
RESEARCH ARTICLE

Can clinical prediction models assess

antibiotic need in childhood pneumonia? A

validation study in paediatric emergency care

Josephine van de MaatID
1, Daan Nieboer2, Matthew Thompson3, Monica LakhanpaulID

4,

Henriette Moll1, Rianne OostenbrinkID
1*

1 Department of General Paediatrics, Erasmus MC–Sophia Children’s Hospital, Rotterdam, The

Netherlands, 2 Department of Public Health, Erasmus MC, Rotterdam, The Netherlands, 3 University of

Washington, Department of Family Medicine, Seattle, United States of America, 4 Population, Policy,

Practice Program, UCL Great Ormond Street Institute of Child Health, London, United Kingdom

* r.oostenbrink@erasmusmc.nl

Abstract

Objectives

Pneumonia is the most common bacterial infection in children at the emergency department

(ED). Clinical prediction models for childhood pneumonia have been developed (using

chest x-ray as their reference standard), but without implementation in clinical practice.

Given current insights in the diagnostic limitations of chest x-ray, this study aims to validate

these prediction models for a clinical diagnosis of pneumonia, and to explore their potential

to guide decisions on antibiotic treatment at the ED.

Methods

We systematically identified clinical prediction models for childhood pneumonia and

assessed their quality. We evaluated the validity of these models in two populations, using a

clinical reference standard (1. definite/probable bacterial, 2. bacterial syndrome, 3. unknown

bacterial/viral, 4. viral syndrome, 5. definite/probable viral), measuring performance by the

ordinal c-statistic (ORC). Validation populations included prospectively collected data of

children aged 1 month to 5 years attending the ED of Rotterdam (2012–2013) or Coventry

(2005–2006) with fever and cough or dyspnoea.

Results

We identified eight prediction models and could evaluate the validity of seven, with original

good performance. In the Dutch population 22/248 (9%) had a bacterial infection, in Coven-

try 53/301 (17%), antibiotic prescription was 21% and 35% respectively. Three models pre-

dicted a higher risk in children with bacterial infections than in those with viral disease (ORC

�0.55) and could identify children at low risk of bacterial infection.
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Conclusions

Three clinical prediction models for childhood pneumonia could discriminate fairly well

between a clinical reference standard of bacterial versus viral infection. However, they all

require the measurement of biomarkers, raising questions on the exact target population

when implementing these models in clinical practice. Moreover, choosing optimal thresholds

to guide antibiotic prescription is challenging and requires careful consideration of potential

harms and benefits.

Introduction

Community-acquired pneumonia is the second largest cause of childhood mortality world-

wide [1]. Despite improvements over the past decades, lower respiratory tract infections are

still responsible for 103.3 deaths per 100,000 people in children under five years globally, with

large differences across regions [2]. Respiratory tract infections are also a common reason for

emergency department (ED) visit and the most frequent indication for antibiotic prescription

in children [1, 3]. Discriminating bacterial infections that require antibiotic treatment from

viral, self-limiting disease is one of the biggest diagnostic challenges in childhood pneumonia.

Chest x-ray is no longer recommended as the gold standard for bacterial pneumonia [4], and

routinely available biomarkers are not pathognomonic for this diagnosis [5]. At the same time,

accurate diagnosis of bacterial infection is crucial, since misuse of antibiotics is associated with

increased antimicrobial resistance, which in turn also causes morbidity and mortality [6]. Cur-

rent antibiotic prescription for suspected pneumonia in Western countries ranges from 23–

59% with wide acknowledgement that a considerable proportion of these antibiotics are not

necessary [3, 7].

In order to standardize the evaluation and treatment of children suspected of pneumonia,

clinical decision support systems could be useful tools to classify children into a high or low

risk profile [8]. Multiple clinical prediction models for childhood pneumonia have been devel-

oped. Even though their current use in clinical practice is limited, they may play a role as treat-

ment decision support, thereby improving rational antibiotic prescription. However, since

those models are mainly developed with chest x-ray as their reference standard, it is unclear if

they can also validly predict a clinically based diagnosis of pneumonia. Moreover, the question

is whether these models can be translated into clinical practice by guiding decisions on antibi-

otic treatment.

This study aims to systematically search available clinical prediction models for childhood

pneumonia in ED settings in high-income countries, to evaluate their validity using a new,

clinical diagnosis reference standard, and to explore their potential to guide decisions on anti-

biotic treatment.

Methods

Selection and quality assessment of prediction models

A systematic search for prediction models of childhood pneumonia was performed in Embase,

Medline Ovid, Web of science, PubMed and Google scholar in September 2017. We included

studies on diagnosis and treatment of uncomplicated childhood pneumonia in ED settings in

Western countries published since 2000 (see search strategy and exclusion criteria, S1 Text).
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JvdM and BK performed the selection independently, discrepancies were discussed within the

research group and decided using consensus.

We evaluated the clinical prediction models for their quality and diagnostic value. Quality

assessment was performed by JvdM and checked by RO, using the QUADAS-2 tool for diag-

nostic studies [9]. We assessed their level of validation using the guideline proposed by the Evi-

dence-Based Working Group [10] with one added category as described by Reilly [11],

ranging from level 1 ‘derivation of the model without validation’ to level 5 ‘proven by broad

impact analysis’.

Validation study

Validation populations. We retrospectively evaluated the validity of the identified predic-

tion models in two study populations [12, 13]. Population 1 included 248 children aged 1

month to 5 years presenting at the ED in 2012–2013 with fever and cough or dyspnoea, from a

prospective study at the Erasmus MC—Sophia, Rotterdam, the Netherlands [12]. Population 2

included 301 children aged 3 months to 5 years presenting with fever and respiratory symp-

toms at a paediatric assessment unit at the University Hospitals Coventry and Warwickshire

NHS Trust, United Kingdom (UK), in 2005–2006 [13]. In both databases children with

comorbidity related to increased risk of bacterial infection or complications were excluded,

such as severe neurological impairment, immunodeficiency and severe pulmonary or cardiac

defects. Follow-up was available for both populations, reducing the risk of missing (untreated)

serious infections. The studies in these populations were approved by the Medical Ethics Com-

mittee of the Erasmus MC (Rotterdam) and the Coventry Local Research Ethics Committee.

Written informed consent was obtained for both populations [12, 13].

Reference standard. As chest x-ray is no longer recommended as a gold standard in clini-

cal practice, the diagnosis of bacterial pneumonia is mostly a clinically based diagnosis. A

model that may reflect this clinical approach, is an algorithm published by Herberg et.al., clas-

sifying the potential aetiology of febrile illness in children [14]. For this study, we used a refer-

ence standard adapted to this model, classifying patients’ cause of respiratory tract infection

from bacterial to viral (see S1 Fig). First, we pre-specified what working diagnosis would be

classified as ‘bacterial syndrome’, ‘viral syndrome’ or ‘unknown bacterial/viral’, the first step of

the algorithm. Then we categorized all patients based on their working diagnosis as docu-

mented in the different databases. We used the working diagnosis that was attributed by the

attending clinician at the end of the ED visit, based on patient assessment and routine diagnos-

tic tests. As a second step, we used identification of bacteria or viruses and CRP-level (>60

mg/l or�60mg/l) to further differentiate the clinical diagnosis. Diagnostic tests from routine

care included viral PCR of nasopharyngeal swab and blood cultures, as performed at the dis-

cretion of the clinician. Given a low number of pathogens identified we had few definite diag-

noses, so we classified patients into to five categories: definite or probable bacterial (1),

bacterial syndrome (2), unknown bacterial or viral (3), viral syndrome (4) and definite or

probable viral (5). For example, a child presenting with bronchiolitis (viral syndrome at first

step), no virus or bacteria identified and a CRP-level of>60mg/l would be classified as having

a viral syndrome. A child with a working diagnosis of pneumonia (unknown viral/bacterial at

first step), the CRP-level would lead to either bacterial syndrome (in case of high CRP), viral

syndrome (in case of low CRP) or remain unknown bacterial/viral (in case of no CRP per-

formed). Patients with a bacterial and viral co-infection were classified as bacterial infection,

given the consequences for treatment.

Statistical analysis. Missing values were imputed 10 times using the mice package in R

(version 3.3.2), resulting in 10 separate datasets with complete (imputed) information. The
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imputation model included information about clinical signs and symptoms, referral, diagnos-

tic tests and treatment. We performed all analyses of the validation on the 10 imputed datasets

and then averaged the results [15]. When a variable of a prediction model was completely

missing in our database, multiple imputation was not possible and we used a proxy (e.g.

‘retractions’ as a proxy variable for ‘dyspnoea’, if ‘dyspnoea’ was not available). For continuous

variables, the prevalence of that variable in the original derivation population of the prediction

model was used (mean imputation) [16]. CRP-level was truncated at the level of 225 mg/L, fol-

lowing the study of Nijman [17].

We evaluated the validity of those prediction models of which more than 50% of the predic-

tors were available in our database, assuming this as a minimum for credible predictions [16].

We calculated the risk of bacterial pneumonia using each of the included prediction models

for all children in our study populations, illustrated by histograms and boxplots. To measure

performance, we calculated the ordinal c-statistic (ORC)–a measure similar to the area under

the receiver-operating-curve (AUC), but for ordinal instead of dichotomous outcomes. This

statistic can be interpreted as the probability that two cases of randomly selected outcome cate-

gories are correctly ranked [18]. We defined models with an ORC of at least 0.55 as performing

well and explored their potential to guide antibiotic prescription. For this purpose, we evalu-

ated the harms and benefits of withholding antibiotics in low-risk patients, compared to the

observed usual care in which treatment decisions were based on clinical judgment and routine

diagnostic tests. Benefit was defined as the potential reduction of antibiotic prescription and

harm as the potential risk of under treatment. Under treatment was defined as children that

were classified as having a bacterial infection and who had been treated with antibiotics, but

whom the prediction model classified as low-risk. We explored different thresholds for the

prediction models to define low-risk and evaluated their effect on harms and benefits. All anal-

yses were performed using SPSS (IBM version 24.0) and R (version 3.3.2).

Results

Identification, quality and original performance of prediction models

We identified 4324 unique articles (after removal of duplicates). Based on title and abstract

4176 articles were excluded as not relevant (see S2 Fig). After full-text selection and searching

references, 11 articles were eligible for inclusion (see Table 1). Eight were primary derivation

studies, describing different prediction models [17, 19–25], three were validation or impact

studies of three of these models [12, 26, 27] and one derivation study also included the valida-

tion of another model [25]. Even though VandenBruel’s model was derived mainly in general

practice setting, it was also validated in an ED setting, and therefore included in our study.

Most studies included children up to the age of 16, but the majority of the included patients in

all studies were under five. Most studies had radiographic pneumonia as their reference stan-

dard, except for VandenBruel’s study that used hospitalization for radiographic pneumonia as

its reference standard (Table 1). All prediction models aimed to improve clinical decision-

making in the child suspected of bacterial pneumonia. Three studies mainly focused on deci-

sions on diagnostic tests [19, 21, 23]; the other studies also mentioned the potential of the

models to improve management decisions on antibiotic treatment, admission or referral [17,

20, 22, 24, 25].

In general the quality of the prediction models was moderate (see Table 1 and S3 Fig) with

3 models having some risk of bias [19, 21, 24] and one study with concerns about the applica-

bility [20]. Nijman’s model was evaluated most thoroughly including impact analysis [17]. The

models by VandenBruel, Lynch and Oostenbrink were broadly validated in previous studies

Application of clinical prediction models for childhood pneumonia

PLOS ONE | https://doi.org/10.1371/journal.pone.0217570 June 13, 2019 4 / 15

https://doi.org/10.1371/journal.pone.0217570


Table 1. Characteristics of clinical prediction models.

Clinical

prediction

rule

Setting Population Original

reference

standard

Prevalence

pneumonia

Statistical

model

Predictor

variables

Performance Level of

evidence��
QUADAS-2

Risk classification (high versus low
risk)

Sensitivity Specificity LR+ LR- risk of bias /
concern

applicability
1. Mahabee

(2005)[23]

US 2m - 5y,

cough + 1 of

following:

labored/

rapid/noisy

breathing;

chest/

abdominal

pain; fever

radiographic

pneumonia

44/510 (8.6) MLRM age�12 months,

respiratory rate

�50/min,

oxygen

saturation

�96%, nasal

flaring in age

<12months

63.6 77 2.8 0.5 1 low / low

2. Bruel, van

den (2007)

[20]

BE� < 17y, acute

illness

hospital

admission for

radiographic

pneumonia

15/3981

(0.4)

CART dyspnea,

’something is

wrong’

93.8 93.2 13.9 0.07 3 low / high

Verbakel

(validation 1,

2013)[26]

NL " " 17/506 (3.3) 94.1 44.6 1.7 0.13 NA,

different

datasets

Verbakel

(validation 2,

2013)

UK " " 131/2687

(4.9)

92.4 41.4 1.58 0.18

Verbakel

(validation 3,

2013)

NL " " 114/1750

(6.5)

65.8 43.1 1.16 0.79

Verbakel

(validation 4,

2013)

NL " " 54/595 (9.1) 81.5 45.5 1.49 0.41

Verbakel

(validation 5,

2013)

UK " " 67/700 (9.6) 26.9 89.1 2.46 0.82

3. Neuman

(2011)[21]

US < 21, chest

X-ray for

suspected

pneumonia

radiographic

pneumonia

422/2574

(16.4)

CART oxygen

saturation

�92%, history of

fever, wheezing,

focal rales, chest

pain, focal

decreased breath

sounds

90.1 21.6 1.2 0.4 1 some / low

Probability (predicted
risk in %)

AUC

4. Lynch

(2004)[19]

US 1-16y, chest

X-ray for

suspected

pneumonia

radiographic

pneumonia

204/570

(35.8)

MLRM fever, decreased

breath sounds,

crackles,

tachypnea

0.67 3 some / low

Bilkis

(validation,

2010)[27]

US " 179/257

(69.6)

0.7 some / some

(Continued)
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Table 1. (Continued)

Clinical

prediction

rule

Setting Population Original

reference

standard

Prevalence

pneumonia

Statistical

model

Predictor

variables

Performance Level of

evidence��
QUADAS-2

Risk classification (high versus low
risk)

Sensitivity Specificity LR+ LR- risk of bias /
concern

applicability
5.

Oostenbrink

(2013)[24]

NL 1m - 16y,

fever and

cough

nodular

infiltration or

consolidation

on radiograph

/ rule out

pneumonia by

noneventful

followup /

consensus

78/504

(15.5)

MLRM ill appearance,

tachypnea, O2

<94%, CRP

0.79 3 some / low

Oostenbrink

(validation 1,

2013)

NL " 58/420

(13.8)

0.81

Oostenbrink

(validation 2,

2013)

NL " 27/366 (7.4) 0.86

6. Craig

(2010)[22]

AU <5y, fever consolidation

on radiograph

533/15781

(3.4)

MLRM general

appearance,

cough,

temperature,

breathing

difficulty,

abnormal chest

sounds, chronic

disease, capillary

refill time,

urinary

symptoms,

elevated

respiratory rate,

crackles,

pneumococcal

vaccine status,

elevated heart

rate, felt hot,

meningococcal

vaccine state,

infectious

contacts, crying,

fluid intake,

respiratory

symptoms,

diarrhoea,

bulging

fontanelle, male

sex, focal

bacterial

infection,

abnormal ear/

nose/throat

signs, age, rash,

stridor, wheeze

0.84 2 low / low

Craig

(validation,

2010)

AU " 193/5584

(3.5)

0.84 low / low

(Continued)
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[19, 20, 24]; those by Mahabee-Gittens, Neuman, Craig and Irwin were only derived or vali-

dated in one setting by the original authors [21–23, 25].

Three prediction models provided a risk classification (high versus low risk), based on the

presence of specific symptoms [20, 21, 23]. Of these models, sensitivity at model development

was moderate to good, with varying specificity (see Table 1). Only VandenBruel’s model was

validated in different settings, performing poorly due to high sensitivity and low specificity in

three settings, the opposite in another setting, and in a last setting both poor sensitivity and

specificity [26]. The other four prediction models provided a probability (predicted risk in %)

of pneumonia, based on a multiple logistic regression model [17, 19, 24, 25]. These models

showed moderate to good performance at development (AUC ranging from 0.67 to 0.84) as

well as in the validation studies [22, 24, 26].

Validation study

Table 2 shows the baseline characteristics of the two populations. Using the clinical diagnosis,

bacterial infection rate ranged from 9–17% and 38–41% were classified as ‘unknown’. Of this

latter category 74–87% recovered without antibiotics. We included seven prediction models in

our validation study. We did not assess validity of Craig’s model as only 14/28 variables were

Table 1. (Continued)

Clinical

prediction

rule

Setting Population Original

reference

standard

Prevalence

pneumonia

Statistical

model

Predictor

variables

Performance Level of

evidence��
QUADAS-2

Risk classification (high versus low
risk)

Sensitivity Specificity LR+ LR- risk of bias /
concern

applicability
7. Nijman

(2013)[17]

NL 1m - 15y,

fever

nodular

infiltration or

consolidation

on radiograph;

rule out

pneumonia by

noneventful

followup

171/2717

(6.3)

MLRM age, sex,

duration of

fever,

temperature,

respiratory rate,

heart rate,

oxygen

saturation,

capillary refill,

retractions, ill

appearance, CRP

0.81 4 low / low

Nijman

(validation,

2013)

NL " 59/487

(12.1)

0.81 low / low

De Vos

(validation,

2015) [12]

NL " 33/439 (7.5) 0.83 low / low

8. Irwin

(2017)[25]

US <16y,

(history of)

fever

respiratory

symptoms,

signs and focal

consolidation

on radiograph

63/532 (12) MLRM CRP, respiratory

rate, normal air

entry, resistine,

procalcitonin

0.84 1 low / low

m = months, y = years, ED = emergency department, GP = general practice, US = United States of America, BE = Belgium, NL = the Netherlands, AU = Australia,

UK = United Kingdom

CART = classification and regression tree, MLRM = multivariable linear regression model, LR+ = positive likelihood ratio, LR- = negative likelihood ratio, AUC = area

under the receiver operating curve
aderived in general practice and emergency department, validated in ED
bas described by Reilly (range 1 (only derived) to 5 (proven by broad impact analysis)[11]

https://doi.org/10.1371/journal.pone.0217570.t001
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present in both databases. Lynch–having only 2/4 variables available–was not validated in the

Coventry database. The supplementary S1 Table gives an overview of all variables and proxies

of the validated prediction models. Mahabee-Gittens published a regression model providing a

probability, but the coefficients to calculate this probability were not available from the author

[23]. We therefore used the presence of one or more of the included variables classifying

patients at high risk of bacterial pneumonia. VandenBruel published a general prediction

model for febrile children, and one for pneumonia; for this review we only used the pneumo-

nia model [20]. Neuman used a decision tree to classify patients into 3 categories (high/inter-

mediate/low risk of pneumonia) [21]. In this model ‘history of fever’ discriminated

intermediate from low risk, but since fever was an inclusion criteria of all our validation popu-

lations, only high and low risk patients were identified, based on the first step of the decision

tree (oxygen saturation <92%).

Performance of prediction models. The performance of the three models with a risk clas-

sification (high/low risk) is shown in Fig 1A. The white bars indicate the number of children

with predicted low risk of pneumonia and the grey bars the number of patients with predicted

high risk, across the five reference standard categories (bacterial to viral infection). For exam-

ple, when we used Mahabee-Gittens’ model to predict the risk of having a bacterial pneumonia

Table 2. Baseline characteristics of validation populations.

Rotterdam, n = 248 Coventry, n = 301

Predictor variables median (IQR) or n(%) median (IQR) or n(%)
Age (months) 14 (7–27) 19 (12–31)

Gender (male) 148/248 (60%) 174/301 (58%)

Temperature (C˚) 38.2 (37.4–39.1) 38.2 (37.5–39.1)

Duration of fever (days) 3 (2–4) not available

Tachypnea 81/183 (44%) 154/258 (60%)

Tachycardia 66/207 (32%) 191/294 (65%)

Oxygen saturation (%) 98 (97–100) 97 (95–98)

Ill appearance 35/149 (23%) 1/301 (0%)

Dyspnoea 106/248 (43%) 81/301 (27%)

Decreased breath sounds 12/136 (9%) not available

Crackles 30/127 (24%) not available

Focal rales 67/151 (44%) not available

Retractions 68/107 (64%) not available

Nasal flaring 29/58 (50%) not available

Prolonged capillary refill (>2sec) 10/53 (19%) 58/187 (31%)

Diagnostics and treatment
CRP measured 94/248 (38%) 109/301 (36%)

CRP (mg/L) 16 (7–42) 45 (19–122)

X-ray performed 42/248 (17%) 67/301 (22%)

Antibiotics prescribed 51/248 (21%) 105/301 (35%)

Clinical diagnosis (S1 Fig)
Definite or probable bacterial 18/248 (7%) 37/301 (12%)

Bacterial syndrome 4/248 (2%) 16/301 (5%)

Unknown 94/248 (38%) 122/301 (41%)

Viral syndrome 59/248 (24%) 72/301 (24%)

Definite or probable viral 73/248 (29%) 54/301 (18%)

IQR = interquartile range

https://doi.org/10.1371/journal.pone.0217570.t002
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in our two validation populations, we observed that this model predicts most children as hav-

ing a high risk of pneumonia (grey bars), including most children with viral infections. Using

VandenBruel’s model, we observed low as well as high predicted risks across all 5 diagnosis

Oostenbrink

Rotterdam

Coventry

Nijman

DPB BS U VS DPV

0
2

0
4

0
6

0
8

0
1

0
0

ORC: 0.58
SD: 0.15

DPB BS U VS DPV

0
2

0
4

0
6

0
8

0
1

0
0

ORC: 0.62
SD: 0.22

DPB BS U VS DPV

0
2

0
4

0
6

0
8

0
1

0
0

ORC: 0.60
SD: 0.14

Irwin

0
2

0
4

0
6

0
8

0
1

0
0

DPB BS U VS DPV
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Fig 1. Performance of prediction models. a. Models with risk classification (high vs. low predicted risk) b. Models with probability (% predicted risk).

DPB = definite or probable bacterial, BS = bacterial syndrome, U = unknown, VS = viral syndrome, DPV = definite or probable viral; ORC = ordinal c-statistic;

SD = standard deviation.

https://doi.org/10.1371/journal.pone.0217570.g001
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categories. Almost all children were assigned to a low risk group using Neuman’s model,

including children with bacterial infections.

Fig 1B shows the performance of the prediction models providing a probability. Again, pre-

dictions are shown across the five diagnosis categories for each model and for both popula-

tions, illustrated by a boxplot. Lynch’s model predicted high risk of pneumonia (around 90%)

for all children, with little variation across the different outcome categories (see S4 Fig), and

did not contribute to discrimination between bacterial or viral disease. The models by Oosten-

brink, Nijman and Irwin assigned higher risks to children with bacterial infections than to the

children with viral infections, confirmed by a moderate ordinal c-statistic of�0.55 (see Fig

1B).

To assess the clinical relevance of these findings, we explored the potential of the last three

models to define low-risk patients possibly not needing antibiotic treatment. For example,

applying a risk threshold of 10% using Nijman’s model would classify 130 children (52%) in

the Rotterdam population as being at low risk of bacterial pneumonia (see Table 3, details in

Table 3. Clinical consequences of using prediction models to guide antibiotic prescription.

Rotterdam, n = 248 Coventry, n = 301

Observed antibiotic prescription, n (%) 51 (21%) 105 (35%)

Predictions by Nijman’s model

Threshold 10% Rotterdam Coventry
Number of children below threshold (low-risk group) 130 (52%) 193 (64%)

Expected antibiotic prescription when guided by threshold (benefit) 35 (14%) 49 (16%)

Expected under treatment when prescription was guided by threshold

(harm)a
5 (2%) 15 (5%)

Threshold 15%
Number of children below threshold 167 (67%) 229 (76%)

Expected antibiotic prescription when guided by threshold 28 (11%) 36 (12%)

Expected under treatment when prescription was guided by thresholda 8 (3%) 22 (7%)

Predictions by Oostenbrink’s model

Threshold 10% Rotterdam Coventry
Number of children below threshold 69 (28%) 94 (31%)

Expected antibiotic prescription when guided by threshold 44 (18%) 77 (26%)

Expected under treatment when prescription was guided by thresholda 0 (0%) 8 (3%)

Threshold 15%
Number of children below threshold 110 (44%) 178 (59%)

Expected antibiotic prescription when guided by threshold 35 (14%) 51 (17%)

Expected under treatment when prescription was guided by thresholda 2 (1%) 13 (4%)

Predictions by Irwin’s model

Threshold 10% Rotterdam Coventry
Number of children below threshold 100 (40%) 155 (51%)

Expected antibiotic prescription when guided by threshold 38 (15%) 64 (21%)

Expected under treatment when prescription was guided by thresholda 5 (2%) 15 (5%)

Threshold 15%
Number of children below threshold 120 (48%) 198 (66%)

Expected antibiotic prescription when guided by threshold 33 (13%) 48 (16%)

Expected under treatment when prescription was guided by thresholda 8 (3%) 22 (7%)

a Number of children with a bacterial infection who were treated with antibiotics, but who were classified as low-risk

according to the used prediction model and threshold

https://doi.org/10.1371/journal.pone.0217570.t003
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S2 Table). Of these children 16 were currently treated with antibiotics. If this threshold would

be used in clinical practice, and antibiotics would be withheld in all low-risk children, the over-

all antibiotic prescription rate would reduce from 21% (observed antibiotic prescription) to

14% (expected antibiotic prescription) in the Rotterdam population and from 35% to 16% in

the Coventry population (Table 3). The potential risk of under treatment (e.g. withholding

antibiotics in children with a bacterial infection who were currently treated with antibiotics)

would be 2% (Rotterdam) and 5% (Coventry). Similar benefits and harms were observed when

applying the models of Oostenbrink and Irwin. A threshold of 15% would lead to greater

reduction in antibiotic prescription, but at a higher risk of under treatment.

Discussion

We identified eight clinical prediction models for childhood pneumonia by literature review.

Following changing perspectives on a relevant reference standard for childhood pneumonia,

we could assess the validity of seven of them for a clinical diagnosis of bacterial, unknown bac-

terial/viral or viral infection. Three models–with good original performance and quality–

assigned a higher risk to children with bacterial infection than to those with viral infection,

with the potential of proper selection of children who may recover without antibiotics.

An important strength of our study is the broad validation of multiple prediction models in

prospective cohorts including over 500 patients in two different European acute care settings.

Our populations were rather heterogeneous in terms of their clinical characteristics, increasing

the generalizability of our findings. A limitation is the heterogeneity of the information avail-

able, and missing values in general, which is related to the use of already existing datasets. We

have accounted for this by multiple imputation or by using proxies where possible. Another

limitation is the retrospective classification of the clinical diagnosis, based on the working

diagnosis by the treating physician not blinded for clinical features and diagnostic tests.

Because none of these clinical features or tests alone determined classification into a final diag-

nosis category, we believe this potential bias is limited. Diagnostic tests were performed at the

discretion of the treating clinician, and included chest x-rays mainly. For 22 patients a definite

viral or bacterial test was recorded to be positive, however, we had no data on the total per-

formed viral/bacterial tests. Previous studies in these settings have shown that these are per-

formed in about 10% of febrile children [12, 13]. Validity assessment of the model by

Mahabee-Gittens was limited by the absence of the original coefficients. Of Irwin’s model only

3 out of 5 predictor variables were present, for the other two variables we used mean imputa-

tion. This may have underestimated the model’s discriminative value; but given the small effect

sizes of the missing variables, we consider this effect limited [16].

We should appreciate several differences between our study populations and the popula-

tions the models were originally derived on. Since our populations included febrile children at

the ED, it is not surprising that we observed less variability in the predicted probabilities in the

validation of Neuman and Lynch’ models, since fever was one of their predictor variables. Fur-

thermore, differences in pneumonia prevalence in the derivation populations (6–36%) of the

models may explain systematic differences in predicted probabilities in 4 models [17, 19, 24,

25, 28]. In general, correcting for this involves recalibration (calibration-in-the-large) of the

model to a new target population [28]. However, this type of recalibration does not influence

discrimination (the ordinal c-statistic), and thus not our conclusions. It may, however, explain

the variable impact the suggested thresholds have using the different models. Next, the type of

reference standard (radiographic pneumonia vs. clinical diagnosis) differed between deriva-

tion and validation studies, as was the purpose of our study. Given the diagnostic limitations

of chest X-rays, we chose to define our reference standard following Herberg’s classification
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[14]. It must be noted that this choice was not proposed as a new gold standard, but rather

used as a model that may reflect our best current practice. In our aim to translate prediction

models into clinical practice, we observed that the performance varied by type of model. We

observed that the models using the probability scale had better diagnostic performance

(reflected by a higher ORC statistic) than those using a risk classification (high/low risk). This

can partly be explained by the ability to adjust risk thresholds–with a direct link to the harm-

benefit ratio–more easily in models using the probability scale. Models using a risk classifica-

tion have a fixed threshold and lack this flexibility and may therefore show lower diagnostic

performance when validated according to a new reference standard.

In order to improve rational use of antibiotics in children with respiratory infections, there

is a need to improve discrimination between bacterial and viral, self-limiting disease. We

showed that three of seven tested clinical prediction models could identify a low-risk group of

children with self-limiting disease in an ED population fairly well and we believe those three

have the potential to improve treatment decisions. Those models include a combination of

signs of general illness and/or respiratory distress and biomarkers. The availability of biomark-

ers will influence the feasibility of implementation of these models in clinical practice. The

models of Oostenbrink and Nijman include CRP measurement, Irwin’s model includes CRP,

procalcitonin and resistin. Given the wide availability of point-of-care CRP tests the first two

models will be most feasible for routine use in the ED.

Another important challenge to be faced before prediction models can be implemented as

decision tools in clinical practice is to choose optimal decision thresholds, adapted to the appro-

priate target population. A balance is needed between the benefit of reducing unnecessary anti-

biotic prescription and the harm of potential under treatment of bacterial infections. The prior

risk of severe illness in a population is an important consideration. For example, in settings with

high prevalence of comorbidity, the course of pneumonia will generally be more severe and

missing a serious infection will have worse consequences than in a low-risk population. Next,

the natural course of the disease should be taken into account. Last, access to (good quality)

healthcare is important. In a setting with limited possibility for patient follow-up, potential risks

of under treatment will higher. Given the natural course of pneumonia (developing over days

instead of hours), a watchful waiting approach instead of immediate antibiotic treatment in

children with uncomplicated pneumonia with a predicted risk<10–15% might be justified in

settings with good access to care, in the presence of a proper safety-netting strategy for unex-

pected disease course. In low resource settings or high-risk populations lower thresholds may

be reasonable. Before implementing treatment interventions based on these prediction models

in clinical practice, a prospective study is needed to evaluate the overall impact of treating chil-

dren according to such a prediction model, compared to usual care. Such a study should assess

the feasibility and safety of the suggested thresholds for that specific setting.

Three out of seven clinical prediction models for pneumonia could discriminate fairly well

between a new reference standard of bacterial and viral infection in children presenting at the

ED. However, they all require the measurement of biomarkers, raising questions on the exact

target population when implementing these models in clinical practice. Moreover, choosing

optimal decision to guide antibiotic prescription is challenging and requires careful consider-

ation of potential harms and benefits. Future research should focus on the feasibility and safety

of treatment based on chosen decision thresholds for specific settings.
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