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The catastrophic mechanical rupture of an atherosclerotic plaque is the underlying cause of the majority
of cardiovascular events. The infestation of vascular calcification in the plaques creates a mechanically
complex tissue composite. Local stress concentrations and plaque tissue strength properties are the gov-
erning parameters required to predict plaque ruptures. Advanced imaging techniques have permitted
insight into fundamental mechanisms driving the initiating inflammatory-driven vascular calcification
of the diseased intima at the (sub-) micron scale and up to the macroscale. Clinical studies have poten-
tiated the biomechanical relevance of calcification through the derivation of links between local plaque
rupture and specific macrocalcification geometrical features. The clinical implications of the data pre-
sented in this review indicate that the combination of imaging, experimental testing, and computational
modelling efforts are crucial to predict the rupture risk for atherosclerotic plaques. Specialised experi-
mental tests and modelling efforts have further enhanced the knowledge base for calcified plaque tissue
mechanical properties. However, capturing the temporal instability and rupture causality in the plaque
fibrous caps remains elusive. Is it necessary to move our experimental efforts down in scale towards
the fundamental (sub-) micron scales in order to interpret the true mechanical behaviour of calcified pla-
que tissue interactions that is presented on a macroscale in the clinic and to further optimally assess cal-
cified plaques in the context of biomechanical modelling.
� 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Atherosclerotic plaque rupture is the underlying cause of the
majority of acute myocardial infarction (Jia et al., 2013; Yahagi
et al., 2015) and stroke events (Spagnoli et al., 2004). Rupture
prone plaques are characterised by their complex, heterogeneous
composition, which can include a necrotic core, fibrous cap, inflam-
matory cells and the presence of calcification (Virmani et al., 2006).
Physiologically induced plaque rupture is fundamentally a
mechanical event which ensues if the local stress levels exceed
the local tissue strength (Richardson, 2002; Cheng et al., 1993).
As both plaque stresses and strength strongly depend on plaque
composition, calcifications are likely to have a determining role
in the plaque’s overall mechanical behaviour.

Tackling the growing epidemic regarding calcification in plaque
tissue remains a critical clinical challenge. Acute cardio- and cere-
brovascular events are strongly associated with vascular calcifica-
tion. For coronary vasculature, the overall coronary artery calcium
score, detected with non-invasive imaging, provides incremental
value over traditional risk scores to identify high risk cardiovascu-
lar disease patients (Criqui et al., 2017; Greenland et al., 2018).
Moreover, it has been advocated that imaging structural features
of calcifications in coronary arteries using intravascular ultrasound
(IVUS) (van der Giessen et al., 2011) or optical coherence tomogra-
phy (OCT) (Tearney et al., 2012) and in carotid arteries using com-
puted tomography (CT) (Yang et al., 2018) can be relevant for
predicting plaque rupture. Specifically, studies have evidenced that
superficial ’spotty’ calcifications may induce plaque rupture
(Sakaguchi et al., 2016; Nerlekar et al., 2018). In carotid arteries,
although a meta-analysis reported less calcification for the clini-
cally symptomatic plaques than the asymptomatic ones (Kwee,
2010), histomorphometric analyses associated ulcerations with
superficial, thin calcifications (Yang et al., 2018) and the presence
of small ruptures, referred to as fissures, to calcification presence
(Daemen et al., 2016). Despite this wealth of clinical data, the fun-
damental role of calcification on plaque rupture is still largely
unclear.

In order to solve this biomechanical challenge, it is necessary to
evaluate the current clinical evidence in parallel with mechanical
experiments and computational simulations which together can
provide a means to contextualise the fundamental mechanics driv-
ing the fate of the calcified plaque tissue and calcification for pla-
que rupture. It is requisite to understand the intricate interplay
between the calcification morphology and associated plaque tissue
mechanics at multiple length scales. The co-existence of both
macrocalcifications and microcalcification particles in cardiovascu-
lar events further creates juxtaposition in the current biomechan-
ical plaque stability paradigm (Gupta et al., 2015).

As illustrated in Fig. 1, this review aims to provide an overview
of the current knowledge base regarding calcification in terms of
structural evolution (Section 2), methods of calcification detection
in the clinical setting (Section 3), mechanical influence of calcifica-
tion in plaque tissue derived from specialised in vitro experiments
(Section 4), computational modelling efforts which tackle the
impact of calcification on plaque stresses (Section 5) and a discus-
sion of the future work that can enhance the mechanical under-
standing and the possible implementation of clinic parameters
for plaque rupture prediction (Section 6).

2. Calcification mechanisms

Vascular calcification forms in the intima of inflamed
atherosclerotic arteries. The initiating phases of the calcification
formation at the fundamental submicron and micron length scales
are illustrated in (Fig. 1: Phase). Fig. 2 demonstrates the three
mechanisms; osteogenic trans-differentiation, apoptosis and calci-
fying extracellular release, which are advocated as playing a role in
calcification initiation (Shanahan, 2007; Raggi et al., 2018). A mul-
titude of different resident and circulating cells are subjected to
such processes, including endothelial progenitor cells, mesenchy-
mal stem cells, macrophages and vascular smooth muscle progen-
itor cells (VSMC) (Johnson et al., 2006; Leszczynska et al., 2016;
Boström et al., 2016). In this regard, the process possibly mimics
the developmental process of endochondral ossification which is
responsible for forming long bones (Johnson et al., 2006). Endothe-
lial progenitor cells are susceptible to bone induction and endothe-
lial markers are expressed in calcified cells indicating a role for
endothelial cells overlying the plaque in superficial microcalcifica-
tion formation (Yao et al., 2013; Sánchez-Duffhues et al., 2015;
Guihard et al., 2016). Animal studies have also demonstrated that
both the atherosclerotic environment itself and stem/progenitor
cells derived from atherosclerotic (ApoE�/� mice) animals con-
tribute to ectopic calcification (Leszczynska et al., 2016). VSMCs
undergo osteogenic transition to calcifying VSMC in the presence
of pathologically stressed environments, like in the plaque, and
adapt the same mineralisation processes of osteoblasts while
maintaining their own identity (Hunt et al., 2002). Microcalcifica-
tion particles are fundamentally derived from the expression of
bone regulating proteins, alkaline phosphatase and bone-like cells
(osteoblasts, osteocytes and osteoclasts; Boulanger et al., 2017;
Menini et al., 2013; Aikawa et al., 2007; Hunt et al., 2002).

Activated macrophages secrete proinflammatory cytokines
inducing VSMC apoptosis, and calcifying extracellular vesicles
(cEV) are released by the elevated calcium derived from the apop-
totic bodies providing nucleation sites for initiating microcalcifica-
tion in the plaque (Shanahan, 2007; Raggi et al., 2018). The cEVs
directly meditate calcification through their surface-based calcium
binding complexes and have a diameter in the range of 30–400 nm
(Bakhshian Nik et al., 2017). The microcalcification particles (Fig. 1:
phase) are developed from the four step process including cEV
accumulation, aggregation, fusion of cEV membranes and finally
mineralisation (Hutcheson et al., 2016). At the mineralisation
stage, amorphous calcium phosphate transforms into mature crys-
talline hydroxyapatite ‘microcalcification’ particles, portraying
spherical and needle like morphology types, typically 0.5–15 mm
large (Perrotta and Perri, 2017).

With atherosclerotic disease progression, microcalcification
particles coalesce and grow within plaque’s necrotic core, fibrous
cap and outer bordering medial tissue matrix where localisation
is largely regulated by local collagen fiber directionality



Fig. 1. Overview of the sections of the paper, incorporating the development phase, imaging, testing and modelling of calcification at the fundamental micron scale and
working towards the clinical macroscale.

Fig. 2. Mechanisms involved in calcification development. Endothelial progenitor
cells (EC), macrophages (m/), vascular smooth muscle cells (VSMC) and mes-
enchymal stem cells (MSC). Calcifying extracellular vesicles (cEV), apoptotic cells
and osteogenic transdifferentiation result in microcalcification particles. The
continuous coalescence of microcalcification particles transforms into macroscopic
calcification formations of distinct geometries.

H.E. Barrett et al. / Journal of Biomechanics 87 (2019) 1–12 3
(Hutcheson et al., 2016; Stary, 2000). Microcalcification particles
detected in the fibrous cap are no larger than 50 lm in diameter
(Kelly-Arnold et al., 2013). Importantly, collagen fiber orientation
can differ depending on local plaque eccentricity as evidenced with
MR-based diffusion tensor imaging (Akyildiz et al., 2017). Concen-
tric plaques, predominantly have longitudinally oriented collagen
fibers at the lumen while circumferentially oriented fibers are
more abundant abluminally. Thus, depending on local calcification
developments a multitude of calcification-fibrous tissue interac-
tions can also exist which is mechanically important.

Tracking microcalcification progression over time, both in vitro
using cell cultured collagen scaffolds (Hutcheson et al., 2016) and
in vivo in ApoE�/� mice (New et al., 2013), strongly advocates that
microcalcification particles coalesce, forming fragments and larger
masses of compact calcification. Notably, calcification formation is
a dynamic process and during plaque progression to the advanced
fibro-calcific plaque type, calcifications in the order of micrometer
and millimetre scales can co-exist (Burke et al., 2001). The most
advanced calcification formations detected in plaques have resem-
bled osteoid metaplasia with mature calcified matrix, a lamellar
structure and even bone marrow (Herisson et al., 2011; Hunt
et al., 2002).
3. Calcification imaging

The knowledge base concerning the pathological development
of ectopic vascular calcification provides a ‘ground-truth’ basis
for classifying calcification utilising clinical imaging techniques.
In the early disease phase vesicles and microcalcification particles
are the primary targets while in the more advanced phase larger
macrocalcification are present in coexistence with these vesicles
and particles. Fig. 3 illustrates the three distinct macrocalcification
geometries that evolve with plaque progression: (1) speckled;
spotty calcification flecks (�50 mm), (2) sheet-like fragments; lin-
ear or wide single focus of calcium (>2 mm in diameter) and (3)
diffuse; segments of continuous calcification (�5 mm) (Burke
et al., 2001; Friedrich et al., 1994). It is imperative for plaque rup-
ture assessment to incorporate the (1) full calcification scale range;
from initiating vesicles to micron scale particles and millimetre



Fig. 3. Macrocalcification geometry classification on clinical imaging (A) spotty/speckled: spotty calcification flecks (�50 mm), (B) sheet-like fragments: linear or wide single
focus of calcium (>2 mm in diameter) and (C) diffuse: segments of continuous calcification (�5 mm).
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scale macrocalcification and (2) calcification geometry delineation;
detecting the diverging morphology types. This section will exam-
ine the calcification features that can be acquired utilising clinical
imaging modalities (non-invasive/invasive) and the features that
remain confined to the preclinical setting (Fig. 1: imaging).

3.1. Non-invasive clinical imaging

In terms of non-invasive imaging, clinical-computed tomogra-
phy (CT) can detect vascular macrocalcifications in 3D space with
an in-plane spatial resolution in the submillimetre range
(�400 lm) (Nikolaou et al., 2004). Clinical-CT is regarded as the
gold standard for imaging calcifications, as they strongly attenuate
the emitted X-rays thereby creating high contrast from surround-
Fig. 4. Illustration of non-invasive, invasive and preclinical image scan results of one car
scale down to the micro-scale. Non-invasive imaging of heavily calcified carotid plaque w
and (C) corresponding decalcified hematoxylin and eosin histology cross-section. Invas
artery detected on (D) contrast-enhanced computed tomography angiography, (E) intra
images were obtained with written informed consent from each participant undergoing t
the institutional Medical Ethical Committee).
ing tissues. However, this high attenuation can cause calcification
spill-over effects (blooming) into surrounding voxels of lower
intensity. (Sarwar et al., 2008). Blooming artefact of macrocalcifica-
tions thus can mask calcification fragments in close proximity. The
fragments and larger calcification can show up in the CT-scan as
one unified mass (Fig. 4), which is a major concern for biomechan-
ical assessment, as the coexistence of a diffuse macrocalcification
versus multiple speckled calcifications in close proximity can have
a significantly different impact on plaque tissue stress distribution.

Additionally, blooming artefact negatively affects the accurate
delineation of surrounding non-calcified plaque components. In
this regard, magnetic resonance imaging (MRI) is superior to
clinical-CT and is capable of discriminating multiple components
including lipid core, fibrous tissue and calcifications (van Wijk
otid artery (top row) and one coronary artery plaque (bottom row) from the macro-
ith (A) Clinical computed tomography, (B) preclinical micro-computed tomography
ive catheter based imaging of superficial spotty calcification in the right coronary
vascular ultrasound and (F) optical coherence tomography (example patient scan
he diagnostic imaging and surgical procedure and study protocols were approved by
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et al., 2015). The 3D geometric information can be generated from
multi-sequential protocols, usually including T1-, T2- and proton
density-weighted sequences and time of flight. The typical in-
plane resolution for a clinical 3 Tesla scanner is 500 mm (van
Wijk et al., 2015). The calcification can be discriminated from the
surrounding plaque tissue as a hypointense signal area, visible on
all four sequences (Den Hartog et al., 2013). MRI can detect calcifi-
cation with high sensitivity and specificity (Puppini et al., 2006);
however, can underestimate macrocalcification areas due to the
partial volume artefact (Saam et al., 2007).

The application of positron emission tomography (PET) imaging
in cardiovascular field has potentiated advancement towards the
detection of microcalcification particles (Vesey et al., 2017;
Dweck et al., 2016). Early stage microcalcification particles can
be identified through 18F-sodium fluoride radiotracer uptake in
coronaries and carotids, which is reflected as a signal intensity of
the indirect gamma-ray emittance. The uptake mechanism is based
on fluoride ion exchange with a hydroxyl group present on the
hydroxyapatite particles’ surface and thus forming fluor-apatite
(Irkle et al., 2015). It is imperative to mention that poor spatial res-
olution of clinical-PET remains a concern regarding the localisation
of signal detection (typical in-plane resolution 3–4 mm) (Doris and
Newby, 2016). Notwithstanding, a hybrid molecular-functional
imaging approach coupling PET with CT or MRI can greatly
enhance our understanding about the influence of calcifications
and other components on the fibrous plaque tissue due to the addi-
tional geometrical information of PET/MR (Robson et al., 2018).

3.2. Invasive clinical imaging

Moving down in size scale (Fig. 1: imaging), intravascular ultra-
sound (IVUS) imaging of the coronaries identifies calcification as
bright hyperechoic (white) regions, with sharp-edged borders
due to its strong reflectance of the high frequency sound waves
(axial resolution 40–100 lm and lateral resolution 200–300 lm)
(Jian et al., 2017). IVUS can detect 50% more calcification than con-
trast enhanced clinical-CT, specifically capturing the smaller calci-
fications (van Der Giessen et al., 2011). For heavily calcified vessels,
IVUS suffers from acoustic shadowing and fails to penetrate the
macrocalcification deposits. Thus, volume and radial thickness
measurements can be unreliable in such vessels.

Optical coherence tomography (OCT) is an alternative modality,
that uses near-infrared light and has the most superior sensitivity
and specificity with an in-plane resolution of �10 lm (Fujimoto,
2003). While this technique is confined juxtaluminal region, due
to constraints in the penetration depth (�2–3 mm) (Fujimoto,
2003), it can resolve accurate delineation of superficial calcification
(Mehenna et al., 2013) and surrounding fibrous tissue (Fig. 4). The
sharp delineation of the calcification borders can be attributed to
the near-infrared backscatter of light measurement which denotes
calcification as signal-poor region. OCT assessment of acute coro-
nary syndrome patients revealed a higher abundancy of spotty cal-
cifications in the ruptured vessels, which were specifically
localised close to the luminal surface and plaque rupture site
(Sakaguchi et al., 2016) and positively correlated with cap thinning
(Kataoka et al., 2014).

3.3. Preclinical imaging

Notably, the aforementioned clinical imaging modalities
exclude micrometre scale calcification particles (0.5–15 lm) due
to the resolution restrictions. In lower resolution CT scanners, clus-
ters of particles are detected as single calcification particles, pro-
viding misleading plaque stress distribution (Vengrenyuk et al.,
2008). Thus, pre-clinical micro-CT with high spatial resolution of
2 lm (reconstructed) remains the only technique to resolve accu-
rate 3D geometries including spatial distribution, clustering and
abundancy of micron scale particles (>5 lm) embedded in fibrous
tissue (Kelly-Arnold et al., 2013). Coronary plaques contain hun-
dreds to thousands of microcalcification particles less than 50 lm
in the fibrous cap. Technological advancements have further
improved the capability of preclinical CT scanners to now achieve
spatial resolution in the nanoscale range. Nano-CT scanners are
capable of visualising and reconstructing tissue features of
�400 nm and the typical sample size for a single nano-CT scan is
approximately 1 mm (Cnudde et al., 2006). This provides potential
for the detection of initiating vesicles and the smallest calcification
particles of 0.5 lm. At this scale, the advent use of nano-analytical
microscopy (Fig. 1: imaging) techniques coupled with mineralogi-
cal characterisation has greatly advanced the understanding
regarding cellular and molecular mechanisms involved in vascular
calcification, which originate from nanoscale cells transitioning to
microscopic particles (Perrotta and Perri, 2017; Hutcheson et al.,
2016; Bertazzo et al., 2013).

3.4. Summary

The non-invasive imaging techniques are widely used to screen
for calcification in acute symptomatic and asymptomatic patients
of all vascular territories. While the specific geometrical features
of speckles or sheets cannot be delineated if in close proximity to
the lumen due to resolution restrictions, the overall detection of
calcification provides instrumental value to gauge the disease bur-
den status. Mineralised vesicles and microcalcification particles
may be detected if in high concentration presenting brighter spots
on CT, but not reaching the accepted Hounsfield density threshold
of 130HU for calcium, thereby proving difficult to delineate using
the current Agatston scoring (Agatston et al., 1990). Although these
mineralised vesicles and micro-particles cannot be imaged individ-
ually, their presence detected by PET signal due to high sensitivity
detectors is of expected value for mechanical assessment. Detect-
ing calcification features accurately on invasive imaging is superior
to noninvasive clinical-CT and MRI, ultimately due to higher reso-
lution capabilities, which might enhance the biomechanical desta-
bilisation understanding induced by calcification. Overall, OCT is a
promising modality for superficial calcification detection providing
means to evaluate the morphological features of the calcification
inclusions as illustrated in Fig. 4.
4. Calcification & calcified plaque tissue mechanical properties

To evaluate how calcification geometrical features influence the
biomechanical behaviour of the plaque tissue, it is important to
characterise the mechanical properties using ex-vivo experimental
tests. Traditional macroscale experimental approaches, including
uniaxial tension and compression have been performed on excised
human calcified plaque tissue material. The majority of mechanical
tests performed were on tissue level at the macroscopic scale
(Fig. 1; testing), where the mechanical properties obtained are
determined by the combined influence of calcification and sur-
rounding plaque tissue.

The reported mechanical results, including stiffness and ulti-
mate failure properties, are summarised in Table 1. In the case
where stiffness was not reported, we have calculated the values
from the reported stress–strain curves using their digitised plots
for comparison purposes in this review.

4.1. Indentation experiments

Indentation tests have been utilised to determine local proper-
ties of partially calcified fibrous tissue, defined as predominantly



Table 1
Summary of the mechanical properties of human arterial plaques containing calcification derived from ex vivo mechanical experiments.

Mechanical test Calcification Properties

Author Vessel n Test Direction Test conditions Modality Classification Stiffness Failure stress
(MPa)

Failure
stretch

(Salunke et al.,
2001)

Iliac 5 Unconfined
compression

Radial Relaxation 25% strain
600 s

Histology Calcified Max. 2.49 MPa – –

(Cahalane et al.,
2018)

Carotid
Femoral

10
7

Indentation Axial Indentation depth 2 lm
0.05/s

Micro-CT Calcification
Geometry

Moderate
17.64 ± 6.63 GPa
High 25.26 ± 6.18 GPa
Low 8.47 ± 8.84 GPa

– –

(Ebenstein et al.,
2009)

Carotid 10 Indentation Radial 600 mN hold for 10 s Fourier transform
infrared

Partially calcified
tissue
Calcification

2.1 ± 5.4 MPa
0.69 ± 2.3 GPa

– –

(Maher et al., 2009) Carotid 8 Unconfined
compression

Radial 1% strain/s Grey scale median Calcified 0.1–4 MPa
(�20% strain)

– –

(Maher et al., 2011) Carotid 8 Cyclic compression Radial 5%strain/s Grey scale median Calcified a 68.5 ± 49.5 kPa
C. 13.3 ± 10.04 kPa

– –

(Holzapfel et al.,
2004)

Iliac 4 Tensile Circumference
Axial

0.016 mm/s hr MRI and Histology Calcification 12.6 ± 4.7 MPa 0.179 ± 0.056 1.02 ± 0.005

(Cunnane et al.,
2015)

Femoral 15 Planar tension Circumferential 30% gauge length/s Fourier transform
infrared

Low
Moderate
High

0.89 ± 0.51 MPa (>40%
strain)

0.3 ± 0.01
0.43 ± 0.11
0.16 ± 0.04

2.16 ± 0.09
1.75 ± 0.19
1.55 ± 0.21

(Lawlor et al., 2011) Carotid 14 Planar tension Circumferential 0.5 mm/s Grey scale median Hard – 0.342 ± 0.16 0.49 ± 0.09
(Mulvihill et al.,

2013)
Carotid 23 Planar tension Circumferential 30% of gauge length /s Fourier transform

infrared
Calcifed:Lipid > 1
Calcifed:Lipid < 1

0.44 ± 0.26 MPa (>40%
strain)

0.618 ± 0.23 1.927 ± 0.26
1.631 ± 0.17

(Barrett et al., 2017) Carotid 17 Planar tension Circumferential 30% of gauge length /s Micro-CT Speckled
Diffuse
Concentric

0.019–0.46 MPa at 20%
strain

0.47 ± 0.08
0.27 ± 0.09
0.52 ± 0.097

2.00 ± 0.07
1.74 ± 0.2
2.42 ± 0.3
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fibrous tissue with local calcifications that are too small to isolate,
and whole calcifications dissected from human carotid bifurcation
plaque (fresh and frozen) (Ebenstein et al., 2009). The Young’s
modulus (E) for partially calcified fibrous tissue was
2.1 ± 5.4 MPa. Though, a large range has been detected reaching a
maximum stiffness of 43 MPa for the partially calcified fibrous tis-
sue. The reported mean Young’s modulus of isolated calcification
particles was 0.69 ± 2.3 GPa with a maximum of 21 GPa. Nanoin-
dentation experiments have further identified the Young’s modu-
lus of specific calcification geometries in carotid and femoral
plaques (Cahalane et al., 2018). Speckled and spotty calcifications
demonstrated the lowest stiffness properties of 8.47 ± 8.84 GPa.
Sheet-like calcifications incorporated both moderate stiffness
(17.64 ± 6.63 GPa) and high stiffness (25.26 ± 6.18 GPa), and dif-
fuse calcification properties fell in the high stiffness range
(Cahalane et al., 2018). No significant differences were identified
between the of the carotid and femoral calcifications.

4.2. Unconfined compression

Iliac plaques, histologically classified with a predominantly cal-
cified necrotic core, were subjected to unconfined compression
testing characterising the non-linear stiffening behaviour of the
tissue (Salunke et al., 2001). The testing was performed in radial
direction on fresh calcified common, internal and external carotid
plaque tissue segments classified by duplex ultrasound (calcified,
mixed and echolucent). The calcified segments were 1.5–2 times
stiffer than mixed ones and twice the echolucent type. This test
identified a large degree of variability within the calcified seg-
ments, which underscores the structural heterogeneity in plaque
with one extremely stiff plaque of 12.2 MPa not capable of deform-
ing to 20% strain (Salunke et al., 2001). The inelastic mechanical
properties of calcified carotid plaque tissue segments were also
tested under cyclic radial compression. Comparison of the calcified,
mixed and echolucent types revealed that calcified plaques had the
stiffest response, and the plastic deformation linearly increased
with an increase in peak applied strain and the magnitude of per-
manent deformation upon unloading did not differ (Maher et al.,
2011).

4.3. Tension

Quasi-static uniaxial tensile tests on histologically classified
rectangular strips of calcified intimal plaque tissue from iliac arter-
ies in both axial and circumferential directions identified a linear
stiffness response (Holzapfel et al., 2004). Also planar tension
experiments have been applied to femoral and carotid plaque sam-
ples (Barrett et al., 2016; Cunnane et al., 2015; Mulvihill et al.,
2013; Lawlor et al., 2011). These tests differ from tensile tests
whereby a sample width to length ratio of 4:1 facilitates testing
whole plaques samples in the circumferential direction. Heavily
calcified carotid plaques with diffuse calcification varied in stiff-
ness from 0.019 MPa to 0.46 MPa at 20% strain (Barrett et al.,
2016). The stiffness properties of calcified femoral plaque tissue
were significantly higher than carotid [0.89 ± 0.51 MPa vs.
0.44 ± 0.26 MPa] due to higher amount of calcification (Cunnane
et al., 2016). Notably, these carotid and femoral stiffness values
were measured in the high stretch domain (>1.4) emulating the
stiffness at experienced during endovascular deployment.

4.4. Failure properties

An inverse relationship exists between the degree of calcifica-
tion and a plaque’s capacity to stretch (Barrett et al., 2016;
Cunnane et al., 2015; Mulvihill et al., 2013). Typical circumferential
failure stretch of whole femoral plaques decrease from 2.16 ± 0.09
in lightly calcified to 1.75 ± 0.19 in moderately calcified and to
1.55 ± 0.21 in heavily calcified samples. Heavily calcified carotid
plaques with diffuse calcification and a calcified volume fraction
of 26.63 ± 8.65% possess the lowest stretch at failure with a mean
value of 1.74 ± 0.2, in line with moderately calcified femoral pla-
ques. Interestingly, plaques with sheet-like calcification have the
largest stretch capacity before failing (2.42 ± 0.3) due to the shear-
ing (sliding) mechanism of the fibrous tissue parallel to the calcifi-
cation sheets whereas for diffuse calcified plaques stretch
properties depend on the remaining non-calcified tissue stretch
(Barrett et al., 2017).

Calcified iliac plaques have circumferential failure stress of
0.255 ± 0.08 MPa and an axial failure stress of 0.468 ± 0.1 MPa. In
general, the reported failure stress of 0.49 ± 0.23 MPa for carotid
plaques are higher than femoral plaques (0.22 ± 0.12 MPa)
(Cunnane et al., 2015). In femoral plaques, failure stress increases
from lightly calcified (0.3 ± 0.01 MPa) to moderately calcified pla-
ques (0.43 ± 0.11 MPa) and drastically decreases in heavily calci-
fied plaques (0.16 ± 0.04 MPa). Interestingly, lipid-rich carotid
plaques experience a failure stress of 0.342 ± 0.16 MPa, similar to
lightly calcified femoral plaques (0.3 ± 0.01 MPa) and heavily calci-
fied carotid plaques with diffuse calcification (0.27 ± 1.73 MPa).

4.5. Summary

The observed global stiffening behaviour of calcified plaques
can be attributed to the presence of the calcified deposits, which
locally interact with the surrounding tissue matrix. In the majority
of reported studies the method of calcification classification is pri-
marily based on semi-quantitative or qualitative techniques, ren-
dering a paucity of detail regarding calcification geometry,
location and size. For more precise stiffness estimations, it is
important to classify the local tissue behaviour using optical dis-
placement methods, strain distribution through digital image cor-
relation with respect to the calcification features. Plaque strength
properties can depend on the calcification geometry and its inter-
action with the surrounding fibrous tissue matrix. The high degree
of variability in failure properties advocates the need to capture
local, micron scale fibrous tissue strain distributions in calcified
plaques, a requisite for detecting the initiation of plaque rupture
(Boekhoven et al., 2014).
5. Modelling for plaque stress assessment

The complexities primarily due to the complicated geometry
and material nonlinearity necessitates using computational mod-
elling to assess structural plaque stresses in atherosclerotic pla-
ques under intraluminal blood pressure loading. Hence, the
impact of calcifications on plaque stresses is mainly studied by
means of finite element modelling (FEM) and fluid solid interaction
(FSI) modelling.

5.1. Effect of macro-calcification

An early computational study by (Huang et al., 2001) reported
increased peak stresses in plaque specific models when fibrous pla-
que tissue material properties were assigned to the calcification
regions. The change was even more pronounced for larger calcifica-
tions, suggesting a stress-reducing effect of calcifications. The same
effect was also reported by Vengrenyuk et al. (2008) in a carotid
plaque case study, where replacing nodular macro-calcifications
at the cap shoulder with fibrous plaque caused an increase in peak
stress. In a patient-specific carotid FEM case study, Kiousis et al.
(2009) showed reduced plaque stresses if the lipid pool was
assigned with calcification material properties. Similarly, Wong
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et al. (2012) demonstrated with idealized carotid plaque models a
reduction in cap stresses when lipid pool was partially replaced by
calcification from the medial side.

Contrary to the above-mentioned studies, suggesting stress-
reducing effect of calcifications in atherosclerotic plaques, Teng
et al. (2014) reported higher stresses associated with increased
total calcification area in a stress analysis study of coronary pla-
ques from �4500 VH-IVUS frames. The study further demon-
strated, after an initial increase, the trend plateaued at a value
around �1.5 mm2. Similarly, Brown et al. (2016) attributed higher
peak stresses in MACE (major adverse cardiovascular event) gener-
ating coronary lesions to the presence of larger and more juxtalu-
minal calcifications in this group, detected by VH-IVUS. Association
of higher stresses to juxtaluminal calcifications were also reported
by Li et al., (2007) for a small set of idealized (n = 3) and patient-
specific (n = 3) carotid plaque models. Similarly, Teng et al.
(2014) reported in a patient-specific modelling study of carotid
plaques that adding an artificial layer of 200 lm fibrous tissue on
the luminal side of superficial calcifications lowered the stresses.

Contrarily, Imoto et al. (2005) demonstrated with idealized
FEMs of longitudinal plaque cross-sections that juxtaluminal calci-
fications located next to a lipid pool lowered cap stresses. Simi-
larly, Hoshino et al. (2009) showed that calcification location
with respect to the lipid pool is a determining factor for stress dis-
tribution. They used idealized models of rectangular plaque tissue
strips with circular rigid and soft inclusions representing calcifica-
tion and lipid, respectively, exposed to tensile loading. The study
also reported that calcification increased plaque stresses at calcifi-
cation poles facing the tensile loading axis, whereas stresses at the
perpendicular poles were reduced.

Teng et al. (2014) reported in their VH-IVUS derived coronary
plaque modelling study that the plaque stresses increased with
increasing maximum calcification arc and total circumferential
length up to �90–120� and �25 mm, respectively, and then the
trends plateaued. In a computational parametric analysis of ideal-
ized coronary plaques, Buffinton and Ebenstein (2014) studied the
influence of calcification shape on stresses. The focus was not on
the cap region but the calcification-tissue interface as it is a poten-
tial stress concentration location due to the stiffness mismatch of
the two components. They demonstrated a strong correlation
between interface stresses and calcification aspect ratio, where
sheet-like (thinner and longer) calcifications had higher interface
stresses. The study also demonstrated elevated interface stresses
for calcifications with larger area and juxtaluminal location.
5.2. Effect of microcalcification

Mid-2000 s, the hypothesis of increased cap tissue stresses due
to the embedded micro-calcifications triggered a new research
line. It was first demonstrated, through analytical solution
(Vengrenyuk et al., 2006) and later with computational modelling
(Rambhia et al., 2012; Vengrenyuk et al. (2006); Bluestein et al.,
2008) that micro-calcifications, as stiff inclusions in a relatively
more compliant tissue, lead to stress concentrations at the
calcification-tissue interface. Subsequent FEM studies not only
confirmed a few-fold increase in stress values at the tensile poles
of micro-calcifications, but also demonstrated an even greater
increase in the case of multiple micro-calcifications in close prox-
imity (Kelly-Arnold et al., 2013; Maldonado et al., 2012). A
distance-to-diameter ratio of two micro-calcifications in proxim-
ity, smaller than 0.4 amplified the stresses by a factor of five. More-
over, a microcalcification with an elliptical shape was shown to
result in greater stresses than a circular shaped one (Vengrenyuk
et al., 2008)), especially if it is oriented in the circumferential direc-
tion of the plaque cross-section (Cardoso et al., 2014).
A parametric FEM study (Cilla et al., 2013) with idealised
geometries of varying cap thickness, and microcalcification size
(5–20 mm) and location demonstrated that the cap stress increase
due to microcalcification depended on the stress levels of the tis-
sue the microcalcification is embedded in. Stress amplification
due to microcalcification presence was reported as minimal if the
plaque stresses were already high.

The influence of micro-calcifications on plaque stresses was also
investigated through homogenized effective material response
approach (Wenk, 2010), where presence of micro-calcifications in
a cap sub-region was assumed to result in an overall tissue mate-
rial behaviour stiffer than the rest of the cap. A shift of peak cap
stress towards microcalcification region (Wenk, 2010) and a posi-
tive correlation between microcalcification volume fraction and
stress increase (Wenk, 2011) were demonstrated. This effect was
most noticeable for microcalcification accumulation in the cap
shoulder region.

5.3. Calcification stiffness in models and impact on stresses

The variation of material properties applied for the fibrous tis-
sue is a determinant for plaque stresses (Akyildiz et al., 2011). Con-
trarily, the impact of calcification material properties is accepted to
be minimal due to its much greater stiffness compared to other
plaque components. In a case study, (Cheng et al., 1993) reported
less than 1% change in peak stress when calcification stiffness
(�10 MPa) was altered by 900%. (Williamson, 2003) presented less
than 10% stress change when the nonlinear constitutive model
parameters of calcification varied by 50% Similarly, (Tang et al.,
2005) demonstrated less than 10% stress difference when calcifica-
tion stiffness was changed by 100%. More recently, (Buffinton and
Ebenstein, 2014) performed a sensitivity study by varying the cal-
cification stiffness by four orders of magnitude, from 10 MPa to
1 GPa. This wide range was motivated by the authors from the
low stiffness measurements of calcified fibrous caps (Loree et al.,
1994) and high values measured for plaque calcification with
nanoindentation (Ebenstein et al., 2009). Increased calcification
stiffness in this wide range resulted in significant rise in the
calcification-fibrous tissue interface stresses. However, it is worth
to note here that the reported stress values were from the calcifi-
cation region, not from the plaque tissue.

5.4. Summary

Macrocalcifications can lower the overall stresses in the plaque
tissue as their relatively higher stiffness provides them with a
greater load bearing capacity. Hence, the mechanical load to be
carried by the fibrous tissue and as such stresses in the tissue
reduce (Vengrenyuk et al., 2008; Imoto et al., 2005). However,
the stress redistribution caused by the presence of a calcification
might lead to stress increase in some regions of the plaque tissue
as it was reported for the case of juxtaluminally located calcifica-
tions (Teng et al., 2014; Li et al., 2007).

Moreover, regardless of the size, calcifications might induce
stress concentrations due to the stiffness mismatch with the sur-
rounding plaque tissue, especially in the tensile loading poles of
the calcifications (Hoshino et al., 2009). Such local stress concen-
trations due to micro-calcifications in plaque caps are hypothe-
sized to initiate a tear in plaque tissue, with a chance of further
propagation to full-length cap rupture (Cardoso and Weinbaum,
2014). The same hypothesis might also hold for macro-
calcifications as plaque fissures extending from macro-
calcification-tissue interface to the lumen were reported
(Daemen et al., 2016). In case of this scenario, the anisotropic
material behaviour of fibrous plaque tissue and the mechanical
plaque tissue-calcification interaction are likely determinants of
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the interface stress concentrations and possible detachment of the
two tissues.
6. Discussion

The search for a parameter that relates the presence of calcifica-
tion to the likelihood of plaque rupture has been a long arduous
clinical research challenge. As indicated in the clinic, deriving a
simple correlation between global calcification metrics of area or
volume and mechanical stability of plaque is not likely. The true
mechanical link between plaque stresses and calcification depends
on the various calcification geometric features at multiple length
scales and the mechanical factors of the interacting calcification
and surrounding fibrous tissue. Hence, it is important to identify
(1) what we can learn at micron-scale and how to make use of this
information at macroscale, and (2) how we can assess the calcifica-
tion impact on plaque stability with existing clinical techniques.
6.1. What can be learned from micron scale studies?

Studying the plaques at the fundamental micron and submicron
scales is required to provide the essential knowledge base for cor-
rect interpretation of the mechanical behaviour that is presented
on a macroscale in the clinic. Specifically, the incorporation of
the small scale providing intricate details is a biomechanical neces-
sity in order to exploit the diagnostic value of calcification for pla-
que rupture prediction. Calcification shape, orientation with
respect to loading direction, distance and relative location of mul-
tiple microcalcifications can induce local stress amplification
(Kelly-Arnold et al., 2013). Such stress concentrations are consid-
ered to be important for microcalcifications in plaque caps and pla-
que fissures extending from macrocalcification-tissue interfaces
towards the lumen (Daemen et al., 2016). Submicron analysis of
the plaque structural morphology by multiphoton, confocal micro-
scopy and micro-CT imaging can be utilised to detect the
calcification-tissue interface zones (Gade et al., 2018). Structural
alterations in collagen types and individual collagen fiber, and
related biomechanical consequences were recently demonstrated
for the enthesis tissue of tendons attaching to bone (Rossetti
et al., 2017). Similarly, fundamental knowledge of the collagen
fiber distribution with respect to the microcalcification particles
and macrocalcification geometries will be instrumental to build a
knowledge base for utilising calcification related parameters with
clinical imaging in the cardiovascular field.

The initiation mechanisms of physiologically induced plaque
rupture such as debonding or cavitation, hypothesised by recent
computational modelling requires validation (Cardoso and
Weinbaum, 2014). A possible way of model validation is compar-
ing the computed model predictions to ex-vivo micro-mechanical
testing results (Sang et al., 2018). Local fibre deformation and fail-
ure of the calcified plaque can be assessed through micromechan-
ical loading tests coupled with high resolution imaging techniques
(Deymier et al., 2017; Rossetti et al., 2017). Remarkably, no exper-
imental evidence has been reported on the failure event, capturing
the temporal instability and rupture causality in the plaque caps
containing microcalcification particles. Moreover, the reported
experimental studies on whole plaques with calcification have
advocated a multitude of plaque failure modes by post-failure
analysis of the rupture site, including fiber delamination, fiber fail-
ure and calcification-fiber interface failures (Barrett et al., 2016;
Cunnane et al., 2015; Mulvihill et al., 2013). This underscores the
necessity to additionally focus experimental efforts on understand-
ing the interaction properties and forces between calcification and
the surrounding fibrous tissue, for example by utilising atomic
force microscopy, which can facilitate capturing the forces
required to rupture the bond between fibrous tissue and calcifica-
tion inclusions.

State-of-the-art modelling studies for stress computations
mainly treat calcifications as stiff individual inclusions at both
micro- and macro-scales. This modelling approach might prove
itself clinically useful for macrocalcifications as they can be imaged
with clinical techniques. The approach is also of great value to
understand possible stress amplification induced by the micro-
calcifications in the plaque tissue (Cardoso and Weinbaum,
2014). However, it is hard to make it serve for clinical purposes
due to limitations of imaging individual micro-calcifications in
the clinical setting. Alternatively, as proposed earlier (Wenk,
2011; Wenk, 2010), micro-calcifications can be incorporated in
the continuum mechanics based computational models through
material response homogenization techniques. These models can
be validated, as aforementioned, through macroscale ex-vivo
mechanical tests combined with microscale imaging, such as
micro-CT to obtain volumetric and distribution data on microcalci-
fications. If required, more advanced micro-mechanical homoge-
nization models can be developed to incorporate
microcalcification size and distance, and capture the calcified pla-
que tissue material behaviour more accurately. Combined with
macrocalcification modelling, this homogenized tissue modelling
strategy might provide a clinically relevant computational plat-
form for modelling the coexistence of macro and microcalcifica-
tions in plaques.

6.2. How can calcification mechanics be implemented to existing
clinical techniques?

Refinements in experiments and computational models in the
preclinical setting, incorporating the multiscale nature of the pla-
que, can be subsequently integrated into the clinic. Non-invasive
imaging modalities including CT and MR are currently the most
widely used diagnostic approaches in the clinic for the carotid vas-
culature. With the current technologies it is possible to generate
3D reconstruction of the vessels and resolve macrocalcification
geometries as a means to assess their biomechanical impact. Based
on patient scan data, studies have generated biomechanical FE
models for the computation of plaque-specific stresses (Tang
et al., 2017, 2014; Li et al., 2007). Specific geometric configurations
can create considerable stress concentrations at the macrocalcifi-
cation tissue interface which can render the plaque unstable
depending on the location of the calcification with respect to the
lumen (Buffinton and Ebenstein, 2014). The accuracy of the stress
computations is directly a consequence of the image scan quality.
The conflicting interference from the high attenuating juxtalumi-
nal calcification and contrast enhanced lumen in CT plaque images
makes it difficult to differentiate the surrounding fibrous tissue cap
layer. Thus, the ubiquitous ‘stability’ classification for such a pla-
que scenario must be cautioned when using non-invasive imaging
and, in this regard, should provide a means to screen the vessel
which can benefit from further invasive imaging assessment. Con-
versely, the identification of safe ‘stable plaques’ is a promising
approach for non-invasive imaging, thereby addressing the patient
risk:benefit decision for clinical intervention. For example, with
abluminal macrocalcification, while they induce local stress con-
centrations at the calcification-tissue interface, they can be
regarded as low risk as the stress levels experienced at the lumen
will largely be minimally affected by the calcification (Wong et al.,
2012).

For coronary arteries, invasive imaging techniques (OCT and
IVUS) can achieve higher resolution which is instrumental for
resolving the juxtaluminal calcification. Juxtaluminally located
spotty calcifications (Teng et al., 2014; Li et al., 2007) and orienta-
tion of a calcification parallel to a lipid inclusion along the tensile
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loading direction were reported to cause stress-elevation (Hoshino
et al., 2009). Accuracy of the stress-elevation predictions are lar-
gely determined by the accurate reconstruction of plaque mor-
phology from imaging data. Notably, neither modality is optimal
for accurate stress predictions. The major disadvantage of IVUS
reconstruction is related to resolution capabilities and while OCT
overcomes this with superior resolution; however, is hindered by
limited penetration constraints. Thus, the fusion of IVUS and OCT
can overcome these imaging constraints facilitating whole vessel
morphology in addition to accurate fibrous cap thickness (Guo
et al., 2017; Molony et al., 2016). In this regard, the co-
registration of these two invasive imaging techniques provides
advancement for biomechanical modelling with more accuracy
for the fibrous cap thickness and local stress–strain computations.

Notably with the aforementioned imaging modalities, we are
confined to analysing the macrocalcification as it is not possible
to detect the presence of microcalcification particles. Recent hybrid
imaging systems, integrating PET with clinical-CT or clinical-MRI,
facilitate detecting and differentiating the presence of microcalcifi-
cation particles and resolving the macrocalcification geometries
which is useful for the aforementioned homogenisation approach.
The coupling of multiple imaging modalities further permits the
acquisition of critical functional information regarding calcified
plaque tissue. Patient-specific models can be generated by fusing
the three non-invasive modalities (PET, CT and MR) to evaluate
fibrous cap’s local stress and strain properties (Tang et al., 2017).
This will enable adapting a frame-work to assess the mechanical
vulnerability associated with presence of microcalcification and
macrocalcification in atherosclerotic plaques.

7. Conclusion

In conclusion, the present study was conducted to evaluate the
current knowledge base regarding plaque mechanical vulnerability
and calcification from a clinical perspective and in parallel with the
mechanical evidence derived from ex-vivo experiments and com-
putational simulations. Though the current research has advanced
the mechanical understanding of calcification, is it necessary to
move our efforts down in scale towards the fundamental micron
and submicron scales in order to interpret the true calcified pla-
ques mechanical behaviour that is presented on a macroscale in
the clinic.
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