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Abstract. Biases in absorption coefficients measured using a
filter-based absorption photometer (Tricolor Absorption Pho-
tometer, or TAP) at wavelengths of 467, 528 and 652 nm are
evaluated by comparing to measurements made using pho-
toacoustic spectroscopy (PAS). We report comparisons for
ambient sampling covering a range of aerosol types includ-
ing urban, fresh biomass burning and aged biomass burning.
Data are also used to evaluate the performance of three dif-
ferent TAP correction schemes. We found that photoacous-
tic and filter-based measurements were well correlated, but
filter-based measurements generally overestimated absorp-
tion by up to 45 %. Biases varied with wavelength and de-
pended on the correction scheme applied. Optimal agree-
ment to PAS data was achieved by processing the filter-
based measurements using the recently developed correc-
tion scheme of Miiller et al. (2014), which consistently re-
duced biases to 0%—18 % at all wavelengths. The biases
were found to be a function of the ratio of organic aerosol
mass to light-absorbing carbon mass, although applying the
Miiller et al. (2014) correction scheme to filter-based ab-
sorption measurements reduced the biases and the strength
of this correlation significantly. Filter-based absorption mea-
surement biases led to aerosol single-scattering albedos that
were biased low by values in the range 0.00-0.07 and ab-
sorption Angstrom exponents (AAEs) that were in error by
£ (0.03-0.54). The discrepancy between the filter-based and

PAS absorption measurements is lower than reported in some
earlier studies and points to a strong dependence of filter-
based measurement accuracy on aerosol source type.

1 Introduction

Aerosol-radiation interactions are estimated to contribute a
global mean effective radiative forcing of —0.45 (—0.95 to
40.05) W m~2, offsetting a potentially significant but poorly
constrained fraction of the positive effective radiative forc-
ing associated with greenhouse gases (2.26 to 3.40) Wm™?2
(Myhre et al., 2013a). One of the major factors governing
the uncertainty in estimates of aerosol direct radiative forc-
ing is the poorly constrained aerosol single-scattering albedo
(SSA), defined as the ratio of aerosol scattering to total ex-
tinction (Loeb and Su, 2010; McComiskey et al., 2008; Sher-
man and McComiskey, 2018). Accurate determination of
aerosol SSA is limited by uncertainties in aerosol absorp-
tion estimates, which could potentially be underestimated by
up to a factor of 2 in global climate models (Shindell et al.,
2013; Stier et al., 2007).

The main types of absorbing aerosol include black car-
bon (BC) and light-absorbing organic carbon, commonly re-
ferred to as brown carbon (BrC) (e.g. Myhre et al., 2013a).
On a global scale, aerosol absorption is dominated by BC,
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a carbonaceous product formed during incomplete combus-
tion, which may exert the next largest positive radiative forc-
ing after carbon dioxide (Stocker et al., 2013). BC absorbs
strongly across visible wavelengths and contributes an esti-
mated 0.71 (0.09 to 1.26) W m~2 to aerosol direct radiative
forcing (Bond et al., 2013). In recent years, BrC has received
increasing attention as a climate-forcing agent (e.g. Feng et
al., 2013). Sources of BrC include primary emissions during
biomass and biofuel combustion as well as secondary pro-
duction via photo-oxidation of volatile organic compounds
(Andreae and Gelencsér, 2006; Wang et al., 2018). BrC
has been found to absorb strongly towards ultraviolet wave-
lengths, although the strength and wavelength dependence of
this absorption is uncertain, due in part to the wide range of
compounds that this term encompasses, many of which are
poorly characterised (Andreae and Gelencsér, 2006; Lack et
al., 2012b; Pokhrel et al., 2017). Climate models generally
only crudely represent the optical properties of BC and BrC
and their evolution with time. For example, while the Met Of-
fice Hadley Centre HadGEM3 model treats the internal mix-
ing of aerosol components, the real and imaginary parts of
the refractive index of organic carbon that are used to cal-
culate the radiative properties of the composite aerosol are
fixed (e.g. Johnson et al., 2016). In order to address this de-
ficiency, stronger observational constraints are first required
(e.g. Alexander et al., 2008; Bond et al., 2013; Liu et al,,
2014; Myhre et al., 2013b; Saleh et al., 2014; Wang et al.,
2018).

Over the course of several decades, filter-based absorption
photometry has been used to measure aerosol absorption co-
efficients. The approach has considerable benefits including
that it is relatively inexpensive, portable and capable of unat-
tended measurements for long periods of time (Baumgard-
ner et al., 2012). Filter-based instruments measure the light
transmittance across a filter continuously, which changes as
particles are deposited onto the filter, providing a measure
of aerosol absorption (see Sect. 2.1) (e.g. Bond et al., 1999).
Absorption coefficients determined using filter-based absorp-
tion photometry can be subject to measurement artefacts due
to (i) scattering of light away from the light detector lead-
ing to erroneous apparent absorption and (ii) enhanced ab-
sorption as particles are deposited onto the filter (Bond et
al., 1999). The latter leads to multiple scattering between
the particles and the filter medium, providing multiple op-
portunities for absorption. The enhancement is complex to
characterise and depends on the filter loading such that an
increase in the number of deposited absorbing particles re-
duces the multiple scattering between the filter and particle
layers (Bond et al., 1999; Liousse et al., 1993; Weingartner et
al., 2003) leading to lower absorption coefficients for highly
loaded filters (Weingartner et al., 2003). The sensitivity of
filter-based absorption photometers is also affected by the
penetration depth of particles within the filter matrix, which
depends on particle size (Moteki et al., 2010; Nakayama et
al., 2010). A number of empirical and semi-empirical correc-
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tion schemes have been derived to correct for the aforemen-
tioned artefacts. This study will focus on correction schemes
derived for use with glass-fibre Pallflex E70-2075W filters
that have been used widely with the Particle Soot Absorption
Photometer (PSAP, Radiance Research) (Bond et al., 1999;
Miiller et al., 2014; Virkkula, 2010; Virkkula et al., 2005).
These correction schemes are also valid for similar instru-
ments using this filter substrate, for example the Tricolor Ab-
sorption Photometer (TAP, Brechtel Manufacturing) used in
this study and described in Sect. 2.2.2 (Ogren et al., 2017).

Another potentially significant measurement artefact is
due to liquid-like organic aerosols spreading across the fil-
ter fibres (Lack et al., 2008). The mechanisms proposed for
this artefact include a change in the physical shape and there-
fore optical properties of deposited particles, or a coating ef-
fect whereby deposited particle absorption is enhanced via
a lensing effect (Cappa et al., 2008; Lack et al., 2008; Sub-
ramanian et al., 2007). Although recognised as potentially
significant, there are no empirical corrections to account for
these artefacts.

Previous work has examined the magnitude of biases in
filter-based absorption measurements. For example, Lack
et al. (2008) found PSAP absorption coefficients were bi-
ased high in the range 12 % to over 200 % at 532 nm com-
pared to photoacoustic spectroscopy (PAS) measurements
for aerosols over the Gulf of Mexico, which included BC,
nitrate, sulfate and organic aerosols from shipping emis-
sions. The PSAP biases were found to be positively cor-
related to the organic aerosol mass concentration and even
more strongly correlated to the ratio of the organic aerosol to
light-absorbing carbon mass. To verify these measurements,
Cappa et al. (2008) performed laboratory experiments using
secondary organic aerosol (SOA) derived from the ozonoly-
sis of o-pinene, which had a SSA >0.998 at 532 nm. A key
finding of this study was that for external mixtures of SOA
and soot, the PSAP absorption could be biased high by a fac-
tor 2.6, consistent with the findings of Lack et al. (2008).
Cappa et al. (2008) also found that the magnitude of the ab-
sorption bias was strongly dependent upon the filter trans-
mittance and that the bias was both immediate (clean filter)
and cumulative (filter previously exposed to absorbing ma-
terial). The results from both of these studies (Cappa et al.,
2008; Lack et al., 2008) were independent of the correction
scheme applied (Bond et al., 1999; Virkkula et al., 2005).

More recently, Subramanian et al. (2010) derived the BC
mass absorption coefficient (MAC) at 660 nm for fresh and
1-2d old aerosol emissions in and around Mexico City by
dividing the absorption coefficients measured using a PSAP
by the refractory BC mass concentrations measured using
a single-particle soot photometer (SP2, Droplet Measure-
ment Technologies). For the fresh emissions, they found a
~ 50 % enhancement in their measured BC MAC relative to
the value reported by Bond and Bergstrom (2006), whose
review was based on an extensive range of measurements.
The BC MAC bias was attributed in part to an overestima-
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tion of the absorption coefficients measured by the PSAP
due to externally mixed liquid-like organic matter. However,
the BC MAC values for the relatively thickly coated, aged
BC further from the city were in line with those estimated
by Bond and Bergstrom (2006), which the authors suggested
may indicate that biases in filter-based measurements relat-
ing to high organic aerosol loading may only be present when
organic aerosol is externally mixed with BC (Subramanian et
al., 2010).

Using a similar methodology, McMeeking et al. (2011)
derived the BC MAC at 550 nm using PSAP and SP2 mea-
surements for urban pollution aerosols around the UK, re-
porting organic aerosol mass concentrations in the range 1—
7 ug m—3. The work by Lack et al. (2008) indicates that a pos-
itive absorption bias of up to 50 % would be expected at these
loadings; however, no bias in the BC MAC was observed.
McMeeking et al. (2011) postulated that this result could
be due to limitations in the PSAP and SP2 measurements
or a physical effect whereby absorption enhancements due
to coatings were offset by the collapse of fractal BC aggre-
gates (McMeeking et al., 2011). Indeed, another explanation
for this discrepancy could have been that the organic aerosol
sampled here was not quasi-liquid like and contributed dif-
ferent biases to those seen in previous studies.

Biases in filter-based absorption photometry measure-
ments can limit the accurate determination of key climate-
relevant parameters including, for example, the aerosol SSA
and absorption Angstrém exponent (AAE) (e.g. Sherman and
McComiskey, 2018). Mason et al. (2018) compared PAS to
filter-based absorption measurements of wildfires and agri-
cultural fires over the continental United States during Au-
gust and September 2013, which included a PSAP and a con-
tinuous light absorption photometer (CLAP) (Ogren et al.,
2017). All PSAP and CLAP data were corrected using the
Bond et al. (1999) and Ogren (2010) corrections. Biases in
filter-based measurements were evaluated by comparison to
PAS measurements, which were in the range 0.61 to 1.24, de-
pendent on measurement wavelength (405, 532 and 660 nm).
Mean SSA and AAE values derived using filter-based ab-
sorption photometry were found to be in error by up to 0.03
and 0.7, respectively, compared to PAS.

Further, Backman et al. (2014) assessed the sensitiv-
ity of the PSAP-derived AAE to the Bond et al. (1999)
and Virkkula (2010) correction schemes for measurements
recorded on the central Highveld in South Africa, where
emissions were dominated by fossil-fuel burning activities
including from coal-fired power plants. They found that
the AAE varied between 1.34 and 1.96, dependent upon
the PSAP correction scheme applied, which led to different
conclusions regarding the aerosol composition and source
(Backman et al., 2014).

Despite this body of previous work, there remains signif-
icant uncertainty related to the magnitude of biases in filter-
based absorption measurements, particularly regarding de-
pendence on source type and the correction scheme applied.
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The aim of this study is to address this gap. We assess bi-
ases by comparing absorption coefficients determined using
multi-wavelength TAP and photoacoustic instruments dur-
ing a series of research flights aboard the UK Facility for
Airborne Atmospheric Measurements (FAAM) BAe-146 air-
craft. Aerosol sources sampled include urban aerosol emis-
sions over London, fresh biomass burning aerosol (BBA)
over West Africa and aged BBA over the Southeast Atlantic
Ocean (see Fig. 2). We follow the methodology of Lack et
al. (2008) by looking at the absorption biases as a func-
tion of organic aerosol concentration, extending their study
by looking at a greater range of wavelengths and aerosol
sources as well as evaluating additional correction schemes,
namely those developed by Virkkula (2010) and Miiller et
al. (2014). We then assess the impact that biases in filter-
based absorption photometry have on the aerosol SSA and
AAE. This is the first study to simultaneously evaluate the
Bond et al. (1999), Virkkula (2010) and Miiller et al. (2014)
correction schemes for ambient aerosol sampling across mul-
tiple aerosol types.

2 Methodology and measurements
2.1 Principles of filter-based absorption photometry

Filter-based absorption photometers measure the light trans-
mitted through a filter as particles are deposited onto the filter
such that the attenuation can be defined as

[=—1 I 1
—‘“(z)’ o

where I and [, are the intensities of light transmitted through
afilter corresponding to a sample spot (i.e. an area of the filter
with deposited aerosols) and reference spot (i.e. an area of
the filter without deposited aerosols), respectively (Ogren et
al., 2017). The attenuation coefficient can thus be determined
using

b = A1+ an— 1)) 2)
® QAL ’
where A is the area of the aerosol deposited onto a filter, Q is
the flow rate of the aerosol-laden stream pulled through a fil-
ter, At is the time between successive measurements of light
attenuation, and 7 (¢) and I (t + At) are the light attenuations
at times ¢ and ¢ 4+ At (Ogren et al., 2017). To correct bg%w for
apparent and enhanced absorption, we applied the correction
schemes developed by Bond et al. (1999), Virkkula (2010)
and Miiller et al. (2014), which will be referred to as bgpl999,

by 010 and MO respectively. See Sect. 2.1.1-2.1.3. The
code used to run the analysis presented in this paper, i.e. re-
lating to the equations presented throughout this section, was
implemented in Python.
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2.1.1 The Bond et al. (1999) correction scheme (B1999)

The Bond et al. (1999) correction scheme was developed em-
pirically by comparing PSAP absorption coefficients to ref-
erence absorption coefficients determined using the differ-
ence between extinction as measured by an optical extinction
cell and scattering coefficients measured using a nephelome-
ter. Calibration aerosols included polydisperse nigrosin and
ammonium sulfate. This correction scheme was updated by
Ogren (2010). Bond et al. (1999) found that

b ? = f(Tr) by — sbyp, 3)
with
f(Tn) o5 “)
r)= s
K (1.0796Tr +0.71)
- ! )
s = Kz’

and where by, is the scattering coefficient, K1 = 0.02, K> =
1.22 and Tr is the normalised filter transmittance, defined as
(Ogren et al., 2017)

L L/
KO)/10)°

This correction scheme was derived at the wavelength
550nm and is generally assumed to apply over the entire
range of visible wavelengths, though there is no empirical
basis for this (Bond et al., 1999; Ogren, 2010).

Q)

2.1.2 The Virkkula (2010) correction scheme (V2010)

The Virkkula et al. (2005) correction scheme and the sub-
sequent Virkkula (2010) erratum were derived for the PSAP
wavelengths 467, 530 and 660 nm, which is reflected by the
f (Tr, &) term described below. The scheme was derived by
comparing absorption coefficients determined using a multi-
wavelength PSAP to those measured using either photoa-
coustic spectroscopy or to absorption derived by subtract-
ing scattering from extinction measurements (Virkkula et al.,
2005). Calibration aerosols included kerosene soot, graphite,
diesel soot, ammonium sulfate and polystyrene latex spheres.
Virkkula (2010) proposed that

byl = f (Tr, \) b — sbgp, )
where
£ (Tr, 1) = ko + k1 (ho + h1wo) In (Tr) (8)

and where ko, k1, ho, h1 and s are wavelength-dependent
constants and wy is the wavelength-dependent SSA. The val-
ues of the constants used in this study were taken directly
from Table 1 in Virkkula (2010) and are provided in Table 1.
The wavelengths at which these constants were derived dif-
fer to those used in the TAP by 2 and 8 nm at the green and
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Table 1. The values of the constants used in the Virkkula (2010)
correction scheme (Virkkula, 2010).

467nm  530nm  660nm  Average
ko 0.377 0.358 0.352 0.362
ky  —0.640 —-0.640 —-0.674 —0.651
ho 1.16 1.17 1.14 1.159
hy —0.63 —0.71 —-0.72 —0.687
s 0.015 0.017 0.022 0.018

red wavelengths, respectively. It is unclear how these con-
stants depend on wavelength. To assess the impact that this
wavelength mismatch might have on the absorption coeffi-
cients derived using the V2010 correction scheme, the single-
wavelength V2010 constants were also applied to TAP mea-
surements. These were taken from Table 1 in Virkkula (2010)
and are provided in the fifth column of Table 1. This was
found to have a moderate impact on the results of this study
as discussed in Sect. 3. The Virkkula (2010) correction is
an iterative correction scheme due to its dependence on
the SSA. Hence the algorithm was run 10 times for each
time step, which was sufficient for the absorption coefficient
to converge to a single value with a precision better than
0.001 Mm~".

2.1.3 The Miiller et al. (2014) correction scheme
(M2014)

The constrained two-stream (CTS) algorithm developed by
Miiller et al. (2014) includes a two-stream radiative transfer
model that explicitly accounts for the optical properties of
the filter substrate and deposited particles and is constrained
by either the Bond et al. (1999), Virkkula et al. (2005) or
Virkkula (2010) parameterisations. This section covers the
key equations from Miiller et al. (2014) to show how they
have been implemented in this study and the reader is re-
ferred to Miiller et al. (2014) for a full derivation. The M2014
correction scheme makes use of the relationship between the
absorption coefficient and the change in particle absorption
optical depth, §,p, on the filter medium between two mea-
surements separated by a time step At, as represented by

B0 — & (Bap(t + AL) = 85p(1)). )
For each time step, 8, was calculated iteratively by minimis-
ing the difference between the measured total optical depth,
St (filter 4 particles), and the relative optical depth, dcrs,
which is the change in total optical depth of the filter sys-
tem after collecting a particle relative to the unloaded filter.
A Newton-type solver was applied, as suggested by Miiller
et al. (2014), and required 10 iterations to converge to a
precision better than 0.001 Mm~!. 8t was calculated from
measurements of the filter, with and without aerosol, using
Eqg. (1). The equations outlined in Miiller et al. (2014) were
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used to calculate dcts and are included here for clarity.

F{™8gp+ Fg P84p
mod
Fy

dcts = , (10)

where dyp, is the particle scattering optical depth, calculated
using

A
Qt}}wo (11

_(1n(5sp)+a§ )4
F® =as+ (ao+aigp)e N 74 ) (12)

where ap=0.1509, a; =—-0.1611, ap =4.5414, a3z =
—5.7062, ag = —1.9031, a5 =0.01 and g, is the average
weighted particle asymmetry parameter (see Eq. 24). Using
the B1999 empirical correction,

1 ec283p+ln(cl+cz) —c1
exp _
F, 81999 = %m( ) 13

2

where ¢ =1.555 and ¢p = 1.023, which were derived in
Bond et al. (1999); see the alternative formulation of the
B1999 correction in Miiller et al. (2014). Alternatively, us-
ing the V2010 empirical correction,

1 Ccl 2 28, 1
exp P
Fo o0 = % ( ) - + , (14)

cohy cohy  chg

where c1, ¢2, ho, b1 and s correspond to the wavelength-
dependent constants ko, ki, hg, h1 and s as defined in
Sect. 2.1.2, corresponding to the Virkkula (2010) parameter-
isation. Finally,

F;md (Sapv Ssp. gp)

_ 8 (8ap =0.85p. 8p) +8 (8ap. 8sp = 0. gp)

8 (‘SavaSp’gp) ’ >
where
8 (8ap: 8sp» 8p) = —In (T2L (8ap. O5p. 8p))
+1n(Tar, (8ap = 0,89 = 0,85 = 0)), (16)
T L — a”
I-Ri(1-T1T)

and 77 and T, represent the filter transmittances of the
particle-loaded and particle-free layers, respectively. These
are represented by layers 1a and 1b in Miiller et al. (2014), re-
spectively. The filter transmittance and reflectance are given
by

T = 2 (18)
~ [2—wo(1+g)]sinh (K8, /111) /K +2cosh (K. /1i1)

and

R— @ (1 —g)sinh (Kée /1) /K (19)

[2—wo(1+g)]sinh(K8e/1n1) /K +2cosh (K Se /1)’
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where
8¢ = X 0st + 8sp + X 8af + Bap’ (20)
K =/(1—wo) (1—wog), @1)
8 )
wp = X0sf + Ogp ’ 22)
X 8sf + sp + X Baf + Sap
and
= X858t + gpdsp 23)
X st + Osp

The filter scattering optical depths used in this study were
8287 =176, §33° = 7.69 and §5° =7.34 and the filter ab-
sorptlon optlcal depths used were 8467 0.033, 8;30 0.038
and 8660 =0.019, as measured by Muller et al. (2014) for the
same type of filters. Small differences between wavelengths
that the filter optical properties were measured at by Miiller
et al. (2014) (467, 530, 660 nm) compared to those at which
the TAP measures (467, 528, 652 nm) were assumed to be
negligible. Following the nomenclature of M2014, for filter
layer 1 (the particle-loaded filter layer) xy = 0.2 and for layer
2 (the unloaded filter layer) x = 0.8. This assumes that the
particle penetration depth into the filter was 20 % and ac-
counts for the fractional filter optical depths corresponding
to each layer. The value used for 11 was 1/+/3. The value &p
is the average weighted asymmetry parameter of all particles
deposited onto the filter, given by

ZbSng
gp ’
stp
1

(24)

where i represents the ith ensemble of particles with scatter-
ing coefficient bép. Equation (24) is a practical way to apply
Eq. (5) presented in Miiller et al. (2014), who instead used an
equivalent method, which utilised individual particle scatter-
ing cross sections (as opposed to ensemble scattering coef-
ficients). We used Eq. (24) as opposed to the recommended
formulation because nephelometer measurements represent
an ensemble. In this study, bulk asymmetry parameters (i.e.
corresponding to an ensemble of particles) were calculated
for each time step using the parameterisation

8p = —6.34Thp, 4o +6.906bp,s o — 3-85%back—sp
+0.9852, (25)

where bpyck—sp is the backscattering ratio measured using a
nephelometer (Moosmiiller and Ogren, 2017).

To confirm the accuracy of the implementation of the
M2014 algorithm used during this analysis, Eqgs. (16)—(23)
were used to reproduce the results in Fig. 6 of the Miiller
et al. (2014) study, which were verified against intermediate
results (Thomas Miiller, personal communication, 2016).
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2.2 Measurements and instrumentation

All measurements presented in this study were made aboard
the UK’s BAe-146-301 large Atmospheric Research Aircraft
(ARA) operated by the Facility for Airborne Atmospheric
Measurements (FAAM; https://www.faam.ac.uk/, last ac-
cess: 17 June 2019). The aircraft is capable of carrying three
crew members, 18 scientists and a total scientific payload
of up to 4000kg with a range up to 3700 km. This sec-
tion provides information on the filter-based, photoacoustic,
nephelometer and aerosol composition instrumentation used
aboard the aircraft and introduces the environments in which
measurements were made.

2.2.1 Aerosol sampling and conditioning

An important strength of this dataset is that the TAP, PAS
and cavity ring-down spectrometer (CRDS) instruments used
to sample aerosol optical properties all shared a common
sample inlet and were subject to the same flow condition-
ing. Aerosols were drawn into the aircraft through a modified
Rosemount inlet (Trembath et al., 2012). The aerosol-laden
stream was first dried to <20 % relative humidity (Perma-
pure, PD100T-12MSS) and then passed through a scrub-
ber (MAST Carbon) to remove absorbing gaseous impurities
such as ozone and nitrogen dioxide. An impactor removed
particles with aerodynamic diameter > 1.3 um (Brechtel, cus-
tom design). A series of flow splits (Brechtel 1110 and 1104)
evenly distributed the aerosol-laden stream between the suite
of instruments, which each sampled the aerosol at a flow rate
of 1 Lmin~!, as shown in Fig. 1. All measurements were cor-
rected to standard temperature and pressure (PAS, CRDS and
TAP: 20°C and 1013 mbar).

2.2.2 Tricolor Absorption Photometer

The TAP is a commercially available (Brechtel) version
of the continuous light absorption photometer (CLAP), de-
scribed by Ogren et al. (2017). The TAP comprises eight
sample filter spots and two reference filter spots. The aerosol-
laden air passes through one sample spot at a time, which
allows for 8 times the filter lifetime compared to single-spot
photometers. The filtered air is recirculated through one of
the reference spots to enable the attenuation calculation (see
Eq. 1) (Ogren et al., 2017). Upon reaching a predefined fil-
ter transmittance set point, the TAP automatically changes
to the next available sample filter spot. We used 47 mm di-
ameter Pallflex (E70-2075W) glass-fibre filters, which were
nominally identical to the filters used to derive the correction
schemes applied in this study (see Sect. 2.1.1-2.1.3). The
TAP provides measurements at three wavelengths with peaks
centred at 467, 528 and 652 nm, which allows the spectral
dependence of climate-relevant parameters such as the SSA
and AAE to be evaluated (Sect. 3.3). The LEDs are cycled
through each wavelength once per second, providing absorp-
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tion measurements at 1 Hz at all wavelengths. The inlet of
the TAP is heated to 35.2 £ 0.2 °C to minimise the effects of
changing temperature and to prevent water condensing onto
the filter. The built-in digital low-pass filter was disabled in
all of our measurements to enable calculation of the absorp-
tion coefficients from the raw photodiode measurements, as
it was unclear how the low-pass filter impacted the measure-
ments. To understand the impact of this on instrument sen-
sitivity, the TAP was run for ~ 3 h in the laboratory while
it sampled filtered room air to characterise the noise in the
system. Uncorrected attenuation coefficients, b;‘I’)W, were cal-
culated at 1 Hz, and the average and standard deviation for
each time interval Az (1 < At < 1000 s) were calculated. The
lo detection limits at 30s averaging time were 0.71, 1.37
and 0.89 Mm ! at wavelengths 652, 528 and 467 nm, respec-
tively. Ogren et al. (2017) calculated the mean lo detection
limit for their 28 instruments over all three wavelengths to
be 0.33Mm™'. The difference between the detection lim-
its measured in this study, and that presented in Ogren et
al. (2017) could be due to running without low-pass digi-
tal filtering in the current study and/or differences between
the TAP and CLAP. TAP internal particle losses were esti-
mated to be <1 % for particles with diameters in the range
0.03-2.5 um (Ogren et al., 2017).

To determine the areas of the spots resulting from parti-
cle deposition onto the filter, nigrosin (Sigma Aldrich, prod-
uct number 198285-100G) was atomised from solution, dried
to < 10 % relative humidity using a silica gel diffusion drier
(Topas, DDU-570) and sampled by the TAP. The areas of
the eight sample spots were determined by measuring the
number of pixels corresponding to the diameters in a mag-
nified digital photograph, which yielded areas in the range
32.4-36.8 mm?. The manufacturer-recommended spot sizes
are 30.7210 mm?. Filter spot sizes were determined using ni-
grosin rather than from the ambient aerosol samples them-
selves as the spot edges were more clearly defined. The spot
edges of the deposited ambient aerosol were difficult to de-
tect as the filter spot was changed at the start of each day
when measurements were taken. It was possible to detect
the aerosol spot for measurements that corresponded to high
loadings of absorbing aerosol. In these cases there was evi-
dence of aerosols spreading across the filter and the area of
the spots was larger by 5 %—20 %. However, this observation
is based on a limited sample of three aerosol spots and the
timescale for spread across the filter is unclear. This analysis
used the areas determined using the clearly defined nigrosin
spots and therefore provides a lower limit of area, absorption
coefficient (see Eq. 2), and as will be shown in Sect. 3, the
TAP absorption bias.

2.2.3 Photoacoustic and cavity ring-down
spectrometers

The photoacoustic and cavity ring-down spectrometers used
in this study were based on the designs by Lack et al. (2012)
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Figure 1. Schematic diagram highlighting the flow conditioning and how the aerosol-laden stream was distributed between the PAS and
CRDS cells and the TAP. All PAS and CRDS wavelengths were centred at 405, 514 and 658 nm respectively.

and Langridge et al. (2011), respectively, and are described
in detail in Davies et al. (2018) and Szpek et al. (2019).
PAS measures absorption directly for aerosols in their sus-
pended state (Arnott et al., 1999). The PAS principle relies
on converting energy from a light source into sound. Light-
absorbing media, such as aerosol, transfer electromagnetic
energy into thermal energy that heats the surrounding air.
This gaseous heating generates a pressure wave, which is de-
tected by a microphone located within the PAS cell. The am-
plitude of the microphone signal is related to the sample ab-
sorption coefficient through calibration (Arnott et al., 1999;
Davies et al., 2018; Moosmiiller et al., 2009).

Much of this analysis relies on accurate PAS absorption
measurements and thus we focus here on describing the un-
certainty associated with these measurements. The total PAS
measurement uncertainty is comprised of the measurement
precision and accuracy. The PAS measurement precision was
derived by evaluating the minimum sensitivities of the suite
of PAS instruments in a similar way to the TAP, as described
in Sect. 2.2.2, and were in the range 0.01-0.06 Mm~! for
30s averaging across the range of cells used. The minimum
sensitivities of the suite of CRDS cells were evaluated in the
same way and were found to be 0.02-0.05 Mm~! across the
range of cells used.

The accuracy of PAS absorption measurements was deter-
mined primarily by three factors: (i) uncertainty in the ozone
calibration, (ii) uncertainty in corrections applied to account
for the PAS microphone pressure sensitivity and (iii) uncer-
tainty in subtraction of background noise which arose pri-
marily from laser heating of the PAS cell optical windows.
We consider each of these in turn below.

The accuracy of the PAS ozone calibration has previously
been evaluated in laboratory experiments that compared
measured and modelled absorption and extinction cross sec-
tions of strongly absorbing nigrosin aerosol. This analysis
showed the PAS calibration accuracy to be better than 8 %
and the accuracy of the CRDS instruments used in this study
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to be better than 2 % (Davies et al., 2018). Moreover, our re-
cent work has demonstrated that the calibration accuracy of
PAS using ozone is optimal when the gas-phase composition
closely resembles that of ambient air (Cotterell et al., 2019),
as is the case for calibrations performed for this work.

The second source of PAS measurement uncertainty was
due to the PAS microphone sensitivity to pressure, which
was evaluated by performing ozone calibrations at several
pressures in the range 600-1000 mbar (typical of those en-
countered during airborne operation). The measured PAS mi-
crophone sensitivities were fit to a linear trend across this
range and normalised to yield a correction factor that varied
from 0.83 (600 mbar) to 1.00 (1000 mbar). The uncertainty
introduced by applying this pressure-dependent correction to
PAS calibrations was estimated by propagating the lo fit-
ting uncertainties in the linear regression between the cali-
bration factors to in-flight PAS measurements, which led to
uncertainties in PAS absorption coefficient measurements of
0.0 %—1.2 %. The smallest uncertainties were associated with
measurements around 1000 mbar where there was no correc-
tion applied and the largest for relatively low pressures where
the largest correction was applied.

The third source of PAS measurement uncertainty was due
to subtraction of window-generated background noise, which
is unstable for airborne operation due to its dependence on
pressure. To account for this, in-flight background noise is
typically characterised by periodically measuring a filtered-
air stream for 30 s every 300 s. These measurements are then
used post-flight to derive a background correction as a func-
tion of pressure. To evaluate the uncertainty introduced by
this background noise correction, we took continuous PAS
measurements of filtered air in the laboratory and varied the
pressure within the PAS cells over the range encountered
during airborne operation. This laboratory PAS dataset was
then processed to mimic in-flight conditions, with 30 s win-
dows of data every 300s being used to derive a continu-
ous pressure-dependent background correction. Examining
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the difference between the continuous filtered-air measure-
ments and the synthetically generated background data series
provided the uncertainty in the background noise correction
under variable pressure conditions. The uncertainty in the
background noise correction was found to be normally dis-
tributed, with a 1o width of 1.81 %-2.30 % across the range
of cells used. This uncertainty was propagated through in-
flight PAS data processing to derive the uncertainties intro-
duced to airborne PAS absorption coefficient measurements
from the background noise subtraction. The uncertainty was
found to be 0.27-0.54 Mm™!, which led to larger percentage
uncertainties for lower absorption coefficients. The noise per-
formance was no worse than a factor of 2 larger for airborne
operation.

The total uncertainty in PAS measurements is the combi-
nation of the measurement precision and accuracy, including
the PAS calibration accuracy, the pressure-dependent calibra-
tion correction uncertainty and the background noise correc-
tion uncertainty. These factors were combined in quadrature,
leading to total PAS measurement uncertainties of 29.0 %-—
55.0% for 1 Mm~! absorption coefficient measurements
across the range of cells used (independent of pressure) and
approximately 8.1 % for 100 Mm™~!. These uncertainties are
in-line with previous estimates for airborne PAS measure-
ments, which were found to be +5 % for ground-based mea-
surements with an additional 0.5 Mm™! for airborne mea-
surements (Lack et al., 2012a).

2.2.4 Additional measurements

Nephelometer measurements (TSI 3563) were used to derive
the aerosol asymmetry parameter needed to apply the Miiller
et al. (2014) correction scheme (see Sect. 2.1.3) and were
corrected according to Miiller et al. (2011). A time-of-flight
aerosol mass spectrometer (TOF-AMS) (e.g. Drewnick et
al., 2005) measured the aerosol composition. The TOF-AMS
was run as described in previous publications (e.g. Morgan
et al., 2010).

2.2.5 Data averaging

All absorption, scattering and extinction coefficient data
measured using the PAS, TAP, CRDS and nephelometer were
recorded at 1 Hz. Data were subsequently averaged to 30s
during post-flight analysis to reduce the noise in these mea-
surements and to aid temporal alignment of the PAS and TAP
for direct comparisons. In the case of TAP measurements, the
intensities of light transmitted through a filter were first aver-
aged to 30's and then input into Eqs. (1)—(9) to determine the
corresponding absorption coefficients. To account for time
lags between the PAS and TAP, an optimisation routine was
run that maximised the correlation coefficient (R?) between
the absorption coefficients determined using the PAS and
TAP by delaying one instrument relative to the other. There
was no time lag between the PAS and CRDS when using an
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averaging time of 30 s. Time alignment was verified by visu-
ally confirming that the rising and falling edges of the peaks
in the absorption coefficients aligned.

2.2.6 Flights and meteorology

This study uses data collected aboard the FAAM aircraft dur-
ing 30 research flights (each 3—4h duration) in three dis-
tinct regions: London (three flights, 17 to 20 July 2017, from
1.7°W to 2.0°E and from 50.6 to 52.9°N), West Africa
(three flights, 28 February to 1 March 2017, from 14.2 to
17.6°W and from 9.6 to 14.8°N) and the Southeast At-
lantic Ocean (24 flights, 16 August to 7 September 2017,
from 8.0 to 18.6°W and from 4.6° N to 10.9°S). Figure 2
shows a map with the flight tracks indicated. All flights in-
volved straight and level runs as well as deep profiles. Also
shown in Fig. 2 are the mean aerosol optical depths (AODs)
measured using the Moderate Resolution Imaging Spectro-
radiometer (MODIS) instruments aboard the Terra and Aqua
satellite platforms (Remer et al., 2013) for each measurement
period. The mean AOD for each region is shown correspond-
ing to all satellite overpasses during the flight periods for
both MODIS instruments. Figure 2 also shows time series
of the columnar AOD values measured using the Aerosol
Robotic Network (AERONET) for the Chilbolton and Ox-
ford (~ 95 km southwest and northwest of London respec-
tively), Dakar (West Africa) and Ascension Island (Southeast
Atlantic Ocean) sites.

Urban emissions. During 17-20 July 2017, back trajec-
tory analysis shows north-westerly flow brought air masses
from over the Irish Sea to London (Rolph et al., 2017; Stein
et al., 2015; available at http://ready.arl.noaa.gov/HYSPLIT_
traj.php, last access: 17 June 2019). Flights provided mea-
surements of regional background aerosol (northwest Lon-
don) as well as the London pollution plume (southeast Lon-
don). AOD values of ~ 0.00-0.13 were measured using the
AERONET sites at Chilbolton and Oxford during the mea-
surement period, as shown in Fig. 2. Mean in-flight car-
bon monoxide (CO) concentrations were 98 ppbv, indicating
the presence of fossil-fuel burning, for example from trans-
port emissions and industrial processes (e.g. Dentener et al.,
2001). These flights predominantly sampled the boundary
layer with a maximum aircraft altitude of 2.2 km.

Fresh biomass burning emissions. Flights over West
Africa were dominated by freshly emitted BBA encountering
similar conditions to those sampled during previous FAAM
flight campaigns at the same time of year (e.g. DABEX;
Haywood et al., 2008). Low-level flying through visible
smoke plumes enabled measurements of fresh BBA within
a few minutes of emission. During the measurement period,
MODIS measured mean AOD values ~ 0.5-0.7 over large
swaths of West Africa, > 1.0 near to the coast and ~ 0.5—
1.0 over the Atlantic Ocean offshore of West Africa, and
AERONET reported AOD values in the range ~ 0.5-0.9 over
Dakar, as shown in Fig. 2. Many flights targeted measure-
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Figure 2. FAAM research aircraft flight tracks (red) over London in the United Kingdom (July 2017), West Africa (February and March 2017)
and the Southeast Atlantic (August and September 2017). For each of the geographical areas highlighted in the white boxes, the mean aerosol
optical depths (AODs) measured using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instruments are displayed.
A time series of Aerosol Robotic Network (AERONET) data shows AODs at 500 nm corresponding to each measurement period. Note the
discontinuous AERONET AOD time axis. AERONET sites are shown on the MODIS AOD plots by arrows.

ments close to the source and were dominated by fresh BBA
emissions. The impact of dust on our PAS, TAP and CRDS
measurements was minimised because of the 1.3 um aero-
dynamic impactor used. Based on the scattering Angstrdm
exponent, there was likely a dust influence on this fresh BBA
dataset. Mean in-flight CO concentrations were 175 ppbv al-
though concentrations greater than 14 000 ppbv were mea-
sured when flying through plumes close to the aerosol source,
indicative of fresh biomass burning emissions.

Aged biomass burning emissions. Flights around Ascen-
sion Island sampled aged biomass burning aerosols trans-
ported from mainland southern Africa in a general anticy-
clonic circulation (e.g. Garstang et al., 1996; Zuidema et al.,
2016). East of ~ 8° W, MODIS reported mean AOD values
generally between 0.1 and 0.5 and up to ~ 0.8 in the east of
the area in which flights occurred. AERONET consistently
measured AOD values between 0.1 and 0.5 over Ascension
Island (the campaign base) during the entire 4-week mea-
surement period. Mean CO concentrations were 126 ppbv,
confirming that emission likely originated from a combustion
source. Flights were performed in both the boundary layer
and free troposphere. Based on HYSPLIT back trajectories,
aerosols had generally undergone ~ 1 week of atmospheric
transport since emission.
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3 Results and discussion
3.1 TAP-PAS comparisons

The primary result of this study is that the absorption coef-
ficients determined using a TAP and PAS are linearly corre-
lated and that the slope (R,ps) is dependent upon the aerosol
source, measurement wavelength and the correction scheme
applied to the TAP measurements. Scatter plots showing
the relationship between absorption coefficients measured si-
multaneously by the TAP and PAS for urban, fresh and aged
BBA are shown in Figs. 3-5 respectively. Tight correlations
between TAP and PAS measurements were observed across
all aerosol sources and for all correction schemes. All lin-
ear regressions between TAP and PAS measurements were
forced through the origin. A summary of Rans can be found
in Table 2.

For the B1999 correction scheme, the range of TAP biases
across all aerosol sources was 1.18-1.45. The smallest bi-
ases were consistently associated with 467 or 652 nm wave-
length measurements and the largest for 528 nm wavelength
measurements. An interesting feature of this result is that the
B1999 scheme led to the largest biases at 528 nm, which is
the wavelength closest to that at which the scheme was de-
rived.

For the V2010 correction scheme, the range of TAP bi-
ases across all aerosol sources was 1.08—1.38. The largest bi-
ases were consistently at 467 nm and the smallest at 652 nm.
Relative to the B1999 correction scheme, the V2010 scheme
reduced the biases at 528 and 652nm by 5 %—15 % while
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Table 2. A summary of the slopes (Raps) between PAS and TAP absorption coefficients. Correlation coefficients (Rz) are also provided. P
and Py are the 10th and 90th percentiles of each dataset. All absorption coefficients correspond to > 1 Mm~!. All linear regressions were

forced through the origin.

Aerosol B1999

source

Wavelength

V2010

M2014
(B1999 parameterisation)

M2014
(V2010 parameterisation)

Slope  R?2 Pig Pyy | Slope  RZ

Pio Py ‘ Slope R? Pyg Pyg ‘ Slope R? Pio Pyy

467
528
652

1.35
1.45
1.40

0.88
0.89
0.67

0.99
1.12
1.17

1.67
1.80
1.76

1.38
1.37
1.27

0.87
0.88
0.69

Urban

0.99
1.04
1.04

1.73
1.70
1.58

1.19
1.26
1.11

0.90
0.90
0.68

0.93
1.00
0.88

1.41
1.50
1.38

1.17
1.18
1.02

0.91
0.91
0.68

0.92
0.95
0.82

1.39
1.40
1.27

467
528
652

1.25
1.30
1.24

0.97
0.97
0.96

1.11
1.17
1.19

1.46
1.54
1.70

1.30
1.23
1.09

0.97
0.97
0.97

Fresh BBA

1.13
1.08
0.92

1.54
1.44
1.32

1.05
1.10
1.04

0.95
0.95
0.95

0.70
0.74
0.67

1.23
1.26
1.24

1.13
1.11
1.01

0.95
0.96
0.95

0.77
0.76
0.66

1.30
1.25
1.20

467
528
652

1.18
1.21
1.18

0.99
0.99
0.99

1.10
1.12
1.11

1.39
1.42
1.41

1.21
1.16
1.08

0.99
0.99
0.99

Aged BBA

1.11
1.05
1.00

1.42
1.35
1.28

1.06
1.09
1.05

0.98
0.99
0.99

0.97
0.99
0.94

1.27
1.30
1.24

1.11
1.07
1.01

0.98
0.98
0.99

0.99
0.95
0.89

1.29
1.26
1.18

it increased the bias at 467 nm by 3 %-5 %, dependent on
the aerosol source. The sensitivity of TAP biases to the
wavelength-dependent constants used in the V2010 scheme
was investigated due to the mismatch in the TAP wave-
lengths and those for which the V2010 correction scheme
was derived. Applying the single-wavelength V2010 correc-
tion scheme (i.e. applicable at all wavelengths) decreased
TAP biases by 7 %9 % at 467 nm, increased biases by 1 %
at 528 nm and increased biases by 6 %—8 % at 652 nm.

For the M2014 (B1999 parameterisation) correction
scheme, the range of TAP biases across all aerosol sources
was 1.04—1.26, and for the M2014 (V2010 parameterisation)
the range of TAP biases was 1.01-1.18. The M2014 (V2010
parameterisation) scheme reduced TAP biases relative to the
B1999 and V2010 schemes by 7 %—-38 % and 7 %—-25 %, re-
spectively, dependent on the aerosol source and wavelength.
The most significant reductions in TAP biases were for urban
aerosol emissions and had the most impact on measurements
at 652nm. As discussed in Sect. 2.1.3, the M2014 (V2010
parameterisation) correction scheme applied here used the
wavelength-dependent Virkkula (2010) parameterisation, in
contrast to Miiller et al. (2014), who applied the Virkkula
et al. (2005) parameterisation. Although not shown, apply-
ing the Virkkula et al. (2005) parameterisation to TAP data
in this study would act to decrease TAP biases by 3 %—4 %
at 467 nm and increase biases by 1 %—2 % at 528 nm and by
3 % at 652 nm.

The Rgyps from Figs. 3-5 provide the mean TAP absorp-
tion coefficient biases for all measurements corresponding
to each measurement wavelength and aerosol source, but it
is pertinent to examine the range of biases corresponding to
individual 30s average measurements. Examining the 10th
and 90th percentiles of each dataset (see Table 2) revealed
that 10 % of TAP measurements were biased by greater than
1.67-1.80, 1.46-1.70 and 1.39-1.42 for urban, fresh BBA
and aged BBA when corrected using the B1999 scheme, re-
spectively, dependent on wavelength. The M2014 (V2010
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Figure 3. Absorption coefficients measured by PAS versus TAP for
urban emissions around London in July 2017. The columns corre-
spond to 467 nm (column 1), 528 nm (column 2), and 652 nm (col-
umn 3) wavelengths, and the rows correspond to the B1999, V2010
and M2014 corrections. All absorption coefficients correspond to
>1Mm~!. All linear regressions were forced through the origin.
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Figure 4. As Fig. 3 but for fresh biomass burning aerosol over Sene-
gal in February and March 2017.

parameterisation) scheme reduced the biases with 10 % of
measurements biased greater than 1.27-1.40, 1.20-1.30 and
1.18-1.29 for urban, fresh BBA and aged BBA, respectively,
dependent on wavelength.

An analysis of the dependence of TAP bias as a function
of filter loading revealed no point-by-point dependence but
potentially a weak signal in the large-scale mean such that
the difference in absolute filter transmittance associated with
the highest 10 % of TAP biases compared to the lowest 10 %
of biases across all channels and wavelengths was up to 0.12.
The filter transmittance changed over the course of a flight by
a maximum of 0.21.

The TAP biases exhibited a strong wavelength depen-
dence. In general, the lowest biases were seen at 652 nm and
the largest biases at 467 nm when the V2010 and M2014
(V2010 parameterisation) schemes were applied to TAP
measurements for all aerosol sources. The exceptions to this
trend were when the M2014 scheme (V2010 parameteri-
sation) was applied to urban aerosol measurements, which
led to the largest biases at wavelength 528 nm. The M2014
scheme (B1999 parameterisation) also led to the largest bi-
ases at 528 nm for all aerosol types.

As highlighted in the introduction, filter-based absorption
photometers are sensitive to the particle penetration depth,
which is dependent on particle size. Indeed, this sensitivity
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Figure 5. As Fig. 3 but for aged biomass burning aerosol over the
Southeast Atlantic Ocean in August and September 2017.

may have contributed in part to the variation in TAP biases
observed for the three types of aerosol investigated during
this study.

Perhaps the most important and robust observation is that
the M2014 scheme consistently led to the lowest biases
across all measurement wavelengths and aerosol sources in-
vestigated. The largest biases were associated with TAP mea-
surements corrected using the B1999 scheme at wavelengths
528 and 652 nm and when using the V2010 scheme at wave-
length 467 nm for all aerosol sources.

3.2 Evaluating TAP biases as a function of the organic
aerosol mass concentration

The biases of 1%-45 % observed in this study are at the
lower end of those measured by Lack et al. (2008) and Cappa
et al. (2008), who reported biases of 12 % to ~ 200 %, depen-
dent upon the OA concentration. To investigate this apparent
discrepancy, we evaluated the TAP biases as a function of the
OA mass concentration measured using an Aerodyne aerosol
time-of-flight mass spectrometer (TOF-AMS, Aerodyne Re-
search Inc.) (e.g. Drewnick et al., 2005).

Figure 6a—c show how TAP biases vary with OA mass con-
centration for TAP measurements corrected using the B1999
correction scheme, for direct comparison with the Lack et
al. (2008) study. The linear relationship between the PSAP
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Figure 6. The ratio of TAP to PAS absorption coefficients at 528 nm as a function of the organic aerosol mass concentration using the B1999
correction scheme (a—c) and as a function of the ratio of the organic aerosol to light-absorbing carbon mass concentrations when using
the B1999 correction scheme (d—f) and using the M2014 (V2010 parameterisation) correction scheme (g—i). All absorption coefficients

correspond to > 1 Mm~L.

biases and OA observed by Lack et al. (2008) is superim-
posed for reference. For urban emissions (Fig. 6a), TAP bi-
ases and OA mass are positively correlated, and the trend is
broadly consistent with that observed by Lack et al. (2008).
There is however no correlation for fresh (Fig. 6b) or aged
BBA (Fig. 6¢).

TAP biases were also plotted as a function of the ratio
of the mass concentrations of OA to light-absorbing car-
bon (LAC), denoted by Roa Lac. This was calculated us-
ing the method outlined by Lack et al. (2008) by (i) assum-
ing all absorbing mass was black carbon, (ii) converting the
mass absorption coefficient (MAC) of black carbon (BC) at
532nm (7.75 m2 g_l) to the PAS measurement wavelength
528 nm by using a BC AAE of 1 and the method outlined
by Moosmiiller et al. (2011), and (iii) dividing the PAS-
measured absorption coefficient at wavelength 528 nm by the
BC MAC at 528 nm. Hence the mass concentration of LAC
was calculated as LAC = bEbAsszg nr][I/MAC5E'2C8nm such that
Roa/Lac = OA/LAC (Bond and Bergstrom, 2006; Lack et
al., 2008). Figure 6d shows that the TAP bias is positively
correlated with Roa, Lac for urban aerosol emissions when
TAP measurements were corrected using the B1999 correc-
tion. This is consistent with the Lack et al. (2008) observa-
tion although our study shows lower biases. A likely con-
tributor to this difference is that, for consistency with the
Lack et al. (2008) study, this analysis assumed all absorption
was due to BC. In reality this is a poor assumption for BBA
emissions (e.g. Andreae and Gelencsér, 2006) and provides
a maximum bound on the MAC value, a minimum bound
on absorption attributed to LAC and therefore a maximum
bound on Roa/Lac. A more realistic approach would be to
use the MAC value corresponding to BC plus BrC. Using
a lower MAC to account for absorption contributions from
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both BC and BrC would lead to smaller Roa,Lac values
than those shown in Fig. 6d—f and better agreement with
the Lack et al. (2008) study. Correcting the TAP data us-
ing the M2014 (V2010 parameterisation) correction scheme
reduces the positive correlation between TAP biases and
both Roa and Roa/Lac as shown in Fig. 6g—i. This further
demonstrates the improvement provided by using the M2014
scheme.

This analysis was repeated at wavelengths of 467 and
652nm. For measurements at 652nm, where BrC ab-
sorbs relatively weakly (e.g. Andreae and Gelencsér, 2006),
stronger correlations between TAP biases and Rpa and
Roa/Lac were seen compared to 528 nm measurements. This
improved the agreement with Lack et al. (2008). For mea-
surements at 467 nm, where BrC absorbs relatively strongly,
weaker correlations between TAP biases and Roa,Lac were
seen compared to 528 nm measurements. This reduced the
agreement with Lack et al. (2008) for reasons described
above. As for observations at 528 nm, TAP biases showed
little dependence on Rp4 and Roa/Lac When corrected us-
ing the M2014 scheme at 652 and 467 nm. This finding sug-
gests that the source of discrepancy between the results pre-
sented in this study and the results of Lack et al. (2008)
(i.e. Fig. 6) may be caused by the less advanced correction
scheme applied to the Lack et al. (2008) data. However, given
the strong dependence of Ryps on the aerosol type and source
in Fig. 6, the bias dependence on organic fraction in the Lack
et al. (2008) data may well persist, independent of the cor-
rection scheme used, because of the different aerosol sources
and source locations being studied.

A key result of this analysis is to show that biases observed
in filter-based aerosol absorption measurements are strongly
dependent on the type of aerosol being sampled. Correlating
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Table 3. Campaign-mean single-scattering albedo (SSA) derived using PAS and CRDS measurements and TAP and CRDS measurements.

Aerosol Wavelength Mean SSA
source

PAS BI1999 V2010 M2014 (B1999 M2014 (V2010
parameterisation)  parameterisation)
467 0.89 0.86 0.86 0.87 0.87
Urban 528 0.88 0.84 0.85 0.86 0.87
652 0.88 0.81 0.83 0.86 0.87
467 092 0.89 0.89 0.91 0.91
Fresh BBA 528 093 0.90 0.91 0.92 0.92
652 0.93 0.91 0.93 0.93 0.93
467 0.84 0.80 0.80 0.82 0.81
Aged BBA 528 0.83 0.79 0.80 0.81 0.81
652 0.81 0.77 0.79 0.80 0.81

—PAS

- —~TAP B1999

---- TAP V2010 i

—TAP M2014-B1999 7 =
- TAP M2014-V2010 3

Urban

Fresh BBA

Probability density function

Aged BBA

06 0.7 08 09
467 nm

08 09
528 nm

10 06 07

10 06 07 08 09 10
652 nm

Single-scattering albedo

Figure 7. Probability density functions of the single-scattering albedo derived using (i) PAS and CRDS and (ii) TAP and CRDS for the
range of TAP correction schemes outlined in Sect. 2.1.1-2.1.3 at wavelengths 467, 528 and 652 nm. All absorption coefficients correspond

to>1Mm™!.

biases to aerosol composition information may provide tight
constraint for a single source study, such as that observed
by Lack et al. (2008) for aerosol emissions over the Gulf of
Mexico, but care must be taken when applying these findings
more broadly to other aerosol types.

3.3 Impact of TAP biases on climate-relevant
parameters

We now assess the impact that the observed TAP biases may
have on climate-relevant parameters including the aerosol
single-scattering albedo and absorption Angstrtjm exponent.
Figure 7 shows histograms of the SSA derived using PAS or
TAP absorption data together with CRDS extinction data for
the aerosol sources described in Sect. 2.2.6 and for the TAP

www.atmos-meas-tech.net/12/3417/2019/

corrections described in Sect. 2.1.1-2.1.3. The SSA is bi-
ased towards lower values when derived using TAP measure-
ments, consistent with the results in Figs. 3—5 which typically
show a ~ 1 %—45 % high bias in absorption. Campaign-mean
SSA values derived using PAS and CRDS measurements for
each measurement campaign are summarised in Table 3. The
mean SSA values derived using TAP and CRDS measure-
ments matched those derived using PAS measurements most
closely for fresh BBA, which were biased low by 0.00-0.03,
dependent on measurement wavelength and the TAP correc-
tion scheme applied.

The SSA values were most different for urban aerosols,
which were biased low by 0.01-0.07, dependent on wave-
length and the TAP correction scheme applied. This is con-
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Table 4. Campaign-mean absorption Angstrom exponent (AAE) derived using PAS and TAP measurements.

Aerosol source Mean AAE
PAS B1999 V2010 M2014 (B1999 M2014 (V2010
parameterisation)  parameterisation)
Urban 1.51 0.97 1.35 1.54 1.74
Fresh BBA 1.91 1.50 2.27 1.97 222
Aged BBA 1.06 0.99 1.32 1.14 1.36

TAP V2010
TAP M2014-B999
TAP M2014-V2010

Probability density function

30 00 06 12 18 24 30

00 06

Fresh BBA

kY
1.8 24

Aged BBA

Absorption Angstrom exponent

Figure 8. Probability density functions of the absorption Angstrom exponents derived for PAS and TAP measurements using the range of
TAP correction schemes as outlined in Sect. 2.1.1-2.1.3. All absorption coefficients correspond to >1 Mm™ 1

sistent with the results in Table 2, which highlights that
TAP biases were largest for urban aerosol measurements.
The wavelength dependence of the TAP-derived SSA val-
ues depended on the correction scheme applied. SSA val-
ues derived using the M2014 correction scheme agreed most
closely with those derived using PAS measurements for all
measurement wavelengths and correction schemes.

Similarly, Fig. 8 shows histograms of the AAE values
derived by performing linear regressions between the loga-
rithms of the PAS-measured absorption coefficients and the
PAS measurement wavelengths (405—658 nm) (Moosmiiller
etal., 2011). It also shows the same information for the TAP-
derived AAE values. The AAE values were calculated for
the aerosol sources outlined in Sect. 2.2.6 and TAP correc-
tion schemes outlined in Sect. 2.1.1-2.1.3.

The AAE values were strongly dependent on the TAP cor-
rection scheme applied. Campaign-mean AAE values are
summarised in Table 4, which highlights that the highest
mean AAE values were associated with fresh BBA emis-
sions and the lowest for aged BBA emissions. TAP-derived
AAE values were in absolute error by £0.54. The M2014
(B1999 parameterisation) led to mean AAE values that were
in closest agreement with AAE values derived using PAS
measurements for all aerosol types. The V2010 scheme led
to mean AAE values that were in second-closest agreement
with the AAE values derived using PAS measurements for
urban aerosols, whereas the M2014 (V2010 parameterisa-
tion) scheme provided the second-closest match for fresh
BBA and the B1999 scheme for aged BBA. It is unclear why

Atmos. Meas. Tech., 12, 3417-3434, 2019

the different TAP correction schemes perform so differently
for the different aerosol sources sampled. However, what
is clear from this analysis is that there are large uncertain-
ties in this important parameter when calculated from filter-
based absorption measurements and that these uncertainties
are strongly source and correction scheme dependent. This
cautions that significant uncertainties could be introduced if
using the AAE to differentiate between types of aerosol.

4 Conclusions

Measurement artefacts in a commercially available filter-
based absorption photometer (TAP) were evaluated as a func-
tion of wavelength and aerosol source. A range of correc-
tion schemes have been proposed in the literature to account
for these artefacts and thus to maximise the accuracy of
aerosol absorption coefficients determined using this tech-
nique, although biases can remain. Three correction schemes
were evaluated, which all reduced the TAP mean bias to
within 1 % to +45 % of the PAS absorption, dependent upon
aerosol source and wavelength. The largest biases were as-
sociated with urban aerosols and the lowest for aged BBA.
The M2014 correction scheme consistently led to the low-
est biases across all wavelengths and aerosol sources. To our
knowledge, this is the first study to demonstrate the improved
performance of the M2014 correction scheme as a function
of wavelength and across multiple aerosol sources for ambi-
ent aerosol sampling.
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Biases in filter-based absorption measurements were
strongly source dependent. On no occasion were the very
large biases of over 200 % noted in the Lack et al. (2008)
study observed. However, we note that the aerosol types mea-
sured in the Lack et al. (2008) study were very different to
those studied here, and therefore this result may well be con-
sistent with the strong source dependence observed in the
current study.

The positive bias in filter-based absorption measurements
resulted in a low bias in determinations of single-scattering
albedos of up to 0.07. The largest biases in SSA values were
for urban aerosol measurements at wavelength 652 nm. The
M2014 scheme consistently led to SSA values that were
closest to those derived using PAS measurements across all
wavelengths and aerosol sources.

Large discrepancies were seen between AAE values de-
rived from PAS versus TAP measurements, the latter depend-
ing strongly on the correction scheme applied. The largest
discrepancies in AAE values were for TAP measurements
of urban aerosols corrected using the B1999 scheme, which
were biased low by a mean absolute value of 0.54. The
best agreement with AAE values derived using PAS mea-
surements was obtained when TAP measurements were cor-
rected using the M2014 (B1999 parameterisation) correction
scheme and when (i) urban aerosol measurements were cor-
rected using the V2010 scheme, (ii) fresh BBA measure-
ments were corrected using the M2014 scheme and (iii) aged
BBA measurements were corrected using the B1999 scheme.
This highlights that the AAE is strongly source and correc-
tion scheme dependent.

The strong aerosol source dependence of biases observed
in this study cautions against extrapolating results more
widely to other aerosol types. Further analyses exploring bi-
ases in filter-based absorption coefficient measurements may
help to address this issue. However, given the empirical na-
ture of filter-based correction schemes and strong source
and wavelength dependencies, even this is unlikely to fully
bound uncertainties associated with filter-based absorption
measurements to the high level of confidence that can be
achieved using alternative methods, such as photoacoustic
spectroscopy.
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