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Abstract: The ability to initialize quantum registers in pure states lies at the core of many
applications of quantum technologies, from sensing to quantum information processing and
computation. In this paper, we tackle the problem of increasing the polarization bias of an ensemble
of two-level register spins by means of joint coherent manipulations, involving a second ensemble
of ancillary spins and energy dissipation into an external heat bath. We formulate this spin
refrigeration protocol, akin to algorithmic cooling, in the general language of quantum feedback
control, and identify the relevant thermodynamic variables involved. Our analysis is two-fold:
on the one hand, we assess the optimality of the protocol by means of suitable figures of merit,
accounting for both its work cost and effectiveness; on the other hand, we characterise the nature of
correlations built up between the register and the ancilla. In particular, we observe that neither the
amount of classical correlations nor the quantum entanglement seem to be key ingredients fuelling
our spin refrigeration protocol. We report instead that a more general indicator of quantumness
beyond entanglement, the so-called quantum discord, is closely related to the cooling performance.
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PACS: 03.65.-w,05.70.-a,03.65.Ud

1. Introduction

Achieving low enough temperatures is an essential prerequisite to bring physical systems into
the quantum domain. For instance, a thermal cloud of atoms may be coerced into a Bose–Einstein
condensate [1] once chilled below the micro-Kelvin range by means of laser and evaporative
cooling [2,3]. Similarly, quantum behaviour can be observed in mesoscopic objects by exploiting
active cooling strategies, which outperform conventional passive refrigeration methods [4–6]. Hence,
the exploitation of quantum effects in most technological applications relies heavily on our ability to
generate ultracold systems on cue.

Over the past few years, there has been an intense activity on quantum thermodynamics [7,8] and,
specifically, on the study of nanoscale cooling cycles [9–11]. Various models of quantum refrigerators
have been put forward and characterized [12–14]: although the focus has often been placed on the
fundamental problem of the emergence of the thermodynamic laws from quantum theory [15–17],
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more practical issues, like cooling performance optimization [18–20] or cycle diagnosis in the search
for friction, heat leaks and internal dissipation [21–23], have been addressed.

Some of the recent landmark achievements in experimental physics have provided us with
a complete “quantum toolbox”, facilitating the controlled manipulation of individual quantum
systems. This raises the expectations that practical nanoscale heat devices may soon become
commonplace in technological applications. Indeed, experimental proposals exist for quantum
refrigerators [24,25], and promising new cooling methods have already been demonstrated [26,27].
These include feedback cooling [4,10,11,28] of individual quantum systems [29] and even of nano-
and micro-mechanical resonators [5,6].

Another big open question in quantum thermodynamics is whether or not quantum signatures
may be actively exploited in nanoscale heat cycles. It is known, for instance, that the discreteness
of the energy spectra of quantum devices allows for departures from the usual thermodynamic
behaviour when non-equilibrium environments are considered [30–33]. Furthermore, distinct
non-classical signatures stemming from quantum coherence may be observed directly in quantum
heat engines [34,35]. Nonetheless, in most respects, nanoscale heat devices closely resemble their
macroscopic counterparts [36,37]. Importantly, instances showing some indicator of quantumness
being actively utilized for better-than-classical energy conversion are still essentially missing.

In this paper, we will ask precisely this type of question regarding a quantum feedback cooling
loop. Namely, is the quantum share of the correlations being established between the system of
interest and the controller a resource for energy-efficient feedback cooling?

To address it, we shall consider the algorithmic cooling [38,39] of spins in nuclear magnetic
resonance (NMR) setups. Concisely, algorithmic cooling aims at increasing the polarization bias
of an ensemble of spins, hereafter labelled as “registers”. To that end, a second ensemble of spins
(“ancillas”) with a larger polarization bias is available. A suitable series of joint quantum gates is
then applied in order to reversibly dump a fraction of the registers’ entropy into the ancillas. As a
final step, the ancillary spins are dissipatively reset back to their initial state, thus disposing of their
excess entropy into the surroundings. Since the relaxation time of the registers is assumed to be much
longer than that of the ancillas, the latter are reset, whilst the former remain essentially unchanged.

The usage of the surroundings as an external entropy sink is crucial for the scalability of the spin
cooling protocol [39]. Indeed, reversible manipulations preserve the total entropy of a closed system,
which sets an ultimate limitation (“Shannon’s bound”) on the achievable spin cooling. However, after
the reset of the ancillas, the cooling algorithm may be iterated to further reduce the entropy of the
registers. This cooling technique has also been demonstrated experimentally [40,41].

We shall work in the framework of coherent feedback control [42,43], splitting the global unitary
manipulation of registers and ancillas into two, as if the transformation were to be performed in
two distinct steps: namely, the “(pre)measurement” and the “feedback” itself. The purpose of the
measurement step should be to build correlations between register and ancillary spins, allowing the
controller to acquire useful information. The feedback unitary should then exploit that information
to reduce the entropy of the registers as much as possible. One of the aspects we wish to understand
is the specific role of the quantum share of the correlations in the operation of the cooling cycle.

In the first place, we will study the energy balance throughout one iteration of the protocol,
identifying the relevant quantities standing for “work”, “heat” and “entropy reduction rate”.
We shall then introduce suitable figures of merit assessing the energy efficiency and the effectiveness
of the feedback loop. These will allow us to identify thermodynamically optimal working
points. Finally, we will attempt to establish connections between performance optimization and
the correlations built up between registers and ancillas: we will find that, unlike the classical
correlations, the quantum share thereof (measured by the quantum discord [44,45]) relates closely
to the performance of the cycle. In particular, the maximization of discord is compatible with
the thermodynamic optimization of the protocol, and a threshold value of the quantumness of
correlations exists, which enables effective cooling of the registers. It will also be shown that quantum
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entanglement between registers and ancillas, though widely present, is not a key ingredient in the
protocol. Ultimately, these results may help to clarify the intriguing role of quantum correlations
in the thermodynamics of information [46] and pave the way towards their active exploitation in
practical tasks [47,48].

This paper is structured as follows: In Section 2, coherent feedback control is briefly introduced
and our specific cooling cycle described in detail. The energetics of a single iteration of our protocol is
addressed in Section 3, where we also introduce objective functions to gauge its cooling performance.
In Section 4, entanglement, discord and quantum mutual information between register and ancillary
spins are evaluated explicitly. Finally, in Section 5, we summarize and draw our conclusions.

2. Feedback Cooling Algorithm

2.1. Coherent Feedback Control

Algorithmic cooling may be thought of as an application of feedback control [49,50]. In general,
preparing a system in a desired configuration is one of the fundamental tasks of control theory.
This can be achieved by introducing a work source to the setting, whose interactions with the system
of interest are suitably engineered to achieve the goal. Nonetheless, in practical situations, a direct
access to the system might not be possible or it may accompanied by irrepressible disturbances.
One thus typically introduces a second (auxiliary) system into the problem. The composite formed
by the work source plus the auxiliary system can then be referred to as the controller [51]. While
in an “open loop” control protocol the controller does not acquire any information about the system
during the control process (i.e., the interaction is unidirectional), in “closed-loop” control (or feedback
control) the controller gains information about the state of the system that conditions its subsequent
actions [43,52].

In our case, the system of interest is quantum, which raises the measurement problem [53], i.e.,
how the information is actually gained. On the one hand, it may be obtained by performing an
explicit measurement on the system [47,54], which entails the erasure of quantum coherence in some
pre-selected basis. In such case, we would be performing a classical feedback [42]. Alternatively, we
may as well correlate system and auxiliary, without making the measurement explicit, and then close
the feedback loop coherently. This is the situation that we shall consider here: a coherent quantum
feedback control protocol [42,48,55].

2.2. Stages of the Feedback Cooling Algorithm

In all that follows, both our quantum registers (the system S) and the ancillas (the auxiliary
A) will be two-level spins. We shall assume that they are initially uncorrelated and in thermal
equilibrium with the surroundings, which act as a heat bath at temperature T. We denote the
polarization bias of the registers and the ancillas, i.e., the difference between their ground and
excited-state populations, by εS and εA, respectively. As already mentioned, in order to reduce the
entropy of the spin ensemble S, two conditions have to be met: (i) εA > εS, i.e., the ancillas must be
more polarized than the registers at the initialization stage; and (ii) the relaxation time of A must be
much shorter than that of S.

During the protocol, the initial state $̂0 = ρ̂
(S)
0 ⊗ ρ̂

(A)
0 is mapped onto $̂f under the application

of Û (i.e., $̂0 7→ $̂f ≡ Û$̂0Û†). In light of coherent control, it seems insightful to split Û into
two subsequent unitaries Ûm and Ûf, so an intermediate “post-measurement” state $̂m may be
distinguished ($̂0 7→ $̂m ≡ Ûm$̂0Û†

m 7→ $̂f ≡ Ûf$̂mÛ†
f ) [56]. In the remainder of this section, we

give further details on each of these steps (see also Figure 1).
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Figure 1. Sketch of the four steps of the spin cooling algorithm. The polarization bias of the marginals
is illustrated by means of their effective “spin temperatures”, indicated with thermometers, and the
correlations and residual coherence are depicted as shaded yellow areas. First, S and A are initialized
in an uncorrelated state with polarization biases εS < εA. The measurement unitary Ûm correlates
the two parts, yielding marginals with biases εS cos ϕ2 and zero, respectively (see the text for details
on notation). After the application of the feedback unitary Ûf, most correlations are wiped out as S

is mapped to the more polarized target ρ̂S, with polarization bias εA sin ϕ. The marginal of A is then

dissipatively reset to ρ̂
(A)
0 .

2.2.1. Initialization

Initially, the two-level registers and ancillas are uncorrelated and have polarization biases
0 < εS < εA < 1, so that their joint state is $̂0 = ρ̂

(S)
0 ⊗ ρ̂

(A)
0 , with marginals ρ̂

(α)
0 = 1

2 (Iα − εασ̂
(α)
z )

for α ∈ {S,A}(in our notation, we indicate by the standard ρ̂(α) the marginal state of each subsystem
α and by the variant $̂ the joint state of the whole system (registers plus ancillas), at any stage of
the protocol). Here, σ̂

(α)
z stands for the z Pauli matrix of subsystem α. As already mentioned, we

will assume that register and ancilla spins are all in thermal equilibrium with their surroundings at
temperature T, owing their difference in polarization to distinct energy gaps h̄ωα = kBT log

( 1+εα
1−εα

)
.

The global Hamiltonian may thus be written as Ĥ = ĤS + ĤA = 1
2}ωS σ̂

(S)
z ⊗ IA + IS ⊗ 1

2}ωA σ̂
(A)
z .

At this point, the von-Neumann entropies S(ρ̂) ≡ −tr{ρ̂ log ρ̂} of the marginals
S(ρ̂(S)0 ) > S(ρ̂(A)0 ) evaluate to:

S(ρ̂(α)0 ) =
1
2

log
(

4
1− ε2

α

)
− εα arctanh εα. (1)

2.2.2. (Pre-)Measurement

We wish to acquire information about the state of the registers by means of a quantum
measurement. To that end, we can implement a joint unitary on S+A, thus correlating the two parties.
The measurement unitary must be such that some information, about the local state of the registers
(in our case, its populations in some basis), gets imprinted on the marginal of the ancillas. In
particular, our choice of measurement unitary Ûm will be [56]:

Ûm = exp
{
−i

π

4
σ̂
(S)
~m ⊗ σ̂

(A)
y

}
, (2)

with σ̂
(S)
~m = ~m · σ̂(S), σ̂(S) = {σ̂(S)

x , σ̂
(S)
y , σ̂

(S)
z } and |~m| = 1. This returns a state with marginals

ρ̂
(S)
m = ∑µ=± cµµ|µ~m〉〈µ~m| and ρ̂

(A)
m = 1

2IA −
1
2 εA (c++ − c−−) σ̂

(A)
x , where |+~m〉 and |−~m〉 are the
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eigenstates of σ̂
(S)
~m with eigenvalues +1 and −1, respectively, and cµµ ≡ 〈µ~m| ρ̂

(S)
0 |µ~m〉. That is, the

coherences of the register in the eigenbasis of σ̂
(S)
~m are destroyed, while the corresponding populations

are recorded in the x-basis of A with ‘efficiency’ εA. Hence, we can say that Ûm realizes an inefficient
measurement of σ̂

(S)
~m on ρ̂

(S)
0 . Note also that given the initial cylindrical symmetry of the problem, we

can restrict ~m to the x–z plane, i.e., ~m = {sin ϕ, 0, cos ϕ}, with 0 ≤ ϕ ≤ π
2 .

2.2.3. Feedback

Given the nature of Ûm, the most informative measurement on A about the state of S is a
projection onto the eigenstates |+~x〉 and |−~x〉 of σ̂

(A)
x . Therefore, conditioning the actuations of

the controller on these measurement results has the potential to achieve the largest reduction in the
entropy of the state of the register spins [56]. In particular, our Ûf will take the form:

Ûf = exp
{

i
π

4
σ̂
(S)
y

}
⊗ |+~x〉 〈+~x|+ exp

{
−i

π

4
σ̂
(S)
y

}
⊗ |−~x〉 〈−~x| . (3)

After applying this feedback and regardless of ~m, the initial purity of the ancillas is transferred

to the register spins (i.e., tr{ρ(A)0

2
} = 1

2 (1 + ε2
A) = tr{ρ(S)f

2
}), while the entropy of the latter is

reduced by:

∆S(S)
0,f ≡ S(ρ(S)0 )− S(ρ(S)f ) = εA arctanh εA − εS arctanh εS +

1
2

log

(
1− ε2

A

1− ε2
S

)
≥ 0. (4)

In the extreme case of a measurement in the x direction (i.e., ϕ = π/2 and ~m = {1, 0, 0}), the
marginals of registers and ancillas are completely swapped after the application of Ûf.

2.2.4. Reset of the Ancilla

After a few relaxation times (measured in the time-scale of A), the irreversible interactions
with the environment realize the transformation $̂f 7→ ρ̂

(S)
f ⊗ ρ̂

(A)
0 , destroying all of the correlations

between the register and the controller. The system will be then ready in principle for additional
rounds of feedback cooling, always provided that the polarization bias of the ancillary spins can be
still increased. In the specific implementation considered in this paper, however, given our choice of
Ûm and Ûf, any further increase in the bias of the registers or reduction of their entropy will be in fact
impossible. For this reason, in all that follows, we shall consider only a single iteration of the protocol.

3. Thermodynamic Analysis

3.1. Energy Balance

Let us start by assessing the energetics of the measurement step. The application of the unitary
Ûm has always a negative energy cost for the controller, i.e., net work must be performed,

∆E0,m ≡ tr{Ĥ($̂0 − $̂m)} = −kBT(εS sin2 ϕ arctanh εS + εA arctanh εA) < 0. (5)

Interestingly, during the feedback, it may be possible for the controller to recover a fraction of the
work invested in the measurement. Actually, for choices of ~m with ϕ above a certain threshold ϕcrit,
the feedback unitary of Equation (3) always succeeds at extracting work from $̂m, besides minimizing
the marginal entropy of S. In fact, we have work extraction if:

∆Em,f ≡ tr{Ĥ($̂m − $̂f)} = −kBT
(

y sin ϕ− εS arctanh εS cos2 ϕ
)
≥ 0 (6)
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where y ≡ εA arctanh εS + εS arctanh εA. The threshold value ϕcrit is thus given by:

sin ϕcrit =
−y +

√
y2 + 4ε2

S arctanh2 εS

2εS arctanh εS
(7)

In particular, the maximum work recovery ∆Em,f is attained for measurements along the x
direction (ϕ = π/2), although not all extractable work (or “ergotropy” [57]) can be retrieved.

Finally, during the reset, the ancillary spins lose an amount of heat:

Q ≡ tr{ĤA(ρ̂
(A)
f − ρ̂

(A)
0 )} = kBT(εA − εS sin ϕ) arctanh εA > 0 (8)

irreversibly to the environment, while the residual correlations between S and A are completely
erased, and the marginal state of the registers remains unchanged. Hence, the ancillary spins perform
a cycle, whereas the registers change their average energy by:

∆E(S)
0,f = tr{ĤS(ρ̂

(S)
0 − ρ̂

(S)
f )} = −kBT(εS − εA sin ϕ) arctanh εS (9)

Note that ∆E(S)
0,f does not have a definite sign. Indeed, due to the residual coherence in ρ̂

(S)
f ,

the increase in the system’s purity achieved in the protocol does not have to be accompanied by an
increase in the polarization bias of the register spins, or equivalently, by a decrease in their average
energy. This would additionally require that εA sin ϕ > εS, which is only guaranteed to hold for
a measurement along the eigenbasis of σ̂

(S)
x . Put in other words, even though ∆S(S)

0,f is always
non-negative by construction of the algorithm, real cooling of the registers only happens within the
‘cooling window’ εS

sin ϕ < εA ≤ 1. An important consequence of this is that the polarization bias of
the registers cannot be increased if sin ϕ < εS, regardless of εA.

3.2. Performance of Feedback Cooling

Performance optimization is a key element in the study of thermodynamic energy-conversion
cycles. It is essential to find that sweet spot in the parameter space of the cycle in question, signalling
the most energy-efficient usage of the input resources conditioned on the maximization of the “useful
effect”. Depending on the situation, one may be willing to spend more resources in order to
achieve, e.g., faster cooling, or to minimize any undesired side-effects, such as residual heating of
the environment. In each case, the relevant trade-off can be captured by a suitably-defined figure
of merit.

In particular, our feedback cooling algorithm was designed to minimize the entropy of the
register spins so that one may identify P ≡ kBT∆S(S)

0,f as the useful effect (see Equation (4)).
On the other hand, the total work penalty for the controller is given by W ≡ −tr{Ĥ($̂0 − $̂f)} =

−∆E(S)
0,f +Q > 0 (cf. Equations (9) and (8)), so that we can define the coefficient of performance (COP)

of the protocol as the quotient ε ≡ P/W . This COP is positive and unbounded, just like the ratio of
the cooling rate to the input power in a conventional refrigeration cycle [58].

A plot of ε versusP for fixed εS and varying εA can be thought of as the “characteristic curve” [59]
of our feedback cooling cycle, which is sketched in Figure 2a. Given a measurement direction
~m, the COP is maximized at an intermediate polarization bias εS < ε?A < 1 corresponding to
some optimal entropy reduction rate P?. The value of P? decreases as ~m sweeps from {0, 0, 1}
to {1, 0, 0}, while the COP grows monotonically for any fixed εA. In the limiting case of an
x-measurement (ϕ = π/2), ε attains its maximum value as εA → εS, although at vanishing P?.
Recall from Equation (8) that ϕ = π/2 and εA → εS entailQ = 0, which means that the maximization
of the COP occurs when the overall operation is reversible, as should be expected.
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Figure 2. (a) Coefficient of performance and (b) figure of merit χ versus the entropy reduction on

the registers P = kBT∆S(S)
0,f for fixed initial polarization bias εS = 0.4 and different measurement

directions: ϕ = 0 (solid), ϕ = π/4 (dashed) and ϕ = 2π/5 (dotted). In both plots, the bias of
the ancillas εA ranges from εS to one, and the temperature is T = 1. The part of the curves falling
inside the cooling window εS

sin ϕ < εA < 1 is depicted in black, whereas configurations for which

∆E(S)
0,f < 0 (i.e., no real cooling occurs) lie within the shaded red areas. The grey regions correspond to

inaccessible configurations, and the optimal working points {P?, ε?} and {P?, χ?} are indicated with
dot-dashed blue lines.

In [56], an alternative efficiency-like objective function η ≡ P/Q had been introduced. Its
optimization guarantees the largest entropy reduction at the expense of minimal heat release into
the environment. From Equations (4) and (8), it follows that Q ≥ P . As a result, η is positive and
upper-bounded by one. Not surprisingly, its qualitative behaviour is the same as that of the COP.
Note that the regime of operation in which the feedback unitary becomes capable of extracting work
from $̂m (cf. Section 3.1) is very relevant from the point of view of performance optimization: not
only the net work supplied by the controller is reduced, but also the excess energy dissipated as heat
during the reset. We shall come back to this point in Section 4.

From all of the above, it is clear that the thermodynamically optimal feedback cooling protocol
must start with the measurement of the polarization bias of the register spins in the eigenbasis of σ̂

(S)
x .

As already mentioned, in that case, the overall unitary manipulation Û simply amounts to swapping
the states of S and A. However, the fact that the global maximum of both the COP and the efficiency
η is met as εA → εS and at a vanishing entropy reduction rate may seem unsatisfactory. Even though
this is very often the case in thermal engineering (this happens, for instance, in an endoreversible [60]
refrigerator model with linear heat transfer laws [61], which is a classical case study in finite-time
thermodynamics), one would wish instead for a meaningful figure of merit attaining its maximum at
a non-vanishing (and ideally large) “cooling load”.

To resolve this issue, we can introduce the objective function χ ≡ εP , which is well suited
for applications in which maximizing the cooling load is as important as increasing the energy
efficiency of the cycle [61–63]. As we can see in Figure 2b, χ is qualitatively different from ε and
η: Its global maximum is still attained for ϕ = π/2, but the corresponding entropy reduction rate
∆S(S) ?

0,f remains comparatively large, which is of practical importance. Using the figure of merit χ

and Equations (4)–(8), it is easy to see that the best compromise between entropy reduction and work
expenditure is attained when the ancillary spins are prepared at a large polarization bias (ε?A ' 0.8).

4. Information-Theoretic Analysis

Up to now, the breakdown of Û into two distinct steps Ûm and Ûf does not seem to have
added anything relevant to the discussion, since the balance of the input/output energy and the
entropy reduction in S have been both evaluated globally. However, adopting the viewpoint of
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measurement-based quantum feedback control can shed new light on the problem if the information
balance is considered instead. Recall that the measurement unitary is designed so that the controller
acquires information about the system by correlating the registers with the ancillary spins in a suitable
way. The subsequent actions of the controller on the register spins, and the ultimate success of the
feedback cooling cycle are conditioned on that information. It thus seems interesting to gauge the
build-up of correlations during the measurement step with quantitative measures and, in particular,
to tell apart their quantum share from the classical one. This study, side by side with our assessment
of the energetics of the protocol, will help to establish connections between genuinely non-classical
effects and the thermodynamic optimization of quantum feedback cooling algorithms.

We already know from Section 3.2 that the energy efficiency is maximized when the
measurements are carried out in the eigenbasis of σ̂

(S)
x . This is a basis with respect to which the

initial thermal state ρ̂
(S)
0 has maximal coherence, and therefore, performing an x-measurement can

be regarded as the most “quantum” instance of the cooling protocol. In contrast, measuring the
system in the energy eigenbasis amounts to the only completely “classical” situation. The fact
that the latter realizes the worst-case scenario when it comes to performance seemingly indicates
that some element of quantumness may be a resource for the algorithm, as suggested in [56].
Interestingly, quantum correlations are also known to increase the extractable work in control loops
with quantum feedback [48].

In what follows, we will try to make this intuition precise by computing the quantum
correlations in the form of entanglement [64] and quantum discord [44,45] between S and A, immediately
after the measurement step.

4.1. Entanglement

Quantum entanglement is the most popular signature of non-classicality in bipartite quantum
states. Simply put, the state $̂ is entangled if it cannot be written as $̂ 6= ∑i pi ρ̂

(S)
i ⊗ ρ̂

(A)
i , where

pi is some probability distribution and ρ̂
(α)
i are local states of S and A. In other words, entangled

states cannot be prepared by means of local operations and classical communication between the
two parties.

Entanglement is rooted at the very heart of quantum theory [65] and has been paramount
in historical controversies, such as the Einstein–Podolsky–Rosen argument [66] on the alleged
incompleteness of quantum theory and the latter resolution of the issue by Bell, showing the
incompatibility of quantum theory and any local hidden-variable model [67]. However, the main
reason for the popularity of entanglement over the last couple of decades is its role as a resource for
quantum technologies, enabling, e.g., quantum teleportation [68,69], better-than-classical information
processing [70,71], quantum cryptography [72,73] or enhanced quantum metrology [74].

Amongst all available quantifiers of entanglement [64], we shall use the entanglement of formation,
which, for two-qubit states, reads [75]:

E($̂) ≡ h

(
1 +

√
1− C($̂)2

2

)
, (10)

with h(x) ≡ −x log x− (1− x) log (1− x). The concurrence C(ρ̂) can be computed from:

C($̂) = max {0, 2λmax − tr R̂($̂)}, (11)

where λmax is the largest eigenvalue of the operator R̂($̂), defined as:

R̂($̂) =
√√

$̂ (σ̂
(S)
y ⊗ σ̂

(A)
y ) $̂∗ (σ̂

(S)
y ⊗ σ̂

(A)
y )

√
$̂. (12)
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In Figure 3a, we plot the entanglement of formation for all working points {χ,P}. We see that
setups with low enough ϕ produce separable post-measurement states $̂m (falling within the dark
shaded grey area), although entanglement is almost ubiquitous in this protocol.
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Figure 3. (a) Entanglement of formation E($̂m), (b) mutual information I($̂m) and (c) quantum
discord δA($̂m) evaluated after the measurement step, versus the entropy reduction rate P and the
figure of merit χ. As in Figure 2, the shaded grey areas, the dashed red curve and dot-dashed
blue curve correspond to inaccessible configurations, the threshold towards effective cooling and the
optimal operation points, respectively. The dotted white line marks configurations above which the
feedback unitary Ûf becomes capable of extracting work from ρ̂m (cf. Equation (7)). Finally, the dark
shaded grey area of (a) corresponds to working points with zero entanglement between S and A. We
have set εS = 0.4 and T = 1.

We can also observe that entanglement may not be directly linked with the ability of the cycle to
increase the polarization bias of the registers: depending on the entropy reduction rate considered,
both separable and entangled states $̂m may succeed or fail to increase the polarization bias of the
registers after the feedback step. Exactly the same can be said about the potential relation between
E($̂m) and the possibility of work extraction (∆Em,f > 0) by Ûf from the post-measurement state:
entanglement between S and A is definitely not a necessary ingredient [76].

Furthermore, the overall maximization of E($̂m) occurs as {ϕ, εA} → {π
2 , 1}, which is far from

being an optimal working point of the cycle. At most, one can say that, fixing P , the entanglement
between registers and ancillas after the measurement is a monotonically increasing function of the
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figure of merit χ (as well as of ε and η). However, the same can be said about the total, classical and
quantum correlations built up in $̂m, as we shall see next.

4.2. Total, Quantum and Classical Correlations

To begin with, recall that any state $̂ 6= ρ̂(S) ⊗ ρ̂(A) is said to be correlated and that its total
correlation content can be measured with the quantum mutual information:

I($̂) ≡ S(ρ̂(S)) + S(ρ̂(A))− S($̂) (13)

Now, let us consider a separable state of the form $̂ = ∑i pi ρ̂
(S)
i ⊗ Π̂(A)

i , where Π̂(A)
i ≡ |iA〉 〈iA|

is a shorthand for the projectors onto the non-degenerate eigenstates of some observable ÔA acting
on A. In this particular case, one can alternatively write the mutual information as:

I($̂) = S(ρ̂(S))− S($̂|{Π̂(A)
i }), (14)

where S($̂|{Π̂(A)
i }) ≡ ∑i S

(
Π̂(A)

i $̂Π̂(A)
i
)
= ∑i pi S(ρ̂(S)i ) is the average of the entropies of the states

Π̂(A)
i $̂Π̂(A)

i /tr{Π̂(A)
i $̂}, resulting from a local measurement of ÔA, weighted by the corresponding

probabilities for each measurement outcome (i.e., tr{Π̂(A)
i $̂}). However, the existence of a complete

local projective measurement, which leaves the marginal ρ̂
(S)
m unperturbed (that is, such that

trA{∑i Π̂(A)
i $̂Π̂(A)

i } = ρ̂
(S)
m ), is a specific property of our state $̂ = ∑i pi ρ̂

(S)
i ⊗ Π̂(A)

i . Such
measurement usually cannot be found for an arbitrary bipartite separable state. Consequently, one
generally finds that I($̂) > S(ρ̂(S))− S($̂|{Π̂(A)

i }) for any choice of {Π̂(A)
i }.

One may say that the fact that any local measurement on A produces a disturbance on the
marginal of S is a genuinely non-classical feature of the bipartite state $̂. One may quantify this
departure from classicality by defining the quantum discord [44] δA($̂) to be:

δA(ρ̂) ≡ I($̂)− sup
{Π̂(A)

i }

[
S(ρ̂(S))− S($̂|{Π̂(A)

i })
]

. (15)

One may as well define the classical share of correlations simply as CA($̂) = I($̂) − δA($̂) [45].
Note that both δ and C are generally asymmetric, e.g., even if the state $̂ = ∑i pi ρ̂

(S)
i ⊗ Π̂(A)

i is
classically correlated with respect to local measurements on A, it may have non-zero discord with
respect to measurements on S (i.e., δS($̂) > 0). Most importantly, note that even if all entangled
states are discordant, non-zero discord may be readily found also in separable states. For this reason,
discord is said to be an indicator of quantumness beyond entanglement.

Several alternative measures of discord have been proposed over the last few years [77], and
the role of discord-type correlations in applications, such as quantum communication, cryptography
and metrology, has been investigated [78–82]. From a thermodynamic perspective, discord captures
the additional work extractable from correlated quantum systems by quantum Maxwell’s demons, as
compared to classical ones [83].

In Figure 3b, we represent the quantum mutual information I($̂m). We shall omit here its lengthy
analytical expression, which is reported in the Appendix. Instead, we will only note that, similarly
to the entanglement, the total and classical correlations are globally maximized as {ϕ, εA} → {π

2 , 1},
which does not coincide with the optimal working points according to neither χ nor ε or η.

Interestingly, the situation is quite different when the quantum share of correlations is considered
instead, as illustrated in Figure 3c. While its evaluation is challenging in general, the quantum discord
in our post-measurement state $̂m can be evaluated analytically from the definition in Equation (15):

δA,S($̂m) ≡ δ($̂m) = εS arctanh εS +
1
2

log

(
ε2
S − 1

ε2
S cos2 ϕ− 1

)
+

1
2

εS cos ϕ log
(

1− εS cos ϕ

1 + εS cos ϕ

)
. (16)
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As we can see, the quantum correlations between registers and ancillas after the measurement
step are symmetric under the exchange of the parties. It is also noteworthy that δ($̂m), at variance
with the entropy reduction rate P , does not depend on the polarization bias of the ancillary
spins εA, but only on εS and the measurement direction ϕ. Crucially, this implies that the
performance characteristics introduced in Section 3.2 are all curves of constant discord. In particular, the
maximization of δ($̂m) at fixed εS occurs now as ϕ → π

2 , which is compatible with the optimization
of the objective function χ, as well as that of the COP and η. This observation is suggestive
of a deep connection between quantum discord and the thermodynamic performance of the spin
refrigeration cycle: while all figures of merit increase monotonically with the total, classical and
entangled correlations at fixed entropy production rate, only the quantum share of correlations is
seen to grow monotonically with χ, ε and η at any cooling load P .

The red-dashed and white-dotted lines in Figure 3c that delineate the cooling window and
the region of work extraction during the feedback stage, respectively, are however clearly not
iso-discordant. To see this, just note that the condition for cooling sin ϕ > εS/εA and the formula
for the critical angle ϕcrit in Equation (7) depend explicitly on εA. Hence, as was the case for
entanglement, one cannot conclude that the build-up of a certain amount of quantum correlations
unambiguously heralds the transition into these important regimes of operation.

At most, one can try to find the minimum quantumness of correlations required for effective
cooling. The discord δmin at the limiting setup sin ϕ = εS can be easily found from Equation (16).
Then, one can claim that cooling is guaranteed in all protocols achieving δ($̂m) > δmin. In the case
depicted in Figure 3c (i.e., εS = 0.4), δmin ' 1.35× 10−2 nats, which roughly corresponds to the first
contour line.

5. Conclusions

In this paper, we have analysed a simple, open-system entropy-reduction algorithm from
two complementary viewpoints. On the one hand, we have evaluated the energy changes throughout
the process, identifying the input workW , the entropy reduction per cycle P and the residual heating
of the environment Q. Equipped with these thermodynamic variables, we have looked into the
performance optimization of the protocol, borrowing tools from thermal engineering. Specifically, we
have introduced the coefficient of performance ε = P/W in order to assess the energy efficiency
of the cycle and an alternative figure of merit χ = εP that balances the energy efficiency and the
effectiveness of the process. The maximization of either of these objective functions allows one to
identify thermodynamically optimal working points in the space of parameters of the cycle.

On the other hand, we have studied the correlations built up between the system of interest
and the external controller. In particular, we wanted to elucidate the connections linking those
correlations to the performance optimization of the algorithm. Interestingly, we have found that
for every choice of the measurement basis in which the controller interrogates the system, the
quantum share of correlations, as measured by quantum discord, remains constant regardless of
the entropy reduction rate P , since it does not depend on the polarization bias of the ancillary
spins εA. Likewise, discord increases monotonically as the performance of the cycle is optimized
in terms of the measurement direction. In contrast, neither the total correlations, nor their classical
share relate so neatly with the figures of merit ε or χ, and specifically, they do not attain their
global maxima at thermodynamically-optimal working points. Exactly the same can be said about
quantum entanglement, which is another (somewhat more stringent) quantifier of the quantumness
of correlations. We have also obtained the minimum amount of discord between the system and
controller necessary for effectively cooling the system.

This intriguing connection between thermodynamic performance and quantum correlations
beyond entanglement poses the question of whether or not the latter act conclusively as resources in
simple cooling protocols, such as the one considered here, or, more generally, in measurement-based
quantum feedback control tasks. This open question certainly deserves detailed examination: it
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is not only relevant for practical applications of control theory in the rapidly developing field of
quantum technologies, but also, from a more fundamental perspective, it may help to further clarify
the role of quantum effects in thermodynamics and, broadly speaking, in the regulation of complex
phenomena [84].
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Appendix: Explicit Formula for the Quantum Mutual Information

The analytical expression of the mutual information after the (pre-)measurement reads:

I($̂m) =−
1
2

log
(

1− εSεA cos ϕ

4

)
− 1

2
log(εSεA cos ϕ + 1)− εSεA cos ϕ arctanh(εSεA cos ϕ)−

− 1
2

log
(

1− εS cos ϕ

4

)
− 1

2
log(εS cos ϕ + 1)− εS cos ϕ arctanh(εS cos ϕ)−

− 1
4
(1− εS)(εA − 1) log

(
1
4
(εS − 1)(εA − 1)

)
−

− (εS + 1)(εA − 1) log
(
−1

4
(εS + 1)(εA − 1)

)
−

− 1
4
(εS − 1)(εA + 1) log

(
−1

4
(εS − 1)(εA + 1)

)
+

+ (εS + 1)(εA + 1) log
(

1
4
(εS + 1)(εA + 1)

)
.
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