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Target Material Identification with Commodity RFID Devices∗

Xinyi Li†, Chao Feng†, Nana Ding†, Ju Wang†,

Jie Xiong�, Yuhui Ren†, Xiaojiang Chen†, Dingyi Fang†

†Northwest University, �Singapore Management University,
†{xinyili,chaofeng,nanading}@stumail.nwu.edu.cn, †{wangju,yhren,xjchen,dyf}@nwu.edu.cn, � jxiong@smu.edu.sg

ABSTRACT

Target material identification plays an important role in many real-

life applications. This paper introduces a system that can identify

the material type with cheap commercial off-the-shelf (COTS) RFID

devices. The key intuition is that different materials cause differ-

ent amounts of phase and RSS (Received Signal Strength) changes

when radio frequency (RF) signal penetrates through the target.

However, without knowing either material type, trying to obtain

the information is challenging. We propose a method to address

this challenge and evaluate the method’s performance in real-world

environment. The results show that we achieve higher than 94%

material identification accuracies for 10 liquids and differentiate

even very similar objects such as Coke and Pepsi.

CCS CONCEPTS

• Computer systems organization → Sensors and actuators;

1 INTRODUCTION

Device-free passive sensing, where no device is attached to the

target, has recently received considerable attentions, such as hu-

man motion tracking [1, 9], gesture and activity recognition [7],

and even localizing a person behind a wall [2]. Though a success

in localization and gesture recognition, a missing research com-

ponent of existing device-free sensing technology is using cheap

commodity RF devices, such as RFID, to perform target material

identification. Many applications would benefit from knowing the

material of a target. For example, a robot can automatically adjust

its grip strength if it knows the object is an egg instead of a stone

by using material identification. It will be possible to differentiate

Pepsi from Coke without labels or a taste test.

This paper introduces a system that can identify the material

type of a target with cheap COTS RFID devices. Unlike existing

∗Full work of this paper is published in “Ju Wang, Jie Xiong, Xiaojiang Chen, Hongbo
Jiang, Rajesh Krishna Balan, Dingyi Fang. TagScan: Simultaneous Target Imaging and
Material Identification with Commodity RFID Devices. In Proc. ACM MobiCom’17.”
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systems which employ dedicated hardware or special-purpose large

bandwidth signals to extract the reflectivity and permeability pa-

rameters for material identification [8], this paper exploits the phase

and RSS changes when the signal penetrates inside a target for ma-

terial identification. The phase and RSS measurements are widely

available on commodity devices and our system works well with

a small 4 MHz bandwidth. The material identification is based on

the an observation that different materials and target sizes will

cause different amounts of phase and RSS changes when the RF

signal penetrates through a target. However, without knowing ei-

ther material type, trying to obtain the information is challenging.

We propose a method to address this challenge and evaluate the

method’s performance in real-world environment. The results show

that we achieve higher than 94% material identification accuracies

for 10 liquids and differentiate even very similar objects such as

Coke and Pepsi.

2 SYSTEM DESIGN

2.1 Preliminary Studies

To illustrate Our system’s basic idea for material identification,

Fig. 1shows an example where a directional antenna of an RFID

reader is placed on the ground in an open space to minimize the

amount of multipath. A plastic measuring cup with a height of 28.5

cm and a diameter of 19.7 cm is placed on top of the antenna. We

place an RFID tag on top of the cup and pour the same amount (8 cm

of height) of purified water, vinegar, skimmed milk, whole milk,

Coke and Pepsi into the cup. We measure the phase and RSS read-

ings before and after each liquid is poured into the cup, and then

calculate the changes shown in Fig. 2.

We observe that the phase changes for water, vinegar, skimmed

milk and whole milk are quite different. For Coke and Pepsi, the

result is surprising since there is still around 0.2 radians phase

change difference,1 which is clear enough for us to differentiate

them. The RSS changes for Coke and Pepsi are very similar but

are quite different from other liquids. The observation implies that

it is possible to employ the phase and RSS changes for material

identification. Note that the commodity RFID reader eliminates the

directly reflected signal from a target and only keeps the signal

from the tag [6].

1Impinj R420 reader [6] has an analog to digital converter of 12-bit which achieves a
phase resolution of 0.0015 radians.
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Figure 1: Experimental setup.
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Figure 2: Phase/RSS changes in different materials.
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Figure 3: Differentiating materials with feature Ω.

2.2 Target Material Identification

We first introduce the phase and RSS changes caused by a target

and then describe our material identification method.

Phase changes after a target shows up. The wavelength of

RF signal changes when the signal travels from one material into

another while the frequency does not change [3]. As a result, the

phase changes are different when the RF signal travels inside dif-

ferent materials, even if the propagation distances are the same.

Considering the direct path between the reader and tag, where

the RF signal penetrates through a target. Let L and L′ denote the
distances along the direct path from the reader to tag and to target,

respectively. D is the propagation distance inside the target. Let

ϕair and ϕtar be the measured signal phase before and after the

target blocks the direct path. The phase change Δϕ = ϕtar − ϕair

after the target shows up is given by:

Δϕ = [2(L − D)
2π

λair
+ 2D

2π

λtar
− 2L

2π

λair
] mod 2π

= [2D(
2π

λtar
−

2π

λair
)] mod 2π

= [2D(βtar − βair )] mod 2π , (1)

where λair and λtar are signal wavelengths in the air and in the

target. The βair =
2π
λair

and βtar =
2π
λtar

are defined as the signal’s

phase constant[3] in the air and in the target.

RSS changes. The RSS measurement also changes when the RF

signal travels through different target materials. Specifically, the

amplitude has an e−α attenuation over a unit prorogation distance,

where α is the attenuation constant which only depends on the

target material [3]. Let Rair and Rtar be the RSS measurements

before and after the target blocks the direct path. Then, the RSS

change ΔR = Rtar − Rair is given as:

ΔR = 20 log(
Atar
Aair

)

= 20 log
AS · e−αair 2L

′
e−αtar 2De−αair 2(L−L

′−D)

AS · e−αair 2(L
′+D+L−L′−D)

= 20 log[e−2D(αtar−αair )], (2)

where Aair and Atar are the measured signal amplitudes before

and after the target blocks the direct path, AS is the amplitude of

the transmitted signal, αair and αtar are the signal’s attenuation
constants in the air and in the target. In the experiments, the empty

container (i.e., cup) is included when we carry out the baseline

measurements. Thus, the effect caused by the container is totally

removed, i.e., the material and the thickness of the container will

not affect the identifcation of the internal material. Note that Eq. (1)

and Eq. (2) also show that the distance L between tag and reader

does not affect Our system’s performance, since it is cancelled out

when calculating the phase change and RSS change measurements.

Material feature extraction. To identify the material type, we

need to extract features that are uniquely related to the material.

The phase and RSS changes can not be used directly, since they

are also related to the target size, i.e., the propagation distance D.
Compared with the phase and RSS changes, the phase constant

β and attenuation constant α are more promising candidates to

serve as features for material identification. Different materials

have different β and α values [3]. However, it is a challenge to

estimate the values of β and α at the same time since there are

three unknown parameters including the propagation distance D in

the two equations Eq. (1) and Eq. (2). We address this problem with

a novel method. Instead of seeking the absolute values of phase

constant β and attenuation constant α , we prove that the relative
relationship of β and α calculated by the RSS change and phase

change is a parameter independent of target size, and also is unique

for each material. Specifically, based on Eq. (1) and Eq. (2), we have:

2D =
Δϕ + 2ζ π

βtar − βair
=

ln 10ΔR/20

αair − αtar
, (3)

where, ζ is an integer.2 Based on Eq. (3), we define a feature, i.e.,

RP-rate Ω, which is related to the ratio of RSS change and phase

change as:

Ω =
ln 10ΔR/20

Δϕ+2ζ π
=

αair − αtar
βtar − βair

. (4)

Note that (i) βair and αair are constants, since they are the phase

constant and attenuation constant in the air; (ii) the values of βtar
and αtar are also fixed for a given material. Thus, the right side of

Eq. (4) is a constant and Ω is unique for a particular material. To

this end, we successfully avoid solving βtar and αtar but employ

Ω estimated by Eq. (4) for material identification. The feature Ω
is independent of the signal propagation distance inside a target

which enables material identification without a need of knowing

the target size. We show through benchmark experiments that Ω is

a fine-grained feature sensitive enough to identify different target

materials. We test 6 liquid materials, i.e., “Vinegar”, “Soy source”,

2ζ =0 for relatively small objects. The propagation distance inside the water needs to
be more than 84.25 cm to cause a phase change of more than 2π .
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Table 1: Test liquids for material identification.

Liquids Vinegar Soy Source Coke Liquor Beer

Compositions
Acetate 50%;

Carbohydrate 4.9 g/100 ml.
Amino acids 0.4 g/100 ml;
Carbohydrate 6.7 g/100 ml.

Carbohydrate
3.5 g/100 ml.

Ethyl alcohol
50% vol.

Ethyl alcohol
3.1% vol.

Liquids Purified Water Saline Water Sweet Water Whole Milk Skimmed Milk

Compositions ——
Salt

10.9 g/100 ml.
Sugar

25.3 g/100 ml.
Fat

4.0 g/100 ml.
Fat

0 g/100 ml.

“Liquor”, “Beer”, “Saline water” and “Purified water”. We conduct

experiments in the lab-office environment based on the deployment

shown in Fig. 1. We run the experiments 40 times and calculate the

values of Ω based on Eq. (4). The results in Fig. 3 show that the Ω
values of 6 liquids are clearly different from each other.

Material identification. There are two steps for material identi-

fication. First, we build a feature database which maps the materials

to feature (Ω) values. Specifically, for each material, we collect the

phase and RSS change measurements in an open space, and then

calculate its feature value according to Eq. (4). Note that this process

happens only once. Second, based on the phase and RSS change

measurements of a test material, We calculate the new feature value

and employs the KNN classifier [4] to identify the material type

with the database.

3 PERFORMANCE EVALUATION

Implement. The system setup is shown in Fig. 1. An Impinj Speed-

way R420 reader [6] is employed in our experiments without any

hardware or firmware modification. The R420 reader operates in fre-

quency range of 920.625 – 924.375 MHz. The default antenna used

by R420 reader is a directional antenna with a 9 dBi gain and 70◦

elevation and azimuth beam widths. The cheap (i.e., 5 cents per tag)

Alien tag [5] is used in our experiments. We conduct experiments in

a 3.2 m × 3.2 m open area of a lab-office environment. To evaluate

the material identification performance, we use 10 different liquids

as test targets. The liquids are listed in Table 1.

Identification accuracy. For each identification, we repeat the

experiments 30 times by using 10 different liquids with the same

material but different capacities, i.e., we pour liquid into the cup

with random capacity among 50 to 150 ml. For each target, we

collect 100 samples and set the number of “Nearest Neighbors” as

12 in the KNN classifier based on our empirical knowledge. Fig. 4

shows the identification accuracy is more than 94% for 10 liquid

materials. We run additional experiments to identify the same type

of liquids with slightly different concentrations, e.g., sweet water

with sugar concentration 8.3 g/100ml, 16.7 g/100ml and 25.3 g/100ml.

Fig. 5 (up) shows that we still achieve a high accuracy of at least

96%. Finally, we attempt to differentiate between “Coke”, “Pepsi”,

“Whole milk” and “Skimmed milk”. Fig. 5 (below) shows that we

achieve 100% accuracies in differentiating the two types of milk

since their phase difference is big as shown in Fig. 2. The difference

between “Coke” and “Pepsi” is relatively small but we still achieve

a higher than 90% accuracy.
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