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Abstract 15 

1) It is generally thought that the intensification of farming will result in higher disease prevalences, 16 

although there is little specific modelling testing this idea. Focussing on honeybees, we build multi-17 

colony models to inform how ‘apicultural intensification’ is predicted to impact honeybee pathogen 18 

epidemiology at the apiary scale.  19 

2) We used both agent-based and analytical models to show that three linked aspects of apicultural 20 

intensification (increased population sizes, changes in population network structure, and increased 21 

between-colony transmission) are unlikely to greatly increase disease prevalence in apiaries. 22 

Principally this is because even low-intensity apiculture exhibits high disease prevalence. 23 

3) The greatest impacts of apicultural intensification are found for diseases with relatively low R0 (basic 24 

reproduction number), however, such diseases cause little overall disease prevalence and therefore 25 

the impacts of intensification are minor. Furthermore, the smallest impacts of intensification are for 26 

diseases with high R0 values, which we argue are typical of important honeybee diseases.  27 

4) Policy Implications: Our findings contradict the idea that apicultural intensification by crowding 28 

honeybee colonies in large, dense apiaries leads to notably higher disease prevalences for 29 

established honeybee pathogens. More broadly, our work demonstrates the need for informative 30 

models of all agricultural systems and management practices in order to understand the implications 31 

of management changes on diseases. 32 

Key Words: apiculture, beekeeping, agriculture, intensification, infectious disease, mathematical model, 33 

agriculture, disease prevalence  34 
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Introduction 35 

Infectious diseases have significant impacts on agricultural sustainability (Brijnath, Butler, & McMichael, 36 

2014) and profitability (James, 1981). A key question is how agricultural intensification and novel agricultural 37 

practices impact the emergence and epidemiology of infectious disease (Cressler, McLeod, Rozins, Hoogen, 38 

& Day, 2016; Gandon, Hochberg, Holt, & Day, 2013). It is generally assumed that intensification increases 39 

vulnerability to severe disease outbreaks (Jones et al., 2013; Kennedy et al., 2016; Mennerat, Nilsen, Ebert, 40 

& Skorping, 2010), but there is relatively little empirical data and therefore epidemiological theory is needed 41 

to address this problem (Atkins et al., 2013; Rozins & Day, 2016). Here we build specific models of apiary-42 

level intensification in commercially farmed honeybees to examine the impact of industrial-scale 43 

management practices on honeybee infectious disease prevalence. 44 

Honeybee health and the apicultural industry are under threat from a variety of pressures (Ghazoul, 2005; 45 

vanEngelsdorp & Meixner, 2010), including parasites and pathogens (Budge et al., 2015; De la Rúa, Jaffé, 46 

Dall’Olio, Muñoz, & Serrano, 2009; Potts et al., 2010). There is a growing body of literature documenting the 47 

damage that emerging or re-emerging diseases (Wilfert et al., 2016) are causing in apiculture (Jacques et al., 48 

2017; Kielmanowicz et al., 2015) and native pollinators (Cohen, Quistberg, Philpott, & DeGrandi-Hoffman, 49 

2017; Fürst, McMahon, Osborne, Paxton, & Brown, 2014; Graystock, Blane, McFrederick, Goulson, & 50 

Hughes, 2016; Manley, Boots, & Wilfert, 2015; McMahon et al., 2015; McMahon, Wilfert, Paxton, & Brown, 51 

2018). Evidence exists supporting a link between the risk of these diseases and specific apicultural practices 52 

(Giacobino et al., 2014; Mõtus, Raie, Orro, Chauzat, & Viltrop, 2016; Pacini et al., 2016). However, the 53 

evidence is geographically limited, lacking in mechanistic underpinning, or contradictory even within this 54 

small collection of studies. For example, Mõtus et al. (2016) report that larger apiaries show marginally 55 

higher incidence of ectoparasitic Varroa mites in Estonia, whilst Giacobino et al. (2014) did not find this 56 

association in a similar study in Argentina. It is therefore critical that we learn how different apicultural 57 

practices impact disease outcomes (Brosi, Delaplane, Boots, & de Roode, 2017). The need for an 58 

epidemiological framing of honeybee diseases has been frequently discussed (Brosi et al., 2017; Fries & 59 
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Camazine, 2001) in both empirical (van Engelsdorp et al., 2013) and modelling (Becher, Osborne, Thorbek, 60 

Kennedy, & Grimm, 2013) studies, but we lack a modelling framework for disease ecology in honeybees at a 61 

scale larger than a single colony. 62 

Honeybees are typically managed in apiaries, which are associated colonies placed together for beekeeping 63 

convenience at a single site. Pathogen dynamics at the apiary level are determined both by pathogen 64 

transmission within and between colonies. Intensification of apiculture changes apiary ecology in a number 65 

of ways, all potentially relevant to disease (Brosi et al., 2017). In particular, increasing the number of 66 

colonies and changing the arrangement of those colonies influences epidemiology through changes in both 67 

the size and network structure of the population. They both may also increase the rate at which transmission 68 

between colonies occurs via more frequent ‘drifting’ of honeybees (Free, 1958; Neumann, Radloff, Pirk, & 69 

Hepburn, 2003). Drift is a key mechanism of between-colony pathogen transmission (Goodwin, Perry, & 70 

Houten, 1994; Roetschi, Berthoud, Kuhn, & Imdorf, 2008) and has been invoked as an explanatory 71 

mechanism accounting for higher parasite prevalences in larger apiaries (Mõtus et al., 2016). 72 

The intensification of agricultural systems generally means larger, denser population sizes and greater 73 

pathogen transmissibility at local (within a population, such as a farm) and landscape (between populations, 74 

such as neighbouring farms) scales. To understand these effects in honeybees we build multi-colony models 75 

to examine how apicultural intensification is predicted to impact honeybee pathogen epidemiology. We 76 

examine the epidemiological consequences of increasing the number of colonies within an apiary, changing 77 

colony configurations, and increasing between-colony pathogen transmission.  78 

Materials and Methods 79 

We combine mathematical models and agent-based model (ABM) simulations to make predictions on how 80 

intensification affects disease risk, spread, and endemic prevalence within an apiary. The key to our 81 

approach is that we capture pathogen transmission both within and between colonies.  82 
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We generalise colony arrangements to three unique configurations drawn from experience, classic 83 

apicultural literature (Jay 1966) and current experimental work (Dynes, Berry, Delaplane, Brosi, & de Roode, 84 

2019): array, circular and lattice (Fig. 1). We restrict between-colony pathogen transmission to nearest 85 

neighbours (see discussion), those in closest proximity to each other (connected by an arrow in Fig. 2). 86 

Between-colony transmission is always assumed to be at a lower rate than within colony transmission. The 87 

mathematical model allows us to obtain tractable analytical results while the ABM simulations allow us to 88 

model disease at the level of the individual bee and consider stochastic effects. 89 

 90 

 91 

 92 

Figure 1. Colony configurations, demonstrated for apiaries with nine colonies. 93 
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We first derive a compartmental SI (Susceptible, Infected) model for pathogen transmission within an apiary. 94 

The model treats each colony as an individual population and allows for within colony as well as between-95 

colony transmission (for nearest neighbours). Within a colony, honeybees are either susceptible to infection 96 

or infected (and infectious). We denote the number of susceptible honeybees in colony i at time t as Si(t). 97 

Likewise, we denote the number of honeybees in colony i infected with the pathogen at time t as Ii(t). 98 

Susceptible honeybees in colony i become infected at rate βij following contact with an infected bee that 99 

resides in colony j. We assume that honeybees do not recover from infection. Honeybees are born at rate , 100 

have a natural mortality rate of m, and an additional mortality rate of v if infected. The following 2n 101 

differential equations, [1], model disease transmission within and between n colonies in an apiary. 102 

 103 

 104 

 105 

 106 

 107 

The matrix β=[βij] will depend on the colony arrangement (see Fig. 1; and S.I. Section 1). The transmission 108 

rate between a susceptible and infected honeybee within the colony is a, and transmission between 109 

neighbouring colonies is b. For example, for a 9-colony apiary, the transmission matrices for an array, 110 

circular and lattice configured apiary (respectively) are as follows: 111 

 

⌈
⌈
⌈
⌈
⌈
⌈
⌈
⌈
 
𝑎 𝑏 0 0 0 0 0 0 0
𝑏 𝑎 𝑏 0 0 0 0 0 0
0 𝑏 𝑎 𝑏 0 0 0 0 0
0 0 𝑏 𝑎 𝑏 0 0 0 0
0 0 0 𝑏 𝑎 𝑏 0 0 0
0 0 0 0 𝑏 𝑎 𝑏 0 0
0 0 0 0 0 𝑏 𝑎 𝑏 0
0 0 0 0 0 0 𝑏 𝑎 𝑏
0 0 0 0 0 0 0 𝑏 𝑎⌉
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𝑎 𝑏 0 0 0 0 0 0 𝑏
𝑏 𝑎 𝑏 0 0 0 0 0 0
0 𝑏 𝑎 𝑏 0 0 0 0 0
0 0 𝑏 𝑎 𝑏 0 0 0 0
0 0 0 𝑏 𝑎 𝑏 0 0 0
0 0 0 0 𝑏 𝑎 𝑏 0 0
0 0 0 0 0 𝑏 𝑎 𝑏 0
0 0 0 0 0 0 𝑏 𝑎 𝑏
𝑏 0 0 0 0 0 0 𝑏 𝑎⌉
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𝑎 𝑏 0 𝑏 0 0 0 0 0
𝑏 𝑎 𝑏 0 𝑏 0 0 0 0
0 𝑏 𝑎 0 0 𝑏 0 0 0
𝑏 0 0 𝑎 𝑏 0 𝑏 0 0
0 𝑏 0 𝑏 𝑎 𝑏 0 𝑏 0
0 0 𝑏 0 𝑏 𝑎 0 0 𝑏
0 0 0 𝑏 0 0 𝑎 𝑏 0
0 0 0 0 𝑏 0 𝑏 𝑎 𝑏
0 0 0 0 0 𝑏 0 𝑏 𝑎⌉
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 𝑑𝑆𝑖

𝑑𝑡
= −∑𝛽𝑖𝑗𝑆𝑖𝐼𝑗 − 𝑚𝑆𝑖 + 𝜙

𝑛

𝑗=1

 

𝑑𝐼𝑖
𝑑𝑡

= ∑𝛽𝑖𝑗𝑆𝑖𝐼𝑗 − (𝑚 + 𝑣)𝐼𝑖

𝑛

𝑗=1

 

 

[1] 
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The corresponding network structures for the above transmission matrices can be seen in Fig. S1. We 114 

assume that honeybees are much more likely to become infected by a honeybee that resides within its home 115 

colony than by a honeybee from a neighbouring colony (i.e. a>>b). Note that for each apiary configuration to 116 

be possible and unique, the number of colonies (n) must be a perfect square, n=L2 where L≥3 (see Fig. 1). 117 

Therefore, the minimum number of colonies per apiary is 9, which has been observed to be the mean size of 118 

a hobbyist or small beekeeping operation (Mõtus et al., 2016; Pocol, Marghitas, & Popa, 2012). 119 

We complement our mathematical model [1] with the ABM; our ABM simulates pathogen spread, through 120 

individual bee movements, across an apiary. Apiaries are differentiated by the same characteristics as in the 121 

mathematical model; a description of the ABM is available in the S.I. (Section 2) and the model is publicly 122 

available (see S.I.). We use the ABM to simulate disease dynamics for both different pathogen phenotypes 123 

(varying both pathogen virulence and transmissibility) and different apiary ecologies (varied as previously 124 

described in the number of colonies per apiary, layout, and likelihood of bees moving between colonies) (S.I. 125 

Figs. S3 & S4); we compare the ABM to the analytical model and use it to test assumptions made elsewhere 126 

in the study (Fig. 4a, S.I. Fig. S6). 127 

We can understand the dynamics presented by our models by focussing on the basic reproduction number, 128 

R0. R0 is a fundamental concept in infectious disease ecology, defined as the average number of secondary 129 

infections caused by one infectious individual in an otherwise entirely susceptible population (Anderson & 130 

May, 1992). We derive R0 expressions, using model [1], for each of the apiary configurations. R0 derivations 131 

using model [1] allow us to characterise the relationship between R0 and pathogen prevalence, defined as 132 

the proportion of honeybees within an apiary that are infected at the endemic equilibrium. The R0 133 

expressions for apiaries with n>1 colonies were calculated using the next generation method (van den 134 

Driessche & Watmough, 2002), (see S.I. Section 1). 135 

 𝑅0𝐴𝑟𝑟𝑎𝑦 =
𝜙

𝑚(𝑚 + 𝑣)
(𝑎 − 2𝑏 cos

𝑛𝜋

𝑛 + 1
) 

[2a] 
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 𝑅0𝐶𝑖𝑟𝑐𝑙𝑒 =
𝜙

𝑚(𝑚 + 𝑣)
(𝑎 + 2𝑏) 

[2b] 

 
𝑅0𝐿𝑎𝑡𝑡𝑖𝑐𝑒 =

𝜙

𝑚(𝑚 + 𝑣)
(𝑎 − 4𝑏 cos

√𝑛𝜋

√𝑛 + 1
) 

[2c] 

 136 

For the ABM we estimate R0 values for particular parameter combinations by treating simulation outputs as 137 

ideal empirical data (Keeling & Rohani, 2008) and track the number of infections following the index case. 138 

The term `base R0’ is used throughout the remainder of this paper and refers to a value of R0 for a specific 139 

pathogen phenotype in a least intensified apiary, an array with nine colonies (see Fig. 2). We determine how 140 

intensification affects R0 by separating R0 into a ‘base R0’ and an ‘additional R0’. The term ‘additional R0’ 141 

refers to the observed difference in R0 for a given pathogen phenotype when comparing a ‘lower intensity’ 142 

apiary to a ‘high intensity’ one (Fig. 2)  143 

An extreme, but plausible, example of intensification is used for these comparisons. Specifically, an increase 144 

in colonies per apiary from 9 to 225 colonies, a change to a lattice configuration, and a tenfold increase in 145 

between-colony infection (0.015 to 0.15 per bee per day), demonstrated in Fig. 2. The difference in the R0 146 

before and after intensification is how we estimate ‘additional R0’. This permits the interaction (non-147 

additive) effects of our three aspects of intensification. The ‘additional R0’ can then be used in combination 148 

with the analytically derived relationship between R0 and prevalence (see model [1] and equations [2a-c]) to 149 

characterise how intensification affects disease prevalence. We focus on disease prevalence as both models 150 

show rapid pathogen spread across apiaries, such that infection prevalence at the endemic equilibrium was 151 

the major result differentiating modelling scenarios (S.I. Figs. S4 & S5). 152 
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Figure 2. Illustrative schematic of the ‘intensification’ treatment as it is used in parts of this manuscript. We show the 153 
apiary used to estimate ‘base R0’ (left) compared to the intensified apiary (right) reflecting an increase in number of 154 
colonies from 9 to 225, a change from an array to a lattice, and a tenfold increase in movement of honeybees between 155 
colonies (illustrated using arrow weight) from a likelihood of 0.015 per bee per day to 0.15. Note that for the intensified 156 
apiary, not all 225 colonies are shown, with missing colonies denoted by ellipses (...). 157 

 158 

Results 159 

Our main results constitute three main characterisations of this system: the relationship between R0 and 160 

pathogen prevalence; the effects of intensification on R0; and by combination of these relationships, the 161 

effect of intensification on pathogen prevalence. The relationship between R0 and pathogen prevalence is 162 

principally derived from the analytical model (presented first in these results) but is confirmed to broadly 163 

agree with the agent-based model (presented second). The relationship between intensification and R0 is 164 

principally derived from the ABM, presented second, but is partly explored in the analytical model presented 165 

first. The critical overall result is the combination of these relationships, presented last and visualised in Fig. 166 

5, demonstrating how intensification impacts disease prevalence. Detailed derivation, exploration, and 167 

testing of both models is detailed in the Supplementary Information. 168 
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 169 

Figure 3: Relationships between number of colonies, R0, and prevalence from model (1). Figures 3a and 3b demonstrate 170 
that the effect on R0 for different degrees of intensification rapidly asymptotes, justifying our ‘single intensification’ 171 
treatment (Fig. 2). Figure 3c defines the relationship between R0 and prevalence, the shape of which critically 172 
determines our main result (see Fig. 5). Technical description: a) When R0=30 for a single colony-apiary, the addition of 173 
colonies yields a maximum increase in R0 of 12.7 for the lattice and 4.5 for the array. b) When R0=2 for a single colony, 174 
there is a maximum increase in R0 of 0.85 for the lattice and 0.29 for the array, when colonies are added. Recall that the 175 
R0 for the circle is independent of n (see [2b]), and hence absent from the figure. Parameter values are set to: v=0.1, 176 
m=0.0272, 𝜙=1600 and in a) a+b = 4.32485x10-6 and in b) a+b = 6.48725x10-5. The transmissibility is what affects base 177 
R0. Black dots are values where between-colony transmission is held at 10% of total transmission, with the bottom and 178 
top of the bars representing 1% and 20% of the total transmission being between hives, ‘b’, respectively. c) The 179 
relationship between R0 and disease prevalence. The range of R0 values is generated by varying the overall transmission 180 
rate (i.e. a+b) from 2.143x10-6 to 1.178x10-4 as reported by Roberts & Hughes (2015) for Nosema ceranae. 181 

 182 

Both model [1] and the ABM simulations show that, for a given number of colonies per apiary, R0 is always 183 

greatest for the lattice arrangement — the most highly connected configuration. As the number of colonies 184 

per apiary increases (increasing n), the values of R0 in both the array and lattice configurations increase (Fig. 185 

3a & 3b), while the R0 for the circular configuration remains unchanged (see R0 equations). The increase in R0 186 

from the addition of colonies asymptotes quickly due to convergence in the mean number of neighbours 187 

across the apiary; this is also why the R0 for the circular apiary is independent of number of colonies as the 188 

number of neighbours per colony remains two. This explains why R0 for an array arrangement approaches 189 

the R0 value for a circular arrangement as the number of colonies increases.  190 

If R0>1, the pathogen will rapidly invade (see S.I. Section 1 &, Fig. S5) and each colony will reach a stable 191 

population size and infection prevalence, called the endemic equilibrium (See S.I. Section 1). Mathematically 192 
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the disease prevalence at equilibrium for colony j is Ij
*/(Ij

*+Sj
*), where Sj

* is the number of susceptible 193 

honeybees and Ij
* is the number of infectious honeybees in colony j at equilibrium. The endemic equilibrium 194 

for the circular configuration model can be solved explicitly (see S.I. Section 1). Due to symmetry, all colonies 195 

within the circular apiary have disease prevalence at the endemic equilibrium of: 196 

𝜙(𝑎 + 2𝑏) − 𝑚(𝑚 + 𝑣)

𝜙(𝑎 + 2𝑏) + 𝑣(𝑚 + 𝑣)
 197 

We can approximate the endemic equilibrium for the lattice and array configured models using perturbation 198 

theory, assuming 0 < 𝑏 ≪ 1 (See S.I. Section 1). The approximate disease prevalence in colony j at 199 

equilibrium for a colony in the array or lattice configurations is:  200 

𝜙𝑎2 + 𝑙𝑏𝑚(𝑚 + 𝑣)

𝜙𝑎2 + 𝑎(𝑚 + 𝑣)2 − 𝑏𝑙𝑣(𝑚 + 𝑣)
 201 

where l is the number of neighbours that colony j has. For any given set of parameters, we can therefore 202 

formulate both R0 and prevalence, allowing us to characterise the relationship shown in Fig. 3c. 203 

We show analytically, and in the ABM (S.I. Section 3) that intensification in the form of an increase in 204 

colonies or an increase in movement between colonies increases R0 (Fig. 3a & 3b). Figure 4b shows the 205 

additional R0 caused by our most extreme plausible changes in apiary management. The change in R0 caused 206 

by increasing apiary size rapidly asymptotes (Fig. 3 a & b). 207 

The effect of intensification is dependent on the base R0 – for small base R0, intensification causes little 208 

additional R0, but at intermediate or high base R0, intensification leads to large additional R0 (Fig. 4b). While 209 

the increase in R0 is largest for an already large base R0, this relationship saturates and the relative increase 210 

in R0 for a given base R0 stays relatively constant for large base R0 values.  The relationship shows a strong 211 

nonlinearity when examining all three aspects of intensification in combination. 212 

 213 
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 214 

Figure 4: Results from the ABM. Figure 4a demonstrates the agreement between the ABM and analytical model; figure 215 
4b presents the critical relationship estimated from the ABM relating base R0 to the increase in R0 following 216 
intensification (see Fig. 2), the shape of which critically determines our main result (see Fig. 5). Technical description: a) 217 
shows agreement between the stochastic simulations (ABM) and analytical model (Fig. 3c); using the following 218 
equivalent model parameterisation to that for Fig. 3c: Circular configuration, n  = 9, M = 58200, φ = 1600, 5x10-6 ≤ β ≤ 219 
1x10-4 , ν = 0.1, ρ = 0.1 (see S.I. Section 2). b) examines how an extreme example of intensification (see Fig. 2) alters R0 220 
across a range of different ‘base R0’ values determined by pathogen phenotype using the ABM. Grey points represent 221 
individual simulation comparisons, black points represent mean values. Base R0 values are unevenly distributed across 222 
the range due to R0 being an emergent property of the system in both plot panels. We derive a non-linear relationship 223 
between ‘base R0’ and ‘additional R0’ for panel b, corresponding to Fig. 2 (see Fig. 2 for panel b parameterisation, 224 
otherwise as listed for a, plotted as a dashed red line. Variation within clusters is a result of the stochastic simulations. 225 

 226 

By understanding the effect of intensification on R0 (Fig. 4b) and by characterising the relationship between 227 

R0 and disease prevalence (Fig. 3c, Fig. 4a), we can show how intensification impacts disease prevalences. 228 

We approximate the non-linear relationship between ‘base R0’ (pathogen phenotype) and the ‘additional R0’ 229 

(effect of intensification) in Fig. 4b. We use a bootstrapping approach to create 1000 subsamples (subsample 230 

size = 10% of full sample with replacement) of our combined approach. Each subsample is used to generate 231 

a non-linear model of the form y = ax / (b + xc), where y is ‘additional R0’ and x is ‘base R0’, using a nonlinear 232 

least squares approach in R (v 3.3.1). The relationship generated using the full sample is plotted in Fig. 4b. 233 

We combine this relationship characterising how base R0 affects intensified additional R0 (Fig. 4b) with the 234 

derived relationship between R0 and pathogen prevalence shown in Fig. 3c, allowing us to predict how 235 

intensification impacts prevalences (Fig. 5). Fig. 5a shows the proportion of bees infected by a given (base R0) 236 

pathogen for the two apiaries in Fig. 2. The difference in disease prevalence between these lines is the 237 

impact of intensification and is plotted in Fig. 5b. Fig. 5b shows a distinctly peaked relationship between base 238 
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R0 and the impact of intensification, with the impact of intensification peaking around base R0 = 3.3, and 239 

then rapidly declining. Even at its peak, the effect of intensification (which is as extreme as plausible), leads 240 

to an additional ~18% of bees infected at disease equilibrium. We present figure 5 as a the most important 241 

graphic for understanding the overall conclusions of this study, as the apparent ‘small’ shift in R0 required to 242 

double prevalence (Fig. 3c and 4a) is actually very difficult to achieve for low R0 pathogens (see Fig. 3b, 4b), 243 

resulting in the ‘maximum plausible’ change shown by the peak in Fig. 5b (~18.5%). 244 

We contextualize these results by calculating an estimate of the lower-bound of R0 value for a honeybee 245 

pathogen (see highlighted regions in Fig. 5). We identified this region based on empirical data for the 246 

microsporidian pathogen Nosema ceranae; this was the only pathogen for which experimentally derived 247 

transmission rates as well as robust information on mortality due to infection is available (Martín-Hernández 248 

et al., 2011; Paxton, Klee, Korpela, & Fries, 2007; Roberts & Hughes, 2015). To estimate the plausible R0 249 

boundary in our model for this pathogen, we parameterised our mathematical model using the lowest 250 

empirically supported transmission value with the highest supported additional mortality, and fixed 251 

movement of honeybees between colonies at its lowest supported natural rate (Currie & Jay, 1991). We 252 

then calculated the R0 for a circular apiary due to its scale independence. 253 
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 254 

Figure 5: Depictions of our critical finding characterising the maximum (peak), and likely (shaded region), 255 
increases in prevalence of a pathogen following local intensification of apiculture. High prevalence even in ‘low 256 
intensity’ (see Fig. 2) systems yields little opportunity for large increases in prevalence. Panel (a) shows the 257 
proportion of bees infected (prevalence) in non-intensified apiaries (lower red line) compared to intensified 258 
apiaries (upper blue line), take from the mean values derived in Fig. 4b and the relationship shown in Fig. 3c. 259 
The shaded grey area between these curves is the additional prevalence caused by intensification – the 260 
‘impact of intensification’. This is plotted in panel (b) where the black line represents the mean relationship, 261 
and the grey lines represent 1000 bootstrapped samples. The vertical dashed line and yellow-shaded region of 262 
the graphs to the right of the dashed line show a lowest estimated value of R0 for Nosema ceranae. Figures 263 
start at R0 = 1.0008. 264 
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Discussion 265 

Our results present a counterintuitive picture of apicultural intensification and its consequences on 266 

disease prevalence within apiaries. Even in their most plausibly extreme cases, changes in the 267 

number of colonies, their spatial arrangement, and transmission rates between colonies (reflecting 268 

management intensification (Brosi et al., 2017)) had only a small effect on the severity of disease at 269 

the apiary level for pathogens of interest. Apicultural intensification leads to large gains in R0 when 270 

R0 is initially high and small gains in R0 when R0 is initially low (Fig. 4b). However, increases in R0 271 

cause large increases in prevalence only when R0 is initially low (Fig. 3c, 4a). Pathogens with a base 272 

R0  3 benefit most from intensification in terms of increased prevalence (Fig. 5); As discussed below, 273 

we argue that there is likely to be a high base R0 in important honeybee diseases and therefore our 274 

models suggest that there is likely to be little effect of apiary-scale intensification on disease 275 

prevalences. However, if a pathogen emerges with a relatively low R0, our model does indicate that 276 

extreme intensification could lead to a significant increase in prevalence of approximately 18.5%. 277 

Therefore, if intensification increases the risk of novel pathogen emergence, then these newly 278 

emerged pathogens would benefit from intensification, as it would significantly increase their 279 

disease prevalence, relative to the pre-intensified apiary. 280 

Our models most closely resemble the ecology of a directly transmitted microparasite able to infect 281 

individual honeybees at any life stage, conceptually similar to the microsporidian pathogens Nosema 282 

spp. (Fantham & Porter, 1912). Nosema is a major concern to beekeepers worldwide (Higes et al., 283 

2008, 2009; Paxton, 2010), and has a minimum estimated base R0 of 23 (Fig. 5) when modelled here. 284 

We found that apicultural intensification, in the context of a pathogen with an initial R0 of 23, leads 285 

to a maximum 6.6% increase in disease prevalence. Our models predicted disease prevalences of up 286 

to 90% (Fig. 3, Fig. 5; S.I. Section 3), which while high, are empirically supported for the honeybee 287 

system  (Higes et al., 2008; Kielmanowicz et al., 2015), and feature in other modelling studies that 288 

use similar transmission parameters to ours (Betti, Wahl, & Zamir, 2014). Nosema was the only 289 
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pathogen for which there are direct empirical studies characterising its transmissibility, however, 290 

other honeybee pathogens such as deformed wing virus are also well studied. While estimating an 291 

R0 for DWV is difficult due to active management by beekeepers, maximum reported prevalences 292 

that may be indicative of its true ‘unmanaged’ R0 are high, for example 73% in Natsopoulou et al. 293 

(2017), 80% in Budge et al. (2015), and 100% in Stamets et al. (2018). These high prevalences are 294 

consistent with high R0 values (Fig. 3c, Fig. 4a, & S.I. (Section 3)). 295 

We additionally explored the behaviour of a more specific model, using an age-structured approach 296 

to infection dynamics, where only larvae are vulnerable to infection and develop into infectious 297 

adults with a high pathogen-associated mortality (as might be appropriate for pathogens such as the 298 

acute paralysis virus complex (Martin, 2001)), presented in the S.I. (Section 3). Convergence to 299 

equilibrium happens more slowly than the main model presented here, but still occurs quickly 300 

(within a single beekeeping season; see S.I. 3 Fig. S7). However adult-bee infection prevalence is far 301 

lower than seen in our SI model (S.I. Fig. S7) – this is in agreement with observations of lower 302 

prevalence of paralysis viruses (Budge et al., 2015). Notably, the endemic equilibrium prevalence 303 

increases only by small magnitudes as movement between colonies or apiary sizes are drastically 304 

increased (S.I. Fig. S7), in agreement with our main general result. This equivalence in behaviour 305 

between different models reflecting large disparities in infection mechanics and different endemic 306 

prevalences demonstrates that these results are likely generalisable to many honeybee pathogens. 307 

We find rapid spread of a given pathogen across an apiary, which quickly reaches endemic 308 

equilibrium (S.I. Figs. S4-S6). While pathogens with a higher R0 reach this equilibrium more quickly, 309 

there is universally rapid spread. Given this result, we mainly focussed on the disease prevalence 310 

experienced at endemic equilibrium. Despite assuming transmission only to nearest neighbours, 311 

pathogen spread occurs rapidly, and the nearest neighbour assumption alters this very little when 312 

removed or relaxed (see S.I. Fig. S6). The rate at which epidemics are established in our model is also 313 

in agreement with other honeybee pathogen models. For example, Jatulan, Rabajante, Banaay, 314 
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Fajardo, & Jose (2015) show a single infectious adult causes an American Foulbrood (Paenibacillus 315 

larvae) epidemic that peaks within 50 days. Whilst they do not explicitly find an R0 for P. larvae, the 316 

short timescales characterising their epidemics are in line with ours (S.I. Section 3), suggesting high 317 

R0 values and that their model would behave similarly to ours at an apiary scale.  318 

Our inter-colony transmission can be understood to capture multiple processes arriving from 319 

beekeeper management such as brood transplantation or reduced distance between colonies (Brosi 320 

et al., 2017) as well as recognised transmission routes such as honeybee drift (Jay, 1965). Our 321 

approach was informed by studies which have focussed on how changes in the number of colonies 322 

and apiary configurations (Jay, 1966, 1968) alter drift (Dynes et al., 2017). Links between drift-323 

mediated pathogen transmission and colony numbers have been documented for a variety of 324 

pathogens (Seeley & Smith, 2015) – including brood specialised and non-specialised, micro- and 325 

macro- parasites (Belloy et al., 2007; Budge et al., 2010; Dynes et al., 2017; Nolan & Delaplane, 326 

2017). Larger numbers of colonies per apiary are a driver of higher drift (Currie & Jay, 1991), as are 327 

changes in apiary arrangement (Jay, 1966; Dynes, Berry, Delaplane, Brosi, & Roode, 2019). While 328 

beekeepers typically maintain equal distances between their colonies regardless of how many 329 

colonies are in the apiary (such that larger apiaries have a bigger area footprint), our approach of 330 

increasing between-colony transmission in larger apiaries would also capture any additional 331 

transmission from spatial crowding. 332 

Two clear candidates for future development of this model include seasonality and demography, 333 

which are closely linked. Honeybee demography within a colony influences epidemiology (Betti, 334 

Wahl, & Zamir, 2016) due in part to the temporal polyethism of task allocation influencing exposure 335 

and immunity (Calderone & Page, 1996), as well as the flexible ability of honeybees to regain 336 

immune function when they revert roles (Amdam et al., 2005; Robinson, Page, Strambi, & Strambi, 337 

1992). However, patterns in how age and immunosenescence in honeybees relates to survival and 338 

infectiousness remain complicated (Roberts & Hughes, 2014). Analytically tractable models 339 
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accounting for the role of this complex demography in understanding stress in a colony have only 340 

recently been developed (Booton, Iwasa, Marshall, & Childs, 2017), and extending these models to 341 

incorporate diseases at the apiary scale is challenging. However, notable phenomena worth pursuing 342 

include: the role of male bees, which are known to be more easily infected, more infectious, and 343 

more likely to drift between colonies (Currie & Jay, 1991; Roberts & Hughes, 2015); as well as the 344 

role of robbing – where honeybees invade other colonies to steal food (Fries & Camazine, 2001; 345 

Lindström, Korpela, & Fries 2008).  346 

At broader scales, overstocking of colonies may lead to resource limitation and consequently 347 

impaired immune function (Al-Ghamdi, Adgaba, Getachew, & Tadesse, 2016; Pasquale et al., 2013). 348 

These effects are important for a broader understanding of honeybee epidemiology, but should be 349 

separated from the within-apiary processes studied here. Additionally, most honeybee infectious 350 

diseases are caused by multi-host pathogens shared with other wild bees (Fürst et al., 2014; Manley 351 

et al., 2015; McMahon et al., 2015, 2018). Honeybee colony density across a landscape therefore has 352 

implications for wild pollinator health (Cohen et al., 2017; Graystock et al., 2016), however our 353 

results suggest that increased stocking of honeybees may have smaller impacts on local pollinator 354 

infectious disease dynamics than may have been previously thought.  355 

Other industrialised agricultural livestock systems reflect extreme host densities similar to those in 356 

this study. However, the R0 for honeybee diseases may exceed that of other livestock diseases. We 357 

compare our lower threshold estimate for the R0 of N. ceranae to all available R0 values for livestock 358 

diseases that we could readily find in the literature (Fig. S9, see S.I. Section 4). Notably, all other 359 

livestock diseases for which R0 estimates exist show minimum R0 values far below our honeybee 360 

estimate, however examples of agricultural R0 values as high or higher than those we present for 361 

honeybees do also exist. There is therefore a clear need to develop explicit models of agricultural 362 

intensification scenarios for important agricultural disease. 363 
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Overall, our findings represent the first stage in developing robust epidemiological models for 364 

studying honeybee pathogens at an apiary scale. In the face of increasing challenges to global 365 

apiculture, our models predict that the size of apiaries per se is not causing notable increases in 366 

disease prevalence for important established bee pathogens, while it may increase the risk of 367 

pathogen emergence. Finally, this study demonstrates that conventional thought on how 368 

agricultural intensification influences disease may not be robust in the face of system-specific 369 

ecological nuance. 370 
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