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 10 

Analytical methods 11 

For Nd isotope analyses of past seawater from ferromanganese coatings of the sediment particles, the bulk 12 

sediment samples consisting mainly of nannofossil and planktonic foraminifer oozes, and chalks were dried 13 

and homogenised in an agate mortar. To extract the authigenic, seawater-derived Nd isotope signature, 14 

approximately 2.5 g of powdered bulk sediment was treated following the procedure described in Gutjahr 15 

et al. (2007) omitting the carbonate removal step. The powdered samples were rinsed three times with de-16 

ionized (MQ) water, after which 10 ml of MQ was added and 10 ml of a 0.05M hydroxylamine 17 

hydrochloride/15% acetic acid solution, buffered with NaOH to a pH of 4. Samples were placed on a shaker 18 

for 1 hour and centrifuged. The supernatant containing the seawater Nd isotope signature of the 19 

ferromanganese coatings was pipetted off and dried down. As preparatory steps for column chemistry, all 20 

samples were refluxed in concentrated HNO3 at 80C overnight, centrifuged, and 80% of the supernatant 21 

was dried down. Twice, 0.5 ml of 1 M HCl was added, and the sample was dried down, after which the 22 

samples were redissolved in 0.5 ml 1 M HCl. Samples were passed through cation-exchange columns with 23 

0.8 ml AG50W-X12 resin (mesh size 200‒400 m), using standard procedures, to separate Sr and the Rare 24 

Earth Elements (REEs), as well as removing most of the Ba (Barrat et al., 1996). A second set of columns 25 

with 2 ml Ln-Spec resin (mesh size 50‒100 m) was used to separate Nd from the other REEs and 26 

remaining Ba (Le Fèvre and Pin, 2005). 27 

Neodymium isotope ratios were measured on a Neptune Multiple Collector Inductively Coupled Plasma 28 

Mass Spectrometer (MC-ICPMS) at GEOMAR Kiel, Germany. Measured 143Nd/144Nd results were mass-29 
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bias corrected to a 146Nd/144Nd ratio of 0.7219 and were normalised to the accepted 143Nd/144Nd value of 30 

0.512115 for the JNdi-1 standard (Tanaka et al., 2000), which was measured after every third sample.  31 

Nd isotope ratios are reported as εNd values with respect to the Chondritic Uniform Reservoir (CHUR), 32 

which are calculated as εNd = [(143Nd/144Nd)sample / (143Nd/144Nd)CHUR – 1 ] * 104 using a (143Nd/144Nd)CHUR 33 

value of 0.512638. No correction of the 143Nd/144Nd for ingrowth of 143Nd from 147Sm in the samples was 34 

carried out given that the difference is at maximum 0.25 ɛNd units for the oldest samples. The external 35 

reproducibility (2σ) of the measurements was between 0.14 and 0.25 εNd units. The internal 2σ error was 36 

applied when larger than the external reproducibility.  Procedural Nd blanks were ≤30 pg Nd and thus 37 

negligible.  38 

  39 



Table S1: ɛNd values from Malta and Site U1468  40 

Site Age Age Reference ɛNd(t) 2σ 

Fomm Ir Rih 23.40 Föllmi et al. 2008 -5.05 0.26 

il-Blata 22.05 Föllmi et al. 2008 -4.30 0.14 

il-Blata 21.12 Föllmi et al. 2008 -4.90 0.14 

il-Blata 21.10 Baldassini and Di Stefano, 2015 -4.55 0.14 

il-Blata 19.91 Föllmi et al. 2008 -4.23 0.15 

il-Blata 19.39 Föllmi et al. 2008 -7.64 0.15 

il-Blata 16.95 Baldassini and Di Stefano, 2015 -8.23 0.14 

il-Blata 14.20 Föllmi et al. 2008 -8.75 0.15 

Gnejna Bay 15.00 Föllmi et al. 2008 -8.78 0.17 

Gnejna Bay 14.06 Föllmi et al. 2008 -9.72 0.14 

Gnejna Bay 13.82 Abels et al., 2005 -8.73 0.14 

Gnejna Bay 13.68 Abels et al., 2005 -10.82 0.14 

U1468A 12.75 Betzler et al., 2016 -7.96 0.25 

U1468A 13.30 Betzler et al., 2016 -8.16 0.25 

U1468A 13.68 Betzler et al., 2016 -8.00 0.25 

U1468A 14.06 Betzler et al., 2016 -8.78 0.25 

U1468A 14.66 Betzler et al., 2016 -7.73 0.25 

U1468A 14.84 Betzler et al., 2016 -8.79 0.25 

U1468A 15.07 Betzler et al., 2016 -7.54 0.19 

U1468A 15.56 Betzler et al., 2016 -7.21 0.79 

U1468A 16.07 Betzler et al., 2016 -7.52 0.25 

U1468A 16.36 Betzler et al., 2016 -7.89 0.25 

U1468A 16.54 Betzler et al., 2016 -7.29 0.25 

U1468A 17.28 Betzler et al., 2016 -8.05 0.25 

U1468A 17.43 Betzler et al., 2016 -7.78 0.25 

U1468A 17.86 Betzler et al., 2016 -8.00 0.25 

U1468A 18.03 Betzler et al., 2016 -7.00 0.25 

U1468A 18.36 Betzler et al., 2016 -6.80 0.25 

U1468A 18.98 Betzler et al., 2016 -8.71 0.25 

U1468A 19.21 Betzler et al., 2016 -7.53 0.25 

U1468A 19.50 Betzler et al., 2016 -7.29 0.42 

U1468A 20.10 Betzler et al., 2016 -7.87 0.25 

U1468A 20.55 Betzler et al., 2016 -5.22 0.25 

U1468A 20.78 Betzler et al., 2016 -5.20 0.41 

U1468A 21.47 Betzler et al., 2016 -7.13 0.25 

U1468A 24.25 Betzler et al., 2016 -10.52 0.25 

U1468A 24.44 Betzler et al., 2016 -9.39 0.81 

U1468A 24.63 Betzler et al., 2016 -7.55 0.55 

U1468A 25.04 Betzler et al., 2016 -10.64 0.31 

U1468A 25.28 Betzler et al., 2016 -7.33 0.26 



Box model 41 

 42 

In order to better constrain our observations, a simple box model of the Mediterranean was established. The 43 

water balance of the basin was defined by equation 1: 44 

1) 
𝑑𝑊

𝑑𝑡
= 𝐹𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐 + 𝐹𝐼𝑛𝑑𝑖𝑎𝑛 + 𝐹𝐴𝑔𝑒𝑎𝑛 + 𝐹𝑅𝑖𝑣𝑒𝑟𝑠 − 𝐹𝐸𝑣𝑎𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 − 𝐹𝑜𝑢𝑡𝑓𝑙𝑜𝑤 45 

 46 

Where F is the volume flux of water in Sv (106 m3 sec-1), Indian Ocean and Atlantic Ocean influx were set 47 

at initial conditions following the results of modelling work (de la Vara et al., 2013; de la Vara and Meijer, 48 

2016) at 22.64 Sv and 4.78 Sv, respectively. Evolving conditions of the Atlantic inlet were defined by a fit 49 

of the relationships between the Indian and Atlantic inlet in the different modelling experiments (Fig. S1). 50 

Due to uncertainty regarding the exchange with the Paratethys and the proto Aegean Sea, two modern 51 

values of pre- and post-East Mediterranean Transient (EMT) of 0.35 Sv to 1.2 Sv (Roether and Klein, 1998; 52 

Roether et al., 2007), respectively, were used in two different runs of the model. Riverine influx was 53 

estimated at 0.025 Sv (Simon et al., 2017). Operating under the assumption of a constant volume for the 54 

Mediterranean (3.75x1014 m3) set to modern water flux values, mass was balanced to be setting the outflux 55 

equal to total influx minus evaporation (set to the modern value of 0.08 Sv following Shaltout and Omstedt, 56 

2015) as defined by equation 2:  57 

2) 𝐹𝑜𝑢𝑡𝑓𝑙𝑜𝑤 = ∑ 𝐹𝑖𝑛
𝑖 − 𝐹𝑒𝑣𝑝𝑜𝑟𝑎𝑡𝑖𝑜𝑛 58 

 59 

The neodymium concentration of the box was defined by equation 3 and εNd by equation 4:  60 

3) 
𝑑[𝑁𝑑]

𝑑𝑡
= 𝐹𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐[𝑁𝑑]𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐 + 𝐹𝐼𝑛𝑑𝑖𝑎𝑛[𝑁𝑑]𝐼𝑛𝑑𝑖𝑎𝑛 + 𝐹𝐴𝑔𝑒𝑎𝑛[𝑁𝑑]𝐴𝑔𝑒𝑎𝑛 +61 

        𝐹𝑅𝑖𝑣𝑒𝑟𝑠[𝑁𝑑]𝑅𝑖𝑣𝑒𝑟𝑠 − 𝐹𝑜𝑢𝑡𝑓𝑙𝑜𝑤[𝑁𝑑]𝑜𝑢𝑡𝑓𝑙𝑜𝑤 62 

4) 
𝑑𝜀𝑁𝑑

𝑑𝑡
= 𝐹𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐[𝑁𝑑]𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐𝜀𝑁𝑑𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐 + 𝐹𝐼𝑛𝑑𝑖𝑎𝑛[𝑁𝑑]𝐼𝑛𝑑𝑖𝑎𝑛𝜀𝑁𝑑𝐼𝑛𝑑𝑖𝑎𝑛 +63 

       𝐹𝐴𝑔𝑒𝑎𝑛[𝑁𝑑]𝐴𝑔𝑒𝑎𝑛𝜀𝑁𝑑𝐴𝑔𝑒𝑎𝑛 + 𝐹𝑅𝑖𝑣𝑒𝑟𝑠𝑓𝑁𝑖𝑙𝑒[𝑁𝑑]𝑅𝑖𝑣𝑒𝑟𝑠𝜀𝑁𝑑𝑁𝑖𝑙𝑒 + 𝐹𝑅𝑖𝑣𝑒𝑟𝑠(1 −64 

       𝑓𝑁𝑖𝑙𝑒)[𝑁𝑑]𝑅𝑖𝑣𝑒𝑟𝑠𝜀𝑁𝑑𝑅ℎ𝑜𝑛𝑒 − 𝐹𝑜𝑢𝑡𝑓𝑙𝑜𝑤[𝑁𝑑]𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝜀𝑁𝑑𝑀𝑒𝑑 65 

 66 



Where fNile represents the fraction of the total freshwater supply supplied by the Nile River (based on pre-67 

1900 values; Said, 1993). Neodymium concentration and εNd values for each of the water sources are 68 

detailed in Table S2. Given that no concentration data are available for the Nile, it was assumed they are 69 

similar to that of the Rhone. Based on ferromanganese crust data (O’Nions et al., 1998) and the results of 70 

this study for the western Indian Ocean, present-day values of ɛNd for the Indian Ocean appear to be 71 

reasonable for the Miocene. Results of this version of the run are shown in figure S2. Further experiments 72 

carried out with the model using different values for the possible contribution sources (based on other 73 

sources noted in the text as well as observed values for the Maldives from this data set) have failed to 74 

reproduce the observed range of the Early Miocene from the Maltese record (Fig. S3).   75 

To account for a possible volcanic contribution along the gateway itself a modification of the Indian Ocean 76 

flux component was introduced resulting in the following equations: 77 

5) 
𝑑[𝑁𝑑]

𝑑𝑡
= 𝐹𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐[𝑁𝑑]𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐 + 𝐹𝐼𝑛𝑑𝑖𝑎𝑛([𝑁𝑑]𝐼𝑛𝑑𝑖𝑎𝑛 + [𝑁𝑑]𝑣𝑜𝑙𝐴/103𝐹𝐼𝑛𝑑𝑖𝑎𝑛) +78 

𝐹𝐴𝑔𝑒𝑎𝑛[𝑁𝑑]𝐴𝑔𝑒𝑎𝑛 + 𝐹𝑅𝑖𝑣𝑒𝑟𝑠[𝑁𝑑]𝑅𝑖𝑣𝑒𝑟𝑠 − 𝐹𝑜𝑢𝑡𝑓𝑙𝑜𝑤[𝑁𝑑]𝑜𝑢𝑡𝑓𝑙𝑜𝑤 79 

6) 
𝑑𝜀𝑁𝑑

𝑑𝑡
= 𝐹𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐[𝑁𝑑]𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐𝜀𝑁𝑑𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐 + 𝐹𝐼𝑛𝑑𝑖𝑎𝑛 ([𝑁𝑑]𝐼𝑛𝑑𝑖𝑎𝑛𝜀𝑁𝑑𝐼𝑛𝑑𝑖𝑎𝑛 +80 

[𝑁𝑑]𝑣𝑜𝑙𝐴𝜀𝑁𝑑𝑣𝑜𝑙𝐴

103𝐹𝐼𝑛𝑑𝑖𝑎𝑛
) + 𝐹𝐴𝑔𝑒𝑎𝑛[𝑁𝑑]𝐴𝑔𝑒𝑎𝑛𝜀𝑁𝑑𝐴𝑔𝑒𝑎𝑛 + 𝐹𝑅𝑖𝑣𝑒𝑟𝑠𝑓𝑁𝑖𝑙𝑒[𝑁𝑑]𝑅𝑖𝑣𝑒𝑟𝑠𝜀𝑁𝑑𝑁𝑖𝑙𝑒 +81 

𝐹𝑅𝑖𝑣𝑒𝑟𝑠(1 − 𝑓𝑁𝑖𝑙𝑒)[𝑁𝑑]𝑅𝑖𝑣𝑒𝑟𝑠𝜀𝑁𝑑𝑅ℎ𝑜𝑛𝑒 − 𝐹𝑜𝑢𝑡𝑓𝑙𝑜𝑤[𝑁𝑑]𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝜀𝑁𝑑𝑀𝑒𝑑 82 

  83 

 84 

Where NdvolA
 is the  total contribution of the neodymium introduced into to the seaway mixed with Indian 85 

Ocean waters along the northern Arabian Plate, and ɛNdvolA represents the corresponding ɛNd, which was 86 

set at +5, the median value of all the potential sources (Lease and Abdel-Rahman, 2008; Azizi and 87 

Moinevaziri, 2009; Trifonov et al., 2011; Ma et al., 2013). The results of this iteration are shown in figure 88 

3 of the main text. In order to contribute the needed amount of radiogenic Nd as observed in the Early 89 

Miocene of Malta, some 0.2 mol/sec were needed to be supplied along the conduit. Assuming an area of 2 90 

x 105 km2
,
 a mean Nd content of 31.5 ppm and basalt density of 3 g / cm3 the erosion rate required would 91 

be 0.048 mm/year.  92 



The model was run for 250 years from the initial modern value of the Eastern Mediterranean to steady state. 93 

The steady state values were used as initial conditions for subsequent runs during which FIndian was 94 

diminished stepwise from the initial value of 22 Sv to 0 Sv. Each iteration of the diminishing flux runs was 95 

run for 250 years to allow for a steady state to be established.  96 

To account for a possible contribution from a western Mediterranean source, we also allowed for 97 

contribution from a source along the Atlantic source: 98 

7) 
𝑑[𝑁𝑑]

𝑑𝑡
= 𝐹𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐([𝑁𝑑]𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐 + [𝑁𝑑]𝑣𝑜𝑙𝑆/103𝐹𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐) + 𝐹𝐼𝑛𝑑𝑖𝑎𝑛([𝑁𝑑]𝐼𝑛𝑑𝑖𝑎𝑛 +99 

[𝑁𝑑]𝑣𝑜𝑙𝐴/103𝐹𝐼𝑛𝑑𝑖𝑎𝑛) + 𝐹𝐴𝑔𝑒𝑎𝑛[𝑁𝑑]𝐴𝑔𝑒𝑎𝑛 + 𝐹𝑅𝑖𝑣𝑒𝑟𝑠[𝑁𝑑]𝑅𝑖𝑣𝑒𝑟𝑠 − 𝐹𝑜𝑢𝑡𝑓𝑙𝑜𝑤[𝑁𝑑]𝑜𝑢𝑡𝑓𝑙𝑜𝑤 100 

8) 
𝑑𝜀𝑁𝑑

𝑑𝑡
= 𝐹𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐 ([𝑁𝑑]𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐𝜀𝑁𝑑𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐 +

[𝑁𝑑]𝑣𝑜𝑙𝑆𝜀𝑁𝑑𝑣𝑜𝑙𝑆

103𝐹𝐴𝑡𝑙𝑎𝑛𝑡𝑖𝑐
) +101 

𝐹𝐼𝑛𝑑𝑖𝑎𝑛 ([𝑁𝑑]𝐼𝑛𝑑𝑖𝑎𝑛𝜀𝑁𝑑𝐼𝑛𝑑𝑖𝑎𝑛 +
[𝑁𝑑]𝑣𝑜𝑙𝐴𝜀𝑁𝑑𝑣𝑜𝑙𝐴

103𝐹𝐼𝑛𝑑𝑖𝑎𝑛
) + 𝐹𝐴𝑔𝑒𝑎𝑛[𝑁𝑑]𝐴𝑔𝑒𝑎𝑛𝜀𝑁𝑑𝐴𝑔𝑒𝑎𝑛 +102 

𝐹𝑅𝑖𝑣𝑒𝑟𝑠𝑓𝑁𝑖𝑙𝑒[𝑁𝑑]𝑅𝑖𝑣𝑒𝑟𝑠𝜀𝑁𝑑𝑁𝑖𝑙𝑒 + 𝐹𝑅𝑖𝑣𝑒𝑟𝑠(1 − 𝑓𝑁𝑖𝑙𝑒)[𝑁𝑑]𝑅𝑖𝑣𝑒𝑟𝑠𝜀𝑁𝑑𝑅ℎ𝑜𝑛𝑒 −103 

𝐹𝑜𝑢𝑡𝑓𝑙𝑜𝑤[𝑁𝑑]𝑜𝑢𝑡𝑓𝑙𝑜𝑤𝜀𝑁𝑑𝑀𝑒𝑑 104 

 105 

Where NdvolS
 is the total contribution of the neodymium introduced to water coming from the Atlantic and 106 

ɛNdvolS represents the corresponding ɛNd, which was set at -4, the median value based on sources in Sardinia 107 

(Downes et al., 2001). This western Mediterranean source was scaled to half the Arabian source in the 108 

experiments. These values represent a maximum value used to estimate the highest impact. For illustration, 109 

figure S4 shows the output of a model experiment using the maximum erosion input rate. While there is 110 

some dampening of the trend by this source, its contribution is not highly significant nor changes the 111 

outcomes in any significant manner even at this high relative contribution.    112 

 113 

  114 



Table S2: Modern neodymium composition of the Mediterranean and source end members 115 

 εNd [Nd] (pmol/kg) Reference  

Nile discharge -1.25±0.25 ? (Scrivner et al., 2004) 

Rhone discharge -10.8±0.6 85.9±57.1 (Ayache et al., 2016) 

and references therein  Aegean Sea -1.96±2.14 28.47±18.20 

East Mediterranean 

(surface + intermediate) 

-6.57±1.42  30.94±4.35 (Tachikawa et al., 2004; 

Vance et al., 2004) 

Indian Ocean  -7.99±1.07  16.13±8.92 (Bertram and Elderfield, 

1993; Pomiès et al., 

2002) 

Atlantic inflow (surface) -10.36±0.78  23.94±5.99 (Spivack and 

Wasserburg, 1988; 

Tachikawa et al., 2004) 

 116 

 117 

 118 

 119 

Figure S1: Relation between influx from the Indian (IG) and Atlantic (AG) Oceans into the 120 

Mediterranean based on published model simulations (de la Vara et al., 2013; de la Vara, 2015; de la Vara 121 

and Meijer, 2016) 122 

 123 



 124 

Figure S2: model results for Nd concentration and ɛNd in the Mediterranean using Indian ocean fluxes (F 125 

Indian) and composition of water as described in Table S1. 126 

 127 

Figure S3: Partial outputs of different runs of the model where the ɛNd of the inputs was changed.  128 



 129 

Figure S5: Model output results comparing changes in the ɛNd of Mediterranean seawater along a 130 

diminishing contribution from the Indian Ocean with a northern Arabian Plate contribution and a 131 

combination of the western Mediterranean and northern Arabian Plate contribution. 132 

 133 

Additional figures  134 

 135 

Figure S6: Compilation of all ɛNd from the Indian Ocean and the Mediterranean discussed in this 136 

manuscript.  137 



 138 

Figure S7: Schematic illustration of the main circulation patterns in the Mediterranean and in either 139 

gateway before (upper) and after (lower) decoupling from the Indian Ocean. Directions are based on 140 

Hamon et al. (2013); de la Vara et al. (2013); de la Vara (2015) and de la Vara and Meijer (2016). ɛNd 141 

values listed refer to values of exposed volcanic rocks in the marked locations; see text.  142 
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