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Social Network Monitoring for Bursty Cascade Detection

WEI XIE and FEIDA ZHU, Singapore Management University

JING XIAO and JIANZONG WANG, Ping An Technology (Shenzhen) Co., Ltd.

Social network services have become important and efficient platforms for users to share all kinds of informa-
tion. The capability to monitor user-generated information and detect bursts from information diffusions in
these social networks brings value to a wide range of real-life applications, such as viral marketing. However,
in reality, as a third party, there is always a cost for gathering information from each user or so-called social
network sensor. The question then arises how to select a budgeted set of social network sensors to form the
data stream for burst detection without compromising the detection performance. In this article, we present
a general sensor selection solution for different burst detection approaches. We formulate this problem as a
constraint satisfaction problem that has high computational complexity. To reduce the computational cost,
we first reduce most of the constraints by making use of the fact that bursty cascades are rare among the
whole population. We then transform the problem into an Linear Programming (LP) problem. Furthermore,
we use the sub-gradient method instead of the standard simplex method or interior-point method to solve
the LP problem, which makes it possible for our solution to scale up to large social networks. Evaluating our
solution on millions of real information cascades, we demonstrate both the effectiveness and efficiency of our
approach.
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1 INTRODUCTION

Social network services have now a days provided everyone with an unprecedented level of con-
venience to share information. For instance, with 320 million active users and 1 billion tweets per
month,1 Twitter provides an easy and efficient platform for users to not only share anything hap-
pening around them with their followers but also to pass further onwards information received
from those they follow. Consequently, each user actually acts as a so-called social network sensor

1https://about.twitter.com/company.
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(Sakaki et al. 2010) to help spread information over the whole network. In this article, we use these
two terms sensor and user interchangeably, preferring the term sensor.

Information from all sensors in a social network, when ordered by the timestamps of their gen-
eration, naturally forms a data stream of high velocity. This stream offers an important and timely
source from which people can find out and track breaking news before any mainstream media
picks them up. For example, on March 11, 2011, Japan earthquake and subsequent tsunami, the
volume of tweets spiked to more than 5,000 per second when people posted live updates about
the situation along with uploads of mobile videos they had recorded.2 We call such an informa-
tion diffusion process that involves a large number of users in a very short period of time a bursty

cascade.
Not surprisingly, the fact that the burstiness of a cascade often translates into its influence (e.g.,

the social impact of a piece of breaking news) has driven a great deal of research effort to detect
such bursty cascades. In particular, as early detection is crucial in this task for most applications,
many works design algorithms in an online fashion in order to detect these bursty cascades as
quickly as possible, e.g., He and Jr. (2010), Alvanaki et al. (2012), Schubert et al. (2014), and Xie
et al. (2016). These detection approaches proposed share one thing in common—they all make an
underlying assumption that there is readily available a data stream with sufficient social network
sensors. Unfortunately, in reality from the perspective of a third party, such a data stream is not
always available for various reasons, e.g., privacy issues or commercial concerns. For instance,
Facebook offers no free streaming application programming interface (API) and due to privacy
concerns, third-party entities are subject to stringent restrictions on data collection. Sina Weibo,
known as “Twitter of China,” provides no free streaming API either. Although Twitter provides free
streaming API, they reserve the right to charge for commercial purposes.3 More fundamentally, it
remains an interesting research question to investigate, instead of streaming the whole set of user
data of societal scale, whether we can solve the bursty event detection problem with only a limited
number of social network sensors.

Therefore, in this article, we address the following question: How to select a budgeted set of

social network sensors to form the data stream for bursty cascade detection without compromising the

detection performance.
The challenges come from a few aspects: First of all, different detection approaches have been

proposed in literature with different characteristics and priorities. It is not easy to design a uniform
sensor selection solution for all these different approaches. Second, as a classical combinational op-
timization problem, the sensor selection problem (or sensor placement problem) has been proven
to be NP-hard (Khuller et al. 1999; Krause and Guestrin 2011). Third, although some sub-optimal
solutions (e.g., Cost-Effective Lazy Forward (CELF) in Leskovec et al. (2007)) can significantly re-
duce the computational cost, it is still difficult to make them scalable to large social networks that
contain millions of users, if not more. In other words, efficiency is crucial for the above task.

In this article, we respond to these challenges step by step as follows.
First, by generalizing different detection solutions as an abstract classifier, we formulate the

above-mentioned problem as a constraint satisfaction problem as shown in Section 3. Therefore,
we are able to design one uniform sensor selection solution for all different detection approaches,
rather than “handcraft” a specific solution for each of them. Empirically, we have also demonstrated
the generality of our framework with two representative solutions in Section 6.

Second, to reduce the complexity of the constraint satisfaction problem, in Section 4 we relax
the constraints of this problem and further transform it into an Linear Programming (LP) problem

2http://blog.twitter.com/2011/06/global-pulse.html.
3https://dev.twitter.com/overview/terms/agreement-and-policy.
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that can be solved in polynomial time. More importantly, we further demonstrated in Section 6.2.5
that our relaxed version gives a good approximation to the original problem.

Third, by exploiting the special form of the above LP problem, we show in Section 5 that the
LP problem is equivalent to a convex optimization problem. Furthermore, we propose to use the
sub-gradient method instead of the standard simplex method or interior-point method to scale up
the solution.

Finally, in Section 6, we evaluate our solution on two real datasets containing millions of infor-
mation cascades and demonstrate both the effectiveness and efficiency of our approach.

2 RELATED WORK

There are several existing works on sensor selection problems (or sensor placement problems) in
networks. These works include the maximum coverage problem (Khuller et al. 1999), the influ-
ence maximization problem (Kempe et al. 2003; Chen et al. 2009), as well as the budgeted influence
maximization problem (Nguyen and Zheng 2013). Although in all of them a budget is taken into
consideration, our work is most related to the ones focusing on outbreak detection. Leveraging
the so-called “friendship paradox” (Feld 1991; Ugander et al. 2011), Christakis and Fowler (2010)
propose a simple heuristic that monitors the friends of randomly selected individuals from a so-
cial network as sensors for early contagious outbreak detection. Other similar works include Sun
et al. (2014) and García-Herranz et al. (2014). Leskovec et al. (2007) study the general problem of
detecting outbreaks in networks, and apply their methodology on water and blog networks. They
formulate this problem as an objective function optimization problem. And, it is showed that objec-
tive functions, such as detection time, detection likelihood, and affected population are monotone
sub-modular set functions. As in general maximizing sub-modular functions is NP-hard (Khuller
et al. 1999; Krause and Guestrin 2011), they propose a greedy approach called CELF to find the
approximate solution with the error bound 1 − 1/e . A similar greedy algorithm is also proposed in
Minoux (1978). Furthermore, Zhao et al. (2014) propose a randomized greedy method to speed up
the algorithm. Besides, Shao et al. (2016) propose to maximize the peak lead time to find a set of
people who can be monitored, so that the outbreak of flu can be detected at lead time.

The biggest difference between our work and previous works is that our goal is to identify
the bursty cascades from millions of trivial ones, rather than to detect all of them. For example,
a previous work (Leskovec et al. 2007) optimizes the detection time, i.e., the time passed from
outbreak till detection by one of the selected sensors. It makes sense for monitoring water pollution
or detecting specific disease. However, in social networks, detecting a new hashtag by only one
sensor can not make us identify it as a burst because there are millions of hashtags, and most of
them are trivial ones. We need stronger evidences, e.g., the hashtag is detected by most of the
sensors in a short period of time. This makes it hard to design a sub-modular objective function
as in Leskovec et al. (2007) for burst detection. (In Appendix, we will discuss it in more detail.)
Therefore, different from previous works that apply the greedy method, we choose another way –
transforming the problem into an LP problem.

On the other hand, there are several existing approaches for burst detection. According to the
way of processing data, these works can be broadly classified into two categories: online and retro-

spective methods. Usually, an online method maintains a statistic on the fly to measure the bursti-
ness of a sequence of tweets, posts, or events. And, a burst is identified if the burstiness score
exceeds a predefined threshold. In Xie et al. (2016), acceleration is defined to discover bursty top-
ics. Similarly, Schubert et al. (2014) propose the significance score to detect emerging topics at
the early stage. Other works such as He and Jr. (2010) and Alvanaki et al. (2012) also fall into this
category. Instead of using numerical measure, Kleinberg (2003) model the stream (or sequence)
using an infinite-state automation, in which bursts appear as state transitions. In order to infer the

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 4, Article 40. Publication date: April 2018.
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Fig. 1. (a) An example of cascade C . (b) Velocity v̂ is additive. (c) Each additive function can be “broken
down” to the “user” level.

states, this method processes data in a retrospective way. Works such as Takahashi et al. (2012),
Diao et al. (2012), Du et al. (2015), and Alves et al. (2016) follow this line.

In all of these detection solutions, it is assumed that the whole data stream is available. In con-
trast, we assume that there are only budgeted social network sensors available. Under this con-
straint, we study how to select a set of social network sensors for burst detection. To our best
knowledge, this is the first work to address this problem.

3 PROBLEM FORMULATION

In a social network graph G = 〈U ,E〉, where U and E represent the users and the social links
between them, respectively, we consider a set of cascades C. Each cascadeC ∈ C is a set of posts or
tweets about the same topic. For example, in Twitter all the tweets that contain hashtag #oscars2017

is a cascade. Specifically, each post or tweet d is represented by a pair 〈du ,dt 〉, where du is its
user and dt is the corresponding timestamp. Further a cascade C is represented by a set of pairs,
i.e., C = {〈du ,dt 〉}. Note that one user may join the same cascade many times, but with different
timestamps. Figure 1(a) provides an example, i.e., C = {〈u1, t1〉 〈u2, t2〉 〈u1, t3〉 〈u3, t4〉 〈u4, t5〉}.

As discussed in Section 2, there are two kinds of burst detection solutions: the ones that pro-
cess data in an online way and the ones take a retrospective view of the data. Here, we focus on

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 4, Article 40. Publication date: April 2018.
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Table 1. Summary of Notations Used in This Article

Notation Description
U All the social network sensors (or users)
S A subset of social network sensors
d A post or tweet
du ,dt The user and timestamp of d
C A cascade
C A set of cascades
CS A sub-cascade observed only from S
CS A set of sub-cascades observed only from S
Cu A sub-cascade observed only from user u
m The number of sensors (budget)
f A function measuring the burstiness of C
F0, F1 The classifiers
δ0, δ1 The thresholds
C (t ) A cascade observed by time t
Cburst A set of bursty cascades
DTC Detection time of cascade C
YC A coefficient vector defined by { f (Cu (DTC ))}u ∈U

the online burst detection solutions, which are more practical for early detection. Specifically, we
generalize different online burst detection solutions as a classifier in the form F0 = 〈f ,δ0〉, where
f is a function that measures the burstiness ofC , i.e., f : C → R, and δ0 ∈ R is some threshold. F0

works as follows: F0 (C ) = 1, if f (C ) ≥ δ0, otherwise, F0 (C ) = 0. One naive example is a classifier
that monitors the size of a cascade, and reports it as a burst if its size reaches some predefined
threshold. For example, if the number of tweets which mention #oscars2017 exceeds a predefined
threshold, say 100,000, it is identified as a burst. In this case, f is simply the size of a cascade C ,
i.e., f (C ) = |C |. Other examples include arrival rate, i.e., the number of tweets per minute or hour,
the significance score proposed in Schubert et al. (2014) and the acceleration defined in He and Jr.
(2010) and Xie et al. (2016).

In this work, we do not intend to create a new solution for burst detection. Instead, we try to
find a good way to apply existing detection solutions under the constraint of limited resources.
More specifically, suppose we can only follow a budgeted set of users, say m users instead of the
whole population U . This means we have to choose a subset S from U , where |S | =m. Therefore,
for each cascade C , what we can observe is a “shrunken” cascade CS = {〈du ,dt 〉 ∈ C |du ∈ S }. We
further denote CS = {CS |C ∈ C}. The problem is, given a classifier F0, how to select a subset S ⊂
U (|S | =m) so that F0 (CS ) = F0 (C ) for every C ∈ C. Ideally, our goal is to solve the following
constraint satisfaction problem. Table 1 summarizes the notations used in this article.

Given a set of cascades C and a classifier F0 = 〈f ,δ0〉,

find S ⊂ U

subject to f (CS ) ≥ δ0,∀C ∈ {C ∈ C| f (C ) ≥ δ0}
f (CS ) < δ0,∀C ∈ {C ∈ C| f (C ) < δ0}
|S | =m.

(1)

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 4, Article 40. Publication date: April 2018.
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4 LP MODEL

Considering there are millions of cascades and users in social networks, which leads to a large
number of constraints and variables (i.e., |C| constraints and |U | variables), the complexity of the
given constraint satisfaction problem could be high (Dechter 2003). In this section, we relax the
constraints in Problem 1, and transform it into an LP problem that can be solved more efficiently.

4.1 Constraint Reduction

In the first step, we reduce most of the constraints in Problem 1.
It is straightforward that a feasible solution may not exist in Problem 1. For instance, consider

f = |C |, then f (CS ) ≤ f (C ). In an extreme case, in whichm < δ0 and each user shares at most one
tweet, we have f (CS ) ≤ m < δ0 for all the cascades. This means no burst can be detected on CS

for any S ⊂ U .
Intuitively, applying the same threshold δ0 on CS may lead to a lower recall. So, it is reasonable

to use another slightly different classifier F1 = 〈f ,δ1〉, where δ1 can be different from δ0, instead
of F0 = 〈f ,δ0〉. It gives the following Problem 2.

Given a set of cascades C and a classifier F0 = 〈f ,δ0〉,
find S ⊂ U ,δ1 ∈ R
subject to f (CS ) ≥ δ1,∀C ∈ {C ∈ C| f (C ) ≥ δ0}

f (CS ) < δ1,∀C ∈ {C ∈ C| f (C ) < δ0}
|S | =m.

(2)

Even so, there would still be millions of cascades, which means we have millions of constraints
to handle. It may be intractable to find a feasible solution that satisfies so many constraints. For-
tunately, we can reduce most of these constraints by observing that there are actually very few
positive cases, i.e., bursty cascades, among the whole population of cascades. (Figure 4 in Section 6
shows that the large cascades are rare.) So, we just focus on the positive cases, and ignore all the
negative cases. At the same time, we set the threshold δ1 as high as possible. In this way, we can
capture all the bursty cascades, and at the same time filter out as many non-bursty cascades as we
can. Therefore, we transform Problem 2 into the following Problem 3.

Given a set of cascades C and a classifier F0 = 〈f ,δ0〉,
maximize

S,δ1

δ1

subject to f (CS ) ≥ δ1,∀C ∈ {C ∈ C| f (C ) ≥ δ0}
|S | =m.

(3)

In our experiment, we found that in this step the number of constraints can be significantly
reduced, i.e., from millions of constraints to thousands of constraints. Notice that, for Problem 3 a
feasible solution always exists because just set δ1 = −∞, all the constraints in Problem 3 must be
satisfied.

4.2 Linear Transformation

Although having much fewer constraints, it is still hard to design a general algorithm for Problem 3
because the concrete formulas of f are different for various burst detection solutions. Fortunately,
we found that for some specific classifiers, e.g., He and Jr. (2010) and Xie et al. (2016), the burstiness
evaluating function f is additive. We will show that by benefiting from this property, we can trans-
form all the constraints in Problem 3 into linear constraints. From now on, we only focus on the
cases in which f is additive, and later we will discuss the cases in which f is a non-additive function
in Section 4.5.

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 4, Article 40. Publication date: April 2018.
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Formally, f is additive on the power set of U , i.e., 2U , if for any C and S = S1 ∪ S2, where C ∈
C, S, S1, S2 ⊂ U and S1 ∩ S2 = ∅, f satisfies the property of additive separability:

f (CS ) = f (CS1 ) + f (CS2 )

There are many such examples. A trivial example is the size function f = |C |. It is obvious that
|CS | = |CS1 | + |CS2 |, if S1 ∩ S2 = ∅. Another example is the arrival rate, i.e., the number of tweets
per minute or hour, which is an intuitive measure of burstiness. Other important examples include
the velocity and acceleration defined in Xie et al. (2016), and MACD defined in He and Jr. (2010). The
linearity of MACD is proved in He and Jr. (2010). Here, we will show that velocity and acceleration

are additive. Later, in Section 6, we will adopt the acceleration as one of the burstiness evaluating
functions.

Adapting the definition in Xie et al. (2016), we define the velocity v̂ and acceleration â of a cascade
C ∈ C as follows:

v̂C (t ; ΔT ) =
∑

〈du ,dt 〉∈C∧dt ≤t

exp ((dt − t )/ΔT )

ΔT

âC (t ) =
v̂C (t ; ΔT2) − v̂C (t ; ΔT1)

ΔT1 − ΔT2

The exponential part in v̂C (t ; ΔT ) works like a soft moving window, which gives the recent
terms high weights, but gives low weights to the ones far away, and the smoothing parameter ΔT
is the window size. To capture the change of velocity, acceleration âC (t ) is defined as the difference
of velocities with different window sizes ΔT1 and ΔT2. (A real example is presented in Figure 12
in Section 6.) It is clear that as a sum of weighted items, v̂ is additive. As a linear combination
of v̂ , â is thus also additive. Consider the cascade C in Figure 1(a), S1 = {u1,u3}, S2 = {u2,u4} and
S = S1 ∪ S2, Figure 1(b) illustrates that velocity v̂ is additive. Note that velocity v̂ and acceleration
â are actually functions of time. To measure the burstiness of cascade C , we mean v̂ or â at a
particular time point.

The advantage of additive functions lies in the fact that we can easily calculate any f (CS ) by
the strategy of divide and conquer. Specifically, for each cascadeC , we can “divide” it as

⋃
u ∈U C {u } ,

where C {u } is the sub-cascade observed only from user u. (For instance, C {u1 } = {〈u1, t1〉, 〈u1, t3〉}.)
In the similar way, we have CS =

⋃
u ∈S C {u } . For the sake of simplicity, we denote C {u } as Cu . As

for any two different users u1 and u2, Cu1 ∩Cu2 = ∅, for any additive function f , we have

f (CS ) = f �
�
⋃
u ∈S

Cu
�
�
=
∑
u ∈S

f (Cu ).

This equation is demonstrated in Figure 1(c). It means each additive function can be “broken down”
to the “user” level.

Therefore, we can transform the constraints in Problem 3 into linear constraints by simply re-
placing f (CS ) with

∑
u ∈S f (Cu ). It leads to the following Problem 4.

Given a set of cascades C and a classifier F0 = 〈f ,δ0〉,
maximize

S,δ1

δ1

subject to
∑
u ∈S

f (Cu ) ≥ δ1,∀C ∈ {C ∈ C| f (C ) ≥ δ0}

|S | =m.

(4)

For each cascadeC and each useru, we can calculate f (Cu ) beforehand, so that we can treat it as
a constant. For the example illustrated in Figure 1(a), if set f = |C |, we have f (Cu1 ) = 2, f (Cu2 ) = 1

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 4, Article 40. Publication date: April 2018.



40:8 W. Xie et al.

and so on. Further, denote xu as the indicator of useru,X as the corresponding vector, i.e.,X = {xu }.
It leads to the following 0–1 LP problem.4

Given a set of cascades C and a classifier F0 = 〈f ,δ0〉,

maximize
X ,δ1

δ1

subject to
∑
u ∈U

xu · f (Cu ) ≥ δ1,∀C ∈ {C ∈ C| f (C ) ≥ δ0}

xu ∈ {0, 1},∀u ∈ U∑
u ∈U

xu =m.

(5)

4.3 Linear Programming Relaxation

In general, 0–1 linear program is NP-hard, which means it is hard to solve Problem 5 for large-scale
networks. A common way is to relax it to a linear program, which is solvable in polynomial time.
By replacing the constraint that xu ∈ {0, 1} by a weaker constraint that xu ∈ [0, 1], we have the
following LP Problem 6.

Given a set of cascades C and a classifier F0 = 〈f ,δ0〉,

maximize
X ,δ1

δ1

subject to
∑
u ∈U

xu · f (Cu ) ≥ δ1,∀C ∈ {C ∈ C| f (C ) ≥ δ0}

0 ≤ xu ≤ 1,∀u ∈ U∑
u ∈U

xu =m.

(6)

As the solution of Problem 6, xu can be interpreted as the probability that we choose user u
into the subset S . In this way, EX [f (CS )] =

∑
u ∈U xu · f (Cu ) and EX [|S |] = ∑u ∈U xu . It means, if

choose user u with probability xu , we can guarantee that E[f (cS )] ≥ δ1,∀C ∈ {C ∈ C| f (C ) ≥ δ0}
and E[|S |] =m. To avoid uncertainty, we apply a simple greedy strategy: choosing m users with
the largest probability xu .

4.4 Detection Time

In previous sections, for the sake of simplicity, we had not considered the detection time. One
problem of this is that a burst may be detected with a very long detection delay. And, it is less
useful to detect an event if this event has already happened for a long time. Take the cascade
in Figure 1(a) as an example, and suppose we have burstiness evaluation function f (C ) = |C | and
budgetm = 2. If we do not consider the detection time, solution S1 = {u1,u2} is the same as solution
S2 = {u1,u4} because f (CS1 ) = f (CS2 ) = 3. However, the first time when CS1 reaches the size of 3
is t3, while it is t5 for CS2 . In real-world applications, we prefer S1 which has an earlier detection
time. It motivates us to integrate the detection time into the LP problem.

Denote C (t ) = {〈du ,dt 〉 ∈ C |dt ≤ t } as a cascade observed by time t . The set of bursty cas-
cades is defined as Cburst = {C ∈ C|maxt { f (C (t ))} ≥ δ0}. For each C ∈ Cburst , denote DTC =

min{t | f (C (t )) ≥ δ0} as the detection time, i.e., the first time identifying cascade C as a bursty
cascade (See the example in Figure 2). We can transform the first constraint in Problem 6 as

4Strictly, it is a mixed integer programming problem because δ1 is a real value.
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Fig. 2. A toy example: cascades C1, C2, and C3.

follows:

max
t
{ f (CS (t ))} = max

t

⎧⎪⎨⎪⎩
∑
u ∈U

xu · f (Cu (t ))
⎫⎪⎬⎪⎭
≥ δ1,∀C ∈ Cburst

We add the constraint DTCS
≤ DTC ,∀C ∈ Cburst , i.e., the detection time for the sub-cascade CS

must be at least as early as the detection time for the original cascade C . It gives us the following
constraint:

max
t ≤DTC

⎧⎪⎨⎪⎩
∑
u ∈U

xu · f (Cu (t ))
⎫⎪⎬⎪⎭
≥ δ1,∀C ∈ Cburst

For specific evaluation functions, such as f (C ) = |C |, we have f (C (t2)) ≥ f (C (t1)), if t2 ≥ t1
because cascades always grow. So we have,

max
t ≤DTC

⎧⎪⎨⎪⎩
∑
u ∈U

xu · f (Cu (t ))
⎫⎪⎬⎪⎭
=
∑
u ∈U

xu · f (Cu (DTC ))

Although for most other evaluation functions, this equation does not hold, we still can use∑
u ∈U xu · f (Cu (DTC )) to replace maxt ≤DTC

{∑u ∈U xu · f (Cu (t ))}. Because maxt ≤DTC
{∑u ∈U

xu · f (Cu (t ))} ≥ ∑u ∈U xu · f (Cu (DTc )), we have

∑
u ∈U

xu · f (Cu (DTC )) ≥ δ1 ⇒ max
t ≤DTC

⎧⎪⎨⎪⎩
∑
u ∈U

xu · f (Cu (t ))
⎫⎪⎬⎪⎭
≥ δ1.

In other words, the constraint
∑

u ∈U xu · f (Cu (DTC )) ≥ δ1 guarantees DTCS
≤ DTC .

So adding the constraint of detection time, we transform Problem 6 into the following
Problem 7:

maximize
X ,δ1

δ1

subject to
∑
u ∈U

xu · f (Cu (DTC )) ≥ δ1,∀C ∈ Cburst

0 ≤ xu ≤ 1,∀u ∈ U∑
u ∈U

xu =m.

(7)

Here, we give an example to demonstrate how to construct the LP problem from a set of
cascades. Figure 2 shows a cascade set C = {C1,C2,C3} from a user setU = {u1,u2,u3,u4}. Suppose
the threshold δ0 = 5, the budgetm = 2 and use f (C ) = |C | as the burstiness evaluation function. So
the bursty cascade set Cburst = {C1,C2}. And for each bursty cascade, the detection timeDTC1 = t5,
DTC2 = t ′5. For cascade C1, by detection time t5, we have sub-cascades Cu1 (t5) = {〈u1, t1〉 〈u1, t3〉},
Cu2 (t5) = {〈u2, t2〉},Cu3 (t5) = {〈u3, t4〉 〈u3, t5〉},Cu4 (t5) = ∅, and their sizes are 2, 1, 2, 0, respectively.
Similarly, for cascade C2, by detection time t ′5, the sizes of sub-cascades are 1, 0, 3, 1, respectively.
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For the sake of simplicity, denote xui
as xi . We can construct the following LP problem from the

example in Figure 2.

maximize
x1,x2,x3,x4,δ1

δ1

subject to 2x1 + 1x2 + 2x3 + 0x4 ≥ δ1 (for cascade C1)

1x1 + 0x2 + 3x3 + 1x4 ≥ δ1 (for cascade C2)

0 ≤ xi ≤ 1,∀1 ≤ i ≤ 4 (boundary)

4∑
i=1

xi = 2 (budget limitation).

The solution of this LP problem is {x1 = 1,x2 = 0,x3 = 1,x4 = 0,δ1 = 4}, which means the opti-
mal subset is S = {u1,u3}.

4.5 Non-Additive Function

In this section, we consider the cases in which f is non-additive. As discussed above, non-additive f
leads to intractable non-linear constraints. One way is to use another additive function f � instead
of the original f in the constraints. It leads to the following Problem 8.

Given a set of cascades C and a classifier F0 = 〈f ,δ0〉, where f is a non-additive,

maximize
X ,δ1

δ1

subject to
∑
u ∈U

xu · f �(Cu (DTC )) ≥ δ1,∀C ∈ Cburst

0 ≤ xu ≤ 1,∀u ∈ U∑
u ∈U

xu =m.

(8)

where f � is an additive function. Recall DTC = min{t | f (C (t )) ≥ δ0} and Cburst = {C ∈ C|maxt

{ f (C (t ))} ≥ δ0}. The original function f is actually used for identifying the bursty cascades.
The underlying logic here is that the cascades identified by different burst detection classifiers

are similar. Actually most of these cascades share the same features: they are large cascades; they
have big peaks and so on. For bursty cascades, it is reasonable to expect that f �(CS (t )) ≈ f (CS (t ))
in some way. The experiment in Section 6 shows that this replacement works on real data.

5 SCALING UP THE SOLUTION

To solve a general LP problem, the standard solutions are the simplex method (Dantzig 1998)
and the interior-point method (Boyd and Vandenberghe 2004). Considering the large number of
variables, (i.e., |U | the number of users in a social network), these methods are not scalable to large
networks.

Fortunately, we found that Problem 7 is actually equivalent to a convex optimization problem.
This provides us with an opportunity to develop a more efficient algorithm to solve the LP problem.

Recall Cburst = {C ∈ C|maxt { f (C (t ))} ≥ δ0}, which is the set of bursty cascades. Denote the co-
efficient vector in Problem 7 asYC = { f (Cu (DTC ))}u ∈U . Denote boundary B = {X |0 ≤ xu ≤ 1,∀u ∈
U ∧∑u ∈U xu =m}, which represents the constraints in Problem 7. We have the following Lem-
mas 5.1 and 5.2.

Lemma 5.1. Problem 7 is equivalent to following Problem 9.

minimize
X

{
max

C ∈Cbur st

{−Y�C X } + IB (X )
}

(9)
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where IB (X ) is the indicator function of B, i.e.,

IB (X ) =

{
0 if X ∈ B
∞ otherwise

Proof. Problem 7⇒ Problem 9.
Notice that for Problem 7 a feasible solution always exists because B � ∅, as long as we set

δ1 = −∞, all the constraints in Problem 7 must be satisfied. And B is a closed set, so an optimal so-
lution always exists. Denote X�,δ�1 as an optimal solution of Problem 7. We first show: X� is also
an optimal solution of Problem 9, i.e., maxC ∈Cbur st

{−Y�C X�} + IB (X�) ≤ maxC ∈Cbur st
{−Y�C X } +

IB (X ),∀X . Actually, because X� satisfies all the constraints in Problem 7, X� ∈ B, i.e.,
IB (X�) = 0. And, we have the constraints Y�C X� ≥ δ�1 ,∀C ∈ Cburst ⇒ −Y�C X� ≤ −δ�1 ,∀C ∈
Cburst ⇒ −δ�1 ≥ maxC ∈Cbur st

{−Y�C X�}. If X � B, IB (X ) = ∞, we have maxC ∈Cbur st
{−Y�C X�} +

IB (X�) ≤ maxC ∈Cbur st
{−Y�C X } + IB (X ) = ∞. If X ∈ B, and suppose maxC ∈Cbur st

{−Y�C X�} +
IB (X�) > maxC ∈Cbur st

{−Y�C X } + IB (X )⇒maxC ∈Cbur st
{−Y�C X�} > maxC ∈Cbur st

{−Y�C X } ⇒−δ�1 ≥
maxC ∈Cbur st

{−Y�C X�} > maxC ∈Cbur st
{−Y�C X } = −minC ∈Cbur st

{Y�C X } ⇒ δ�1 < minC ∈Cbur st
{Y�C X }.

It is obvious that X ,δ1 = minC ∈Cbur st
{Y�C X } is a feasible solution of Problem 7. But δ1 > δ�1 . This

contradicts the assumption that X�,δ�1 as an optimal solution of Problem 7. So, X� is also an
optimal solution of Problem 9.

Problem 9⇒ Problem 7.
Denote X� as the optimal solution of Problem 9, i.e., maxC ∈Cbur st

{−Y�C X�} + IB (X�) ≤
maxC ∈Cbur st

{−Y�C X } + IB (X ),∀X . We show that: X�,δ�1 = minC ∈Cbur st
{Y�C X�} is also an optimal

solution of Problem 7. First, it is obvious that X� ∈ B because IB (X�) is bounded. This implies
that maxC ∈Cbur st

{−Y�C X�} ≤ maxC ∈Cbur st
{−Y�C X },∀X ∈ B. It is also straight forward that δ�1 =

minC ∈Cbur st
{Y�C X�} ≤ Y�C X�,∀C ∈ Cburst . So X�,δ�1 satisfies all the constraints in Problem 7.

Suppose X ,δ1 is a feasible solution of Problem 7. We can see that δ�1 = minC ∈Cbur st
{Y�C X�} =

−maxC ∈Cbur st
{−Y�C X�} ≥ −maxC ∈Cbur st

{−Y�C X } = minC ∈Cbur st
{Y�C X } ≥ δ1. SoX�,δ�1 is an opti-

mal solution of Problem 7. �

Besides the equivalence between Problems 7 and 9, Lemma 5.1 also tells us that the optimal
threshold of Problem 7 is the lower bound of {Y�C X }, i.e.,

δ1 = min
C ∈Cbur st

{Y�C X }.

Lemma 5.2. Problem 9 is a convex optimization problem.

Proof. Notice that as an affine function, −Y�C X is convex. Because the maximum of convex
functions is also convex (Boyd and Vandenberghe 2004), maxC ∈Cbur st

{−Y�C X } is convex. And, as
the box B is a convex set, the indicator function IB (X ) is also convex. It shows that the objective
function maxC ∈Cbur st

{−Y�C X } + IB (X ) is convex. Therefore, Problem 9 is a convex optimization
problem. �

Usually gradient descent methods are used to solve a convex problem. However, here in Prob-
lem 9, maxC ∈Cbur st

{−Y�C X } is not differentiable. So, we use the sub-gradient method (Rockafellar
1970) to solve it. Similar to gradient methods, in the sub-gradient method, the key is to calcu-
late the moving direction, i.e., the sub-gradient, at each step. Because at point X , −YC� is in the
sub-gradient set, whereC� = argminC ∈Cbur st

{Y�C X }, we move along YC� at each step. For the step
size, backtracking search is not suitable for sub-gradient method. We consider diminishing the
step size, which is a common step-size rule. Besides, as X is limited in B, the projected gradient
method is applied to make sure at each stepX remains in B. The projection operator is presented in
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ALGORITHM 1: Sub-gradient Method.

Input: YC : the burstiness score vector.
Input: K : the maximum number of iterations.
Input: γ : the initial step size.
Input: ϵ : threshold.
Output: X .

1 Initialize X ∈ B;

2 for k = 1 to K do

3 C� = argminC ∈Cbur st
{Y�

C
X };

4 дrad = −YC� ;

5 step =
γ
k

;

6 Xnew = X − step · дrad ;

7 Xnew = PB (Xnew );

8 if |Xnew − X | < ϵ then

9 X = Xnew ;

10 break;

11 end

12 X = Xnew ;

13 end

14 return X .

ALGORITHM 2: Projection Operator PB .

Input: X : the input vector.
Output: X�: the vector after projection.

1 X� = X ;

2 for u ∈ U do

3 if X�
u > 1 then

4 X�
u = 1;

5 end

6 if X�
u < 0 then

7 X�
u = 0;

8 end

9 end

10 X� = X� − 1�X�

|U | · 1 +
m
|U | ;

11 return X�

Algorithm 2. In lines 2–9, X is projected into the box {X |0 ≤ xu ≤ 1,∀u ∈ U }. In line 10, X is pro-
jected on the hyperplane {X |∑u ∈U xu =m}.

The whole procedure is presented in Algorithm 1. In lines 3 and 4, we calculate the sub-gradient.
In line 5, the step size is divided by the iteration number k (the diminishing step-size rule). In line
6, we update current point Xnew according to the sub-gradient. In line 7, X is projected into B. In
lines 8–11, we check whether the algorithm converges. Lemma 5.2 guarantees the convergence of
Algorithm 1.

Interestingly, it can be observed that Algorithm 1 is actually reasonable and understandable
in the sense that, in each iteration the algorithm finds the lower bound of the burstiness scores
of Cburst (i.e., {Y�C X }, see line 3 in Algorithm 1) and tries to push up this lower bound, which is
actually the threshold δ1 in Problem 7 (see Figure 3).
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Fig. 3. In each iteration threshold δ1 is pushed up.

Besides, the algorithm’s computational complexity is O ( |U | · |Cburst | · K ). Because in practice
YC is sparse, the actual computational cost is far less than this theoretical cost. More importantly,
the greedy strategy-based solutions, such as Leskovec et al. (2007) and Zhao et al. (2014), select
sensors one by one. Their computational costs are proportional to m, i.e., the number of chosen
sensors. In contrast, the computational cost of our algorithm is invariant to m.

In the rest of this section, we take the cascades in Figure 2 as an example to illustrate Algorithm 1.
First, we have following coefficient vectors for bursty cascade {C1,C2}:

Y1 = (2, 1, 2, 0)�,Y2 = (1, 0, 3, 1)�.

We initialize X as m
n
= 0.5, i.e., X = (0.5, 0.5, 0.5, 0.5)�, and set initial step size γ = 0.25.

—Iteration 1.
Diminish step size: step = γ

1 = 0.25.
Calculate sub-gradient: Y�1 X = 2.5,Y�2 X = 2.5,Y1 <= Y2 ⇒ дrad = −Y1,δ1 = 2.5.
Update X : X = X − γ ∗ дrad = X + 0.25 · Y1 = (1.0, 0.75, 1.0, 0.5)�.
Project X into the unit cube: X is already in the unit cube.
Project X on the hyperplane: X = (0.6875, 0.4375, 0.6875, 0.1875)�.

—Iteration 2.
Diminish step size: step = γ

2 = 0.125.
Calculate sub-gradient:
Y�1 X = 3.1875,Y�2 X = 2.9375,Y1 > Y2 ⇒ дrad = −Y2,δ1 = 2.9375.
Update X : X = X − γ ∗ дrad = X + 0.125 · Y2 = (0.8125, 0.4375, 1.0625, 0.3125)�.
Project X into the unit cube: X = (0.8125, 0.4375, 1.0, 0.3125)�.
Project X on the hyperplane: X = (0.671875, 0.296875, 0.859375, 0.171875)�.

Notice that, in each iteration, the threshold δ1 = min{Y�1 X ,Y�2 X } is pushed up. Figure 3 presents
how the threshold δ1 is pushed up in each iteration. And after several iterations, X converges to
(1, 0, 1, 0)�.

6 EXPERIMENT

In this section, we conduct experiments to evaluate our proposed LP program solution, in the
following aspects: (I) sensor selection for bursty cascade detection and (II) computational cost.

6.1 Dataset

We conduct experiments on two datasets: a Singapore-based Twitter dataset and a Shanghai-based
Weibo dataset. For the Twitter dataset, we crawled Twitter users whose profile locations are Sin-

ACM Transactions on Knowledge Discovery from Data, Vol. 12, No. 4, Article 40. Publication date: April 2018.



40:14 W. Xie et al.

Table 2. Dataset

Dataset Type Training Testing

Twitter URL 6,452,732 1,657,145
hashtag 540,115 190,420

Weibo URL 1,894,226 650,126
hashtag 405,411 155,789

Fig. 4. Cumulative distribution of the cascade sizes: (a) Twitter and (b) Weibo.

gapore from a seed set of local celebrities and active users. We traced their follower/followee links
by two hops. In this way, we obtained 184,794 Twitter users. In a similar way, we also obtained
105,142 Shanghai-based Weibo users. Then tweets are crawled from these users over a period
of five months. In all the Singapore-based Twitter dataset contains 32,479,134 tweets, and the
Shanghai-based Weibo dataset contains 19,482,504 tweets. From these tweets, we extracted all the
URL links and hashtags. These URL links and hashtags are considered as the identities of cascades.
In other words, all the tweets which contain the same URL link (or the same hashtag) represent a
cascade.

For both datasets, we split the data set into two parts: four months data for training and the last
one month data for testing. Table 2 shows the number of cascades in the experiment.5 Figure 4
presents the cumulative distribution of the sizes of these cascades. It shows that large cascades are
rare, which implies there are actually few bursty cascades among the whole population.

6.2 Bursty Cascade Detection

6.2.1 Preparation. In the experiment, we conduct two types of evaluations: sensor selection (I)
for the classifier with additive function and (II) for the classifier with non-additive function.

For the case of additive function, we adopt the acceleration defined in Xie et al. (2016) as the
burstiness evaluating function f . The equation of acceleration â is presented in Section 4.2. As
mentioned in Section 4.2, given a cascade C , its acceleration âC (t ) is actually a function of time,
and it changes over time. Here, we calculate f (C (t )) = âC (t ) as its burstiness score. (A real example
is provided in Figure 12.)

For the case of non-additive function, we employ the significance score proposed in Schubert
et al. (2014). It works as follows. For a cascadeC , count the daily frequency of tweets inC . Denote it
as countt , where t is its corresponding date. Then, find the date when its daily count is far beyond
its average. We present it in the following equation:

siдβ (countt ) =
countt −max {μ, β }

σ + β
,

5Our Twitter cascade dataset is available here https://larc.smu.edu.sg/twitter-cascade-dataset.
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Table 3. Burstiness Evaluating Functions Adopted in the Experiment

Training Testing
(I) Case of additive function f = acceleration f = acceleration

(II) Case of non-additive function f �= acceleration, f = significance score f = significance
score

where countt is the daily count, μ is the average, σ is the standard deviation and β serves as a noise
filter. siдβ (countt ) here works like the z-score in the case of normal distribution. Like acceleration,
significance score siдβ (countt ) also changes over time. For burstiness evaluation, we calculate
f (C (t )) = siдβ (countt ).

Given a training set of cascades Ctr ain , we first get all the bursty cascades Cburst = {C ∈
Ctr ain |maxt { f (C (t ))} ≥ δ0}. For case (I), we let f = acceleration, and use f = acceleration to
identify the bursty cascades. For case (II), we let f �= acceleration, f = significance score, and
use f = significance score to identify the bursty cascades. For each cascade C ∈ Cburst , we also
get its detection time DTC . Then, we construct the burstiness score vector YC = { f (Cu (DTC ))}u ∈U
as the input of Algorithm 1. For both cases, acceleration âC (t ) is used as the burstiness evalua-
tion function. For each cascade C ∈ Cburst , we decompose it into

⋃
u ∈U Cu . As âC (t ) is additive,

âC (DTC ) =
∑

u ∈U âCu
(DTC ). Therefore, we calculate f (Cu (DTC )) = âCu

(DTC ). Finally, we have
YC = { f (Cu (DTC ))}u ∈U . Obviously, for the user u who does not join the cascade C , i.e., u � C ,
f (Cu (DTC )) = 0. Therefore, YC is sparse.

Given a test set of cascades Ctest , we generate the ground truth as follows. Given a classifier
F0 = 〈f ,δ0〉, for each cascade C ∈ Ctest , if F0 (C ) = 1, i.e., f (C ) = maxt { f (C (t ))} ≥ δ0, we label it
as a positive case, i.e., a bursty cascade; otherwise, it is a negative case. For case (I), we let f = ac-
celeration; for case (II), we let f = significance score. Table 3 summarizes the burstiness evaluating
functions adopted in the experiment.

6.2.2 Baselines. We consider the following baselines.

—CELF: Leskovec et al. (2007) study the general problem of detecting outbreaks in networks,
and formulate this problem as a objective function optimization problem. In their work,
three objective functions are proposed. In this baseline, we consider the detection time as
the objective function. The underlying logic is that, if a cascade can be detected early, it
should be identified as a burst early too. Denote the initial time of a cascade C as tC =
min〈du ,dt 〉∈C {dt }. Specifically, we use the objective function of a set of sensors S as follows:

π (S ) =
∑
C ∈C

1

1 +mindu ∈S {dt − tC }
.

If there is no du ∈ S in C , mindu ∈S {dt − tC } = ∞. It can be proved that π (S ) is a monotone
sub-modular function. The CELF algorithm is used to find a set of m sensors to maximize
π (S ).

—CELF*: The cascades with large number of users may be more important than small cas-
cades. In Zhao et al. (2014), a slight different objective function that involves the size of
each cascade is proposed:

π (S ) =
∑
C ∈C

|C |
1 +mindu ∈S {dt − tC }

.

This π (S ) is also a monotone sub-modular function. We apply the same greedy algorithm
as above to get a set ofm sensors.
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Fig. 5. The ROC curves of different solutions on different sets of cascades.

— In/Out degree: As mentioned in Section 2, a common heuristic strategy is to select central
users within a social network as sensors because information can easily spread to them.
When the entire network is not available, a technique inspired by the “friendship paradox”
can be applied to sample central users from a network (Christakis and Fowler 2010). Since
we have crawled all the links between the users, in this baseline we simply select the topm
users according to their in/out degrees.

—Random: It is not a bad choice to select users randomly from the whole population because,
by uniform random sampling, we can get the unbiased estimation of the arrival rate, which
is an important indicator of burst. In this baseline, we randomly select m users from the
whole population.

6.2.3 Detection Performance. We run our LP solution as well as all the baselines on training
data and each solution selects a set of sensors. Then, we evaluate these sensors on the test data.
For a given set of sensors S ⊂ U and a classifier F0 = 〈f ,δ0〉, we evaluate its quality as follows. First,
for each cascadeC ∈ Ctest , according to burstiness evaluating function f , calculate the burstiness
score of the sub-cascade CS , i.e., f (CS ). Then, based on these burstiness scores { f (CS )}C ∈Ct est

and the ground truth {F0 (C )}C ∈Ct est
, draw its receiver operating characteristic (ROC) curve, and

calculate the area under the curve (AUC). The larger the AUC is, the better the selected set is.
For case (I) in which f is additive, we have the following results. Figure 5 shows the ROC curves

of different solutions on different datasets when budget m = 3,000. We can see that the perfor-
mances are consistent for both URL cascades and hashtag cascades. And our proposed LP solution
outperforms all other solutions. The reason is probably that our proposed LP solution is designed
to find the best set of sensors for burst detection, while other solutions are relatively intuitive. It
is also can be observed that the performance of CELF* is consistently better than the performance
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Fig. 6. Varying budget m, AUC of different solutions on different sets of cascades.

of CELF. One possible reason is that the sensors, which CELF* locates are more sensitive to large
cascades, and nearly all the bursty cascades are large cascades.

We also study the effect of budgetm. Figure 6 shows the AUC of our proposed LP solution and
other baselines for different m. It is can be observed that our proposed LP solution outperforms
other baselines consistently whenm varies. And as expected, it shows that better performance can
be achieved when we set larger budgetm.

Particularly, it can be observed that, for the hashtag cascades of both Twitter and Weibo datasets,
the performance of our solution is quite good (See the second column in Figure 6). Notice that, 5,000
is the maximum number of users one can follow in Twitter.6 It means that by investing one Twitter
account that follows our selected 5,000 users, we can detect most of the bursty hashtag cascades
in Singapore.

For case (II), where f is non-additive, we have similar results, which are presented in Figures 7
and 8. These results support our analysis in Section 4.5.

6.2.4 Detection Time. Besides the detection performance, the detection time is also important
because there is no value if the detection delay is too long. In Section 4.4, we impose the constraints
DTCS

≤ DTC to maker sure for any cascade C ∈ Ctr ain the detection time of CS is at least as early
as the detection time of C . Here, we check whether DTCS

≤ DTC is still hold on test cascades
Ctest . Different from other baseline methods, besides the set of users S , LP solution also learns the
new threshold δ1. So, it is easy for us to compare the difference of detection time. Particularly, we
check each bursty cascade detected by LP solution, i.e., {C ∈ Ctest | f (C ) ≥ δ0 ∧ f (CS ) ≥ δ1}, and
calculate the difference DTCS

− DTC . A negative difference means we can detect the burst on a
sub-cascade CS even earlier than on its original cascade C .

6https://support.twitter.com/articles/68916.
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Fig. 7. The ROC curves of different solutions on different sets of cascades (for non-additive function).

Figure 9 presents the difference of detection time, i.e., DTCS
− DTC for different datasets. It can

be observed that the median lines (i.e., yellow lines in the box plots) are near to 0, which means for
half of the cascades, a burst is detected on a sub-cascadeCS even earlier than when it is detected on
the original cascade C . And, for most bursty cascades, these differences are less than 10 minutes.

6.2.5 Empirical Bound. In our LP solution, we take several steps of relaxation: from the original
goal—Problem 1 to a more practical Problem 2, which has a different threshold δ1, to Problem 3,
which has less constraints, to linear versions Problems 4 and 5, to Problem 6 resulting from LP
relaxation, finally to Problem 7, which involves detection time. One natural question is that how
close is our solution to the solution of the original problem or is there any bound? As mentioned
in Section 4.1, a feasible solution may not exist in Problem 1. So, here we discuss how close is our
solution, i.e., the solution of Problem 7 to the solution of Problem 2. Particularly, we empirical check
how well our solution approximates the optimal solution. It is hard to directly solve Problem 2
in a reasonable time because it is a constraint satisfaction problem that has a large number of
constraints. So, instead of directly solving Problem 2, we calculate the AUC of our solution based
on training data. First, we apply Algorithm 1 on Ctr ain to choose a set of users S . Then, for each
cascade C ∈ Ctr ain , according to burstiness evaluating function f , calculate the burstiness score
of its sub-cascade CS , i.e., f (CS ) = maxt { f (CS (t ))}. Based on these burstiness scores { f (CS )} and
the ground truth {F0 (C )}, calculate the AUC. If AUC = 1, it means there is a threshold δ1 splits
Ctr ain perfectly with true positive rate 1 and false positive rate 0. In other words, if AUC=1, then
S is a solution of Problem 2.

Figure 10 presents the AUC of our solutions for different datasets. (Notice that Figure 10 is
based on training datasets, while Figures 6 and 8 are based on test datasets.) For most cases,
when m ≥ 2,000, the AUC value is close to 1 (i.e., above 0.95). And for several cases, take the
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Fig. 8. Varying budgetm, AUC of different solutions on different sets of cascades (for non-additive function).

Fig. 9. The difference of detection time: DTcS
− DTc .

Fig. 10. Varying budgetm, AUC of LP solution on training cascades.
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Fig. 11. Runtime of simplex method, interior-point method and sub-gradient method.

Weibo–Hashtag dataset as an example, the AUC value is exactly 1 when m ≥ 3,000. It shows that
the solution of Problem 7 is close to the optimal one.

6.3 Efficiency

We run the experiment on a 64-bit addressing Intel Xeon 3.06 GHz machine. We compare the
runtime of our proposed sub-gradient method with the simplex method, the interior-point method
as well as CELF. We implement our proposed sub-gradient method in Matlab. For the simplex and
interior-point methods, we simply call the function linproд in Matlab’s optimization toolbox. We
also implemented CELF in C++. For all above methods, a step of loading data is required. For
CELF, we need to scan all the cascades to build the inverted index. For our LP solution, we need to
scan all the cascades to identify the bursty cascades and then construct the burstiness score vector
YC . Here, the loading time is not included in the runtime. It takes hours for CELF to select 1,000
sensors and nearly one day to select 5,000 sensors from millions of cascades. As its runtime is not
at the same scale as other methods, here, we just present the runtime for other three methods.
Figure 11 presents the 10-times average runtime of the simplex method, the interior-point method
and our sub-gradient method on different datasets. We can see that our proposed sub-gradient
method is more efficient than the simplex and interior-point methods. Moreover, the runtime of
our proposed sub-gradient method is steady whenm varies. In contrast, the runtime of other two
methods changes significantly for different m.

6.4 Comparison of the Selected Users

In this subsection, we examine how these methods select users differently. Table 4 presents the
Jaccard coefficients of the selected 1,000 Twitter users from different methods on Twitter-Hashtag
cascades. It shows that different methods select users quite differently. For example, comparing LP
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Table 4. Jaccard Coefficients of the Selected Users
from Different Methods

CELF CELF* In-Deg Out-Deg Random
LP 0.1062 0.1050 0.0241 0.0246 0.0055
CELF – 0.1947 0.0368 0.0352 0.0060
CELF* – – 0.0390 0.0368 0.0055
In-Deg – – – 0.3587 0.0055
Out-Deg – – – – 0.0101

Table 5. Statistics of the Selected Users from Different Methods

LP CELF CELF* In-Deg Out-Deg Random
Median of number of tweets 4747.0 4549.5 3420.5 472.5 486.0 177.5

Median of retweet ratio 0.2526 0.1863 0.1887 0.1041 0.0774 0.0903
Median of number of friends 282.0 326.0 297.5 1044.0 622.0 149.0

Median of number of followers 256.0 333.0 311.0 778.5 1607.0 126.0
Number of news media 6 1 5 2 18 0

with other methods, the largest Jaccard coefficient value (between CELF and LP) is 0.1062, which
is pretty low. Furthermore, we study the following characteristics of these selected users:

—User activities: (I) how many tweets a user generates and (II) the retweet ratio, i.e., the ratio
of the number of retweets of a user to the total number of tweets of a user.

—Immediate network: (I) the in-degree (i.e., number of friends), and (II) the out-degree (i.e.,
number of followers).

—Account type: we manually check whether the account is a verified news media or not.

Table 5 presents the statistics of the selected users from different methods. We can see that the
users selected by LP generate more tweets and have higher retweet ratio than the users selected
by other methods. It is interesting because we do not explicitly model the activeness of users in
LP. It also can be observed that LP selects more news media accounts than other methods, except
for Out-Degree. These selected accounts include “ChannelNewsAsia,” “STcom,” “TODAYonline,”
which are very influential news media in Singapore.

For the purpose of demonstration, we pick a cascade of #hougangbyelection, which is the most
popular bursty hashtags in our dataset (in terms of the number of relevant tweets). This hashtag is
about a local by-election in Singapore. Around 22:30 at that day the election result came out, and
it triggered a surge of relevant tweets within a short period of time. Figure 12 presents the cascade
size, the arrival rate (i.e., the number of relevant tweets per minute) and the acceleration (with
smoothing window ΔT1 = 30 mins, ΔT2 = 60 mins) of this cascade, as well as the sub-cascades
observed from the users selected by different methods. Both arrival rate and acceleration reflect
the burstiness of a cascade. Although different methods select the same number of users, we can
see that, for both cases, the peaks of LP in Figure 12 (second row) are higher than others’ to a large
extent (note that the scales are the same for all these methods).

7 CONCLUSIONS AND FUTURE WORK

In this article, we proposed a general sensor selection problem for different burst detection ap-
proaches. In general, sensor selection problem is NP-hard. Especially for the large social networks
with millions of users, existing greedy methods hardly scale to such size. After formulating this
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Fig. 12. The cascade size, arrival rate, and acceleration of the sub-cascades from users selected by different
methods.
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problem as a constraint satisfaction problem, we transformed it into an LP problem that has only
a few constraints. Furthermore, we developed a sub-gradient algorithm to solve the LP problem,
which makes it possible for our solution to scale up to large social networks. Compared with ex-
isting solutions, our solution can find better set of sensors for burst detection.

In our current work, we consider URL links and hashtags as the identities of cascade topics. In
a broad sense, a topic could also be represented by a set of keywords. If these keywords are pre-
defined, we can easily find tweets that contain these keywords and apply our proposed solution
to find a budgeted set of users for burst detection. It is more challenging when the topics are not
pre-defined. In this scenario, we have two inputs: a topic model which learns the topics from tweet
stream in an online way, and a classifier which detects bursty cascades of some unknown topics.
It leaves us with an interesting problem for future exploration.

APPENDIX

For the sensor selection problem (or sensor placement problem) in networks, greedy algorithm is
a common solution. As long as a monotone sub-modular objective function can be constructed,
the error bound 1 − 1/e is guaranteed (Schrijver 2003). However, it is not easy to construct such a
monotone sub-modular objective function for burst detection.

Here, we consider a very simple classifier F0 = 〈f ,δ0〉, where f = |C | and δ0 = 2. It means, if a
cascade is observed twice, it will be detected as a burst. Similar to Leskovec et al. (2007), we can
construct the following objective function for a cascade C .

π (S ) =
1

1 + DTCS

(10)

where DTCS
is burst detection time, i.e., the second minimum of {dt }du ∈S∧〈du ,dt 〉∈C .

According to Schrijver (2003), for a finite set S , a sub-modular function is a set function π :
2U → R, which satisfies the following definition: for every S ⊆ U and v1,v2 ∈ U \S we have that

π (S ∪ {v1}) + π (S ∪ {v2}) ≥ π (S ∪ {v1,v2}) + π (S ).
Here, we show that the above π (S ) in Equation (10) is not a sub-modular function by providing a

counterexample. Assume u1,u2,v1,v2 joinC at tu1 , tu2 , tv1 , tv2 , respectively, and u1,u2 ∈ S , v1,v2 �
S . Without loss of generality, assume tu1 = tu2 < others, which means detection time DTCS

= tu1 =

tu2 . Suppose, tv1 < tv2 < tu1 = tu2 . So, π (S ) = 1
1+tu2
,π (S ∪ {v1}) = 1

1+tu1
, π (S ∪ {v2}) = 1

1+tu1
, π (S ∪

{v1,v2}) = 1
1+tv2

. Therefore, we have π (S ∪ {v1}) + π (S ∪ {v2}) < π (S ∪ {v1,v2}) + π (S ), which

means π (S ) is not a sub-modular function.
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