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A B S T R A C T

A prominent mucinous phenotype is observed in 10–15% of all colorectal cancers (CRCs). They are associated
with a proximal location, and more commonly observed among tumors with mismatch repair defects and a
promoter CpG methylator phenotype. However, none of these features has been clearly linked mechanistically to
this mucinous subtype. Here, we propose that bacterial biofilms could represent a currently unappreciated
contributor to mucinous CRC formation. The colonic microbiome and biofilms in particular, are emerging as
important factors in tumor initiation and progression. Intriguingly, biofilms preferentially accompany proximal
tumors, suggesting that there may be a direct mechanistic link with mucinous CRCs.

1. Introduction

Colorectal cancer (CRC) is the third most frequent malignancy in the
world, and is the second most common cause of cancer-related mor-
tality [1]. According to recent global cancer statistics, about 1.7 million
people in the world were diagnosed with CRC, which resulted in ap-
proximately 832,000 deaths in 2015 [1]. CRC has been classified in
different subtypes according to criteria such as their histological ap-
pearance. Mucinous colorectal cancer (MCC) represents an important
histological subset of CRC that is observed in 10–15% of cancers, and is
arbitrarily defined as a tumor with more than 50% extracellular mucin
on histologic examination [2,3]. They are more commonly observed in
the proximal colon [4]. Mucinous histology by itself is associated with
an increase in mortality compared with their non-mucinous counter-
parts, even when corrected for stage [2,5]. Currently, the etiology of
this subset of tumors is not yet fully understood, while they never-
theless are observed in one out of every 6–10 colorectal cancer patients.
In this mini-review, we first introduce the dual character of mucus in
initially preventing CRC development, while at later stages contributing
to their progression. Next, we briefly describe the forms of genetic in-
stability observed in CRC and their link to a mucinous phenotype. We
then focus on the interactions between mucus, bacteria, and biofilms,
and discuss probable reasons for the preferential occurrence of cancer-
related biofilms in the proximal colon. Finally, we discuss the biofilm-
associated mechanisms leading to enhanced mucus production during
CRC initiation and development that may explain the emergence of

mucinous CRCs. Many papers used for our review arbitrarily define
mucinous tumors when showing more than 50% mucus and arbitrarily
divide the colon in a proximal and distal part. For convenience we will
adhere to these distinctions as well, but it should be realized that in
reality these processes will follow a more gradual continuous model
along the colonic tract [6].

2. The dual character of mucus in cancer formation

Mucins are secreted by various organs to protect the epithelium
against the external environment. The colon represents a prime ex-
ample, as a thick mucus layer is formed shielding the colonic epithe-
lium from physical and chemical injury induced by food and microbes
[7]. Improper functioning of the mucus layer is observed in patients
with cystic fibrosis and inflammatory bowel disease (IBD), in both cases
strongly contributing to the etiology of the disease [7,8]. Proper func-
tioning of the mucus layer also decreases the chance that tumor growth
is initiated, which among others is evidenced by the increased intestinal
tumor predisposition of mice defective in MUC2 or ATOH1 [9–13],
respectively, resulting in a strongly impaired mucus layer or complete
absence of the mucin-producing goblet cells. This beneficial tumor
suppressive effect is however reversed when tumors progress to ma-
lignancy. Elevated mucin levels have been associated with worse
prognosis for various tumor types including those of the colon, and can
contribute to tumor growth in various ways [14,15]. In mucinous
cancer cells, the characteristic apical secretion of mucins typical for
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normal cells is lost, and the secreted mucus completely surrounds the
cell surface. This has been shown to protect cancer cells from the ad-
verse external environment and to assist cancer cells in evading im-
mune responses [14,15]. Tumor cells also use the adhesive properties of
mucins on one hand to detach from the primary tumor mass and on the
other hand to attach to endothelia and invade distant structures [14].
High mucin levels have also been shown to reduce effectiveness of anti-
cancer agents by acting as a mechanical barrier [16–18]. Thus, the
mucus that initially protected the epithelial cells against tumor initia-
tion, now supports tumor cells in their survival and growth. As such, it
is important to acquire a better understanding of the mechanisms un-
derlying mucin production in cancers.

3. Forms of genetic instability in CRC and their link to the
mucinous subtype

Colorectal cancers are also categorized based on their underlying
genetic instability. Chromosomal instability (CIN) accounts for more
than 75% of all CRCs [19], which show a slight preference for the distal
(left-sided) colorectal tract (Fig. 1). However, a prominent mucinous
phenotype might be observed in only a small proportion of these tumors
[20]. A second form of genetic instability observed in CRCs is DNA
mismatch repair (MMR) deficiency, characterized by the accumulation
of numerous mutations at the nucleotide level, especially in mono- or
dinucleotide repeats. This high mutational load leads to the (in)acti-
vation of tumor-associated genes and the formation of many neo-anti-
gens, ultimately resulting in the recruitment of abundant immune cells,
a characteristic feature of this subset of tumors. These tumors account
for 15% of all CRCs and predominantly arise in the proximal (right-
sided) colon (70–80%) (Fig. 1) [21]. Importantly, mucinous cancers are
much more prominent among this subgroup and are observed in about
30–35% of MMR-deficient lesions [22]. Lastly, a CpG island methylator
phenotype (CIMP) is present in a significant subset of CRCs, resulting in
hypermethylation and inactivation of promoters, some of which may be
tumor suppressor genes. The mechanisms leading to CIMP are still not
fully understood. On the proximal site about 30–40% of tumors are
CIMP-high, whereas this is only 3–12% among distal tumors. The ma-
jority of CIMP-high tumors are characterized by a serrated histology,
and are nowadays considered to represent a precursor lesion for a
subset of mucinous cancers [23–26]. An extensive overlap exists

between the CIMP-phenotype and CRCs with sporadic MMR inactiva-
tion due to hypermethylation of the MLH1 promoter, one of the mis-
match repair genes.

Thus, mucinous CRC is associated with a proximal location, and
more commonly observed among tumors with defects in the MMR
machinery and/or CIMP-phenotype (Fig. 1). In addition, they show a
higher incidence among IBD patients, suggesting a link with in-
flammation [27]. Mucinous CRCs also show higher levels of BRAF and
PIK3CAmutation than their non-mucinous counterparts [22]. However,
none of these features has been clearly linked mechanistically to the
mucinous subtype. Here, we propose that bacterial biofilms could re-
present a currently unappreciated contributor to the mucinous subtype
of CRCs.

4. Mucus, bacteria, and biofilms

In the healthy colon, the secreted mucus organizes itself in a firm
mucus layer directly attached to the epithelial cells, followed by a more
loose layer [28]. The firm and loose mucus layers are interacted with
each other and in a dynamic situation, caused by continuous mucin-
degradation by microbiota and constant replenishment from goblet
cells, resulting in an ascending gradient of mucus viscosity from lumen
to intestinal epithelium. The firm layer is mostly reported to be devoid
of bacteria, while the loose layer is inhabited by commensal bacteria
that in a symbiotic fashion aid in the digestion of luminal content and
exclusion of potential pathogens [28]. However, this homeostatic si-
tuation can be changed when the intestine is inflamed or temporary
damaged by other insults. Under such circumstances the mucus barrier
can become disrupted, allowing bacteria to come into direct contact
with the epithelial cells. Bacterial species otherwise rarely observed in
the healthy colon thus can find a niche to grow and possibly flourish.
The chances of successful establishment are greatly increased by the
formation of so-called bacterial biofilms. These are loosely defined as
bacterial communities aggregating in a matrix such as mucus, which
allows bacteria that normally would be rapidly purged from the colon
to adhere to structures such as the colonic epithelium or tumors thereof.
In these biofilms, bacterial species cooperate in various ways, as out-
lined in more detail in several recent reviews [29–31]. Some bacterial
species are better adapted to adhering, invading or digesting the mucus
layer, thereby helping others to remain in the intestine and get into

Fig. 1. Occurrence of colorectal tumors with CIN, MMR-deficiency, CIMP, and prominent mucinous phenotype in the proximal and distal colon. Tumors with this
mucinous phenotype are more commonly observed in the proximal colon, and are observed in about 30–35% of lesions with MMR-deficiency and/or CIMP. They also
show high levels of activating mutations in the BRAF and PIK3CA genes. Size and overlap of ellipses is in proportion to frequencies reported in the literature. CIN,
Chromosomal Instability; MMR, mismatch repair; CIMP, CpG island methylator phenotype; MUC, mucinous subtype.
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closer contact with the underlying epithelium. One example of such a
cooperation is represented by fecal co-colonization of pks-positive Es-
cherichia coli and enterotoxigenic Bacteroides fragilis [32]. The latter can
reduce mucus depth allowing the pks+ E. coli and its associated coli-
bactin genotoxin to get into closer contact with the intestinal epithe-
lium.

These intestinal biofilms have emerged as an important contributing
factor to CRC [30,32–36]. Among others they will locally exacerbate
intestinal inflammation, resulting in the production of reactive oxygen
and nitrogen species that combined with genotoxic bacterial com-
pounds, will increase the mutation rate within epithelial cells
[32,33,37–39]. Other consequences are a compromised epithelial bar-
rier function, modulation of host metabolism, and promotion of epi-
thelial cell proliferation [30,32–34]. Combined these effects can in-
crease the chance to trigger and promote colorectal tumorigenesis.

5. Preferential occurrence of cancer-related biofilms in the
proximal colon

Initially, one bacterial strain gained special interest for CRC for-
mation, that is Fusobacterium nucleatum (Fn). It is rarely observed in the
healthy colon, but possibly from an oral source, may find a niche in the
diseased colon, often in consortium with other oral bacterial species
[36,40]. Nowadays, it is considered a causative agent for colorectal
cancer initiation and/or progression. For example, Fusobacterium can
increase the number of colonic tumors in the ApcMin mouse model, a
mouse strain that spontaneously develops intestinal tumors [41]. A
potential interesting link with mucinous tumors is that several studies
reported a proximal preference for Fusobacterium associated CRCs
[35,42,43]. The same holds true for biofilms in general as they were
nearly always (around 93%) detected on proximal colonic tumors, but
much less frequently (about 27%) on distal tumors [33,36]. Biofilms
were mostly of polymicrobial nature and frequently enriched for B.
fragilis and oral pathogens including Fusobacterium. Interestingly, when
a biofilm is detected on a tumor, its flanking normal tissue is mostly also
covered by biofilm, suggesting that it expands over long distances in the
tumor environment.

The underlying mechanisms for the preferential proximal presence
of tumor-associated biofilms are still unclear. Both sides of the colon
differ in various aspects such as embryonic origin and luminal content
[44]. In mouse and rat the proximal mucus layer is much thinner than
the distal one [45–47]. In humans the difference is less pronounced but
appears to double in thickness towards the distal end [48]. A thinner
proximal mucus layer possibly may be easier breached by bacteria,
bringing them more readily in direct contact with the epithelial surface
to form a biofilm. Secondly, the specific combination of bacteria in the
proximal colon might be more efficient in forming biofilms [30,33]. It
has been shown that the microbiome differs along the colorectal tract
[49,50]. There is also a large degree of discordance in the microbial
community compositions of intestinal mucosal samples (including
tumor and paired non-tumor tissue) between biofilm-positive and bio-
film-negative CRC patients [33]. A third explanation may reside in the
consistency of the luminal content, which is fluidic in the proximal
colon and becomes more firm towards the distal end where stool is
formed. The abrasive forces of this stool may prevent an efficient for-
mation of biofilms. In addition, during the formation of feces in the
distal mouse and rat colon, most bacteria apparently become entrapped
in pellets encapsulated by mucus that is captured from the epithelium
[47]. Away from these pellets, the intestinal lumen and epithelium are
mostly sterile. Whether bacteria also become entrapped during human
stool formation remains to be determined, but in support it was shown
that also human fecal pellets are enclosed by a continuous mucus gel
layer [51]. Thus, the combined effects of shear force and entrapment of
bacteria within the stool may prevent distal biofilm formation.

Biofilms could also be secondary to tumor formation. The emer-
gence of tumors by itself has been shown to damage the normal mucus

barrier [48], which may already facilitate biofilm formation. In the
proximal colon an additional mechanism may be at play, that is about
25–30% of all proximal tumors are MMR-deficient tumors (Fig. 1). The
strong local immune response that accompanies these tumors may
further disrupt local tissue architecture, possibly making it easier for
bacteria to find a niche. This can however not explain why virtually all
proximal tumors show biofilms.

6. Biofilm-associated mechanisms leading to enhanced mucus
production

Although it is not entirely clear why biofilms preferentially ac-
company proximal tumors, it is intriguing that this is also the side
where most mucinous tumors are formed, suggesting that there may be
a direct mechanistic link. So what evidence exists to support such a
hypothesis? Mucus production in the colon is dynamic and can be in-
fluenced by various factors. One important direct contributor to the
amount and composition of mucus secreted by the colonic cells, are
bacteria [52]. For example, germ-free mice show significantly lower
amounts of MUC2 protein in their colonic mucus layer, making the
mucus more penetrable compared with conventionally raised mice,
while gavage with cecal microbiota increases MUC2 expression and
restores the impenetrable mucus in a matter of weeks [53]. Similar
observations have been made for colorectal tumor cells. Direct exposure
of the human mucinous CRC cell line LS174T to highly invasive Fn
strains strongly promoted MUC2 expression and increased expression of
the pro-inflammatory cytokine tumor necrosis factor alpha (TNF-α)
[54], which by itself can also enhance mucus production (see below).
Likewise is mucin production increased in HT-29 colonic tumor cells by
incubating them with a pathogenic E. coli strain or Vibrio cholera bac-
teria [55,56]. Various other reports have presented similar observations
[29].

A second more indirect link with mucus production is the exacer-
bation of inflammation induced by biofilms. The enhanced in-
flammatory response leads to the generation of large amounts of cy-
tokines, such as TNF-α, IL-22 and others, for which several reports have
shown that they can increase mucus production by colonic tumor cells
[54,55,57–62]. For example, prolonged TNF-α treatment of colonic
tumor cells strongly increased the stability of ATOH1 protein, one of the
main transcription factors regulating mucinous differentiation, thereby
increasing mucus production [62].

Taken together, it seems that inflammation and bacterial biofilms in
a concerted action can induce more mucus production by tumor cells.
The secreted mucus in turn provides the building blocks for an efficient
biofilm formation, in a way leading to a vicious circle of biofilm for-
mation, inflammation and enhanced mucus production.

An important prerequisite however is that the genetic alterations
present in CRCs still allow for sufficient differentiation towards the
mucinous direction. Several reports have shown increased MUC2 and
ATOH1 promoter methylation and inactivation in a subset of colorectal
tumors, which associated with low mucus production [9,63,64]. Ob-
viously, in tumors where this occurred, the mucus promoting features
of biofilms and inflammation will have little effect on overall mucus
production. Secondly, the great majority of CRCs acquire mutations in
components of the Wnt/β-catenin signaling pathway resulting in
aberrantly enhanced β-catenin signaling. This is mostly accomplished
by inactivating mutations in the APC tumor suppressor gene, and to a
lesser extent activating mutations of β-catenin itself or inactivating
mutations in genes such as AXIN1/AXIN2 or RNF43 [21,65–70]. The
resulting enhanced β-catenin signal imposes a crypt progenitor phe-
notype onto the tumor cells [71], while simultaneously reducing but
importantly not entirely blocking the possibilities for differentiation.
Interestingly, we and others have shown that proximal CRCs select for
mutations that lead to a moderate enhancement of β-catenin signaling,
while distal tumors prefer a stronger signal [21,65–67]. We have also
outlined that this phenomenon likely explains the preferential proximal
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location of mismatch repair deficient tumors [21]. In short, the defect
in MMR leads mainly to APC or CTNNB1 (encoding β-catenin protein)
mutations resulting in moderate signaling levels ideal for the proximal
colon, making their outgrowth on that side more likely. Whether a si-
milar mechanism also explains the proximal preference of CIMP-high
tumors remains to be determined. Anyway, the generally lower level of
β-catenin signaling observed in CRCs on the proximal side likely allows
for more differentiation of the tumor cells. In combination with the
prevalent proximal biofilm formation and/or the accompanying in-
flammation, this may more readily result in tumors that generate suf-
ficient mucus to qualify them as mucinous CRCs (more than 50%
mucus).

To sum up, the following scenarios linking bacterial biofilms and
mucinous CRC can be envisaged. As depicted in Fig. 2, biofilms that are
enabled to form in close contact with the intestinal epithelium, for
example by inflammation or other insults, can contribute to tumor in-
itiation through the various mechanisms described above. Once the
tumor is formed the bacterial biofilms in concerted action with the
exacerbated inflammation, enforces more mucus production within the

tumor cells. This will however only occur when the underlying genetic
alterations allow for sufficient differentiation of the tumor cells or
mucin gene expression. Thus in this scenario, bacterial biofilms first
contribute to more tumor formation and in a second phase to a specific
differentiation pattern. In a second scenario, biofilm formation is sec-
ondary to tumor initiation. In that case, the biofilms mainly contribute
to tumor progression and possibly increasing mucus production, likely
again in concerted action with inflammation.

7. Conclusions and perspectives

In the last decade, it is becoming increasingly clear that the colonic
microbiome and bacterial biofilms play an important role in colorectal
tumor development. Here, we have hypothesized that biofilms may also
contribute to the specific mucinous phenotype observed in 10–15% of
CRCs. This was inspired by the preferential proximal location of both
mucinous CRCs as well as tumor-associated biofilms. There are however
still several unanswered questions. For example, on histological ex-
amination the mucinous regions of cancers are often observed at their

Fig. 2. Possible scenario explaining how bacterial biofilms, inflammation and colonic tumor cells may interact to form a mucinous tumor. In the healthy colon a
sterile firm mucus layer separates the epithelium from a more loose mucus layer inhabited by commensal bacteria. In instances of inflammation or other insults to the
epithelium the mucus barrier may become breached, possibly resulting in biofilm formation. This biofilm in concerted action with an exacerbated inflammation
increase the chances of tumor initiation. Once tumors are formed, these same features can induce mucus production by tumor cells, leading to a more likely diagnosis
of a mucinous CRC. Alternatively, biofilm formation is secondary to tumor initiation, as the emergence of tumors by itself damages the normal mucus barrier, thereby
providing a favorable niche for bacterial colonization and subsequent biofilm formation. This figure was created with Biorender (https://biorender.com/).
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invasive front, so potentially at some distance from the luminal located
biofilms. This may in part represent a technical artefact, that is the pre-
operative procedures to clean the patient's bowel and the subsequent
fixation and paraffin embedment are likely to remove mucus that is not
entrapped within tissue sections. Nevertheless, our hypothesis needs
confirmation by demonstrating bacterial aggregates within reasonable
distance from the mucus producing tumor cells, or providing evidence
that bacterial products can affect tumor cell behavior at some distance.
For the latter indirect support is already provided by the altered mucus
production of normal colonic cells not being in direct contact with the
luminal bacteria [53]. Furthermore, it is still unclear why biofilms
mainly form in the proximal ascending colon. We have postulated some
explanations, like the shear force and entrapment by stool preventing
biofilms on the distal side, but whether this holds true remains to be
shown. Likewise, it is unclear if the appearance and composition of
biofilms associated with mucinous CRCs differs from other ones. Only
few research groups have used the appropriate tools to look at biofilms
and used fixation procedures that preserve mucus (e.g. Carnoy's fixa-
tive), but to our knowledge no reports have specifically looked at mu-
cinous tumors. For the same reason it is also not known if specific
bacterial strains are especially strong contributors to the mucinous
subtype. Given the recent acknowledgement of biofilms contributing to
colorectal tumor growth, obviously more detailed molecular and ge-
netic analyses are needed. Moreover, as advocated by Hamada et al.,
this should ideally be complemented with a thorough epidemiologic
analysis of lifestyle factors, dietary patterns, medications (e.g. anti-
biotics), and environmental exposures, which are all expected to in-
teract with the microbiome, tumor cells and immune system [72]. In
the future, these analyses may uncover potential tailor-made therapies
specifically aimed at the mucinous subtype of colorectal cancers.
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