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BACKGROUND: Prenatal exposure to air pollution has been associated with childhood respiratory disease and other adverse outcomes. Epigenetics is a
suggested link between exposures and health outcomes.
OBJECTIVES: We aimed to investigate associations between prenatal exposure to particulate matter (PM) with diameter <10 (PM10) or <2:5 lm
(PM2:5) and DNA methylation in newborns and children.

METHODS:We meta-analyzed associations between exposure to PM10 (n=1,949) and PM2:5 (n=1,551) at maternal home addresses during pregnancy
and newborn DNA methylation assessed by Illumina Infinium HumanMethylation450K BeadChip in nine European and American studies, with repli-
cation in 688 independent newborns and look-up analyses in 2,118 older children. We used two approaches, one focusing on single cytosine-
phosphate-guanine (CpG) sites and another on differentially methylated regions (DMRs). We also related PM exposures to blood mRNA expression.

RESULTS: Six CpGs were significantly associated [false discovery rate (FDR) <0:05] with prenatal PM10 and 14 with PM2:5 exposure. Two of the
PM10-related CpGs mapped to FAM13A (cg00905156) and NOTCH4 (cg06849931) previously associated with lung function and asthma. Although
these associations did not replicate in the smaller newborn sample, both CpGs were significant (p<0:05) in 7- to 9-y-olds. For cg06849931, however,
the direction of the association was inconsistent. Concurrent PM10 exposure was associated with a significantly higher NOTCH4 expression at age
16 y. We also identified several DMRs associated with either prenatal PM10 and or PM2:5 exposure, of which two PM10-related DMRs, including
H19 and MARCH11, replicated in newborns.
CONCLUSIONS: Several differentially methylated CpGs and DMRs associated with prenatal PM exposure were identified in newborns, with annotation
to genes previously implicated in lung-related outcomes. https://doi.org/10.1289/EHP4522

Introduction
Many studies have reported adverse health effects of prenatal air
pollution exposure in children, including adverse pregnancy out-
comes, reduced lung growth, and increased risks of respiratory
morbidity (Lamichhane et al. 2015; Korten et al. 2017; Horne
et al. 2018). Findings from experimental models suggest that oxi-
dative stress, inflammation, and mitochondrial dysfunction may
contribute to health effects of particulate exposure, but our under-
standing of the involved mechanisms remains limited (Cassee
et al. 2013; Niranjan and Thakur 2017). Recent studies demon-
strate that environmental exposures may induce epigenetic modi-
fications and that these changes can have long-lasting effects on
gene expression and cell function (Desai et al. 2017; Gref et al.
2017). DNA methylation, the most studied epigenetic mecha-
nism, entails cytosine modification with a methyl group at posi-
tions in DNA where a cytosine is located next to a guanine, a
cytosine-phosphate-guanine (CpG) site. The crucial role of meth-
ylation in maintaining genomic stability and regulation of gene
function makes it a potential mechanism by which environmental
exposures contribute to the etiology of complex diseases.

Prenatal life is an important window of susceptibility to
adverse effects of environmental hazards. In utero exposures may
lead to epigenetic changes that influence fetal development and
contribute to health outcomes throughout the life course (Barouki
et al. 2018). Studies on prenatal exposures to cigarette smoke and
traffic-related air pollution reported associations with modifica-
tions of the offspring epigenome (Joubert et al. 2016; Gruzieva
et al. 2017). The majority of published studies investigated vari-
ability of DNA methylation in relation to air pollution either
globally (i.e., overall methylation state of the genome) (Plusquin
et al. 2017) or applying candidate-gene approaches (Somineni
et al. 2016; Hew et al. 2015), but comprehensive evaluations of
genome-wide DNA methylation patterns in children are limited
(Breton et al. 2016; Gruzieva et al. 2017; Plusquin et al. 2018).

Epigenome-wide association studies (EWAS) of particulate
air pollution exposure have so far been based almost exclusively
on adult populations with inconclusive results. Epigenome-wide
association studies of short-term exposure to particulate matter

(PM) with an aerodynamic diameter of <2:5 lm (PM2:5) reported
associations with DNA methylation within genes involved in pro-
tein kinase and NFkB pathways (Jiang et al. 2014), as well as oxi-
dative stress (Panni et al. 2016), although no robust associations
could be demonstrated with long-term particulate exposure
(Plusquin et al. 2017). We have previously found epigenome-
wide cord blood DNA methylation differences in several
mitochondria-related genes in relation to prenatal exposure to
nitrogen dioxide, a marker of traffic-derived combustion pollu-
tants (Gruzieva et al. 2017).

Earlier studies have focused on individual differentially meth-
ylated CpGs rather than differentially methylated regions (DMRs)
(Breton et al. 2016; Gruzieva et al. 2017; Panni et al. 2016). DMR
analysis is a statistically more powerful approach for detecting
associations with exposures or health outcomes, as it uses the pat-
terns of correlation between nearby CpGs to take advantage of the
epigenomic structure (Pedersen et al. 2012; Peters et al. 2015). For
the present study, we meta-analyzed genome-wide DNA methyla-
tion data in newborns in relation to maternal exposure to PM
during pregnancy to identify both individual CpGs and regions
of differential methylation. Furthermore, the associations found
between maternal exposure to PM and cord blood DNA methyla-
tion were examined in independent data sets of newborn and older
children. We also examined differences in peripheral blood gene
expression for identified genes in relation to prenatal [in newborns
from the Early Autism Risk Longitudinal Investigation (EARLI)
cohort, n=119] and current air pollution exposure [in 16-y-
olds from the Barn, Allergi, Miljö, Stockholm och Epidemiologi
(BAMSE) cohort in Sweden (titled Children, Allergy, Milieu,
Stockholm, Epidemiology in English), n=244].

Methods
Detailed information about each of the study cohorts in this analysis,
including recruitment and eligibility; information about methods for
measuring DMAmethylation and gene expression, including quality
control and normalization procedures; and detailed information about
air pollution exposure estimation, are provided in Supplemental
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Material. Average concentrations of PM10 and PM2:5 throughout
pregnancy were estimated at maternal home addresses through land-
use regression (LUR) or equivalentmodels.

Discovery Study Population
A total of nine European and American studies participating in
the Pregnancy and Childhood Epigenetics consortium (PACE)
(Felix et al. 2017) were included in the discovery meta-analysis
of particulate air pollution exposure during pregnancy and new-
born DNA methylation (total N =2,411): INfancia y Medio
Ambiente (INMA), Generation R, Southern California Children’s
Health Study (CHS), Early Autism Risk Longitudinal Investigation
(EARLI), the PRogramming of Intergenerational Stress Mechanisms
(PRISM), Project Viva, Environmental Influences on Early Ageing
(ENVIRONAGE), Rhea Mother and Child Cohort in Crete, Greece
(Rhea), and Piccolipiù (Table 1).

Replication and Look-Up Study Populations
We performed a replication analysis of the PM10-related FDR-
significant findings in a separate sample of newborns (n=688)
from the ALSPAC project (Relton et al. 2015). A look-up associ-
ation analysis of the newborn findings at older ages was based on
three independent samples of 7- to 9-y-olds: a) Mechanisms of
the Development of ALLergy (MeDALL) comprising a pooled
sample from two cohorts with uniform methylation measure-
ments: BAMSE (Sweden) and Prevention and Incidence of
Asthma and Mite Allergy (PIAMA; Netherlands), combined with
an independent sample from the BAMSE cohort, BAMSE
Epigene (total N =692) (Xu et al. 2018); b) Human Early Life
Exposome (HELIX), a pooled sample from four cohorts (total
N =525) (Vrijheid et al. 2014): Norwegian Mother and Child
Cohort (MoBa), Etude de cohorte généraliste, menée en France
sur les Déterminants pré et post natals précoces du dévelop-
pement psychomoteur et de la santé de l’Enfant (EDEN),
Kaunas Cohort, Lithuania (KAUNAS), and Born in Bradford
(BiB), Bradford, UK; c) Avon Longitudinal Study of Parents
and Children (ALSPAC), UK (n=901); as well as on two sam-
ples of 15- to 16-y-olds: BAMSE (n=198) and ALSPAC
(n=903). Consent for blood sampling was obtained from all
parents. Ethical approval for each study was granted by local
institutional review boards.

Statistical Analyses
Cohort-Specific Analyses. For the cohort-specific analyses un-
transformed normalized methylation, beta values (b-values) were
used. The b value is a continuous variable ranging between 0 and 1,
representing the ratio of the intensity of the methylated-probe signal
to the total locus signal intensity. A b-value of 0 corresponds to no
methylation, and a value of 1 corresponds to 100% methylation at
the specific CpG site measured. All included samples were analyzed
on a cohort level, except the pooled HELIX study and the pooled
MeDALL study with coordinated methylation measurements, as
well as air pollution exposure assessment according to a harmonized
protocol.

First, we examined the associations between exposure to PM
andmethylation levels across the genome in each cohort separately
using multiple robust linear regression [rlm in the In functional
analysis of expression data R package (version 3.3.2; R Core
Team)] to account for potential outliers and heteroscedasticity in
the data (Fox and Weisberg 2011). All analyses were adjusted for
an a priori selected panel of covariates: child’s sex, maternal smok-
ing ever during pregnancy (yes/no), cohort-specific batch indicator
(s), and ancestry (in CHS). In addition, age at biosampling, munici-
pality at birth (in BAMSE), and cohort indicator (in the pooled T
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MeDALL and HELIX sample sets) were included in the analyses of
the older children. To account for potential differences in DNA
methylation that may arise from variability of cell composition in
whole blood (Reinius et al. 2012), we estimated cell type composi-
tion in cord blood using a reference panel of cells isolated from cord
blood (leukocytes and nucleated red blood cells) (Bakulski et al.
2016), and in the older children using an adult reference panel
(Reinius et al. 2012), applying the estimateCellCounts function in
the minfi Bioconductor package in R (Jaffe and Irizarry 2014). We
adjusted for cell composition by including these estimated cell type
fractions as covariates in themultivariable linear regression.

Air pollution concentrations were entered as continuous varia-
bles without transformation. The results are presented as differ-
ence in methylation b-valueper increase in average interquartile
range (IQR) of PM10 and PM2:5 exposure levels across the
cohorts corresponding to 5.6 and 2:0lg=m3, respectively.

Meta-Analyses. A total of 473,723 and 473,680 CpGs were
included in the meta-analysis of PM10 and PM2:5 results, respec-
tively, after quality control filtering, as well as exclusion of probes
that mapped to the X (n=11,232) or Y (n=416) chromosomes.
Cohort-specific results of the cord blood EWASwere subsequently
meta-analyzed using fixed-effects inverse variance weighting
in version 2011-03-25, METAL (http://www.sph.umich.edu/csg/
abecasis/metal/) (Willer et al. 2010). We used the false discovery
rate (FDR, p<0:05 for significance) procedure to account for mul-
tiple testing (Strimmer 2008). For replication and look-up analy-
ses, a nominal p<0:05 was considered statistically significant.
DNA methylation sites were annotated based on data provided by
Illumina (Bibikova et al. 2011).

DMR Analyses. Differentially methylated regions were identi-
fied using two methods available for use with meta-analysis
results, comb-p (version 0.32), which identifies DMRs by regional
clustering of low p-values from irregularly spaced p-values
(Pedersen et al. 2012) and DMRcate (version 1.8.6; https://www.
rdocumentation.org/packages/DMRcate), that identifies DMRs
from tunable kernel smoothing process of association signals
(Peters et al. 2015). Input files for both DMR analyses were our
meta-analyzed single-CpGEWAS results on newborns: regression
coefficients, standard deviations, uncorrected p-values for DMRcate
and uncorrected p-values and chromosomal locations for comb-p.
Significant DMRs were defined based on the following criteria: a) a
DMR should contain more than one probe; b) regional information
can be combined from probes within 1,000 bp; c) the region showed
multiple-testing corrected p<0:01 in both methods (Sidak for comb-
p and FDR for DMRcate). DMRs detected by both methods were
considered significant in our analysis. Input parameters used for the
DMRcalling in both algorithms are provided in Table S1.

Functional Follow-Up
We investigated whether genes annotated to the significant CpGs
were differentially expressed in cord blood in relation to air pollu-
tion exposure during pregnancy in the EARLI (n=119) or at the
time of biosampling in the BAMSE cohort (n=244) by means of
linear regression analysis. Furthermore, we analyzed the associa-
tion of the FDR-significant CpG methylation with gene expression
in cis (250 kb window) in 3,075 adults in the Biobank-based
Integrative Omics Studies (BIOS) consortium data set (Bonder
et al. 2017), and used FDR correction as threshold.

To identify associations between methylation levels and the
expression levels of nearby genes (cis-expression quantitative
trait methylation, cis-eQTM), we regressed methylation M-value
on gene expression, sex, sampling age, lymphocytes percentage,
monocyte percentage, and RNA Flow Cell Number. The inflation
of models is corrected by using “bacon”method (van Iterson et al.
2017). We mapped the eQTM in a window of 250 kb around the

identified 5,547 CpG sites. For this analysis, we used a total of
3,075 samples for which both methylation and gene expression
data were available from four cohorts: Lifelines DEEP, Rotterdam,
Leiden Longevity, and Netherlands Twin Register (NTR).

To identify plausible pathways associated with air pollution
exposure, we performed the over-representation analysis based
on CpGs significantly associated with prenatal PM exposure
in the meta-analysis at an arbitrary cutoff of p<10−5 using
ConsensusPathDB (Kamburov et al. 2013), as well as the R
Bioconductor package missMethyl (version 1.10.0 gometh
function), which performs one-sided hypergeometric tests tak-
ing into account and correcting for any bias derived from the
use of differing numbers of probes per gene interrogated by the
array (Phipson et al. 2016).

Finally, we investigated whether previously reported differen-
tially methylated CpGs related to in utero tobacco smoke exposure
[6,073 CpGs with FDR-significance (Joubert et al. 2016)] were dif-
ferentially methylated in relation to prenatal PM exposure. We per-
formed Fisher’s exact test for overrepresentation of smoking-
related CpGs among nominally significant PM-related CpGs.

We additionally examined whether our FDR-significant CpGs
overlapped with the list of potentially polymorphic and cross-
reactive probes provided by Chen et al. (Chen et al. 2013), and
applied the dip test (Hartigan and Hartigan 1985) for two overlap-
ping CpGs to test for nonunimodal DNA methylation distribution
using an independent publicly available data set of cord blood
DNA methylation samples (Barrett et al. 2013; Rojas et al. 2015).

Results
The baseline characteristics of the study populations are pre-
sented in Table 1 (and Table S2 in the online data supplement).
Exposure contrasts were smallest for the PRISM (PM2:5 IQR
0:8 lg=m3) and RHEA (PM10 IQR 2:3 lg=m3) cohorts and were
highest for the CHS (PM2:5 IQR=5:0 and PM10 IQR=
14 lg=m3). The discovery meta-analysis of cord blood methyla-
tion in relation to prenatal exposure included 1,949 newborns
for PM10 and 1,551 for PM2:5. The difference in sample sizes is
due to missing prenatal PM10 data for Project Viva and PRISM
cohorts, and missing prenatal PM2:5 data for the Generation R
cohort. Minus log10(p-values) from the combined analysis of
CpGs across the genome in cord blood samples are presented in
Figure 1. The quantile–quantile plots did not reveal any note-
worthy inflation in the distribution of observed p-values
(k=1:21 for PM10 exposure and 1.37 for PM2:5; Figure S1).
Study-specific lambdas can be found in Table S3.

Meta-Analyses Findings
We found epigenome-wide significant associations (FDR p<
0:05) between PM10 exposure and DNA methylation for six
CpGs, with higher PM10 exposure being associated with an
increase in methylation for four CpGs mapping to GNB2L1;
SNORD96A, FAM13A, SRPRB, and P4HA2, and a decrease for
two CpGs within USP4, and NOTCH4 (Table 2). Effect sizes were
generally small, i.e., 0.1% difference in methylation β-value per
IQR=5:6lg=m3 increase in prenatal PM10 exposure.

We found 14 CpGs significantly associated with prenatal
PM2:5 using FDR correction, positioned in or near the following
genes: PLXNA4, ZNF705A, 2,5 kb downstream of C14orf2, FNIP1,
COL22A1, TMCO3, SFRS8, 8,1 kb upstream of NEUROG1, MRI1,
PSG5, C7orf50, 1,1 kb downstream of MORN1, PLAT, and
ZNF695 (Table 3). The direction of the effect was negative for 11
of these CpGs, and positive for cg16253537 in FNIP1, cg01011943
in PSG5, and cg00348551 in C7orf50 in relation to higher PM2:5
exposure. The estimates ranged from −0:4% to 0.3% difference in
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methylation level per IQR (IQR=2lg=m3) increase in prenatal
PM2:5 exposure.

Two out of the 14 FDR-significant CpGs associated with pre-
natal PM2:5, namely cg12193649 and cg01011943, overlapped
with the list of potentially polymorphic and cross-reactive
probes provided by Chen et al. (2013). However, results from
the dip test applied to those two CpGs did not reveal statisti-
cally significant deviation from unimodality (p=0:65 and
p=0:99, respectively).

Tests for heterogeneity did not display any major heterogene-
ity across studies: 8% and 9.9% of the examined PM10- and
PM2:5-related CpGs, respectively, had heterogeneity p<0:05,
and median I2 statistics for PM10 was 0% (ranging between
0–94%) and for PM2:5 −5:1% (ranging between 0–88.7%). No sig-
nificant heterogeneity was found for any of the identified FDR-
significant CpGs (p-values for heterogeneity ranging within 0.08–
0.81: see forest plots in Figure S2).

Analyses of Differentially Methylated Regions
By applying two different methods for DMR analysis of PM10-
related results, we identified 147 significant (FDR p<0:01)

DMRs from DMRcate (Table S1) and 12 significant (Sidak
p<0:01) DMRs from comb-p (Table S2), including 11 that were
significant based on both approaches (Table 4). It is interesting to
note that all genome-wide significant individual CpGs identified
in the discovery meta-analysis were also found within the 147
DMRs found in DMRcate, with the exception of cg06849931
located in NOTCH4.

We also found 272 significant (FDR p<0:01) DMRs from
DMRcate (Table S3) and 33 significant (Sidak p<0:01) DMRs
from comb-p (Table S4) in relation to prenatal PM2:5 exposure,
of which 15 overlapped between the two methods (Table S4).
Five out of 14 genome-wide significant individual CpGs identi-
fied in the discovery meta-analysis were also seen in the DMRs,
namely related to genes C7orf50, ZNF705A, PLAT, PSG5, and
MRI1.

Replication and Look-Up Analyses
None of the six FDR-significant CpGs identified as differentially
methylated in relation to prenatal PM10 in our discovery meta-
analysis sample of 1,949 newborns could be replicated in the 688
newborns of the ALSPAC study (Table 2). However, four out of

Figure 1. Manhattan plot for epigenome-wide meta-analysis of the association between (A) prenatal PM10 (n=1,949) and (B) prenatal PM2:5 exposure
(n=1,551) and cord blood DNA methylation. Note: The solid horizontal line corresponds to an FDR rate of 0.05. Manhattan plot for PM10: Six CpGs were
considered statistically significant using FDR correction (red squares): cg15082635 in GNB2L1;SNORD96A, cg20340716 in USP43, cg00905156 in FAM13A,
cg24127244 in SRPRB, cg06849931 in NOTCH4, and cg18640183 in P4HA2. Manhattan plot for PM2:5: Fourteen CpGs were considered statistically signifi-
cant using FDR correction (red squares): cg16811875 in PLXNA4, cg12193649 in ZNF705A, cg11886880 2,5 kb upstream of C14orf2, cg16253537 in FNIP1,
cg12044654 in COL22A1, cg19120073 in TMCO3, cg05479174 in SFRS8, cg06846669 8:1 kb downstream of NEUROG1, cg23270359 in MRI1, cg01011943
in PSG5, cg00348551 in C7orf50, cg24709511 1,1 kb downstream of MORN1, cg22038738 in PLAT, and cg02236896 in ZNF695.
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these six CpGs showed significance later in childhood in associa-
tions with prenatal PM10 exposure; cg00905156 (FAM13A) and
cg06849931 (NOTCH4) showed increased methylation in relation
to PM10 exposure during pregnancy in the combined BAMSE
Epigene and MeDALL samples (n=692) of 7- to 9-y-olds (p=
0:03), although the direction of association for cg06849931 was op-
posite to the one in the discovery analysis (Table 2). Furthermore,
cg06849931 was also differentially methylated in the HELIX study
(p=0:002), along with cg18640183 (P4HA2) (p=0:03), both dem-
onstrating the same direction of association as those in the discovery
meta-analysis. In addition, cg15082635 (GNB2L1; SNORD96A)
was also nominally significant in 7-to 9-y-olds from the ALSPAC
study with the same direction of association (p=0:02). None of
these six associations was present in adolescents from the BAMSE
(n=198) and ALSPAC (n=903) studies (p>0:05). Children’s
concurrent PM10 exposure at the time of biosampling was not sig-
nificantly associated with any of these six CpGs (p>0:05; see
Table S5).

Among the 14 epigenome-wide significant PM2:5-associated
CpGs in newborns, none appeared to be statistically significant in
children and adolescents, apart from cg23270359 (MRI1), which
was significant in the HELIX sample (p=0:01), although the
direction of association was opposite to that in the discovery
meta-analysis (Table 3).

Two significant gene regions from the discovery PM10-related
DMR analyses, including genes H19 and MARCH11, were also
FDR-significant in analysis of the ALSPAC newborn sample using
DMRcate (replication min FDR p=9:5× 10-4 and p=3:9× 10-5,
respectively).

Functional Follow-Up
The top three PM10-related CpGs, including one within the
FAM13A gene, as well as six out of 14 PM2:5-associated CpGs,
were significantly associated with gene expression in cis in BIOS
(Table S6).

In functional analysis of expression data from the newborns in
the EARLI cohort (n=119), no significant association of in utero
PM10 exposure with expression of genes annotated to the respec-
tive CpG was detected, whereas PM2:5 exposure was associated
with expression of ZNF695 [p<0:05, Log fold change ðLogFCÞ=
0:074 per 2-lg=m3 increase in exposure; Table 5]. In BAMSE
(n=244), current PM10 exposure at 16 y was associated with
NOTCH4 (multiple transcripts, lowest p=0:0001, LogFC= 0:05)
and USP43 expression levels in peripheral blood cells (p< 0:05,
LogFC=0:05, per 5:6-lg=m3 increase; Table 6). Among the
PM2:5 associated genes, C7orf50 was significantly differentially
expressed in relation to current PM2:5 exposure (p=0:03, LogFC=
0:02, per 2-lg=m3 increase). Descriptive statistics of expression
levels of genes associated with CpG methylation in response to
maternal PM10 or PM2:5 exposure in the EARLI and BAMSE
cohorts are provided in Table S7 and Table S8, respectively.

Pathway Analysis
Twenty-eight of 31 unique gene identifiers extracted from the
meta-analysis with PM10 exposure matched to ConsensusPathDB.
Using FDR p<0:05, six enriched pathways were identified includ-
ing “Notch Signaling Pathway” (genes NOTCH4 and DVL2), “Rho
GTPase cycle” (FAM13A; HMHA1; VAV2; and GMIP), “Neuro-
transmitter Release Cycle” (HSPA8; and RIMS1), and “GABA syn-
thesis, release, reuptake and degradation” (HSPA8; and RIMS1). In
the repeated pathway analysis using gometh function in miss-
Methyl, no statistically significant pathways were found after cor-
rection for multiple testing; however, we observed the same top sig-
nificant pathways as identified by ConsensusPathDB, i.e., related toT
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regulation of GTPase activity (Table S9). No significantly enriched
pathways were identified for PM2:5.

Candidate-Gene Analysis of Smoking-Related CpGs
Out of 6,073 FDR-significant CpGs previously reported in rela-
tion to maternal smoking exposure (Joubert et al. 2016), 359
showed nominal significance (p<0:05) with prenatal PM10 and
390 with PM2:5 exposure, which is not more than expected by
chance (Fisher’s exact test nonsignificant for overrepresentation
of smoking-related CpGs among nominally significant PM-
related CpGs). None of the genome-wide significant CpGs identi-
fied in our meta-analyses with PM10 and PM2:5 were among the
6,073 smoking-related sites.

Discussion
In this large-scale epigenome-wide meta-analysis evaluating the
association between prenatal particulate air pollution exposure
and DNA methylation in newborns, we found significant associa-
tions for PM10 and PM2:5 exposure during pregnancy with

methylation differences in several genes of relevance for respira-
tory health, such as FAM13A and NOTCH4. Some of these asso-
ciations were also seen in the older children. We also identified a
number of unique DMRs associated with PM exposure by apply-
ing two independent methodologies. The observed differentially
methylated genes in the newborn discovery data set represent
novel associations in the context of air pollution exposure. One
of the top significant hits, cg00905156, localizes in the gene
FAM13A, which has been identified in multiple genome-wide
association studies (GWAS) of pulmonary function and the
related phenotype of COPD (Hobbs et al. 2017; Hancock et al.
2010). Research has shown that FAM13A interferes with the Wnt
pathway, inducing b-catenin degradation, which in turn may
affect lung repair (Jiang et al. 2016). In vitro studies have also
demonstrated differences in respiratory epithelial cell expression
of FAM13A during differentiation into pulmonary type II cells
(Wade et al. 2006).

Another significant CpG site, cg06849931, is located in the
NOTCH4 gene, which has been identified in GWAS as a genetic
marker of asthma-related traits (Li et al. 2013). Recently, an

Table 3. Statistically significant CpGs (FDR p<0:05) associated with IQR increases in prenatal PM2:5 (2 lg=m3) exposure and DNA methylation in newborns
(discovery meta-analysis), and replication in children (age 7–9 years) and adolescents (age 16 years).

Discovery meta-analysis Replication: age 7–9 years
Replication:
age 16 years

Prenatal PM2:5 ∼ newborn methylation

BAMSE
EpiGene+MeDALL

(n= 692)
HELIX
(n= 603)

BAMSE
(n= 198)

Chr Positionb CpG Genec b (P-value) Directiond b (P-value) b (P-value) b (P-value)

7 132192823 cg16811875 PLXNA4 −0:003 (2.67E-08) ######## −0:0006 (0.41) −0:00085 (0.19) 0.0001 (0.86)
12 8324628 cg12193649 ZNF705A −0:004 (1.37E-07) #"## XXXX X −0:00036 (0.76) X
14 104376135 cg11886880 2, 5 kb down C14orf2 −0:001 (1.81E-07) ## X"#""# <0:0001 (0.78) −0:00014 (0.11) 0.0002 (0.50)
5 131132836 cg16253537 FNIP1 0.001 (4.10E-07) """#"""" −0:0004 (0.37) 0.00008 (0.43) 0.0001 (0.63)
8 139890342 cg12044654 COL22A1 −0:001 (6.42E-07) ###""### 0.0004 (0.46) −0:00033 (0.07) 0.0001 (0.67)
13 114165365 cg19120073 TMCO3 −0:001 (7.77E-07) ####"### <0:0001 (0.87) −0:00013 (0.39) −0:0004 (0.23)
12 132239000 cg05479174 SFRS8 −0:001 (7.99E-07) ###""""# 0.0002 (0.87) −0:00003 (0.93) 0.0005 (0.44)
5 134879739 cg06846669 8,1 kb up NEUROG1 −0:002 (8.92E-07) ######## −0:0002 (0.59) 0.00007 (0.77) −0:0001 (0.88)
19 13875381 cg23270359 MRI1 −0:001 (9.43E-07) ######## <0:0001 (0.84) 0.00035 (0.01) −0:0001 (0.71)
19 43690622 cg01011943 PSG5 0.003 (1.05E-06) """# XXXX X −0:00008 (0.93) X
7 1177965 cg00348551 C7orf50 0.001 (1.13E-06) "" X#XXX" 0.0008 (0.13) 0.00010 (0.51) −0:0004 (0.32)
1 2251570 cg24709511 1,1 kb down MORN1 −0:001 (1.57E-06) ###"#"## −0:0004 (0.50) −0:00020 (0.30) 0.0004 (0.23)
8 42064673 cg22038738 PLAT −0:004 (1.61E-06) #####"## 0.0008 (0.39) −0:00079 (0.51) 0.0006 (0.32)
1 247169036 cg02236896 ZNF695 −0:003 (2.05E-06) ## X"#### −0:0012 (0.34) −0:00055 (0.24) −0:0003 (0.64)

Note: b, coefficient for methylation with an IQR increase in prenatal PM2:5 exposure; CHR, chromosome.
aDiscovery meta-analysis does not include the Generation R cohort due to missing prenatal PM2:5 data.
bChromosomal position based on NCBI human reference genome assembly Build 37.
cUCSC annotated gene.
dDirection of methylation for each cohort included in the analysis (INMA, Project Viva, CHS, PRISM, ENVIRONAGE, Rhea, Piccolipiù, EARLI): " = increasedmethylation,
# =decreasedmethylation, X= not available.

Table 4. DMRs in Relation to prenatal PM10 exposure that overlap between DMRcate and comb-p methods.

DMRcate Comb-p

Chr Start End No. of probes Max bFCa p-Valueb Genec Start End No. of probes p-Valued

7 27169674 27171528 25 1.58E-03 9.20E-10 HOXA4 27169957 27171052 17 2.75E-12
11 2019730 2021243 29 1.45E-03 6.75E-06 H19 2020101 2020418 10 4.30E-04
4 2366103 2367137 7 8.24E-04 6.05E-05 ZFYVE28 2366555 2367138 5 1.68E-05
6 31963526 31964754 10 −6:85E-04 6.05E-05 C4A 31964193 31964392 5 2.42E-04
1 75198211 75199117 11 4.93E-04 1.25E-04 CRYZ; TYW3 75198403 75198842 6 7.01E-03
6 170596856 170598215 7 −1:10E-03 3.26E-04 DLL1; FAM120B 170597326 170597589 4 2.96E-03
12 52400530 52401523 8 1.16E-04 5.36E-04 GRASP 52400530 52400908 5 3.02E-03
10 3823907 3825031 7 −8:09E-04 6.43E-04 KLF6 3824387 3824688 4 7.18E-04
1 1549799 1550886 12 −5:38E-04 8.50E-04 MIB2 1550648 1550887 8 6.48E-03
19 3970736 3971417 7 −2:32E-04 1.00E-03 DAPK3 3971119 3971418 5 3.60E-04
19 12876846 12877188 4 3.69E-03 2.65E-03 HOOK2 12876846 12877189 4 7.51E-04
aFold change in DNA methylation b-value.
bMinimum FDR p-value for the region.
cAnnotated gene(s) in the region.
dSidak p-value.
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animal study proposed Notch4 as a susceptibility gene for ozone-
induced lung injury (Verhein et al. 2015). Genome-wide transcrip-
tomic analysis of lung tissue homogenates within the same study
suggested that upregulation of NOTCH3 and NOTCH4 receptors
may protect against inflammation. Our other observed differentially
methylated CpGs reside in USP43, SRPRB, GNB2L1; SNORD96A,
and a TH2 cytokine gene, P4HA2. GNB2L1 and P4HA2 have pre-
viously been suggested as candidate genes associated with the sus-
ceptibility and prognosis for lung cancer (Choi et al. 2015; Dong
et al. 2012).

We were not able to replicate FDR-significant CpGs using a
smaller independent methylation data set of newborns. However,
in two out of three independent samples of school-age children,
cg06849931 (NOTCH4) was found to be significantly differen-
tially methylated in relation to prenatal PM10. The direction of
association in one of these two samples was opposite, however.
Also, significant differential methylation was observed for CpGs
in FAM13A, GNB2L1, and SNORD96A, as well as P4HA2 in one
out of three independent samples of school-age children, with the
same direction of association as those in the discovery EWAS.
Furthermore, expression of the NOTCH4 gene in BAMSE partic-
ipants at 16 years of age was increased in association with con-
current exposure to PM10. Lack of replication in newborns may
be attributed to generally weak effects of air pollution exposure
that may be difficult to detect in a smaller sample. Furthermore,
differences in exposure contrasts should be acknowledged, i.e.,
wide exposure range in the discovery analysis explained by inclu-
sion of cohorts from areas with different exposure levels in com-
parison with the replication data set.

We found several significantly differentially methylated CpGs
in relation to prenatal PM2:5 exposure, all of which were distinct
from those related to prenatal PM10. Unfortunately, no independ-

ent newborn data set with PM2:5 data was available for replication
analysis. Look-up analysis in older children age 7–9 y suggested
association of differential methylation of cg23270359 located in
MRI1. Previous studies reported significant association between
increased MRI1 methylation and severe asthma (Wysocki et al.
2015).

Earlier epigenome-wide association studies of long-term partic-
ulate exposure in adults failed to demonstrate robust associations
(Plusquin et al. 2017; de FC Lichtenfels et al. 2018). This failure
to demonstrate robust associations may be partly explained by lim-
ited statistical power. In addition to EWAS meta-analysis based on
single probes, we also investigated regions of differential methyla-
tion. Several significant findings were discovered in relation to PM
exposure, and the DMR results partly overlapped between the two
methods applied, as well as with the genes identified in the single
probe meta-analysis. Two of the PM10-related DMRs comprising
H19 and MARCH11 genes were also replicated in the independent
newborn data set. The H19 gene is located in an imprinted region
of chromosome 11 and is expressed only from the maternally
inherited chromosome. Recent evidence suggests that H19 func-
tions as an oncogene and inhibits the activity of tumor suppressor
p53 but also plays an important role in embryonic development
and growth control (Chen et al. 2018). DNA methylation levels at
the H19 DMR have also been associated with being small for ges-
tational age (Qian et al. 2016).

Our study is one of the first large-scale studies assessing the
association of prenatal PM exposure on the neonatal blood meth-
ylome. Recently published EWAS meta-analysis of five cohorts
(n=1,235) did not show any association of maternal PM10 expo-
sure during pregnancy with DNA methylation in cord blood
(Plusquin et al. 2018). However, pathway analysis of top hits
revealed enriched pathways relating to the GABAergic synapse, as
well as NOTCH signaling, which is in line with our results.
Analysis based on the CHS demonstrated DNA methylation vari-
ability in newborn blood in relation to prenatal exposure to PM10

Table 5. Associations between PM exposure and gene expression levels in
newborn children of the EARLI cohort (n=119).

Chr Gene ProbeID LogFC p-Value

Prenatal PM10
4 FAM13A 16977925 0.025 0.57
6 NOTCH4 17017814 −0:003 0.94
6 NOTCH4 17027038 −0:008 0.90
6 NOTCH4 17029639 0.063 0.14
6 NOTCH4 17034630 −0:015 0.63
6 NOTCH4 17037128 0.018 0.51
6 NOTCH4 17039839 −0:050 0.19
6 NOTCH4 17042335 −0:029 0.38
5 SNORD96A 17119456 −0:038 0.19
5 P4HA2 16999712 −0:018 0.57
17 USP43 16831046 −0:034 0.26
3 SRPRB 16945907 −0:039 0.46
Prenatal PM2:5
7 C7orf50 17054312 0.001 0.98
19 ZNF606 16876074 −0:040 0.21
19 PSG5 16872926 −0:003 0.89
1 ZNF695 16701484 0.074 0.04
10 MKX 16712773 0.022 0.45
2 CAPN10 16893222 −0:030 0.15
8 COL22A1 17081580 0.008 0.63
12 ZNF705A 16747907 −0:040 0.11
5 FNIP1 16999631 −0:025 0.27
7 PLXNA4 17063005 −0:025 0.17
13 TMCO3 16776883 −0:019 0.32
8 PLAT 17076726 −0:023 0.26
1 VANGL2 16672635 −0:026 0.21
19 MRI1 16858849 −0:023 0.26

Note: Results presented per 5:6lg=m3 increase in PM10 and 2 lg=m3 increase in PM2:5
exposure for genes annotated to FDR significant CpGs in the discovery PM10 and PM2:5
EWAS. LogFC= logarithm fold-change (one unit of the logFCs translates to a two-fold
change in expression). Adjusted for sex, maternal smoking during pregnancy, and cell
composition.

Table 6. Associations between PM exposure and gene expression levels in
16-y-old children of the BAMSE cohort (n=244).

Chr Gene ProbeID LogFC p-Value

Concurrent PM10
6 NOTCH4 TC6_mcf_hap5000165.hg.1 0.05 9.52E-05
6 NOTCH4 TC6_apd_hap1000098.hg.1 0.06 9.73E-05
6 NOTCH4 TC6_mann_hap4000155.hg.1 0.06 9.98E-05
6 NOTCH4 TC6_cox_hap2000190.hg.1 0.05 1.03E-04
6 NOTCH4 TC6_ssto_hap7000159.hg.1 0.05 1.10E-04
6 NOTCH4 TC06001564.hg.1 0.05 1.31E-04
6 NOTCH4 TC6_qbl_hap6000179.hg.1 0.05 1.42E-04
17 USP43 TC17000146.hg.1 0.05 4.98E-04
4 FAM13A TC04001380.hg.1 −0:01 2.14E-01
3 SRPRB TC03000725.hg.1 −0:01 2.89E-01

Concurrent PM2:5
7 C7orf50 TC07001077.hg.1 0.02 0.03
19 PSG5 TC19001582.hg.1 0.02 0.06
1 VANGL2 TC01001369.hg.1 0.02 0.08
1 ZNF695 TC01006392.hg.1 0.01 0.08
8 COL22A1 TC08001675.hg.1 0.02 0.10
8 PLAT TC08001175.hg.1 0.02 0.16
19 MRI1 TC19000239.hg.1 −0:01 0.17
2 CAPN10 TC02005015.hg.1 0.01 0.21
10 MKX TC10001133.hg.1 0.01 0.29
13 TMCO3 TC13000425.hg.1 −0:01 0.30
7 PLXNA4 TC07001877.hg.1 0.01 0.33
19 ZNF606 TC19001910.hg.1 −0:0003 0.96

Note: Results presented per 5:6lg=m3 increase in PM10 and 2lg=m3 increase in PM2:5
exposure for genes annotated to FDR significant CpGs in the discovery PM10 and PM2:5
EWAS. LogFC= logarithm fold-change (one unit of the logFCs translates to a two-fold
change in expression). Adjusted for sex, maternal smoking during pregnancy, active
smoking at the time of biosampling, age at biosampling, municipality at birth, doctor’s
diagnosis of asthma, and cell composition.

Environmental Health Perspectives 057012-8 127(5) May 2019



and PM2:5, some of which were also associated with cardiorespira-
tory health outcomes later in childhood, including asthma and ele-
vated blood pressure later in childhood (Breton et al. 2016). We
have also recently reported associations of NO2 exposure during
pregnancy with cord blood methylation differences in several genes
involved in mitochondria function, and we noted that these associa-
tions with in utero exposure persisted into early childhood
(Gruzieva et al. 2017). We did not, however, observe the same
associations with PM exposure in the present study. It remains to
be investigated whether those associations we observed with NO2
are pollutant-specific, or whether lack of overlap between NO2 and
PM-related findings are attributed to difference in the sources of
particulate pollution in different cities and locations (Eeftens et al.
2012). This difference in sources and chemical composition of PM
may also be responsible for the lack of comparability between the
present results with PM10 and PM2:5 exposures.

Some previous EWASs have identified and replicated exten-
sive exposure-associated epigenetic alterations, for example in
relation to exposure to maternal tobacco smoke (Joubert et al.
2016). Not only is particulate air pollution a different type of ex-
posure, but also exposure levels are generally much lower than
those related to tobacco smoking, which may explain differences
in the magnitude of differential methylation patterns associated
with exposure. Furthermore, measurement error in assignment of
exposure to maternal smoking during pregnancy is likely much
lower than for air pollution. Identifying robust signals at single
CpG site level for complex exposures such as long-term air pollu-
tion may also require larger sample sizes than available in the
present study. In addition, all the study populations were from
countries with relatively low ambient levels of particulate air pol-
lution. Inclusion of populations with higher exposures may help
identify possible effects on DNA methylation.

This study has some weaknesses. We estimated individual con-
centrations only for outdoor air pollution at residential addresses,
which are not equivalent to personal exposure. Also, due to lack of
trimester-specific prenatal exposure data, we were not able to
explore the importance of exposure time windows during preg-
nancy. Participants likely travel to several locations throughout the
day and may spend more time at locations other than their residen-
tial addresses (e.g., workplaces), which may introduce some mis-
classification, although most likely nondifferential and thus would
generally tend to attenuate the associations. However, ambient
PM10 and PM2:5 levels have been consistently associated with neg-
ative health effects in multiple studies, including effects on fetal
and neonatal outcomes (Lamichhane et al. 2015). Our analyses
included studies based in western Europe and the United States,
which have relatively lower air pollution concentrations in compar-
ison with many other places. We should also acknowledge that the
study included mainly white populations, and generalizability to
other ethnic groups is uncertain.

Although we adjusted our analyses for predefined important
covariates, residual confounding cannot be ruled out. Another
possible limitation is that we used estimated cell counts in our
analyses because measured cell types or single-cell methylation
data were not available in all cohorts. However, such estimated
cell type adjustment has been shown to be appropriate in epide-
miological settings (Kaushal et al. 2017).

Methylation signatures are tissue and cell specific (Bakulski
and Fallin 2014), and therefore, selection of relevant tissues and
cells is of crucial importance for epigenetic analyses. The major-
ity of previous studies have used peripheral blood cells to exam-
ine DNA methylation patterns associated with environmental
exposures; however, air pollution exposure has also been associ-
ated with DNA methylation and expression changes in placenta
(Cai et al. 2017; Saenen et al. 2017; Abraham et al. 2018), and

lung epithelial cells (Clifford et al. 2017; Zhou et al. 2015).
Clifford et al. reported differential methylation of CpG sites in
HOXA4 in response to diesel exhaust following prior exposure to
allergen (Clifford et al. 2017), which was also identified as DMR
in our analysis with prenatal PM10 exposure. HOXA4 belongs to
the family of Hox genes encoding homeodomain transcription
factors that determine cell and tissue identities in the developing
embryo and patterning of the developing mouse lung (Packer
et al. 2000).

In conclusion, our epigenome-wide meta-analysis provides
suggestive evidence of newborn methylation differences in sev-
eral genes with relevance for airway disease, in relation to prena-
tal particulate air pollution exposure. Some of these associations
were also observed later in childhood. Our results also point to
the importance of considering the combined effect of nearby
CpGs as DMRs when evaluating the impact of exposure on DNA
methylation. Further studies are warranted to establish whether
this epigenetic variability could potentially explain the influence
of ambient air pollution on development of respiratory outcomes.
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