Wales, the United States, and Denmark, 

found that rates of non-measles infectious disease mortality are tightly coupled to measles incidence – with a 

greater mortality rate at higher recent measles incidence. Mina et al measured a duration of measles-induced 

immunomodulation by assessing the association between measles incidence and childhood mortality. The results 

showed that measles was associated with increased mortality from other infectious diseases over a period of more 

than two years.7 However, the study was based on population-level ecological association data, and the authors did 

not have access to case-based data. 

Monovalent measles vaccination was introduced in England in 1968, and replaced in 1988 by the multivalent 

measles, mumps and rubella (MMR) vaccine. Initially MMR was offered only as a single dose at the age of 12 

months. In 1996 a second dose was introduced and offered at age of 40 months. From 1996 to 2004 the number of 

reported measles cases in the UK was small. Following the publication of a subsequently discredited study linking 

autism and measles vaccination in 1998, coverage dropped for several years below herd protection level, and in 

2007 measles was re-established in the UK. In response, an MMR catch-up campaign targeting individuals up to 18 

years of age was implemented in 2008. In response to a mumps outbreak, Wales had already implemented a 

national MMR vaccination campaign targeting individuals aged between 11 and 25 years old in 2005.  

In the present study, we have used individual-level data from a United Kingdom database to test whether measles 

results in prolonged increased susceptibility to other infections. The aim of our study was to assess whether 

measles is associated with increased frequency of non-measles infectious disease, anti-infective prescriptions, or 

hospitalisations over a prolonged period of time. 

Methods 

Data source 

For this matched-cohort study we used data from The Health Improvement Network (THIN) database. THIN is a 

population-based general practice registry which contains prospectively collected, anonymized longitudinal 

electronic patient records from over 550 General Practitioner (GP) practices across the United Kingdom (UK), 

capturing health care data from more than 12 million patients (about 6% of the population).8 9 Data recorded in 

THIN include demographic, socioeconomic, and clinical information, including chief complaint, symptoms, test 

results, diagnoses, prescriptions, and referrals to hospitals. The population covered has similar demographic 

characteristics to the national UK population, and the recording of consultations and prescriptions is comparable to 

national levels.10 11 Diagnoses and symptoms are recorded in Read codes, a standard terminology, maintained by 

the UK National Health Service Centre for Coding and Classification (NHS CCC).12 Information on drug prescription is 

recorded using British National Formulary (BNF) codes and the MULTILEX product dictionary. The specific codes 
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used for this study were selected by a medical doctor and reviewed by a virologist, medical doctor and 

epidemiologist for their relevance (see S1 List for selected read codes). 

Study design and population 

The source population consisted of all patients who had contributed longitudinal data to the database between 

January 1st, 1990 to September 30th, 2014, from the age of 6 months to 15 years. This study period captures the 

period of time when vaccination rates fell during the late 1990s, with increased measles cases in the following 

years. The measles group consisted of children with a measles diagnosis (whether or not laboratory confirmed) 

between the ages of 1 and 15 years. The date of measles diagnosis was taken as the index date. To each child with 

a measles diagnosis, up to 10 children free of measles were matched on age in years, sex, GP-practice, and calendar 

time in years. Children free of measles were required to have had at least one dose of measles-containing vaccine, 

prior to the matched case’s index date. We considered that having received at least one dose of measles-containing 

vaccine would reduce the chance that children included in the “free of measles” group had ever had measles . 

Patients with a history of immune-compromising conditions (e.g. HIV infection, and organ, or bone marrow 

transplantation), or with immune suppressive treatment prior to the index date were excluded. See Table S2 for 

the STROBE statement of this study. 

Patient involvement 

No patient was involved in setting the research question, outcome measures, design or conduct of the study. The 

results were not disseminated to the patients, as the study was based on anonymised patient records. 

Outcomes 

Four clinical outcomes were considered: infections, anti-infective prescriptions, all cause hospitalisations, and all-

cause mortality. The outcomes were defined by the relevant clinical codes for symptoms and diagnoses, or drug 

codes. Infections included all communicable diseases other than measles. Infections were required to be 14 days 

apart to be considered a new event. Anti-infective prescriptions included all systemic antibiotics, anti-mycotic, 

antivirals, and anti-parasitic medication. For anti-infective prescriptions and hospitalisations, any event occurring 

on a different day (at least 1 day apart) was considered a new event.  

Follow-up 

Follow-up started at the index date and continued for a period of five years, until date of transfer out the general 

practitioner’s practice, the 15th birthday, or death, whichever came earliest. Each outcome was analysed in pre-

determined periods following measles diagnosis: within the first month; ≥one month to <1 year; ≥1 year to <2.5 

years; and ≥2.5 years to <5 years, to observe changes over time. Hazard ratios (HR) for hospitalisation were 

calculated with follow up starting at 30 days after the index date to avoid inclusion of hospitalisations due to initial 

complications related to measles. 
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Figure 1 | Flowchart of study cohort selection. Starting from 1,070,365 eligible children in the THIN database, 

2,228 measles patients and 19,930 matched controls were selected for this study. 

Potential confounders and effect modifiers 

We considered as potential confounders: chronic respiratory disease, cardiovascular disease, prior exposure to 

routine childhood vaccines other than measles containing vaccines, deprivation index, health care consumption, 

and occurrence of each outcome of interest in the year prior to index. Potential confounders were assessed at the 

index date. Vaccine adherence was defined as exposure to any dose of other routine childhood vaccines such as 

pertussis containing vaccines before the index date and coded as binary with vaccine adherence equal to one if any 

other childhood vaccine was received and zero otherwise. The Townsend deprivation score, a measure of social 

deprivation based on unemployment level, car ownership, home ownership, and household overcrowding levels by 

area, was used within a particular zip code.13 Health care consumption, as a proxy for general health, was assessed 

by the rate of GP consultations in the year prior to the index date,14 and categorized using quintile cut-off points. 

For a list of various types of consultations included to calculate GP consultation rate,  please see supporting 

information S1. For each outcome, the number of events in the year prior to index was calculated. 

Statistical analysis 

Baseline characteristics were compared between children with measles and children free of measles using Student 

t-test, Mann-Whitney U-test, chi-square test, or Fisher exact test as appropriate. Observed incidence rates of 

measles diagnosis codes as well as measles notification codes were estimated by dividing the number of cases by 

the number of person-years (PYs) at risk within the database stratified by calendar year, and were compared with 

expected incidence rates, derived from publicly available official statistics from the UK National Archives.15 The 

differences in incidence of the outcomes between children with measles and children free of measles were 

analysed for each period using Poisson regression. For this analysis, matching was relaxed due to uninformative 

matched strata for each outcome, with over 1000 uninformative strata for the hospitalization outcome.  A stratified 
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analysis was therefore not conducted, and the analysis was adjusted for confounding using multivariable analysis. 

We submitted the following confounders: history of cardiovascular malformation, history of respiratory disease, 

exposure to childhood vaccinations other than measles containing vaccination, age, sex, and GP consultation rate. 

Exposure to childhood vaccinations other than measles containing vaccination was not retained in final models.  In 

addition per outcome, we submitted rate of the outcome in the year prior to the index date. Absolute rates of each 

outcome per 1,000 person days were calculated with covariates fixed as follows: cardiovascular and respiratory 

history = No, Receipt of other childhood vaccines = Yes, Number of consults and events in the previous year = 

median, Age = 3 years, Sex = Female. Kaplan-Meier curves and log-rank tests were used to compare time to first 

hospitalisation between measles infected and control individuals, with follow-up beginning at 30 days after the 

index date (to avoid including codes related to the initial measles infection). A stratified Cox proportional hazards 

model, stratified by matched set and adjusted for confounding variables, was applied to estimate hazard ratios 

comparing children with measles and children free of measles. Assumptions of proportional hazards were assessed 

by inspecting the K-M curves and formally tested with inspection of a measles*time interaction term. Model 

selection was by backward covariate selection, with the criteria P < 0.1. Subsequently we verified automatically 

selected models using minimization of AIC. We also estimated the hazard ratios for the outcomes first infection and 

first prescription. 

 Sensitivity analysis 

 Children who have received vaccinations may be different in their underlying health status, social background, 

lifestyle, health care seeking behaviour and health care utilization from those who did not receive vaccinations. To 

examine the possible effect of these unmeasured confounders, we conducted a sensitivity-analysis, stratifying the 

data into matched sets in which all measles cases had received, or had not received a measles-containing vaccine 

(i.e. non-measles group vaccinated vs measles-group vaccinated). In post-hoc analyses, we assessed the IRR of each 

outcome over the entire study period in vaccine adherent vs non-adherent children for each outcome using Poisson 

regression. We also examined the correlation of the consultation rate the year before and after the index date in 

measles vs. control groups using linear regression. For data management and analysis we used SAS v9.3. The study 

was approved by the independent THIN Scientific Review Committee (SRC reference number: 15-006). 

Results 

From the database population of 1,070,365 children aged 1 to 15 years, we identified 2,228 eligible children with a 

measles diagnosis. These children were matched to 19,930 children free of measles. Figure 1 illustrates the 

composition of the study cohort. Table 1 describes baseline characteristics of children with measles and children 

free of measles. Median follow-up time was 5.0 years (IQR: 2.2 to 5.0). The incidence rate of measles and of 

measles notification as reported in the THIN database were similar to the expected overall confirmed measles 

incidence rate as reported by official UK Government statistics (see Figure S1). There was no significant difference 

in follow-up time between the children with measles and the children free of measles. Exposure to childhood 

vaccines other than measles containing vaccines prior to the index date was lower among children with measles 

(98.1% vs 99.8 %), but this difference was small compared to the difference in vaccination coverage of measles 

containing vaccines prior to the index date (54.4% in children with measles vs 100% in children free of measles, due 

to inclusion criteria). GP consultation rate in the year prior to index date was slightly higher in the measles group 

than in the non-measles group: mean 13.87 vs. 13.22 (p < 0.001) consults in the year prior, respectively. The 

Townsend deprivation index was similar in children with measles and children free of measles. The rate of 

infections and anti-infective prescriptions prior to index were similar between measles and non-measles subjects 

while hospitalisations prior to index were more frequent for subjects subsequently diagnosed with measles. Table 2 

describes events of interest occurring during follow-up in measles and non-measles subjects. 
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Figure 2 | Consultations in measles patients and matched controls. Incidence rates of consultations in children 

diagnosed with measles (blue lines) or matched controls (red lines) per 100,000 person-years, plotted by time (in 

months) before or after diagnosis of measles. The vertical dotted line indicates the time point of diagnosis in the 

measles patients. The shaded areas represent 95% confidence intervals. 

Table 1. Baseline Characteristics of Enrolled Subject 

  
Measles group  

(n=2,228) 

Non-measles group  

(n = 19,930) 
 

Variable Category  

Mean ± 

SD or 

N(%) 

Median 

(IQR) 

Mean ± 

SD or 

N(%) 

Median 

(IQR) 
P-value 

Age at Case Diagnosis  
3.06 ± 

3.04 

2 (1 to 

4) 

3.16 ± 

3.01 

2 (1 to 

4) 
0.1264 

Person time (days)  
1,379.9 ± 

595.33 

1,826 

(849 to 

1,826) 

1,358.7 ± 

611.54 

1,826 

(804 to 

1,826) 

0. 1186 
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Measles group  

(n=2,228) 

Non-measles group  

(n = 19,930) 
 

Variable Category  

Mean ± 

SD or 

N(%) 

Median 

(IQR) 

Mean ± 

SD or 

N(%) 

Median 

(IQR) 
P-value 

Sex Female 
1,038 

(46.59%) 
 

9,275 

(46.54%) 
 0.9643 

Region England 
1,816 

(81.51%) 
 

16,291 

(81.74%) 
 

0.9871 

 

 

 

 
Northern 

Ireland 

52 

(2.33%) 
 

448 

(2.25%) 
 

 Scotland 
167 

(7.50%) 
 

1,497 

(7.51%) 
 

 Wales 
193 

(8.66%) 
 

1,695 

(8.50%) 
 

Experience of an excluding event during follow-

up 
 

125 

(5.61%) 
 

898 

(4.51%) 
 0.0219 

History of respiratory disease  
84 

(3.77%) 
 

737 

(3.70%) 
 0.8592 

History of cardiovascular disease  
18 

(0.81%) 
 

124 

(0.62%) 
 0.3249 

Townsend Deprivation Score 0 
108 

(4.85%) 
 

1,001 

(5.02%) 
 

0.1696 

 

 

 

 

 

 

 1 
482 

(21.63%) 
 

4,553 

(22.84%) 
 

 2 
409 

(18.36%) 
 

3,483 

(17.48%) 
 

 3 
422 

(18.94%) 
 

3,947 

(19.80%) 
 

 4 
426 

(19.12%) 
 

3,727 

(18.70%) 
 

 5 
381 

(17.10%) 
 

3,198 

(16.05%) 
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Measles group  

(n=2,228) 

Non-measles group  

(n = 19,930) 
 

Variable Category  

Mean ± 

SD or 

N(%) 

Median 

(IQR) 

Mean ± 

SD or 

N(%) 

Median 

(IQR) 
P-value 

 Missing 0 (0.00%)  21 (0.11%)  

Vaccine non-adherence Yes 
43 

(1.93%) 
 

29 (0.15%) 
 <0.0001 

Measles vaccination before index date  
1,212 

(54.40%) 
 

19,930  

(100.00%) 
 <0.0001 

Measles vaccination ever during observation  
2,044 

(91.74%) 
 

19,930  

(100.00%) 
 <0.0001 

# Consults in the year before Index 

(continuous) 
 

13.87 ± 

11.54 

11 (6 to 

19) 

13.22 ± 

13.80 

10 (5 to 

17) 
<0.0001 

# Consults in the year before Index (categorical) 0-3 
300 

(13.46%) 

 3,731 

(18.72%) 
 

<0.0001 

 

 4 to 7 
427 

(19.17%) 

 4,193 

(21.04%) 
 

 8 to 11 
443 

(19.88%) 

 3,546 

(17.79%) 
 

 12 to 19 
542 

(24.33%) 

 4,406 

(22.11%) 
 

 >19 
516 

(23.16%) 

 4,054 

(20.34%) 
 

Infections in the year prior to index  
0.86 ± 

1.27 

1 (0 to 

2) 

0.87 ± 

1.58 

1 (0 to 

2) 
0.7782 

Anti-infectives in the year prior to index  
1.58 ± 

1.97 

0 (0 to 

1) 

1.53 ± 

2.41 

0 (0 to 

1) 
0.2708 

Hospitalisations in the year prior to index  
0.11 ± 

0.51 

0 (0 to 

0) 

0.07 ± 

0.41 

0 (0 to 

0) 
0.0004 
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Infectious disease 

The most frequently occurring infectious diseases were upper respiratory infectious diseases (for details see Table 

S4). The incidence rate ratio (IRR; Table 3) of infections for children with measles compared to children free of 

measles was 43% higher in the first month (IRR: 1.43; 95%CI: 1.22 to 1.68), 20% higher from the first month to the 

first year (IRR: 1.22; 95%CI: 1.14 to 1.31), 10% higher from the first year to 2.5 years (IRR: 1.10; 95%CI: 1.02 to 

1.19), and 15% higher (IRR: 1.15; 95%CI: 1.06 to 1.25) in the 2.5 to 5 years of follow-up (Figure 2). 

The absolute rate of infections per 1,000 person days in the first month to first year was 1.7 (95%CI: 1.6 to 1.9) for 

children with measles and 1.33 (95%CI: 1.29 to 1.36) for children free of measles. The adjusted hazard ratio for 

non-measles infectious disease over the full follow-up period starting 30 days after measles diagnosis was 1.20 

(95%CI: 1.13 to 1.28) (see Table S5).  

Table 2. Descriptive statistics of events in enrolled measles exposed and non-exposed children 

  Measles group (n=2,228) 
Non-measles group  (n = 

19,930) 
 

Variable Category  
Mean ± SD OR 

N(%) 

Median 

(IQR) 

Mean ± SD OR 

N(%) 

Median 

(IQR) 
P-Value 

# Infections (continuous)  1. 61 ± 2.17 1 (0 to 2) 1.28 ± 1.85 1 (0 to 2) <0.0001 

# Infections (categorical) 0 864 (38.78%)  9224 (46.28%)  

<0.0001 

 

 1 to 2 856 (38.42%)  7184 (36.05%)  

 3 to 5 377 (16.92%)  2852 (14.31%)  

 6 to 10 115 (5.16%)  591 (2.97%)  

 >10 16 (0.72%)  79 (0.40%)  

# Anti-infective Rx 

(continuous) 
 4.58 ± 5.45 3 (1 to 6) 3.35 ± 4.43 2 (0 to 5) <0.0001 

# Anti-infective Rx 

(categorical) 
0 

326 (14.63%) 
 

5,104 (25.61%) 
 

<0.0001 

 

 1 to 2 631 (28.32%)  6,168 (30.95%)  

 3 to 5 651 (29.22%)  4,617 (23.17%)  

 6 to 10 393 (17.64%)  2,892 (14.51%)  

 11 to 20 187 (8.39%)  979  (4.91%)  

 >20 40 (1.80%)  170 (0.85%)  
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# Hospitalisations 

(continuous) 
 0.16 ± 0.74  0 (0 to 0) 0.12 ± 0.63  0 (0 to 0) 0.0001 

# Hospitalisations 

(categorical) 
0 

1,999 (89.72%) 
 

18,369 (92.17%) 
 

0.0014 

 

 1 to 2 204 (9.16%)  1,396 (7.00%)  

 3 to 5 20 (0.90%)  134 (0.67%)  

 6 to 10 3 (0.13%)  24 (0.12%)  

 >10 2 (0.09%)  7 (0.04%)  

Death No 2,226 (99.91%)  19,921 (99.95%)  0.305 

  Yes 2 (0.09%)  9 (0.05%)  

 

Prescriptions 

Children with measles received more anti-infective prescriptions than children without measles in all periods (Table 

3, Figure 4, Table S6). The absolute rate of anti-infective prescriptions per 1,000 person days in the first month to 

first year was 0.55 (95%CI: 0.51 to 0.59) for children with measles and 0.45 (95%CI: 0.43 to 0.47) for children free of 

measles. The adjusted hazard ratio for anti-infective prescription over the full follow-up period starting 30 days 

after measles diagnosis was 1.24 (95%CI: 1.18 to 1.31). Within the first month of follow-up, children with measles 

had more than a threefold increase in use of anti-infective drugs as compared to controls (IRR: 3.60; 95%CI: 3.31 to 

3.91). Following the first month, children who had measles continued to use more anti-infective drugs over the 

entire duration of the follow-up: 1 month to 1 year (IRR 1.24; 95%CI: 1.18 to 1.32); 1 year to 2.5 years (IRR 1.21; 

95%CI: 1.13 to 1.29), 2.5 years to 5 years (IRR 1.15; 95%CI: 1.07 to 1.24).  

Table 3. Incidence rate ratios (IRRs) of events of interest in pre-defined time periods following measles infection 

Time Period Analysis Incidence Rate Ratio (95% Confidence Interval) 

Infections Anti-infective 
prescriptions 

Hospitalisation 

Days 0 to 31 
Primary 

1.43(1.22 to 
1.68) 

3.60 (3.31 to 3.91) 2.83 (1.72 to 4.67) 

Unadjusted 
1.57 (1.34 to 

1.84) 
3.77 (3.48 to 4.08) 3.24 (2.03 to 5.19) 

Sensitivity (vaccinated measles 
subjects only) 

1.47 (1.17 to 
1.86) 

4.65 (4.20 to 5.14) 1.92 (0.89 to 4.14) 

Sensitivity (unvaccinated measles 
subjects only) 

1.33 (1.07 to 
1.65) 

2.45 (2.12 to 2.82) 3.30 (1.60 to 6.82) 

Days 32 to 
365 

Primary 
1.22(1.14 to 

1.31) 
1.25 (1.18 to 1.32) 1.14 (0.88 to 1.48) 

Unadjusted 
1.31 (1.21 to 

1.41) 
1.31 (1.24 to 1.39) 1.29 (0.94 to 1.77) 

Sensitivity (vaccinated measles 
subjects only) 

1.15 (1.04 to 
1.27) 

1.25 (1.16 to 1.35) 0.95 (0.61 to 1.46) 
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Sensitivity (unvaccinated measles 
subjects only) 

1.26 (1.15 to 
1.39) 

1.24 (1.15 to 1.35) 1.29 (0.92 to 1.81) 

Days 366 to 
913 

Primary 
1.10 (1.02 to 

1.19) 
1.21 (1.13 to 1.29) 1.08 (0.80 to 1.47) 

Unadjusted 
1.15 (1.06 to 

1.24) 
1.25 (1.17 to 1.34) 1.19 (0.85 to 1.66) 

Sensitivity (vaccinated measles 
subjects only) 

1.10 (0.99 to 
1.22) 

1.21 (1.11 to 1.32) 1.26 (0.79 to 2.04) 

Sensitivity (unvaccinated measles 
subjects only) 

1.09 (0.99 to 
1.21)  

1.22 (1.12 to 1.34) 0.93 (0.64 to 1.35) 

Days 914 to 
1826 

Primary 
1.15 (1.06 to 

1.25) 
1.15 (1.07 to 1.24) 1.24 (0.92 to 1.67) 

Unadjusted  
1.23 (1.13 to 

1.35) 
1.22 (1.13 to 1.31) 1.38 (1.07 to 1.78) 

Sensitivity (vaccinated measles 
subjects only) 

1.06 (0.94 to 
1.20) 

1.25 (1.13 to 1.37) 1.08 (0.76 to 1.54) 

Sensitivity (unvaccinated measles 
subjects only) 

1.21 (1.07 to 
1.35) 

1.07 (0.96 to 1.19) 1.37 (0.87 to 2.17) 

*Primary and sensitivity analyses were adjusted for: Frequency of consultations in the year prior to index, 

frequency of the outcome of interest in the year prior to index, history of cardiovascular malformation, history of 

respiratory disease, age, and sex. 

Hospitalisation 

Despite smaller sample sizes, the analysis on hospitalisations also showed increased IRRs, although these were 

significant during the first period only (Figure 5). Confounder selection using either backward selection, or 

minimization of the AIC resulted in the same model, namely control for the hospitalisation rate prior to the index 

date, the GP consultation rate in the year prior to index date and history of cardiac malformation. The absolute rate 

of hospitalisations per 1,000 person days in the first month to first year was equal at 0.2 (95%CI: 0.1 to 0.2) for 

children with measles and children free of measles. The adjusted HR of hospitalisation for measles vs. non-measles 

subjects was 1.12 (95%CI: 0.96 to 1.31). 

 



 

145 
 

 

 

Figure 3 | Infections in measles patients and matched controls. Incidence rates of infections in children diagnosed 

with measles (blue lines) or matched controls (red lines) per 100,000 person-years, plotted by time (in months) 

before or after diagnosis of measles. The vertical dotted line indicates the time point of diagnosis in the measles 

patients. The shaded areas represent 95% confidence intervals. 

Sensitivity analysis 

Results of the sensitivity analysis were partially in agreement with findings from the main analysis. When we 

restricted the analysis to only those children who had received measles vaccination prior to receiving a diagnosis of 

measles (54.4% of all eligible children with a measles diagnosis), differences to the main analyses were not 

observed for anti-infective prescriptions. However, an increased rate of hospitalisations was no longer detected in 

any time period and an increased rate of infections no longer extended beyond one year post-diagnosis. In the 

analysis restricted to those children who had not had a measles vaccination prior to receiving a diagnosis of 

measles (45.6 % of all eligible children with a measles diagnosis) the results were in line with the main findings for 

hospitalizations, infections and anti- infective prescriptions with the exception that increased risk for anti-infective 

prescriptions did not extend into the period 2.5 to 5 years following measles.  

Post-hoc analysis of the impact of vaccine adherence regardless of measles status revealed that vaccine non-

adherent children were 42% more likely to receive an anti- infective prescription than vaccine-adherent children. 

There was no difference in risk of infections, or hospitalisations. Regressing post-index consults on pre-index 
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consults and measles, or non-measles status revealed that both groups showed similar trends with the rate of 

consultation before index date higher than that after the index date. 

 

 

Figure 4 | Anti-infective prescriptions in measles patients and matched controls. Incidence rates of anti-infective 

prescriptions in children diagnosed with measles (blue lines) or matched controls (red lines) per 100,000 person-

years, plotted by time (in months) before or after diagnosis of measles. The vertical dotted line indicates the time 

point of diagnosis in the measles patients. The shaded areas represent 95% confidence intervals. 

Discussion 

To our knowledge, this is the first matched-cohort study to investigate the longevity of measles-associated immune 

suppression in a high-income country. The results of this study are in strong agreement with previous non-clinical 

and ecological studies, also in high-income countries.7 We found that rates of diagnosed infections and anti-

infective prescriptions are elevated following measles infection for up to five years. While increased risk of 

infections and anti-infective prescriptions remained statistically significant over the full five-year study period, the 

effect size diminished particularly after the first year and statistical significance is partly explained  
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Figure 5 | Hospitalisations in measles patients and matched controls. Incidence rates of hospitalisations in 

children diagnosed with measles (blue lines) or matched controls (red lines) per 100,000 person-years, plotted by 

time (in months) before or after diagnosis of measles. The vertical dotted line indicates the time point of diagnosis 

in the measles patients. The shaded areas represent 95% confidence intervals. 

by our large sample size. Children diagnosed with measles were hospitalized more frequently than children free of 

measles although this was only significant in the first month following infection. When we excluded the first month 

post measles, the time to first hospitalisation did not differ between the measles group and the non-measles group. 

This could be explained, at least in part, by a survival bias, whereby a disproportionately large number of measles 

cases entered the hospital during the first month, and these may have represented the most severe cases. 

Additionally, a lack of effect on hospitalization after the first month was likely a result of the low overall number of 

hospitalisations in our cases and controls. We acknowledge that the first interval spanning one month to one year 

post-measles is wide and have conducted analysis using smaller intervals, the results of which can be found in 

supplementary material. 

The incidence rates of infections, anti-infective prescriptions and hospitalisations in the measles group appear to 

increase prior to the index date, that is, before they got measles (Figures 3-5). This could partially be explained by a 

lag time between a suspected diagnosis and a definite diagnosis. In some instances, a GP may have coded a definite 

diagnosis on the date a confirmation had been received either from the lab or from the hospital. For some 

outcomes however the rise in incidence begins months before diagnosis. Validation studies to assess the accuracy 

of the date of diagnosis using this type of database are lacking.  
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To be considered a new event, prescriptions only had to be given on a different day. Acknowledging that a 

prescription can be changed if there is poor response or allergy to the first drug, we also examined the effect of 

anti-infective prescription, considering a 14-day interval between anti-infective prescriptions. This did not change 

the significance or direction of any result (results not shown). Both groups revealed similar trends with the rate of 

consultation before index date higher than after index date.16 17 This is most likely related to age. Although measles 

is a statutory notifiable infectious disease under EU legislation,18 an underreporting of (severe) cases, who might 

have by-passed the GP and gone directly to the hospital cannot be ruled out. Also it is possible that a mild measles 

infection would not have prompted a visit to the GP and may have gone undetected as well.19 20 This means that we 

may have missed some children with measles. To provide additional assurance that controls were children truly 

free of measles, controls had to have at least one measles-containing vaccination prior to the index date. An 

advantage of this type of observational study is that it is not necessary to identify all outcomes in all children in 

order to obtain an unbiased estimate. A key assumption however, is comparability of children with measles and 

children free of measles. In order to ensure that the children with measles and the children free of measles were 

comparable we matched them on confounding factors such as age, sex, GP practice, and calendar time. We also 

considered including experiencing an excluding event (i.e. an immune-compromising condition, or immune 

suppressive treatment) as a censoring variable but determined this was not consistent with our matching strategy – 

the groups were matched to be comparable at index. Nevertheless, we acknowledge that it is possible that 

confounding due to differences in underlying health status, social background, lifestyle, health seeking behavior, 

and health care utilization between children with measles and children free of measles may have occurred. The 

complexity of these factors makes them difficult to control. We attempted to overcome the confounding effect of 

underlying health status by excluding children with a history of immune-compromising conditions, and controlling 

for co-morbidities such as cardiovascular disease, and respiratory disease. We assessed social background and 

lifestyle by testing for differences in social deprivation within a particular zip code and matching on practice. 

Certain children may have had a lower threshold for visiting the GP and therefore may have had a higher likelihood 

of receiving a diagnosis of measles (particular during an outbreak) and may also have been diagnosed more 

frequently with other infectious diseases and/or may have received a prescription for anti-infectives more 

frequently. To investigate this, we included GP consultation rate in the year prior to cohort entry as a covariate in 

each of our models.  In the unmatched Poisson analyses, we did not control for all potential confounders.  Because 

472 unique practices were represented in the cohort, it was impossible to control for practice.  Similarly, the 25 

years included in the study period make control for calendar year infeasible unless calendar year is treated as a  

continuous variable, which would require the assumption of a linear relationship between year and log(events).  To 

address the potential effect of calendar time, we have conducted analyses stratified by calendar period (before 

2005 and after 2004) and included these results in supplementary material. 

Because vaccinated and unvaccinated children may differ in their health seeking behaviour, or likelihood of 

acquiring infectious disease, we conducted a sensitivity analysis in two strata: 1) restricting to only those children 

who had received a measles vaccination prior to the index date, and 2) restricting to only those children who were 

unexposed to measles vaccination prior to the index date. Results from both sub analyses were in line with the 

findings from the main analysis with the exceptions that the period of increased risk for infections did not extend 

past one year and no increased risk for hospitalizations was detected when analysis was limited to measles 

vaccinated children. 

We did not adjust for measles vaccination after index date in the context of post exposure prophylaxis because 

many exposed persons are not identified until more than 72 hours after initial exposure, which is too late for 

prophylaxis with measles vaccine.2 Post-hoc analysis of vaccine adherent vs non-adherent children revealed an 

increased rate of anti-infective prescriptions in non-adherent children but no difference for other outcomes. 
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We conclude that our results support the hypothesis that infection with measles is associated with long-term 

increased risk of other infectious diseases, and that by preventing measles, vaccination is associated with non-

specific heterologous improvements in health. However, because all of the non-measles controls received 

vaccination, we cannot rule out a direct benefit of vaccination to boost heterologous immune function, as has been 

suggested21 22. Nonetheless the results fit with what would be expected from animal models and what has been 

shown in ecological studies, and warrants further investigation into the long-term consequences of viral infections, 

particularly those with heightened tropism for immune memory cells, on host resistance. 
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Supporting material 
 

 
Fig S1 Observed IR in the THIN database and in the population of England and Wales [15] 
 
S3 Table. Most commonly diagnosed infectious diseases by cohort 
 

Measles Infected Subjects N Percent Non-Measles Subjects N Percent 

Upper respiratory tract infection NOS 1,344 35.6688 Upper respiratory tract infection NOS 9,337 34.2429 

Upper respiratory infection NOS 877 23.2749 Upper respiratory infection NOS 6,316 23.1635 

Chickenpox - varicella 319 8.4660 Chickenpox - varicella 2,568 9.4180 

Viral infection NOS 268 7.1125 Viral infection NOS 1,916 7.0268 

Molluscum contagiosum 152 4.0340 Molluscum contagiosum 1,408 5.1638 

Non-specific viral rash 118 3.1316 Non-specific viral rash 803 2.9450 

Viral illness 103 2.7335 Viral upper respiratory tract infection 
NOS 

625 2.2921 

Viral upper respiratory tract infection 
NOS 

81 2.1497 Viral illness 608 2.2298 

Viral gastroenteritis 72 1.9108 Viral gastroenteritis 507 1.8594 

Chickenpox 56 1.4862 Coryza - acute 430 1.5770 

Common cold 55 1.4597 Chickenpox 416 1.5257 

Coryza - acute 48 1.2739 Flu like illness 329 1.2066 

Flu like illness 47 1.2473 Common cold 305 1.1186 

Slapped cheek syndrome 26 0.6900 Slapped cheek syndrome 177 0.6491 

Acute bronchiolitis 20 0.5308 Acute bronchiolitis 133 0.4878 

Streptococcal tonsillitis 15 0.3981 Rhinitis – acute 110 0.4034 
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Scarlet fever - scarlatina 13 0.3450 Herpes simplex 107 0.3924 

Rhinitis - acute 13 0.3450 Scarlet fever - scarlatina 83 0.3044 

Diarrhoea & vomiting -infect 7 0.1858 Influenza 68 0.2494 

Fifth disease 7 0.1858 Diarrhoea & vomiting -infect 62 0.2274 

Nasal catarrh - acute 7 0.1858 Streptococcal tonsillitis 57 0.2090 

Rubella 6 0.1592 Nasal catarrh - acute 56 0.2054 

Roseola infantum 6 0.1592 Pneumonia due to unspecified 
organism 

48 0.1760 

 
S4 Table. Most commonly prescribed anti-infectives by cohort 
 

Measles Infected Subjects  N Percent  Non-Measles Subjects N Percent 
Amoxicillin 125mg/5ml oral suspension 
sugar free 

2,246 
0.2194 

Amoxicillin 125mg/5ml oral suspension 
sugar free 

14,871  
0.2184 

Amoxicillin 125mg/5ml oral suspension 1,238 0.1209 Amoxicillin 125mg/5ml oral suspension 7,500  0.1101 
Chloramphenicol 0.5% eye drops 606 0.0592 Chloramphenicol 0.5% eye drops 4,111  0.0604 
Trimethoprim 50mg/5ml oral suspension 
sugar free 

567 
0.0554 

Phenoxymethylpenicillin 125mg/5ml oral 
solution 

3,527  
0.0518 

Phenoxymethylpenicillin 125mg/5ml oral 
solution 

458 
0.0447 

Fusidic acid 2% cream 2,921  
0.0429 

Erythromycin ethyl succinate 125mg/5ml 
oral suspension 

440 
0.0430 

Trimethoprim 50mg/5ml oral suspension 
sugar free 

2,791  
0.0410 

Amoxicillin 250mg/5ml oral suspension 
sugar free 

322 
0.0314 

Erythromycin ethyl succinate 125mg/5ml 
oral suspension 

2,476  
0.0364 

Flucloxacillin 125mg/5ml oral solution 235 
0.0230 

Amoxicillin 250mg/5ml oral suspension 
sugar free 

2,041  
0.0300 

Co-amoxiclav 125mg/31mg/5ml oral 
suspension sugar free 

234 
0.0229 

Flucloxacillin 125mg/5ml oral solution 1,874  
0.0275 

Fusidic acid 2% cream 196 0.0191 Chloramphenicol 1% eye ointment 1,292  0.0190 
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S5 Table. Hazard Ratio of measles versus non-measles, for outcomes first infection and first prescription 
 

Outcome Hazard Ratio (95% Confidence 

Interval) 

P-value 

Infections 1.20* (1.13 to 1.28) <0.0001 

Anti-infective prescriptions 1.24** (1.18 to 1.31) <0.0001 

 
*Controlled for number of diagnosed infections in the year prior to index and number of consultations in the 
previous year.   
**Controlled for history of respiratory illness, number of anti-infective prescriptions in the year prior to index, and 
number of consultations in the year prior to index categorized by quintiles  
 
S6 Table. Incidence rate ratios (IRRs) of events of interest in shorter time periods within the first year following 
measles infection 

Time Period Analysis Incidence Rate Ratio (95% Confidence Interval) 

Infections Anti-infective prescriptions Hospitalisation 

Days 0 to 31 Primary 1.43(1.22 to 1.68) 3.60 (3.32 to 3.92) 2.85 (1.73 to 4.70) 

Days 32 to 64 Primary 1.19 (0.99-1.43) 1.34 (1.18 to 1.52) 1.45 (0.76 to 2.76) 

Days 65 to 182 Primary 1.28 (1.16 to 1.41) 1.26 (1.16 to 1.36) 1.13 (0.78 to 1.66) 

Days 183 to 365 Primary 1.18 (1.07 to 130) 1.20 (1.12 to 1.29) 1.08 (0.77 to 1.51) 

Days 366 to 913 Primary 1.10 (1.02 to 1.18) 1.21 (1.13 to 1.28) 1.08 (0.80 to 1.46) 

Days 914 to 
1826 

Primary 1.15 (1.06 to 1.25) 1.15 (1.07 to 1.24) 1.24 (0.93 to 1.67) 

* Primary and analyses were adjusted for: Frequency of consultations in the year prior to index, frequency of the 
outcome of interest in the year prior to index, history of cardiovascular malformation, history of respiratory 
disease, age, and sex. 
 
S7 Table. Incidence rate ratios (IRRs) of events of interest in pre-specified time periods following measles infection, 
stratified by calendar year (pre 2005 vs. 2005 and later) 

Calendar 
Period 
 

Time 
Period 

Analysis Incidence Rate Ratio (95% Confidence Interval) 

Infections Anti-infective 
prescriptions 

Hospitalisation 

1999-2004 Days 0 to 
31 

Primary 1.73 (1.39 to 
2.16) 

3.55 (3.12 to 
4.04) 

1.55 (0.63 to 3.82) 

Days 32 
to 365 

Primary 1.29 (1.17 to 
1.42) 

1.29 (1.18 to 
1.40) 

1.13 (0.74 to 1.74) 

Days 366 
to 913 

Primary 1.13 (1.02 to 
1.24) 

1.26 (1.15 to 
1.38) 

1.16 (0.70 to 1.93) 

Days 914 
to 1826 

Primary 1.22 (1.09 to 
1.36) 

1.20 (1.09 to 
1.32) 

1.27 (0.77 to 2.10) 

2005-2013 Days 0 to 
31 

Primary 1.17 (0.93 to 
1.48) 

3.63 (3.26 to 
4.06) 

3.63 (1.99 to 6.59) 

Days 32 
to 365 

Primary 1.15 (1.04 to 
1.26) 

1.21 (1.12 to 
1.31) 

1.06 (0.77 to 1.46) 

Days 366 
to 913 

Primary 1.07 (0.95 to 
1.19) 

1.16 (1.07 to 
1.27) 

0.91 (0.63 to 1.31) 

Days 914 
to 1826 

Primary 1.05 (0.93 to 
1.20) 

1.09 (0.98 to 
1.22) 

1.08 (0.77 to 1.51) 
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Figure S2.  Kaplan-Meier plot for Infections 

 
 
 
Figure S2.  Kaplan-Meier plot for Anti-infective Prescriptions 
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Figure S3.  Kaplan-Meier plot for Hospitalizations 
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CHAPTER 5 COLLABORATIVE STUDIES TO ASSESS VACCINE EFFECTS 
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Abstract:  

Background: 

The global spread of the 2009 novel pandemic influenza A (H1N1) virus led to the accelerated production and 

distribution of monovalent 2009 Influenza A (H1N1) vaccines (pH1N1).  This pandemic provided the opportunity to 

evaluate the risk of Guillain-Barré syndrome (GBS), which has been an influenza vaccine safety concern since the 

swine flu pandemic of 1976, using a common protocol among high and middle-income countries. The primary 

objective of this project was to demonstrate the feasibility and utility of global collaboration in the assessment of 

vaccine safety, including countries both with and without an established infrastructure for vaccine active safety 

surveillance.   A second objective, included a priori, was to assess the risk of GBS following pH1N1 vaccination.  

Methods: 

The primary analysis used the self-controlled case series (SCCS) design to estimate the relative incidence (RI) of GBS 

in the 42 days following vaccination with pH1N1 vaccine in a pooled analysis across databases and in analysis using 

a meta-analytic approach. 

Results:  

We found a relative incidence of GBS of 2.42 (95% CI 1.58-3.72) in the 42 days following exposure to pH1N1 vaccine 

in analysis of pooled data and 2.09 (95% CI 1.28-3.42) using the meta-analytic approach. 

Conclusions: 

This study demonstrates that international collaboration to evaluate serious outcomes using a common protocol is 

feasible. The significance and consistency of our findings support a conclusion of an association between 2009-10 

H1N1 vaccination and GBS.  Given the rarity of the event the relative incidence found does not provide evidence in 

contradiction to international recommendations for the continued use of influenza vaccines.    
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Introduction 

Assessment of vaccine safety post-licensure requires well-designed epidemiological studies, which can be 

challenging for many countries due to scarcity of available data. Therefore, spontaneous reporting systems are 

more commonly used for post-marketing safety monitoring[1]. Traditionally, vaccines have been manufactured and 

introduced in the United States (US) and Europe before introduction in other countries, hence US and European 

vaccine safety monitoring capacity has served the global need to evaluate the safety of new vaccines[1].    

However, vaccines are now being manufactured and introduced in several countries outside the US and Europe[2], 

requiring the development of vaccine safety monitoring systems globally to assure the safety of the world’s vaccine 

supply and maintain trust in immunization programs. International vaccine safety collaborations can help build 

vaccine safety monitoring infrastructure and capacity and provide a means to assess rare adverse events following 

immunization (AEFI) in countries that now have limited capacity[3].  

To demonstrate that international collaboration is feasible for vaccine safety studies to investigate rare, serious and 

clinically complex AEFI, a group of vaccine safety researchers conducted a proof of concept collaborative vaccine 

safety study using a standard protocol[4-6].  A steering group1 from the World Health Organization (WHO), United 

States Food and Drug Administration (FDA) and Centers for Disease Control and Prevention (CDC), European CDC, 

Erasmus Medical Center, Cincinnati Children’s Hospital, and the Brighton Collaboration[7], provided standardized 

methods and definitions for a study that included investigators from Australia, Canada, China, Denmark, Finland, 

France, Israel, Mexico, The Netherlands, Norway, Singapore, Spain, Sweden, the United Kingdom, and the United 

States.  

The global spread of the 2009 novel pandemic influenza A (H1N1) virus[8]  led to the accelerated production of 

monovalent 2009 Influenza A (H1N1) vaccines (pH1N1) by manufacturers in the Americas, Europe, and Asia[9].  

Rapid and extensive vaccine administration was implemented worldwide.  This pandemic provided the opportunity 

to evaluate  the risk of  Guillain-Barré syndrome (GBS), an acute polyradiculoneuropathy, following receipt of these 

vaccines using a common protocol among high and middle-income countries and to assess the feasibility of this 

collaborative effort.[10]  Several factors contributed to choosing  this vaccine and this adverse event (GBS) to test 

the new consortium:  First, GBS has been an influenza  vaccine safety concern since 1976, when an elevated risk of 

GBS was identified following  the “swine-flu” influenza vaccine[11]; second, case definitions and classifications for 

GBS are available, providing a tool for standardized assessment across sites[12]; third, since almost all GBS cases 

are hospitalized, unbiased case ascertainment could be achieved using  hospital databases; and finally, since GBS is 

rare, assessment of risk would benefit from the increased sample size and statistical power that could result from 

an international collaboration.   

The primary objective of this project was to demonstrate the feasibility and utility of global collaboration in the 

assessment of vaccine safety, including countries both with and without an established infrastructure for vaccine 

safety active surveillance.   A second objective, included a priori, was to assess the relative risk of GBS following 

pH1N1 vaccination.  

Methods 

We chose the self-controlled case series (SCCS) design[13] to estimate the relative incidence (RI) of GBS in the 42 

days following vaccination with pH1N1 vaccine.  We chose this case-only analytic approach because it can be 

implemented in populations with varying levels of infrastructure for conducting epidemiologic studies; specifically, 

                                                                 
1 Steven Black, Caitlin Dodd (Cincinnati Children’s Hospital), Hector Izurieta (FDA), Patrick Zuber (WHO) 
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it does not require the availability of accurate population denominators which are difficult to obtain in many 

countries[9,10].  The case series approach includes only individuals who experienced the event of interest (GBS) in 

the analysis. Each individual’s person-time during follow-up is divided into predefined vaccine exposed and non-

exposed periods.   Each GBS case then falls into a risk or non-risk window and contributes exposed and non-

exposed time.   Unvaccinated GBS cases contribute to the estimation of other time-varying covariates such as 

seasonality.  Data are analyzed by conditional Poisson regression.  The SCCS design requires that cases be 

ascertained completely and in an unbiased manner and that the probability of exposure is not affected by 

occurrence of the event of interest.  Apart from its intrinsic resource efficiency, this design also controls for 

measured or unmeasured within-person non-time dependent confounding characteristics, including demographics 

and chronic co-morbid conditions, genetic susceptibility, and others[10]. 

Study population 

As shown in Table 1, 15 countries with available data and willingness to participate contributed data for this study:  

Cases that met inclusion criteria for this study from Australia, Canada, China, Israel, Mexico, Singapore, Spain, and 

the United States and from the European Vaccine Adverse Event Surveillance and Communication (VAESCO) 

consortium[14] (http://vaesco.net) (Denmark, Finland, France, The Netherlands, Norway, Sweden, and the United 

Kingdom) were included.  Australian data were provided by hospitals in the state of Victoria (including Melbourne), 

Sydney, Perth, and Adelaide.  Canadian data were provided from the entire province of Quebec; Chinese cases 

were contributed by sentinel hospitals in Hong Kong and Shanghai. Israeli data were provided by Maccabi, a 

national health maintenance organization (HMO) and Mexican data were contributed from Mexico City and 

surrounding rural areas.   Singapore data were provided from one rural and one central hospital.  Spanish data 

were provided by hospitals in Almeria, Barcelona, and Valencia.  US data were contributed from the Department of 

Defense (DoD), the Department Veterans Affairs (VA), the Vaccine Safety Datalink (combined hospitalization and 

vaccination data from a collaboration of 8 health care organizations), Medicare, and the Post-Licensure Rapid 

Immunization Safety Monitoring (PRISM) Program[15, 16].   

Case ascertainment and classification 

The specific method of case ascertainment varied from country to country with some countries identifying 

potential cases through administrative databases whereas other countries reviewed hospital discharge logs 

manually (Table 2).   Databases from all US sites other than the DoD contained only vaccinated cases and were 

limited to post-vaccination follow up time.  Each site independently defined an observation period, ranging from 4 

to 18 months, during which cases were obtained.  The number of medical records requested and reviewed was not 

reported by the participating sites.  Countries that did not identify and classify cases using a procedure compatible 

with the common protocol were excluded from this study (Table 1).  For countries in which cases were ascertained 

through active surveillance, only those cases with verified hospital admission were included. 

Diagnostic codes for GBS (ICD-9 code of 357.0, ICD-10 code of G61.0, or Read codes F370*) were used to identify 

potential cases for review.  Cases identified exclusively through specialty network reporting or through other 

passive reporting method were excluded.   The specific method of case ascertainment used and number of cases 

identified are shown in Table 2.     

All cases were classified locally according to Brighton Collaboration criteria [12] (Table 3). All cases meeting 

Brighton level 1, 2, 3 were considered confirmed and included in the primary analysis.    A secondary analysis also 

included Brighton categories 4 and 4A.  Category 4A was specifically defined for this international study and 

included cases diagnosed by a neurologist but for whom the medical chart did not provide sufficient information 

for the study reviewers to classify the case according to Brighton Collaboration criteria (Table 3). 

http://vaesco.net/
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Table 3: Brighton Collaboration Case Definition for Guillain-Barré Syndrome  

Level Requirements 

1 Clinical, electrophysiological, AND cerebrospinal fluid  (CSF) data 

2 Clinical, data and electrophysiological OR cerebrospinal fluid  (CSF) data 

3 Clinical data 

4 Information available is insufficient for levels 1-3, but no other diagnosis is apparent or warranted. 

4A Diagnosis was made by a neurologist, insufficient diagnostic data available in the medical chart (adopted 

specifically for this study) 

 

Vaccination status 

Vaccination status was obtained through automated immunization registries or databases when available or 

through a review of the patient’s vaccination record where it was not.  In some cases, receipt of vaccine was 

obtained through self-report and subsequently verified in the vaccination record.  The method used for each 

participating site is shown in Table 2.  All subjects had presence or absence of pH1N1 vaccine recorded with the 

date of exposure.  Patients for whom no record of seasonal influenza vaccination were available were considered 

unexposed to the seasonal vaccine.   

Covariates  

Presence or absence of risk factors for GBS, including preceding gastrointestinal infections and respiratory 

infections, were collected for the 30 days prior to diagnosis through chart review or recall by the subject when 

chart review was not possible.  While a standard abstraction form was not used, a standard case report form was 

used to record all data used in analysis.   Since presence or absence of the potential infective episodes in the 30 

days preceding GBS rather than exact dates of the episodes was collected, these infections could not be controlled 

for in the analysis but could be studied as potential effect modifiers.  To control for circulation of the pandemic 

influenza virus we used seasonality as a proxy.  This was accomplished by defining the peak of influenza season for 

each site as the period during which > 15% of all surveillance influenza laboratory tests were positive, and 

estimating the relative incidence of GBS in this peak season.  This produced time periods for each site defined 

either as “high influenza circulation” or “low influenza circulation”.  Although the seasonality of GBS is not strictly 

related to influenza infection, influenza surveillance data provided an efficient means by which to uniformly define 

seasonal periods across continents and hemispheres.  This formulation allowed for a peak influenza season specific 

to each site while also allowing for a common estimate of the effect of seasonality across sites.  Data to determine 

these periods of influenza circulation were obtained from publicly available governmental influenza surveillance, 

where available.  For some sites, it was necessary to obtain these data from influenza surveillance conducted at the 

site.     

Data collection and sharing 

All data, with the exception of data from the VAESCO consortium, were uploaded to a secure WHO workspace 

where it was checked for quality and completeness by study group statisticians; VAESCO data were maintained by 
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the VAESCO data management center at Erasmus Medical Center.  All data was de-identified prior to submission.  

Institutional Review Board approval was obtained for those sites at which the study was not considered exempt.  

Inclusion and exclusion criteria as well as protocol and statistical analysis considerations were discussed on bi-

weekly telephone conferences with all sites beginning in January, 2010. 

Table 1: Database Inclusion and Exclusion in Primary and Sensitivity Analyses by Country 

Excluded Databases 

Country Database Criteria For Exclusion 

France  Patient Consent Required (potential bias) 

Israel Maccabi Brighton Collaboration criteria not provided. 

Mexico Mexico City Relative incidence found to be an outlier compared to all other study 
site  relative incidence findings 

 Mexican States Data were obtained solely from a specialist network  (potential bias) 

Norway  Data were obtained solely from a specialist network (potential bias) 

Sweden  Patient consent required with potential bias 

Included Databases 
 

Country Database Analyses in which database is 
included 

Criteria For Exclusion where 
applicable 

Australia Adelaide - Primary Analysis 
- All sensitivity analyses 

 

 MCRIa - Primary Analysis 
- All sensitivity analyses 

 

 Sydney - Primary Analysis 
- All sensitivity analyses 

 

Canada Quebec - Primary Analysis 
- All sensitivity analyses 

 

China Hong Kong - Primary Analysis 
- All sensitivity analyses 

 

 Shanghai - Analyses through Brighton 4A All reported cases were 
Brighton level 4 or 4A 

Denmark  - Primary Analysis 
- All sensitivity analyses 

 

Finland  - Primary Analysis 
- All sensitivity analyses 

 

The Netherlands IPCIa - Primary Analysis 
- All sensitivity analyses 

 

Singapore NNI/CGHa - Primary Analysis 
- All sensitivity analyses 

 

 NNI/TTSHa - Analyses through Brighton 4A All reported cases were 
Brighton level 4 or 4A 

Spain Almeria - Analyses through Brighton 4A All reported cases were 
Brighton level 4 or 4A 

 Barcelona - Primary Analysis 
- All sensitivity analyses 

 

 Valencia - Primary Analysis  
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- All sensitivity analyses 
The United Kingdom CPRDa - Analyses through Brighton 4A All reported cases were 

Brighton level 4 or 4A 
 

The United States DoDa - Primary Analysis 
- All sensitivity analyses 

 

 Medicare - Vaccinated-cases only analyses, 
excluded from all others 

Database contained only cases 
post-vaccination 

 PRISMa - Vaccinated-cases only analysis, 
excluded from all others 

Database contained only cases 
post-vaccination 

 VAa - Vaccinated-cases only analysis, 
excluded from all others 

Database contained only cases 
post-vaccination 

 VSDa - Vaccinated-cases only analysis, 
excluded from all others 
 

Database contained only cases 
post-vaccination 

a Murdoch Children’s Research Institute (MCRI), Maccabi Health Maintenance Organization (Maccabi), Integrated 
Primary Care Information Database (ICPI), National Neuroscience Institute Singapore General Hospital 
(NNI/CGH), National Neuroscience Institute Tan Tock Seng Hospital (NNI/TTSH), CPRD (Clinical Practice Research 
Datalink), Department of Defense (DoD), Post-Licensure Rapid Immunization Safety Monitoring (PRISM), 
Department of Veterans Affairs (VA), Vaccine Safety Datalink (VSD) 
 

 

Table 2: Characteristics of Databases Included in Primary or Sensitivity Analyses by Country  

Country Database Dates of 

Observation 

Number 

of Cases 

Case Ascertainment Vaccination Status 

Ascertainment 

Australia Adelaide 9/30/2009 – 

9/30/2010 

1 Administrative Database, 

active prospective 

surveillance 

Vaccine Registry, Self-

Report, Outpatient 

Chart Review 

 MCRIa 9/30/2009 – 

9/30/2010 

54 Administrative Database, 

active prospective 

surveillance 

Vaccine Registry, Self-

Report, Outpatient 

Chart Review 

 Sydney 9/30/2009 – 

9/30/2010 

5 Administrative Database, 

active prospective 

surveillance 

Vaccine Registry, Self-

Report, Outpatient 

Chart Review 

Canada Quebec 10/13/2009 – 

3/31/2010 

80 Administrative Database, 

active prospective 

surveillance 

Vaccine registry 

China Hong Kong 12/21/2009   – 

6/30/2010 

20 Hospital log review Outpatient Chart 

Review, Self-Report 

 Shanghai 1/1/2009 – 

7/1/2010 

22 Administrative Database Outpatient Chart 

Review 
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Denmark  11/1/2009 – 

11/1/2010 

31 National Patient Register 

using primary discharge 

diagnoses  

Vaccine Registry 

Finland  11/1/2009 – 

11/1/2010 

29 Hospital discharge and 

hospital outpatient 

records,  

primary diagnoses  

Vaccine registry 

The 

Netherlands 

IPCIa 11/1/2009 – 

11/1/2010 

80 Identified prospectively 

through neurologists. 

Completeness verified 

retrospectively against 

claims codes in each 

hospital. 

GPb medical record 

Singapore NNI/CGHa 11/5/2009 – 

8/31/2010 

6 Administrative Database  Outpatient Chart 

Review, Self-Report 

 NNI/TTSHa 11/5/2009 – 

8/31/2010 

13 Administrative Database  Hospital Medical 

Records 

Spain Almeria 11/1/2009 – 

4/30/2010 

8 Administrative Database Outpatient Chart 

Review 

 Barcelona 11/1/2009 – 

4/30/2010 

14 Administrative Database Outpatient Chart 

Review 

 Valencia 11/1/2009 – 

4/30/2010 

10 Administrative Database Vaccine Registry 

The United 

Kingdom 

CPRDa 11/1/2009 – 

11/1/2010 

40 Automated GP records GPb records 

 

The United 

States 

DoDa 11/1/2009 – 

4/30/2010 

6 Administrative Database 

Electronic Medical 

Records 

Vaccine Registry 

 Medicare 11/1/2009 – 

4/30/2010 

39 Administrative Database Vaccine Registry 

 PRISMa 10/22/2009 – 

8/7/2010 

8 Vaccine Registries and 

Claims Databases 

Electronic Medical 

Claims 

 VAa 11/1/2009 – 2 Administrative Database Vaccine Registry and 

Administrative 
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4/30/2010 Electronic Medical 

Records 

database 

 VSDa 8/1/2009 – 

4/30/2010 

11 Administrative Database 

Electronic Medical 

Records 

Vaccine Registry and 

Administrative 

database. 

aMurdoch Children’s Research Institute (MCRI), Integrated Primary Care Information Database (ICPI), National 

Neuroscience Institute Singapore General Hospital (NNI/CGH), National Neuroscience Institute Tan Tock Seng 

Hospital (NNI/TTSH), CPRD (Clinical Practice Research Datalink), Department of Defense (DoD), Post-Licensure 

Rapid Immunization Safety Monitoring (PRISM), Department of Veterans Affairs (VA), Vaccine Safety Datalink (VSD) 

b General Practitioner 

 

Analysis and Statistical Methods 

Data were analyzed using the SCCS method to investigate whether pH1N1 vaccination was associated with an 

increased risk of GBS during the pre-specified high-risk time window of days 1-42 post vaccination.  This period of 

increased risk was chosen because of evidence from previous published studies[11].  We conducted two co-primary 

analyses:  an analysis pooling all individuals across sites and an analysis using a meta-analytic approach in which 

estimates of rate ratios from each database were weighted based upon within and between-study errors and 

subsequently merged.  While the pooled analysis provides more power, the meta-analytic approach is more 

conservative in its estimation as it weighs results from sites with less variability more heavily, thus providing 

greater assurance that outlying observations or sites with highly variable data will not bias the overall RI estimate.   

All analyses using the standard SCCS approach excluded the two weeks preceding vaccination from the background 

period to account for a possible healthy vaccinee effect[17], and controlled for seasonality as defined by periods of 

circulating influenza. 

Only cases meeting Brighton Collaboration criteria level 1-3[12] from databases which included pre and post-

vaccination time were included in the primary analysis, which also included a time-varying covariate to assess the 

effect of seasonality.  The date of diagnosis or hospitalization was used as the index date for GBS.   

The standard SCCS method is only valid if the occurrence of an event (GBS in this case) does not alter the 

probability of subsequent exposure. This assumption may be violated since knowledge on the part of practitioners 

and patients regarding the a priori association between GBS and swine flu vaccine[11] may influence vaccination 

practices, and patients may forego or delay vaccination after GBS diagnosis[18].  For this reason, we also evaluated 

GBS risk using modifications of the standard SCCS approach to analyze data in which the event-dependent 

exposures assumption may have been violated.  The first of these is the vaccinees-only approach, in which only 

vaccinated subjects are included and the observation window begins at the date of vaccination. The removal of 

non-vaccinated cases reduces power to estimate the effect of time-varying covariates such as seasonality[19].  The 

second modification is the pseudo-likelihood approach, a novel method  which considers all cases (vaccinated or 

not) included in the analysis[20].   In this extension to the standard SCCS, we estimated risk under a counterfactual 

in which every vaccine exposure is treated as the last possible exposure for that subject. The inclusion of all cases 

during the entire observation period  retains optimal power for the estimation of time-varying covariates[20].   The 

pseudo-likelihood approach was used to estimate the effect of pH1N1 vaccine with adjustment for seasonality.  The 
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vaccinated-cases only and pseudo-likelihood approaches are equivalent when only one exposure is considered and 

no time-dependent covariates are included in the analysis.  Because there was less than 20% difference between 

the pH1N1 vaccine-associated relative incidence estimates from the standard and pseudo-likelihood approaches 

(the difference decided a priori as evidence of bias from contraindication), all subsequent analyses were conducted 

using the standard approach.  

A series of sensitivity analyses were conducted.  To assess the effect of seasonal influenza vaccination, the 

exposure dates were included when known and subjects with missing data were assumed to be non-recipients of 

seasonal vaccine.    We also assessed the risk window in more detail using days 1-7, 8-21, and 22-42 and estimated 

risks for each different window simultaneously within the same model.  Subsequently, cases meeting Brighton 

criteria through level 4 and 4A were included and an analysis using the date of onset rather than the date of 

diagnosis was conducted.  An analysis limited to Brighton criteria levels 1 and 2 was also conducted.  To understand 

possible effect modifiers and confounders, analyses stratified by sex, age category (< 5, 5-9, 10-18, 19-49, 50-64, 

and 65+ years), history of GBS, and presence of recent infections were also performed.  To capitalize on the 

diversity of vaccine types and manufacturers in the data set, we also stratified by adjuvanted and non-adjuvanted 

vaccines.   

In the meta-analytic approach, we adjusted for seasonality using month-long periods rather than seasonal peaks 

since, as data were not being pooled across databases, a common measure of seasonality was not necessary. 

Estimates of the exposure to pH1N1 vaccine in each database, considering only first dose as exposure of interest, 

were subsequently combined using a meta-analytic approach with a random effects model in which the estimate 

from each site is weighted by the inverse of its variance plus the variance of estimates between databases[21].  All 

analyses were conducted using SAS 9.2 (SAS Institute, Cary NC). 

Table 4: Number and Characteristics of Guillain-Barré syndrome cases and Relative Incidence following pH1N1 

vaccination by Database from Ten Countries1 

Country Database Number 

of Cases 

Number 

of 

pH1N12 

exposed 

cases 

Number 

of Cases 

meeting 

Brighton 

Criteria 1-

4A 

Number 

of 

Exposed 

Cases 

meeting 

Brighton 

Criteria 1-

4A 

Age 

(Mean, 

SD3) 

Sex = M 

(Frequency, 

%) 

Database-

specific 

GBS4 RI5 

(CI6), 

Brighton 

Levels 1-4A 

Australia Adelaide 1 0 1 0 4 (NA7) 1 (100%) NA 

 MCRI8 54 10 54 10 49.2 

(23.9) 

30 (56%) 2.10 (0.40, 

11.05) 

 Sydney 5 0 5 0 5.8 

(4.7) 

3 (60%) NA 

Canada Quebec 80 43 80 43 49.5 

(21.9) 

55 (69%) 1.45 (0.70, 

3.00) 

China Hong 20 5 20 5 57.8 12 (60%) 0.88 (0.07, 
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Kong (13.3) 11.32) 

 Shanghai 22 0 22 0 42.0 

(18.1) 

15 (68%) NA 

Denmark  31 4 31 4 49.2 

(20.2) 

14 (45.2) 4.08 (0.48, 

34.83) 

Finland  29 13 29 13 54.4 

(20.8) 

12 (41.4) 2.59 (0.77, 

8.68) 

The 

Netherlands 

IPCI8 80 29 79 28 45.0 

(20.8) 

32 (40.0) 2.81 (1.07, 

7.34) 

Singapore NNI/CGH8 6 1 6 1 36.3 

(16.9) 

5 (83%) 3.60 * 10^9 

(0, infinity) 

 NNI/TTSH8 13 2 13 2 54.9 

(16.7) 

9 (69%) 3.60 * 10^9 

(0, infinity) 

Spain Almeria 8 1 8 1 45.9 

(20.3) 

5 (63%) 1.27 x 10^9 

(0, infinity) 

 Barcelona 14 0 14 0 38.9 

(23.7) 

8 (57%) NA 

 Valencia 10 0 10 0 47.8 

(22.8) 

6 (60%) NA 

The United 

Kingdom 

CPRD8 

 

40 3 40 3 45.4 

(20.4) 

17 (42.5) 10.92 

(0.92, 

130.13) 

The United 

States 

DoD8 6 6 6 6 28.8 

(6.8) 

6 (100%) 8.39 (0.73, 

97.00) 

 Databases with Vaccinated Cases Only    

 Medicare 39 39 35 35 72.8 

(8.5) 

25 (64%) 2.04 (0.99, 

4.20) 

 PRISM8 8 8 7 7 48 

(33.5) 

4 (50%) 2.27 (0.44, 

11.77) 

 VA8 2 2 1 1 60 

(12.7) 

2 (100%) NA 

 VSD8 11 11 11 11 51.5 

(24.2) 

4 (36%) 3.78 (0.92, 

15.61) 
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1 Descriptive statistics are for all cases regardless of Brighton Collaboration Criteria unless otherwise specified. 

2 monovalent 2009 (H1N1) A vaccines 

3 Standard Deviation 

4 Guillain-Barré syndrome 

5 Relative Incidence 

6 Confidence Interval 

7 Not Applicable 

8 Murdoch Children’s Research Institute (MCRI), Integrated Primary Care Information Database (ICPI), National 

Neuroscience Institute Singapore     General Hospital (NNI/CGH), National Neuroscience Institute Tan Tock Seng 

Hospital (NNI/TTSH), CPRD (Clinical Practice Research Datalink), Department of Defense (DoD), Post-Licensure 

Rapid Immunization Safety Monitoring (PRISM), Department of Veterans Affairs (VA), Vaccine Safety Datalink (VSD) 

 

Results 

Pooled Data Analysis 

In the primary analysis of pooled data limited to Brighton Collaboration criteria levels 1-3 (Table 5), we found a RI of 

2.86 (95% CI 1.88- 4.34).  In country-specific analyses for the meta-analytic approach, analysis of the data 

contributed by the Mexico City database was found to have a very high RI of 39.19 (3.74, 410.41).  When we 

excluded Mexican cases from the primary analysis, the estimate of the RI for the primary analysis decreased to 2.42 

(1.58, 3.72) (Table 5).  Based upon these results, cases from Mexico were excluded from all analyses along with 

cases from those databases with potential ascertainment bias, resulting in 10 countries contributing cases to the 

analysis data set (Table 1).   

The vaccinated cases only approach produced an estimated RI of 2.37 (1.47, 3.85).  The pseudo-likelihood approach 

produced a similar point estimate of 2.23 (1.42, 3.52) (Table 5).   

In sensitivity analyses, inclusion of cases through Brighton criteria levels 4 and 4A increased the RI estimate from 

the primary analysis (Brighton criteria 1-3) using the standard SCCS and pseudo-likelihood approaches to 2.83 (1.91, 

4.19) and 2.59 (1.72, 3.90), respectively.  Limiting included cases to Brighton criteria levels 1 and 2 in analysis using 

the standard SCCS only slightly reduced the estimate to 2.34 (1.48, 3.70).  Adjusting for seasonal influenza vaccine 

exposure led to no change in the pH1N1-associated estimate, 2.57 (1.68, 3.93) (p value vs. primary analysis RI = 

0.85) and found no increase in relative incidence associated with seasonal influenza vaccine exposure [0.77 (0.28, 

2.14)].  Using recorded date of onset as opposed to the date of diagnosis as the index date produced almost no 

change, likely due to the fact that the risk interval is long (data not shown).  The analyses for multiple risk periods 

following vaccination yielded estimates of 2.61 (1.27, 6.35), 3.11 (2.18, 6.46), and 1.91 (1.31, 3.98) for risk windows 

of 1-7, 8-21 and 22-42 days following vaccination, respectively.  Excluding subjects with a reported history of GBS 

led to a slightly reduced estimate of 2.27 (1.47, 3.51).  Excluding patients with reported influenza like illness or 

upper respiratory illness in the 30 days before onset of GBS slightly increased the pH1N1-associated estimate to 

2.88 (1.79, 4.65).  The exclusion of those with reported gastrointestinal illness also increased the vaccine-associated 

estimate to 2.73 (1.75, 4.26). 
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In age-stratified analyses, using the standard SCCS showed that the RI in days 1-42 following exposure increased 

with age: children age < 19 years, the RI was 0.73 (0.16, 3.46), adults age 19-49 years, RI = 1.56 (0.51, 4.71), age 50-

64 years, RI = 2.78 (1.36, 5.68), and 4.30 (2.18, 8.50) in those 65 and older.  These confidence intervals overlap, 

suggesting a trend rather than a statistically significant difference in relative incidence by age.  In standard SCCS 

analysis stratified by sex, the estimated RI was slightly higher in males, 2.75 (1.65, 4.57) than in females, 2.34 (1.09, 

5.04) although the difference was not statistically significant (p = 0.73).    

The estimate of adjuvanted vaccines, performed using the vaccinated cases only approach, yielded a RI estimate of 

1.88 (1.03, 3.41) while the non-adjuvanted estimate was higher at 2.97 (1.13, 7.84).  This difference was not 

statistically significant (p=0.43). 

Because data on cases exposed to vaccines containing the MF-59 adjuvant were limited to one database, we were 

unable to reliably compare the RI associated with each of the two adjuvants.  

Meta-analytic approach 

Results from the meta-analytic approach were similar to those from the pooled analysis but the magnitude of the 

estimates was decreased (Table 6).  The standard SCCS approach produced an estimate of 2.09 (1.28, 3.42) while 

the vaccinated cases only approach produced an estimate of 2.33 (1.5, 3.62).  Analysis of adjuvanted and non-

adjuvanted vaccines using the meta-analytic approach yielded RI estimates of 1.65 (0.86, 3.19) and 3.10 (1.70, 

5.65), respectively.  This difference between adjuvanted and non-adjuvanted exposures was not statistically 

significant (p=0.16). 

Table 5: Relative Incidence of GBS following pH1N1 Vaccination in Data Pooled across Twenty Databases from 

Ten Countries 

Analysis Risk Window(s)                 Exclusions Brighton 
Criteria 
Levels 

Relative 
Incidence 

Confidence 
Interval 

Primary Analysis 

Standard 
Self-
controlled 
Case Series 
(SCCS) 

Days 1-42 Databases (DBs) with Vaccinated 
Cases Only  

1-3 2.42 (1.58, 3.72) 

Sensitivity Analyses 

Standard 
SCCS 

Days 1-42 DBs with Vaccinated Cases Only  1-4A 2.83 (1.91, 4.19) 

Standard 
SCCS 

Days 1-42 DBs with Vaccinated Cases Only  1-2 2.34 (1.48, 3.70) 

Standard 
SCCS 

Days 1-42 DBs with Vaccinated Cases Only  

Cases with reported URI or ILI in 
the 30 days before diagnosis  

1-3 2.88 (1.79, 4.65) 
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Standard 
SCCS 

Days 1-42 DBs with Vaccinated Cases Only  

Cases with reported GI in the 30 
days before diagnosis  

1-3 2.73 (1.75, 4.26) 

Pseudo-
Likelihood 

Days 1-42 DBs with Vaccinated Cases Only  1-3 2.23 (1.42, 3.52) 

Pseudo-
Likelihood 

Days 1-42 DBs with Vaccinated Cases Only  

 

1-4A 2.59 (1.72, 3.90) 

Vaccinated 
Cases Only 

Days 1-42 Unvaccinated cases  

Cases vaccinated after diagnosis  

1-3 2.37 (1.47, 3.85) 

Standard 
SCCS 

Days 1-7* 

8-21* 

22-42* 

*Modeled 
Simultaneously 

DBs with Vaccinated Cases Only  1-3 2.61 

3.11  

1.91  

(1.17, 5.84) 

(1.77, 5.47) 

(1.07, 3.42) 

Vaccinated 
Cases Only 

Adjuvanted 

Days 1-42 Unvaccinated cases  

Cases vaccinated after diagnosis 

Non-adjuvanted vaccine recipients  

1-3 1.88 (1.04, 3.41) 

Vaccinated 
Cases Only 

Non-
Adjuvanted 

Days 1-42 Unvaccinated cases  

Cases vaccinated after diagnosis 

Adjuvanted vaccine recipients  

1-3 2.97 (1.13, 7.84) 

 

 

Table 6: Relative Incidence of GBS following pH1N1 Vaccination in Results from Twenty Databases in Ten 

Countries, pooled using a Meta-analytic approach 

Analysis Risk 

Window(s) 

Exclusions Brighton 

Criteria Levels 

Relative 

Incidence 

Confidence 

Interval 

Self-controlled Case 

Series  (SCCS) 

Days 1-42 Databases (DBs) with 

Vaccinated Cases Only  

 

1-3 2.09 (1.28, 3.42) 

Vaccinated Cases 

Only 

Days 1-42 Unvaccinated cases 

excluded 

1-3 2.33 (1.50, 3.62) 
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Cases vaccinated after 

diagnosis  

Vaccinated Cases 

Only 

Adjuvanted 

Days 1-42 Unvaccinated cases  

Cases vaccinated after 

diagnosis  

Non-adjuvanted vaccine 

recipients  

1-3 1.65 (0.86, 3.19) 

Vaccinated Cases 

Only 

Non-Adjuvanted 

Days 1-42 Unvaccinated cases 

Cases vaccinated after 

diagnosis  

Adjuvanted vaccine 

recipients  

 

1-3 3.10 (1.70, 5.65) 

 

Discussion 

We have shown that international collaboration to evaluate serious rare outcomes using a common protocol is 

feasible and offers some advantages compared to single country or site analyses.   Because GBS following 

vaccination is very rare with reported rates between 0.04 and 0.17 cases per 100,000 vaccinations[22], this 

combined analysis included a much larger number of cases than any published single country analysis and allowed 

inclusion of data from sites that did not have enough cases for a site-specific analysis.  This provided both increased 

power to evaluate the outcome but also sufficient power to conduct sub-analyses by vaccine type.   Secondly, the 

availability of data from several countries allowed us to identify a site (Mexico), which had a RI of GBS following 

pH1N1 vaccine much higher than that at any other site; had the analysis been conducted only in Mexico, 

conclusions regarding the risk of GBS following vaccination could have been inappropriately generalized to other 

populations. 

We have found an increased risk of GBS following receipt of pH1N1 influenza vaccine.  This risk is consistent with 

the level of risk reported by others.  Estimates from single-country studies ranged from 1.05 to 4.70, the majority of 

which reported statistically significant increased risk [23-32].  Estimates were lower in studies of adjuvanted 

vaccines (1.05-3.04) [25, 31] than in non-adjuvanted vaccines (1.57-4.70) [26-30, 32]. 

Because we knew a priori that both adjuvanted and non-adjuvanted vaccines would be used within our study 

population, we included a comparative analysis in our analysis plan. In all our primary and sensitivity analyses, the 

risk of GBS following administration of non-adjuvanted vaccines was significantly elevated. The increased risk found 

for adjuvanted vaccines was not as consistent. It was significantly elevated in our pooled analyses but became non-

significant in the meta-analysis. Moreover, the point estimates of the risk for adjuvanted vaccines were consistently 

lower than those for non-adjuvanted vaccines in all our analyses.  This preliminary finding is reassuring, given 

general concerns regarding the use of adjuvanted vaccines for influenza, and the fact that these vaccines use less 

influenza antigen per dose, a useful advantage for pandemic situations during which the amount of available 
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antigen for vaccine production may initially be limited. We hypothesize that one possible explanation for the 

apparent (non-significant) risk difference between adjuvanted and non-adjuvanted vaccines is the higher amount 

of influenza antigen in non-adjuvanted vaccines, although other factors could have contributed.  Another possible 

explanation is increased protection from influenza in those who have received adjuvanted vaccines [33] and a 

subsequent reduction in GBS due to influenza infection, which may have confounded our results. The trend 

described was seen for both MF-59 and AS03 adjuvanted vaccine.  However, only one country in the study (The 

Netherlands) used MF-59 adjuvanted vaccine, so our ability to compare adjuvants was limited.   While we believe 

our results to be reassuring, they are by no means definitive.   Although the difference between the RI estimates 

for adjuvanted and non-adjuvanted vaccines are not different in our pooled analysis (p=0.43) or in our meta-

analysis (p=0.16), the finding warrants further investigation.   

Results obtained through the primary analysis (the standard self-controlled case series), the pseudo-likelihood 

approach, and vaccinated-cases only up to Brighton level 3 were very similar, indicating there was likely little bias 

introduced if a history of GBS impacted vaccination practices during the 2009-2010 season .  Exclusion of Brighton 

level 3 cases produced very little change in the RI estimate, suggesting lack of a diagnostic bias in the absence of 

electrophysiological or cerebrospinal fluid data.  Inclusion of cases meeting Brighton Criteria levels 4 and 4A 

increased the relative incidence estimate. Given that in these cases the diagnosis could not be reliably verified, it is 

unclear if this increase reflects a more complete capture of true GBS cases or the inclusion of non-true cases 

occurring near the date of vaccination because of diagnosis bias.  Future studies in which the time and resources 

for centralized adjudication are available may be able to answer this question.   

Inclusion of the reported date of seasonal influenza vaccination led to little change in the estimate.  This could be 

attributed to minimal risk associated with seasonal influenza vaccine[34],  or to under-reporting or confusion 

regarding whether seasonal or pandemic vaccine that was received leading to misclassification bias.  In the analysis 

of multiple risk periods following vaccination, the increased incidence in the pre-specified high risk period including 

days 8-21 supports the 1976 finding of highest risk in weeks 2-3 following vaccination[11].  It has been 

hypothesized that the risk peaks during this interval because this is when the humoral immune response to the 

vaccine is highest[35].  Previous findings of increased risk in males as well as increasing risk with increasing age 

were also supported in our analyses[36].  The background incidence of GBS has also been shown to be about 40% 

higher in males than in females and to increase with increasing age[37]. 

It is interesting to note that the exclusion of those subjects who experienced influenza-like illness or 

gastrointestinal illness resulted in small, non-significant increases in vaccination-associated relative incidence, with 

p values vs. primary analysis RI = 0.59 and 0.70, respectively.  While these non-significant findings appear to be 

inconsistent with those published by the VAESCO consortium [14] and other studies [27], it is important to note 

that the SCCS is a methodology based upon an underlying timeline.  As we did not have data on dates of influenza-

like illness or gastrointestinal illness and could not include these as time-varying covariates, exclusion of those with 

an infection in the 30 days before diagnosis likely excluded infection-induced cases which should have occurred at 

similar rates within and outside of the vaccine-associated risk window.  This exclusion would therefore serve to 

increase the estimated relative incidence associated with pH1N1 vaccine exposure.       

An additional finding in our study is the increased GBS risk following pH1N1 vaccination with the increased age of 

vaccine recipients.   This may be the result of a lower immune response in older individuals[38] with consequent 

increased  susceptibility to H1N1 infection and subsequent infection-induced GBS in this age group. It may also be 

related to higher pre-vaccination antibody titers in those previously exposed to H1N1-like viruses[39] potentially 

leading to greater immune response following vaccination.  This possible age effect requires further investigation.    
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As we have indicated, database-specific analysis of the data contributed by Mexico City produced a very high RI 

associated with pH1N1 exposure.  We hypothesize that this could be due to a longer period of H1N1 circulation in 

Mexico prior to vaccine introduction with a high likelihood of vaccinated individuals having already been exposed 

to the H1N1 wild type virus[40, 41] which may have induced a greater immune response upon receipt of pH1N1 

vaccine due to already elevated antibody titers.  Additionally, cases of confirmed H1N1 infection in Mexico tended 

to have more severe clinical presentation and to result in death more frequently as compared to other countries, 

perhaps indicating greater virulence of the virus in the early stages of the pandemic[40].  However, control for 

seasonality in the Mexican database did not reduce the pH1N1 vaccine associated RI estimate.   Further studies to 

elucidate the reason for this much higher risk level in Mexico are warranted.    

The meta-analytic approach for pooling of database-specific relative incidences weights those databases with a 

large degree of variation less heavily than those with less variation.  Therefore, databases with only one or two 

exposed cases and consequently with large standard errors, have much less weight in the combined estimate of 

2.09 (1.28, 3.42).  While this estimate is attenuated through the weights applied in the meta-analysis, the relative 

incidence of GBS in the 42 days following vaccination remains significantly elevated with a confidence interval very 

similar to that of the pooled estimate of 2.42 (1.58, 3.72).  Interestingly, results from stratification of adjuvanted 

and non-adjuvanted vaccines in the meta-analytic analyses produced a non-significant relative incidence for 

adjuvanted vaccines and an increased relative incidence for non-adjuvanted vaccines.  This can be interpreted as 

evidence that the trend of increased risk in non-adjuvanted vaccines as opposed to adjuvanted vaccines is not 

being driven by a set of influential databases. 

In this proof of concept, we have learned that international collaborative database studies to evaluate vaccine 

safety are feasible, even across continents.  However, the requirement that participating sites have access to 

databases from which cases could be ascertained in an unbiased manner limited participation to high and middle 

income sites with existing infrastructure to conduct active surveillance.  However, new vaccines are now being 

introduced either exclusively in the developing world or concurrently with their release in developed countries.  In 

addition, some newer vaccines, such as the malaria vaccine currently in phase three trials in Africa[42], will mainly 

target the developing world.  These changes indicate the need for improved vaccine safety assessment in low and 

middle income countries to ensure the safety of new vaccines.     

Developing capacity outside of developed countries to evaluate vaccine safety signals that arise out of passive 

surveillance systems or from other sources is necessary both to assure the safety of the world’s vaccine supply and 

also to prevent vaccine safety scares from undermining successful programs.  The only low to middle income 

country (LMIC) remaining in the final analysis was China, evidencing a need to increase infrastructure in LMIC for 

ascertainment of vaccination status and adjudication of adverse events following vaccination.  In addition, 

evaluation of very rare event can be facilitated by the increased statistical power that could be achieved through 

international collaboration.   

Although the protocol was common among sites, the degree to which sites were able to review charts and 

ascertain important covariates such as infections varied from site to site.  Future collaborative studies would 

benefit from centralized case adjudication, improved data quality control and closer supervision of data abstraction 

and case ascertainment.  

This study had several limitations.  While the results of the analyses stratified by presence or absence of an 

adjuvant are intriguing, the use of adjuvanted or non-adjuvanted vaccines was generally homogeneous within each 

country.   Because of this homogeneity, it was not possible to estimate the difference between adjuvanted and 

non-adjuvanted vaccine associated relative incidence within the same population and it was not possible to 
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separate the effect of the vaccine formulation from the unknown effect of the country and its associated 

characteristics.  Also, the observed association may have been modified by infections, some of which are known to 

increase the risk of GBS.  While we attempted to control for concomitant infections such as influenza like illness 

and gastrointestinal illness, it was not possible within the limitation of the current study to include these infections 

as time varying covariates, which would be the ideal approach in the self-controlled case series methodology.  

Controlling for such time varying covariates may have attenuated the observed associations, as shown in previous 

studies [43-45]. Additionally, the use of reported seasonal peaks of circulating influenza was a means of estimating 

seasonal effects across sites but may not have been as accurate as the standard approach of estimating fixed-

length periods when analyzing data from one geographic location.  Given budget and data-sharing constraints, case 

verification was performed by each site and quality control was performed on site; a pooled review by a single 

expert group was not conducted.  In spite of the use of common criteria provided by the Brighton Collaboration, 

the adjudication process may have varied from site to site.   

Conclusion 

We have demonstrated that multinational studies are feasible and can provide a useful platform to evaluate future 

vaccine safety concerns especially for rare, serious events.  We look forward to the development of a sustainable 

global infrastructure in both developed and developing countries to meet global needs.  The finding of much higher 

risk in Mexico and our ability to contrast this risk with that found in other countries using data submitted under a 

common protocol is a strength of this multinational study and supports the need for international collaboration in 

vaccine safety monitoring. 

The significance and consistency of our findings support a conclusion of an association between 2009 (H1N1) 

vaccination and GBS.  Nonetheless, given the rarity of the event the relative incidence found suggests that the 

vaccine would be responsible for very few excess GBS cases.  Although we are not able to estimate attributable risk 

using the SCCS methodology, we know from other studies that the background risk of GBS is approximately 0.9[46] 

cases per one million individuals and that the relative risk associated with the 1976-77 swine influenza vaccination 

campaign was 7.60[11].  A relative incidence of 2-3 following vaccination would mean approximately 1-2 excess 

cases per one million vaccinees.  Due to this minimal increase in incidence, our findings do not provide evidence in 

contradiction of international recommendations for the continued use of influenza vaccines.    

This large collaborative multinational study has made possible the generation of a number of new hypotheses 

related to possible differences in risk of vaccine-associated GBS by age and by the use of adjuvants, which will 

require further investigation.   
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Background: 

In 2010, a safety signal was detected for narcolepsy following vaccination with Pandemrix, an AS03-adjuvanted 

monovalent pandemic H1N1 influenza (pH1N1) vaccine. To further assess a possible association and inform policy 

on future use of adjuvants, we conducted a multi-country study of narcolepsy and adjuvanted pH1N1 vaccines. 

Methods: 

We used electronic health databases to conduct a dynamic retrospective cohort study to assess narcolepsy 

incidence rates (IR) before and during pH1N1 virus circulation, and after pH1N1 vaccination campaigns in Canada, 

Denmark, Spain, Sweden, Taiwan, the Netherlands, and the United Kingdom. Using a case-control study design, we 

evaluated the risk of narcolepsy following AS03- and MF59-adjuvanted pH1N1 vaccines in Argentina, Canada, Spain, 

Switzerland, Taiwan, and the Netherlands. In the Netherlands, we also conducted a case-coverage study in children 

born between 2004 and 2009. 

Results: 

No changes in narcolepsy IRs were observed in any periods in single study sites except Sweden and Taiwan; in 

Taiwan incidence increased after wild-type pH1N1 virus circulation and in Sweden (a previously identified signaling 

country), incidence increased after the start of pH1N1 vaccination. No association was observed for Arepanrix-AS03 

or Focetria-MF59 adjuvanted pH1N1 vaccines and narcolepsy in children or adults in the case-control study nor for 

children born between 2004 and 2009 in the Netherlands case-coverage study for Pandemrix-AS03. 

Conclusions: 

Other than elevated narcolepsy IRs in the period after vaccination campaigns in Sweden, we did not find an 

association between AS03- or MF59-adjuvanted pH1N1 vaccines and narcolepsy in children or adults in the sites 

studied, although power to evaluate the AS03-adjuvanted Pandemrix brand vaccine was limited in our study. 
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Introduction 

In fall 2009, large-scale vaccination campaigns were implemented globally in response to the influenza A (H1N1) 

pandemic (pH1N1). Different inactivated monovalent vaccines were used; the United States used unadjuvanted 

vaccines, whereas in Europe, MF59- (Focetria, Novartis Vaccines and Diagnostics) and AS03-adjuvanted (Pandemrix, 

GSK biologicals) vaccines were mostly used. In Canada, AS03-adjuvanted Arepanrix (ID Biomedical Corp., a 

subsidiary of GSK Biologicals) was used. Arepanrix and Pandemrix had similar pH1N1 antigens and used the same 

AS03 adjuvant; however, there were slight differences in the manufacturing processes for the two vaccines. In 

August 2010, case reports from Sweden and Finland emerged describing narcolepsy in children following 

vaccination with Pandemrix.1-6 

Narcolepsy is a chronic debilitating sleep disorder with a suspected autoimmune etiology. Genetic predisposition 

also appears to play a role; narcolepsy with cataplexy (with hypocretin deficiency) is highly associated with HLA-

DQB1*06:02, while narcolepsy without cataplexy (and normal hypocretin levels) is less associated with HLA-

DQB1*06:02, but still more so than in the general population. Narcolepsy/cataplexy is characterized by excessive 

daytime sleepiness (EDS), cataplexy, sleep paralysis, hypnagogic hallucinations and fragmented nighttime sleep. 

Symptoms often emerge gradually and may initially be non-specific.7-10 The insidious onset can result in diagnostic 

delays of months to years, making it challenging to study exposures that might cause or contribute to disease 

occurrence.11  

Several European studies were initiated to rapidly evaluate the possible association between Pandemrix-AS03 and 

narcolepsy.1,2,4,5,12-18 These studies are summarized in reviews by Verstraeten et al.19, Sturkenboom20 and Sarkanen 

et al.21 Several studies showed an increased risk, but results were variable within and across studies and subject to 

methodological challenges due to narcolepsy epidemiology and increased awareness about the association. Most 

studies focused on Pandemrix-AS03 and data were limited on other adjuvanted pH1N1 vaccines, including 

Arepanrix-AS03 and Focetria-MF59.22,23  

To better understand the relationship between narcolepsy and different adjuvanted pH1N1 vaccines, we organized 

an international research network, including study sites within and outside of Europe, where adjuvanted vaccines 

were used and little or no substantial concerns were raised about an association with narcolepsy in local media. 

Drawing on the expertise of clinicians, research scientists and public health officials within the network, we 

implemented the Systematic Observational Method for Narcolepsy and Influenza Immunization Assessment 

(SOMNIA) study.  

Methods 

Study site selection 

We used a stepwise process to identify, recruit, and select participating study sites for incidence rates and case-

control analyses. First, we identified countries that used adjuvanted 2009 pH1N1 vaccine using information 

obtained from the World Health Organization and from the two vaccine manufacturers. We excluded countries 

where compensation programs for narcolepsy associated with pH1N1 vaccination existed because we believed this 

could potentially bias case ascertainment with vaccinated cases potentially being evaluated sooner or differently 

than non-vaccinated cases. Finland, Norway and Sweden were excluded from the case-control study on this basis. 

In addition, Finland and Sweden had been signaling countries. Of note Sweden, as a signaling country was included 

in the incidence rate study to provide a reference comparison, but data from Sweden were not pooled in the 

incidence rate analysis. Working with national, regional and local health officials, academics, and sleep centers, we 

assessed whether potential study sites had acceptable availability and accessibility of vaccination and outcome 
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data. Israel, South Korea and Cuba, were excluded because of lack of exposure information. Brazil was eliminated 

because obtaining timely administrative approvals was not feasible. Finally, we engaged in discussions with 

prospective investigators to gauge willingness and ability to participate in the incidence rate or case-control studies 

and confirm existence of acceptable data and data systems to articipate using the common study protocol. After 

completing these steps and obtaining the necessary clearances we included the final set of countries in our 

analysis. 

All sites used the same protocol, the same data collection materials and common analytics, but sites could 

implement the protocol based upon their local processes and health care structure. For quality control, the study 

coordination team verified implementation of the protocol with all sites during monthly calls. The data 

management team further verified all the data and discussed potential biases with the sites. Sites were responsible 

for verification of their results and decisions on inclusion of the data and could access remotely the secure data 

sharing environment. These distributed data management procedures have been previously described. 24  

Narcolepsy incidence rates analysis 

We estimated narcolepsy incidence rates (IR) at ten study sites (in seven countries) using population-based 

electronic health record databases from general practitioners (GP) (Spain [Valencia and Catalonia], the 

Netherlands, and the United Kingdom) or claims/record linkage databases (Canada [Manitoba, Alberta and British 

Columbia], Denmark, Sweden, and Taiwan). Study populations included individuals registered in the database for at 

least one year prior to start of follow-up. Follow-up started at the begining of the study period (January 1, 2003) or 

the date of registration and ended at the earliest of the following: death, the patient moving, the end of the study 

period (December 31st, 2013) or outcome occurrence. Cases were captured in these databases by identifying 

individuals with newly diagnosed narcolepsy with or without cataplexy. (Database codes and algorithms are shown 

in Table 1). In GP databases in the Netherlands and from records of sleep medicine specialists in Valencia, case 

finding algorithms were validated using the Brighton Collaboration case definition criteria for narcolepsy.25 In other 

sites, we required both  diagnostic codes for narcolepsy along with reimbursement claims for a multiple sleep 

latency test (MSLT) to reduce the risk of false positives. We calculated IRs by year and month and categorized them 

into three periods: 1) pre-pH1N1, 2) during wild-type pH1N1 virus circulation until the start of pH1N1 vaccination 

(country specific), and 3) from the start of pH1N1 vaccination through the end of the study in December 2013. 

Periods of wild-type pH1N1 virus circulation and vaccination varied by sites. We stratified IRs by age and sex and 

pooled aggregated person-time and case counts for further analysis. IR data from Sweden were analyzed separately 

since Sweden had been a priori identified as a signaling country, and hence, served as a comparator for other sites 

in our IR analysis.26 We estimated incidence rate ratios (IRR), comparing the two latter periods to the pre-pH1N1 

period, using Poisson regression.  
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Table 1: Overview of study sites for the IR, case-control and case-coverage analyses. 

 Study site  
(vaccines) 

IR Case-control or case-coverage 

  Data source  codes and algorithms  Case identification  Controls source pH1N1 vaccine exposure 

Eu
ro

p
e 

Switzerland 
(Pandemrix-
AS03, Focetria-
MF59) 

  14 hospitals & sleep 
centers, no consent 
required 

Matched in same 
hospital of case. No 
consent required 

general practitioner (GP) 
medical record 

Spain, Catalonia 
(Pandemrix-
AS03, Focetria-
MF59) 

SIDIAP general 
practitioners’ database 

ICD-10 code G47.4  Sleep units at 13 public 
hospitals until end of 
2013 & also in SIDIAP. 
No consent required 

SIDIAP database  
No consent required 

SIDIAP database 

Spain, Valencia 
(Pandemrix-
AS03, Focetria-
MF59) 

SIA regional general 
practitioners’ databases 
 

ICD-9CM codes 347.* 
with Manual validation 

Identified from 24 sleep 
centers and electronic 
registries (inpatient and 
outpatient databases)  

SIA general 
practitioners’ 
database.  
No consent required 

Obtained from electronic 
registry 

The Netherlands 
(Pandemrix-
AS03, Focetria-
MF59) 

IPCI general practitioners’ 
databases 
 

Free text narcolepsy & 
MSLT. cases manually 
validated 

Four sleep centers 
(academic and non-
university hospitals). 
Consent required  

IPCI general 
practitioners’ 
database. No 
consent required 

1. Electronic medical GP 
records for all patients 
2. For cases also from 
vaccination card and public 
health agency to estimate 
completeness in GP records 

The United 
Kingdom 
(Pandemrix 
AS03) 

THIN general 
practitioners’ databases 

Read codes 
F27.00;F270.00; 
F271.00; F27z.00 

   

Denmark 
(Pandemrix 
AS03) 

Danish Civil Registration 
System covering the 
Northern and Central 
Region of Jutland in 

ICD-10 code G47.4, 
Inpatient, ambulatory 
care and emergency 
room diagnosis 
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Denmark linked to Danish 
National Patient Register 
 

Sweden Patient register at the 
National board of health 
Population from 
population register at 
Statistics Sweden 

ICD-10 code G47.4 
diagnosis in and 
outpatient 

   

So
u

th
 A

m
e

ri
ca

 

Argentina 
Focetria-MF59 

  13 MSLT sites, pediatric, 
adult neurology and 
respiratory centers in 
Buenos Aires. Verbal 
consent  

General 
practitioners. Verbal 
informed consent 
conducted 

Vaccination cards from cases 
and controls 

N
o

rt
h

 A
m

e
ri

ca
 (

C
an

ad
a)

 

Ontario 
Arepanrix-AS03 

  patient charts at sleep 
units after using 
physician billing claims 
to generate initial list of 
MSLTs performed. 
Limited to maximum 
age ≤24  

Matched from ICES 
provincial database 
of all residents with 
health insurance. No 
consent required 

1. primary care physician 
(PCP), family physicians and 
pediatricians charts;  
2. public health unit records 
(electronic databases, and 
physician billing claims data) 

N
o

rt
h

 
A

m
e

ri
ca

 

(C
an

ad
a)

 

Alberta 
Arepanrix-AS03 

Cases indentified and 
populaiton denominator 
established with 
claims/hospital record 
linkage databases 

ICD9-CM codes 347.* 
with MSLT procedure 
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Manitoba 
Arepanrix-AS03 

Population-based 
Hospital and Physician 
Claims databases 
Linked to Manitoba 
Health Population 
Registry 

ICD9-CM codes 347.* 
with MSLT procedure 

   

British Columbia 
Arepanrix-AS03 

Cases originating from 
British Columbia Medical 
Services Plan database 
; denominator 
information established 
through national 
statistics. 

ICD9-CM codes 347.* 
following MSLT 
procedure code 

   

A
si

a 

Taiwan 
(Focetria-MF59, 
AdimFlu-S 
unadjuvanted) 

National population NHI 
ENROLL data linked to 
NHI claims data 

Referral MSLT & ≥3 
ICD-9-CM codes (347*) 
in outpatient, ED, or 
inpatient after an 
MSLT referral 

Recruited from three 
largest sleep centers in 
Taiwan. Identified 
initially by MLST referral 
from electronic data 

Matched from 
National Health 
Insurance Database. 
Consent not 
required 

national registry and 
National Health Insurance 
Database. Data on H1N1 
vaccination missing for 39% 
in schoolchildren 7-17 years 
and 44% for persons ≥18 
years (all non-adjuvanted) 

GP = general practitioner, BC = Brighton Collaboration, PCP = primary care physician 

* Linked Medical Records = Population based medical records (GP and specialist diagnoses), directly linked; Population-based registry = Population based 

registries (emergency room, in and out patient diagnoses); Medical Record diagnoses + Census Population = In and outpatient diagnoses, case counts and 

population counts (census); 
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Case-control analysis 

Seven sites in six countries met our criteria for inclusion in the case-control study: Argentina, Canada (Ontario), 

Spain (Valencia and Catalonia), Switzerland, Taiwan, and the Netherlands (Table 1). All sites collected information in 

the same electronic case report forms (Chameleon, Erasmus Medical Center, Rotterdam, the Netherlands). 

Depending on data sharing restrictions, local investigators either transferred aggregated data to a secure remote 

research environment for further analysis and one stage pooling or ran the same analyses locally and transferred 

coefficients and counts for inclusion in a two-stage meta-analysis (Figure 1).  

 

Figure 1. Two-stage hybrid approach for pooling case-control data from study sites. The two-stage hybrid approach 

pooled case-control data to estimate an odds ratio from European Union country sites and Argentina (β1). Odds 

ratios from Taiwan and Ontario (β2 and β3) were analyzed in a subsequent meta-analytic approach including the 

pooled odds ratio from European Union country sites and Argentina (Wk = weight related to estimate βk, being the 

reciprocal of its variance,  = summation operator, β = meta-analysis result for the odds ratio). 

 

Cases and controls 

Local investigators identified narcolepsy cases at sleep centers using diagnosis lists or diagnostic test outcomes. 

Investigators abstracted medical records, blinded for pH1N1 vaccination status, and classified cases into certainty 

levels using the Brighton Collaboration narcolepsy case definition.25 Cases were included if they were classified as 

Brighton Collaboration level 1-4 for persons ≥16 years or level 1-2 for persons <16 years, and had an MSLT referral 

and a diagnosis both made after March 31, 2009 (start of the H1N1 pandemic). Brighton Collaboration classification 

designates level 1 as the highest level of diagnostic certainty; levels have different cut-off values for MSLT results 

starting at age 16 years, which were maintained in the study. Primary index date was date of referral for diagnostic 

MSLT. Sites identified all cases diagnosed from April 1, 2009 until the end of 2015, but this varied by site based on 

feasibility (Table 1). The Netherlands required consent from cases because of the need to collect data from both 

GPs as well as the National Public Health Agency.  
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Up to 20 controls were matched to each case by site on age (year of birth), sex and index date. As per protocol, 

controls were selected from the population giving rise to the cases, identification could be implemented in 

different ways based on feasibility and health care structure. Ontario, Valencia, Catalonia, the Netherlands, and 

Taiwan sampled controls from population-based health record databases. Argentina identified controls from 

primary care facilities in the same geographic area as the cases. Switzerland recruited controls from the same 

hospitals as cases, using auxiliary diseases not related to vaccination.  

Exposure  

The main exposure of interest was adjuvanted pH1N1 vaccination (i.e., Pandemrix-AS03, Arepanrix-AS03 or 

Focetria-MF59). We obtained information on vaccines similarly for cases and controls from medical records, 

vaccination registries, insurance databases, or vaccination cards. Only written or electronic records of 

immunization were accepted. Risk windows for pH1N1 vaccine exposure were any time prior to index date and 

further split in: 1 to 180 days, 181 days to 2 years, and >2 years before index date. The Ontario site provided the 

only data for Arepanrix-AS03; hence, there was no pooling of the Arepanrix-AS03 data as Ontario was unique. 

Taiwan, Argentina, the Netherlands, Switzerland, Valencia, and Catalonia contributed data for Focetria-MF59. The 

Netherlands, Switzerland, and Valencia contributed data for Pandemrix-AS03. 

Case-control analysis 

Odds ratios (OR) and 95% confidence intervals (CI) were calculated using conditional logistic regression or exact 

logistic regression if zero cells occurred. The reference category for estimation of the pH1N1 vaccination effect was 

no pH1N1 vaccination. Due to low exposure levels, we only present the analysis for the risk window of any time 

prior to the index date because this provided the maximum power.  

To address potential awareness bias in the European Union (EU) sites, we analyzed data from two time periods, a 

“restricted” period and a “total” period. The restricted period analysis included cases from participating EU sites in 

the Netherlands, Valencia, Catalonia, and Switzerland only when they were diagnosed prior to onset of awareness 

about the narcolepsy signal in Europe (August 2010), and also cases from sites outside the EU diagnosed anytime 

during the entire study period. The total period analysis included cases from all sites for the entire study period, 

including cases from EU sites diagnosed after media attention.  

We pooled data from sites using a hybrid approach (one stage pooling of matched case and control pairs for EU 

sites and Argentina, which could share data, and two-stage pooling with Taiwan and Ontario, which shared case 

counts and coefficients which were subsequently meta-analyzed with the one stage pooled data from EU sites and 

Argentina) (Figure 1). Children were defined as ≤18 years of age and adults as ≥19 years. Due to incomplete pH1N1 

vaccination information from GPs in children born between 2004 and 2009 in the Netherlands (because these 

children were vaccinated at local health agencies instead of GPs where we obtained exposure information for all 

study subjects), these cases and controls were excluded from the case-control analysis. However, cases born 

between 2004 and 2009 in the Netherlands were included in a post hoc case-coverage analysis (see below). In 

Switzerland, only child cases were included because of potential selection and information biases that was 

detected in adult cases. (Tables 1 and 2). In addition to using diagnostic MSLT referral as index date, we conducted 

sensitivity analyses using EDS onset date (requiring EDS starting after March 31, 2009). We used SAS v9.2 and 

statistical significance was set at p-value <0.05.  

Table 2. Narcolepsy case characteristics for the case-control and case-coverage analysis by study site 
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Netherlan

ds 

Switzerla

nd 

Spain, 

Catalonia 

Spain, 

Valencia 
Argentina 

Canada, 

Ontario 
Taiwan Total 

Children         

Total cases/controls 

[N] 
22*/205 22/132 5/100 11/220 11/86 28/55 51/510 150/1308 

Brighton level [%]         

 1 31.8 36.4 0 0 9.1 0 7.8 13.3 

 2 68.2 54.5 100 63.6 81.8 57.1 66.7 65.3 

 3 0 9.1 0 36.4 9.1 42.9 17.7 18.7 

 4a  0 0 0 0 0 0 7.8 2.7 

Cataplexy present [%] 

** 
95.5 86.4 100 63.6 90.9 57.1 72.5 76.7 

Age at Diagnosis [%]         

 < 6 yrs  4.5 0 0 9.1 0 0 0 1.3 

 6-12 yrs 50.0 40.9 60.0 90.9 63.6 21.4 37.3 43.3 

 13-18 yrs  45.5 59.1 40.0 0 36.4 78.6 62.7 55.3 

pH1N1 vaccination 

coverage cases [%] 
        

Focetria-MF59 0 0 0 0 27.3 0 ≤45.1 ≤18.4 

Pandemrix- and 

Arepanrix-AS03 
31.8* 0 0 0 0 ≤17.9 0 ≤33.1 

Unadjuvanted 0 0 0 0 0 0 ≤45.1 ≤16.3 

pH1N1 vaccination 

coverage controls [%] 
        

Focetria-MF59 3.4 3.8 0 2.3 10.5 0 0.6 2.1 

Pandemrix- and 

Arepanrix-AS03 
0 0 0 0 0 17.3 0 0.8 

Unadjuvanted 0 0 0 0 0 0 37.3 15.9 

Adults         

Total cases/controls 

[N] 
32/280  13/260 36/720 4/12 39/75 86/860 210/2207 

         

Brighton level [%]         

 1 53.1  7.7 0 0 0 1.2 9.1 

 2 31.3  84.6 38.9 50.0 ≤25.6 39.5 ≤38.6 

 3 12.5  7.7 55.6 50.0 69.2 31.4 38.6 

 4a  3.1  0 5.6 0 ≤12.8 27.9 ≤15.2 

Cataplexy present [%] 

** 
78.1  84.6 41.7 50.0 25.6 41.9 47.2 

Age at Diagnosis [%]         

 19-59 yrs  96.9  100 97.2 100 100 100 99.0 

 60 + 3.1  0 2.8 0 0 0 1.0 

pH1N1 vaccination 

coverage cases [%] 
       

 

Focetria-MF59 3.1  0 0 0 0 ≤14.0 ≤6.2 

Pandemrix- and 

Arepanrix-AS03 
0  0 0 0 ≤12.8 0 1.4 

Unadjuvanted 0  0 2.8 0 0 ≤14.0 ≤6.2 

pH1N1 vaccination 

coverage controls [%] 
       

 

Focetria-MF59 2.5  0 0.1 33.3 0 1.1 1.0 

Pandemrix- and 

Arepanrix-AS03 
0  0.4 1.4 0 8.0 0 

0.8 

Unadjuvanted 0  0.4 0 0 0 8.8 3.5 
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*Nine child cases were included in a separate case-coverage study for reasons described in the methods. The child 

case total for the Netherlands includes nine from the case-coverage study and 13 from the case-control study. 

**By definition, Brighton Collaboration (BC) narcolepsy case levels 1 and 2 have unambiguous cataplexy; BC 

narcolepsy case levels 3 and 4 may not have cataplexy. For inclusion in this study, children ages <16 years are BC 

levels 1 and 2, children 17-18 years are BC levels 1-4, and adults ≥19 years are BC levels 1-4. 

**Cell counts that represent case counts of five or fewer (for Ontario, Canada) or two or fewer (for Taiwan) cannot 

be displayed due to national patient privacy regulations. Therefore these are represented as range (i.e. ≤ n).  

Case-coverage analysis 

In the Netherlands, cases born from 2004 through 2009 were analyzed using a case-coverage design. During the 

2009 H1N1 pandemic these children were vaccinated with Pandemrix-AS03 at Municipal Health Services, and not 

through their GPs. Vaccinations for these children were registered in a nationwide database, Influsys, managed by 

the National Public Health Institute. Exposure in cases was therefore obtained from Influsys and exposure 

prevalence in the population for children born in the same year was obtained by calendar week and year of birth 

and used in the analysis, similar to the method used in the United Kingdom by Stowe et al.27 This post-hoc analytic 

approach allowed us to include information from the Netherlands, where individual exposure data was not 

available, to complement other data on Pandemrix-AS03. 

Ethics committee approval 

This study was conducted under the principles of the Helsinki declaration.28 Each site was responsible for obtaining 

appropriate ethical approvals, the overall study was approved by the Institutional Review Board at Cincinnati 

Children’s Hospital Medical Center.  

Role of the funding source 

Two investigators (TS and FD) from the sponsoring organization, the U.S. Centers for Disease Control and 

Prevention, participated in development of the study design, analysis and interpretation of data, writing the report, 

and in the decision to submit the paper for publication. 

Results  

Narcolepsy incidence rates analysis 

540 million person-years from ten sites in seven countries contributed to the narcolepsy IR analysis. In Sweden, a 

previously identified signaling country, IRs increased significantly after the start of its pH1N1 vaccination campaign 

for children 5-19 years (IRR=9.01; 95% CI 6.89-11.80) and adults 20-59 years (IRR=1.69; 95% CI 1.46–1.95). From 

2011 onwards, narcolepsy IRs decreased in Sweden (Figure 2). In other EU sites, narcolepsy IRs in the post-

vaccination period did not change significantly compared to the pre-pH1N1 vaccination period. In Canada, where 

Arepanrix-AS03 was used, no changes in IRs were observed in any province sites in any age category. In Taiwan, 

pre-pH1N1 period narcolepsy IR was lower (0.29 per 100,000 person-years, 95% CI 0.27-0.32) than in EU and 

Canadian sites (varying between 0.5-1.5 per 100,000 person-years) and we observed significant IR increases in 

children 5-19 years (IRR=2.50; 95% CI 1.46-4.28) and adults 20-59 years (IRR=2.23; 95% CI 1.26-3.94) during wild-

type pH1N1 virus circulation prior to the vaccination campaign (also previously presented in Dodd et al.29). 



194 
 

 

Figure 2. Incidence rates of narcolepsy by age group and year from Sweden (left, a signaling country) and other 

study sites excluding Sweden (right, pooled data).  

Alberta, Canada (2003-2013); British Columbia, Canada (2003-2013), Manitoba, Canada (2003-2010); Catalonia, 

Spain (2007-2013), Valencia, Spain (2009-2013), Denmark (2003-2013), the Netherlands (2003-2013); Sweden 

(2003-2013), Taiwan (2003-2012), United Kingdom (2003-2013). 

Case-control and case-coverage analysis 

We included 360 narcolepsy cases with MSLT referral during the study period: 150 were children ≤18 years and 210 

were adults ≥19 years, which were matched to a total of 3515 controls (online supplement Table 2). For the 

restricted period analysis (excluding cases diagnosed after awareness in the EU), 96 child and 121 adult cases were 

included. For the total period analysis, 141 child and 210 adult cases were included. Nine child cases born between 

2004 and 2009 from the Netherlands (all diagnosed after awareness) were only included in the case-coverage 

analysis.  

Brighton Collaboration narcolepsy case definition diagnosis levels varied by site, with EU sites having more level 1 

cases (23.40% in EU vs. 2.74% outside EU) and more cataplexy (73.06% in EU vs. 50.68% outside EU) (Table 2). 

Median delay between EDS onset and narcolepsy diagnosis was longer in adults compared to children and varied 

between sites, with a very short delay for Taiwan (online supplement Table 1). Shortening of delay was seen in 

children in some sites in the EU but not outside the EU following media and public awareness. In all sites, exposure 

to pH1N1 vaccine was low in cases and controls, except in Dutch children born between 2004 and 2009, with seven 

out of nine cases exposed to Pandemrix-AS03. 

In the meta-analysis for the restricted period, exposure to any type of adjuvanted pH1N1 vaccine was not 

associated with narcolepsy in children or adults. The OR of the restricted period analysis in children <18 years of 

age was 0.80 (95% CI 0.21-3.01) for Arepanrix-AS03 and 4.12 (95% CI 0.99-17.16) for Focetria-MF59. The OR of the 

restricted period analysis in adults was 1.00 (95% CI 0.21-4.81) for Arepanrix-AS03 and 0.71 (95% CI 0.16-3.14) for 

Focetria-MF59. The risk with Pandemrix-AS03 could not be estimated in the restricted period analysis due to the 

paucity of cases.  

The total period analyses including all cases, as well as the separate case-coverage analysis in the Netherlands did 

not reveal an increased risk of narcolepsy in children or adults. The OR of the total period analysis in children <18 
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years was 0.80 (95% CI 0.21-3.01) for Arepanrix-AS03 and 1.40 (95% CI 0.43-4.64) for Focetria-MF59. In the case-

coverage analysis, of the nine child cases born from 2004 through 2009, seven were exposed to Pandemrix-AS03, 

yielding an OR of 1.44 (95% CI 0.30-6.98). The OR of the total period analysis in adults was 1.00 (95% CI 0.21-4.81) 

for Arepanrix-AS03, 0.65 (95% CI 0.14-2.95) for Focetria-MF59, and 0.66 (95% CI 0-3.3) for Pandemrix-AS03 (Figure 

3). 

 

Figure 3: Odds ratios (OR) for narcolepsy and 95% confidence intervals (CI) by vaccine brands in the total period 

analysis for children (≤18 years) and adults (≥19 years). Arepanrix-AS03: case-control study in Ontario, Canada. 

Focetria-MF59: two-stage random effects meta-analysis of data from Taiwan, Argentina, the Netherlands, and 

Valencia and Catalonia, Spain. Pandemrix-AS03: case-coverage study in the Netherlands for children and case-

control study in Valencia, Spain, for adults. 

Sensitivity analyses using EDS onset as index date for the total period reduced the number of cases considerably, 

either due to an EDS date before April 1, 2009 or missing EDS onset date. However, this analysis did not 

substantially alter the main findings of the total period analysis, which used MSLT referral as index date. For 

Arepanrix-AS03, OR estimates lowered to 0.29 (95% CI 0.03-2.65) in children and remained 1.00 (95% CI 0.05-18.9) 

in adults. For Focetria-MF59, the pooled estimate ORs were 2.06 (95% CI: 0.63-6.72) in children and 0.65 (95% CI: 

0.14-2.95) in adults. For Pandemrix-AS03, ORs were 0.48 (95% CI 0.15-1.58) in children and 1.12 (95% CI 0-6.1) in 

adults. 

Discussion 

The SOMNIA study, a multi-country effort that included data from sites on four continents, did not find an increase 

in narcolepsy IRs associated with pH1N1 vaccination campaigns (except in Sweden, a previously identified signaling 

country) nor did it detect significant associations between narcolepsy following any adjuvanted pH1N1 vaccines 

studied. To our knowledge, this is the largest and most geographically diverse study with the longest study period 

examining the association between adjuvanted pH1N1 vaccines and narcolepsy. Oil-in-water adjuvants like AS03 

and MF59 increase immunogenicity of influenza vaccines making them attractive (or possibly necessary) for use in 

future pandemic influenza vaccines, and they may have the potential to improve the performance of seasonal 

influenza vaccines.30 Assessing the safety of these adjuvants has substantial public health and clinical importance. 
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In our study, the IR of narcolepsy increased in Sweden beginning in summer 2010 and declined in 2011, especially 

in children 5-19 years. No similar increase in IR of narcolepsy was observed at any of the other participating sites. 

However, in Taiwan, a site with a very short lag time between symptom onset and diagnosis of narcolepsy, a 

significant increase in IR of narcolepsy was observed during circulation of wild-type pH1N1 virus but prior to pH1N1 

vaccination, a phenomenon also reported in China, which had low (unadjuvanted) vaccination coverage.31  

Ontario, where vaccination coverage was 32.2%32, provided case-control data on Arepanrix-AS03; no association 

with narcolepsy was found in children or adults, which contrasts with a prior finding from a study in Quebec, where 

a small increase in risk was found, although with large confidence intervals.23 Since Arepanrix-AS03 has the same 

adjuvant and a similar pH1N1 antigen as the Pandemrix-AS03 vaccine used in Finland and Sweden, it appears that 

the association for Pandemrix-AS03 and narcolepsy observed in some European countries is not likely due to the 

AS03 adjuvant or the pH1N1 antigen in the vaccine alone. Focetria-MF59 was not associated with narcolepsy in 

children or adults in this study, although the upper limit of the confidence interval cannot exclude a small increase 

in risk in children. This is consistent with prior observations of a lack of association (or just a few case reports) in 

countries using this vaccine.33 Because of low vaccination coverage in sites for Pandemrix-AS03, we were 

constrained in our ability to evaluate the possibility of an association in our case-control study; our data from the 

Netherlands are based on a small number of children who were between six months and five years of age at 

vaccination.  

The SOMNIA study contributes to our understanding of the epidemiology of narcolepsy before, during, and after 

the 2009 H1N1 influenza pandemic and pH1N1 vaccination campaigns. Importantly, it contributes to the body of 

evidence regarding the possible association between adjuvanted pH1N1 vaccines and narcolepsy as an adverse 

event following immunization. Prior data, mostly from Europe, predominantly involved Pandemrix-AS03 exposure 

and included many cases diagnosed shortly after increased media attention and public awareness. Inclusion of the 

cases diagnosed in the time period immediately after heightened media attention, may overestimate an 

association, which is supported by the simulations of Wijnans et al.35 Awareness about a possible association with 

Pandemrix-AS03 may have resulted in vaccinated cases being diagnosed sooner than they normally would have 

been, resulting in apparent clusters of narcolepsy.36 We attempted to address this potential bias by including 

countries outside the EU and countries in the EU that experienced less media and public awareness; we also 

conducted an analysis restricting cases in Europe to those diagnosed before attention arose. Additionally, we 

minimized potential bias from accelerated diagnosis of vaccinated cases by recruiting cases up to five years after 

knowledge of a possible association became widespread. The findings of our SOMNIA study indicate that the 

impact of media and public awareness, and the resulting detection bias, may have diminished over time. Our risk 

estimates of narcolepsy following adjuvanted pH1N1 vaccination for the restricted period analysis compared to the 

total period analysis did not differ substantially. This is in contrast to the prior Vaccine Adverse Event Surveillance & 

Communication (VAESCO) study of EU countries, which had a much shorter case accrual period.36 Overall, our study 

did not find an increased risk of narcolepsy following vaccination with AS03- or MF59-adjuvanted pH1N1 vaccines 

based on the total period analysis.  

Although we did not detect any significant associations between adjuvanted pH1N1 vaccination and narcolepsy 

beyond Sweden, we acknowledge the overall trend of evidence of an increased risk associated with Pandemrix-

AS03.5,14,15,23 A biologic mechanism to explain this observation has not been established, but it has been postulated 

that an interaction involving the immune responses to administration of Pandemrix-AS03 and infection with wild-

type pH1N1 virus could be a contributing factor.20 This would explain the apparent presence of an association in 

Finland, Sweden and Norway where wild-type virus circulated coincident with the vaccination program, whereas no 

association was seen in Ontario where wild-type virus was no longer circulating at the time of the vaccination 
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program. We were not able to address this hypothesis in the SOMNIA study, but it remains a focus area that will 

likely require a global cooperative research effort. 

This retrospective and observational study has several limitations. Despite multiple study sites, statistical power in 

the restricted period analysis was limited due to fewer cases and low pH1N1 vaccination coverage (online 

supplement Table 2). For Focetria-MF59, the only country with high coverage in the at-risk age group was 

Argentina, but the number of cases was low. Although we used standardized case definitions, case misclassification 

could have occurred as diagnostic procedures and information capture differed across sites. Nonetheless, our 

application of the Brighton Collaboration case definition criteria for all cases decreased the likelihood of 

misclassification. Misclassification of exposure could have happened from incomplete recording of pH1N1 

vaccinations due to lack of access to school vaccination records in Taiwan. Non-exhaustive inclusion of cases in 

Ontario (due to distance) and the Netherlands (timeliness of consent) led to incomplete inclusion of cases at the 

data lock point. For the Netherlands, where consent for study participation was needed, vaccinated cases might be 

more likely to give consent (given public awareness), which could overestimate the risk; however no significant 

association was observed. For Ontario, data collection had not been totally completed by the end of the study, but 

this was not related to vaccination status and therefore impacted power alone. Selection bias was detected in 

Switzerland for the adult cases (not for children), when we compared our cases to a published series of exposed 

cases,37 demonstrating lack of inclusion of exposed cases in adults – this led to exclusion of adult cases and controls 

in Switzerland. Finally, although we used a common protocol across all sites, it was necessary to provide flexibility 

for implementation at the local study site level for identifying cases and controls. This might have introduced 

variability; however, the main criterion in selecting controls was that they be representative of individuals receiving 

pH1N1 vaccination in the general population and that exposure information was obtained similarly for cases and 

controls. 

Conclusion 

We did not observe increases in population-based narcolepsy IRs associated with pH1N1 vaccination campaigns at 

participating sites, except for Sweden. In the case-control analysis, we did not detect evidence of a significant 

increased risk of narcolepsy following any of the adjuvanted pH1N1 vaccines in children or adults in our study 

population, although upper limits of estimates do not exclude small to moderate risks. The SOMNIA study 

highlights the usefulness of international collaboration in the evaluation of vaccine safety signals for rare adverse 

events. Using a common protocol and methods reduces heterogeneity, permits contribution of data from countries 

across the world, and allows for combining data for increased statistical power necessary to address questions 

about rare events. 
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Supplementary Material 

Supplementary Table 1: Number of cases with a diagnosis of narcolepsy in the period before and after awareness 
in the EU and MSLT referral after study start and among them availability of EDS/cataplexy date (for those only 
EDS dates after April 1, 2009 are included)  

 
Nether-
lands 

Switzerland 
Spain, 
Catalonia 

Spain, 
Valencia 

Argentina 
Canada, 
Ontario 

Taiwan Total 

Children         

Total cases included [N] 22* 22 5 11 11 28 51 150 

Diagnosis before awareness in EU 
(August 2010) & MSLT referral after 
study start (April 1, 2009) 

3 1 0 2 1 11 10 28 

EDS/cataplexy date available and 
after study start (April 1, 2009) 

1 0 0 0 1 <6 10 <19 

Delay between EDS and diagnosis 
(Median days)# 

1735 453  878  481 140  

Diagnosis after awareness in EU (Jul 
31, 2010) & MSLT referral after study 
start (April 1, 2009) 

19 21 5 9 10 17 41 122 

EDS/cataplexy date available and 
after study start  (April 1, 2009)  

15 13 2 6 9 10 39 100 

Delay between EDS and diagnosis 
(Median days)# 

808 571 761 619 238 596 127  

         

Adults         

Total cases included [N] 32  13 36 4 39 86 210 

Diagnosis before awareness in EU 
(August 2010) & MSLT referral after 
study start (April 1, 2009) 

7  5 6 0 11 20 49 

EDS/cataplexy date available for (Dx 
cases before Aug 2010) 

0  0 0 0 <6 20 <26 

Delay between EDS and diagnosis 
(Median days)# 

2066  - 870 - 738 118  

Diagnosis after awareness in EU (Jul 
31, 2010) & MSLT referral after study 
start (April 1, 2009) 

25  8 30 4 28 66 161 
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Nether-
lands 

Switzerland 
Spain, 
Catalonia 

Spain, 
Valencia 

Argentina 
Canada, 
Ontario 

Taiwan Total 

EDS/cataplexy date available and 
after study start (April 1, 2009) 

6  3 23 3 8 61 106 

Delay between EDS and diagnosis 
(Median days)# 

2654  1181 595 952 713 135  

*Nine child cases born between 2004 and 2009 were included in a case-coverage study for reasons described in the 
methods nd not the case control The child case total for the Netherlands includes nine from the case-coverage 
study and 13 from the case-control study. 

**Cell values that represent case counts of five or fewer (for Ontario, Canada) or two or fewer (for Taiwan) cases 
may not be reported as absolute numers due to patient privacy regulations and are represented as range (i.e. ≤ n). 

# Median delays calculated between date of available EDS date and Diagnosis date in subjects diagnosed after start 
of study period (April 1, 2009), not considering date of MSLT or EDS to be after study entry 
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Supplementary Table 2: Overview of national immunization programs for H1N1pdm09 

Country Vaccine(s) Used Target 
Population 

Population Based overage Rates 

Argentina Focetria Risk groups < 4 yo in risk groups=86% 

> 4 yo in risk groups= 99% 

Canada Arepanrix, 
Unadjuvanted for 
pregnant women only, 
Panvax H1N1 (CSL) for 
pregnant women late in 
program 

Entire 
population 

In those aged ≥12 years: 

Ontario: 32.2% (30.3%-34.0%) 

Manitoba: 37.2% (33.2%-41.2%) 

Alberta: 37.1% (33.9%-40.2%) 

British Columbia: 35.6% (32.8%-38.4%) 

 

Denmark Pandemrix Risk groups 6% among adults 

Netherlands Pandemrix (<5 yo) 

Focetria (> 6mo) >5 yo 

Focetria, Pandemrix 
(family of children < 5 
yo) 

Risk groups < 5 yo= 75% 

Risk groups 70% 

Spain 

Valencia 

Focetria 6 -17 years 

Pandemrix 18 to 59 y-o, 
Focetria > 60, 

Panenza for pregnant 
women 

Risk groups SIDIAP:  

< 18: 0.82%, all population 3.5 % 

Valencia:  

6 months-14 years (with risk factors):11% 

15-59 years (with risk factors): 13% 

60 years or older (with risk factors): 28% 

Pregnant women= 9% 

Healthcare workers & professionals providing special 
services: 30% 

Sweden Pandemrix Entire 
population 

< 18 yo = 12%  

> 18 yo = 12-14%  
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Switzerland Focetria 

(<6mo-18 yoa, pregnant 
women) 

Pandemrix (>18yoa), 
Celtura (>3yoa), Fluzone 
(>3months) 

Risk groups  < 18 yo= 10% 

 > 18 yo = 20% 

Taiwan AdimFlu-S, 

unadjuvanted (≥1 yo) 

Focetria (≥6 mo) 

Entire 
population 

6 mo–18 yo = 67% 

≥19 yo = 12% 
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Supplementary table 3: Table Population based frequency of the HLA DQB1*0602 polymorphism at selected 
sites. 

 

Country HLA DQB1*0602 
Polymorphism 
Population Based 
Frequency 

Source 

Taiwan 3.4% Chen P.L., et al., Comprehensive Genotyping in Two Homogeneous 
Graves’ Disease Samples Reveals Major and Novel HLA Association 
Alleles. PLoS ONE 2011 

Argentina 15.2% Caputo M., et al., GENOTIPIFICACION DEL GEN HLA DQB1 EN DIABETES 
AUTOINMUNE DEL ADULTO (LADA). MEDICINA (Buenos Aires) 2005 

Canada 
(Ontario) 

18 - 24.8% (depending 
on source) 

Personal communication, Kathryn Tinckam, University of Toronto, ON, 
Canada 

Kotb M., et al., An immunogenetic and molecular basis for differences in 
outcomes of invasive group A streptococcal infections, Nature Medicine 
2002 

Canada (BC) 25.33 Poirier G., et al., HLA Antigens in Narcolepsy and Idiopathic Central 
Nervous System Hypersomnolence. Sleep 1986 

The 
Netherlands 

24% Tafti M., et al., DQB1 Locus Alone Explains Most of the Risk and 
Protection in Narcolepsy with Cataplexy in Europe. Sleep 2014 

Spain 
(IDIAP) 

15% Balas A., et al., Allelic and haplotypic HLA frequency distribution in 
Spanish hematopoietic patients. Implications for unrelated donor 
searching. Tissue Antigens 2011 

Spain 
(FISABIO) 

14.5% Crespi C., et al., HLA polymorphism in a Majorcan population of Jewish 
descent. Tissue Antigens 2002 

Switzerland 12-21% (depending on 
source) 

Personal communication, Jan Bonhoeffer, University Children’s’ Hospital 
Basel, Switzerland. 

Buhler S., et al., The Heterogeneous HLA Genetic Makeup of the Swiss 
Population. PLoS ONE 2012 
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Supplementary Figure 1: Graphic representation of patient inclusion for primary index date analysis: Patient A 
has MSLT after April 2009 and is included, patient B will be excluded since MSLT onset is prior to start of study 
period. Patient C is included 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

207 
 

5.3 ENHANCING GLOBAL VACCINE PHARMACOVIGILANCE: PROOF-OF-CONCEPT STUDY ON 

ASEPTIC MENINGITIS AND IMMUNE THROMBOCYTOPENIC PURPURA FOLLOWING MEASLES-MUMPS 

CONTAINING VACCINATION. 

 

 

 

Silvia Perez-Vilar 

Daniel Weibel  

Miriam Sturkenboom  

Steven Black  

Christine Maure  

Jose Luis Castro  

Pamela Bravo-Alcántara  

Caitlin N. Dodd  

Silvana A. Romio  

Maria de Ridder  

Swabra Nakato  

Helvert Felipe  

Molina-León  

Varalakshmi Elango  

Patrick L.F. Zuber  

WHO Global Vaccine Safety-Multi Country Collaboration 

 

 

 

 

 

 

Vaccine 36.3 (2018): 347-354. 



208 
 

Abstract 

New vaccines designed to prevent diseases endemic in low and middle-income countries (LMICs) are now being 

introduced without prior record of utilization in countries with robust pharmacovigilance systems. To address this 

deficit, our objective was to demonstrate feasibility of an international hospital-based network for the assessment 

of potential epidemiological associations between serious and rare adverse events and vaccines in any setting. This 

was done through a proof-of-concept evaluation of the risk of immune thrombocytopenic purpura (ITP) and aseptic 

meningitis (AM) following administration of the first dose of measles-mumps-containing vaccines using the self-

controlled risk interval method in the primary analysis. The World Health Organization (WHO) selected 26 sentinel 

sites (49 hospitals) distributed in 16 countries of the six WHO regions. Incidence rate ratios (IRR) of 5.0 (95% CI: 2.5-

9.7) for ITP following first dose of measles-containing vaccinations, and of 10.9 (95% CI: 4.2-27.8) for AM following 

mumps-containing vaccinations were found. The strain-specific analyses showed significantly elevated ITP risk for 

measles vaccines containing Schwarz (IRR: 20.7; 95% CI: 2.7-157.6), Edmonston-Zagreb (IRR: 11.1; 95% CI: 1.4-90.3), 

and Enders´Edmonston (IRR: 8.5; 95% CI: 1.9-38.1) strains. A significantly elevated AM risk for vaccines containing 

the Leningrad-Zagreb mumps strain (IRR: 10.8; 95% CI: 1.3-87.4) was also found. This proof-of-concept study has 

shown, for the first time, that an international hospital-based network for the investigation of rare vaccine adverse 

events, using common standardized procedures and with high participation of LMICs, is feasible, can produce 

reliable results, and has the potential to characterize differences in risk between vaccine strains. The completion of 

this network by adding large reference hospitals, particularly from tropical countries, and the systematic WHO-led 

implementation of this approach, should permit the rapid post-marketing evaluation of safety signals for serious 

and rare adverse events for new and existing vaccines in all settings, including LMICs.  
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Introduction 

With increasing number of vaccine products available, expansion of vaccine manufacturing capabilities, and 

availability of new vaccines targeted against diseases highly prevalent in low and middle-income countries (LMICs) 

(1), there is a need to enhance vaccine pharmacovigilance infrastructures globally (2). Many countries do not have 

technical capacity and/or large enough populations to permit the evaluation of rare adverse events following 

immunization (AEFI) (2, 3). Enhancement of vaccine pharmacovigilance capabilities is a key activity for the World 

Health Organization (WHO) Global Vaccine Safety Initiative (GVSI) (4-6). A previous international pilot study 

sponsored by WHO and the Food and Drug Administration (FDA), to evaluate the safety of the 2009-10 pandemic 

influenza vaccine, demonstrated that multinational hospital-based vaccine safety studies were feasible and could 

provide a useful framework for the evaluation of safety concerns (7). Optimization of operational models, 

centralization of case adjudication, improvements in data quality control, closer supervision of data abstraction, 

and demonstration of the feasibility of such international collaborations, with high participation from LMICs, were 

identified by WHO as issues to be resolved (7). Thus, for a subsequent demonstration project, it was important to 

reach higher participation from LMICs, select a vaccine widely used, and an AEFI that, at least in severe cases, 

would require hospitalization (2). It was also essential to select an AEFI known to be associated with some of the 

vaccine strains being used.  

Measles-containing vaccines are live-attenuated, often given in combination with mumps and rubella vaccines. The 

first dose is usually given at one year of age, although it is administered at nine months of age in countries with 

ongoing measles transmission (8). The second dose is either given at 15-18 months of age, at 4-6 years of age, or in 

campaigns. Our objective was to demonstrate feasibility of an international hospital-based network for assessing 

epidemiological associations between rare adverse events and vaccines in any setting, including LMICs. Two well-

established associations were chosen: risk of aseptic meningitis (AM) following first dose of mumps-containing 

vaccines (9-11), and risk of immune thrombocytopenic purpura (ITP) following first dose of measles-containing 

vaccines (8, 12-14). 

Methods 

International hospital-based retrospective observational study conducted as proof-of-concept for the investigation 

of rare AEFI using two analytical case-only methods: self-controlled risk interval (SCRI) and case-crossover (15, 16). 

For this purpose, WHO selected 26 sentinel sites (49 hospitals) distributed in 16 countries of the six WHO regions 

(Figure 1). Selection criteria and capability assessments are described elsewhere (Bravo-Alcántara P, Perez-Vilar S, 

Molina-León HF et al. (accepted for publication in Vaccine)). 
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Figure 1. Geographical distribution of participating hospitals in the WHO regions 

 

Disclaimer: Lines on the map represent approximate border lines for which there may not yet be full agreement. 

Study population  

The study population included children ages 9-23 months admitted to a network-participating hospital during 

January 2010-March 2014, with a discharge diagnosis of either AM or ITP. Only individuals living in the pre-defined 

catchment area of the hospital, or, for those hospitals without a pre-specified catchment area, in the same city in 

which the hospital was located, were eligible.  

Case ascertainment and classification 

Participating hospitals identified potential cases through hospital discharge databases using pre-specified ICD-

9/ICD-10 codes (Supplementary material; Table S-1) whereas hospitals not using a discharge codification system or 

not having electronic databases used free text. A trained physician or nurse blinded to vaccination status reviewed 

medical records of potential cases according to established case definitions (Supplementary material; Tables S-2 

and S-3). Potential cases for which medical records were not available were excluded. Only first episodes of AM or 

ITP were considered.  

Potential AM cases were excluded if they met criteria for encephalitis (17) (Supplementary material; Table S-4), the 

medical records showed that a physician ruled out a diagnosis of AM, a meningitis pathogen other than mumps 

virus was identified in cerebrospinal fluid (CSF), CSF protein concentration (in absence of traumatic lumbar 

puncture or intracerebral event) was ≥50mg/dL with ≥10 leukocytes/mm3 and glucose ≤40mg/dL in CSF, or if 

polymorphonuclear leukocytes (PMNs) in the CSF were >1,000/mm3 with glucose ≤40mg/dL (modified from 

Lussiana et al.) (18). 

Potential ITP cases were excluded if classified as chronic (defined as lasting >6 months) (12, 14), with onset of 

symptoms occurring >42 days prior to hospital admission, or if a physician diagnosis in the medical records ruled 
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out the diagnosis of ITP or thrombocytopenia. ITP cases with medical conditions associated with higher ITP risk 

(congenital/hereditary thrombocytopenia, aplastic anemia, defibrination syndrome, acquired hemolytic anemia, 

chronic liver disease, malignancy, or drug-induced thrombocytopenia) were also excluded. For the analyses 

presented here, patients treated with platelet-depleting medications (amiodarone, heparin, carbamazepine, 

phenytoin, valproic acid, quinidine, quinine, rifampicin, ethambutol, sulfisoxazole, vancomycin, ampicillin, 

trimethoprim-sulfamethoxazole, naproxen, or ranitidine) during hospitalization or in the 42 days prior, unless there 

was evidence that the drug was administered after disease onset date, were also excluded.  

All cases were classified as either confirmed (Level 1-3 of diagnosis certainty) or non-confirmed (Supplementary 

material; Tables S-2 and S-3). Only confirmed cases entered the analyses. 

The event date for AM cases was onset date of signs and symptoms suggestive of meningitis, admission date, or 

date of first physician diagnosis, whichever occurred earlier. The event date for ITP cases was onset date of 

spontaneous bleeding (19), date of first laboratory result with a platelet count <50,000/μL performed within 42 

days prior to hospital admission or during hospitalization, admission date, or date of first physician diagnosis, 

whichever occurred earlier. 

Vaccination status 

Vaccination status was retrieved, for confirmed cases only, from vaccine registries, vaccination cards, and medical 

records. The exposure of interest was first dose of measles/mumps-containing vaccine. Patients were considered as 

non-vaccinated when any other vaccinations, but not measles-containing vaccines, were registered in the consulted 

sources. Individuals without any vaccination record were excluded from the study. 

Data collection and sharing 

Sites collected data using a common protocol, and transferred them into electronic case report forms using the 

purpose-built Chameleon® system (Erasmus Medical Center (EMC)). Chameleon® classified the cases automatically 

according to their level of diagnostic certainty. Outcome and exposure-coded datasets containing non-identifiable 

time interval-only data created by Chameleon® were uploaded to a central remote research environment, located 

at EMC, through a secure connection.  

Quality assurance 

In parallel with the study protocol and manual of procedures, a quality assurance plan was developed. It included 

roles and responsibilities for feasibility assessment, protocol development, data collection/transformation, analysis 

and reporting. The coordination team trained investigators through on-site and/or virtual meetings and through a 

simulation exercise using dummy cases, reviewed data submitted using standardized procedures, and sent reports 

to the sites detailing inconsistencies and missing data found. Following these communications, sites were asked to 

submit final data for analyses. Detailed information on quality assurance activities implemented and operating 

procedures followed for data collection, entry, and submission can be found elsewhere (Bravo-Alcántara P, Perez-

Vilar S, Molina-León HF et al. (accepted for publication in Vaccine)).  

 Statistical analyses 

The risks of AM following mumps-containing vaccination and ITP following measles-containing vaccination were 

estimated using self-controlled risk interval (SCRI) analyses (15, 20, 21). The observation period started on the day 

following first-dose vaccination and ended on day 84 post-vaccination. Days 8-35 were considered the risk period, 

days 1-7 and 36-42 washout periods, and days 43-84 the non-risk period. Thus, only vaccinated cases for which the 
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event occurred within 84 days following vaccination were included. Poisson regression conditioned on the fact that 

the event occurred was used to estimate the incidence rate ratio. Differential risk of AM and ITP in the risk and 

non-risk windows due to circulation of wild viruses linked to the diseases of interest and age were adjusted for in 

the models as follows: (1) cut-off points for seasonality were March 31, June 30, September 30, and December 31; 

(2) age was controlled for with periods ending at 365, 457, 549, 641 days, and 732 days of age. 

Per protocol, a case-crossover design was chosen as secondary analysis (22). The observation period was 84 days 

prior to event occurrence (case window: days -1 to -42; control window: days -43 to -84). Thus, cases without at 

least 84 days of follow-up prior to the event were excluded, regardless of vaccination status. The risk periods were 

days -8 to -35 for the case window and days -50 to -77 for the control window. The remaining periods were 

considered washout periods. Crude odds ratios were estimated using conditional logistic regression.  

One site did not collect complete vaccination dates for any of the confirmed cases; thus, the day of vaccination was 

randomly imputed by Chameleon® within the month and year provided. Because of the importance of having exact 

vaccination dates for case-only methods, analyses with and without cases from this site (Iran-01) were performed.  

Because the risks for AM and ITP may vary by virus strain, (8-11, 23-25), exploratory analyses were performed by 

mumps and measles strain received, respectively. The two participating Iranian sites reported that three measles-

mumps-rubella (MMR) vaccines, manufactured by Razi Vaccine, Serum Institute of India and Sanofi Pasteur, were 

used in the country during the study period, but they could not identify which specific product was administered to 

an individual patient. Thus, a separate analysis for the two Iranian sites was also conducted. Measles/mumps 

strains included in the vaccine products used by participating countries are shown in Table 1. 

Table 1. Measles and mumps strains included in the vaccine products used by the participating countries during the 

study period  

Vaccine product Measles strain Mumps strain 

Priorix®, GlaxoSmithKline Biologicals Schwarz RIT 4385*  
Priorix Tetra®, GlaxoSmithKline Biologicals Schwarz RIT 4385*  
MMR, Shanghai Institute of Biological Products, Co., Ltd. Shanghai-191 S79 
Measles, Lanzhou Institute of Biological Products Co., Ltd. Shanghai-191 - 
Measles-Rubella, Beijing Tiantan Biological Products, Co.,Ltd. Shanghai-191 - 
M-M-R-II®, Merck Sharp & Dohme Corp. Enders´ Edmonston Jeryl Lynn (Level B) 
MMR, Razi Vaccine and Serum Research Institute AIK-C Hoshino 
M-M-RVAXPRO®, Sanofi Pasteur-MSD Enders´Edmonston Jeryl Lynn (Level B) 
Trimovax®, Sanofi Pasteur Schwarz Urabe Am9 
Measles, Serum Institute of India Pvt. Ltd Edmonston-Zagreb - 
Measles-Rubella, Serum Institute of India Pvt. Ltd Edmonston-Zagreb - 
MMR, Serum Institute of India Pvt. Ltd Edmonston-Zagreb Leningrad-Zagreb 
Tresivac®, Serum Institute of India Pvt. Ltd Edmonston-Zagreb Leningrad-Zagreb 
Rouvax®, Sanofi Pasteur Schwarz - 

Abbreviations: MMR (measles-mumps-rubella); * Derived from Jeryl Lynn strain 

All analyses were conducted using SAS 9.4 (SAS Institute, Inc., Cary, NC). The WHO Ethics Review Committee and all 

local Ethics Committees approved the study and provided a waiver of informed consent according to article 32 of 

the Declaration of Helsinki (26). Given the need for accurate information on vaccination status, a waiver to contact 

parents or legal representatives in case of lack of vaccination information was also obtained.  

Results 
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A total of 84 confirmed AM cases and 183 confirmed ITP cases were eligible for inclusion in the case-only analyses. 

Number of confirmed cases successfully linked to vaccination records by site/country, level of diagnosis certainty, 

and site characteristics, including case ascertainment methods, vaccination data sources, and identifiers used to 

link exposures and outcomes, are shown in Table 2.  
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Table 2. Characteristics of participating sentinel sites  

Site
1 

Beds Case 
ascertainment 

Vaccination status ascertainment Common outcome-exposure identifier Confirmed aseptic 
meningitis cases

2
  

Confirmed ITP cases
2
  

 (n) ICD 
codes 

Free 
text 

Electronic 
vaccine 
registry 

Vaccination 
cards 

Medical 
records 

Parents 
contacted

3
 

Unique 
identification 
number 

Clinical 
history 
number 

National 
identity 
card 

Level 
1 
(n) 

Level 
2 
(n) 

Level 
3 
(n) 

Level 
1 
(n) 

Level 
2 
(n) 

Level 
3 
(n) 

Albania 240 ICD-9 - ✔ ✔ - - - ✔ - 1 - - 5 - - 

Argentina-
01 

330 ICD-10 - ✔ - - ✔ - ✔ ✔ 1 - - 6 - 1 

Argentina-
02 

78 ICD-10 - ✔ - - ✔ - ✔ ✔ - - - 1 - - 

Argentina-
03 

380 ICD-10 - ✔ - ✔ ✔ - ✔ ✔ - - - 4 - - 

Argentina-
04 

246 ICD-10 - ✔ - - - - ✔ ✔ - - - - - - 

Argentina-
05 

224 ICD-10 - ✔ - - - - ✔ ✔ - - - 4 - - 

Argentina-
06 

61 ICD-10 - ✔ - - ✔ - ✔ ✔ - - - 2 - - 

Australia-
01 

334 ICD-10 - ✔ - - - ✔ ✔ - 2 5 - 5 - 2 

Australia-
02 

184 ICD-10 - ✔ ✔ - - ✔ ✔ - - - 1 4 - - 

Chile-01 440 ICD-10 - ✔ - - - - - ✔ 3 - - 2 - - 

Chile-02 300 ICD-10 - ✔ - - ✔ - - ✔ 5 - 1 4 - - 

Chile-03 704 ICD-10 - ✔ - - - - - ✔ - - - 6 - - 

Chile-04 876 ICD-10 - ✔ - - ✔ - - ✔ - 1 - 5 - - 

China 500+ ICD-10 - ✔ - - - - - - - - 1 7 - - 

Colombia 340 ICD-10 - ✔ - - - - - ✔ - - - 2 - - 

Costa Rica 313 ICD-10 - ✔ - - ✔ - - ✔ 1 2 1 13 - - 

Honduras 1,109 ICD-10 - - - ✔ ✔ - ✔ ✔ - - - 1 - - 

India 1,200 ICD-9, 
ICD-10 

- - - ✔ ✔ ✔ - - 3 5 - 1 1 - 

Iran-01 246 ICD-10 - - - ✔ - - - - 8 16 2 14 3 - 

Iran-02 340 ICD-10 - - - ✔ ✔ - - - 9 6 1 20 - - 

Peru 465 ICD-10 - - - ✔ ✔ - - ✔ - - - 7 - - 

Singapore 830 ICD-9, 
ICD-10 

- ✔ - ✔ - ✔ ✔ ✔ - - - 17 1 2 

South 
Africa 

3,200 ICD-10 - - - ✔ ✔ - - - - 1 2 - - - 

Spain
4
 10,987 ICD-9 - ✔ - - - ✔ - - 2 - 3 32 2 6 

Uganda 254 - ✔ - ✔ ✔ ✔ - - - - - - - - - 

Uruguay 245 ICD-10 - ✔ - - - - - ✔ 1 - - 3 - - 
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1The study period was January 2010 to March 2014, except for Australia, which retrospectively included the first 25 most recent cases that fulfill inclusion 

criteria for each condition (for both sites combined) 

2 Only the highest level of diagnosis certainty achieved applies. The cases correspond to confirmed cases for which a link to vaccination data was available. 

Confirmed cases for which vaccination status was unknown were excluded from the study 

3 Parents contacted were asked to provide a copy of the vaccination cards 

4 Spain was designated as one site, but included all public hospitals of the Valencia Region, its hospital beds correspond to the total number of beds from the 

combined hospitals 
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Among 84 AM cases, 80 (95%) received a first dose of mumps-containing vaccines (Table 3). A total of 51 (61%) and 

a total of 73 (87%) were eligible for inclusion in the SCRI and case-crossover analyses, respectively. The risk of AM 

following mumps containing vaccines was 10.9 (95% CI 4.2-27.8) with the SCRI analysis. Sensitivity analyses 

excluding Iran-01 resulted in an IRR estimate of 11.7 (95% CI 3.5-39.3). Intervals between first dose of mumps-

containing vaccine and aseptic meningitis onset for cases included in the strain-specific SCRI analyses are shown in 

Figure 2a. A significantly increased AM risk was found for the Leningrad-Zagreb mumps strain (IRR: 10.8; 95% CI: 

1.3-87.4). Risk estimates for S79, UrabeAm9 and RIT 4385/Jeryl-Lynn strains could not be assessed given small 

numbers. For the vaccine products used in Iran (Hoshino/Leningrad-Zagreb/UrabeAm9), an IRR of 20.3 (95% CI: 4.8-

85.2) was identified (Table 4). Case-crossover analysis produced an overall unadjusted OR of 35.0 (95% CI: 4.8-

255.5). When cases from Iran-01 were excluded, the OR estimate was 22.0 (95% CI: 3.0-163.2).  

Table 3. Characteristics of children with confirmed aseptic meningitis or immune thrombocytopenic purpura (ITP)  

 

Characteristic Confirmed aseptic meningitis 
cases n=84 

Confirmed ITP cases  
n=183 

Male sex (n, %) 54 (64%) 98 (54%) 
Age at onset in months (median; IQR) 13 (12-15) 15 (12-19) 

Mumps-containing first dose vaccination (n, %) 80 (95%) - 
    Exact date known (n, %) 60 (75%) - 
    Vaccine brand known (n, %) 41 (51%) - 
    Age at vaccination in months (median; IQR) 12 (11-12.5) - 

Measles-containing first dose vaccination (n, %) - 172 (94%) 
    Exact date known (n, %) - 159 (92%) 
    Vaccine brand known (n, %) - 125 (73%) 
    Age at vaccination in months (median; IQR) - 12 (12-15) 

 

Two aseptic meningitis cases died during the observation period, one case in Spain 78 days after disease onset date 

and another case in Australia 608 days following disease onset. None ITP case was known to die during the 

observation period.  

Table 4. Risk of aseptic meningitis following mumps-containing vaccination and risk of immune thrombocytopenic 

purpura (ITP) following measles-containing vaccination; overall and by vaccine strain 

 SCRI analyses 

Mumps vaccine strain1 
Eligible confirmed aseptic 
meningitis cases2 

Follow-up 
(days) 

Relative incidence (IRR) 

 
Event in risk 
period  
(8-35 days) 

Event in non-risk 
period  
(43-84 days) 

Median 
(P25-P75) 

Unadjusted 
(95% CI) 

Adjusted 
95% CI 

Overall 
35 5 85 (85, 85) 10.9 (4.2- 

27.8) 
10.8 (4.0-

29.2) 

Overall3 
22 3 85 (85, 85) 11.7 (3.5-

39.3) 
12.4 (3.1-

49.1) 
Hoshino/Leningrad-
Zagreb/UrabeAm9 

27 2 85 (85, 85) 20.3 (4.8-
85.2) 

Non-
estimable 

Hoshino/Leningrad-
Zagreb/UrabeAm9* 

14 0 85 (85, 85) Non-
estimable 

Non-
estimable 

Leningrad-Zagreb 7 1 85 (85, 85) 10.8 (1.3- 6.4 (0.3-
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87.4) 124.4) 

RIT 4385/Jeryl Lynn (Level B) 
0 1 85 (85, 85) Non-

estimable 
Non-

estimable 

Measles vaccine strain Eligible confirmed ITP cases1 
Follow-up 
(days) 

Relative incidence (IRR) 

 
Event in risk 
period  
(8-35 days) 

Event in non-risk 
period  
(43-84 days) 

Median 
(P25-P75) 

Unadjusted 
95% CI 

Adjusted 
95% CI 

Overall 36 12 85 (70, 85) 5.0 (2.5-9.7) 5.6 (2.7-11.9) 

Overall3 
36 8 85 (70, 85) 7.7 (3.5-

17.3) 
9.1 (3.7-22.3) 

AIK-C/ Edmonston-Zagreb 
/Schwarz 

2 5 85 (85, 85) 0.51 (0.10-
2.54) 

0.54 (0.08-
3.55) 

Edmonston-Zagreb 
7 1 85 (67, 85) 11.1 (1.4-

90.3) 
8.4 (0.7-

100.3) 

Enders´ Edmonston 
11 3 85 (43, 85) 8.5 (1.9-

38.1) 
28.7 (1.9-

443.5) 

Schwarz 
14 1 85 (76, 85) 20.7 (2.7-

157.6) 
Non-

estimable 

Shanghai-191 
0 1 85 (85, 85) Non-

estimable 
Non-

estimable 
1 There were no cases within days 8-35 or days 43-84 following first dose vaccination with mumps strains S79 or 

Urabe Am9. 

2 The remaining cases occurred during the washout periods (days 1-7, days 36-42 following vaccination) 

3 Excluding cases from Iran-01 since this site did not provide exact vaccination dates 
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Figure 2a. Interval between first dose of mumps-containing vaccines and aseptic meningitis onset by mumps 

vaccine strain 

 

 

Among 183 ITP cases, 172 (94%) were vaccinated with first dose of measles-containing vaccines. Of them, 55 (30%) 

and 152 (83%) were eligible for inclusion in the SCRI and case-crossover analyses, respectively. The risk of ITP 

following measles vaccination was 5.0 (95% CI: 2.5-9.7); exclusion of cases from Iran-01 resulted in an IRR estimate 

of 7.7 (95% CI: 3.5-17.3). Intervals between first dose of measles-containing vaccine and ITP onset for cases 

included in the strain-specific SCRI analyses are shown in Figure 2b. This analysis showed a significantly elevated ITP 

risk for measles vaccines containing Schwarz (IRR: 20.7; 95% CI: 2.7-157.6), Edmonston-Zagreb (IRR: 11.1; 95% CI: 

1.4-90.3), and Enders´Edmonston (IRR: 8.5; 95% CI: 1.9-38.1) strains. Risk estimates for Shanghai-191 could not be 

assessed because of small numbers. Our estimates for the vaccine product/s used in Iran (AIK-C/ Edmoston-

Zagreb/Schwarz) did not show an increased risk of ITP (IRR: 0.51; 95% CI: 0.10-2.54) (Table 4). The case-crossover 

analysis produced an overall unadjusted OR of 4.7 (95% CI: 2.1-10.7). When cases from Iran-01 were excluded, the 

OR estimate was 6.6 (95% CI: 2.6-16.9).  
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Figure 2b. Interval between first dose of measles-containing vaccines and immune thrombocytopenic purpura) ITP 

onset by measles vaccine strain 

 

 

Discussion 

The success of this proof-of-concept study in obtaining participation and data useful for analysis from sites located 

in all regions of the world using a common protocol has demonstrated the feasibility of international collaborative 

hospital-based studies, with high participation of LMICs, for the investigation of serious and rare AEFI. Moreover, 

the study has confirmed increased risks of AM following first dose of mumps-containing vaccines, and of ITP 

following first dose of measles-containing vaccines. It has also shown, potential risk differences between vaccine 

strains for both associations. The elevated risk estimates found for the Leningrad-Zagreb mumps strain are 

consistent with previous studies (27, 28). Regarding Jeryl-Lynn-derived strain vaccines, although the study did not 

have enough power to confirm the absence of risk for these strains, our finding of zero cases in the risk window 

was consistent with the hypothesis of no association (25, 29). The two Iranian sites reported that three vaccine 

products, containing the mumps strains Hoshino, Leningrad-Zagreb and UrabeAm9 were used during the study 

period, but they did not differentiate between them. Therefore, we could not assign the high risk of AM identified 

in Iran to one or other of these three strains (23, 24, 27, 28, 30-32). This would require further investigation in 

subsequent studies, particularly to determine the risk associated with the Hoshino strain, given the limited 

literature available on its safety profile (33-36). AM usually occurs within 2-5 weeks following mumps vaccination 

(9, 11, 31, 32, 37, 38); therefore, our study used a risk window of 8-35 days post-vaccination. Our study found a 

statistically significant risk when the washout period (days 1-7 and days 36-42 post-vaccination) was compared to 

the non-risk periods (days 43-84 post-vaccination) for the vaccine/s products used in Iran (IRR: 12.9; 95% CI: 2.8-

59.7), which suggests the possibility of an increased risk also for the washout period, that deserves investigation in 

future studies.  
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The elevated risk of ITP following measles-containing vaccination is consistent with the literature (12-14). Our 

strain-specific unadjusted analysis showed a significantly elevated ITP risk for measles vaccines containing the 

Schwarz, Edmonston-Zagreb, and Enders´Edmonston strains. No risk of ITP was identified in Iran, which reported 

the concurrent distribution of three vaccine products including the AIK-C, Edmonston-Zagreb and Schwarz strains, 

without distinguishing between them. Among 172 vaccinees included in this study, at least 155 (90%) received 

MMR or measles-rubella vaccines. Given the known association between wild rubella infection and ITP (39), and 

the existence of a few studies showing mostly mild thrombocytopenia following rubella vaccination in some adults 

(19, 40-42), a potential contribution of the rubella component of the vaccine to our findings may not be excluded.  

Case-only methods can be efficient epidemiological designs for use in vaccine safety, particularly for LMICs, given 

that population denominators or separate controls are not required; moreover, time-fixed confounders are 

inherently adjusted for (16). Self-controlled case series (SCCS) methods have been successfully implemented in 

similar international collaborations, such as the hospital-based international collaborative investigation of Guillain-

Barre syndrome following the H1N1 2009-2010 pandemic influenza vaccination (7), and the investigation of the 

association between intussusception and rotavirus in Mexico and Brazil (43). In our study, some of the participating 

sites could not identify end of the follow-up period independently of the event being investigated, thus, modifying 

the duration of the observation period in ways that could potentially bias results (44). The SCRI approach simplifies 

the SCCS design by reducing the length of the control interval (21). The selection of shorter non-risk periods, as 

done in our study under the assumption that participants were not lost to follow-up during this 84-day period, not 

only may solve this limitation for LMICs, but may also decrease the effect of time-varying confounders on the risk 

estimates, because risk variations in such a short period may be negligible (21). Nonetheless, adjustments for age 

group and seasonality were performed, when possible. For comparison purposes, we used case-crossover as a 

secondary analysis, given that it does not require follow-up after case occurrence; to decrease the possibility of bias 

associated with variations in the distributions of exposures over time, only one control window of the same 

duration as the case window was selected (16). The method requires the same underlying probability of vaccination 

in all time intervals, which is unlikely to hold true for pediatric vaccines, which are usually administered according 

to pre-specified schedules (16). However, our case-crossover unadjusted risk estimates for ITP following measles-

containing vaccines and for AM following mumps-containing vaccines were comparable to those obtained using the 

SCRI method, although the latter estimate was less stable due to limited study power.  

Case-only methods demand careful determination of event onset and vaccination dates. Therefore, we were 

particularly thorough in training site investigators. Given that one site could not provide exact vaccination dates 

(only month/year of vaccination were recorded), we performed analyses both excluding and including this site 

(using imputed dates for the site). Although these analyses showed differences in point estimates, all results were 

significant and the confidence intervals overlapped. Since SCRI uses data only from vaccinees, the approach 

minimizes potential misclassification due to incomplete/absent data on vaccination status, another frequent 

shortcoming in LMICs. Nonetheless, a possible limitation in the approach used here is that site variability may be a 

potential source of selection bias as the sites may have differences in access to vaccination records and in patient’s 

health-seeking behavior. Bias could also be associated with site differences in diagnosis capabilities and quality of 

medical records. Also, our use of self-controlled analytical methods did  not permit estimations of absolute risk 

(20).   

Our results show that collaborative studies for the investigation of different vaccine products by strain and 

potentially by manufacturer are feasible. The power to do so, and to investigate risk by country/region 

(Supplementary material; Tables S-5 and S-6) will increase when additional large hospitals with medical specialties 

for rare and difficult to diagnose events, high quality medical records and easy access to vaccination records are 

included (2). The inclusion of large referral hospitals with electronic discharge databases should decrease per case 
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investigation costs by reducing efforts associated with data extraction, study coordination, training, data quality 

assessment, and provide quality medical records and higher reliability in disease codification. The use of large 

hospitals would also reduce the likelihood of having participating hospitals that do not contribute cases to the 

analysis, as has occurred in some of our sites. Because easy and unequivocal linkages between hospital and 

vaccination records and proven access to vaccination information would increase data quality and efficiency, it is 

important to carefully select the participating sites, particularly in LMICs. Given the current interest on the 

development of vaccines for diseases such as dengue, malaria, and Zika, prioritization should be given to the 

addition of sites from tropical/sub-tropical areas in LMICs for future studies. 

Conclusions 

This collaboration has demonstrated, for the first time, that a multi-country hospital-based network with high 

participation of LMICs, using a common protocol and standardized procedures, permits the investigation of rare 

vaccine adverse events, can produce reliable results, and has the potential to characterize risk differences between 

vaccine strains. The completion of this network with the addition of large referral hospitals, including from 

tropical/subtropical countries, and the systematic implementation of this hospital-based approach, should permit 

the rapid and sustainable evaluation of safety signals for serious and rare AEFI for new and existing vaccines in all 

settings, and the comparison of safety profiles for vaccine products. 
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Supplementary material 

 

Table S-1. Identification of probable aseptic meningitis and immune thrombocytopenic purpura (ITP) cases through 
electronic databases 

 ICD-9 codes in first discharge diagnosis 
position 

ICD-10 codes in first discharge diagnosis 
position 

Aseptic meningitis 
probable cases 

047 (047.0-047.9) Meningitis due to 
enterovirus 

049.0-049.1 Other non-arthropod-borne viral 
meningitis 

072.1 Mumps meningitis 

321.2 Meningitis due to viruses not 
elsewhere classified 

322.0, 322.1, 322.9 Meningitis  

of unspecified cause 

A87.0 Meningitis due to enterovirus 

A87.1 Adenoviral meningitis 

A87.2 Lymphocytic choriomeningitis 

A87.8 Other viral meningitis 

A87.9 Viral meningitis, unspecified 

B26.1 Mumps meningitis 

G02.0 Meningitis due to viruses not 
elsewhere classified 

G03.0, G03.8, G03.9 Meningitis of 
unspecified cause 

ITP probable cases 287.30-287.39 Primary thrombocytopenia 

287.41-287.49 Secondary thrombocytopenia 

287.5 Thrombocytopenia, unspecified 

D69.3, D69.4 (D69.41-D69.43) Primary 
thrombocytopenia 

D69.5 (D69.51, D69.59) Secondary 
thrombocytopenia 

D69.6 Thrombocytopenia, unspecified 

Abbreviations: ITP (Immune Thrombocytopenic Purpura) 
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Table S-2. Aseptic meningitis case definition  

LEVEL 1 OF DIAGNOSTIC CERTAINTY (9)  

An aseptic meningitis case without exclusion criteria for which the medical record review found: 

Clinical evidence of acute meningitis such as fever, headache, vomiting, bulging fontanelle, nuchal rigidity or other 
signs of meningeal irritation 

AND 

Pleocytosis in cerebrospinal fluid (CSF) determinated as >5 leukocytes/mm3 (μL) 

AND 

Absence of any microorganism on Gram stain of CSF 

AND 

Negative bacterial culture of CSF in the absence of antibiotic treatment before obtaining the first CSF sample 

LEVEL 2 OF DIAGNOSTIC CERTAINTY (9) 

An aseptic meningitis case without exclusion criteria for which the medical record review found: 

Clinical evidence of acute meningitis such as fever, headache, vomiting, bulging fontanelle, nuchal rigidity or other 
signs of meningeal irritation 

AND 

Pleocytosis in cerebrospinal fluid (CSF) determinated as >5 leukocytes/mm3 (μL) 

AND 

Absence of any microorganism on Gram stain of CSF 

AND 

No bacterial culture of CSF obtained OR negative culture in the presence of antibiotic treatment before obtaining 
the first CSF sample 

LEVEL 3 OF DIAGNOSTIC CERTAINTY (this criteria is in addition to the existing Brighton Collaboration criteria (9))  

An aseptic meningitis case without exclusion criteria for which the medical record review found: 

A physician diagnosis of aseptic meningitis with no evidence to the contrary identified in the medical records 

INSUFFICIENT EVIDENCE (9) 

If the evidence available for an event is insufficient because information is missing 

NO CASE (9) 

An event does not meet the case definition if the investigation reveals a negative finding of a necessary criterion for 
classification in Levels 1-2-3 or if a different event is the final diagnosis 
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Table S-3. Immune thrombocytopenic purpura (ITP) case definition 

LEVEL 1 OF DIAGNOSTIC CERTAINTY (Adapted from O´Leary et al. (12)) 

A physician diagnosis of ITP with no indication that this diagnosis is differential or a rule out diagnosis and with no 
indication that it was drug-induced 

AND 

A laboratory result with a platelet count less than 50,000/μL, 

AND 

Evidence of spontaneous bleeding, including purpura, hemorrhagic oozing of skin lesions including rashes, 
hematoma, bruising, hematemesis, hemotochezia, occult bleeding per rectum, epistaxis, hemoptysis, hematuria, 
vaginal bleeding, conjunctival bleeding, intracranial bleeding 

LEVEL 2 OF DIAGNOSTIC CERTAINTY  

A physician diagnosis of ITP with no indication that this diagnosis is differential or a rule out diagnosis and with no 
indication that it was drug-induced 

AND 

A laboratory result with a platelet count less than 50,000/μL 

LEVEL 3 OF DIAGNOSTIC CERTAINTY  

A physician diagnosis of thrombocytopenia with no indication that this diagnosis is differential or a rule out 
diagnosis and with no indication that it was drug-induced 

AND 

A laboratory result with a platelet count less than 50,000/μL 

INSUFFICIENT EVIDENCE 

If the evidence available for an event is insufficient because information is missing 

NO CASE 

An event does not meet the case definition if the investigation reveals a negative finding of a necessary criterion for 
classification in Levels 1-2-3 or if a different event is the final diagnosis 

 

Table S-4. Encephalitis case definition: exclusion criteria 

LEVEL 1 OF DIAGNOSTIC CERTAINTY (17) 

Demonstration of acute inflammation of central nervous system parenchyma (±meninges) by histopathology 

LEVEL 2 OF DIAGNOSTIC CERTAINTY (Adapted from Brighton Collaboration (17)) 

Encephalopathy (e.g. depressed or altered level of consciousness, lethargy, or personality change lasting>24h) 
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AND one or more of the following: 

 Decreased or absent response to environment, as defined by response to loud noise or painful stimuli 

 Decreased or absent eye contact 

 Inconsistent or absent response to external stimuli 

 Decreased arousability 

 Seizure associated with loss of consciousness (as described in the medical records) 

OR focal or multifocal findings referable to the central nervous system, including one or more of the following: 

 Focal cortical signs (including but not limited to: aphasia, cortical blindness) 

 Cranial nerve abnormality/abnormalities 

 Visual field defect/defects 

 Presence of primitive reflexes (Babinski´s sign, glabellar reflex, snout/sucking reflex) 

 Motor weakness (either diffuse or focal; more often focal) 

 Sensor abnormalities (either positive or negative; sensory level) 

 Altered deep tendon reflexes (hypo-o hyperreflexia, reflex asymmetry) 

 Cerebellar dysfunction, including ataxia, dysmetria, cerebellar nystagmus 

AND two or more of the following indicators of inflammation of the central nervous system (CNS): 

 Fever (≥38ºC) 

 CSF pleocytosis (>5 leukocytes/mm3 (μL)) 

 Electroencephalography (EEG) findings consistent with encephalitis 

 Neuroimaging consistent with encephalitis 

LEVEL 3 OF DIAGNOSTIC CERTAINTY (Adapted from Brighton Collaboration (17))   

 

Encephalopathy (e.g. depressed or altered level of consciousness, lethargy, or personality change lasting>24h) 

AND one or more of the following: 

 Decreased or absent response to environment, as defined by response to loud noise or painful stimuli 

 Decreased or absent eye contact 

 Inconsistent or absent response to external stimuli 

 Decreased arousability 
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 Seizure associated with loss of consciousness (as described in the medical records) 

OR focal or multifocal findings referable to the CNS, including one or more of the following: 

 Focal cortical signs (including but not limited to: aphasia, cortical blindness) 

 Cranial nerve abnormality/abnormalities 

 Visual field defect/defects 

 Presence of primitive reflexes (Babinski´s sign, glabellar reflex, snout/sucking reflex) 

 Motor weakness (either diffuse or focal; more often focal) 

 Sensor abnormalities (either positive or negative; sensory level) 

 Altered deep tendon reflexes (hypo-o hyperreflexia, reflex asymmetry) 

 Cerebellar dysfunction, including ataxia, dysmetria, cerebellar nystagmus 

AND one of the following indicators of inflammation of CNS: 

 Fever (≥38ºC) 

 CSF pleocytosis (>5 leukocytes/mm3 (μL)) 

 Electroencephalography (EEG) findings consistent with encephalitis 

 Neuroimaging consistent with encephalitis 

LEVEL 3A OF DIAGNOSTIC CERTAINTY (Adapted from Brighton Collaboration (17)) 

 

Insufficient information is available to distinguish case between acute encephalitis or acute disseminated 
encephalomyelitis  

LEVEL 4 OF DIAGNOSTIC CERTAINTY (this criteria is in addition to the existing Brighton Collaboration criteria (17)) 

The medical record review found a physician diagnosis of encephalitis or encephalopathy with no indication in the 
medical records that this diagnosis is a differential or a rule out diagnosis will be excluded. 
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Table S-5. Aseptic meningitis cases following mumps-containing vaccination by country eligible for the SCRI 
analyses 

Country Eligible confirmed aseptic meningitis cases 

(n) 

Follow-up 

(days) 

 Event in risk 
period  

(days 8-35 
days) 

Event in washout 
period  

(days 1-7 and 36-42) 

Event in non-risk 
period  

(days 43-84) 

Median (P25-
P75) 

Albania 0 1 0 85 (85, 85) 

Argentina 0 0 1 57 (57, 57) 

Australia 0 0 1 85 (85, 85) 

Chile 5 0 0 85 (85, 85) 

China 0 0 0 -- 

Colombia 0 0 0 -- 

Costa Rica 2 0 0 85 (85, 85) 

Honduras 0 0 0 -- 

India 0 0 0 -- 

Iran 27 9 2 85 (85, 85) 

Peru 0 0 0 -- 

Singapore 0 0 0 -- 

South Africa 0 0 0 -- 

Spain 0 2 0 85 (85, 85) 

Uganda 0 0 0 -- 

Uruguay 1 0 0 85 (85, 85) 

 

Table S-6. Immune thrombocytopenic purpura (ITP) cases following measles-containing vaccination by country 
eligible for the SCRI analyses 

Country Eligible confirmed ITP cases 

(n) 

Follow-up 

(days) 

 Event in risk 
period    

(days 8-35 
days) 

Event in washout 
period  

(days 1-7 and 36-42) 

Event in non-risk 
period 

(days 43-84) 

Median (P25-
P75) 
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Albania 4 0 0 85 (85, 85) 

Argentina 1 1 1 85 (85, 85) 

Australia 5 1 0 85 (85, 85) 

Chile 2 1 0 85 (85, 85) 

China 0 0 1 85 (85, 85) 

Colombia 0 0 0 -- 

Costa Rica 4 0 0 85 (76, 85) 

Honduras 0 1 0 85 (85, 85) 

India 0 0 0 -- 

Iran 2 2 5 85 (85, 85) 

Peru 1 0 1 85 (85, 85) 

Singapore 5 1 1 85 (85, 85) 

South Africa 0 0 0 -- 

Spain 12 0 3 85 (85, 85) 

Uganda 0 0 0 -- 

Uruguay 0 0 0 -- 
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CHAPTER 6 METHODS FOR DEALING WITH HETEROGENEITY AND BIAS 
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Abstract 

Several studies have identified an association between PandemrixTM, an AS03 adjuvanted pandemic influenza 

A(H1N1) vaccine, and narcolepsy, a rare and under-diagnosed sleep disorder with a median onset-to-diagnosis 

interval of ten years. This paper reviews potential sources of bias in published studies and aims to provide, 

through simulation, methodological recommendations for assessment of vaccine safety signals. 

Our simulation study showed that in the absence of an association between the vaccine and the outcome, 

presence of detection bias and differential exposure misclassification could account for elevated risk estimates. 

These may play a major role, particularly in alert situations when observation times are limited and the disease 

has a long latency period. Estimates from the case-control design were less inflated than those from the cohort 

design when these biases were present. Overall, these simulations provide useful insights for the design and 

interpretation of future studies. 
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Background 

In August 2010, case reports linking the occurrence of narcolepsy in children aged 5 to 19 years to an AS03 

adjuvanted H1N1pdm09 (pH1N1) vaccine, PandemrixTM (GlaxoSmithKline, Middlesex, United Kingdom) were 

published in Finland and Sweden [1,2]. In the European Union, Pandemrix was widely used, with over 30 

million doses administered. Coverage was particularly high in the Nordic countries [3]. Following reports from 

Sweden and Finland, the European Medicines Agency initiated a review procedure [4] which eventually led to 

the restriction of indication for Pandemrix [5].  

Narcolepsy is a chronic sleep disorder that is severely debilitating. The dysregulation of the sleep-wake cycle is 

caused by the destruction of hypocretin forming neurons in the hypothalamus, which is thought to result from 

an auto-immune process [6].Symptoms include excessive daytime sleepiness (EDS) and cataplexy [7]. 

Symptoms usually emerge gradually and can initially be non-specific. Consequently, symptoms can be 

attributed to other diagnoses resulting in a delay of narcolepsy diagnosis and treatment [8-11]. Despite 

significant improvements in the speed and accuracy of narcolepsy diagnosis [10-12], a recent study found that 

the median delay between onset and diagnosis remains approximately 10 years [9].  

As of May 2015, eight epidemiological studies testing the association between Pandemrix and clusters of 

narcolepsy cases [13-21] have been published reporting risk estimates ranging from 1.6 to 14.4. An overview of 

the main characteristics of these studies is presented in table 1.  Generally, published studies were meticulous 

in their methods and applied sensitivity analyses to evaluate the presence of biases. Nonetheless, studies were 

inevitably observational and, as studies were mostly initiated rapidly after the signal emerged, they had limited 

time for case capture. Combined with the often nonspecific symptoms and onset of narcolepsy resulting in 

delayed diagnosis these studies are particularly prone to bias. Five years after the original signal emerged it 

remains unclear if and how potential sources of bias affected the estimates from the association studies. 

Consequently it is still unknown what the exact association between Pandemrix and narcolepsy is [22,23].



238 
 

Table 1. Main characteristics of studies testing the association between narcolepsy and Pandemrix 

Ref Year  Country, region Age Range Case definition Index Date 
Exclusion 
criteria 

Primary 
study period 

Dealt with 
confounding 

Dealt with 
detection bias 

Relative Rate 
reported 

Retrospective cohort studies 
     

[18] 2012 Finland  4-19 yrs 
BC definition 
level 1-3 

First contact for 
EDS 

- 
01/01/2009 
- 
15/08/2010 

No 

Limit observation 
period to start 
media attention. 
Sensitivity analysis 
on start 
professional 
attention. 

RR: 12·7 (95% 
CI: 6·1 - 30·8) 

 
[21] 

2012 
/2014  

Ireland  
 

BC definition 
level 1-3 

First contact for 
EDS 

Those with 
symptom onset 
before April 
2009 

01/04/ 2009 
- 
31/12/2010 

No 

Sensitivity analysis 
considering period 
before the 
increased media 
attention in 
Sweden and 
Finland 

RR: 13·0 (95% 
CI: 4·8 - 34·7)  

[14] 2011 

Sweden; 
Stockholm, 
Skane, Vastra 
Gotaland, 
Ostergotland 

 

Presence 
diagnosis code 
(non-validated) 

Diagnosis 
Those with 
onset before 
October 2009 

01/10/2009 
- 
31/12/2010 

No No 
HR: 4·19 (95% 
CI: 1·76 - 12·1) 

[17] 2013 

Sweden; 
Stockholm, 
Skane, Vastra 
Gotaland, 
Ostergotland) 

 

Presence 
diagnosis code 
(non-validated) 

Diagnosis 
Prevalent cases 
(looking back 5 
years) 

01/10/2009 
- 
31/12/2010 

Adjusted for age (5-
year bands), gender, 
county, education, 
income, secondary 
health care use, 
pregnancy status & 
presence of diagnoses 
(ICD-10), ethnicity.  

No 
HR: 2·92 (95% 
CI: 1·78 - 4·79) 

Case Control Studies 
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[20] 2013 France 
 

BC definition 
level 1-3 

Diagnosis 

Non-consenting 
cases, cases 
with onset 
before January 
1, 2005, 
Vaccinated 
cases with 
onset before 
vaccination 

01/10/2009 
- 
30/04/2011 

Controls were 
matched on age, 
gender and geographic 
location 

Sensitivity analyses 
were performed 
that considered as 
index date (i) the 
date of referral for 
polysomno-graphy 
- MSLT; and (ii) the 
date of first 
symptom onset.  

OR: 4·55 (95% 
CI: 2·34 - 8·88) 

 15 2012 

Finland, 
Sweden, 
Norway, Italy, 
Denmark, UK, 
Netherlands, 
France  

 <19 yrs 
BC definition 
level 1-4 

MSLT referral - 
01/04/ 2009 
- 
30/06/2010 

Controls were 
matched on year of 
birth, sex and index 
date (i.e. the date of 
onset of narcolepsy) 
and in Norway, Italy 
and UK also by 
region/practice.  

Sensitivity analyses 
with different time 
periods (before 
media & 
professional 
attention); analysis 
of changes in lag 
times 

Signal-
generating 
countries OR 
(children and 
adolescents): 
14·2 (95%CI: 
2·5–infinity) 

Non-signal-
generating 
countries OR 
(children and 
adolescents): 
1·6 (95%CI: 0·5–
6·1) 

19 2013 England  4 - 18 yrs 

International 
classification of 
sleep disorders 
criteria (definite 
& probable) 

EDS Onset 

Cases with 
onset before 
2008 and/or 
diagnosis after 
July 2011 

01/10/2009 
- 
31/12/2010 

Adjusted for age, time 
period & clinical 
conditions that were 
indications for 
pandemic vaccination.  

Choice of index 
date, sensitivity 
analyses included 
diagnosed case 
only and varying of 
index date (first 
healthcare contact 
or index date).  

OR: 14·4 (95% CI 
:4·3 - 48·5) 

13 2011 Sweden  0- <19 yrs 

American 
Academy of 
Sleep Medicine 
criteria for 
narcolepsy with 

EDS Onset 
Cases without 
cataplexy 

01/01/2009 
- 
31/12/2010 

No 

Choice of index 
date, analysis by 
different time 
windows after 
vaccination (3 

RR: 6·6 (95% CI: 
23·1 - 14·5) 
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cataplexy months). 

16 2014 
Quebec 
province, 
Canada  

>6 mnths (on 
01/07/2009) 

BC definition 
level 1-3 

Date of onset, 
determined 
through 
questionnaire 
and interview 

Those with 
symptom onset 
before January 
2009 

01/01/2009 
- 
31/12/2010 

Adjusted for age, 
gender, seasonality 
and circulation of 
H1N1 virus (Cohort). 
Matched by age and 
gender (Case Control). 

Sensitivity analyses 
including different 
observation 
periods to account 
for circulation virus 
and vaccination 

RR (Cohort): 
4·58 (95% CI: 
1·59-11·77) 

OR (CC): 1·48 
(95% CI: 0·37 - 
7·03)  

RR (SCCS): 2·07 
(95% CI: 0·70 - 
6·17) 



 

241 
 

It is not unthinkable that a similar scenario could unfold in the future, i.e. a safety signal involving a difficult to 

diagnose condition with a delayed onset is linked to exposure with a new vaccine. Indeed, a similar situation 

has occurred in the past, when clusters of cases of Guillain-Barré syndrome were detected after the 

introduction of a new swine flu vaccine [24]. Using the example of narcolepsy and Pandemrix, we explore, in 

the absence of a formal hypothesis, the potential impact of two sources of bias that are likely to occur in similar 

scenarios.  

Detection bias. The first source of bias is a type of selection bias. Awareness of a potential association between 

narcolepsy and vaccination amongst physicians and the general public could result in earlier diagnosis for 

vaccinated cases compared to unvaccinated cases, making vaccinated cases more likely to be included in 

observational studies with limited observation time. [15]. We refer to this as ‘detection bias’. 

Differential exposure misclassification. A second source of bias we consider is a form of recall bias, in which the 

onset of symptoms is misattributed, resulting in misclassification of onset dates to the period following 

vaccination. As narcolepsy symptoms often develop gradually and onset of symptoms is not always clearly 

identifiable, studies into narcolepsy are particularly prone to recall bias.  We hypothesize that recalling onset of 

EDS with knowledge of a putative association between vaccination and narcolepsy could lead a patient to recall 

that symptoms started after vaccination [25]. We refer to this as ‘differential exposure misclassification’. 

Methods 

We considered the impact of detection bias and differential exposure misclassification as defined above on the 

association measure between Pandemrix and narcolepsy.  

Simulation 

We simulated a population of 100,000 subjects < 19 years of age on April 1st 2009 to mimic the signal-

generating population. We subsequently simulated dates of birth and death (based upon average lifespans in 

western Europe) to create a simulated lifetime for each subject. EDS onset dates were assigned over the 

lifespan of subjects based upon the reported age and gender specific incidence rates of narcolepsy with 

cataplexy onset [26]. Given these EDS onset dates, initial narcolepsy diagnosis dates were assigned using a 

random value drawn from a distribution of narcolepsy onset-to-diagnosis intervals which was assumed to have 

a gamma distribution chosen to mimic the distribution of onset-to-diagnosis intervals reported in the 

literature: a median of 10 years with a range of 0 to 40 years [11]. Additionally, since the underlying onset-to-

diagnosis interval in children is potentially shorter [10], alternate gamma distributions with medians of 3 (range 

0-13) and 7 (range 0-27) years were also used. All onset-to-diagnosis intervals were simulated to be at least 40 

days long. 

Overall vaccination coverage in this population was simulated at 25, 50 and 75%.. Vaccination dates were 

assigned independent of the age of a subject using a beta distribution of administration times mimicking real-

life Pandemrix administration dates between October 12, 2009 and February 12, 2010 [27].  

A null association (RR=1) was assumed for the actual relation between vaccine exposure and outcome. 

Detection bias. Reduction in the onset-to-diagnosis interval was applied only to vaccinated cases for whom 

initial diagnosis would occur after the date of media attention (simulated to be August 15, 2010). If EDS onset 

occurred before August 15, 2010, the reduction was applied only to the interval from August 15, 2010 to the 

initial date of diagnosis. The date of narcolepsy diagnosis was reset in this way using values drawn from logit-

normal distributions with medians of 30, 60, and 90% (See Figure in appendix) to produce reductions of the 

interval, with the restriction that the interval still was at least 40 days. Data with no reduction (i.e. 0% 

reduction) in the interval were also simulated (Figure 1). 
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Differential exposure misclassification. Misattribution of EDS onset dates to the period following vaccination 

was applied with probability equal to values drawn from logit-normal distributions with medians of 30 and 60% 

(Figure 1) to subjects who were diagnosed with narcolepsy after vaccination and after the start of media 

attention. In this case the onset date was reset to a random date between the vaccination date and the 

minimum of diagnosis date and vaccination date plus 180 days, based upon the six month risk period used by 

Miller et al. in their self-controlled case series analysis [19]. Data with no misattribution of onset dates were 

also simulated (Figure 2).  

 

Figure 1. Application of detection bias 

 

Figure 2. Application of differential exposure misclassification 

 

We simulated 9 combinations of the underlying population settings: gamma scale (baseline onset to diagnosis 

interval, 3 different values) and vaccination coverage (3 values), to which we applied 12 combinations of the 

simulated sources of bias: detection bias (4 values), and differential exposure misclassification parameters (3 
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values) for a total of 108 combinations of simulation parameters. Variation in the underlying population 

settings (baseline onset to diagnosis interval and vaccination coverage) was conducted in the absence of a 

hypothesis regarding the impact of these changes on effect estimates. 

Analysis 

The association between vaccination and narcolepsy in children aged 4 - <19 years during the study period was 

analyzed using dynamic cohort and case-control designs. In the primary analyses a case capture (study period) 

of April 1, 2009 to December 1, 2010 was used in line with several published studies. We calculated absolute 

incidence rates in 6-month periods and calculated case counts during exposed and unexposed person time to 

investigate how incidence would change over time in the presence of detection bias. We additionally calculated 

the number of onset dates in exposed and unexposed person time at each level of each of the two bias 

parameters. In the comparative cohort analysis, the incidence rate of narcolepsy was compared between 

dynamic cohorts of vaccinated and non-vaccinated persons. All person time after the date of vaccination was 

considered exposed, whereas the entire case-capture period of non-vaccinated persons as well as the pre-

vaccination time in vaccinated subjects contributed to non-exposed person time. Rate ratios were calculated 

based on Poisson regression. In the case-control analysis, cases were matched to 10 controls on sex, age in 

years and onset date. Odds ratios were calculated using conditional logistic regression.  

We conducted several analyses to investigate the effects of different design choices and ways to mitigate bias. 

All sensitivity analyses were conducted using vaccination coverage of 50% and the baseline onset-to-diagnosis 

interval distribution described in literature with median 10 years, range 0-40 years. To study the effect of the 

length of case capture period, analyses with observation periods as long as 50 years were conducted. To study 

the effect of exclusion of cases possibly affected by awareness of a putative association, in one of the settings 

we excluded the cases with onset dates and diagnosis dates after August 15, 2010. Each of these sensitivity 

analyses was conducted in the absence of a hypothesis. 

For each set of simulation parameters, 500 replications were analyzed, each producing an estimate and 95% 

confidence interval. Reported results are the exponentiated median of these 500 estimates calculated on the 

log scale and medians of the lower and upper confidence limits. All analyses were conducted using SAS 9·2. 

Results 

Application of onset-to-diagnosis interval reduction (detection bias) and differential exposure misclassification 

over three coverage rates and three baseline onset-to-diagnosis intervals increased the number of narcolepsy 

onset dates observed in the study period. Figure 3 shows, for exposed and unexposed children, the number of 

onset dates associated with narcolepsy diagnosed cases in scenarios with different percentages of differential 

exposure misclassification (columns), vaccination coverage (rows) and levels of detection bias (X-axis in each 

plot), using a baseline onset-to-diagnosis interval with a median of 10 (range 0-40) years. The number of 

observed narcolepsy onset dates increases at approximately the same rate in exposed and unexposed person 

time with an increasing detection bias in the absence of differential exposure misclassification (within column 

1, Figure 3) except when vaccine coverage is 25% in which case no onset dates are observed in exposed person 

time. With the introduction of differential exposure misclassification in exposed subjects, new narcolepsy 

diagnoses occur more often in post-vaccination person time.  The number of onset dates within unexposed 

person time also increases with increased reduction in the onset to diagnosis interval because, in these cases, 

the bias is being applied to vaccinated cases who experienced onset prior to vaccination. Figure 4 shows the 

effects of reduction of EDS onset-to-diagnosis date on the shape of incidence rates over calendar time in this 

cohort of 0-19 year olds in 2009. With a reduction of 60 or 90% in lag time, a clear peak in incidence of 

narcolepsy diagnoses occurs after media attention.  These rates then return to the baseline rate or fall below 

the baseline rate due to depletion of cases through early diagnosis. The primary study period of April 1, 2009 to 
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December 1, 2010 is indeed a period of marked increase in newly diagnosed cases with reduction in time from 

onset to diagnosis. 

 

Figure 3. Case Counts (Onset dates) occurring in exposed and unexposed person time 
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Figure 4. Incidence of new narcolepsy diagnoses over time. 

Table 2 shows the results of cohort and case-control analyses of all 108 different parameter settings. 

Table 2. Relative Risks and Odds Ratios in primary cohort and case-control analyses 

Baseline 
Onset-to-
diagnosis 
interval 

Differential 
Exposure 
Misclassification 
Bias 

Detection 
Bias 

Coverage = 25% Coverage = 50% Coverage = 75% 

Cohort 
RR 
(95% 
CI) 

Case-
Control 
OR 
(95%CI) 

Cohort  
RR 
(95%CI) 

Case-
Control 
OR 
(95%CI) 

Cohort 
RR 
(95%CI) 

Case-
Control 
OR 
(95%CI) 

Median 3 
years, 
Range 0-13 
years 
(Gamma 
Scale 
Parameter = 
2) 

0 0 0.42 
(0.16, 
1.12) 

0.97 
(0.34,2.77) 

0.38 
(0.19, 
0.77) 

0.99 
(0.47 

,2.11) 

0.31 
(0.17, 
0.57) 

1.02 
(0.53 

,1.94) 

30 0.57 
(0.25, 
1.32) 

1.31 (0.54 
,3.13) 

0.5 
(0.27, 
0.93) 

1.19 
(0.61 

,2.31) 

0.42 
(0.25, 
0.71) 

1.14 
(0.65 

,1.98) 

60 1.05 
(0.57, 
1.92) 

2.06 (1.06 
,4.04) 

0.82 
(0.52, 
1.31) 

1.69 
(1.03 

,2.76) 

0.61 
(0.41, 
0.91) 

1.33 
(0.87 

,2.04) 

90 3.61 
(2.62, 
5.02) 

5.03 (3.5 
,7.17) 

2.15 
(1.68, 
2.76) 

2.83 
(2.18 

,3.69) 

1.32 
(1.07, 
1.63) 

1.43 
(1.19, 
1.68) 

30 0 1.09 
(0.57, 
2.08) 

2.1 (1.02 
,4.21) 

0.99 
(0.6, 

1.62) 

1.74 
(1.02 

,2.93) 

0.88 
(0.56, 

1.4) 

1.43 
(0.88 

,2.31) 

30 1.51 2.6 (1.37 1.4 2.08 1.11 1.58 
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(0.88, 
2.6) 

,4.87) (0.89, 
2.18) 

(1.29 
,3.31) 

(0.74, 
1.66) 

(1.04 
,2.42) 

60 2.75 
(1.76, 
4.27) 

3.92 (2.42 
,6.34) 

2.27 
(1.59, 
3.27) 

2.73 
(1.85 

,4.01) 

1.8 
(1.29, 
2.52) 

1.89 
(1.34 

,2.67) 

90 8.09 
(6.11, 

10.73) 
8.11 (5.97 

,11.05) 

5.27 
(4.18, 
6.63) 

4.57 
(3.58, 
5.83) 

3.39 
(2.76, 
4.17) 

2.55 
(2.06, 
3.17) 

60 0 1.81 
(1.07, 
3.09) 

2.93 (1.63 
,5.15) 

1.64 
(1.06, 
2.55) 

2.2 
(1.37 

,3.51) 

1.54 
(1.02, 
2.31) 

1.71 
(1.12 

,2.64) 

30 2.61 
(1.63, 
4.23) 

3.62 (2.15 
,6.08) 

2.34 
(1.58, 
3.48) 

2.69 
(1.79 

,4.07) 

2.07 
(1.42, 
3.02) 

1.95 
(1.32 

,2.91) 

60 4.71 
(3.2, 
6.9) 

5.41 (3.55 
,8.28) 

4.1 
(2.94, 
5.75) 

3.76 
(2.64 

,5.35) 

3.43 
(2.48, 
4.79) 

2.54 
(1.8 

,3.57) 

90 14.36 
(10.88, 
18.95) 

12.49 
(9.24 

,16.84) 

10.39 
(8.13, 

13.29) 

7.48 
(5.78, 
9.69) 

7.18 
(5.71, 
9.04) 

4.19 
(3.30, 
5.35) 

Median 7 
years, 
Range 0-27 
years 
(Gamma 
Scale 
Parameter = 
4) 

0 0 0.35 
(0.05, 
2.92) 

0.9 (0.11 
,9.73) 

0.31 
(0.07, 
1.38) 

0.97 
(0.22 
,4.5) 

0.26 
(0.08, 
0.83) 

1.03 
(0.31 

,3.47) 

30 0.53 
(0.12, 
3.11) 

1.16 (0.19 
,7.65) 

0.43 
(0.13, 
1.41) 

1.29 
(0.36 

,4.33) 

0.37 
(0.14, 
0.98) 

1.16 
(0.41 

,3.32) 

60 0.93 
(0.31, 
2.95) 

2.18 (0.63 
,7.85) 

0.75 
(0.31, 
1.75) 

1.74 
(0.72 

,4.22) 

0.58 
(0.28, 
1.19) 

1.36 
(0.63 

,2.93) 

90 4.13 
(2.58, 
6.67) 

5.71 (3.37 
,9.75) 

2.24 
(1.57, 
3.22) 

2.99 
(2.03 

,4.38) 

1.27 
(0.93, 
1.72) 

1.74 
(1.26 
,2.4) 

30 0 1.88 
(0.75, 
4.78) 

3.1 (1.1 
,9.02) 

1.73 
(0.8, 

3.74) 

2.35 
(1.02 

,5.38) 

1.5 
(0.72, 
3.11) 

1.76 
(0.83 

,3.75) 

30 2.71 
(1.19, 
6.25) 

3.89 (1.56 
,9.89) 

2.16 
(1.11, 
4.27) 

2.75 
(1.31 

,5.71) 

1.89 
(0.98, 
3.59) 

2.01 
(1.02 

,3.94) 

60 4.73 
(2.47, 
9.05) 

5.57 (2.75 
,11.61) 

3.79 
(2.16, 
6.73) 

3.74 
(2.06 

,6.81) 

3.06 
(1.78, 
5.26) 

2.39 
(1.38 

,4.14) 

90 14.96 
(9.84, 

22.58) 
12.7 (8.19 

,19.61) 

8.43 
(6.05, 
11.7) 

6.44 
(4.57 

,9.12) 

5.12 
(3.83, 
6.85) 

3.28 
(2.44 

,4.44) 

60 0 3.45 
(1.57, 
7.59) 

4.42 (1.82 
,10.78) 

3.29 
(1.66, 

6.5) 

3.24 
(1.59 

,6.66) 

3.01 
(1.54, 
5.83) 

2.37 
(1.19 

,4.75) 

30 5.12 
(2.56, 
10.3) 

5.77 (2.62 
,12.43) 

4.42 
(2.41, 
8.24) 

3.83 
(2.06 

,7.45) 

3.94 
(2.14, 
7.31) 

2.89 
(1.51 

,5.52) 

60 8.97 
(4.97, 

16.34) 
8.55 (4.48 

,16.2) 

8.44 
(4.84, 

14.56) 

5.79 
(3.27 

,10.28) 

6.63 
(3.85, 

11.22) 

3.74 
(2.14 

,6.64) 

90 32.43 
(20.97, 
49.31) 

22.68 
(14.57 

,35.31) 

20.09 
(13.87, 
29.04) 

12.95 
(8.84 

,19.04) 

12.69 
(9.1, 

17.65) 

6.52 
(4.44, 
8.81) 
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Median 10 
years,  
Range 0-40 
years 
(Gamma 
Scale 
Parameter = 
6) 

0 0 0 (0, 
NA) 

0 (0, NA) 0.31 
(0.04, 
4.43) 

1.03 
(0.16 

,12.32) 

0.22 
(0.03, 
1.83) 

1.15 
(0.18 
,6.7) 

30 0.48 
(0.06, 
9.09) 

1.12 (0.11 
,61.51) 

0.36 
(0.05, 
2.98) 

1.15 
(0.2 

,8.23) 

0.34 
(0.08, 
1.55) 

1.27 
(0.26 

,5.98) 

60 1.03 
(0.2, 

6.25) 
2.1 (0.34 

,15.68) 

0.72 
(0.21, 
2.65) 

1.83 
(0.5 

,6.71) 

0.55 
(0.19, 
1.57) 

1.43 
(0.45 

,4.46) 

90 4.37 
(2.35, 
8.25) 

6.08 (2.93 
,12.35) 

2.24 
(1.39, 
3.62) 

2.99 
(1.79 

,5) 

1.26 
(0.84, 
1.88) 

1.73 
(1.14 

,2.62) 

30 0 2.34 
(0.67, 
8.67) 

3.76 (0.9 
,16.51) 

2.29 
(0.8, 

6.82) 

2.91 
(0.93 

,8.74) 

2.02 
(0.76, 
5.43) 

1.95 
(0.7 

,5.61) 

30 3.82 
(1.22, 

11.13) 
4.96 (1.49 

,16.85) 

2.87 
(1.13, 
7.32) 

3.41 
(1.25 

,9.25) 

2.77 
(1.11, 
6.53) 

2.19 
(0.87 

,5.58) 

60 6.19 
(2.48, 

15.72) 
7.47 (2.67 

,20.57) 

5.65 
(2.56, 

12.36) 
4.52 (2 
,10.46) 

4.08 
(1.92, 
8.38) 

2.76 
(1.26 

,5.85) 

90 19.32 
(11.4, 

33.15) 

15.55 
(8.85 

,27.5) 

10.36 
(6.83, 

15.73) 

7.55 
(4.86 

,11.72) 

6.11 
(4.24, 
8.82) 

3.76 
(2.56 

,5.47) 

60 0 4.76 
(1.66, 

13.52) 
5.78 (1.81 

,19.46) 

4.31 
(1.68, 

10.74) 

4.16 
(1.54 

,11.17) 

4.54 
(1.69, 

11.83) 

2.85 
(1.05 
,7.6) 

30 6.82 
(2.71, 

17.06) 
7.24 (2.54 

,21.47) 

6.44 
(2.67, 

15.22) 

5.22 
(2.04 

,12.88) 

5.71 
(2.34, 
13.4) 

3.17 
(1.32 

,7.97) 

60 12.92 
(5.7, 

29.72) 
11.3 (4.53 

,27.27) 

10.63 
(5.08, 

22.61) 

7.73 
(3.44 

,16.83) 

8.65 
(4.14, 

18.89) 

4.83 
(2.18 

,10.74) 

90 46.02 
(25.69, 

82.4) 

32.09 
(17.78 

,58.46) 

28.4 
(17.13, 
47.12) 

16.98 
(10.15 
,28.1) 

17.29 
(11.15, 
26.99) 

7.74 
(4.98, 

12.12) 

 

Because a 10 year onset-to-diagnosis interval has been reported in the literature, we have chosen to illustrate 

our results using underlying populations with this onset-to-diagnosis interval and the intermediate vaccine 

coverage of 50%.  

Using a cohort analysis on this underlying population to which the maximum reduction of time from EDS onset-

to-diagnosis (90%) has been applied in the absence of differential exposure misclassification produced a 

median RR of 2.24 (95% CI: 1.39, 3.62). In case-control analysis, the same simulation parameter settings 

produced an OR of 2.99 (95% CI: 1.79, 5.00) (Table 2).  

In the absence of a reduction in the EDS onset-to-diagnosis interval, differential exposure misclassification 

resulted in a RR of 4.31 (95% CI: 1.68, 10.74) when vaccination coverage was 50% and the EDS date was 

attributed to the post-vaccination period with a median probability of 60% for vaccinated cases. In the case-

control analysis, the same simulation parameter settings produced an OR of 4.16 (95% CI: 1.54, 11.17) (Table 

1). 

When combining the effect of detection bias and differential exposure misclassification , the estimates were 

higher in cohort analyses than in case-control analyses as the biases became more pronounced. In the most 
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extreme scenario, with a median 90% reduction in the onset-to-diagnosis interval in vaccinated cases and a 

median probability of differential misclassification equal to 60% in vaccinated cases, we found a RR of 28.4 in 

the cohort analysis (95% CI: 17.13, 47.12). The same parameter settings produced an OR of 16.98 (95% CI: 

10.15, 43.85) in the case-control analysis (Table 2). In the absence of either source of bias, median RR estimates 

from the cohort analysis for all scenarios were less than one when observation time was limited. However, with 

extension of observation time up to 25 years, the RR was estimated to equal to the simulated RR of one.  

Results from case-control analyses were less inflated when detection bias and differential exposure 

misclassification were present. For both case-control and cohort designs, increased vaccination coverage and a 

shorter baseline onset-to-diagnosis interval lead to RR estimates closer to the true rate of one when biases are 

present (Table 1). 

Extension of the case capture period reduces the bias (Figure 5). With each extension, the rate of narcolepsy in 

vaccinated subjects converges toward the background rate. As illustrated in figure 4, reduction in time from 

onset to diagnoses leads to incidences greater than the background rate in the period following awareness of 

the association in vaccinated cases, followed by reduction in the incidence rate to levels below the background 

rate. 

 

Figure 5. Relative rates of narcolepsy with extended observation periods. 

 

When cases with an onset date after August 15, 2010 were excluded, the RR was 1.87 (95% CI: 1.15, 3.05) in 

cohort analyses for the extreme setting of detection bias in the absence of differential exposure 

misclassification.  Similarly, the RR was 4.45 (1.76, 11.67) with exclusion of cases with onset after August 15, 

2010 at the most extreme setting of differential exposure misclassification in the absence of detection bias. 

Exclusion of cases with EDS onset dates after media attention, with a 90% reduction in the onset-to-diagnosis 
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interval and a 60% probability of differential exposure misclassification, produced an RR of 27.10 (95% CI: 

16.52, 44.11) while the estimate was 28.4 (95% CI: 17.13, 47.12) when these cases were not excluded. 

Exclusion of all cases with a diagnosis of narcolepsy after media attention resulted in estimates less than one 

and confidence intervals including one for all parameter settings. Excluding these cases nullified the effect of 

differential misclassification bias because only those cases diagnosed after media attention were simulated to 

misattribute their date of EDS onset to the period following vaccination.  

Discussion  

Our results indicate that, in the absence of a real association between Pandemrix and narcolepsy, the presence 

of detection bias or differential exposure misclassification elevates risk estimates.  

In the absence of either source of bias, median RR estimates from the cohort analysis for all scenarios were less 

than the expected value of one. Our explanation for this observation is as follows. The study observation period 

is limited and the interval between onset and diagnosis can be longer than the study observation time, 

therefore, as diagnosis is the criteria for case inclusion, a number of cases with onset within the observation 

period will not be included as cases. However, exposed and unexposed person time within the cohort is fixed. 

When we analyzed all cases with onset within the observation period regardless of their diagnosis date, the RR 

was equal to one. In the absence of either bias, using diagnosis dates for case capture, an observation period as 

long as 25 years would be necessary to obtain the true RR of one. 

We found that biased attribution of EDS onset (differential exposure misclassification) has a greater impact on 

the estimates than a reduction in the EDS onset-to-diagnosis interval (detection bias) both in the cohort and 

case-control designs. While detection bias increases the relative risk estimates, the effect is not discernible 

until the onset-to-diagnosis interval is so reduced that many additional cases can be detected in a short 

observation period. The simultaneous presence of detection bias and differential exposure misclassification 

increases RRs more rapidly than could be expected by the effect size of each bias in isolation. 

In an attempt to exclude detection bias, several published studies limited their primary observation period for 

EDS onset to the period before media attention [15,18] or included sensitivity analyses using such a reduced 

study period [21]. Additionally, studies used primary index dates that were thought to be less susceptible to 

such a bias including onset of symptoms [14,19], first contact with health care  [18,21]  or referral to specialist 

care [15,20]. In line with observations from our simulations, limiting analysis to subjects with an onset date 

prior to media attention will not eliminate the effect of detection bias, since all patients need to be diagnosed 

to be included, which is where the bias arises. To illustrate this, when limiting cases to those with an EDS date 

before media attention, Nohynek et al. found that the RR increased from 11·4 to 12·7 [18] and O’Flanagan et al. 

found that the RR increased from 13·0 to 14·5 [21]. Since only diagnosed subjects can be included as cases, 

detection bias will be unavoidable if the onset-to-diagnosis interval is shorter in vaccinated individuals. The 

only way to circumvent the combined effects of detection bias and differential exposure misclassification 

would be to select only patients diagnosed before media attention. This will result in limited observation time 

and limited case inclusion as illustrated by our simulations and as was shown in the VAESCO study (13). We are 

not aware of any existing statistical methods to control for detection bias although quantitative bias analysis 

could adjust for hypothesized biases [28]. 

With limited observation time, we found that, in the presence of detection bias and differential exposure 

misclassification, estimates from the case-control design are less inflated than those from the cohort design. 

The resilience of the case-control in this scenario has several causes: the outcome is rare and the pool of 

controls, matched only by sex and age at onset, is large; also, the invariability of exposed person time, which is 

limited by observation time and vaccine coverage in the cohort approach, is avoided. Additionally, in this 

simulated scenario, we were able to sample controls from the same population as the cases and to assess their 

exposure without error, thereby avoiding the most problematic sources of bias in case-control studies. The only 
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study to date in which data were analyzed using both a case-control and a cohort design found lower estimates 

in the case-control than in the cohort design [16].  Applying these findings to the interpretation of all published 

studies, however, presents a challenge as each study differed not only in design choice but in many other ways 

including underlying population, diagnostic practices, inclusion and exclusion criteria, and many others. In 

general, however, estimates from case-control studies were similar to those from those cohort studies in which 

diagnosis was used as an index date. Those cohort studies which used onset of symptoms as an index date 

produced much higher estimates, suggesting presence of bias, particularly differential exposure 

misclassification, a true association in those populations, or both. However, given the complexity of the 

interplay of design choices and underlying populations, a meaningful comparison between designs 

implemented in published studies is not feasible. 

Increased vaccination coverage reduced the bias in cohort and case-control analyses. In cohort analyses, this is 

explained by an increase in the person time denominator for vaccinated cases with a smaller increase in events 

and, simultaneously, a decrease in the person time denominator for unvaccinated cases with a smaller 

decrease in the number of events. In case-control analyses, this could be attributed to a greater probability of 

matching to vaccinated controls as vaccination coverage increases, leading in turn to more informative strata in 

a conditional analysis.  

When a shorter interval from onset to diagnosis was assumed, the impact of simulated biases was less 

pronounced. This is due to the fact that, with a shorter onset-to-diagnosis interval, more cases, whether 

vaccinated or not, are being captured during the study period.  

We chose to simulate only those sources of bias for which data in the absence of a vaccine safety signal exists 

and for which simulated variables could be modified to mimic the bias. Our simulations therefore do not reflect 

all of the biases that could potentially affect estimates of an association between Pandemrix and narcolepsy. 

For example, it is possible that non-vaccinated cases also experienced a reduction in the onset to diagnosis 

interval due to increased awareness of narcolepsy.  However, inclusion of additional simulation parameters 

such as this would have required the making of additional assumptions for which we had no basis in published 

data.  By focusing on biases that could be evaluated without making untenable assumptions, these simulations 

provide insights that can improve rapid evaluation of vaccine safety signals by decision makers. There were 

several uncertainties, including the true background rate of narcolepsy and the true interval between onset of 

symptoms and diagnosis, for which we made assumptions in order to conduct our simulations. The validity of 

these assumptions will ultimately determine the robustness of our simulations.  

The introduction of a new vaccine, or an existing vaccine in new populations, requires the assessment of 

vaccine safety. Large numbers of people can be exposed in a relatively short period providing a challenge to 

real-time safety surveillance. In such situations, as illustrated by the experience with Pandemrix and narcolepsy 

during the 2009/2010 H1N1 pandemic, it can be difficult to determine if a safety finding is a true association or 

not. Despite these challenges, the timely and accurate assessment of potential associations between adverse 

events and vaccination are crucial to ensure vaccine safety and maintain the public’s confidence. We believe 

that our simulations provide useful insights for the design and interpretation of future studies. Importantly, our 

results illustrate that in future analyses of safety signals for diseases with long latency periods for which 

observation times are limited the effect of limited case capture together with fixed person time denominators 

should be recognized. Similarly, the changes in exposed and unexposed person time denominators with 

changing vaccination coverage should be also taken into account. As we have shown, the case-control design 

provides less biased estimates in these circumstances as it does not require the calculation of person time. 

Moreover, our simulations illustrate the importance of not only understanding background rates of adverse 

events of special interest prior to vaccination campaigns, but also having insight in the background onset-to-

diagnosis interval. 

Recommendations: 



 

251 
 

Because rapid assessment of a vaccine safety signal, by definition, means limited case capture time, not only 

the background incidence of events of interest but the background onset-to-diagnosis interval should be 

understood for proper interpretation of risk estimates. 

The impact of differential exposure misclassification in these simulations underlines the need for accurate and 

linkable vaccine registries as well as blinded assessment of cases. 

When person-time is fixed and the outcome is rare, a case-control design is more resilient to bias and should 

be considered.  

Population cohorts should continue to be followed over time to monitor how rates of narcolepsy change 

following the H1N1 pandemic. If these biases were indeed present, we would expect to see incidence 

eventually fall back to or even below the background rate. 

To conclude, our results indicate that, in the absence of a real association between the vaccine and narcolepsy, 

presence of detection bias and differential exposure misclassification could account for elevated RRs in 

vaccinees in association studies. While this does not exclude a real increased risk of narcolepsy following 

Pandemrix, it is possible that the levels of increased risk observed were at least partially due to bias.  

Expert Commentary 

When the narcolepsy signal emerged in Sweden and Finland in 2010, studies had to be started rapidly across 

Europe in order to address this signal. Possibilities to evaluate this safety signals were limited to observational 

studies which, as a biological mechanism for the observed adverse event was not known, involved a great deal 

of guess work on risk windows, potential confounding factors and alternative explanations for observed 

association. As an answer on the potential association between Pandemrix and narcolepsy was needed rapidly, 

studies performed had limited follow-up time. They had to do with the resources available at the time which 

meant that they could not always rely on blinded, prospectively collected data on vaccination for the study 

population or on detailed prospectively collected data on potential confounding variables such as underlying 

comorbidities.  

To add to this, suspicion of a potential association between narcolepsy and Pandemrix was already spreading 

amongst healthcare professionals in Finland from as early as February 2010 and was general knowledge after 

August 2010 when regulatory agencies published on the association which was picked up by the media. 

Knowledge on the association with vaccination may have resulted in a reduction of the onset to diagnosis 

interval in vaccinated individuals, whereas this would not happen to the same extent in non-vaccinated 

subjects. Knowledge of a putative association between vaccination and a specific event could also have 

resulted in patients placing symptom onset after vaccination.  

The simulations described in this article illustrate that in the absence of a real association between the vaccine 

and narcolepsy presence of detection bias and differential exposure misclassification could account for the 

elevated risks detected. Moreover, the simulations also suggest that it would be too early to dismiss an 

elevated risk of narcolepsy following other influenza vaccines or influenza infection based upon absence of 

associations in observational studies alone. The veracity of the association between narcolepsy and Pandemrix 

will become clearer as studies are conducted with longer follow-up times, especially when studies into 

potential mechanisms are taken into account.  

The uncertainties surrounding the role Pandemrix may have played in the surge of narcolepsy diagnoses seen 

in several European countries which still exist to date do underline the need to improve the infrastructures 

available in Europe to monitor vaccine safety and evaluate vaccine safety signals if these were to emerge. 

Moreover, they point towards the need to further develop methods for rapid safety assessment, such as 

sequential monitoring, and the need to develop methods which can adjust for stimulated diagnosis in the 
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presence of awareness. Finally, a systematic assessment of potential sources of bias and their impact should be 

an integral part of any assessment of a safety signal that relies on observational studies. Without such an 

assessment great caution should be exerted before drawing any conclusions from these studies.  

Five Year View 

It is not possible to predict when and how a future pandemic will evolve. Although we might now have 

considerable experience to inform the safety profile of the existing influenza vaccines, with a new pandemic 

virus and a new mass-vaccination programme we need to be prepared for the occurrence of new safety signals. 

The experience of narcolepsy has taught us that it is very helpful to have a good understanding not only of the 

epidemiology of potential adverse events in Europe but also of the diagnostic process for these events.  It is 

necessary to know if there is  potential for under diagnosis and what delays in diagnosis can be expected in 

different age groups and in different countries. Although impossible to pinpoint what adverse events will be of 

interest, considering the experience of influenza and (adjuvanted) influenza vaccines focus should be on 

neurological events and disorders with a potential auto-immune aetiology. The inter-pandemic period should 

be used to collect data on diagnosis rates in different age groups, populations, countries and improve the 

understanding of differences between European countries in recording and diagnosing these conditions. 
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Supplementary Material 

 

Supplementary Figure 1. Logit-normal distributions from which simulated biases were sampled 
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6.2 QUANTIFYING OUTCOME MISCLASSIFICATION IN MULTI-DATABASE STUDIES: THE CASE 

STUDY OF PERTUSSIS IN THE ADVANCE PROJECT 
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Abstract 

Background 

The Accelerated Development of VAccine beNefit-risk Collaboration in Europe (ADVANCE) is a public-private 

collaboration aiming to develop and test a system for rapid benefit-risk (B/R) monitoring of vaccines using 

European healthcare databases. Event misclassification can result in biased estimates and contribute to 

heterogeneity in results. Here we report the impact of different event-finding algorithms for Bordetella 

pertussis (BorPer) on the estimated incidence rates (IRs) and algorithm validity. 

Methods 

Four participating databases retrieved data from primary care (PC) setting: (BIFAP: Spain), THIN and RCGP RSC: 

UK) and PEDIANET: Italy); the fifth SIDIAP (Spain) from both PC and hospital settings. The algorithms were 

defined by setting, data domain (diagnoses, drugs, or tests) and concept sets (specific or unspecified pertussis). 

BorPer IRs were estimated in children aged 0-14 years enrolled in 2012 and 2014 and followed up until the end 

of each calendar year and compared with IRs of confirmed pertussis from the ECDC surveillance system 

(TESSy).  

Results 

The number of cases and the estimated BorPer IRs per 100,000 person-years in PC, using data representing 

3,173,268 person-years, were 0 (IR=0.0), 21 (IR=4.3), 21 (IR=5.1), 79 (IR=5.7), and 2 (IR=2.3) in BIFAP, SIDIAP, 

THIN, RCGP RSC and PEDIANET respectively. The IRs for combined specific/unspecified pertussis were higher 

and were comparable with data from TESSy, except PEDIANET. In SIDIAP the estimated IR was 45.0 when 

discharge diagnoses were included. The sensitivity and positive predictive value of combined PC specific and 

unspecific diagnoses for BorPer cases in SIDIAP were 85% and 72%, respectively, based on overlap between 

hospital and PC diagnoses (adjusted IR=35.5). 

Conclusion 

This study demonstrated the value of quantifying the impact of different event-finding algorithms across 

databases and the possibility of benchmarking with disease surveillance data as well as assessing validity 

estimates when data from different settings can be linked.  

 



 

259 
 

1. Introduction 

ADVANCE is a public-private collaboration aiming to develop and test a system for rapid benefit-risk (B/R) 

monitoring of vaccines using existing healthcare databases in Europe [1] (see Appendix for list of consortium 

members). These databases have proven very useful for studying drug effects and are commonly used in 

pharmacoepidemiology [2].  

Identifying events, such as vaccine-preventable diseases, adverse events of interest, co-morbidities and 

exposure to vaccination, is a pivotal first step in vaccine B/R studies. Since there is limited or no control over 

the primary data collection when using existing healthcare databases, event retrieval is usually not perfect. 

Individuals who experienced the event might not be retrieved, for example if an individual is admitted to 

hospital for the event but no primary care (PC) diagnosis is recorded, the event will not be retrieved from PC 

databases and some individuals might be identified as having the event when in fact they did not. In a PC 

database, this typically happens when the physician had only a suspicion, or if it was a ruled-out diagnosis. 

Researchers who access these databases usually develop their own methods to identify events of interest, 

which are not always fully transparent [3, 4]. Events may be retrieved by combining information from different 

settings (e.g., PC and hospital) and data domains, for example diagnostic codes, drugs as proxies (e.g. in the 

case of diabetes), or laboratory measurements. Use of information from more than one data domain, 

compared with using diagnoses information only, can alter the sensitivity and positive predictive value (PPV) of 

the event-finding algorithm. This alteration may happen differently in different databases, due to the local 

characteristics of the database, the population, or the healthcare system. 

It is well established that misclassification of events (false positives or false negatives) can introduce bias in 

epidemiological studies, which can be corrected, to some extent, using statistical methods [5-7]. However, to 

correct this bias, some validity parameters such as sensitivity and PPV are required [8]. For this a gold standard 

and chart reviews are required, which generally make it costly and time-consuming.  

In an attempt to develop a systematic approach to quantifying the impact of using different event identification 

algorithms in multi-national, multi-database studies, the component algorithm strategy was developed 

(Roberto 2016): a set of standardized algorithms, called components, are defined and applied in each database. 

The impact of different algorithms on the resulting estimates of disease occurrence is subsequently measured 

[9]. In this study we aimed to refine this strategy by further standardizing the process, by developing and 

applying novel formulas, by using benchmark data from another source and by using a data source which had 

data from two settings. Since the proof-of-concept studies of ADVANCE focused on pertussis, we used this 

event as case study.  

2. Methods 

2.1. Bordetella pertussis disease information 

Bordetella pertussis causes pertussis, a vaccine-preventable infectious disease of the respiratory tract. 

Symptoms include paroxysms of cough typically lasting from 1 to 6 weeks or more and these may be milder in 

adolescents or immunised children [10, 11]. Several tests are available to confirm Bordetella pertussis infection, 

including culture (which takes up to 14 days), serology and nucleic acid amplification tests. Pertussis is a 

notifiable infectious disease and cases should be reported to the national surveillance system in all the 

countries involved in ADVANCE. European Union member states are required to report available data on 

pertussis cases to the European Centre for Disease Prevention and Control (ECDC). A standardised case 

definition is used which classifies cases based on clinical, epidemiological and laboratory criteria [12]. All 

national reports are submitted to the European Surveillance System database (TESSy) managed by the ECDC 

[13]. 
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2.2. Data sources  

We assessed the impact of different event-finding algorithms using five databases that participated in the 

ADVANCE proof-of-concept studies: BIFAP and SIDIAP (Spain), PEDIANET (Italy) and RCGP RSC and THIN (United 

Kingdom). All databases were population-based with data from electronic medical records in the PC setting. In 

SIDIAP, the analyses were restricted to the population in this PC database that could be linked to hospital 

discharge records. Surveillance data on pertussis were obtained from the TESSy surveillance system through 

ECDC, a partner of ADVANCE. 

2.3. Study population and study design 

We used a dynamic cohort study design to study the impact of different event-finding algorithms on the 

estimated pertussis IRs. Due to the methodological nature of this study, to enable us to explore in more detail a 

number of strategies, we included a larger cohort in the study population than that in the other ADVANCE 

studies. Therefore, children aged 0 to 14 years who were registered in the participating databases entered the 

study cohorts on 1st January 2012 and 1st January 2014, and were followed up during 2012 and 2014, 

respectively. Children who were born during 2012 or 2014 were followed up from birth until the end of the 

calendar year. Children who were older than 14 years at any point in the follow-up were excluded. To exclude 

any previous cases that had been notified before the start of the study period, children who had a record of 

one of the components of pertussis during the two years prior to one of the cohort entry dates were excluded, 

unless the component referred to the data domain of drugs (see below for more details on the component 

definition).  

2.4. Selection of component algorithms 

A component algorithm is a standardised event-finding algorithm specified by three characteristics: the setting 

of primary data collection (PC or hospital), the data domain involved in the algorithm, and the set of concepts 

used to find the codes used to query the database [9]. The sets of concepts were created by aggregating the 

codes that were obtained from an initial proposed list, completed with a literature review and pertussis case 

definitions [2, 13]. The CodeMapper tool was used to support the process [14]. Labelling and classification of 

identified concepts, as well as the construction of the components, were conducted by one of the authors who 

is a pertussis expert (NvdM). As a result, seven concept sets were created (Table 1) [15, 16]. In particular, two 

sets of concepts belonged to the diagnoses data domain: the set labelled ‘(Bordetella pertussis)’ included three 

concepts which specifically indicated Bordetella pertussis as the causative agent of the infection, while the set 

labelled ‘(pertussis unspecified)’ included five concepts indicating unspecified pertussis. The corresponding 

codes and free text keywords are given in Supplementary Table 1.  

 

Table 1. Sets of concepts selected for the component algorithms.  

Each set of concept is indicated with a label and described with a text. Each set of concepts contains one or 

more concepts, each described with a text and, if available, with a Concept Unique Identifier of the Unified 

Medical Language System. 

Concept set label Concept set description  Concept  Concept 
Unique 
Identifier 

(Bordetella 
pertussis) 
 

Concepts referring to diagnoses specifically 
mentioning pertussis induced by an infection 
of Bordetella pertussis 

Bordetella pertussis C0043167 

Whooping cough due 
to Bordetella pertussis 
without pneumonia 

C2887068 

Whooping cough due C2887069 
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to Bordetella pertussis 
with pneumonia 

(Pertussis 
unspecified) 

Concepts referring to diagnoses which refer 
to pertussis, but without a specific indication 
that Bordetella pertussis is responsible for the 
infection 

Whooping cough due 
to unspecified 
organism 

C0043168 

Bordetella Infections C0006015 

Whooping cough-like 
syndrome 

C0343485 

Notification of 
whooping cough 

 

Pneumonia in pertussis C0155865 

(Symptoms 
compatible with 
pertussis) 

This set of concepts was introduced because 
the Spanish translation of ‘whooping cough’ 
was found to be considered by physicians as a 
symptom, not as a diagnosis 

Concept of ‘tos 
pertusoide’ in Spanish 
general practice 

 

(Symtoms in 
infants) 
 

Concepts referring to symptoms that were 
found to be predictive of pertussis in infants 
(Hurtado-Mingo  2013, Bellettini 2014) 

Apnea C0003578 

Cyanosis C0010520 

Post-tussive vomiting C1740793 

Paroxysms of coughing C0231911 

(Macrolides) Use of macrolides Macrolides  

(Bordetella 
pertussis test) 

The concepts listed in this set indicate the 
prescription of tests that are considered to be 
confirmatory of a Bordetella pertussis 
infection  

polymerase chain 
reaction test 

 

culture or serology  

isolation of Bordetella 
pertussis from a 
clinical specimen 

 

(Positive result 
from a Bordetella 
pertussis test) 

The concepts listed in this set indicate a 
positive result from a tests confirmatory of a 
Bordetella pertussis infection 

positive polymerase 
chain reaction test 

 

positive culture or 
serology 

 

positive isolation of 
Bordetella pertussis 
from a clinical 
specimen 

 

 

 

The primary components associating concepts with settings (PC and hospital) are described in Table 2. Some 

secondary components, combining primary components in pre-defined temporal relations (e.g., symptoms in 

the presence of a drug prescription in the previous 30 days) were also created. 

Table 2. Components for pertussis. 

The concept sets referred to by the words in round parentheses can be found in Table 1 

 

Name Setting Data domain Concept set 

PC diagnosis, specific Primary care practice Diagnosis 

(Bordetella pertussis) 

 



262 
 

Inpatient diagnosis, 

specific Hospital Diagnosis 

(Bordetella pertussis) 

 

PC diagnosis, 

unspecified Primary care practice Diagnosis (Pertussis unspecified) 

Inpatient diagnosis, 

unspecified Hospital Diagnosis (Pertussis unspecified) 

Symptoms Primary care practice 

Diagnosis or 

sign/symptoms 

(Symptoms 

compatible with 

pertussis)  

 

Symptoms in infants Primary care practice 

Diagnosis or 

sign/symptoms 

(Symptoms in infants)  

 

Test 

Any setting where a test can be prescribed, 

or facility where the test is administered Laboratory test  

(Bordetella pertussis 

test) 

Positive laboratory 

results 

Any setting where a health professional 

records the results of a test, or facility where 

the results of the test are generated 

Results from 

laboratory test 

(Positive result from a 

Bordetella pertussis 

test) 

Drug use 

Facility dispensing medications or primary 

care practice issuing prescriptions Drug (Macrolides) 

Secondary components 

Symptoms and drugs 

within 30 days 

A patient is positive if he/she has both a record of Symptoms and of Drug use, and the 

interval between the dates is less than 30 days 

Symptoms in infants 

and drugs within 30 

days 

A patient is positive if he/she is 0 or 1 and has both a record of Symptoms in infants and 

of Drug use, and the interval between the dates is less than 30 days 

 

2.5. Analysis 

Each database manager received an R-coded programme (quality checked by double-coding against Stata) 

which was programmed using the pre-specified common data model [1]. These programmes produced 

aggregated outputs, which were then transferred to the remote research environment. Event-finding 

algorithms were created as logical combinations of individual components using Boolean operators. For 

example, the two components ‘PC diagnosis, specific’ and ‘PC diagnosis, unspecified’ were combined in one 

component: ‘PC specific OR unspecified diagnoses’, which detected all individuals that were positive for either 

of the original components. Based on the different event-finding algorithms, incidence rates (IRs) were 
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estimated using the number of persons retrieved with the respective events as numerator and the follow-up 

person-time as denominator (see Supplementary File 1).  

Age and country-specific incidences per 100,000 person-years of confirmed BorPer for both 2012 and 2014 

were calculated for children aged 0-14 years. The calculations used the reported confirmed cases in the TESSy 

surveillance system in 2012 and 2014 as the numerator, and person-time from population distributions in 

EUROSTAT for 2012 and 2014 as the denominator [17]. Exact Poisson confidence intervals (95% CI) were 

calculated [18]. 

Some formulae link the true proportion of BorP and/or validity indices with each other and with the observed 

proportion of the component algorithms (Table 3). These formulas are explained in Supplementary File 2.  

Table 3. Analytic formulas linking true proportion of pertussis and validity indices of one or two algorithms.  

In the formulas, Π is the true proportion of cases of pertussis, P is the proportion of cases detected by the 

algorithm, SE is the sensitivity and PPV is the positive predictive value of the algorithm. 

One algorithm 

# of formula Parameters known Formula to derive another parameter 

Formula 1 PPV and SE 

 

Formula 2 PPV and Π 

 

Formula 3 SE and Π 

 

Two algorithms A and B 

# of Formula Parameters known Formula to derive another parameter 

Formula 4 SE of A, of B, and of 

A AND B 
 

Formula 5 Π and PPV of A, of 

B, and of A AND B 
 

Formula 6 SE of A OR B, and 

PPV of A, of B, and 

of A AND B  

Formula 7 PPV of A, of B, and 

of A AND B  
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In this study we considered Π = IR (see Supplementary File 1) and we assumed that for all algorithms A and B, 

the proportion of true positives among those detected by both algorithms (PPV of A AND B), was the same as 

the PPV of A OR B, whichever was the highest, which may be considered the most conservative assumption.  

Since the concept set labelled ‘Bordetella pertussis’ was composed of codes explicitly mentioning the 

bacterium, we considered that components based on this had a high likelihood of extracting true cases. 

Therefore we considered it was conservative to assume that the PPV for ‘PC diagnosis, specific’ and for 

‘inpatient diagnosis, specific’ was 90%. We explored two scenarios for the cases extracted by the components 

associated with the concept set labelled ‘pertussis unspecified’, assuming that the PPV was 70% or 50%. The 

PPV for the component ‘positive laboratory results’ was assumed to be 100%. Finally, we assumed that all true 

cases in SIDIAP were recorded in at least one of the diagnosis or laboratory-based components: this 

assumption may overestimate sensitivity. Based on this and on the formulae in Table 3, we derived sensitivity 

and PPV estimates for the algorithm ‘PC specific OR unspecified diagnosis’ in SIDIAP, and the adjusted IR of 

BorPer in the study population. 

3. Results 

3.1. Study population 

We followed 3,173,268 person-years of children during the study period: 488,847 from the SIDIAP database, 

796,324 from BIFAP, 88,754 from PEDIANET, 1,387,939 from THIN and 411,404 from RCGP RSC (Table 4). The 

percentages of children aged 0 or 1 years in the population aged 0-14 years in Spain were 12.1% and 16.1% in 

SIDIAP in BIFAP, respectively, compared with 13.5% in the EUROSTAT Spanish population. In the UK the 

percentages were 15.1% and 14.8% in RCGP RSC and THIN 13.0%, respectively, compared with 14.3% in the 

EUROSTAT UK population and in PEDIANET (vs 12.9%); in (vs 14.3%). 

3.2. Incidence rates estimated by the algorithms 

The IRs for the component and composite algorithms, as well as the benchmark IRs from the TESSy surveillance 

system are illustrated in Figure 1 and documented in Table 4. The IRs estimated from the TESSy surveillance 

system in 2012 and 2014 for children aged 0-14 years were 21.2 (95% CI: 20.5; 22.0) for Spain, 13.4 (95% CI: 

13.0; 13.9) for the United Kingdom, and 5.4 (95% CI: 5.1; .8) for Italy. The number of cases of ‘PC diagnosis, 

specific’ (and IRs per 100,000 PY) were 0 (0.0), 21 (4.3), 21 (5.1), 79 (5.7), and 2 (2.3) in the BIFAP, SIDIAP, RCGP 

RSC, THIN and PEDIANET databases, respectively. The component ‘PC diagnosis, unspecified’ had a higher IR in 

all databases, and combining the two components (one OR the other) increased the number of cases detected 

and the IRs to 135 (IR=17.0), 194 (IR=39.6), 39 (IR=43.9), 246 (IR=17.7), and 91 (IR=22.1), respectively. In BIFAP, 

SIDIAP, RCGP RSC and THIN, when taking into account that the unspecified component may have captured 

some false positives, the IRs were comparable with the corresponding IR from the TESSy surveillance system 

(17.0 vs 21.2; 39.6 vs. 21.2; 22.1 vs. 13.4; 17.7 vs. 13.4, respectively). In PEDIANET the composite IR was much 

higher than the IR from the TESSy database (43.9 vs 5.4). 

SIDIAP was the only database in which data from both the PC and hospital settings could be linked. The total 

number of cases in ‘PC OR inpatient diagnosis’ in SIDIAP was 220 (IR=45.0), including 26 (12%) that had not 

been identified in the PC setting. Unlike in the PC setting, where most of the diagnoses were unspecified, in the 

inpatient setting there were around half specific and half unspecified diagnoses. 
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Figure 1. Study results for the incidence of tested component and composite algorithms.  

For each component algorithm the incidence rate per 100,000 is represented. In composite algorithms, 

incidence rates are stratified per type of case: cases detected only by the left-hand component (indicated in 

the label before the keyword ‘OR’), cases detected by both components, and cases detected by the right-hand 

component (indicated in the label after the keyword ‘OR’). The line represents the national incidence rate per 

100,000 based on TESSy data. Years 2012 and 2014. 
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DB SIDIAP (Spain) BIFAP (Spain) PEDIANET (Italy) THIN (United Kingdom) RCGP (United Kingdom) 

Person-years 488,847 796,324 88, 754 1,387,939 411,404 

TESSy (IR and 
95%  CI) 21.2 (20.5-22.0) 21.2 (20.5-22.0) 5.4 (5.1-5.8) 13.4 (13.0-13.9) 13.4 (13.0-13.9) 

Component algorithms (N and IR per 100,000 PYs) 

PC diagnosis, 
specific 21 (4.3)    0 (0.0)    2 (2.3)    79 (5.7)    21 (5.1)    

PC diagnosis, 
unspecified 

173 
(35.4)    

135 
(17.0)    37 (41.7)    

178 
(12.8)    77 (18.7)    

Inpatient 
diagnosis, 

specific 27 (5.5)                    

Inpatient 
diagnosis, 
unspecified 26 (5.3)                    

Symptoms     
166 
(20.8)                

Symptoms and 
drug within 
30days     

122 
(15.3)                

Symptoms in 
infants 27 (5.5)        6 (6.8)    

172 
(12.4)    30 (7.3)    

Symptoms in 
infants and drug 
within 30days 1 (0.2)            8 (0.6)        

Test 96 (19.6)    38 (4.8)    38 (42.8)    
209 
(15.1)    32 (7.8)    

Positive 
laboratory 
results 19 (3.9)    0 (0.0)        3 (0.2)        

Composite algorithms 

 N (IR) 

N  (IR) in 
left-hand 
compone
nt only 

N  (IR) In 
both 
compone
ts 

N  (IR) In 
right-
hand 
compone
nt only N (IR) 

N  (IR) in 
left-hand 
compone
nt only 

N  (IR) In 
both 
compone
ts 

N  (IR) In 
right-
hand 
compone
nt only N (IR) 

N  (IR) in 
left-hand 
compone
nt only 

N  (IR) In 
both 
compone
ts 

N  (IR) In 
right-
hand 
compone
nt only N (IR) 

N  (IR) in 
left-hand 
compone
nt only 

N  (IR) In 
both 
compone
ts 

N  (IR) In 
right-
hand 
compone
nt only N (IR) 

N  (IR) in 
left-hand 
compone
nt only 

N  (IR) In 
both 
compone
ts 

N  (IR) In 
right-
hand 
compone
nt only 
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PC specific OR 
unspecified 
diagnosis 

194 
(39.6) 21 (4.3) 0 (0.0) 

173 
(35.4) 

135 
(17.0) 0 (0.0) 0 (0.0) 

135 
(17.0) 39 (43.9) 2 (2.2) 0 (0.0) 37 (41.7) 

246 
(17.7) 68 (4.9) 11 (0.8) 

167 
(12.0) 91 (22.1) 14 (3.4) 7 (1.7) 70 (17.0) 

Inpatient 
specific OR 
unspecified 
diagnosis 52 (10.6) 25 (5.1) 1 (0.2) 26 (5.3)                 

PC OR inpatient 
diagnosis 

220 
(45.0) 

168 
(34.3) 26 (5.3) 26 (5.3)                 

PC diagnosis OR 
test 

271 
(55.4) 77 (15.8) 19 (3.9) 

175 
(35.8) 

168 
(21.1) 33 (4.1) 5 (0.6) 

130 
(16.3) 69 (77.7) 30 (33.8) 8 (9.0) 31 (34.9) 

426 
(30.7) 

181 
(13.0) 29 (2.1) 

217 
(15.6) 

115 
(28.0) 24 (5.8) 8 (1.9) 83 (20.2) 

Positive lab 
results OR PC 
diagnosis 

197 
(40.3) 3 (0.6) 16 (3.3) 

178 
(36.4) 

135 
(17.0) 0 (0.0) 0 (0.0) 

135 
(17.0)     

247 
(17.8) 1 (0.1) 2 (0.1) 

244 
(17.6)     

PC diagnosis OR 
symptoms and 
drugs     

255 
(32.0) 

133 
(16.7) 2 (0.3) 

120 
(15.1)             

Any diagnosis 
OR positive lab 
results 

223 
(45.6) 

204 
(41.7) 16 (3.3) 3 (0.6)                 

Table 4. Study results.. Number of person-years entering the study in each database. Incidence rates of pertussis per 100,000 children aged 0-14, with 95% confidence 

interval (CI), from the TESSy surveillance system in the corresponding country. For each component algorithm the incidence rate per 100,000 is represented. In composite 

algorithms, incidence rates are stratified per type of case: cases detected only by the left-hand component (indicated in the label before the keyword 'OR'), cases detected by 

both components, and cases detected by the right-hand component (indicated in the label after the keyword 'OR'). Years 2012 and 2014 
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In BIFAP, the ‘symptoms and drugs within 30 days’ component identified 122 cases with an IR of 15.3 per 

100,000 PYs. When this component was combined with PC diagnoses, the IR increased to 32.0, which was 

higher than the reference IR which was 21.2. Almost none of the children aged 0 or 1 year old in ‘symptoms in 

infants’ in any database had a corresponding prescription or dispensing of macrolides in the ‘symptoms in 

infants and drugs within 30 days’ component. 

The ‘test’ component was available in all databases and had a relatively high IR (from 4.8 in BIFAP to 42.8 in 

PEDIANET). ‘Positive laboratory results’ were only available in SIDIAP and THIN, with only 19 and 3 cases, 

respectively. In SIDIAP, 3 of the 19 cases were not captured by a diagnosis in either primary care or hospital 

settings.  

In Supplementary Figure 1 and Supplementary Table 2, the analysis was repeated for infants (children aged 0 

or 1). The IRs in this subpopulation were around three times higher than the IRs in the overall study population. 

The findings confirmed the relationship between components observed in the general study population, with 

the exection of ‘PC OR inpatient diagnosis’ in SIDIAP (n=98), where 25.5% (n=25) were not retrieved from the 

PC setting, vs 11.8% in the overall study population. 

In SIDIAP we explored two scenarios, corresponding to different assumptions for PPV of ‘PC diagnosis, 

unspecified’ and of ‘inpatient diagnosis, unspecified’: in the first, this was 70%, in the second 50%. As a 

consequence, in the first scenario ‘PC specific OR unspecified diagnosis’ had a PPV of 72% (or, in the second: 

54%) and a sensitivity of 85% (or, in the second: 83%). Based on this estimate, the adjusted IR of BorPer in the 

SIDIAP study population was 35.5 per 100,000 PY (or, in the second scenario: 25.9) vs the TESSy surveillance 

system IR 21.2.  

4. Discussion 

We assessed several algorithms as potential strategies to detect cases of pertussis and thus estimate the IR in 

five European healthcare databases. The IRs estimated by these algorithms were heterogeneous within and 

between databases. However, there was at least one IR estimated by the algorithms in each database that was 

comparable with the reference value from the TESSy surveillance system, although some false positives were 

probably included. Based on a few assumptions, that may have overestimated sensitivity, it was estimated that 

the PPV and sensitivity of the algorithm detecting PC diagnoses in SIDIAP ranged from 54% to 72% and from 

83% to 85%, respectively, and that the IRs of Bordetella pertussis in the corresponding population ranged from 

25.9 to 35.5 per 100,000 person-years, against the TESSy surveillance system estimate of 21.2. 

4.1. General comments 

Three components were expected to have a high PPV: PC and inpatient specific diagnoses, and positive 

laboratory results. Two were expected to have lower PPV (PC and inpatient unspecified diagnoses). One was 

expected to be sensitive (prescription of a laboratory test), two were very unspecific (symptoms and symptoms 

in infants) and were planned to be used only in combination with the last component (prescription or use of 

macrolides) in a 30-days window of time. 

In all the databases, at least one composite algorithm estimated a number of cases that was compatible with 

the number expected from the TESSy surveillance system, but this was not with the combination of the 

components which was expected to have a high PPV (specific diagnoses and laboratory tests) in any of the 

databases. One possible explanation could be that it takes several days to confirm the diagnosis of pertussis 

after the disease is suspected, and there may be no opportunity for the specific diagnosis to be recorded if the 

patient does not return to the healthcare facility. Another possible explanation may be that the medical 

personnel may not see the need to update the record for the purposes of clinical care. This attitude may be 

influenced by the level of awareness of possible reuse of electronic records for research purposes. These 

potential explanations may have varying levels of impact in the different databases. For example, in some 
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databases we observed that among the cases detected by a diagnostic component (unspecified or specific), the 

specific diagnosis was more frequent, indicating that some clinicians might have been more aware about 

potential research uses of the databases and therefore entered specific diagnoses rather than free text, which 

was common for unspecified diagnoses.  

Based on the results of this study, in all the databases it is now possible to design sensitivity analysis using a 

more specific (but less sensitive) definition of pertussis. In case of heterogeneity in the results of a study on 

pertussis, designing such sensitivity analyses should be considered as a valid option. On the other hand, in all 

the databases there is now a possible choice among different sensitive algorithms: we explored several of 

them, among which ‘unspecified diagnoses’ (the most conservative) and ‘test’ (the least conservative). Even 

though these algorithms are likely to have lower PPVs, they may still be useful for sensitivity analyses, 

especially if there are reasons to think that a specific algorithm could be affected by differential 

misclassification. For example, pertussis may be more readily suspected and tested for in unvaccinated 

children, and therefore would be recorded in a more accurate manner.  

We developed a component for infants that we though would be sensitive and, although it was likely to have a 

low PPV, it was less prone to differential misclassification, because it captured symptoms that physicians may 

not think of as being related with pertussis. However this component proved to be unusable; in reality, when 

we added a secondary component for concurrent macrolide use there were very few cases that would have 

been expected to be found in infants with an infection. In contrast, we developed a component specifically for 

the symptom 'pertussis-like cough' (tos pertusoide in Spanish language) that was apparently specific for 

pertussis cases that were only found in the BIFAP database. Not only did the majority of cases have a 

concurrent record of prescription of macrolides, but a manual review of a sample of 100 records including 

physician free text comments, found 2 cases of unspecified pertussis and 2 cases of suspected pertussis. 

Therefore, this component may be considered for sensitivity analysis. 

4.2. Compatibility with TESSy and seroprevalence surveys 

In this study we were able to compare the IRs estimated for paediatric cohorts in five databases using the 

various algorithms with the national IR estimates from ECDC’s TESSy surveillance database. The cases captured 

by the two types of systems were expected to be slightly different, for various reasons. First, TESSy provides 

estimates at the national level using census denominators, while three of the databases participating in this 

study had a regional/multiregional scope (SIDIAP, BIFAP and PEDIANET) and two were based on a 

representative sample of the national population (THIN, RCGP RSC). Therefore it is possible that some clusters 

of the infectious disease might be under or over-represented in these database. Second, we collected only 

confirmed cases from TESSy, while some true cases captured by a PC database with a sensitive algorithm may 

never be confirmed (under ascertainment), or may never be notified (underreporting) [19, 20]. Thus the 

databases may be a complementary source of true cases which are not notified, while adding potentially false 

positive cases. Finally, the TESSy data for pertussis may also be affected by under ascertainment and 

underreporting. 

The IR found for PEDIANET, which was much higher than the IR estimate from TESSy for Italy (43.9 vs 5.4), may 

be explained by a combination of both phenomena discussed above. PEDIANET collects data from PC 

physicians working in the Italian region Veneto, in the North East of the country. The Regional Office for 

Infectious Diseases of the Veneto Region provided an estimated IR of 10.0 to the data custodians of PEDIANET. 

This shows that the region had a higher pertussis notification rate than at the national level for 2012 and 2014, 

although almost all the diagnoses in PEDIANET were unspecified. However, the regional estimate could be 

underestimated because of under ascertainment. Finally, as in the other databases, many cases in PEDIANET 

could be false positives. In general, if estimates of the PPV of the diagnoses are available, the estimated IR from 

databases can provide a quantitative estimate of under ascertainment and under notification in TESSy. Vice 
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versa, if under notification to TESSy is known to be small, estimates of the PPV for the algorithm can be 

obtained. 

Results from seroprevalence surveys have provided estimates for the incidence of Bordetella pertussis infection 

[21-23]. These have provided prevalence estimates beyond those of the surveillance systems, partly as they 

also capture asymptomatic or mildly symptomatic infections. On the contrary, in this study, we observed that 

estimates of incidence obtained from databases are roughly comparable with those of TESSy. 

4.3. Scope of the component strategy 

The scope of this component strategy goes beyond ADVANCE and has the potential of being a comprehensive 

tool to address heterogeneity and disease misclassification in databases, particularly in multi-database 

pharmacoepidemiology studies, when the characteristics of the databases affect the operational definition of 

the outcomes and benchmarking. 

Inspection of components can provide knowledge that can inform the interpretation of the heterogeneity of 

the study results. The component strategy can support quantitative bias analysis. In this study, we first 

developed a set of components with increasing sensitivity and decreasing PPVs. We explored several scenarios 

for possible PPVs of the components, but in many European databases, estimating directly the PPV of simple 

algorithms such as components is feasible in a relatively timely and inexpensive way [24-26]. If this is possible, 

then a consequence of our formulas in Table 3 is that the only value needed to obtain a complete estimate of 

validity is the sensitivity of the composition of the algorithms, as the rest can be analytically derived. In many 

cases, sensitivity of the composition could be argued to be very high. In the case of pertussis, we can speculate 

for instance that cases that were missed from SIDIAP were either seen in a hospital outside of the network that 

transmits their data to the database, or were very mild and did not require medical attention. The percentage 

of cases with those characteristics may be estimated from external sources. If estimating this quantity is not 

possible, then the formulas of Table 3 can still be applied, and they can provide an upper limit for the sensitivity 

of all the components, that is, the maximum possible sensitivity: to obtain this, it is sufficient to make an 

assumption on the sensitivity of the composite algorithm. 

If the validity of the variables that enter the analysis can be convincingly proven to be high, this analysis 

provides evidence that the study results are robust to misclassification. If not, comparing the distribution of 

components across exposure strata can indicate if differential misclassification is to be suspected. If it is 

suspected, it can be an important source of bias, as shown by the simulations we report here, as well as in 

other studies [5, 6]. Components with different validity can, thus, be used to design sensitivity analyses of the 

study results, applying repeated adjustments for validity to check if the result is robust. If both the PPV and 

sensitivity are suspected to be non-differential, then the estimate may be unbiased, but the confidence 

intervals of the estimate need to be adjusted for validity [8]. In future work, the estimates provided by the 

component strategy could be validated against actual validation studies. Moreover, the components could be 

analysed using latent class modelling, which enables to estimate the validity conditional on various covariates, 

e.g., age [27]. 

4.4. Strengths and limitations 

In this study, we used standardised component algorithms as a transparent way of documenting the data 

extraction process across multiple databases. At the same time, we could also perform a qualitative evaluation 

of the expected validity of each component Bordetella pertussis, based on its specified semantics and setting. 

Quantitative scenarios for the validity of each component can also be made using the same approach. We 

showed that estimates of the validity of various composite algorithms can then be derived in a purely algebraic 

manner. We could use the incidence estimates based on data from the TESSy surveillance system, which is 

where European Union member states are required to report pertussis cases, as a reference value, although we 

cannot exclude the possibility that they may also be subject to under ascertainment and underreporting. 
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The estimates of sensitivity that we obtained for SIDIAP cannot be generalised to the other PC databases. The 

sensitivity of the PC databases depends on how often a person with the disease symptoms would seek 

attention in a PC practice. Although in all the databases, the PC physicians have a gatekeeper role, emergency 

care can be sought without PC referral, and PC practices may not be accessible at night or weekends. Referrals 

from other settings may be recorded in the PC practice, but no automatic mechanism is in place. In the absence 

of a database-specific estimate, estimates from another database are a realistic alternative to assuming that 

sensitivity is 100%.  

5. Conclusions 

This study demonstrated the value of quantifying the impact of different event-finding algorithms across 

databases and the possibility of benchmarking with disease surveillance data as well as assessing validity 

estimates when data from different settings can be linked. The validity parameters could be used to correct 

disease IR estimates from healthcare databases. 
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Supplementary material 

Supplementary File 1 

Incidence rate as a proportion and sensitivity analysis 

The incidence of an algorithm in the age band 0-14 is the number if cases in persons who are aged 

0-14 at algorithm date, divided by the number of person years  aged 0-14 in the study population. In 
this study this number  we considered the persons who were 0-14 at the end of each follow-up year (that is, 
those who were 0-13 at index date, plus those who were born during the follow-up year), and counted the 
cases recorded during the year in this population. This way four numbers were changed: a whole year of 
follow-up was computed for persons who were in fact born during the year, and therefore contributed on 
average a half person-year; second, the person-time of those who were 15 at the end of follow-up, but had 
been 14 for, on average, half a year, was excluded from the computation of follow-up; third, cases in persons 
who were 15 at the end of follow-up year were assumed to were assumed to have all taken place after 
birthday; last, the person-time of those who were cases, and therefore not at risk anymore, was not discarded 
from the denominator. The assumptions underlying the approximation are: first, the population was quite 
stable, therefore the number of persons aged 0 and aged 15 at the end of each follow-up year, respectively 

 and , were similar, so the balance including half a year for the former and excluding half a year 
for the latter was approximately even. As a consequence the number of persons aged 0-14 at the end of follow-

up, , was similar to the number of person-years observed. Second, the number of cases in persons 
who turned 15 during the year, that should have been included while they are still 14, and that were 
nevertheless excluded, was very low compared to the number of cases in younger subjects, so the number of 

cases  was very similar to the number of cases  observed in persons aged 0-14 
at the end of the follow-up time. Last, the number of cases was so small that including person time not at risk 
did not affect the estimate of incidence rate. In formulas 

 

To quantify the impact of those assumptions we performed a sensitivity analysis. We measured the difference 
between number of persons who were born and the number of persons who turned 15 during the follow-up 
years as a percentage of the study population and we compared the number of cases in persons aged 0-14, 
which actually entered the analysis, with half of the number of cases in persons aged 15 at the end of each 
follow-up year (the average number of additional cases that would have been included, had they been 
correctly classified with their calendar age). 

The difference between the number of children born during each year and the number of children who were 
15 at the end of each year was less than 2% of the overall population in each database, except in PEDIANET, 
where it was 5%, The assumption on stability of population may have had a overestimated the IR in PEDIANET, 
although by a negligible amount. In BIFAP and PEDIANET there were no cases in children aged 15 at the end of 
follow-up. In the other databases, adding half of such cases would have increased the number of cases by less 
than 5%, except one the case of THIN, where they would have added 7% to the PC specific diagnosis and one 
case out of four to the positive laboratory value component. This would not have affected our analysis.
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Supplementary Table 1. Concepts selected for the component algorithms, projected to free text strings and 
codes in the coding systems in use in the participating databases. The concepts belonging to the data domain 
of ‘laboratory test’ and of ‘Results from laboratory test’ were all projected to local coding systems 

Label of the set of 
concepts 

Description of 
each included 
concept 

Concept 
Unique 
Identifier 

Languages Coding systems 

Spanish Italian ICD10 ICD9 

ICPC or 
BIFAP 
ICPC-
based 

Read-
CTv3 

Read-
v2 

ATC 

(Bordetella pertussis) 

 

Bordetella 
pertussis 

C0043167 
Bordetella 

pertussis 

Bordetella 
pertosse 

A37.0 033.0 R71001  A330.  

Whooping 
cough due to 
Bordetella 
pertussis 
without 
pneumonia 

C2887068         

Whooping 
cough due to 
Bordetella 
pertussis with 
pneumonia 

C2887069         

(Pertussis unspecified) 

Whooping 
cough due to 
unspecified 
organism 

C0043168 

‘ferina’ No 
como 
*parapertu
sis* or 
*pertusis* 

‘Pertoss’ 

‘Pertuss’ 

A37 
other 
than 
A37.0, 
A37.1, 
A37.8 

033 
other 
than 
033.0, 
033.1, 
033.8 

R71 
other 
than 
R71001 
484.3-
Neumon
ia en 
tosferina 

A33z., 
Ayu3A, 
X76Hf 

A33.. 
other 
than 
A330., 
Ayu3A 

 

Bordetella 
Infections 

C0006015   - - - 
X70I8, 
XE0Qw 

  

Whooping 
cough-like 
syndrome 

C0343485      XM00D XM00D  

Notification of 
whooping 
cough 

      65VA. 65VA.  

Pneumonia in 
pertussis 

C0155865    484.3  H243. H243.  

(Symptoms compatible 
with pertussis) 

Concept of ‘tos 
pertusoide’ in 
Spanish 
general 
practice 

 

'Tos 
pertusoide' 
or 

'Tos 
pertuss' in 
diagnosis 
description 

  

786.2.
3 Tos 
pertus
oide   

R05.10 
Tos 
pertusso
ide 
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(Symtoms in infants)  

 

Apnea C0003578    786.03 R04012 X76Gw R0604  

Cyanosis C0010520   R23.0 782.5 
K29005, 
S08011 

XM07N R025.  

Post-tussive 
vomiting 

C1740793         

Paroxysms of 
coughing 

C0231911         

(Macrolides) Macrolides         J01FA* 

(Bordetella pertussis 
test) 

polymerase 
chain reaction 
test 

         

culture or 
serology 

         

isolation of 
Bordetella 
pertussis from 
a clinical 
specimen 

         

(Positive result from a 
Bordetella pertussis test) 

positive 
polymerase 
chain reaction 
test 

         

positive culture 
or serology 

         

positive 
isolation of 
Bordetella 
pertussis from 
a clinical 
specimen 
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Supplementary Table 2. Percentage of children aged 0 or 1 in the population aged 0-14, from the EUROSTAT 
source and from the study population. 

% of infants in the population 0-14 SIDIAP (ES) BIFAP (ES) PEDIANET (IT) THIN (UK) RCGP (UK) 

EUROSTAT population 2012 and 2014 13.5 13.5 12.9 14.3 14.3 

Study population 12.1 16.1 13.0 14.8 15.1 

 

 



 

279 
 

 

 

 



280 
 

 

 

 



 

281 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



282 
 

 

 

 

 

 

 

 

 

 



 
 
 

 

 

 

 

6.3 ESTIMATING THE INCIDENCE OF ADVERSE EVENTS FOLLOWING VACCINATION IN 

OBSERVATIONAL DATABASES WITH INCOMPLETE EXPOSURE DATA 

 

 

Caitlin Dodd 

 Kaatje Bollaerts 

Daniel Weibel 

Maria de Ridder 

Olivia Mahaux 

Francois Haguinet 

Tom de Smedt 

Simon de Lusignan 

 Chris McGee 

Talita Duarte-Salles 

Hanne-Dorthe Emborg 

Consuelo Huerta 

Elisa Martín-Merino 

Gino Picelli 

Klara Berencsi 

 Giorgia Danieli 

Miriam Sturkenboom 

 

 

Submitted 



284 
 

Abstract 

The Accelerated Development of VAccine beNefit-risk Collaboration in Europe (ADVANCE) is a public-private 

collaboration aiming to develop and test a system for rapid vaccine benefit-risk monitoring using existing European 

healthcare databases. Incidence rate (IR) estimates of vaccination-associated adverse events that are needed to 

model vaccination risks can be calculated from existing healthcare databases when vaccination (exposure) data are 

available. We assessed different methods to derive IRs when data are missing in one database, using estimated IRs 

from other databases for febrile seizures, fever and persistent crying. IRs were estimated for children aged 0-5 

years in outcome-specific risk and non-risk periods following the first dose of acellular pertussis (aP) vaccination in 

four primary care databases and one hospital database. We compared derived and observed IRs in each database 

using three methods: 1) multiplication of non-risk period IR for database i by IR ratio (IRR) obtained from meta-

analysis of IRRs estimated using the self-controlled case-series method, from databases other than i; 2) same 

method as 1, but multiplying with background IR; and 3) meta-analyses of observed IRs from databases other than 

i. IRs for febrile seizures were lower in primary care databases than the hospital database. The derived IR for febrile 

seizures using data from primary care databases was lower than that observed in the hospital database, and using 

data from the hospital database gave a higher derived IR than that observed in the primary care database. For fever 

and persistent crying the opposite was observed. We demonstrated that missing IRs for a post-vaccination period 

can be derived but that the type of database and the method of event data capture can have an impact on 

potential bias. We recommend IRs are derived using data from similar database types (hospital or primary care) 

with caution as even this can give heterogeneous results. 
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1. Introduction  

The Accelerated Development of VAccine beNefit-risk Collaboration in Europe (ADVANCE) is a public-private 

collaboration aiming to develop and test a system for rapid benefit-risk (B/R) monitoring of vaccines using existing 

healthcare databases in Europe (see Appendix for consortium members). A series of proof of concept (POC) studies 

were designed to assess the processes and system proposed for generating the required data to generate evidence 

on coverage, risks and benefits of vaccines as well as benefit-risk analyses.  

Modelling is one method that is widely used to analyse vaccine benefit-risk, to understand the impacts of diseases, 

interventions, and environmental exposures deterministically or in simulated populations [1]. Valid estimates of 

incidence rates (IRs) for vaccine-preventable disease and adverse event following immunisation, and vaccination 

coverage are needed to model the benefit-risk of vaccination. These input parameters may be obtained from the 

literature or by using data from available healthcare databases. However, when using healthcare databases, their 

heterogeneity and potentially important missing information on vaccinations need to be taken into consideration 

[2].  

The first vaccines developed against Bordetella pertussis contained whole killed organisms [3]. Due to the 

reactogenicity of this vaccine, Between 2004 and 2015 several countries switched from whole-cell pertussis (wP) to 

acellular pertussis (aP) vaccines for infants and children due to the reactogenicity of the wP vaccine [4]. In the 

ADVANCE POC studies the benefits and risks of wP and aP vaccines in children were compared as an example. For 

this, IRs of known benefits and adverse events in outcome-specific risk periods following each dose of wP and aP 

vaccine were required. Since we used existing healthcare databases that collected data for purposes other than for 

research, we were faced with the problem of comparing the effects of exposure which occurred in distinct time 

periods, often with missing exposure data for the period before the switch from wP to aP. To compare the B/R for 

the wP and aP vaccines, we attempted to estimate IRs for various outcomes following wP vaccination in some 

databases that were established too recently to contain wP exposure data. In this paper we compared different 

methods for deriving IRs in the risk period following vaccination. To test these methods we limited the analysis to 

aP exposure, assuming that the aP exposure data were missing, which allowed us to compare the observed and 

derived IRs.  

2. Methods 

2.1 Data sources and population 

This study was conducted with data generated for the ADVANCE proof of concept risk study that included seven 

population-based healthcare databases from Denmark, Spain, UK and Italy (Table 1) [5, 6]. Two databases were 

excluded in this methods study: AUH because it is a subset of the national SSI database in Denmark, and PEDIANET 

from Italy, in which vaccination data was linked only for the 2006 and 2007 birth cohorts. We excluded data from 

the SSI database, which is a hospital database, in sensitivity analyses to study the impact of hospital data on the 

results.  
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Table 1: Databases providing data for the ADVANCE POC safety study [6] 

AUH = Aarhus University Hospital, SSI = Statens Serum Institute, BIFAP = Base de datos para la Investigación 

Famacoepidemiológica en Atención Primaria, SIDIAP = Information System for Research in Primary Care, RCGP RSC 

= Royal College of General Practitioners Research and Surveillance Centre, THIN = The Health Information Network, 

GP = General Practitioner, ICD = International Classification of Diseases 

The study population comprised all children aged <6 years registered in any of the participating databases during 

the study period, who had received at least the first dose of aP vaccine. For the calculation of background rates, 

children were followed from start of the study period (1 January 1990), one month after their date of birth (to 

allow for pre-vaccination person time and to avoid pre-term related or birth-induced increase in IR), or date of valid 

data in the database, whichever occurred the latest. For the calculation of baseline rates and incidence rate ratios, 

children were followed from 31 days before their first dose of aP vaccine. All children were followed until the end 

of study period (31 December 2015), until they received their pertussis booster dose, transferring out of the 

database, death, reaching age 6 years, or end of data availability in the database, whichever occurred first. Children 

with missing date of birth or sex were excluded. 

Country Database 
Geographic 

coverage 

Type of 

data 

Years 

with 

available 

data 

Switch 

from 

wP to 

aP 

Size (N 

persons) 

Children 

exposed 

to  aP 

Primary 

care 

diagnoses 

Hospital 

discharge 

diagnoses 

Denmark SSI National 

National 

claims 

data 

record 

linkage 

2000 - 

2014 
1997 

7.5 

million 
980,843 No Yes (ICD-10) 

Spain BIFAP 

Multi 

regional 

sample 

GP 

medical 

records 

2002 - 

2013 

2000-

2004 

4.8 

million 
320,638 

Yes (ICPC-

based 

codes + 

free text) 

Limited to 

free text 

comments 

recorded by 

the GP 

Spain SIDIAP 
Regional 

(Cataluña) 

GP 

medical 

records & 

partial 

linkage to 

hospital 

2005-

2014 

2000-

2004 

5.8 

million 
570,225 

Yes (ICD-

10) 
Yes (ICD-9) 

United 

Kingdom 

RCGP 

RSC 

National 

sample 

GP 

medical 

records 

2003 - 

2014 
2004 

2.0 

million 
152,784 Yes (READ) Yes (READ) 

United 

Kingdom 
THIN 

National 

sample 

GP 

medical 

records 

1996-

2013 
2004 

8.3 

million 
576,151 Yes (READ) Yes (READ) 
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Data from each participating database was extracted locally and transformed into a common data model, 

comprising vaccination, event, and population files [7].  

2.2 Outcomes 

To test the methodology we selected three outcomes from the risk study that have different patterns of care: 

febrile convulsions, fever, and persistent crying. Febrile convulsions are rare and are usually considered to be 

serious clinical events requiring presentation to the emergency room. Fever is common  

but does not often require hospitalisation. Persistent crying is non-specific and often lacks a specific diagnosis code 

even in primary care. Definitions, codes and methods for data extraction and harmonisation can be found in other 

papers in this supplement [6, 7].  

2.3 Definition of exposure 

Data on aP vaccination were obtained from the healthcare databases [6]. Although our study was driven by the 

need to estimate IRs during the wP risk period, we limited our methodological study to aP risk period since the IRs 

could be estimated in all participating databases, therefore we could compare the IRs derived using different 

methods with the estimated IRs. 

Outcome-specific risk windows were defined as day 0 to 3 for febrile convulsions and fever and day 0 to 1 for 

persistent crying, with day 0 being the day of vaccination. Baseline periods were defined as 31 to 8 days before 

dose one and the interval from the last day of the risk window to 31 days after the dose. The week prior to 

vaccination was excluded from the baseline period to avoid the ‘healthy vaccinee effect’, i.e. vaccine avoidance by 

subjects experiencing an illness (Figure 1) [8]. The pertussis vaccination schedules were 3, 5 and 12 months, 2, 4 

and 11 months and 2, 3 and 4 months for Denmark, Spain and UK, respectively.  

 

 

 

 

 

 

 

Figure 1: Schematic representation of the timeline of a typical observation period for dose 1. 

2.4 Statistical methods 

IRs were calculated by age in months and in the aP vaccination risk and non-risk period for each outcome. We 

conducted self-controlled case series (SCCS) analyses for each of the outcomes to obtain IRRs, comparing risk to 

non-risk periods for the first dose of aP vaccination [9]. The study population for each outcome-specific SCCS 

analysis included children who experienced the event at least once during their follow-up.  

Vaccination 
 (Day 0) 

Healthy 

vaccinee 

period 

Risk  
period 

-31 days 31 days 
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For each database i and event, a leave-one-out (L-O-O) random effects IRR was estimated using a meta-analysis of 

the IRRs from all databases other than database i, independent of the type of data source [10]. The result is 

referred to as L-O-O_IRR _ma. IRs in the risk period following vaccination were derived using three methods (Box). 

In the first method, we multiplied the baseline IR calculated in non-risk periods around aP vaccination in database i 

by the L-O-O_IRR_ma that excluded database i (IR_bl) (Figure 2). In the second method, we multiplied the 

background IR that was calculated in the month of age at the recommended first dose by the L-O-O_IRR_ma that 

excluded database i (IR-bg). In the third method, we derived a pooled risk period IR using a meta-analysis of the IRs 

for the observed risk period for all databases other than i (IR_ma). We then assessed the agreement between 

observed and derived risk period IRs.  

Box: Methods used to derive incidence rates in risk period following vaccination 

Derived from baseline IR (IR_bl):  
The baseline IR in database i was multiplied by the L-O-O_IRR_ma calculated excluding database i. Confidence 
intervals (CIs) were obtained by calculating the standard error of the log IR_bl as follows: 
The standard error of the sum of the log IR and the log L-O-O_IRR_ma was calculated as:  

√𝑠𝑒(log(𝐼𝑅))2 + 𝑠𝑒(log (𝐿 − 𝑂 − 𝑂_𝐼𝑅𝑅_𝑚𝑎 ))2  (1) 
where 

eventsN
IRse

_

1
))(log(            (2) 

Derived from background IR (IR_bg): 
The background IR of each outcome in the month of age when the first dose was recommended in the country 
of database, i, was multiplied by the L-O-O_IRR_ma calculated excluding database i. CIs were obtained by 
calculating the standard error of the log IR_bg as in equations (1) and (2). 
Derived via meta-analysis of risk period IRs (IR_ma): 
The log-transformed risk period IRs of all databases except database i were meta-analysed, providing IR_ma. 
CIs were obtained using the DerSimonian and Laird method for random effects meta-analysis [10]. 
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Figure 2: Approach for calculating risk window specific incidence rates in databases when wP exposure is missing or 

under the assumption of missing aP exposure [5]  

3. Results 

The study population comprised 2.6 million children aged <6 years who had received at least one dose of aP-

containing vaccine. The database-specific sample sizes varied from 152,784 (RCGP RSC) to 980,843 (SSI) (Table 1). 

Over 400,000 children experienced at least one of the three events of interest during the study period. 

The overall background IR (per 1,000 person-years) in this paediatric population for febrile convulsion ranged 

between 3 (BIFAP) to 11 (SSI; hospitalization). The age-stratified IRs peaked between 1 and 2 years of age in all 

databases (Figure 3). For fever, the overall IR (per 1,000 person-years) varied between the databases from 8 (SSI) to 

184 (BIFAP). The age-stratified IRs for fever were high up to 18 months of age in most of the databases (Figure 3).  
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Figure 3: Background incidence of events of interest per 1,000 person years by age in months and database (NB: 

the y-axes are not the same scale) 

SSI = Statens Serum Institute, BIFAP = Base de datos para la Investigación Famacoepidemiológica en Atención 

Primaria, SIDIAP = Information System for Research in Primary Care, RCGP  RSC = Royal College of General 

Practitioners Research and Surveillance Centre, THIN = The Health Information Network 

 

The overall IRs (per 1,000 person-years) of persistent crying ranged from 2 (THIN) to 22 (BIFAP). The age-stratified 

IRs peaked in the first months of life and then declined rapidly (Figure 3). No data for persistent crying were 

available in the SIDIAP and SSI databases since there are no specific ICD-9 or ICD-10 codes for this event. The event 

was identified using BIFAP-specific-ICPC or ICD-9 codes as well as free-text in the BIFAP database. .  

IRRs for adverse events following vaccination which compared the IRs in risk periods after aP vaccination with those 

at baseline, as estimated via SCCS analyses, varied between databases. For febrile convulsions, no significant 

association after dose one of aP vaccine was seen in the BIFAP and RCGP RSC databases, while the risk was 

significantly lower in the SSI and THIN databases. L-O-O IRR_ma estimates were closer to 1 than those estimated in 

the SCCS in all databases. Statistically significant protective effects observed in the SSI and THIN databases were no 

longer present in the L-O-O_IRR_ma estimates. When the estimates from the SSI database were excluded, the L-O-
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O_IRR_ma estimates increased slightly closer 1 due to removal of the significantly protective IRR in the SSI 

database (Table 2). 

 

Table 2: Self-controlled case series (SCCS) and leave-one-out (L-O-O) incidence rate ratios (IRRs) following dose one 

of acellular pertussis vaccine 

Event Database 
SCCS IRR 
(95% CI) 

L-O-O IRR 
(95% CI) 

L-O-O IRR without SSI 
(95% CI) 

Febrile convulsions 

SSI 0.24 (0.18; 0.31) 0.88 (0.32; 2.39) NA 

BIFAP 2.23 (0.77; 6.47) 0.46 (0.18; 1.18) 0.63 (0.20; 1.98) 

SIDIAP 0.40 (0.13; 1.27) 0.72 (0.20; 2.57) 1.12 (0.33; 3.77) 

RCGP RSC 1.93 (0.66; 5.65) 0.48 (0.18; 1.32) 0.67 (0.19; 2.30) 

THIN 0.31 (0.10; 0.98) 0.76 (0.21; 2.74) 1.23 (0.43; 3.50) 

Fever 

SSI 1.33 (1.21; 1.47) 0.83 (0.62; 1.11) NA 

BIFAP 0.72 (0.67; 0.78) 0.96 (0.65; 1.43) 0.87 (0.56; 1.33) 

SIDIAP 0.58 (0.54; 0.62) 1.02 (0.78; 1.33) 0.93 (0.72; 1.21) 

RCGP RSC 1.12 (0.96; 1.30) 0.87 (0.61; 1.22) 0.75 (0.54; 1.04) 

THIN 1.01 (0.94; 1.08) 0.89 (0.60; 1.31) 0.77 (0.57; 1.04) 

Persistent crying 

SSI NA 2.38 (1.55; 3.64) NA 

BIFAP 1.60 (1.34; 1.91) 2.95 (2.56; 3.39) 2.95 (2.56; 3.39) 

SIDIAP NA 2.38 (1.55; 3.64) 2.38 (1.55; 3.64) 

RCGP RSC 2.83 (2.18; 3.66) 2.19 (1.18; 4.06) 2.19 (1.18; 4.06) 

THIN 3.00 (2.54; 3.54) 2.11 (1.20; 3.68) 2.11 (1.20; 3.68) 

BIFAP = Base de datos para la Investigación Famacoepidemiológica en Atención Primaria, RCGP RSC = Royal College 

of General Practitioners Research and Surveillance Centre, SIDIAP = Information System for Research in Primary 

Care, SSI = Statens Serum Institute, THIN = The Health Information Network, SCCS = Self Controlled Case Series. L-

O-O = Leave-one-out 

IRRs for fever showed a significant protective effect in the BIFAP and SIDIAP databases whereas the risk was 

increased in the SSI database and no association was observed in the THIN and RCGP RSC databases. Again, L-O-O 

meta-analysis removed much of the heterogeneity in these results. All L-O-O_IRR_ma estimates had confidence 

intervals including one (Table 2). 
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Persistent crying was significantly elevated in all databases that provided data for this event. L-O-O_IRR_ma results 

were consistent across databases and remained significantly greater than one. Because SSI did not contribute 

persistent crying cases, removal of SSI had no impact on L-O-O_IRR_ma estimates (Table 2).  

The IR_bl and IR_bg methods performed similarly for febrile convulsions, tending to underestimate observed risk 

period IRs. In the primary care databases, with the exception of RCGP RSC, the derived IR_ma tended to be higher 

than the observed IR, because of the impact of the elevated incidence from the hospital database, SSI. For the SSI 

database, the observed risk period IR was higher than the derived IR_ma as this was based on the risk period IRs of 

the primary care databases. In analyses excluding SSI, IR_bl and IR_bg performed similarly and were in agreement 

with the observed risk period IR except in the RCGP RSC database. The IR_ma method produced higher estimates 

with wider confidence intervals than IR_bl and IR_bg in all scenarios (Figure 4). 

 

 

Figure 4: Comparison of results from the three methods for calculating incidence rates (IRs) for febrile convulsions, 

fever and persistent crying following aP vaccination (A) in all databases and (B) in primary care databases (excluding 

SSI) 
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BIFAP = Base de datos para la Investigación Famacoepidemiológica en Atención Primaria, RCGP RSC = Royal College 

of General Practitioners Research and Surveillance Centre, SIDIAP = Information System for Research in Primary 

Care, SSI = Statens Serum Institute, THIN = The Health Information Network, aPE = acellular pertussis vaccine 

For fever the IR_bl and IR_bg methods gave similar results, i.e., derived IR estimates that were generally lower than 

the observed estimates. The derived IR_ma estimates were similar across databases. In the BIFAP database where 

the background IR for fever was highest, the IR_ma underestimated the observed IR for the risk period while in the 

SSI database, where the background rate of fever was the lowest, the IR_ma overestimated the IR for the risk 

period compared with the observed IR. (Figure 3, Figure 4). In analyses excluding SSI, IR_bl and IR_bg significantly 

underestimated the observed risk period IRs in all databases except for the BIFAP and SIDIAP databases, while the 

IRs from IR_ma were similar across databases and produced an underestimation of observed risk period IR in 

BIFAP. 

For persistent crying, the results from the IR_bl and IR_bg approaches were similar. In the UK databases, the IRs 

derived by both methods were slightly lower than the observed risk period IRs, but not statistically significantly 

lower, whereas the IRs derived by both IR_bl and IR_bg were higher than those observed for the BIFAP database. 

The risk period IRs derived by the IR_ma method were similar across databases but they were underestimated 

compared with the observed risk period IRs in the BIFAP and RCGP RSC databases, and overestimated compared 

with the observed risk period IRs in the THIN database. Since no data for persistent crying events were available 

from the SSI database, its removal had no impact on the estimated IRs. 

4. Discussion 

The results from this study demonstrate that it is possible to obtain estimates for event-specific IRs occurring 

during risk windows after vaccination in a certain database using incidence rate ratios and incidence rates from 

other data sources, even if the data on the type of vaccination (for the IR_bl method) or the occurrence of 

vaccination (for the IR_bg and IR_ma methods) are not available in that database. The results also demonstrate 

that use of IR estimates from other data sources may not always be valid, since the type of data source (e.g. 

primary care setting versus hospital setting) has a major impact, which differs by type of event and the care pattern 

for that event. 

Febrile convulsions are acute and can lead to emergency room visits and, therefore, primarily appear in hospital 

records [11, 12]. Since the SSI database contains only hospital-derived data, this might explain why the background, 

baseline and risk period incidence rates are higher in the SSI database than in the other databases which contain 

primary care-derived data (SIDIAP, BIFAP, THIN, and RCGP RSC). The observed IRs for febrile convulsions and their 

peak at around 15-16 months of age, especially in the SSI database, are consistent with those in the literature that 

reports a peak incidence at around 18 months old [13, 14]. The derived estimates for febrile convulsions IRs were in 

much better agreement with observed risk period IRs when the SSI hospital-based database was removed because 

of the difference in background incidence between primary care and hospital databases.  

The post-vaccination IRs for fever derived using baseline or background rates produced estimates that were lower 

than the observed IRs in the risk window. Fever had a very low background incidence in the SSI database because it 

is a symptom and is unlikely be recorded as a hospital discharge diagnosis. The IRs derived using meta-analysis also 

tended to be lower that the observed risk period IRs except in the SSI database where the observed risk period IR 

was low. Removal of SSI did not improve the agreement between the derived IRs and observed risk period IRs due 

to its small contribution and therefore minimal changes to the L-O-O estimates.  
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Persistent crying is a non-specific condition that is not easy to record using medical coding systems and only the 

BIFAP database had specific codes for this event. Agreement was good for the methods in all databases, except 

BIFAP where the derived IRs using baseline and background rates were over-estimates compared with the 

observed risk period IRs, due to the higher baseline and background rates of persistent crying in BIFAP. The 

usefulness of the IR_ma estimates for the BIFAP, RCGP RSC and THIN databases is uncertain as they are derived 

from the meta-analysis of data from the other two databases while for the SIDIAP and SSI databases the IR_ma is 

the only estimate available due to the absence of persistent crying events in these databases.  

In general, IR_ma estimates produced wider CIs due to our use of a random-effects meta-analysis and therefore, 

the 95% CIs for the IR_ma estimates were more likely to contain the observed IR. The L-O-O_IRR_ma estimates 

were similar across databases for each event, irrespective of which database was left out, suggesting that any 

differences in the resulting IR_bl or IR_bg estimates were due to difference in underlying baseline or background 

rates.  

The aim of this study was to assess methods to fill gaps in information in one database using estimates from other 

databases. We demonstrated that this is possible, but that how data for each event are captured should be taken 

into consideration, as this may have a greater impact on the absolute IRs than on the IRRs. If an event, such as fever 

or persistent crying, is not captured in a database, we recommend that the pooled IRs (IR_ma) from databases 

which were able to capture the event of interest in similar settings are used. For example, the incidence of febrile 

convulsions was lower in the primary care databases than in the hospital database, but the IR_ma method 

produced derived IRs that were more in line with those observed in the hospital database. This method may be 

preferable if observed IRs in primary care databases are assumed to be underestimated.  

Although the type of event type may have an important impact on the performance of methods for derivation, we 

demonstrated that the IR_bl and IR_bg methods provided very similar results for the events we used, which means 

that the approach using the background IRs (which does not require vaccine exposure time) can be used. This may 

be because the risk periods represent a very small period in comparison with the total follow-up period, and the 

risk increase was small during the risk period. These methods may be preferable if background and baseline IRs are 

assumed to be accurate, and the IR_bg method may be preferable if the risk period is short or cannot be observed 

due to missing exposure data. 

5. Conclusions 

Although we were able to compare derived and observed IRs for aP exposure, we did not have the estimates of the 

true incidence of each event in the post-wP vaccination risk period in all databases. We cannot draw general 

conclusions regarding which method provides the best estimates of the true incidence, but we can conclude that, 

in case of short risk windows and small increases in IRRs, the IR_bl and IR_bg methods provide similar estimates. 

Additionally, the IR_ma method may provide derived IRs that are closer to the observed IRs when these latter come 

from a similar type of database. However, it is important to note that this method is sensitive to heterogeneity in 

baseline incidence in each of the database as it uses absolute measures of incidence, [15, 16]. 

We demonstrated that the type of events and databases have a large impact and it is important to distinguish if the 

events are diagnosed in primary care, hospital or both, and perform stratified analyses for the type of events the 

databases capture. It is important to have a clear understanding of the external and internal validation of the 

databases as well as the heterogeneity of the studied databases and those used for deriving the parameters before 

proceeding to parameter derivation. We conclude that derived IRs for events following vaccination in the absence 

of specific vaccine exposure data in a specific database is possible if the background IRs can be calculated and IRRs 

are available from a similar type of database. 
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GENERAL DISCUSSION 

Active surveillance of drugs is often divided into different stages: signal detection, rapid assessment of risk, 

thorough evaluation of risk, and near real time monitoring. Each of these stages applies different methods and uses 

different types of databases, although recently a blending of methods and data sources is occurring. The 

development of methods and findings reported in this thesis are discussed according to two dimensions. The first 

dimension focuses on the type of method with respect to the hierarchy of drug evaluations: signal detection, rapid 

safety assessment, and thorough evaluation. The second dimension is the modality of evaluation methods, 

specifically focusing on the methods around multi-site studies  and the use of a common data models and common 

analytics. These two dimensions are discussed together in each of the methods sections. 

Summary  

Methods for signal detection in children 

Comparison of signal detection methods applied to spontaneous reporting databases (SRDs) have found that 

different disproportionality methods perform similarly and that the choice of algorithm must be made on a per-

purpose basis (4-8).  In contrast to the performance of methods used in spontaneous reporting databases, methods 

used  to conduct signal detection on electronic health care databases which include traditional disproportionality 

analyses as well as epidemiological designs, differ in performance and not all have been quantified (1).  

Performance assessment in both types of databases presents challenges since a reference set of negative drug-

event associations and positive drug-event associations  is needed. The negative controls present a greater 

challenge as absence of evidence does not necessarily mean evidence of absence. The choice and composition of 

reference set is an important factor for performance assessment (2, 3).  

Methods for signal detection in SRD have been studied extensively and researchers are closer to a consensus on 

how they should best be used.  However, debate remains regarding the impact of masking (meaning the 

diminished ability to detect signals due to preponderance of commonly reported drugs and events)  and the impact 

of stratification. Some prior studies have produced conflicting results, revealing  that the decision to account for a 

masking effect, effect modification by age, or some other variable must be made on a situational basis(4-8).  In this 

thesis we added to existing methods knowledge by investigating  the impact on performance of age stratification 

and the extent of masking by vaccines as we focused on children, where age stratification is relevant. When 

children grow, there is a rapid change in organ system and function, therefore the effect of drugs may differ 

substantially between ages (9).  For this methods on SDR work we evaluated performance of different stratification 

approaches, and the reference sets for therapeutics and vaccines produced for the GRiP project  (10, 11).   

We created a common data model (CDM) for spontaneous reporting databases, as described in chapter 2, because 

multiple SRDs exist (e.g. FAERS, VAERS, Eudravigilance, WHO-Vigibase), and especially when looking at children 

only, power is limited.  Conversion of the EudraVigilance and VAERS databases to a common data model allowed 

for direct comparison of methods applied to the databases separately as well as to their combination.  It also 

highlighted deficiencies in each database by revealing those variables which were unavailable for conversion to 

CDM or, if available, with insufficient frequency to make application of methods feasible.   

Our methodological studies using the FAERS and Eudravigilance databases demonstrate that stratification by age 

groups in children reveals some signals while masking others and that this is dependent upon the specific age 

group.  We also demonstrated  that in a combined therapeutic and vaccine database, including reports concerning 

vaccine exposures when assessing safety signals related to drugs can produce more robust estimates because of 
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the larger denominators, as compared to estimates produced when vaccine exposures are excluded.  However, 

masking may be present and may differ by the type of association being investigated, particularly upon whether 

the event of interest is commonly reported in association with vaccines, and upon the age group under study.   

In comparing methods  across different data sources we found that traditional disproportionality methods, referred 

to as signal detection algorithms (SDAs) when paired with standard thresholds for defining a signal,  do not perform 

as well as vaccine-specific methods in signal detection for vaccine exposures. Linearly combining a traditional SDA 

and a vaccine-specific method only marginally improved performance over the vaccine-specific method alone.  

Although we used large publicly available datasets from the USA and EU, for many true positive associations in the 

reference set, few events were reported,  which limited our ability to accurately assess sensitivity and positive 

predictive value.  Based on this experience and the lack of other pediatric specific reference sets, we have 

suggested methods for assessing performance in the absence of a reference set and advocate that reference set-

independent methods be further developed.  In addition, because the group of people typically exposed to 

vaccines differs from those prescribed drugs in terms of age and underlying health status, we advise that methods 

for vaccine safety signal detection be refined and developed since standard disproportionality methods do not 

appear to perform well. 

Methods for rapid safety signal assessment  

Rapid assessment of a safety concern is usually conducted to look quickly at population impact, which is of 

relevance to regulators and public health organizations for initial decision making. Most rapid assessment methods 

rely on ecological methods, which utilize easily accessible population level data in which groups or periods have 

been defined by a natural experiment such as a targeted vaccination campaign, enabling the study of time trends 

on a population level.  In chapter 3 we have investigated the utility of ecological methods for vaccine safety 

assessment and found that, while ecological methods are useful for rapid assessment, the power of such studies to 

detect risk when the time from onset to diagnosis is long or when vaccine coverage is low, is insufficient.  In the 

ecological study of incidence rates of narcolepsy before, during and after the 2009 H1N1 pandemic and vaccination 

campaign, we demonstrated that rapid assessment is possible across four continents using electronic health care 

data sources; results were generated with a common protocol, common data model and analytics in a distributed 

manner.  However, based upon simulations conducted within the same study, estimates of relative incidence was 

underestimated by the ecological methods used.  The utility of ecological methods for rapid assessment therefore 

relies on the type of association that is of interest. 

Vaccine evaluation studies in distributed networks 

Beyond the Vaccine Safety Datalink (VSD) which was initiated in 1990, single database studies were the common 

rule until the 2009 H1N1 pandemic for the  evaluation of vaccine safety.  A single site study may be more  efficient 

when a study can be addressed fully and reliably in one data source, although (as is done in genetics) replication 

would be recommendable.   In the single database studies  we conducted within the THIN general practice 

database in chapter 2, we found that after application of inclusion criteria, sample sizes are often too limited to 

detect rare safety events.  This provides grounds to advocate for the standard use of multiple data sources when 

safety issues need to be addressed properly. 

Multi-database studies are necessary to study drug effects for many reasons. Primarily because of increased power 

to detect effects with increased study population, secondly to profit from differences in drug use in different 

countries and thirdly because of the ability to look at consistency across sites.  The Rofecoxib scandal in 2004 and 

the H1N1 pandemic in 2009 gave a strong boost to the analysis of different data sources in parallel (12, 13).  Within 

Europe several projects demonstrated the ability to conduct distributed studies using a common protocol, common 
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data model and common analytics (14).  VAESCO, GRiP and ADVANCE leveraged the expertise that was built up in 

these initial projects and applied it to the pediatric (GRiP) and vaccine area (VAESCO, ADVANCE) (15-17). Several 

studies in this thesis were conducted as part of these projects, and aimed to generate and test methods for signal 

detection, rapid assessment and evaluation using a distributed multi-database study. The work of the VSD in the 

United States was pioneering in that the system was the first to establish a distributed data model of multiple 

stakeholders with common standards for data quality and sharing, allowing for rapid assessment of vaccine safety 

concerns(18).  Based upon the success of the VSD, similar collaborations have been initiated in North America 

(Sentinel in the United States and the Canadian Immunization Research Network in Canada) (19, 20).  In Europe, 

however, post-marketing surveillance for vaccines continues to be conducted primarily on a per-country and per-

vaccine basis rather than through an established network with fixed funding (17). One of the key decisions in these 

collaborations is the choice of a/the common data model (CDM) to allow for common analytics on the electronic 

health care data. Sentinel and CNODES are  using the Sentinel CDM, VSD has its own CDM, OHDSI uses the OMOP 

CDM and ADVANCE uses its own CDM, which is very similar to the CDM from prior EU projects, allowing for re-use 

of analytical tools.   

European collaborative studies  

Transformation of data to a CDM is a complex issue in Europe, because different countries use different coding, 

have different health care structures and use different languages. To improve consistence between different 

databases and transparency, Gini et al have worked toward defining methods for creating and quantifying the 

impact of different case finding algorithms using components from various database domains such as diagnoses, 

prescriptions, laboratory tests, and procedures (21).  In addition, for the ADVANCE project, Becker et al have 

developed a tool (Codemapper) which maps from text definitions to Unified Medical Language System (UMLS) 

concepts and subsequently to codes in diverse coding systems (22).  This tool has been used in  studies conducted 

within the ADVANCE project, described in chapter 6 of this thesis. 

Although one may use different case finding algorithms, it would be good to validate these against a gold standard 

and get performance measures. This is not always possible. To support validity assessment we developed a method 

for deriving validity indices (positive predictive value, sensitivity, specificity, etc.) from a subset of indices and have 

shown that with estimates of population prevalence of the event, prevalence of the composite of the components 

of the algorithm to identify events in the data source, and one other validity measure, all others may be derived.  

This approach was applied to algorithms for detection of pertussis infection in chapter 6 of this thesis. 

Global collaborative studies  

With increasing globalization comes the threat of a rapidly spreading zoonosis or viral mutation leading to 

increased virulence. This requires global collaboration and flexibility to use primary and secondary data collection 

methods, while using a common protocol, common data model and analytics. We demonstrated that using a 

common data model and common analytics, signal detection and rapid assessment is possible. However, the 

evaluation of detected signals presents a greater challenge, particularly in lower and middle income countries 

which may have less robust infrastructure in place.  

The globally collaborative safety evaluation studies in this thesis illustrate the challenges inherent in using existing 

data for vaccine safety assessment; in many occasions no electronic systems are available and data needs to be 

collected in a dedicated manner. This limitation resulted in the fact that in  the study of  Guillain Barré Syndrome 

and narcolepsy and H1N1 vaccine in chapter 4 of this thesis, no low income countries were included.  The Global 

Vaccine Safety Multi country study aimed at including both low and middle income countries as well as high income 

countries. Through a proof of concept study assessing the risk of  thrombocytopenic purpura and aseptic meningitis 
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following measles and mumps containing vaccines, it was demonstrated that it is feasible to conduct vaccine safety 

assessment in low and middle income countries using a common protocol and common analytics. This was feasible 

with  secondary use of electronic health data but also with ad hoc data collection. 

Methodological considerations 

Across the different studies, methods and data sources, we encountered methodological issues and would like to 

provide recommendations. 

Vaccines cannot be treated like other drugs when conducting signal detection 

The safety profile demanded by the public for vaccines due to their use in healthy subjects and their ubiquity in 

populations lead to different patterns of reporting for adverse events experienced following immunization (AEFI) as 

compared to adverse events following drug exposure.  Extra vigilance is needed for vaccines to be able to quickly 

detect and assess vaccine safety concerns and to address vaccine hesitancy adequately.  To ensure adequate 

detection of signals and avoid masking, it may be inappropriate to apply standard signal detection algorithms to 

vaccine reports.  We have shown that the vaccine specific time-to-onset (TTO) method outperforms the empirical 

Bayes geometric mean (EBGM).  Additionally, we have shown that a linear combination of the TTO method and 

EBGM improves performance over either method alone but that the improvement over TTO alone was not 

significant.  We recommend that vaccine-specific SDAs be employed when AEFIs and that spontaneous reporting 

databases containing both drug and vaccine exposures be analyzed with and without stratification by report type, 

i.e. drug related and vaccine related, where possible. 

Comparison of signal detection methods should be independent of a reference set 

In the studies which make use of the vaccine and drug-related GRiP pediatric reference sets to compare the 

performance of methods to detect signals in pediatrics, we found that reference set size and low numbers of 

positive control associations in the data set to be tested made  assessment of performance difficult and reduced 

the precision of performance measures.  This was compounded by the fact that many drugs and/or vaccines 

included in each reference set were used in specific pediatric subpopulations while many events occurred only in 

other pediatric subpopulations.  For example, the pediatric drug reference set used in chapters 2.1 and 2.2 included 

psychosis and suicide as events, which are unlikely to occur in neonates and infants.  Similarly, the GRIP vaccine 

reference set used in chapter 2.3 includes influenza vaccines which are less likely to be used in infants and 

neonates as well as the MMR vaccine which is unlikely to be used in adolescents except as a catch-up vaccine.  The 

vaccine schedule is specific to pediatric age groups, with most childhood vaccines received in infancy (23).  We 

recommend use of reference set independent performance assessments such as those presented in chapter 2.2 in 

the study of masking by vaccines in EudraVigilance.  In this study, we were able to show, in the absence of a 

reference set, that the magnitude of estimates generated by disproportionality analysis generally decreased with 

the removal of vaccine exposures.  A similar approach has been used by Zeinoun et al (5).  We also recommend that 

reference sets be regularly updated and expanded  based on the most current evidence.  Additionally, because of 

differences in drug/vaccine use and in events incidences, age group-specific reference sets may be called for when 

performing signal detection. 

Rapid assessment performance depends on onset to diagnosis lag time of the event as well as vaccine coverage 

In chapter 3, which describes the use of ecological data to assess the incidence of narcolepsy before, during, and 

after the H1N1 pandemic and vaccination campaign, we showed that rapid assessment of adverse events following 

vaccination requires an understanding of the onset to diagnosis interval (lag time) as well as accurate recording of 
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onset.  Long lag times and use of diagnosis dates instead of onset, will attenuate potential increases in risk. While 

we were able to analyze incidence rates of narcolepsy in periods prior to H1N1 virus circulation, during virus 

circulation, and following the vaccination campaign, these analyses were hampered by availability of diagnosis 

dates only,  which may occur long after disease onset. Beyond impact of long lag times, coverage has an impact on 

the ability to assess risks. We demonstrated that ecological  methods are likely to underestimate risk when 

coverage is low. Reliance on rapid assessment methods in triage or regulatory decision making should take these 

factors into account. 

Vaccine safety evaluation requires collaborative studies to increase sample size and leverage exposure differences 

Power can be limited in single database studies, especially when stringent inclusion and exclusion criteria are 

applied.  If limited to a single database, conclusions may not be generalizable and consistency/replication cannot be 

tested.  Even large databases may not provide adequate power to study rare exposures and outcomes or to 

produce estimates in sparse strata.  As shown in chapter 4.1, which describes results of a single database study 

assessing the risk of Bell’s Palsy following influenza vaccination in the THIN database, there was sufficient power for 

non-stratified analyses.  However, power was reduced when analyses were stratified by year and age group, 

meaning that the increased risk of diagnosis on the day of vaccination was no longer detected within strata.  

Although over 6,000 cases of Bell’s Palsy were found in this large database of over 8 million subjects, addressing 

some age, sex, and vaccine year strata-specific questions were not possible and would necessitate collaboration 

with other databases.  Similarly, in the study of measles-induced immune suppression conducted in THIN and 

described in chapter 4.2, the a priori planned outcome of death was dropped from the final analysis due to an 

insufficient number of cases, and incidence rates for hospitalizations were unstable as compared to those for other 

outcomes due to low case counts.  Both studies, due to their limitation to a single population, were able to exploit 

population-specific features such as reduced MMR uptake (for the measles study) and influenza vaccination 

recommendations for the elderly and pregnant women (for the Bell’s palsy study) in the UK population.  However, 

limitation to a single database also limits the extent to which effects due to exposure can be distinguished from 

effects due to underlying population characteristics.  For example, in chapter 5.1, which describes a collaborative 

study of Guillain Barré Syndrome following p-H1N1 vaccination, an analysis limited to the Mexican data set would 

have indicated an increased risk of Guillain-Barré Syndrome following p-H1N1 vaccination while analysis including 

other databases attenuated this finding.   

Common definitions and quantitative assessment of differences in outcomes is necessary in multi-database studies 

In each of the multi-database studies in chapters 5 and 6, common protocols with common definitions were used 

and approaches were taken to harmonize extraction of events in disparate data sources.  In the study of Guillain 

Barré Syndrome following p-H1N1 vaccination, data was retained locally in its original form but cases were 

classified according to Brighton Collaboration criteria while vaccine exposures were classified by adjuvant (24).  In 

the two other studies included in chapter 5, one of which aimed to assess the risk of narcolepsy following p-H1N1 

vaccination and the other which aimed to assess known associations following measles and mumps containing 

vaccines, data were collected de novo using a common protocol, common data entry tools including an online case 

report form, and harmonized event definitions. Data were locally transformed using the CHAMELEON (Chameleon, 

Erasmus Medical Center, Rotterdam, the Netherlands) tool and shared, allowing for a common analysis.  In the 

manuscripts which originated from the ADVANCE project in chapter 6, data access providers of electronic health 

data were using a common data model. Each data provider extracted  events and vaccines and converted these 

data into the CDM using harmonized code lists generated by Codemapper (22).  In the subsequent harmonization 

process, differences between data sources in codes and incidence rates were discussed and algorithms for case 

detection were iteratively harmonized. Study teams then assessed whether a data source was fit for purpose to 
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participate in studies. Subsequently, data was analyzed using common analysis scripts in SAS or R.  In each of these 

projects, heterogeneity was reduced largely due to the common definitions/analysis but by no means removed, 

because of different provenance of the data (hospital versus primary care) and  granularity of the coding schemes 

(READ vs. ICPC).  Meta-data on provenance, such as healthcare delivery and coding practices for a database, are 

important factors in interpreting data from disparate data sources, and these pieces of information are available 

when there is close collaboration among  data custodians and investigators.  Additionally, studies reporting relative 

rather than absolute rates can avoid some of these issues by comparing cases to controls or at-risk person time to 

control time within one data source, which may produce more consistent estimates across heterogeneous data 

sources. 

Electronic health care databases differ in their coding systems, coding practices, and incorporation of data from 

different domains such as hospitalizations, diagnoses, laboratory findings, prescriptions, procedures and 

dispensing.  Because of these differences, case finding algorithms must be developed per database and, in multi-

database studies, harmonization must be conducted on a study by study basis.  In addition, validation may be 

undertaken to measure the predictive value of the resulting algorithms.  In each of the collaborative studies 

included in this thesis, this process of mapping to various coding systems and exploiting data originating from 

different domains was undertaken.  In the global proof of concept studies included in chapter 5, which relied on 

collection of clinical cases, the Brighton Collaboration case definitions for aseptic meningitis, immune 

thrombocytopenic purpura, encephalitis, narcolepsy, and Guillain Barré Syndrome were used to ensure 

comparability and consistency.  In the study describing and testing case finding algorithms for identification of 

pertussis infections based on secondary use of health care databases throughout Europe, the interrelations among 

validity measures were exploited to estimate positive predictive value of a set of algorithms.   

Electronic health care databases have been set up at different times in European countries and the data therefore  

cover different time periods. We tested methods for deriving incidence of events following an exposure which has 

not been observed in a certain databases (because of lack of the relevant calendar time period) using estimates 

from databases in which the exposure has been observed.  While the exercise revealed that this type of derivation 

is possible, the results highlighted the importance of taking into account the types of electronic health care 

databases being used.  For example, febrile convulsions, a serious event for which emergency care is often sought, 

had a higher incidence  in the databases that captured hospitalization as outcomes, compared to general practice 

databases.  We could not use the hospital based rates to derive incidence rates in general practice databases.  The 

use of absolute rates to derive incidence produced rates similar to those observed if the databases used in the 

derivation were of similar type.  Incidence rates derived using a combination of absolute and relative rates were 

influenced by underlying absolute rates, revealing that a thorough understanding of database provenance is of 

particular importance when using absolute rates. 

Through the processes of consensus reaching and case validation, heterogeneity in case extractions from primary 

and secondary data collection  can be limited and even quantified.  In the absence of or in addition to time and 

resource expensive processes of chart validations, the impact of using different case finding algorithms can be 

assessed.  The heterogeneity in data sources allows for the use of different case finding algorithms and their 

comparison to one another.  Relationships among validity indices can then be exploited to measure performance of 

each algorithm.  The utility of using data from one data source to derive missing data in another data source, 

however, can only be done with similar type of underlying data (e.g. hospitalizations or primary care) 

Data pooling  in multi-database studies can align with privacy constraints 
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Global collaboration means dealing with different legislations and regulations on data sharing. Some countries may 

share individual level de-identified data, whereas other countries cannot share data based on less than a pre-

specified number of individuals. We demonstrated through different studies that, in spite of these restrictions, it is 

still possible to pool information for vaccine safety studies. 

For example, the study of Guillain Barré Syndrome following  pH1N1 vaccine used a hybrid of individual level 

anonomized data as well as a meta-analysis of estimates by site.  The study of narcolepsy following p-H1N1 

vaccines used a hybrid model due to the restriction that a subset of sites could not share individual level-data, 

requiring that results from these sites be meta-analyzed with the results of the pooled individual level analysis in 

other databases.  In the global proof of concept study assessing known adverse events following measles and 

mumps containing vaccines, all individual level data was available but due to differences in case and exposure 

ascertainment,  primary analyses were restricted to the subset of sites which were able to ascertain exact dates of 

exposure.  These examples highlight that in a distributed global collaboration that uses a common protocol, 

standard case definitions and analytics, the governance of databases to share data remains and must be 

incorporated at the analysis stage using one or two stage pooling or a hybrid approach.  

Assessment of vaccine safety requires consideration of AEFI-specific sources of bias 

While all epidemiological studies are prone to biases that researchers try to limit through design,  vaccine safety 

concerns in the population  have the potential to make suspected associations even more difficult to study due to 

changes in behavior of patients and healthcare providers.  In chapter 6 of this thesis, which focused on the 

association between p-H1N1 vaccination and narcolepsy, we conducted a simulation study to determine the impact 

of differential exposure classification and detection bias when studying narcolepsy in the presence of awareness 

about the association. We found that reduction in the time from onset to diagnosis and misattribution of onset 

dates to the period following vaccination in the presence of awareness interacted to inflate risk estimates.  With a 

limited study period, recall bias (attributing onset to the period following vaccination) more significantly increased 

risk estimates than a reduction in the onset to diagnosis interval.  We found that analysis using a case-control 

design rather than designs with person time offsets resulted in estimates with less extreme bias, possibly because 

exposed and unexposed person-time become irrelevant.  However, the analysis was conducted in a simulated 

population with perfect exposure classification so this result may not be generalizable to real world settings.  

Accurate reporting of onset dates, blinded review of cases, and possibly use of dates less prone to bias (i.e. date of 

first contact with a physician) could reduce bias due to detection bias.  The reduction in the onset to diagnosis 

interval is a more difficult issue as subjects must be diagnosed to enter a study as cases.  When we extended our 

study period in simulation up to 25 years, we were able to obtain an unbiased estimate in the presence of a 

reduced onset to diagnosis interval.  This of course is not an option when conducting rapid assessment of a vaccine 

safety signal.  Quantitative bias analyses should be employed to assess the impact of increased diagnosis and 

reporting. 

Future perspectives 

Methods for signal detection 

While much effort has been put into the testing of methods for detection of safety signals in adults, little has been 

done for children.  Assessment of performance for drug and especially for vaccine safety signal detection  in 

children may be hampered by small number of reported cases from reference sets.  Development of broader 

vaccine safety reference set, perhaps with gradation of certainty regarding positive controls, could allow for more 

flexible methods testing.   Current methods testing makes use only of the extremes: multiply replicated true 
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positive associations and negative associations with complete absence of reports.  Further methods should be 

developed to test performance of methods when uncertainty in the veracity of an association is incorporated.    

Established associations will have different reporting patterns than emerging associations and performance 

assessment limited to these associations may not give a clear indication of how well methods perform.  Solutions 

such as limiting performance testing to the period before an association was added to the summary of product 

characteristics have been advocated, but including emerging and possible signals in a subset of analyses may give a 

clearer picture of method and database performance (reference).  Additionally, rapid detection of safety signals is 

easier to conduct when data is complete and accurate.  Spontaneous reporting systems should encourage 

completion of all fields and follow up with reporters to complete fields when possible.  For signal detection in 

pediatrics in general and in vaccines specifically, it is of particular importance that fields related to age, vaccine 

components, and time to onset be completed.  We noted that age was often missing and, as described in the 

manuscript on vaccine signal detection in EudraVigilance and VAERS, time to onset was missing in 7% of VAERS 

reports and in over 50% of EudraVigilance reports.  

Due to developmental differences, differing drug use patterns, and age-dependency of adverse drug and vaccine 

reactions, stratification by age should be a standard part of all signal detection in spontaneous reporting databases 

as this may serve to effectively highlight true associations which would otherwise go undetected in the full 

database. Masking should be taken into account when investigating drug-related signals involving events which are 

known or suspected AEFIs.   

Another area of signal detection which has not been fully developed is that of drug-drug interactions.  Some work 

has been done in this area using machine learning (25-27).  However, this has not yet been extended to vaccines 

where it is of particular importance due to co-administration.  With better data on vaccine exposures, signal 

detection could move beyond the limited vaccine-AEFI model to one in which signal detection is conducted at the 

level of antigen, adjuvant, preservative, manufacturing process, and the interaction of these features of vaccines. 

The majority of signal detection algorithms currently in use have been developed for drugs.  The utility of the time-

to-onset method, developed specifically for vaccines, has been displayed in this thesis and elsewhere.  However, 

time-to-onset may be missing, uniform across outcomes, or unknown due to nonspecific symptoms at onset.  Other 

methods which take into account the features unique to vaccine exposures (transience, co-administration,  high 

coverage, etc.) should be developed to better conduct safety signal detection specifically for vaccines.  Additionally, 

many recent signals, especially those associated with Human Papilloma Virus vaccines, are non-specific and are 

characterized by a cluster of symptoms rather than a specific diagnostic code.  For vaccine safety signal detection, 

development of algorithms to detect unusually frequent clusters of symptoms in SDR and EHR could lead to earlier 

detection of unexpected adverse events (28). 

In addition to spontaneous reporting databases which are highlighted in this thesis, electronic health record data is 

being actively explored as another data source for detection of signals.  These data sources show great promise for 

detection and assessment of safety signals.  The availability of longitudinal data as well as denominator data allows 

for the use not only of traditional disproportionality measures but also pharmacoepidemiological designs, 

sequential testing, machine learning, and scan statistics (1).  Methods for signal detection in electronic health care 

databases have been studied intensely in recent years, especially within the Observational Medical Outcomes 

Partnership (OMOP),  Pharmacoepidemiological Research on Outcomes of Therapeutics by a European ConsorTium 

(PROTECT), Exploring and Understanding Adverse Drug Reactions (EU-ADR) and Sentinel projects, which  aimed to 

investigate whether electronic  health care databases might  be used for signal detection (29-31).  Continued 

research on the utility of EHR for signal detection and validation is necessary.  Exciting developments are also 
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possible when combining these data sources with other sources such as those which may be searchable through 

natural language processing such as scientific literature and social media,  patient-reported outcomes in SRD and 

other sources, and genomic data.  In the era of precision medicine we are now entering, EHR databases will serve 

as a resource for determining the outcomes which other sources of data will be employed to predict.  For these 

reasons, it is necessary to understand and harmonize available EHR data sources. 

Finally, drugs and vaccines come to market following accumulation of data on safety and effectiveness in clinical 

trials.  Unfortunately, this data generally remains unavailable to researchers seeking to understand the safety 

profile of a vaccine post-marketing.  With the collaboration of vaccine manufacturers and researchers, it may be 

possible to use data generated pre-marketing to supplement post-marketing studies, either as Bayesian priors in 

analyses to sequentially update risks and benefits or as indicators for predictive features to weigh more heavily in 

post-marketing surveillance. 

Methods for rapid Assessment of safety signals 

The United States Sentinel system has made significant progress in the area of rapid assessment.  Using their 

distributed data model, it is possible to quickly deploy queries against participating databases.  The majority of the 

queries deployed in Sentinel are simple: background rates within strata, incidence rate ratios, and incidence of 

concurrent exposures (19).  While rapid assessment of population impact using ecological methods may provide 

information to regulators rapidly, we have found that its utility is limited for rare events with a long onset to 

diagnosis interval.   

As illustrated by the success of the Sentinel project , simple analyses as well as more complex analyses can be 

conducted in a network of databases when the data has been previously converted to a CDM.  An additional 

solution to rapid assessment which has not been fully explored is a sequential updating of benefits and risks in a 

sequential or Bayesian sequential benefit risk assessment.  This has been explored in the ADVANCE project and 

elsewhere but remains an area with potential for significant advancements, which will depend upon availability of 

timely data (32-35).  As evidenced by collaborations such as the VSD and Sentinel, availability of timely data is best 

facilitated through conversion of databases to a common data model.  Again, data from clinical trials could be 

made available to researchers conducting post-marketing surveillance.  Mapping data from the Clinical Data 

Interchange Standards Consortium (CDISC) standards used in clinical trials to ontologies used in EHR or to a CDM 

would accelerate this process. 

Models such as VSD and Sentinel which have been successful in rapidly assessing signals rely upon individual level 

data.  Globally, as new vaccines are introduced in developing countries and globalization facilitates spread of 

infectious agents, it will no longer be sufficient to focus rapid assessments on the United States population covered 

by VSD and Sentinel.  Instead, it is necessary to move toward a global vaccine data network, building upon 

infrastructure which has been built up in developed countries through previous collaborative studies and in 

developing countries through clinical trials and health surveillance systems.   

Collaborative Studies 

As illustrated in chapter 4 of this thesis, collaborative studies provide researchers with the opportunity to increase 

power to study rare events, to exploit differences in underlying populations, timing of exposures, and healthcare 

systems as well as myriad other as yet unexploited differences.  However, we have also illustrated that 

collaborative studies such as those presented in this thesis require tools for translatability of coding systems, 

common tools for extraction, transformation, and loading of data files, and support for data recording and 

retention in diverse sites.  Each of the studies presented here provides solutions for dealing with these obstacles 
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but much work remains to be done.  For example, the Codemapper tool developed by Becker et al and used in this 

thesis increases translatability of coding systems and provides a platform through which investigators can reach 

consensus.  The component algorithm approach first described by Gini et al and applied in ADVANCE also serves to 

reduce heterogeneity among databases by providing measures for determining the best case finding algorithm per 

database.  This field of research is new and much progress remains to be made.  Many advocate the use of 

common data models to allow for rapid deployment of common programs across a large network of databases.  

While conversion to common data models has obvious benefits – including evolution of databases toward 

complete CDM data (ie databases recognizing and rectifying areas of incompleteness during and following 

conversion to a CDM), the potential to conduct large pooled analyses, and the collaboration inherent in use of a 

common data model, - there are potential negative consequences.  As we have shown in this thesis, database 

heterogeneity is a hindrance but we should carefully consider whether we want to significantly reduce database 

heterogeneity in pursuit of a universal CDM.  Those differences which hinder rapidity and collaboration may be the 

same differences which could help to disentangle future epidemiological questions.   

The future of vaccine safety surveillance is in the use of big data and common analytics and in order to smooth this 

transition to the use of big data, it is important to retain the lessons learned.  As common data models become the 

norm, researchers will need to retain a focus on data quality and completeness rather than assuming that the size 

of the available data set will correct for misclassifications.  Additionally, as shared and especially open-source 

analytics become more widespread, care should be taken that these tools are consistently updated and do not 

become black boxes which are applied without proper understanding of the underlying theory.  Finally, specific to 

vaccines, it is necessary to create a vaccine ontology which will allow for common analytics on vaccines with 

different antigen combinations, adjuvants, and additives.  While ontologies such as RxNorm and Anatomical 

Therapeutic Chemical classification systems exist for drugs (and include vaccines, although in insufficient detail), 

progress is currently being made to develop a more detailed ontology for vaccines (36, 37).  This has been spurred 

by the development by the article 57 database of the EMA and further progress has been made within the 

ADVANCE consortium (38, 39).  This will continue to be an area of development, especially as many of the new 

vaccines currently in development come to market. 

Dealing with Heterogeneity and Bias 

Within collaborative research networks, data still typically resides with the data provider.  This limits pooling of 

data but also limits how much data from one source can be informed by data from another source, as typically only 

coefficients from statistical analysis or limited analysis sets are shared. With secure environments in which to share 

data or even IT tools to allow a hub to ‘look’ at data without transmitting it, it may be possible to borrow 

information from one data source where it is lacking in another.  For example, common imputation methods use 

non-missing data to impute missing variables.  Additionally, results generated in a full data set could be applied to 

analysis in a limited data set.  For example, prediction models could be iteratively updated and calibrated using 

data from each data source, using the subset of variables available in that data source.  Finally, if data is shared in a 

secure fashion, it may become possible to move beyond the vaccine-AEFI association model and to analyze 

associations at the level of antigen, strain match (for influenza vaccines), manufacturing process, etc. while 

avoiding the collinearity these features typically have with data provider when individual level data cannot be 

shared. 

Finally, conducting studies globally reveals differences in data quality and access in diverse locations.  In a rapidly 

globalizing world, if we want to rapidly conduct high quality studies of emerging epidemics or vaccine safety 

concerns, support for data recording and retention in lower income settings is needed.  The first step toward this is 

epidemiological training and funding for database infrastructure.  Another important step to assuring vaccine safety 
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in diverse locations is to conduct validation which is consistently the most time and resource intensive.  This 

process could be facilitated and made less expensive by employing natural language processing to the validation of 

cases (40, 41).  

Outcome and exposure misclassification will continue to hamper studies conducted using observational databases.  

Solutions have been proposed and tested within this thesis.  However, assessment of the positive predictive value 

either using a gold standard such as manual review or by exploiting the interrelations of validity measures should 

become common practice in all database studies.  In addition, reporting of these measures will help to inform 

future studies and provide input parameters for sensitivity analyses.  Finally, simulation is a useful tool which 

should be applied more often not only in the development and testing of methods but in investigation into 

unmeasured confounding and biases and their potential impact on empirical estimates.   
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SUMMARY 
 
Since their inception, vaccines have prevented illness, disability, and death throughout the populations in which 

they have been administered. However, as is true of any intervention, vaccines are not without risk.  Assessing 

vaccine risks and balancing them with measures of effectiveness and benefit in a timely manner is necessary to 

maintain public trust in vaccine programs and ensure continued protection against vaccine preventable diseases. 

Following licensure, as large numbers of people are exposed to a vaccine, the processes of passive and active signal 

detection along with assessment and evaluation of potential safety signals must begin in earnest.  The past 30 years 

have seen a swift move from passive reporting systems to use of large linked databases and novel statistical 

methods to achieve the goals of detection, assessment, and evaluation.  With globalization and the collaborations it 

both enables and requires, evaluation methods have become increasingly collaborative through multisite studies.  

In this thesis, I follow this trajectory from signal detection in passive reporting systems through to methodological 

issues in multi-database investigations using a set of test cases which are timely and of public health importance. 

In the general introduction, I describe the importance of vaccines as a public health intervention and the processes 

by which vaccines are assessed following licensure through the analysis of spontaneous reports, studies in 

observational databases, and collaborative multi-database studies.  I outline methodological challenges to the 

assessment of vaccine safety including the rarity and non-specificity of many adverse events following 

immunization (AEFI),  patterns in reporting and ascertainment of AEFI that may lead to bias, and the difficulty in 

differentiating vaccine effects from effects due to other causes such as infection or underlying health status.  I also 

outline challenges inherent to the use of existing data sources such as limited sample size, incompleteness, and 

heterogeneity. 

Spontaneous reporting system databases, which contain only data on suspected adverse reactions to drug and 

vaccine exposures, provide the potential to identify safety signals quickly.  However, these databases do not 

contain denominator data and included reports are a non-representative sample of all adverse reactions.  Conduct 

of the studies in chapter 2  was motivated by the continued use of spontaneous reporting systems for vaccine 

safety signal detection and their importance, particularly in settings in which active surveillance is less feasible due 

to resource constraints.  The study described in 2.1 focuses on the impact of age stratification in the United States 

Food and Drug Administration Adverse Event Reporting System (FDA FAERS) database.  We determine that age 

stratification reveals some true associations while masking others but that overall age adjustment does not 

improve performance of signal detection algorithms.   While age-adjustment may be called for in some 

circumstances, we argue that age strata-specific estimates may reveal some true safety signals while masking 

others.  In chapter 2.2 we investigate the extent of masking (reduced likelihood of detecting safety signals due to 

excess reports related to the same event and/or exposure) of  true signals by vaccine reports in EudraVigilance, the 

mixed drug and vaccine database from the European Medicines Agency.  We find that the impact of removal of 

vaccine reports in a mixed vaccine-drug database is dependent upon how often each event is reported in 

association with vaccines.  Finally, in  2.3 we use the vaccine specific subset of EudraVigilance together with the 

vaccine-only Vaccine Adverse Event Reporting System (VAERS) database to compare a traditional signal detection 

algorithm to one developed specifically for vaccines and to assess the potential benefit of combining thresholds of 

both methods.  The vaccine specific signal detection algorithm, which compares the distribution of time-to-onset 

(days from the vaccination of interest to onset of the event of interest) to time-to-onset distributions for other 

vaccines and events, provides superior performance, but only when data on time-to-onset relatively complete.  In 

the same study, we convert both the VAERS and EudraVigilance databases to the same common data model and 

determine whether combining the two data sources leads to improved performance of signal detection algorithms.  
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We find that combining a traditional signal detection algorithm with a vaccine-specific leads to improved 

performance but conducting signal detection in the union of two spontaneous reporting databases does not. 

Overall, the analysis choices in a spontaneous reporting database should be informed by knowledge about the 

association(s) of interest and their biological plausibility in specific age groups and following specific drugs or 

vaccines as well as the quality and completeness of the available data. 

Ecological studies are those which measure exposures and outcomes at the population rather than at the individual 

level.  The study included in chapter 3 is inspired by the wide availability of population level data and an interest in 

its utility to rapidly assess adverse events following vaccination.  We compare incidence rates of narcolepsy before, 

during, and after targeted pandemic H1N1campaigns, following which we simulate data with a known relative 

incidence to better understand the utility of ecological methods.  Results from population-level data are shown to 

be influenced by delays between onset and diagnosis as well as low vaccination coverage, leading us to conclude 

that ecological methods are suitable for signal generation but not for risk assessment. 

Studies conducted in a single database have long been the standard for assessment of vaccine effects.  Limiting a 

study to a single database means that many issues of underlying population heterogeneity as well as heterogeneity 

in coding systems, healthcare delivery, and data structure are avoided.  In chapter 4 we present two single 

database studies: one assessing risk of Bell ’s palsy following influenza vaccine and one measuring the impact of 

hypothesized measles-induced immune suppression on infections, anti-infective prescriptions, and hospitalizations 

in the years following infection.  In chapter 4.1, we use the self-controlled case series method and show that the 

risk of Bell ’s palsy was not increased following either pandemic or seasonal influenza vaccines in The Health 

Improvement Network (THIN) database.  In chapter 4.2,we  illustrate that rates of infections and prescriptions for 

anti-infective medications are increased  in the years following measles infection in measles-infected children as 

compared uninfected children who have received a measles vaccine. These studies are facilitated by the use of one 

coding system and consistency of health care delivery within the system which generated the data.  However, in 

both studies planned analyses (stratification by year in the study of Bell ’s palsy following influenza vaccination, 

incidence of death in the study of measles-induced immune suppression) are  underpowered.  While the studies 

could be implemented without the need to address the heterogeneity that is present in multi-database studies, 

they also illustrate the shortcomings of single database studies and the need for collaboration. 

Single database studies may lack power to measure associations in which the AEFI is rare.  Additionally, studies 

limited to a single database are also limited in the diversity of populations and vaccine exposures which can be 

included.  In chapter 5 we describe three internationally collaborative vaccine safety studies, each of which was 

conducted with the motivation to prove the utility of international collaboration as well as its feasibility.  We aim, in 

each study, to use as far as possible a common data model, protocol, analytics, and case definitions and to apply 

each of these in a collaboration which has global scope.  The first, in which we assess risk of Guillain-Barré 

Syndrome following pandemic H1N1 vaccines, we employ common analytics as well as common case definitions to 

detect an  increased risk following vaccination in line with previous studies.  The study described in chapter 5.2, in 

which we analyze the association between pandemic H1N1 vaccines and narcolepsy, makes use of a common 

protocol and common analytics, to find no evidence of increased risk of narcolepsy following pandemic H1N1 

vaccination in either children or adults.  Finally, in chapter 5.3 we describe a study in which we are able to detect 

known associations following measles and mumps containing vaccines using a common protocol and common 

analytics, and including data from low and middle income countries. Each of these studies represents progress 

toward standardization to reduce heterogeneity between data sources but none of them achieves use of a 

common data model, protocol, analytics, and case definitions on a global scale.  However, using knowledge through 

the conduct of each of these collaborative studies, we have developed significant capacity and gained knowledge 

which can be  applied to the conduct of future global assessments of vaccine safety.   
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Multi-database and especially multi-country studies inevitably require that heterogeneity in data sources be 

addressed.  Additionally, as is true of any epidemiological study, both single and multi-database studies are prone 

to information and selection biases.  In the studies included in chapter 6, we address heterogeneity and bias in 

observational database studies of vaccine safety.  Two of the studies, originating from the ADVANCE consortium, 

address heterogeneity in multi-database studies while in the third we employ simulation to understand the impact 

of bias.  In chapter 6.1 we describe the results of a simulation study to assess the impact of detection bias and 

differential exposure misclassification on estimates of the risk of narcolepsy following pandemic H1N1 vaccine and 

show that, in the absence of an association, these sources of bias can produce estimates suggesting increased risk.  

In chapter 6.2 we apply a method to identify events of interest in a database using components from domains such 

as diagnosis, laboratory tests, and prescribing, and show how the validity of these case finding algorithms can be 

assessed.  In the final manuscript of this chapter, we investigate derivation of post-vaccine exposure incidence 

rates in a multi-database study in which exposure data is missing in a subset of databases.   

In the general discussion I again focus on the vaccine life cycle post-licensure, from signal detection in spontaneous 

reporting databases through rapid assessment, single database studies, collaborative studies, and assessment of 

heterogeneity and bias.  I provide methodological considerations for studies of vaccine effects using existing data 

sources and future perspectives for the study of vaccine safety in the era of globalization and real world evidence. 
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SAMENVATTING IN HET NEDERLANDS 
 
In alle bevolkingsgroepen waarin ze toegediend zijn, hebben vaccins sinds hun begin ziektes, handicaps en 

overlijden voorkomen. Desondanks zijn vaccins niet zonder risico’s, hetgeen waar is voor alle medische 

interventies. Het tijdig beoordelen van de risico’s van vaccineren en het balanceren met maatstaven van baten en 

effectiviteit is noodzakelijk om het vertrouwen van het algemene publiek in vaccinatieprogramma’s te behouden 

en om voortdurende bescherming tegen door vaccinatie te voorkomen ziektes te garanderen.   

 

Na goedkeuring, wanneer grote aantallen mensen aan het vaccin blootgesteld worden, moet er serieus begonnen 

worden met actieve en passieve signaaldetectie samen met het beoordelen en evalueren van potentiele 

veiligheidssignalen. In de afgelopen dertig jaar was er een snelle beweging van passieve rapportagesystemen naar 

het gebruik van grote gelinkte databases en nieuwe methoden in de statistiek om de doelen van detectie, 

beoordeling en evaluatie te bereiken. Door globalisering en de samenwerking die daardoor zowel mogelijk als 

noodzakelijk wordt, zijn de evaluatiemethoden in toenemende mate collaboratief geworden met multi-site studies. 

In dit proefschrift volg ik het traject van signaaldetectie in passieve rapportagesystemen tot methodologische 

kwesties in multi-databaseonderzoeken, gebruikmakend van een aantal proefgevallen die zowel tijdig als van 

belang voor de volksgezondheid zijn. 

 

In de algemene introductie beschrijf ik het belang van vaccinatie als een interventie in te volksgezondheid en 

beschrijf ik de processen waarmee vaccins na goedkeuring beoordeeld worden doormiddel van de analyse van 

spontane rapportages, studies in observationele databases en collaboratieve multidatabasestudies. Ik geef een 

schets van de methodologische uitdagingen in het beoordelen van vaccinatieveiligheid, inclusief de zeldzaamheid 

en de niet-specifieke aard van veel ongewenste voorvallen na immunisatie (adverse events following immunization, 

AEFI), patronen in het rapporteren en vaststellen van AEFI’s die tot vertekening kunnen leiden en de moeilijkheid in 

het onderscheid maken tussen vaccineffecten en effecten van andere oorzaken zoals een infectie of de 

onderliggende gezondheidssituatie. Ik schets ook de uitdagingen die inherent zijn aan het gebruik van bestaande 

gegevensbronnen, zoals beperkte steekproefomvang, onvolledigheid en heterogeniteit. 

 

Databases van spontane rapportagesystemen bevatten alleen gegevens van ongewenste reacties op blootstelling 

aan geneesmiddelen en vaccins, en geven de mogelijkheid om risicosignalen snel te identificeren. Desondanks 

bevatten deze databases geen informatie over de noemer, en de geregistreerde rapportages zijn geen 

representatieve steekproef van alle ongewenste bijwerkingen. Het uitvoeren van hoofdstuk 2 was gemotiveerd 

door het aanhoudende gebruik van spontane rapportagesystemen voor het opvangen van risicosignalen van 

vaccins en hun belang met name in situaties waarin actieve surveillance minder haalbaar is vanwege beperkte 

middelen. 

 

De studie in hoofdstuk 2.1 richt zich op de impact van stratificatie op leeftijd in de United States Food and Drug 

Administration Adverse Event Reporting System (FDA FAERS). We stelden vast dat stratificeren op leeftijd de 

prestaties van signaaldetectiealgoritmen niet verbetert. Hoewel het in bepaalde situaties nodig kan zijn op leeftijd 

te adjusteren, beargumenteren wij dat strata-specifieke schattingen sommige veiligheidssignalen kan onthullen 

terwijl het andere kan maskeren. In hoofdstuk 2.2 onderzoeken we de mate waarin ware signalen gemaskeerd 

worden (een afname in de waarschijnlijkheid van het waarnemen van veiligheidssignalen door overmatige 

rapportage gerelateerd aan hetzelfde voorval en/of dezelfde blootstelling) in EudraVigilance, de gemengde 

geneesmiddelen en vaccins database van de European Medicines Agency. Wij zien dat de impact van het 

verwijderen van vaccinatierapportages uit een gemengde database met vaccins en geneesmiddelen afhankelijk is 
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van hoe vaak elk voorval gerapporteerd is in samenhang met vaccins. Tenslotte gebruiken we in 2.3 het vaccinatie 

specifieke deel van EudraVigilance samen met de vaccinatie specifieke VAERS database om een traditioneel 

signaaldetectiealgoritmen te vergelijken met een algoritme dat specifiek ontwikkeld is voor vaccins, en om te 

beoordelen welk voordeel er mogelijk ligt in het combineren van de drempels van beide methoden. 

Het signaaldetectiealgoritme dat specifiek voor vaccins ontwikkeld, en die de verdeling van tijdsduur-tot-aanvang 

(het aantal dagen vanaf de onderzochte vaccinatie tot het begin van het onderzochte voorval) vergelijkt met de 

tijdsduur-tot-aanvang van andere vaccins en andere voorvallen, geeft betere prestaties, maar alleen in die gevallen 

wanneer de gegevens over de tijdsduur-tot-aanvang relatief volledig is. In dezelfde studie zetten we zowel de 

VAERS als de EudraVigilance databases om in hetzelfde algemene datamodel, en bepalen we of het combineren 

van de beide gegevensbronnen leidt tot verbeterde prestaties van signaaldetectiealgoritmen. We zien dat het 

combineren van een traditioneel signaaldetectiealgoritme met een vaccin specifiek signaaldetectiealgoritme leidt 

tot verbeterde prestaties maar dat dit niet het geval is voor het uitvoeren van signaaldetectie in de vereniging van 

beide databases van spontane rapportages. In het algemeen kan gesteld worden dat de keuzes in het analyseren 

van spontane rapportagedatabases geïnformeerd moeten worden door kennis van de onderzochte associaties en 

hun biologische plausibiliteit in specifieke groepen en volgende op specifieke geneesmiddelen of vaccinaties, als 

ook de kwaliteit en volledigheid van de beschikbare gegevens. 

 

Ecologische studies zijn die studies waarin blootstellingen en uitkomsten gemeten worden op het niveau van de 

bevolking en niet op het niveau van het individu. De studie in hoofdstuk 3 is geïnspireerd door de wijdverspreide 

beschikbaarheid van gegevens op bevolkingsniveau en interesse in het nut ervan om ongewenste voorvallen na 

vaccinatie snel te kunnen bestuderen. We vergelijken incidentiecijfers van narcolepsie voor, tijdens en na gerichte 

pandemische H1N1 campagnes, waarna we gegevens simuleerden met een bekende relatieve incidentie om beter 

te begrijpen wat het nut is van ecologische methoden. Het is aangetoond dat de resultaten op bevolkingsniveau 

beïnvloed worden door vertraging tussen aanvang en diagnose, en ook door lage vaccinatiedekking, hetgeen ons 

leidde tot de conclusie dat ecologische methoden gepast zijn voor het genereren van risicosignalen, maar niet voor 

het beoordelen van de risico’s. 

Studies die uitgevoerd worden in één enkele database zijn lang de standaard geweest voor het beoordelen van de 

effecten van vaccins. Het beperken van een studie tot één database betekent dat een groot aantal kwesties van de 

onderliggende bevolkingsheterogeniteit en ook heterogeniteit in coderingssystemen, verzorging van de 

gezondheidszorg en datastructuur worden vermeden. In hoofdstuk 4 presenteren we twee studies met één 

database: een studie die het risico beoordeelt op Bellse parese na griepvaccinatie en een studie die de impact meet 

van een hypothetische door mazelen veroorzaakte immunosuppressie op infecties, voorschriften van anti-

infectieuze middelen, en hospitalisaties in de jaren na infectie. In hoofdstuk 4.1 gebruiken we de methode van de 

self-controlled case series en laten we zien de het risico op Bellse parese niet verhoogd was na zowel een 

pandemische als een seizoensgriepvaccinatie in The Health Improvement Network (THIN) database. In hoofdstuk 

4.2 illustreren we het feit dat er in verhouding meer voorschriften van anti-infectieuze middelen gegeven worden 

in de jaren na mazeleninfectie in kinderen die geïnfecteerd zijn met mazelen, vergeleken met kinderen die een 

mazelenvaccin ontvangen hebben. Deze studies worden gefaciliteerd door het gebruik van één coderingssysteem 

en consistente verzorging van gezondheidszorg binnen het systeem waaruit de gegevens voorgekomen zijn. Toch 

hebben in beide studies geplande analyses (stratificatie op jaartal in de studie naar Bellse parese na 

griepvaccinatie, en de incidentie van overlijden in de studie naar door mazelen veroorzaakte immuunsupressie) te 

weinig onderscheidingsvermogen. Hoewel de studies geïmplementeerd konden worden zonder de noodzaak zich te 

richten op de heterogeniteit die aanwezig is in multidatabasestudies, illustreren ze ook de tekortkomingen van 

studies van één database en de noodzaak van samenwerking. 
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Studies van één enkele database kunnen mogelijk te weinig onderscheidingsvermogen hebben om relaties te 

meten waarin de AEFI zeldzaam is. Daarnaast zijn studies beperkt tot een enkele database ook beperkt in de 

diversiteit van de bevolkingsgroepen en blootstelling aan vaccins die geïncludeerd kunnen zijn. In hoofdstuk 5 

beschrijven we drie internationaal samenwerkende vaccinatieveiligheidsstudies, die allemaal uitgevoerd zijn met 

de motivatie om nut en haalbaarheid van internationale samenwerking te bewijzen. Wij stellen in elk van die 

studies ons tot doel om zo ver als het kan een gemeenschappelijk data model, protocol, analyses en 

gevalsdefinities te gebruiken en om elk van deze toe te passen in een samenwerkingsverband met mondiaal bereik. 

In de eerste studie, waarin we het risico op het syndroom van Guillain-Barré na H1N1 vaccinatie beoordelen, 

passen we algemene analyses en ook algemene gevalsdefinities toe om een toegenomen risico na vaccinatie te 

vinden, hetgeen in overeenstemming is met voorgaande studies. De studie van hoofdstuk 5.2, waarin we de relatie 

tussen narcolepsie en pandemische H1N1 vaccins analyseren, maakt gebruik van een gemeenschappelijk protocol 

en gemeenschappelijke analyses, om geen bewijs te vinden voor een verhoogd risico op narcolepsie na vaccinatie 

voor pandemische H1N1, noch in kinderen, noch in volwassen.   Tenslotte beschrijven we in hoofdstuk 5.3 een 

studie waarin we in staat waren reeds bekende relaties te ontdekken na gebruik van vaccins die mazelen en bof 

bevatten, gebruikmakend van een gemeenschappelijk protocol en gemeenschappelijke analyses, en ook met de 

inclusie van gegevens uit landen met lage- en middeninkomens. Deze studies staan allemaal voor vooruitgang in de 

standaardisatie om heterogeniteit tussen gegevensbronnen te verminderen, maar geen van deze studies 

verwezenlijkt een algemeen datamodel, protocol, analyses en gevalsdefinities op mondiaal niveau. Desondanks 

hebben we, gebruikmakend van de kennis opgedaan door het uitvoeren van deze collaboratieve studies, een 

significante capaciteit ontwikkeld en kennis verworven die toegepast kan worden in het uitvoeren van toekomstige 

mondiale evaluaties van vaccinveiligheid. Multidatabase studies, in het bijzonder die met databases uit 

verschillende landen, hebben de onvermijdelijke noodzaak te letten op de heterogeniteit van hun 

gegevensbronnen. Bovendien zijn zowel enkele als multidatabasestudies, net als elke epidemiologische studie, 

geneigd tot vertekeningen door informatie en selectie. In de studies van hoofdstuk 6 bespreken we de vertekening 

door heterogeniteit in observationele databasestudies naar vaccinveiligheid. Twee van de studies, die voortkomen 

uit het ADVANCE consortium, bespreken heterogeniteit in multidatabasestudies, terwijl we in de derde studie een 

simulatie gebruiken om de invloed van vertekening te begrijpen. In hoofdstuk 6.1 beschrijven we de resultaten van 

een simulatiestudie die opgezet is om de impact van detectievertekening en differentiële 

blootstellingsmisclassificatie te evalueren op schattingen op het risico op narcolepsie na het pandemische H1N1 

vaccin, en laten we zien dat in afwezigheid van een relatie, deze oorzaken van vertekening een schatting kunnen 

produceren die een verhoogd risico suggereert. In hoofdstuk 6.2 passen we een methode toe om belangrijke 

voorvallen te identificeren in een database, gebruikmakend van componenten van domeinen zoals diagnoses, 

laboratoriumonderzoeken en geneesmiddelenprescripties, en laten we zien hoe de validiteit van deze voorval 

opsporende algoritmes geëvalueerd kunnen worden. In het laatste manuscript van dit hoofdstuk onderzoeken we 

het afleiden van incidentiecijfers na blootstelling aan een vaccin in een multidatabasestudie waarin gegevens over 

de blootstelling ontbreekt in een deel van de databases. 

 

In de algemene discussie richt ik me wederom op de levenscyclus van vaccins na goedkeuring, van signaaldetectie 

in spontane rapportagedatabases tot snelle beoordeling, studies met één database, collaboratieve studies, en het 

beoordelen van heterogeniteit en vertekening. Ik verzorg methodologische overwegingen voor studies naar de 

effecten van vaccins die gebruik maken van bestaande gegevensbronnen en ik geef perspectieven voor de 

toekomst van het bestuderen van vaccinatieveiligheid in het tijdperk van globalisering en werkelijk bewijs. 
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PHD PORTFOLIO 
 

Oral Presentations 

Narcolepsy and Pandemic H1N1 Vaccine: A Simulation Study to Explore the Effect of Bias, International Society for 

Pharmacoepidemiology Annual Conference, 2014, Taipei. 

Narcolepsy incidence rates in the SOMNIA (Systematic observational method for narcolepsy and influenza 

immunization) study, International Society for Pharmacoepidemiology Annual Conference, 2016, Dublin. 

The Impact and Longevity of Measles-Associated Immune Suppression, International Society for 

Pharmacoepidemiology Annual Conference, 2016, Dublin. 

Poster Presentations 

International Collaborative Case Series Safety Monitoring for Pandemic 2009 H1n1 Vaccines: Estimation of the Risk 

of Guillain-Barré Syndrome, International Society for Pharmacoepidemiology Annual Conference, 2012, Barcelona. 

Estimating incidence of adverse events following vaccination in observational databases when exposure information 

is unavailable: A contribution from the advance project, International Society for Pharmacoepidemiology Annual 

Conference, 2018, Prague 

Signal detection in VAERS and EudraVigilance using disproportionality and time to onset method and their 

combination, International Society for Pharmacoepidemiology Annual Conference, 2018, Prague 

Teaching 

EU2P: European Training Program in Pharmocvigilance and Pharmacoepidemiology, Instructor Study design, 
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