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Abstract 

 

The use of enzymes in technology is of increasing commercial interest due to 

their high catalytic efficiency and specificity and the lowering of manufacturing 

costs. Enzymes are also becoming more widely utilised because they are more 

environmentally friendly compared to chemical methods. Firstly, they carry out 

their reactions at ambient temperatures requiring less energy to achieve the high 

temperatures and pressures that many chemical methods require. Secondly, they 

can substitute for toxic chemical catalysts which need careful disposal. In this 

project two classes of enzymes of industrial interest from thermophiles were 

investigated, lactonase enzymes and 1-deoxy-D-xylulose 5-phosphate (DXP) 

synthases.  

 

A quorum sensing lactonase from Vulcanisaeta moutnovskia, a thermoacidophilic 

anaerobic crenarchaeon, was expressed in high levels in an Escherichia coli host, 

then purified and characterised with a range of industrially relevant substrates. 

These enzymes are of industrial interest for water treatment and bioreactors for 

their ability to prevent biofilm formation in bacteria. This enzyme showed different 

specificity to another well characterised quorum sensing lactonase from a 

thermophilic crenarchaeon, Sulfolobus solfataricus. Crystals of the native 

enzyme were obtained. Structural examination revealed that the V. moutnovskia 

lactonase possesses an α-helix obstructing a hydrophobic channel near the 

active site, whereas the S. solfataricus lactonase has a flexible loop leaving the 

hydrophobic channel unrestricted. As a result the acyl chains of substrates 

interact with surface residues of the α-helix in V. moutnovskia lactonase rather 

than sitting in the channel, so its activity is no longer restricted to substrates with 

long acyl chains. 

 

A gluconolactonase encoded by a thermophilic Planctomyces genome was 

cloned and expressed at high levels in an E. coli host, purified and successfully 

crystallised. The crystals had a space group of P 3 2 1 and diffracted to a 

resolution of 2.41 Å. This enzyme was intended to be used by an industrial 
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partner for synthesis of metabolite standards for mass spectrometry and 

diagnostics. Attempts were made to clone, purify and express two other 

lactonases from thermophilic metagenomes obtained from terrestrial hot springs: 

an enol lactonase and a second quorum sensing lactonase. Homology modelling 

was used to create predicted structures for both of these enzymes. The quorum 

sensing lactonase showed a 2.5 Å difference in the position of a catalytic serine 

and a 3.1 Å difference in a catalytic histidine in comparison to a mesophilic 

homologue. The enol lactonase contained an aspartic acid in place of a catalytic 

serine found in a mesophilic homologue. 

 

A DXP synthase from an anaerobic Gram-negative bacterium Thermovibrio 

ammonificans was successfully cloned, over-expressed and purified. Crystals 

were successfully produced although these diffracted only to low resolution. A 

DXP synthase from an anaerobic Gram-positive bacterium Carboxydothermus 

hydroformans was successfully cloned, however the protein was expressed 

primarily in the insoluble fraction. Homology models were made for these two 

enzymes. Both enzymes showed strong similarity with mesophilic DXP synthases 

in terms of tertiary structure and positions of active site residues. Visual analysis 

revealed an increase of 15-20 % in the number of hydrophobic interactions within 

the enzymes and a high proportion of charged residues at the dimer interface, 

which would confer increased thermostability. The hope was to obtain high 

resolution diffraction data to assist in understanding what allows these enzymes 

to utilise pyruvate as a substrate compared to transketolase, a related enzyme, 

which uses hydroxypyruvate.  
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1.1 Applications of biocatalysis 

 

Enzymes are currently being used as biocatalysts in many industrial processes 

since they are highly selective for their substrates and products, they are usually 

stereoselective, and the enzymes are potentially reusable (Schmid et al., 2001). 

This is unlike traditional chemical synthetic methods, which can involve high 

temperatures, high pressures, toxic transition metals or a combination of all of 

these. This makes the process costly, requiring a lot of energy to create the high 

temperatures and pressures, as well as environmentally unfriendly with regards 

to the disposal of the toxic heavy metal catalysts. In comparison, using enzymes 

as catalysts in pharmaceutical and industrial processes requires much lower 

pressure, temperature and they can usually substitute for the reactions carried 

out using heavy metal catalysts.  

 

A market research report published in 2016 from Grand View Research, Inc. 

(https://www.grandviewresearch.com/industry-analysis/enzymes-industry) 

showed that the global market for enzymes in 2015 was 1.18 billion USD. By 

2024 it has been predicted that this will increase to an estimated 17.5 billion USD. 

The areas where the use of enzymes is expected to grow the fastest over the 

coming years are animal feed and speciality enzymes designed for diagnostics 

or industrial biocatalysis.  

 

Enzymes are divided into six different classes, hydrolases, transferases, ligases, 

isomerases, oxidoreductases and lyases (Table 1). This was determined by the 

Enzyme Commission, part of the International Union of Biochemistry and 

Molecular Biology (https://iubmb.org).   

  

https://www.grandviewresearch.com/industry-analysis/enzymes-industry
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Table 1. Enzyme classifications. 

Enzyme type Reactions catalysed 

Hydrolase Hydrolytic cleavage 

Transferase Transfer of a functional group between 
two molecules 

Ligase Formation of a new bond joining two 
large molecules together 

Isomerase Intramolecular rearrangement 

Oxidoreductase Oxidation and reduction 

Lyase The removal or addition of a molecule to 
a double bond 

 

 

The first instance of biocatalysis being used in an industrial process was in the 

1930’s where Acetobacter suboxydans was used was used to convert D-sorbitol 

and into L-sorbose for the production of L-ascorbic acid (vitamin C). Also, yeast 

was used for the conversion of benzaldehyde into (R)-phenylacetyl carbinol for 

the production of D-ephedrine for treating low blood pressure (Holland 2000). 

 

Examples of biocatalytic processes include the breakdown of amides by penicillin 

acylase, hydrolysis of esters to acids by esterases and lipases, the formation of 

malic acid via condensation by fumarase, conversion of glucose to fructose by 

glucose isomerase and the removal of a halogen by dehalogenases (Taylor, 

1998). Many semi-synthetic antibiotics are now being made by utilising 

biocatalysis instead of chemical conversions based on stoichiometry. The α-

amino acid ester hydrolase, α-acylamino-β-lactam acylhydrolase and ampicillin 

acylase are all enzymes that have been reported capable of producing semi-

synthetic cephalosporins from 7-aminocephem or 6-aminopenam with α-amino 

acid esters (Ryu and Ryu, 1986).The immobilised enzyme penicillin acylase is 

being used in the manufacturing process of β-lactam antibiotics. Condensation of 

6-aminopenicillanic acid with D(−)-4-hydroxyphenylglycine or D(−)-phenylglycine 

by this enzyme will make amoxicillin or ampicillin, respectively. Also cefadroxil 

and cephalexin can be made from 7-aminodesacetoxycephalosporanic acid in 

the same manner (Bruggink et al., 1998).  
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Enantiomers can have radically different biological effects in biological systems. 

An example is thalidomide where the (R)-enantiomer has a sedative effect, 

previously used to treat morning sickness, while the (S)-enantiomer is extremely 

teratogenic. When first marketed, the drug was administered as a racemate of 

both enantiomers and caused severe birth defects. Another example is terodiline, 

which was originally marketed as a racemate for the treatment of urinary 

incontinence. It was later withdrawn due to one of the side effects being severe 

heart arrhythmia, which was discovered to be caused by the (R)-enantiomer. The 

racemate version of Benoxaprofen was also removed from the market as an anti-

inflammatory drug due to rapid accumulation of the active (S)-enantiomer. This 

was due to the unforeseen effect of the (R)-enantiomer undergoing chiral-

inversion within the body to the more potent (S)-enantiomer making the dosage 

of the active compound much higher than anticipated (Srinivas et al., 2001). Of 

course not all chiral compounds have a negative effect, some have no observable 

biological effect. Methylphenidate is one such example, used in the treatment of 

children with ADHD and ADD, where the D-enantiomer is the medicinal 

compound and the L-enantiomer has no biological effect (Srinivas et al., 2001). 

But for instances like those described above where the biological effects of one 

of the enantiomers was highly toxic, being able to select one enantiomer over the 

other is vital in drug development. As such there is far more scrutiny on racemates 

by regulatory agencies with new drug applications. When one isomer is identified 

as being a candidate for drug development, full characterisation of its optical 

isomer is required for scrutiny adding more time and cost to drug design. 

 

Due to chirality having such significance in biological systems many enzymes 

have evolved to favour one enantiomer over another. This property has been of 

great interest to the pharmaceutical industry in producing chiral compounds. The 

asymmetric synthesis of chiral amines is important for a large number of 

pharmaceutical processes since they are important components of many drugs, 

such as delavirdine, an HIV reverse transcriptase inhibitor (Romero et al., 1993), 

however they remain a challenge to produce. To overcome this amine 

dehydrogenases have recently begun to be utilised. A reaction using three amine 

dehydrogenases: two L-phenylalanine dehydrogenases from a Rhodococcus 

species and Bacillus badius; and a leucine dehydrogenase from Bacillus 

stearothermophilus; along with a formate dehydrogenase to recycle the 
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nicotinamide cofactor, was developed that performed the amination of aromatic 

and aliphatic ketones and aldehydes with high efficiency and a high turnover of 

product. Furthermore, the enzymes produce amines with high stereoselectivity 

with more than 99 % of the product in the (R) conformation (Knaus et al., 2017). 

The final step in the production of sitagliptin, an anti-diabetes drug, was an 

asymmetric rhodium-catalysed hydrogenation. However an alternative was 

developed using a transaminase enzyme which won the Merck Green Chemistry 

Award in 2010 and has since replaced the previous method. The transaminase 

itself does not naturally have activity to the intermediate dehydrositagliptin so was 

engineered using mutagenesis directed at the active site to accommodate the 

non-natural substrate, followed by rounds of directed evolution to improve yield, 

activity, enantioselectivity, and stability (Savile et al., 2010).  

 

Transaminases mediate the transfer of an amino group from the amino donor to 

the acceptor for chiral synthesis of amino acids or other amines, with the aid of a 

pyridoxal 5′-phosphate cofactor. These enzymes are currently of great interest 

for a number of factors (Guo and Berglund, 2017). These enzymes display a high 

level of enantioselectivity due to positioning of the cofactor and binding pockets, 

resulting in high amounts of chiral products (Fuchs, et al., 2015). Also the cofactor 

is recycled after the reaction which is highly advantageous in industrial 

biocatalysis because additional cofactor regeneration is not required, unlike many 

other enzymes (Kara et al., 2014). A transaminase from the crenarchaeon 

Sulfolobus solfataricus was found to catalyse the reaction of L-serine and 

pyruvate to 3-hydroxypyruvate and alanine. It also had activity towards other 

amino acids; methionine, asparagine, glutamine, phenylalanine, histidine, and 

tryptophan (Sayer et al., 2012). This made it ideal to be used alongside a 

transketolase enzyme (Littlechild et al., 1995) for the synthesis of a number of 

optically pure intermediates for drug production (Chen et al., 2006).  

 

Whole cells can be used in complex reaction pathways that require regeneration 

of co-factors for the enzymes as it is far easier and cheaper to allow a living cell 

to replenish these automatically as part of its natural processes to ensure the 

enzyme remains active (Schmid et al., 2001). Due to their high specificity, there 

are few by-products of enzyme-based reactions; with increasing environmental 

awareness this becomes even more of a necessity as any waste must be dealt 
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with properly, so the less there is the cheaper the end product. The production of 

dorzolamide hydrochloride, a carbonic anhydrase inhibitor developed for the 

treatment of glaucoma, utilises whole microorganisms to produce an optically 

pure enantiomer. The fungus Rhodotorula pilimanae is used in the asymmetric 

production of the chiral hydroxy sulphone from ketosulphone (Blacker and Holt , 

1997). A problem with whole cell reactions is that the desired product may be 

further metabolised by other enzymes present in the cell. Cells may also have to 

be lysed unless the product is excreted and there would be significant 

contamination from other products produced by the cells as well as nutrients in 

the growth medium that would need to be removed. 

 

1.2 Thermophiles 

 

An active protein is held together by a combination of forces: van der Waals, 

electrostatic, hydrophobic interactions and hydrogen bonds. When these forces 

are disrupted by things such as elevated temperatures, the proteins unfold into 

inactive structures and form aggregates where the hydrophobic residues of 

different unfolded proteins interact with each other. Once this occurs it is not 

usually possible to get back the original protein structure (Littlechild et al., 2013). 

However, many organisms are found in environments where mesophilic proteins 

would immediately unfold due to the high temperatures. Organisms adapted to 

these environments, known as thermophiles and hyperthermophiles, possess 

proteins that are modified to resist the high temperatures. 

 

Thermophilic enzymes are of great interest for industrial applications due to their 

resistance to high temperatures. This is because running reactions at higher 

temperatures give several advantages over those done at temperatures that 

mesophilic enzymes are stable. At higher temperatures there is an increase in 

the solubility of organic compounds allowing higher concentrations to be 

achieved and fewer rounds of product extraction to lower manufacturing costs. 

The higher temperatures also cause a drop in the viscosity of the solvent and an 

increase in the rate of diffusion of organic compounds. Finally, higher 

temperatures are expected to produce higher rates of reactions due to smaller 

boundary layers, the layers of stationary fluid surrounding an immersed object, 

which in this case would be the enzymes themselves (Krahe, et al., 1996; Becker 
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et al., 1997). An example of a thermophilic enzyme currently being used in 

industrial applications is in the production of corn syrup. A xylose isomerase is 

used in the conversion of glucose to fructose and xylose to xylulose (Chanitnun 

and Pinphanichakarn, 2012). 

 

Thermophilic enzymes have evolved a number of ways in order to prevent 

denaturation on exposure to the high temperature environments that the host 

organisms have to survive in. While there is a pronounced difference between 

mesophilic and thermophilic enzymes, where thermophilic enzymes possess 

fewer uncharged polar amino acid residues and more hydrophobic and proline 

residues. There is much less difference between thermophiles from different 

temperature ranges (Zhou et al., 2008). It is often seen that glycine and lysine 

residues are replaced with alanine and arginine respectively. The reason for this 

is that a higher alanine content would help stabilise α-helices as its features best 

suit α-helices in that it possesses a small methyl group that will not cause steric 

hindrance while also providing hydrophobic interactions to stabilise the structure 

(Quellère, 2007). Arginine is hypothesised to be less susceptible to chemical 

attack at high temperatures compared to lysine (Vieille and Zeikus, 2001). 

Besides an increase in the number of ionic and hydrophobic interactions found in 

the proteins there is also often an absence of cysteine as it is particularly 

susceptible to oxidation at high temperatures. Thus disulphide bridges are not 

that common in mesophilic proteins. The exception to this are extracellular 

proteins where they are not exposed to the reducing environment of the cell and 

can contribute to stabilising the protein. This is not true for hyperthermophilic 

archaeal proteins such as those from Aeropyrum pernix where disulphide bonds 

are found in many cytoplasmic proteins (Littlechild et al., 2013). There are also 

fewer asparagine and glutamine residues as they are easily deaminated (Hess 

et al., 1995). There is an increase of aromatic and proline residues as these 

increase the rigidity of the protein (Fleming and Littlechild, 1997). Often there are 

also more hydrogen bonds present within the protein. Changes to the secondary 

and tertiary structure is also observed with fewer and shorter external loop 

regions being present or alternately they may be anchored though ion pairs, 

hydrogen bonds or hydrophobic interactions to the main structure (Vieille and 

Zeikus, 2001). Metal ions may also be bound to loop regions to stabilise these 

further (Mallick et al., 2002). Similarly the N and C termini may be anchored to 
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the core region to increase stability (Macedo-Ribeiro et al., 1996). There have 

also been changes to the quaternary structure that have been observed. 

Thermophilic proteins are more likely to form higher oligomeric states than their 

mesophilic counterparts which is thought to increase thermal stability. Studies on 

monomeric mutants of dimeric enzymes show significant decreases in the 

temperature at which the protein denatures (Thoma et al., 2000). Ultimately, there 

is no single rule for how stability of enzymes in hot environments is achieved, 

rather the adaptations differ between species.  

 

Alcohol dehydrogenase from the hyperthermophilic archaeon Aeropyrum pernix 

is an example of an enzyme designed to withstand high temperatures. The 

organism is heterotrophic and grows at temperatures of 90–95 °C and at a pH of 

7.0. The enzyme is a tetramer and appears to have adaptations to maintain this 

despite the high temperatures. There are four ionic bonds between subunits for 

a total of sixteen inter-subunit ionic bonds. There are also extensive hydrophobic 

pockets located at the subunit interfaces. These features, along with a disulphide 

bond within each monomer, infer the ability of the enzyme to survive for one hour 

at 90 °C with only a loss of 50 % activity (Guy et al., 2003). In two pyrrolidone 

carboxyl peptidases from the thermophiles Pyrococcus furiosus and 

Thermococcus litoralis, there is an insert of five amino acids in both that is not 

present in the mesophilic variant. These create a C-terminal loop that forms the 

core of a tetramer which is attributed as the main form of stabilising this protein 

as the mesophile enzyme forms a dimer (Littlechild et al., 2007).  

 

There are many cases where thermophilic enzymes are being utilised for their 

stability or other unique traits. The polymerase from the hyperthermophilic 

archaeal Pyrococcus species is currently being widely used in PCR reactions as 

it has demonstrated higher fidelity in comparison to its mesophilic counterparts. 

A γ-lactamase from the thermophile Sulfolobus solfataricus was purified and 

immobilised as a cross-linked polymerised enzyme in a microreactor (Hickey et 

al., 2009). This was to catalyse the reaction of a γ-lactam to a single enantiomer 

of a γ-bicyclic lactam product which is important for the synthesis of the anti-HIV 

compound, Abacavir (Taylor et al., 1993). A thermophilic lipase was also found 

in S. solfataricus, its optimal activity was towards esters of mid-chain length in 

temperatures around 70 °C. Lipases such as this one have potential use in the 
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production of drug intermediates (Littlechild et al., 2007). A thermophilic 

dehalogenase enzyme was located in the crenarchaeon Sulfolobus tokadaii and 

was cloned and purified due to it being able to produce chiral halo-carboxylic 

acids which are needed for both fine chemical and pharmaceutical industries 

(Rye et al., 2009). 

 

Thermostable enzymes are also more stable to organic solvents and more 

resistant to proteolysis. This is advantageous as some industrial processes must 

been done in the presence of solvents since the non-natural substrates are not 

soluble in water. Reactions carried out  in organic solvents also can have other 

advantages such as less effort required in recovering the product, change in the 

equilibrium and less risk of  contamination in bioreactors (Valadez-Blanco et al., 

2008). In non-polar solvents, lipase and esterase enzymes generally retain the 

same catalytic activity as they do when in water, indicating water remains bound 

to the enzyme modulating activity. It was shown that water forms a shell around 

the enzyme when put into solvents such as hexane. With polar solvents such as 

alcohols, however, there is an observable difference in activity where the solvent 

partially replaces the role of bound water required for enzyme activity. The 

remaining water forms small clusters loosely bound to the surface of the enzyme 

(Micaêlo and Soares, 2007). Other classes of enzyme are less stable to high 

percentages of organic solvents, which can denature the enzyme and reduce 

activity. 

 

To determine whether proteins retain their native conformation in organic 

solvents a study was done using solid state NMR. The structure of a serine 

protease cutinase from Fusarium solani was observed in hexane, 3-pentanone, 

diisopropyl ether, ethanol, and acetonitrile. Here it was shown that the overall 

structure of the enzyme differed depending on the hydration levels. The root 

mean squared deviation (RMSD) of the protein when exposed to a solvent formed  

a bell shaped curve, revealing an optimal level of hydration required for it to 

assume its native conformation (Micaêlo and Soares, 2007). 

 

Work to impart thermal stability to mesophilic proteins has been going on for quite 

a while. A number of methods are employed including rational design using 

techniques such as site-directed mutagenesis and directed evolution (Song and 
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Rhee, 2000). A lactate oxidase, used in biosensors to measure the concentration 

of lactate in the blood, was put through directed evolution using error-prone PCR 

to increase its stability at high temperatures. The group managed using this 

method to increase the half-life of the enzyme at 70 °C to about 36 times of the 

wild-type enzyme (Minagawa et al., 2007).  

 

1.3 Psychrophiles 

 

The earth has many regions that are colder than most life can survive in such as 

the Antarctic. Psychrophiles thrive in cold environments and even at 

temperatures below freezing and this group includes any organism adapted to 

temperatures below 7 °C. Examples include Moritella profunda, a 

psychropiezophilic bacteria adapted to 2 °C temperatures and the deep sea. 

Ascomycotina, Basidiomycotina, Deuteromycotina, and Zygomycotina are all 

families of fungi that thrive at low temperatures and are responsible for some food 

spoilage while in refrigeration (Maurer, 2003). Microbial communities have even 

been found in porous rocks in Antarctic dry valleys which are adapted to surviving 

temperatures as low as ˗60 °C (Cary, et al, 1982).  

 

Psychrophiles produce antifreeze proteins which are a group of ice-binding 

proteins that prevent ice growing by binding of the protein to the surface of the 

ice crystal. This alters the geometry of the ice crystals forcing them to form in a 

convex pattern, decreasing the freezing point (Kristiansen and Zachariassen, 

2005). Cold shock proteins are expressed when cells are exposed to 

temperatures below those they normally grow at. These bind to RNA and act as 

RNA-chaperones to regulate translation by destabilising the RNA to make it 

single stranded. These proteins are constantly being produced in psychrophiles 

as opposed to transiently in mesophiles and thermophiles (Lee et al., 2013). 

 

Psychrophilic proteins have been adapted to function at lower temperatures 

where water viscosity, substrate diffusion rates and enzyme kinetics all differ from 

those of mesophiles and thermophiles. Overall their structures are more flexible 

with longer loop regions. They have a reduced of proline residues due to folding 

and isomerisation of proline being a rate limiting step for psychrophilic proteins 

and increasing the flexibility of the protein backbone, as well as having prolyl 
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isomerases to aid in the process. The enzymes are less stable than their 

mesophilic counterparts and localised increases in flexibility at the active site are 

responsible for the high activity at low temperatures (Feller, 2013). They have 

more nonpolar residues on their surface which destabilises the water shell around 

the enzyme. They have a lower abundance of arginine residues, which increases 

backbone flexibility as well as fewer hydrogen bonds to reduce the stability within 

the enzyme core (Paredes et al., 2011). Their active sites are larger and more 

accessible with smaller amino acid side chains being favoured in them (Aghajari 

et al., 2003). As a consequence of this psychrophilic enzymes are often more 

promiscuous with substrate specificity. The kcat of these enzymes is higher than 

their mesophilic counterparts over temperatures between 0-30 °C (Feller et al., 

1996). Substrates bind less firmly to the active site in cold conditions giving rise 

to higher Km values. The majority of psychrophilic enzymes improve the kcat at the 

expense of Km, leading to suboptimal values of the kcat/Km ratio. The theory 

behind this is that a weaker substrate binding affinity means the enzyme-

substrate complex is at a higher energy state. This means less energy is required 

to overcome ΔG to complete the conversion to the products (Struvay and Feller, 

2012). Whereas thermophilic proteins maintain a low entropic state to resist high 

temperatures, psychrophilic proteins employ the opposite strategy to have a 

much higher entropic state to ensure there is sufficient flexibility within the protein 

for catalytic activity (Feller, 2013).  

 

1.3 Lactonases  

 

Lactonases are a class of enzyme that catalyse the hydrolysis of the ester bond 

within a lactone ring. Macrocyclic lactones are currently in use as broad spectrum 

drugs for treatment of parasitic infections. Testolactone, an inhibitor of 

aromatase, a key enzyme for oestrogen biosynthesis, is used for the treatment 

of advanced stage breast cancer (Cepa et al., 2005). Lactones can also be used 

for the synthesis of polymers (Bains et al., 2011). Studies to date have identified 

three structurally diverse classes of lactonase enzymes. These are the enol 

lactonases, gluconolactonases and the quorum sensing lactonases.  

 

The primary role of enol lactonases is as part of a pathway of enzymes which 

make phenol a viable source of energy (Fig. 1.1). Phenol is degraded into 3-
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oxoadipate-enol-lactone which is catalysed to 3-oxoadipate by 3-oxoadipate-

enol-lactonase. Following this it is converted into 3-oxoadepyl CoA by a 

transferase, then into acyl CoA and succinyl CoA by an acyltransferase and a 

thiolase respectively (Basha et al., 2010). Both of these go on to feed directly into 

the citric acid cycle to generate energy for the cell. Gluconolactonases are 

involved in pathways in animals for the synthesis of L-ascorbic acid, an important 

antioxidant, from D-glucuronate, and for synthesis of pentose phosphates which 

are used in synthesising nucleic acids (Fig. 1.2). Glucose is converted in these 

pathways eventually to an intermediate, L-gulonate by glucoronate reductase, 

and is then converted to L-gulonolactone by gulonolactonase catalysing the 

reverse reaction of what is normally seen by condensing it to a lactone ring in 

response to the equilibrium where the lactone is favoured over the L-gulonate 

(Fig 1.2).  

 

Quorum sensing lactonases have been shown to disrupt quorum sensing 

involving the secretion of N-acyl homoserine lactones, primarily in Gram-negative 

bacteria (Fig 1.3). These lactonases are used either by species that emit lactones 

as quorum sensing molecules to recycle them, or by competing organisms. The 

genes under the control of these molecules usually are related to virulence and 

biofilm formation. The density of quorum sensing molecules are a way for cells to 

measure the local population, with more cells creating higher concentrations of 

signalling molecules in the surrounding environment. They are also a way for 

bacteria to sense the dimensions and how open its surroundings are through a 

method known as diffusion sensing, where diffusion of signal molecules away 

from the cell indicate an environment that is not restrictive in size. This allows 

them to probe the worthwhileness of producing costly molecules such as 

extracellular enzymes (Hense et al., 2007). It has been suggested that disrupting 

quorum sensing would be less likely to give rise to new resistant strains, due to 

the fact that there is less selective pressure, which makes this a topic of great 

interest (Singh, 2009). A lactonase from S. solfataricus was immobilised on a 

nanoalumina membrane, and although it did not inhibit the growth of the 

Pseudomonas aeruginosa being grown there, it did inhibit expression of 

exoproteases and elastases, proteins associated with infection and resistance to 

the immune system (Kuang et al., 2011), and reduced the concentration of 

bacterial cells by approximately five times (Ng et al., 2011). A quorum sensing 
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lactonase from S. solfataricus was purified and found to inhibit the virulence of 

isolates of P. aeruginosa, a Gram negative pathogenic bacterium. This bacterium 

is responsible for a number of human infections including otitis, keratitis, 

pneumonia, and diabetic foot ulcers. It reduced the secretion of both proteases 

and pyocyanin, known virulence factors, as well as inhibiting biofilm formation. 

When compared to molecules known to inhibit quorum sensing such as 

brominated furanones which prevent bacteria from sensing any quorum signalling 

molecules in solution, the lactonase was found to be far more effective at 

disrupting the quorum sensing of the bacteria (Guendouze et al., 2017). While 

virulence genes are not considered necessary for bacterial survival, meaning 

there is less selective pressure (Rasko and Sperandio, 2010), a recent paper 

suggested that there is a possibility in the rise of resistance to quorum quenching 

(Defoirdt et al., 2010). They showed that within the bacterial population there 

were variances in the expression of quorum sensing genes, both those for 

producing the molecules and those for perceiving them. They argued that there 

is a risk of resistance if this variation induces differences in fitness under quorum 

quenching conditions.  

 

It has been postulated that quorum sensing lactonase might be produced by 

some bacteria as a method of metabolising the lactone molecules secreted by 

other species of bacteria to use as a source of both nitrogen and energy. 

Variovorax paradoxus, a rod-shaped bacterium isolated from soil samples was 

found to be capable of growth on plates containing acyl-homoserine lactones as 

the sole source of energy and nitrogen. A hypothetical pathway for this indicates 

the lactonase to be responsible for cleaving the lactone ring and releasing 

nitrogen for use by the bacterium (Fig. 1.4) (Leadbetter and Greenberg, 2000).  

 

The mechanism by which lactonases hydrolyse the ester ring was proposed by 

(Momb et al., 2008) and is shown in Fig. 1.5. They investigated acyl-homoserine 

lactonase from Bacillus thuringiensis using X-ray crystallography and site 

directed mutagenesis. Two divalent zinc ions present in the active site bind to the 

lactone ring on the side less hindered by its side chain, with the carbonyl oxygen 

interacting with the first zinc ion and the leaving oxygen with the second zinc ion. 

This interaction between the zinc ions and the lactone ring is stabilised by the 

interaction of the phenol group of Tyr 194 with the carbonyl oxygen of the lactone. 
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Phe 107 forms a hydrogen bond with the carbonyl oxygen of the lactone’s amide 

group facilitated by a water molecule between them. The zinc ions polarise the 

lactone bond giving the carbonyl carbon of the ring an increased positive charge 

and making it susceptible to a negatively charged hydroxide ion. The addition of 

this hydroxide group forms a tetrahedral intermediate and causes cleavage of the 

C–O bond. It was also proposed that the negative charge on the leaving group is 

stabilised by the zinc ions. 

 

 

 

 

 

 

Fig. 1.1. Reaction of 3-oxoadipate-enol-lactone to 3-oxoadipate catalysed by 3-

oxoadipate-enol-lactonase. Image drawn using ChemSketch (Advanced Chemistry 

Development Inc., 2013)  

  

3-oxoadipate-enol-lactone  

3-oxoadipate-enol-lactonase 

3-oxoadipate  
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Fig. 1.4. Hypothetical degradation pathway used by V. paradoxus in utilising lactone 

signalling molecules as a source of energy. An aminoacylase releases a fatty acid 

molecule for β-oxidation and a lactonase hydrolyses the ester bond releasing an 

ammonium ion. Image taken from (Leadbetter and Greenberg, 2000). 
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1.4 DXP Synthases 

 

Isoprenoids are essential in all living organisms as they form the basis for the 

production of sterols, carotenoids, dolichols, vitamin A, vitamin E, vitamin K and 

the co-factors pyridoxal-5-phosphate and thiamine diphosphate (Brammer et al., 

2011; Morris et al., 2013; Smith et al., 2014). Most human pathogens, ranging 

from bacteria to the malarial parasite, and the chloroplasts of higher plants and 

green algae utilise the methyl erythritol phosphate pathway (MEP) (Brammer et 

al., 2011; Xue and Ahring, 2011; Morris et al., 2013). This pathway differs from 

that for isoprenoid synthesis in human cells which uses the mevalonate pathway, 

shared with archaea and fungi. Therefore it has generated a lot of interest as a 

potential target for new anti-microbial compounds since the potential side effects 

on the host would likely be minimal due to an alternative pathway being used.  

 

1-Deoxy-D-xylulose 5-phosphate (DXP) is a key component and the first step in 

the MEP pathway. It is produced from pyruvate and D-glyceraldehyde-3-

phosphate and the reaction is catalysed by DXP synthase. This enzyme uses 

thiamine pyrophosphate, one of the products of DXP synthase-catalysed reaction 

pathways, as a cofactor and has the potential to carry out a biosynthetic reaction 

resulting in 100 % conversion since one of the products is CO2, meaning there is 

no equilibrium formed since one of the products is lost as a gas from the solution. 

This also makes DXP enzymes of interest for industrial reactions where yield is 

important in reducing cost and waste. Targeting this enzyme as an anti-microbial 

is hampered by identifying inhibitors of this enzyme that do not also interact with 

other thiamine pyrophosphate dependent enzymes found within mammalian 

cells, such as pyruvate dehydrogenase and transketolase enzymes (Samson et 

al., 2017). The enzyme itself possesses low sequence identity to both 

transketolase and pyruvate dehydrogenase, with around 20 % sequence identity 

to each (Lois et al., 1998). 

 

 



 

[33] 

 

 

 

 

Fig. 1.6. Reaction pathway for 1-deoxy-D-xylulose-5-phosphate synthesis from pyruvate 

and D-glyceraldehyde-3-phosphate catalysed by DXP synthase as part of the isoprenoid 

biosynthesis pathway. The reaction is irreversible due to CO2 product loss by gaseous 

diffusion. Image produced with ChemSketch. 

 

To date there are two DXP synthase enzyme structures in the Protein Data Bank, 

which are those from Escherichia coli (PDB code 2O1S) and Deinococcus 

radiodurans (PDB code 2O1X) (Xiang et al., 2013). These two DXP synthases 

were shown to be dimers with three domains, with the active site located on the 

interface between domain one and domain two of the monomer. This is very 

different from transketolase, where the active site is located at the interface 

between the dimer. The C2 of the thiamine pyrophosphate interacts covalently 

with pyruvate. A histidine in the active site, His 49 in E. coli DXP synthase, the 

equivalent of His 51 in D. radiodurans DXP synthase, is involved in binding with 

D-glyceraldehyde-3-phosphate and is thought to participate in proton transfer 

during the reaction (Nikkola et al.,  1994). The results of a crystal soak with D. 

radiodurans DXP synthase in high concentrations of D-glyceraldehyde-3-

phosphate indicated possible interactions between the side chains of His 51, His 

304, Tyr 395, Arg 423, Asp 430 and Arg 480 and the substrate. 
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Fig. 1.7. Structure of DXP synthase from D. radiodurans. Crystal structure from the 

Protein Data Bank (code 2O1X). Made using YASARA (Krieger and Vriend, 2014), blue 

are α-helices, red are β-strands, green are turns and cyan are random coils. The enzyme 

forms a dimer with an α/β fold and a central parallel β-sheet in-between α-helices.  
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1.5 Principles of crystallisation 

 

A supersaturated protein solution can be achieved with the addition of a 

precipitant. Using this it is possible to achieve a slow, controlled precipitation of 

the protein from solution without denaturing it. The most commonly used 

precipitants are Polyethylene glycols (PEG) due to being strong precipitant while 

also being a weak denaturant. Other precipitants used include ionic compounds 

such as salts and organic solvents, though the latter will interact with hydrophobic 

regions of proteins and can denature them.  

 

To achieve well-ordered protein crystals of sufficient size it is necessary to 

maintain the time in which the solution is in the nucleation phase to a minimum 

(Fig. 1.8). This is because excess nuclei will deplete the protein concentration 

generating a large number of crystals too small to use or form crystal clusters 

where several nuclei formed together. As such it is ideal to obtain a concentration 

of precipitant and protein where a few nuclei form and decreasing the protein 

concentration to the metastable phase due to this precipitation. It is also 

necessary to decrease the volume of the droplet and thus increase the 

concentrations, without this there would be a considerable amount of protein still 

in solution.  

 

Current crystallisation methods include protocols such as microbatch 

crystallisation (Fig. 1.9 A). A droplet containing a mixture of the protein and 

precipitant is dispensed into a well and covered with a layer of oil consisting of 

50 % silicone oil and 50 % paraffin oil, known as Al’s oil. This oil allows partial 

diffusion of water out of the droplet into the surrounding oil over time, decreasing 

the volume. The speed of diffusion can be altered by increasing or decreasing 

the concentration of silicone oil which is the part of the oil that allows water to 

diffuse out, so a higher concentration allows faster diffusion and a lower 

concentration slows the diffusion of water. Other methods include sitting drop and 

hanging drop vapour diffusion (Fig. 1.9 B). This is where the droplet is suspended 

on a surface exposed to the air in a sealed environment with a reservoir of the 

reagent that was added to the droplet to crystallise the protein solution. With a 

lower concentration of water in the reservoir, water slowly evaporates from the 

droplet into the surrounding atmosphere and into the solution in the reservoir until 
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an equilibrium is reached where the reagent concentration in the drop is 

approximately the same as the reservoir. Though the same in principle there can 

be observable differences between the results of both sitting and hanging drop 

vapour diffusion. It is proposed that the difference in the geometries in each 

method alter the kinetics of the processes occurring (Littlechild, 1991). 

 

The main advantage of vapour diffusion over standard microbatch is diffusion is 

slower, giving more time for a single large crystal to grow before the 

supersaturation results in other sites of nucleation in the solution to form. 

However this can be remedied by adjusting the concentrations of Al’s oil. 

Reducing the concentration of silicone oil can reduce the rate of diffusion to that 

seen in vapour diffusion. This versatility is the main reason microbatch was the 

method of choice for this project. Also vapour diffusion comes with the 

disadvantage of time and cost. While companies such as Douglas Instruments 

have made recent advances in automating the process of dispensing samples, 

traditionally it has been more labour intensive than microbatch which has been 

automated efficiently for some time. Since each well requires a reservoir of the 

crystallisation screen solution a lot more material is required increasing costs.  

 

When crystallisation conditions have been established for a protein, the next step 

is to determine the best concentrations of additives that were present in the 

original by altering the concentration of the protein, salts, precipitants and the pH. 

Different temperatures may also be used to either slow or speed up the formation 

of crystals potentially giving better results. Also the addition substrates and 

inhibitors may also provide more optimal conditions for protein crystallisation. 
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Fig. 1.8. Protein solubility curve. Modified from Alternative Protein Crystallization 

Technique (Nemoviov and Kut, 2012). The precipitation zone is where the protein 

molecules immediately precipitate into amorphous aggregates. The nucleation zone is 

the zone is where the protein molecules precipitates into a crystalline form. The 

metastable zone is where the protein nuclei grow with protein leaving solution until an 

equilibrium is reached. 
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Fig. 1.9. Examples of methods for protein crystallisation. (A) Microbatch crystallisation 

(taken from Douglas Instruments April 2016 newsletter). (B) Sitting drop crystallisation 

(modified from www.hamptonresearch.com accessed on 11/7/18).  
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1.6 Principles of X-ray diffraction 

 

Radiation that comes in contact with electrons surrounding atoms is scattered. 

Depending on the shape of the electrons field the waves of radiation are scattered 

differently. Using this it is possible to determine the shape and size of the electron 

field and produce a structure of atoms that would be present in such a field. But 

the scattering from single molecules does not produce a signal strong enough to 

detect. So a structure of molecules in an ordered and repeating crystal 

conformation is required to amplify the signal of the scattering by multiplying and 

combining the waves. For crystallography X-rays are the chosen waves as the 

wavelength is similar to that of the inter-atomic distances (Lytle, 1966). With this 

the intensity of the diffraction peaks can be used to determine the electron density 

of molecules in crystal structures. 

Waves not only possess an amplitude but also a phase, the latter of which is lost 

when the wave is measured by a detector. As such the dataset cannot be 

completed without this vital element. To solve this, methods such as multiple 

isomorphous replacement are used to induce a phase shift between different data 

which can be compared to determine the phase. To do this the protein is either 

co-crystallised with a heavy metal or the crystal soaked in a heavy metal solution. 

The unit cell of the crystal must be the same as one analysed without the 

presence of the heavy metals. The location of the heavy metal is then determined 

within the structure as it gives a far stronger signal than other atoms present in 

the structure, giving not only the amplitude but also the phase. The easiest and 

most common method used for phase determination is molecular replacement 

where the phase from a similar or related protein is used to determine the phase 

of the protein whose structure is being analysed. With so many different protein 

structures currently solved, this is usually the method of choice. Discovery of a 

new protein fold is now unusual and a related protein structure is usually 

available. 
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1.7 The HotZyme project 

 

This project was linked to the HotZyme grant, funded by the EU Framework 7 

programme for research and technological development and the THERMOGENE 

ERA–IB grant. The aims of the project are to discover novel thermophilic 

enzymes of industrial interest from newly sequenced thermophilic bacterial and 

archaeal genomes, and metagenomes. Hot springs present a unique and 

abundant source of thermophilic species. The species that are usually found in 

these environments are bacteria, archaea and their viruses. Samples were 

collected by two groups within the HotZyme project, that of Professor Elizaveta 

Bonch-Osmolovskaya (Russian Academy of Sciences, Moscow), and the group 

of Dr Xu Peng (University of Copenhagen). It was noted that higher temperatures 

and more acidic environments corresponded to a decrease in biodiversity, with 

more of the population skewed towards archaea than at lower temperatures and 

higher pHs. The group speculated that this was due to differences between the 

composition of cell walls between bacteria and archaea. During sequencing of 

the samples, 58 % of the reads could not be assigned to any known phyla. This 

supports the idea that many species of microorganisms have not yet been 

identified and characterised, especially those in hot and other extreme 

environments (Menzel et al., 2015). HotZyme aimed to clone and over-express 

high priority novel hydrolases from hot springs located in several different 

countries and to characterise them both biochemically and structurally and, in 

some cases, modify their substrate specificity by targeted mutagenesis 

experiments to optimise their use as industrial biocatalysts.  

 

1.8 Aims of this project 

 

This project focused on cloning, overexpressing, purifying and characterising 

biochemically and structurally novel thermophilic enzymes identified from 

genomic and metagenomic resources. Enol lactonases, gluconolactonases and 

quorum sensing lactonases that have applications to the pharmaceutical industry 

were investigated as they are of interest to Sigma-Aldrich, who will be providing 

newly synthesised lactone substrates for assays. DXP synthases identified from 

thermophilic genomes were investigated as part of the THERMOGENE project, 

funded by an ERA-IB grant, whose goal is to identify and characterise, 
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biochemically and structurally, novel thermostable transferases from newly 

sequenced thermostable genomes and metagenomes. 
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2. General Materials and Methods 
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2.1 Gene discovery from thermophilic genomic and metagenomic DNA 

 

Hot springs were sampled and sequenced by the groups of Professor Elizaveta 

Bonch-Osmolovskaya (Russian Academy of Sciences, Moscow), and Dr Xu 

Peng (University of Copenhagen) as part of the HotZyme project. The hot springs 

that were sampled in the project were located in China, Iceland, Italy, Russia, and 

the USA. Temperatures in these hot springs varied between 61 °C and 92 °C, 

and a range of pH’s between 1.8 and 7.0. DNA was extracted and cleaved into 

170 nt fragments on average and the samples were Illumina sequenced, 

assembled and the metagenomes clustered through the Uniprot and Swissprot 

databases.  

 

2.2 Gene cloning 

 

2.2.1 Gene identification 

 

Genomic data were obtained from the online genomic and metagenomic 

repository ANASTASIA (Automated Nucleotide Aminoacid Sequences 

Translational plAtform for Systemic Interpretation and Analysis) (Ladoukakis et 

al., 2014) constructed by the group of Professor Fragiskos N. Kolisis (National 

Technical University of Athens, Greece) who were collaborators of the HotZyme 

project. Homologues in the Protein Data Bank (PDB) were identified using the 

BLAST search engine (Altschul et al., 1990) to identify similar proteins within the 

PDB. 

 

2.2.2 Amplification of genomic DNA 

 

Genomic DNA was amplified using the GenomiPhi DNA amplification kit (GE 

Healthcare, USA). 1 ng of DNA in 10 µl of double distilled water (ddH2O) was 

heated to 95 °C for 3 min, then cooled to 4 °C on ice. 9 µl of reaction buffer and 

1 µl of the enzyme mix was then added and incubated at 37 °C for 1.5 hours. 

After this the sample was heated to 65 °C for 10 min to inactivate the enzyme. 
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2.2.3 PCR amplification 

 

Genes were amplified by polymerase chain reaction (PCR) with Phusion 

polymerase (New England Biolabs, USA). A mix of 5 µl Pfu 10X buffer, 1 µl of 

2000 u ml−1 Pfu polymerase, 6 µl MgSO4 at 50 mM, 1 µl of 10 mM dNTPs, 2.5 µl 

of 100 % DMSO, 1 µl of 100 µM of each forward and reverse primer, 0.5-50 µg 

µl−1 DNA and made up to a total of 50 µl with nuclease free water. Samples were 

put into a Bio-Rad thermocycler T100 (Bio-Rad, USA)  with the following protocol: 

98 °C for 2 min, then 35 cycles of: 95 °C for 1 min, 55 °C for 30 s (or other 

temperatures appropriate for the Tm of the primers), 72 °C for 2 min kb-1; then a 

final step of 72 °C for 5 min. Primers for PCR were ordered from Invitrogen; 

primer sequences are shown in Table 2. 

 

2.2.4 Agarose gel electrophoresis  

 

Gels were made with 0.8 % w/v agarose dissolved in TAE buffer (40 mM Tris-

HCl, pH 8.3, 20 mM acetic acid, 1mM EDTA) containing 0.5 mg ml−1 Midori Green 

Advance (Nippon Genetics, Germany) to stain the DNA for visualisation under 

UV light (302 nm). Samples were loaded along with a 1 kb ladder (New England 

Biolabs, USA) for measurement. Gels were run in a Sub-Cell GT Cell (Bio-Rad, 

USA) at 100 V in TAE buffer for 45 min and imaged with a BioDoc-It imaging 

system (UVP, Canada).  

 

2.2.5 Ligation independent cloning 

 

Following genomic DNA amplification or PCR, a clean-up step was performed 

using SureClean Plus (Bioline, UK). An equal volume of SureClean Plus was 

added to the solution and incubated for 10 min. It was then centrifuged at RCF = 

14000 for 10 min and the supernatant removed. A volume of 70 % ethanol equal 

to double the sample volume was then added, vortexed and centrifuged again for 

10 min. The supernatant was removed and the pellet resuspended in nuclease 

free water. The PCR product was inserted into either pLATE31 or pLATE51 

expression vectors (Thermo Scientific, USA) with the following protocol: a 

solution containing 2 µl LIC buffer, 2 µl PCR product, 5 µl nuclease free water 

and 1 µl of 5 U µl−1 T4 DNA polymerase was incubated for 5 min at room 



 

[45] 

 

temperature to create overhangs, after which 0.6 µl of 0.5 M EDTA pH 8.0 was 

added to stop the reaction. Then 1 µl of the pLATE vector at 60 ng (0.02 pmol) 

was added and the mix incubated for a further 5 min.  

 

Table 2. Forward and reverse primers used in the cloning of the specified genes.  

Primer 
name 

5′ to 3′ sequence1 

Lac11 
forward 

AGAAGGAGATATAACTATGCGGAAGCTTCT 

Lac11 
reverse 

GTGGTGGTGATGGTGATGGCCTCAGAAACCCAACC 

DXP Ta 
forward 

AGAAGGAGATATAACTATGATTTTAGATAAAGTCAACAGCCCAGACG 

DXP Ta 
reverse 

GTGGTGGTGATGGTGATGGCCTTCACGAACCGATTCCTTAATTCCGTC 

DXP Ch 
forward  

AGAAGGAGATATAACTATGCCTATTCTTGAACGCATCTC 

DXP Ch 
reverse 

GTGGTGGTGATGGTGATGGCCTAGTTTACTCAGGATTTCACGAAACTT 

1 In normal font are the vector overhang portions of the primers and in bold are the gene-

specific overhangs. 

 

2.2.6 Gene synthesis 

 

Two genes from metagenomic DNA unavailable at the time for PCR were 

synthesised by ATUM (formerly DNA 2.0) (California, USA). Genes were codon 

optimised for expression in E. coli by the company’s own software and inserted 

in expression plasmids ready for transformation into cell lines. The expression 

vector was the Electra plasmid pD441-CH containing a T5 promoter with strong 

ribosome binding affinity, under the control of isopropyl β-D-1-

thiogalactopyranoside (IPTG), and a C-terminal histidine tag. Plasmids were 

supplied as a dry precipitate and were resuspended in TE buffer (10 mM Tris-HCl 

pH 8, 1 mM EDTA) to a final concentration of 10 ng µl−1 with incubation at 50 °C 

for 20 min.  
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2.2.7 Plasmid minipreps 

 

Plasmids were purified from cells using GeneJET Plasmid Miniprep Kit (Thermo 

Scientific, USA). A single colony from an agar plate containing cells transformed 

with the recombinant DNA was grown in 10 ml of LB broth overnight at 37 °C with 

shaking at 200 rpm. The culture was centrifuged at 6800 rpm for 2 min and the 

pellet resuspended in 250 μl resuspension buffer containing 50 mM Tris-HCl pH 

8.0, 10 mM EDTA and 100 μg ml−1 RNase A. 250 μl of lysis buffer (200 mM 

NaOH, 1 % SDS) was added and mixed. 350 μl neutralisation buffer (4.2 M 

guanidinium chloride-HCl pH 4.8, 0.9 M potassium acetate) was added. The 

sample was centrifuged for 5 min at 12100 rpm. The supernatant was loaded on 

to a GeneJET Spin Column and centrifuged at the same speed for 1 min. 500 μl 

of wash solution (10 mM Tris-HCl pH 7.5, 80 % ethanol) was added. The column 

was centrifuged for 1 min and a second wash step performed before centrifuging 

it dry for another min to remove any residue. 50 μl elution buffer (10 mM Tris-HCl, 

pH 8.5) was added to the membrane and incubated for 2 min before being 

centrifuged for 2 min. 

 

2.2.8 Transformation of competent cell lines 

 

E. coli cloning cell lines used were 5-alpha competent cells (New England 

Biolabs, USA). All DNA sequencing was carried out by Eurofins Genomics. The 

E. coli expression cell lines were BL21 (DE3) (New England Biolabs, USA), BL21 

RIPL (Agilent, USA), BL21 pLysS (New England Biolabs, USA), Rosetta (Merck 

Millipore, USA) and Arctic Express (DE3) (Agilent, USA). Cells were transformed 

by heat shock at 42 °C for 30 s and selected for either ampicillin or kanamycin 

resistance on LB agar plates.  

 

2.2.9 Colony PCR 

 

Successful transformants were tested using colony PCR with DreamTaq DNA 

polymerase master mix (Fermentas, USA) and the relevant primers. The same 

protocol, as previously described for the PCR reaction, was used with the 

exception that, instead of adding DNA to the mix, a small amount of a single 
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colony was added by taking cells with the end of a pipette tip and thoroughly 

pipetting the tip in the master mix solution.   

 

2.2.10 Takara chaperone plasmid transformations 

 

Five Takara plasmids containing chaperone genes (pG-KJE8, pGro7, pKJE7, 

pG-TF2 and pTF16; Takara Bio, Japan) were each transformed into E. coli 

expression cell line BL21 (DE3). It was then necessary to make the transformed 

cells competent again. Cells were selected for on agar plates containing 20 μg 

ml−1 chloramphenicol and then grown overnight in 10 ml LB media at 37 °C 

200 rpm. 1 ml of this was inoculated into 100 ml of LB medium and incubated for 

1.5 – 3 hours at 37 °C and 200 rpm. The cells were put on ice for 10 min and then 

centrifuged at RCF = 6000 for 3 min. The supernatant was discarded, and the 

cells resuspended in ice cold 0.1 M CaCl2 and left on ice for 20 min. Cells were 

spun down again as previously described and resuspended in 0.1M CaCl2 and 

15 % v/v glycerol before being flash frozen in liquid nitrogen and stored at −80 

°C. Cells were then ready for transformation with expression plasmids. 

 

2.3 Enzyme purification 

 

2.3.1 Bacteria cultures and storage 

 

Glycerol stocks were made by mixing 50 % sterile glycerol with an equal volume 

of overnight bacterial culture, which was then flash frozen in liquid nitrogen and 

stored at −80 °C.  

 

2.3.2 Protein expression 

 

Transformed E. coli expression cell lines were grown in 1 litre high salt lysogeny 

broth (LB) medium, inoculated with 20 ml of overnight culture. Flasks were put 

into shaking incubators at 37 °C, 200 rpm and expression induced with 1 mM 

IPTG at an OD at 600 nm of 0.6 corresponding to the log phase of bacterial 

growth as standard. For optimisation purposes these values were varied 

depending on the protein being expressed. Cells were harvested after 4 hours of 

expression by centrifugation at 4700 rpm.  
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2.3.3 Expression trials 

 

Cell cultures were grown as stated above with one or more variables altered to 

achieve high levels of expression of soluble protein. Cells were grown at 

temperatures of 37o C until induction when the OD 600 nm was 0.6. After the 

induction the culture either remained at 37oC for 4 hours, or 30oC for 6 hours or 

12oC and left overnight. The IPTG concentration was varied between 1 mM and 

0.1 mM.  

 

 

2.3.4 Autoinduction  

 

500 ml of ZYM media was made consisting of 16 g l ˗1 tryptone, 10 g l ˗1 yeast 

extract and 5 g l˗1 NaCl2 and autoclaved. To this was added: 25 mM (final 

concentration) Na2HPO4; 25 mM KH2PO4; 50 mM NH4Cl; 5 mM Na2SO4; 2 mM, 

MgSO4; 0.5 % v/v glycerol; 0.05 % w/v glucose; 0.2 % w/v α-D-lactone. A solution 

of trace metals was also added to the following final concentrations: 50 mM FeCl3; 

20 mM CaCl2; 10 mM MnCl2; 10 mM ZnSO4; 2 mM CoCl2; 2 mM CuCl2; 2 mM 

NiCl2; 2 mM Na2MoO4; 2 mM Na2SeO3; 2 mM H3BO3. Medium was induced with 

10 ml of overnight cultures and grown for 48 hours at 12 °C and 200 rpm. Cultures 

were then harvested by centrifugation at the same speed as stated before. 

  

 

2.3.5 Takara plasmid co-expression 

 

Cells containing both a Takara plasmid (Takara Bio Inc, Japan) and a vector 

containing the gene of interest were grown as standard at 37 °C and 200 rpm in 

1 litre LB media, inoculated with 20 ml of overnight culture. Media contained 20 

μg ml−1 chloramphenicol for Takara plasmid selection, and a second antibiotic to 

select for the gene-containing vector. Expression of the chaperones was induced 

at the beginning of growth: 0.5 – 4 mg ml−1 L-arabinose used for expression of 

pGro7, pKJE7 and pTF16; 1 – 10 ng ml−1 tetracycline was added for the induction 

of pG-Tf2; and both 0.5 – 4 mg ml−1 L-arabinose and 1 – 10 ng ml−1 tetracycline 
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was added for the induction of pG-KJE8. Cells were induced for expression of 

the gene of interest as stated above at OD of 0.6 - 0.8 at 600 nm. 

 

2.3.6 SDS-PAGE gels 

 

Protein samples were mixed with loading buffer containing 100 mM Tris-HCl pH 

8.0, 2 % 2-mercaptoethanol v/v, 40 g l−1 SDS, 2 g l−1 bromophenol blue, 20 % 

glycerol v/v and heat denatured at 100 °C for 5 min. Samples were then loaded 

onto ExpressPlus PAGE gels (GenScript, USA) and a Spectra Multicolor Broad 

Range Protein Ladder (ThermoFisher, USA) was also loaded. The gel was run at 

140 V for 60 min in running buffer containing: 20 mM Tris-HCl, 20 mM MOPS, 

300 mM SDS, 1 M EDTA at pH 8.3. Proteins were detected with InstantBlue 

protein stain (Expedeon, UK) by leaving the gel shaking in the stain for 1 hour 

followed by another hour in deionised water to destain the gel to remove dye from 

the background.  

 

2.3.7 Purification of enzymes 

 

Pelleted E. coli cells harvested from an expression culture were resuspended in 

50 mM Tris-HCl pH 7.5, with 10 ml of buffer per gram of cell paste and subjected 

to sonication at an amplitude of 15 µm for 20 s pulses, repeated 10 times with 

40 s breaks between for cooling on ice. The samples were then centrifuged at 

RCF = 24000 for 30 min to remove the cell debris. For nickel affinity 

chromatography, samples were passed through a 1 ml HisTrap HP column (GE 

Healthcare, USA) and eluted with Tris-HCl pH 7.5 buffer containing 1 M 

imidazole. Samples were then concentrated down to less than 2 ml with a 

Vivaspin 20 concentrator with a 10 kilodalton (kDa) cut off (Sartorius, Germany) 

and then put through a gel filtration (GF) GF200 column (Superdex 200 Hiload 

16/60, GE Healthcare, USA) with 50 mM HEPES buffer pH 7.5 containing 100 

mM NaCl. 1.5 ml fraction sizes were collected with both purification steps. An 

ÄKTApurifier (GE healthcare, USA) was used to run each column. 

 

 

2.3.8 Western blotting 



 

[50] 

 

 

SDS-PAGE gels were run as duplicates, with one being stained as described 

above and the other left unstained. The proteins, separated in the gel, were 

transferred to a nitrocellulose membrane (Sartorius, Germany) using a Pierce G2 

Fast Blotter (Thermo Fisher Scientific, USA). Transfer was at 25 V, 1.3 A for 

15 min. The membrane was then put into the iBind Western System (Thermo 

Fisher Scientific) soaked in 6 ml of iBind mix made from: 6 ml iBind buffer, 300 µl 

additive and 23.7 ml ddH2O. This was then placed on an iBind card also soaked 

in 6 ml of the iBind mix. Anti-his tag antibodies and anti-mouse antibodies were 

diluted accordingly to the manufacturer’s recommendations. The membrane and 

card were left for either 2.5 hours or overnight for better resolution. Using lateral 

flow capillary diffusion, the membrane was exposed to the primary antibody, then 

washed with iBind mix, then the secondary antibody, with a final wash step at the 

end. The results were viewed using an Odyssey CLc Imaging System (LI-COR, 

USA). 

 

2.4 Crystallisation trials 

 

2.4.1 Crystal screening 

 

Protein was concentrated using a Vivaspin 20 concentrator with a 10 kDa cut-off 

(Sartorius, Germany) and its concentration measured using a NanoDrop 2000c 

spectrophotometer (Thermo Scientific, USA). An Oryx 8 crystallisation robot 

(Douglas Instruments, UK) was used to set up microbatch crystallisation trials in 

Hampton 96 well microbatch plates (Greiner, Austria). 1 µl droplets were made 

with a 50:50 mix of protein and crystallisation screen. Plates were incubated at 

19 °C.  The screens used were Sigma 82009 and 70437 (Sigma Aldrich, USA), 

MDL-01 and MDL-02, JCSG plus, MIDAS, Morpheus, Clear Strategy, Stura 

Footprint and Macrosol (Molecular Dimensions Limited, UK). The lac11 co-

crystallisation trials were performed by incubating lac11 at room temperature with 

either 100 mM glucose or 1 mM of either ZnCl2 or CoCl2 prior to being dispensed 

into crystallisation dishes. Crystals were frozen and stored in liquid nitrogen. 

 

2.4.2 Crystal optimisation 
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The X-step optimisation software (Douglas Instruments, UK) was used to 

calculate dispensing volumes for each well for crystallisation optimisation. 

Concentrations of the lac11 protein were varied between 3.2 mg ml−1 and 

5 mg ml−1, and 2-methyl-2,4-pentanediol (MPD) between 10 % to 30 % v/v. The 

concentration of PEG 8000 was 25 g l−1 and Bis-Tris-HCl pH 6.5 was 0.1 M.  

 

2.5 Assays 

 

2.5.1 Lactonase pH-based colorimetric assay 

 

Reactions were performed in a solution of 2.5 mM BICINE, pH 8.0-8.3 containing 

0.2 M NaCl, 0.2 mM cresol purple, and 10 mM of the lactone substrate. 195 µl of 

this solution was loaded into each well. 5 µl protein at 2 ng ml−1 was added 

immediately prior to monitoring absorbance and mixed thoroughly. The decrease 

in absorbance at 577 nm was monitored in a Greiner 96 well plate and analysed 

in an Infinite 200 Pro (Tecan) plate reader for up to 30 min or until a complete 

colour change was observed. All assays were carried out in triplicate. 

 

2.5.2 Differential scanning fluorimetry 

 

Protein unfolding in various conditions was measured using Sypro Orange dye 

diluted from a 5000 X commercial stock solution by adding 1 µl to 124 µl ddH2O. 

Within a 96 well white PCR plate (Fisher Scientific, USA) the following was added: 

5 µl protein to a final concentration of 0.1 mg ml−1; 2.5 µl Sypro Orange from 

diluted stock; 11.5 µl 50 mM HEPES pH 7.5, 100 mM NaCl and was covered with 

a qPCR seal. Then the plate was centrifuged at RCF = 500 for 2 min to remove 

air bubbles. It was then measured in a Mx3005P quantitative PCR machine 

(Stratagen, UK) at 580 nm between 25°C and 99°C over 40 min.  
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2.6 Bioinformatics 

 

All programs used are part of the CCP4 integrated suite of crystallography 

programs unless stated otherwise (Winn et al., 2011). The following software was 

used: 

• Molrep version 11.0 /22.07.2010/ was used for molecular replacement.  

• BALBES from the York Research Database (Long et al., 2007) was also 

used for molecular replacement (accessed March 2014). 

• REFMAC version 5.3 was used for structural refinement. 

• COOT version 0.8.5 was also used for structural refinement.  

• CCP4I version 7.0.060 was used in structural analysis. 

• PyMOL version 2.3 was used for production of protein figures. 

 

2.6.1 Multiple sequence alignment 

 

Clustal Omega (Sievers et al., 2011) from EBI Database was used to perform 

multiple sequence alignments. Parameters used were the default. 

 

2.6.2 X-ray data collection and analysis 

 

Data was collected using the Diamond Synchrotron Light Source (Harwell 

Science and Innovation Campus, Oxfordshire) and the data was processed by 

the programs Xia2 (Winter, 2010) and iMOSFLM (Leslie and Powell, 2007). 

Molecular replacement was performed by MOLREP (Vagin and Teplyakov, 2010) 

with the structure of Xanthomonas campetris lactonase (PDB code 3DR2) which 

has 35 % sequence identity to lac11. The program COOT (Emsley and Cowtan, 

2004) was used to perform structural visualisation and refinement along with 

REFMAC (Murshudov et al., 1997).  

 

2.6.3 Homology modelling 

 

Three different servers were used to generate homology models: SWISS-

MODEL (Biasini et al., 2014), Phyre2 (Kelly et al., 2015) and I-TASSER (Zhang, 

2008). Models were generated with all the servers for each protein and compared 
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to determine the most accurate one using Rampage (Lovell et al., 2003). Models 

were viewed using YASARA (Krieger and Vriend, 2014), CCP4mg (McNicholas 

et al., 2011) and superposed with Chimera (Pettersen et al., 2004) due to 

incompatibility between the PDB files of the models generated by Phyre2, and 

the YASARA software which prevented superposition with files from the Protein 

Data Bank. 

 

2.6.4 Analysis of homology modelling 

 

The Rampage server, from the University of Cambridge (Lovell et al., 2003) was 

used to generate Ramachandran plots and list the amino acids with irregular 

conformations. The QMEAN (Qualitative Model Energy ANalysis) server from 

SWISS-MODEL was used to generate and give an estimation of the quality of the 

homology models. The models were scored with the more negative the value the 

worse the structure, with the score being ideally as close to 0 as possible. The 

score was based on: the local geometry, where the torsion angle potential of three 

consecutive amino acids was analysed; long range interactions between 

secondary structures within the model; the solvation potential to analyse the 

buried status of amino acids such as hydrophobic ones; and analysis of observed 

and predicted secondary structure. 

 

2.6.5 Oligomeric state analysis 

 

PISA, part of the suite of programs in CCP4I, was used to test structures and 

calculate the macromolecular surfaces and interfaces, assess their properties 

and determine probable oligomeric states. The online server FRODOCK 2.0 was 

also used for protein-protein docking to predict dimeric models. 

 

2.6.6 Sequence and secondary structure alignment 

 

ESPript 3.0, developed by Lyon University (Lyon, France), was used to obtain 

sequence and secondary structure similarities from aligned sequences. 

Sequence alignments were created in Clustal Omega and uploaded with the PDB 

files for the structure of interest and a reference structure. Default parameters 

were used for analysis (Robert and Gouet, 2014). 



 

[54] 

 

  



 

[55] 

 

 

 

 

 

 

 

 

 

3. Quorum sensing lactonase 
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3.1 Introduction 

 

Quorum sensing lactonases were investigated due to the high interest by 

industrial partners for their potential to disrupt biofilm formation in bioreactors and 

water filtration systems. A quorum sensing lactonase was identified within the 

newly sequenced genome from the thermoacidophilic anaerobic crenarchaeon 

Vulcanisaeta moutnovskia. The genome was sequenced by Prof. Elizaveta 

Bonch-Osmolovskaya from a hot spring in Kamchatka, Russia (Gumerov et al., 

2011). The lactonase was cloned into an over-expression E. coli cell line by the 

group of Prof. Bettina Siebers, University of Essen, Germany. The lactonase was 

cloned with a C-terminal His-tag into a pLATE31 vector and into the E. coli BL21-

CodonPlus (DE3) RIPL cell line (Agilent Technologies, USA). A second possible 

quorum sensing lactonase was identified and investigated from a metagenome 

using the ANASTASIA platform generated within the HotZyme project. Our goal 

was to structurally characterise these enzymes and compare their structures to 

known mesophilic homologues and determine differences that could be attributed 

to their adaptation to hot environments, as well as possible differences in 

substrate specificity through comparing their active sites. 

 

3.2 Materials and methods 

 

3.2.1 Co-crystallisation 

 

The substrate γ-butyrolactone was added to the protein sample to a final 

concentration of 10 mM and to a sample of 11 mg ml-1 of protein. The solution 

was incubated at room temperature for 20 min before being dispensed into the 

microbatch crystallisation plates. 

 

3.3 Quorum sensing lactonase from V. moutnovskia 

 

E. coli BL21 (DE3) pLysS cells were provided already containing a pLATE31 

vector with the gene for the V. moutnovskia lactonase inserted. The cells were 

grown in LB media at 37 °C and 200 rpm and the lactonase expression induced 

with 1 mM IPTG. The lactonase was successfully purified with a combination of 

nickel affinity chromatography and size exclusion chromatography using 
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standard Tris-HCl buffer as described in material and methods (2.3.6). Fig. 3.1 

shows the 280 nm trace from the gel filtration and the SDS-PAGE gel showing 

the pure protein at its molecular weight of 35 kDa.  

 

The activity of the lactonase was determined using the substrates shown in Fig. 

3.2 using the colourimetric assay described in the materials and methods. The 

lactone substrates were provided by one of our HotZyme collaborators, Dr Roland 

Wohlgemuth, Sigma Aldrich, Merck. The colour change for the initial assays was 

very slow, taking more than 24 hours. The addition of 1 mM MnCl2, which was 

selected due to a related enzyme from Sulfolobus islandicus having Mn2+ as a 

cofactor (Hiblot et al., 2012), increased the rate of reaction so results were 

obtained within an hour. This suggests that the cofactor for this enzyme is Mn2+. 

The results of assays done with the addition of MnCl2 are shown in Table 3. It is 

shown that the enzyme has activity with a wide variety of different lactone 

substrates with various lengths of acyl chains. The substrates where activity was 

observed are γ-butyrolactone, γ-valerolactone, γ-caprolactone, whiskey lactone 

and δ-dodecalactone. No measurable activity was seen for mevalonolactone or 

δ-decalactone. Activity towards D-galactono-γ-lactone could neither be confirmed 

nor ruled out as the substrate was very unstable in solution and auto-hydrolysed 

rapidly due to the control producing a colour change as fast as samples 

containing the lactonase. For two of the substrates where activity was known, γ-

valerolactone and γ-caprolactone, the optical isomeric forms of these were tested 

to determine stereoselectivity of the enzyme. Results in Table 3 indicated that 

while activity is seen with both isomers, it seems to favour the D form of these 

substrates as there was a greater pH change observed compared to the L form.  
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A 
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Fig 3.1. Purification of V. moutnovskia lactonase. A) Gel filtration trace measuring 

absorbance at 280 nm. Arrows show peaks analysed by SDS-PAGE. B) Analysis of gel 

filtration by SDS-PAGE: Lane 1. Marker (sizes in kDa); 2. Peak at 1l; 3-9. Peak 2; 10. 

Peak 3. 
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Table 3. Relative enzyme activity of V. moutnovskia lactonase for different substrates 

Lactone Activity1 

γ-butyrolactone ++ 

γ-valerolactone ++ 

L-γ-valerolactone + 

D-γ-valerolactone ++ 

mevalonolactone – 

γ-caprolactone ++ 

L-γ-caprolactone + 

D-γ-caprolactone ++ 

whiskey lactone + 

D-galactono-γ-lactone – 

δ-decalactone – 

δ-dodecalactone  ++ 

 

1 ++ represents ≥0.15 nmoles of H+ ions produced above the value obtained for the blank. 

+ represents 0.05-0.15 nmoles H+ ions produced above the blank. – represents no 

activity measured. 

 

The contribution of various buffers to the stability of the enzyme was tested using 

differential scanning fluorimetry (thermal shift assay) to determine which buffer 

would be most appropriate for storage (Fig. 3.3). This would be of benefit when 

attempting to crystallise the enzyme as a stable enzyme would have reduced 

flexibility enabling its molecules to pack together to form a well-ordered crystal. 

The concentration of protein used was 0.9 mM. Overall the enzyme exhibited 

good thermal stability with unfolding not seen below 72.0 °C, although this may 

not represent the activity retention of the enzyme. The enzyme stability was 

lowest with Bis-Tris propane where the melting temperature was measured at 

74.3 °C. The MOPS and HEPES buffers showed similar melting temperatures for 

the protein 80.2 °C and 79.8 °C, respectively. The Tris-HCl buffer was shown to 

be the most stabilising of the buffers tested with an enzyme melting temperature 

of 83.5 °C, suggesting that it is optimal for the crystallisation trials. 
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The V. moutnovskia lactonase was purified and concentrated using a centrifugal 

concentrator to between 11 and 14 mg ml−1 for initial crystallisation trials as 

concentrations of 10 mg ml−1 and above are a common range for protein 

crystallisation in screens from such as JCSG-plus and good starting point to test 

(Schulz, 2007). Crystallisation trials were carried out using sitting drop microbatch 

screening and sitting drop vapour diffusion screening. All available screens were 

tested and crystals were obtained from 10 conditions, with the best crystals from 

JCSG-plus as seen in Fig. 3.4. The conditions were: 0.1 M HEPES pH 7.0 and 

10 mg ml−1 PEG 6000. A pre-made cryo-protectant with similar conditions was 

used when harvesting crystals, containing 0.1 M Tris-HCl pH 7.5, 10 % w/v PEG 

6000 and 30 % v/v PEG 400. Data were collected from these crystals at the 

Diamond Synchrotron and analysed using the CCP4 suite of programs. 

Unfortunately, none of the crystals diffracted to high enough resolution for the 

structure to be determined and the data could not be processed by Xia2 (Winter, 

2010) or iMosflm (Battye et al., 2011). To try and improve the diffraction quality, 

crystals were grown in the presence of one of the confirmed substrates, γ-

butyrolactone at a concentration of 10 mM. No crystals were obtained using this 

method. 
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Fig. 3.4. Crystals grown of the V. moutnovskia lactonase using the JCSG-plus screen. 

The conditions were: 0.1 M HEPES pH 7.0 and 10 mg ml−1 PEG 6000.  

 

Before our studies could be completed another group reported in a paper (Hiblot 

et al., 2013) that the structure of this enzyme had been determined to 2.4 Å 

resolution with a space group of P 6 2 2 (PDB code 4RE0). This was later 

improved upon with another crystal structure by the same author to a higher 

resolution of 1.8 Å and a space group of P 6 4 (PDB code 4RDZ) (Hiblot et al., 

2015).  

 

The structure from the other group revealed the enzyme to be a homodimer with 

a (β/α)8 barrel topology with two metal cations located in the active site (Fig. 3.5 

A); this is similar to other known lactonase structures of this class (Draganov, 

2010). The cobalt ions as seen in Fig. 3.5 B are bridged by a catalytic water 

molecule and are coordinated by His 23, His 25, His 171, His 200, Asp 257 and 

a carboxylated Lys 238. The most significant difference when compared to S. 

solfataricus lactonase (PDB code 4G2D) is loop 8 in the active site, which is 

shorter in the V. moutnovskia lactonase due to a different distribution of proline 

residues to disrupt the α-helix making it more compact in comparison. Unlike the 

S. solfataricus lactonase where there are 3 proline residues evenly distributed 

0.15 mm 

file:///D:/PhD/rough%20thesis%20v3.docx%23_ENREF_11
file:///D:/PhD/rough%20thesis%20v3.docx%23_ENREF_11
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along the loop, in the V. moutnovskia lactonase the prolines are located at the 

beginning and end of the α-helix. Most of the charged residues are located on the 

surface of the protein and form a total of 40 salt bridges within each of the 

monomers. This is a higher amount compared to the S. solfataricus lactonase 

which possesses 36 salt bridges. The side of the protein where the active site is 

located is negatively charged whereas the opposite side of the protein is more 

positively charged.  
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Fig. 3.5. (A) Structure of lactonase from V. moutnovskia resolved to 1.8 Å (PDB 4RDZ) 

viewed using Yasara. Blue are α-helices, red are β-strands, green are turns and cyan 

are random coils. (B) the active site, modified from (Hiblot et al., 2015). In the active site 

are 2 catalytic waters (labled α and β) and a methylated lysine. The binding of the 

different lactones to the active site of the V. moutnovskia lactonase was assumed to be 

by a similar mechanism to that observed for the lactonase from S. solfataricus.  
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Our results on substrate specificity in Table 3 did indicate that the lactonase did 

have activity towards a broad range of substrates with little regard towards the 

length of the side chain and that it favoured the D isomers. These results differ 

from the current proposed models for the S. solfataricus enzyme (Ng et al., 2011) 

where binding to the hydrophobic pocket was required for activation of the 

enzyme (Elias et al., 2008). Looking at the structures of the enzymes for a 

possible explanation to this, the main cause is that the V. moutnovskia and S. 

solfataricus lactonases have structural differences between their loop 8 regions 

(Fig. 3.6 B). In the V. moutnovskia lactonase this region forms part of an α-helix 

and is not as flexible as its counterpart in S. solfataricus lactonase resulting in the 

side chains of Val 270 and Val 274 sterically preventing a hydrophobic channel 

from forming (Fig. 3.6 C). This allows the acyl chains to interact with the surface 

residues of loop 8 which results in an enzyme with activity to substrates that is 

independent of the size of the acyl chains.  
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Fig. 3.6. Comparison of the V. moutnovskia lactonase (blue) and the S. solfataricus 

lactonase (PDB code 4G2D) (red). (A) Superposition of both lactonases showed an 

overall mean RMSD calculated by YASARA as 5.2 Å. (B) Loop 8 region, where the S. 

solfataricus lactonase forms a flexible helical loop and the V. moutnovskia lactonase 

forms a more rigid α-helix. (C) Valine residues on the loop 8 region of the V. moutnovskia 

lactonase cause far more steric hindrance to the hydrophobic binding pocket than the S. 

solfataricus lactonase where the loop is more flexible and the side chains of the 

equivalent amino acids, Lys 271 and Ala 275, either do not point to the pocket as is the 

case of Lys 271 or are smaller like Ala 275. (D) Proline residues located on the loops, 

both contain three, in S. solfataricus lactonase Pro 268, Pro 272 and Pro 276 are evenly 

distributed along the loop unlike the V. moutnovskia where Pro 266, Pro 267 and Pro 

276 are located at the ends of the loop, allowing for a more rigid structure without them 

disrupting the overall secondary structure of the enzyme. 
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3.4 Quorum sensing lactonase from the Tomsk metagenome 

 

A potential quorum sensing lactonase was identified within the metagenome 

“Tomsk”, collected by Prof. Elizaveta A. Bonch-Osmolovskaya from hot springs 

in Russia. The temperature of the hot spring sampled was 46 °C and was around 

pH 7 (Ferrandi et al., 2015). A BLAST search showed that the amino acid 

sequence had 25 % identity to a known quorum sensing lactonase in the Protein 

Data Bank from an uncultured bacterium (PDB code 5EGN). The gene sequence 

was synthesised and codon optimised for expression in E. coli by ATUM 

(California, USA). The gene was supplied in a pD441-CH vector, part of the 

Electra expression system developed by ATUM. Expression cell lines were 

successfully transformed with the recombinant DNA and expression trials 

conducted. The only conditions the protein was successfully expressed within the 

soluble fraction were using Arctic Express (DE3) cells grown at 30 °C and then 

transferred to 12 °C after induction with IPTG. However the amount of soluble 

protein obtained from this was still very low, with bands on SDS-PAGE gels being 

barely visible so  the quantity of soluble protein needed to be increased to obtain 

sufficient quantities for crystallisation studies. The reason that this cell line 

produced better results than others was thought to be attributed to the expression 

in these cells of additional chaperones, Cpn10 and Cpn60 from the psychrophilic 

bacterium, Oleispira antarctica. So, five BL21 (DE3) cell lines containing different 

TAKARA plasmids were made and each transformed again with the Tomsk 

lactonase gene in the pD441-CH vector. The TAKARA plasmids encode for 

different combinations of chaperones to aid in the correct folding of proteins which 

should increase the amount of soluble protein produced. These chaperones are: 

dnaK, dnaJ, grpE, groES, groEL and tig. Out of the 5 TAKARA vectors tested the 

one that showed the highest amount soluble protein expressed was the pKJE7 

plasmid, which contained the chaperones dnaK, dnaJ and grpE.  

 

The Tomsk lactonase was successfully purified using a combination of nickel 

chromatography to bind the histidine tag and gel filtration chromatography to 

separate any remaining proteins based on size (Fig 3.7). However the trace from 

the gel filtration chromatography had three peaks, one occurred within the range 

of a protein of this size would be expected to elute. The other two were between 
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100 ml and 125 ml, a range low molecular weight molecules would elute in. 

Analysis by SDS-PAGE and Western blotting in Fig. 3.7 showed that the first 

peak contained a band that corresponded to the size of the Tomsk lactonase 

(29 kDa) and also had a histidine tag. The second peak contained a smaller 

molecular weight protein that also contained a histidine tag, this was most likely 

a cleaved product of the lactonase protein, which was possibly due to proteolytic 

cleavage of a flexible region of the protein in the lysate after sonication. The third 

peak did not show any band on the SDS gel and was most likely imidazole from 

the nickel affinity chromatography. This is because the wavelength of 280 nm is 

used to detect the aromatic amino acids present in proteins, tryptophan, 

phenylalanine, histidine and tyrosine. Since imidazole is also an aromatic 

compound it too would show an absorbance in that spectrum and would elute last 

from the column due to it being far smaller than any protein. 
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Fig. 3.7. Purification of lactonase from the Tomsk metagenome. A) Gel filtration trace 

measuring absorbance at 280 nm. B) Duplicate SDS-PAGE of Tomsk lactonase before 

Western blot: Lane 1. Marker (sizes in kDa); 2. Peak 1 fraction from gel filtration 

chromatography; 3. Protein with a histidine tag to act as a positive control to ensure the 

antibodies worked; 4. Peak 2; 5. Peak 3. C) Western blot of Tomsk lactonase, only 4 

marker proteins in the ladder are visible as they are the only ones also possessing a 

histidine tag. A band corresponding to the correct molecular weight of the protein at 

around 29 kDa was visible indicating the correct protein had been purified. 
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The total yield of protein was very low and even cell paste from 6 litres of LB 

media only produced enough protein to make 2 microbatch crystallisation plates 

at a time at 12 mg ml−1 protein concentration, which is 0.2 µg of protein per 1 litre 

flask, restricting the available options for trials due to the cost in materials and 

time. Out of the screens tested, some crystals were found in the Stura Footprint 

screen in 0.2 M MgCl2, 0.1 M HEPES pH 7.5 and 15 % 2-propanol (Fig. 3.8). 

While it did appear the crystals were protein they diffracted so poorly no data 

were able to be collected. Optimisation trials of this condition where the 

concentrations of the protein and the 2-propanol were varied on either the Y or X 

axis in the microbatch plate did not yield any further crystals.   
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Fig. 3.8. Crystals formed by Tomsk lactonase at, 0.2 M MgCl2, 0.1 M HEPES pH 7.5 and 

15 % 2-propanol. 
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Attempts to obtain further crystals for X-ray diffraction were halted when there 

were no further crystals obtained from the screens and attempts to improve the 

yield of soluble protein to enable a broader range of trials to be conducted failed. 

So homology modelling was done with the enzyme as described in the material 

and methods. The best structure obtained from this method appeared to be one 

of the 5 models generated by I-TASSER. The analysis of the structure gave a 

QMEAN of −4.74 and superposition gave a RMSD of 2.6 Å with the closest 

homologue of the same class of enzyme, an N-Acyl homoserine lactonase from 

an unknown bacterium (PDB code 5EGN) identified from a BLAST search. This 

value for the RMSD is relatively low indicating the structures are very similar and 

a good value to obtain considering there is only 25 % sequence identity between 

the two structures. The Ramachandran plot (Fig. 3.9 A) showed 81.4 % of all 

amino acids in a favoured conformation, 12.8 % in an allowed conformation, and 

the remaining 5.8 % as outliers. These outliers were identified as: Ala 8, in the 

middle of a loop region; Pro 9, on the same loop; Ser 79, the last amino acid of a 

loop before an α-helix, which is not unusual to be an outlier due to the transition 

in secondary structure; Leu 130, most likely because the possible alternative 

conformation would cause a steric clash with an adjacent proline on the same 

loop; Pro 131, in the middle of a loop; Asp 137, which is the last amino acid on a 

loop before an α-helix and an alternative conformation would cause a steric clash 

with the helix; Ala 192, located on a helical loop; Pro 197, on the same loop as 

Ala 192; Pro 200, at the end of the helical loop; Arg 223, on a loop facing the 

solvent.  

 

The structure was a standard α/β hydrolase fold, with a β-sheet consisting of eight 

β-strands connected by six α-helices (Fig. 3.8 B). Two active site residues 

important for activity were identified in the structure of the closest homologue, 

PDB 5EGN, a quorum sensing lactonase from an uncultured bacterium. These 

residues were Ser 93 and His 242 (Liu et al., 2016) and the equivalent residues 

in the Tomsk lactonase model were identified by sequence alignment with Clustal 

Omega (Sievers et al., 2011) to be Ser 203 and His 247. Comparison of the active 

site with the closest homologue (Fig. 3.9 C) revealed the positions of the Tomsk 

lactonase model did not align exactly and the position differed by 2.5 Å for Ser 

203 and 3.1 Å for His 247. This could infer a difference in substrate specificity 

between the Tomsk lactonase and the 5EGN lactonase, however because it is 
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just a homology model this is hard to say with any certainty for such a small 

difference in the positions. Since there is no literature for the other structure we 

do not know what its substrate specificity is and as such making a comparison 

would not be possible unless the 5EGN lactonase was obtained, purified and had 

activity assays conducted in parallel with the Tomsk lactonase. The side chains 

of the arginines and lysines were examined for the presence of any glutamic acid 

or aspartic acid side chains within 3.2 Å of each other using COOT (Emsley and 

Cowtan, 2004) to identify any possible salt bridges that may be formed. A total 

of 15 salt bridges were identified within the structure of the Tomsk model. This is 

a significant increase over the mesophilic lactonase which had 7. This indicates 

a high probability that salt bridges provide an increase in the stability of the Tomsk 

lactonase to allow the enzyme to remain active at high temperatures.  

 

Fig. 3.9 D shows the surface of the model represented by white for hydrophobic 

regions, red for negatively charged and blue for positively charged regions. The 

active site is observed to be open and exposed to the solvent, as seen by the 

cavity indicated in the image. There is no indication of a hydrophobic binding 

channel as seen in the S. islandicus lactonase. Most of its active site consists of 

α-helices rather than loops as seen in the S. islandicus lactonase, giving a more 

compact and rigid structure. This could suggest that like the V. moutnovskia 

lactonase its activity is not restricted to lactones with long acyl chains. 
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Fig. 3.9. Homology modelling of the Tomsk lactonase. (A) Ramachandran plot of the 

model showing 81.4 % of residues in a favoured conformation, 12.8 % in an allowed 

conformation, and 5.8 % as outliers highlighted in red. (B) Structure of the model 

generated by I-TASSER (Zhang, 2008)Maduro, 2014). Blue are α-helices, red are β-

strands, green are turns and cyan are random coils. The structure has a standard α/β 

hydrolase fold with a core of β-sheet consisting of eight β-strands connected by 6 α-

helices. (C) Active site histidine and serine residues compared between the two 

superposed structures, Tomsk lactonase model in blue, 5EGN structure in brown. A shift 

of 3.1 Å was seen in the His 247 and a shift of 2.5 Å in the Ser 103 from the 5EGN 

structures residues. (D) Surface representation of the Tomsk lactonase, white is 

uncharged, red is negatively charged and blue is positively charged. The arrow indicates 

the location of the active site. 
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Looking at the composition of amino acids with another quorum sensing 

lactonase from the mesophile Bacillus thuringiensis (PDB code 2A7M) in Table 

4, there is a noticeable difference between the percentages of certain amino 

acids. Most notably the Tomsk lactonase consists of 15.9 % alanine, compared 

to the 2A7M of only 4.0 % this means there is a difference of 11.9 % overall. 

Although the weakest hydrophobic amino acid, such a greater amount in a 

thermophilic protein would implicate that there is an increased amount of 

hydrophobic interactions stabilising the enzyme. Most of the substitutions for 

alanine occur in α-helices (Fig. 3.10) as these are the most suitable amino acids 

for stabilising helices due to having small hydrophobic side chains. There are also 

0.8 % more proline residues present, slightly more but not enough to be a major 

contributing factor. There was 7.7 % more arginine residues indicating there to 

be more ionic interactions as well, most likely in regions on the protein surface. 

Most of the arginine are present in α-helices and the loop regions which are very 

exposed to the solvent in the structure so arginine would help stabilise them 

through interacting with water molecules. There were 4.9 % fewer lysine residues, 

several were seen to be substituted for arginine which is common for thermophilic 

enzymes as arginine is able to form more interactions due to having two charged 

groups on its side chain (Broadwater et al., 1994). Being capable of forming 

electrostatic interactions in three directions means arginine can improve the 

overall stability of the enzyme to a greater extent than lysine. Also it has been 

theorised that the higher pKa of arginine may also generate more stable ionic 

interactions than lysine (Sokalingam et al., 2012). The rest of the lysines were 

mostly substituted for hydrophobic residues in loop regions. 

 

Visual inspection of the structure with COOT revealed that there was a slight 

increase in the number of hydrophobic interactions seen in the structure in 

comparison to the 5EGN structure it was modelled after. Overall it appeared that 

any extra thermal stability the enzyme possessed would be from the additional 

salt bridges rather than hydrophobic interactions. As the enzyme was acquired 

from a hot spring with a temperature of 46 °C it would not display many obvious 

adaptations over mesophilic proteins as there is a less than 10 °C difference 

between the environments. 
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Table 4. Percentage composition of amino acids in the Tomsk lactonase and 

2A7M. 

Amino acids 5EGN Tomsk 

Ala 4.0 % 15.9 % 

Arg 2.8 % 10.5 % 

Asn 4.0 % 1.4 % 

Asp 4.4 % 8.3 % 

Cys 1.6 % 2.2 % 

Gln 2.4 % 1.4 % 

Glu 10.8 % 3.3 % 

Gly 7.2 % 9.1 % 

His 3.6 % 3.3 % 

Ile 7.6 % 2.2 % 

Leu 10.4 % 12.3 % 

Lys 5.6 % 0.7 % 

Met 2.0 % 2.9 % 

Phe 4.8 % 2.9 % 

Pro 6.4 % 7.2 % 

Ser 5.6 % 4.3 % 

Thr 5.2 % 2.9 % 

Trp 0.4 % 1.8 % 

Tyr 4.4 % 0.7 % 

Val 6.8 % 6.5 % 
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Fig. 3.10. Secondary structure and amino acid sequence alignment between the Tomsk lactonase and the 2A7M lactonase made using the ESPript 3 

sequence and structure alignment server (Robert and Gouet, 2014). Residues highlighted in red are conserved, residues in blue boxes are conserved 

substitutions.  
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3.5 Summary 

 

Two quorum-sensing lactonases from thermophilic hot spring microorganisms 

were successfully overexpressed and purified.  The activity of a lactonase from 

the thermoacidophilic anaerobic crenarchaeon V. moutnovskia was tested 

against a range of lactone substrates and it shows a preference for the D 

stereoisomer of γ-valerolactone and γ-caprolactone. Crystallisation trials 

produced crystals for both of the enzymes.  The crystal structure of the V. 

moutnovskia enzyme was obtained by another group and has allowed 

rationalisation of the substrate specificity that we have observed. The lactonase 

from the V. moutnovskia enzyme showed the absence of a hydrophobic binding 

pocket seen in other quorum-sensing lactonases. This was caused by 

substitution of proline residues in the nearby loop region that resulted in the 

formation of an α-helix that blocked the binding pocket. This would explain why 

the enzyme is active with short acyl-chain lactones if binding of a sufficiently long 

acyl chain to a hydrophobic pocket is no longer necessary for activity. 

 

Homology models were obtained for the quorum-sensing lactonase from the 

Tomsk metagenome which showed the enzyme did not contain many more 

hydrophobic interactions compared to a mesophilic homologue. Instead there 

appeared to be more salt bridges in the enzyme which likely provide the extra 

thermal stability. There was also an absence of a hydrophobic binding pocket 

anywhere near the active site which could indicate similar activity to the V. 

moutnovskia lactonase where the enzyme can use lactones with short acyl chains 

as substrates. 

 

The next step in the investigation of lactonases was to study another class of this 

enzyme, specifically a gluconolactonase. 
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4. Gluconolactonase 
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4.1 Introduction 

 

A gluconolactonase (lac11) was identified from a Planctomyces genome isolated 

by the group of Prof. Elizaveta A. Bonch-Osmolovskaya, Russian Academy of 

Science. 

 

4.2 Materials and methods 

 

All methods were the same as described in the general materials and methods 

except for the following: 

 

4.2.1. Sample concentration 

 

Samples were found to bind to the membranes of the standard Vivaspin 20 

concentrators causing them to precipitate so concentrators containing different 

membranes were trialled to see which would avoid this issue. The one selected 

was the Vivaspin Turbo 15 with a 10 kDa cut off (Sartorius, Germany).  

 

4.2.2. Analytical size exclusion chromatography 

 

A Superose 12 10/300 GL column (GE Healthcare, USA) was used with the 

standard buffer for size exclusion chromatography. The sample was added at a 

volume of 500 µl at 2 mg ml˗1 and run at 1 ml min ˗1. 

 

4.2.3 Crystal seeding 

 

Seed stocks were made with known or suspected protein crystals. Crystals grown 

from 90 mM NaNO3; 100 mM Tris-HCl pH 8.5; and 30 % PEG 550 MME, were 

crushed with a glass rod in the well and transferred to an Eppendorf tube on ice 

with 50 µl of the stock solution which were then subjected to vortex with a plastic 

bead in the tube and frozen at −80 °C. Each well in the microbatch plate contained 

0.3 µl of the protein solution, 0.2 µl of the screen solution, and 0.1 µl of the seed 

stock. 
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4.2.4 Microscale thermophoresis 

 

Binding affinity between the lac11 enzyme and glucose was calculated using a 

NanoTemper (NanoTemper Technologies, Germany). 10 µl of 10 nmol of the 

protein, diluted with microscale thermophoresis optimized buffer containing: 

50 mM Tris-HCl pH 7.6, 150 mM NaCl, 10 mM MgCl2, 0.05 % Tween-20, was 

incubated with 10 µl 20 nM of the fluorescent tag NT-647 and a range of glucose 

concentrations and loaded into hydrophilic glass capillaries. The NT-647 tag 

contains 3 Ni2+ metal ions which bind to the histidine of His-tagged proteins and 

fluoresces at 633 nm. These samples were then placed in the Nano Temper 

machine and the change in emission from the fluorescent tag was monitored 

while a laser heated a single point in the capillary to monitor diffusion of the 

tagged protein. 

 

4.2.5 Enzyme solvent stability 

 

The enzyme was incubated at 0.4 mg ml−1 in solvent concentrations between 

10 % and 60 % v/v at room temperature in HEPES gel filtration buffer for 20 min 

before being tested in the pH based assay as described in the general materials 

and methods to see if activity had been retained. The solvents used were 

acetonitrile, methanol, ethanol, DMSO and isopropanol. The solvent/protein 

mixture was then diluted 1:200 after the incubation process to minimise the 

chances of it interfering with the assay.  

 

4.2.6 Enzyme activity retention after heat exposure 

 

The enzyme was incubated at 0.4 mg ml−1 at temperatures up to 90 °C for 20 min. 

The enzyme was cooled on ice for 5 min before assaying at room temperature. 

A control was carried out using the enzyme left in standard GF buffer (50 mM 

HEPES pH 7.5, 100 mM NaCl2) at room temperature for the same time which 

was used as a 100 % activity. 
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4.2.7 Differential scanning fluorimetry 

 

Experiments were carried out as described in the general materials and methods 

section 2.5.2. Three different buffers were tested with lac11, all at pH 7.5: Tris-

HCl, HEPES and MOPS all at 50 mM. Bis-Tris propane, at the same 

concentration and pH as the previous buffers, was also tested with the V. 

moutnovskia lactonase. The addition of potential stabilisers, citrate, malonate and 

malic acid, all at 1 mM, were tested with lac11 with Tris-HCl buffer. Divalent ions 

that could be potential cofactors were tested with lac11, these were; calcium 

chloride, magnesium chloride, zinc chloride, manganese chloride and cobalt 

chloride at concentrations of 1 mM. 

 

4.2.8 Kinetics assay 

 

A titration using acetic acid between 0 and 0.35 mM with a total volume of 200 µl 

was carried out to determine the linear part of the standard curve. A 5 mM stock 

of acetic acid was added at 1 µl increments, increasing the total concentration of 

acid by 25 µM each time. Assays were performed as described in the general 

materials and methods with the addition of acetic acid to a final concentration of 

0.26 mM with readings taken every minute for 20 min. 

 

4.2.9 Lysine methylation 

 

The methylation of surface lysine residues has been shown to improve protein 

crystallisation by altering the interaction of protein molecules in the potential 

crystal packing (Walter et al., 2006). 40 µl of 1 M formaldehyde and 20 µl of 

borane dimethylamine complex (97 % v/v) per 1 ml were added to the solution 

containing the protein which was kept at concentrations lower than 1 mg ml−1. 

This was gently mixed at 4 °C for 2 hours. This procedure was done a second 

time to the solution and after the second 2 hour mixing step a final addition of 

10 µl borane dimethylamine complex (97 % v/v) per 1ml of solution was added 

and incubated overnight. Samples were subjected to gel filtration 

chromatography to remove any denatured or aggregated protein and to remove 

the formaldehyde and borane dimethylamine complex from the solution which 

would influence protein crystallisation. 
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4.3 Results and discussion 

 

Genomic DNA from the Planctomyces genome that was sequenced was provided 

by the group of Prof. Elizaveta A. Bonch-Osmolovskaya at the Russian Academy 

of Science, Moscow, Russia. The gene encoding the gluconolactonase was 

amplified through PCR and inserted into a pLATE31 vector. The recombinant 

DNA was then successfully inserted into and amplified in E. coli XL10-Gold 

ultracompetent cells. Expression trials were conducted with the lac11 to 

determine which expression cell line and conditions were required to optimally 

over-express the protein within the soluble fraction. Through analysis by SDS-

PAGE the protein was identified in the soluble fraction of E.coli RIPL cells grown 

at 37 °C after induction with 1 mM IPTG. The enzyme was successfully purified 

and the trace from gel filtration chromatography is shown in Fig. 4.1 and the 

corresponding SDS-PAGE in Fig. 4.2. 
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Fig 4.1. Gel filtration trace (A) and analysis by SDS-PAGE of gel filtration (B) of lac11: 

Lane 1. Marker (sizes in kDa); 2. Peak 1; lane 3-8. Peak 2; lane 9. Peak 3. 
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A selection of newly synthesised sugar lactone substrates, as shown in Fig. 4.2, 

were provided by our industrial collaborator, Dr Roland Wohlgemuth (Sigma 

Aldrich/Merck). Since the co-factor for this enzyme was unknown, three divalent 

ions were tested to see if their presence resulted in a change of activity as divalent 

ions commonly seen in other gluconolactonases are integral to the proposed 

mechanism of hydrolysis by these lactonases (Momb et al., 2008). Examples are: 

a mouse gluconolactonase PDB 4GN7, which contains a calcium ion; a human 

gluconolactonase PDB 4GNB which contains a calcium ion; and a 

gluconolactonase from Trypanosoma brucei PDB 3EB9 which contains a zinc 

ion. Each assay was duplicated with 2 mM of one of the following added to try 

and determine the metal cofactor: MgCl2, ZnCl2 and MnCl2. The results (Table 5) 

show activity towards all three of the substrates tested regardless of which 

divalent ion was present and in the absence of the metal ions. This confirmed the 

enzyme to be a gluconolactonase but did not provide information of any required 

co-factor. Most likely the divalent cofactor is strongly associated with the active 

site of the enzyme and not easily displaced during the purification process. 

Overall the enzyme displayed little preference towards any particular substrate 

as all but one of these substrates was shown to be hydrolysed by the lac11. The 

only substrate where there is little or no activity was L-rhamnono-1,4-lactone. 

Interestingly the enzyme shows activity towards L-rhamnono-1,5-lactone as well 

as the other lactones which include members with a 1,4 structure as well. D-

altrono-1,4-lactone is a chiral isomer of L-rhamnono-1,4-lactone where the only 

difference is the chirality of the R group of the side chain but has activity.  L-

rhamnono-1,4-lactone is also the only substrate tested with a different chirality of 

the R group among all the 1,4 lactones. The chirality of the hydroxides on the ring 

has no apparent effect on activity. So the hydrolysis of 1,4 lactones appears to 

be dependent on the chirality of the R group bonded to the C-4 in the lactone ring. 
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Table 5. The activity of lac11 towards the different substrates. 

 

Gluconolactone Activity1 

D-glucono-1,5-lactone + 

D-glucuronic acid-1,4-

lactone 

++ 

L-gulonic acid-1,4-lactone ++ 

D-threono-1,4-lactone + 

D-arabino-1,4-lactone ++ 

L-arabino-1,4-lactone ++ 

D-xylano-1,4-lactone ++ 

L-fucono-1,4-lactone ++ 

D-altrono-1,4-lactone ++ 

L-rhamnono-1,4-lactone – 

D-rhamnono-1,5-lactone + 

 

(1) ++ represents ≥0.15 nmoles of H+ ions produced above the value obtained for the 

blank. + represents 0.05-0.15 nmoles H+ ions produced above the blank. – represents 

no activity. 

 

To examine the kinetics of the enzyme, pH based assays were carried out in 

triplicate and the results are shown in Fig. 4.3 after determining the titration curve 

to bring the assays as close to the point of colour change as possible. Analysis 

of the results showed that the kinetics were more likely allosteric-sigmoidal rather 

than standard Michaelis-Menten. For the kinetics with glucuronic acid-γ-lactone 

the data had an R2 of 0.9621 and a Sy.x of 0.0554 when a Michaelis-Menten 

curve was applied. With an allosteric-sigmoidal curve it had an R2 of 0.9897 and 

a Sy.x of 0.02961, indicating that this would be a better fit to the data. The same 

trend was seen with the other kinetic studies performed, with higher R2 and Sy.x 

values seen for allosteric-sigmoidal curves indicating that this is the most 

probable model for this enzyme. The D-glucuronic acid-γ-lactone had a Vmax of 

0.8092 µmole ml−1 min−1 and a Kprime of 2.009 mM. This was the lowest Kprime of 

those tested indicating this to be the substrate the enzyme had the highest activity 

of the three. The gulonic acid-γ-lactone had a Vmax of 0.5263 µmole ml−1 min−1 

and a Kprime of 3.622 mM. The rhamnono-1,5-lactone had a Vmax of 1.183 

µmole/ml/min and a Kprime of 4.463 mM.  
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Fig. 4.3. Kinetics graphs of lac11. Kinetics for: (A) D-glucuronic acid-γ-lactone, with a 

Vmax of 0.8092 µmole ml−1 min−1 and a Kprime of 2.009 mM; (B) L-gulonic acid-γ-lactone 

with a Vmax of 0.5263 µmole ml−1 min−1 and a Kprime of 3.622 mM; and (C) D-rhamnono-

1,5-lactone 
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To try and determine the optimal conditions to stabilise the protein and provide 

the highest chance of producing ordered crystals, differential scanning fluorimetry 

was carried out using a number of different conditions (Table 6). The results 

showed no change in the melting temperature of the lac11 with any of the small 

molecules tested in comparison to the Tris-HCl only control. This means none of 

the conditions tested increased the stability of the enzyme which could have 

improved the chances of obtaining an ordered crystal as usually an increase in 

stability also means reduced flexibility, which can disrupt formation of crystals. 

Out of the buffers tested Tris-HCl was the worst with the lowest temperature 

melting peak out of those tested, with a Tm of 56.5 °C. The melting temperature 

for both HEPES and MOPS was shown to be a higher with the lac11, a Tm of 

96.0 °C for the former and 96.3 °C for the latter. 

 

As the activity assays done earlier did not reveal which divalent ion is the co-

factor for this enzyme, the thermal stability of the enzyme divalent ions added 

was measured. The measured Tm for the blank, CaCl2, MgCl2 and MnCl2 all 

showed similar values, with MnCl2 showing the lowest Tm at 50.6 °C and the 

highest of these four being the MgCl2 with a Tm of 58.2 °C. The two exceptions 

were ZnCl2 and CoCl2 both of which showed a significant increase in the melting 

temperature. ZnCl2 had a Tm of 87.4 °C and CoCl2 had the highest Tm with 

95.1 °C. This would suggest that one of these two would be the potential 

candidate for the cofactor of this enzyme, though it should be noted that with 

many Zn2+ containing enzymes, Co2+ will bind with greater affinity (Kremer-Aach 

et al., 1997). Thus while there may be a greater increase in thermal stability with 

CoCl2, it is more likely that Zn2+ is the native co-factor as cobalt is a rare element 

in nature. 
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Table 6. Tm determined by differential scanning fluorimetry of lac11 with various buffers 

and additives. 

 

Conditions Tm ± SD °C 

Tris-HCl 56.5 ± 0.1 

Tris-HCl + sodium citrate 56.0 ± 0.1 

Tris-HCl + malonic acid 56.8 ± 0.03 

Tris-HCl + malic acid 56.3 ± 1.2 

Tris-HCl + CaCl2 54.0 ± 4.5 

Tris-HCl + MgCl2 58.2 ± 1.7 

Tris-HCl + ZnCl2 87.4 ± 6.3 

Tris-HCl + MnCl2 50.6 ± 0.5 

Tris-HCl + CoCl2 95.1 ± 0.5 

HEPES 96.0 ± 0.2 

MOPS 96.3 ± 0.07 

 

 

As thermophilic enzymes are generally more resilient to the exposure of organic 

solvents that would normal denature a protein, the ability of this enzyme to resist 

denaturation was examined. The stability of the lac11 was tested in five different 

solvents: ethanol, methanol, acetonitrile, isopropanol and DMSO, with the results 

shown in Fig. 4.4. Despite a wide range of solvents being used as well as 

concentrations up to 60 % for all the solvents, full, or very close to 100 %, activity 

was seen for all activity assays with the enzyme. It is entirely possible that the 

enzyme did denature in the solvents as for concentrations 60 % or higher, a small 

amount of precipitation was seen when the enzyme was added to the solvent. 

Either the enzyme was stable enough to endure the solvents tested at these 

concentrations, or it was highly efficient at refolding itself to return to a functional 

form after partial denaturation on exposure to a solvent.  
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Fig. 4.4. Activity of lac11 towards D-glucuronic acid-1,4-lactone relative to the rate seen 

in standard HEPES buffer with no solvent. 

 

In addition to the unfolding temperature, the activity retention of the enzyme was 

also analysed at higher temperatures. This method is less informative than 

differential scanning fluorimetry as there is no way to perform the assay at these 

high temperatures due to the unstable nature of the sugar lactones. It is highly 

likely that at high temperatures the substrates would degrade rapidly considering 

that at room temperature most substrates have degraded sufficiently to cause a 

colour change in the pH-based assay within 15-30 min, so gaining an accurate 

measurement of the enzymatic activity at elevated temperatures would not be 

possible. Overall the enzyme retains all of its activity after incubation at 80 °C for 

20 min. At 90 °C there is a small decline in the activity to 96.5% of that seen for 

the control done at room temperature. The solvents studies showed a similar 

result with no significant difference in activity after exposure. So while there does 

appear to be a very small amount of activity lost, the majority of its function 

remains at this high temperature, or it is highly efficient at refolding as was 

suggested by the solvent stability assays.  
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Microscale thermophoresis is a method to identify interactions between 

molecules using a microscopic temperature gradient and measuring the rate of 

diffusion of labelled molecules. Thus changes to the molecule in terms of size or 

conformation will alter the rate of diffusion and enables identification of potential 

inhibitors and substrate analogues due to binding by these molecules to 

enzymes.  An assay was carried out to try and identify potential substrate 

analogues for lac11 due to the high instability of the native substrates making 

them unsuitable for co-crystallisation trials. D-glucose was identified in the PDB 

database as a substrate analogue for another solved gluconolactonase and was 

visible within the active site of the structure (PDB code 4GN9). The binding affinity 

between glucose and lac11 was analysed to determine whether or not it would 

be a suitable analogue for co-crystallisation. The results from this are shown in 

Fig. 4.5. Overall it was determined that D-glucose did indeed bind to the lac11 as 

the fluorescence increased with the concentration of glucose meaning the protein 

was diffusing slower from the focal point due to binding of the ligand and 

possessed a binding affinity of 520 μM ±0.06 nM, indicating its high potential for 

stabilising the protein complex to try and obtain more ordered crystals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.5. Analysis of data from the microscale thermophoresis experiment for lac11.  The 

dissociation constant (Kd) was calculated with an exponential increase in glucose 

concentration. The y axis shows the fluorescence of the NT-647 tagged lac11 and the x 

axis shows the concentration of D-glucose in µM. 
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The lac11 was concentrated to 9.6 mg ml−1 and screened for crystal growth. A 

large number of crystals were seen from the Morpheus and JCSG plus screens, 

with the typical morphology being long, thin needle-like crystals. When data was 

collected at the Diamond Synchrotron these were shown to be highly disordered 

and completely unsuitable for data collection. The only crystals to diffract well 

were from the JCSG plus screen and from the following conditions; 40 mM 

potassium dihydrogen phosphate, 16 % w/v PEG 8000 and 20 % v/v glycerol. 

The cryoprotectant that was made had the same composition of buffer, pH and 

salt as the screen with the exception of the glycerol concentration being raised to 

30 % v/v. The best resolution that these crystals diffracted to was 2.7 Å. Additional 

electron density could be seen in the active site of the enzyme which could 

suggest the presence of a Zn2+ ion. Subsequent trials were performed again, this 

time with the addition of a seed stock. Crystal seeding, apart from stimulating 

crystal growth in conditions where there usually would not be any, has been 

known to provide higher resolution crystals (Bunker et al., 2012). Crystals from 

the JCSG plus screen were selected as these had been confirmed as disordered 

protein crystals. These were used in the JCSG plus screen again as well as MDL-

01 and 02. However this also failed to provide crystals that would diffract to an 

improved resolution.  

 

From the results obtained from differential scanning fluorimetry the buffer was 

changed to HEPES from Tris-HCl as this was identified as more stabilising for the 

enzyme than the original buffer. In addition to this, co-crystallisation was 

performed in addition to standard screening with the substrate analogue glucose, 

which had been identified through microscale thermophoresis, at a concentration 

of 100 mM as glucose can act as a cryoprotectant and thus reduce the risk of ice 

crystals forming (Fig. 4.6 A). Co-crystallisation was also carried out with 1 mM 

CoCl2 and ZnCl2 as these metal ions also increased the stability of the enzyme 

and thus could provide more ordered crystals. The new crystals diffracted to 2.4 Å 

from the co-crystallisation trials with glucose (Fig 4.6 B and Table 7). The 

conditions within the well were 0.1 M sodium cacodylate pH 6.5, 5 % w/v PEG 

8000 and 30 % MPD. Crystals from this condition were frozen directly without the 

use of a cryoprotectant due to the high concentration of MPD. Attempts to 

improve this resolution were made using crystal optimisation. Unfortunately, 

these trials did not yield any more crystals.  
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Fig. 4.6 Crystals and diffraction pattern of lac11. (A) Crystals obtained from the screen 

JCSG with the following conditions: 0.1 M sodium cacodylate pH 6.5, 5 % w/v PEG 8000 

and 30% MPD. The protein concentration was at 9.4 mg ml−1 and had been incubated 

with 100 mM glucose at room temperature for 20 min. The final protein concentration in 

the well was 4.7 mg ml−1. (B) Diffraction pattern obtained from Diamond Synchrotron 

showing resolution to 2.41 Å.  

A 

B 



 

[101] 

 

Table 7. Statistics from X-ray data collected at the Diamond Synchrotron for lac11 crystal 

diffraction 

        Overall Highest resolution  

High resolution limit                2.41 Å ( 5.90 Å - 2.41 Å) 

Low resolution limit                 30.20 Å     ( 30.20 Å - 2.64 Å) 

Completeness                         97.5%       ( 94.5% - 98.3 %) 

Multiplicity                               3.4             ( 3.4 - 3.3) 

I/sigma                                    6.8             ( 11.6 - 2.2) 

Rmerge                                   0.128     ( 0.057 - 0.700 ) 

Unit cell dimensions:   151.995 Å   151.995 Å   90.401 Å    90.0°   90.0°   120.0° 

Spacegroup                             P 3 2 1 

 

The phase was solved using the phase of a gluconolactonase from Xanthomonas 

campestris (PDB code 3DR2), a mesophilic bacterium associated with black rot 

in plants with which there was 36 % sequence identity with the lac11. To improve 

the accuracy of refinement the previously collected data to 2.7 Å was used to 

improve the phase through multi-crystal averaging. An R factor of 0.28 and a free 

R factor of 0.32 were achieved through structural refinement with COOT and 

REFMAC (Murshudov et al., 1997). Improving these values proved difficult and 

after many attempts were made it was determined that for the time being these 

are the best that can be achieved with the current dataset. One of the things 

potentially keeping the R value and the free R value high was the presence of a 

large area of density to which none of the programs could fit the protein structure. 

This can be seen in Fig. 4.7 A, where there is an abundance of density present 

in a void between the protein units. Unlike the previous 2.7 Å data collected, there 

was no strong electron density within the active site. At the location of the divalent 

ion, seen in Fig. 4.7 B, there was expected to be a stronger diffraction caused by 

a heavy Zn2+. However, the strength of the peak in the difference map would be 

indicative of something lighter divalent, probably Ca2+ ion at 3.0 Å root mean 

squared deviation. Whatever this ion may be, it was coordinated by 4 residues, 

Glu 79, Asn 175, Asn 230 and Asp 286. In addition to this, there was no obvious 

sign of glucose within the active site despite its presence within the well at a final 

concentration of 50 mM. The overall structure was a six bladed β-propeller with 

the active site present in the centre of all six blades (Fig. 4.7 C and D). Each 

propeller consists of at least four antiparallel β-strands apart from two, the top 
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two strands in the image which both contain an extra β-strand to a total of five. 

Superposition with 3DR2 (Fig. 4.7 E) showed structures to be similar with a 

RMSD of 3.1 Å. However a significant difference was seen in the side chains of 

the substrate binding pocket (Fig. 4.7 F). The four residues identified in the 3DR2 

structure involved in substrate binding were Phe 151, His 104, Leu 64 and Trp 46 

(Chen et al., 2008). Equivalent residues were located in the lac11 structure. Both 

the histidine and tryptophan were conserved and located at 146 and 77 

respectively. There is seen a conserved substitution of phenylalanine to tyrosine, 

both are of similar size and both are hydrophobic though with an addition of a 

hydroxide group tyrosine is less hydrophobic. Another conserved substitution 

was observed with leucine for valine, the α-carbon of both side chains were 2.0 Å 

apart. Additionally, the tryptophan side chains were in significantly different 

conformations, where the distance between the most distant carbons in the side 

chains was 4.9 Å. It was reported in the paper that the only substrate the enzyme 

had activity for out of those tested was glucono-1,4-lactone. The other substrates 

tested were D-gulono-1,4-lactone, L-gulono-1,4-lactone, and D-ribono-1,5-

lactone. This is interesting as lac11 was shown by enzyme assay to have activity 

towards all but one of the substrates that were available (Table 5) suggesting it 

possesses greater promiscuity towards substrates than the lactonase 3DR2. 

Looking at the binding pocket, it is possible that the 4.9 Å shift in the tryptophan 

away from the other side chain residues, as well as the shorter side chain of the 

valine in comparison to the leucine, increases the size of the binding pocket. 

Lac11 not only possesses activity to smaller substrates than glucono-1,4-lactone, 

such a D-threono-1,4-lactone, but also to larger ones such as D-glucuronic acid-

1,4-lactone. Both could be attributed to a larger binding pocket, crystallisation 

with a substrate or substrate analogue would need to be done to confirm the 

binding mechanism which would allow more accurate rationalisation for the 

differences observed. Fig. 4.7 G shows the surface of the structure represented 

by white for hydrophobic regions, red for negatively charged and blue for 

positively charged regions. The active site is observed to be open and exposed 

to the solvent on one side of the structure, as seen by the cavity indicated in the 

image. iMosflm (Battye et al., 2011) was also used to for data integration to see 

if it could improve upon the quality of the results. There was no improvement over 

the previous programs used.  
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Fig. 4.7. Crystal packing and diffraction observed from the lac11 crystals. (A) The unit 

cell of the collected data. Within the crystal packing seen from the X-ray diffraction there 

is an abundance of high resolution density to which the protein (seen in grey) cannot be 

fitted using any available program. (B) Electron density map centred on the location of 

the divalent ion binding site, coordinated by a glutamine residue, an aspartic acid residue 

and two asparagine residues. (C) Structure of protein was found to be a six bladed β-

propeller. (D) Active site residues were located in the core of the propeller structure. (E) 

Superposition of lac11 (blue) and lactonase 3DR2 (brown), RMSD was 3.1 Å. (F) 

Superposition of their respective substrate binding pocket residues. (G) Surface 

representation of the lac11 lactonase, white is uncharged, blue is positively charged, and 

red is negatively charged. The arrow indicates the location of active site. (H) Density for 

the native structure in the β -sheet region. The 2Fo-Fc map is shown in blue and is 

contoured at 1 sigma, the Fo-Fc map is contoured at 3 sigma (green). Image created 

with PyMOL (Delano, 2002). 
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It was unclear whether the lac11 was present as a dimer or trimer, as indicated 

in Fig. 4.7 A, or not owing to the fact that the predicted dimer interface seen 

during analysis in COOT was completely different to that found in the lactonase 

3DR2 structure (Fig. 4.8 A), whose phase was used to solve the structure. 

To determine whether or not the lac11  was a dimer, the program PISA (Krissinel 

and Henrick, 2007), part of the suite of programs from CCP4I, was used to 

analyse the structure to determine the likely oligomeric state. It determined that 

the interfaces present in the protein did not suggest it to form a oligomer in 

solution and it was most likely present as a monomer. To confirm this a sample 

of lac11 was passed through an analytical gel filtration column after purification 

by both nickel chromatography and standard size exclusion chromatography (Fig 

4.8 B). Four peaks were seen, the first was aggregates and the fourth was in the 

void volume. The third peak corresponded to a size of 15 kDa, this would most 

likely be degraded protein as the sample used was an old sample stored frozen 

at −80 °C with 25 % glycerol so some damage would have occurred. The second 

peak corresponded to a size of 30 to 40 kDa, the size range the monomeric form 

of the protein. No peak in the range that the dimer would be present was seen, 

this would indicate that the protein was present as a monomer, unlike the 

lactonase 3DR2 structure previously solved. This makes it unique in comparison 

and makes it more like other six-bladed β-propeller proteins which usually exist 

as monomers, only a few of them form homodimers or oligomers (Paoli, 2001).  

 

Interestingly, a stark difference observed between the two gluconolactonases is 

that while lactonase 3DR2 is stabilised by disulphide bonds (Chen et al., 2008), 

the lac11 did not possess any intramolecular disulphides. Since the main role of 

gluconolactonases is in metabolic pathways, the lac11 is most likely adapted for 

conditions within the cell. A high number of disulphide bonds in a protein are more 

commonly seen in those secreted by the cell to make them more stable in the 

extracellular environment, meaning that lac11 has little need of them. However, 

it appears the lactonase 3DR2 is not exported either, a scan of its sequence, 

using the SignalP 4.1 Server from DTU Bioinformatics (Petersen et al., 2011), 

revealed no export signal peptide present in the sequence, meaning both should 

be present intracellularly. A total of 9 salt bridges were identified within the 

structure of the lac11. Of particular note though is the salt bridge cluster formed 
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between Arg 316, Arg 318 and Glu 52. This increase of 2 salt bridges is not a 

significant increase over the mesophilic gluconolactonase from E. coli which had 

7. This indicates that salt bridges do not provide a great deal of extra 

thermostability and that this must be attributed to other features such as 

hydrophobic interactions.  
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Fig. 4.8. (A) Superposition of lac11 (blue) as an artificial dimer and lactonase 3DR2 

(brown) in Chimera (Pettersen et al., 2004). Green balls are Ca2+ ions from 3DR2 and 

side chains shown are Mg2+ coordinating residues. Dimers form completely differently 

suggesting that lac11 might not be a dimer due to such a drastic difference. (B) Analytical 

size exclusion chromatography of lac11 sample previously frozen at ˗80 °C. Peak 1 was 

aggregate protein, peak 2 corresponded to a size of 30-40 kDa, peak 3 corresponded to 

a size of 15 kDa, peak 4 was at a total column volume. 
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The primary structure of lac11 was investigated and the percentages of each 

amino acid were compared to the gluconolactonase from the mesophile X. 

campestris (PDB code 3DR2) (Table 8). There was a reduction in the number of 

cysteine residues from 2.6 % to 1.1 % in the enzyme, this is standard as they are 

highly susceptible to oxidation at high temperatures. The biggest difference was 

a decrease in the number of alanine residues in lac11, with 6.5 % of the total 

amino acids consisting of these in lac11 in comparison to 10.2 % in the lactonase 

3DR2. However most of the other hydrophobic amino acids in lac11 showed small 

increases: a greater amount of isoleucine with 1.9 % more, from 2.3 % to 4.2 %; 

a greater amount of methionine with 1.0 % more from 1.0 % to 2.0 %; a greater 

amount of phenylalanine more from 1.8 % from 3.3 % to 5.1 %; a greater amount 

of tyrosine with 2.1 % more from 1.3 % to 3.4 %. This trend suggests a 

substitution of weakly hydrophobic residues for stronger hydrophobic ones, and 

thus an increase in the hydrophobic forces present within the thermophilic 

enzyme in comparison to the mesophilic form. This would aid in stabilising the 

enzyme at high temperatures. The alanine residues present in the β-strands do 

appear to be substituted for more hydrophobic amino acids (Fig. 4.9). While those 

present in loop regions are substituted for charged and polar amino acids 

indicating that either interactions with water or the formation of ionic bonds with 

the main structure stabilise them.  

 

Visual inspection of the structure with COOT revealed that there was 

approximately a 5 % increase in the number of hydrophobic interactions seen in 

the structure in comparison to the lactonase 3DR2 structure which was used as 

a model for molecular replacement. There were seen to be more prolines in loop 

regions as well as the loops themselves generally being shorter which would help 

increase the thermal stability of the lac11 protein.  
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Table 8. Percentage composition of amino acids in the lac11 and 3DR2. 

Amino acids 3DR2 Lac11 

Ala 10.2 % 6.5 % 

Arg 7.9 % 6.2 % 

Asn 2.0 % 3.1 % 

Asp 9.2 % 7.0 % 

Cys 2.6 % 1.1 % 

Gln 4.6 % 3.7 % 

Glu 2.6 % 4.8 % 

Gly 9.8 % 12.4 % 

His 3.9 % 0.6 % 

Ile 2.3 % 4.2 % 

Leu 10.2 % 9.9 % 

Lys 0.7 % 5.1 % 

Met 1.0 % 2.0 % 

Phe 3.3 % 5.1 % 

Pro 8.2 % 7.0 % 

Ser 5.6 % 4.8 % 

Thr 5.6 % 5.1 % 

Trp 3.3 % 2.0 % 

Tyr 1.3 % 3.4 % 

Val 5.9 % 6.2 % 
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Fig. 4.9. Secondary structure and amino acid sequence alignment between the lac11 lactonase and the lactonase 3DR2 made using the ESPript 3 
sequence and structure alignment server (Robert and Gouet, 2014). Residues highlighted in red are conserved, residues in blue boxes are conserved 
substitutions. 
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Fig. 4.10 shows the B-factor analysis of lac11 and the 3DR2 structure. This was 

done using the temperature factor analysis software in the CCP4i suite of 

programs (Winn et al., 2011) to look at the displacement of atoms within the 

structures. Overall both structures had low B-factors with most of the residues 

below 40 Å2. This indicates well-ordered structures with low flexibility. The 

residues in and around the active site are more ordered with lower B-factors than 

the rest of the structure. A similar trend is seen in the 3DR2 structure though the 

differences between the active site residues and the rest of the structure if not as 

pronounced as the lac11 structure, possibly due to its lower overall B-factor.  

 

 

 

 

Fig. 4.10. B-factor analysis of the 3DR2 structure (A) and lac11 (B). The average B-

factor, measure in Å2, was plotted on the Y-axis against the residue number on the X-

axis. Red lines highlight the residues located in the active sites of the enzymes.  
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Further crystallisation attempts were done to try and obtain a better structure with 

lower R values and higher resolution as ideally, they should be below 0.25 R Free 

, instead the lowest value obtained was 0.32 R Free. Optimisation of the 

crystallisation screen conditions that previously provided crystals which diffracted 

to 2.4 Å did not yield anymore crystals. The next method that was used to try and 

improve crystal quality was lysine methylation. The process itself required a larger 

quantity of protein to be purified beforehand as during the methylation step 

roughly 60 % of the protein was lost due to denaturation by the methylation 

conditions. When the protein concentration was measured using with a Nanodrop 

spectrophotometer (Thermo Fisher Scientific, Massachusetts, USA) before 

methylation the concentration was 0.5 mg ml−1, and after methylation it was 0.2 

mg ml−1. After methylation, crystallisation trials produced crystals in a new 

condition with a different morphology which appeared to be of a higher quality 

than the previously obtained crystals and due to their fragile nature when 

physically manipulated were highly likely to be protein (Fig. 4.11). The crystals 

grew in 0.1 M HEPES pH 8.5 and 25 % Sokalan CP7 from the MIDAS screen 

with the protein concentration of 7.2 mg ml−1. First attempts to freeze these 

crystals proved problematic when the cryo-protectants contained 0.1 M HEPES 

pH 8.5 and either 40 % v/v PEG 400 or 40 % w/v glucose. Both of these conditions 

dissolved the crystals so one last crystal was frozen without any cryo-protectant 

but X-ray diffraction data collection was prevented by formation of ice. A cryo-

protectant containing 0.1 M HEPES pH 8.5 and 40 % v/v Sokalan was made and 

fresh crystals produced. However before they could be frozen the crystals 

disintegrated overnight for some unknown reason which while very rare can 

happen with protein crystals (Rupp, 2009). Attempts to replicate the crystals 

produced in this condition failed, possibly due to the environmental factors in the 

room the crystals were growing in or modifications and repairs done to the 

equipment between crystallisation trials. 
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Fig. 4.11. Crystals formed by lac11 after lysine methylation in the MIDASplus screen in 

0.1 M HEPES pH 8.5 and 25 % Sokalan CP7 
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4.4 Conclusion 

 

The electron density map of the enzyme is high enough to see the general 

structure and has allowed relatively accurate placement of the side chains. 

Although the high R factor and free R factor were not fit for publishing, ideally 

both values should be below 0.25. Here both were above this value with the R 

factor at 0.28 and a free R factor at 0.32, as such a better crystal diffracting to 

higher resolution or one in a different space group would be required to try and 

obtain a structure with lower R values. Trials with crystal optimisation have 

yielded a large number of crystals, though so far not one has produced diffraction 

data anywhere near the 2.4 Å resolution already obtained. Understanding the 

structure and binding of the enzyme to a substrate or substrate-analogue would 

be of great benefit as very little is known about this class of lactonases. Currently 

there are only six different structures of gluconolactonases deposited in the 

Protein Data Bank: human, mouse, T. brucei, X. campestris, Leishmania 

guyanensis and Leishmania braziliensis.  

 

Assays have shown the lac11 enzyme to possess activity for a broad range of 

substrates. Also lac11 does not lose any significant activity after exposure to high 

temperatures and high solvent concentrations making it of great interest for 

industrial applications. Also since gluconolactonase is essential in metabolic 

pathways leading to the synthesis of pentose and vitamin C, determining this 

structure when there are currently few structures available will aid in our 

understanding how these processes occur. 
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4.5 Summary 

 

The crystal structure of the lac11 gluconolactonase was successfully solved to a 

resolution of 2.4 Å with a space group of P 3 2 1. The structure was revealed to 

be a six-bladed β-propeller and was confirmed to be most likely present as a 

monomer by PISA and analytical size exclusion chromatography. The enzyme 

showed activity towards a broad range of substrates including 1,4 and 1,5 sugar 

lactones and was stable at very high temperatures with the highest melting point 

measured at 96.3 °C. This stability appeared to be through substitution of alanine 

within the structure for residues capable of stronger hydrophobic interactions. 

 

The next step in the investigation of lactonases was to study the last remaining 

class of this enzyme, enol lactonase. 
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5. Enol lactonase 
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5.1 Introduction 

 

An enol lactonase, named B1-7Tnr1 (shortened to “B1 lactonase”), was identified 

using a BLAST search of a metagenome from a hot spring in Pozzuoli, Italy, 

collected by the group of Dr Xu Peng (University of Copenhagen). The conditions 

of the hot spring were 76 °C and at pH 3. The amino acid sequence had 29 % 

identity to a known enol lactonase from Burkholderia xenovorans in the Protein 

Data Bank (PDB code 2XUA), as revealed using a BLAST search. The 

metagenomic DNA was not available at the time so the sequence was 

synthesised and codon optimised for expression in E. coli by ATUM (California, 

USA). The gene was supplied in an pD441-CH vector, part of the Electra 

expression system 

 

5.2 Results and discussion 

 

The recombinant DNA containing the B1 lactonase gene was successfully 

transformed into E. coli XL10-gold ultracompetent cells with kanamycin 

resistance. The transformed cells were grown, recombinant DNA was purified by 

mini-preps and used to transform E. coli Bl21 (DE3) expression cells. Expression 

conditions were standard, as described in the materials and methods. SDS-

PAGE revealed that none of the protein was detectable in the soluble fraction; all 

of it was located in the insoluble fraction. Expression conditions were altered, with 

lower concentrations of IPTG, lowering expression temperatures to 30 °C, and 

auto-induction all being tested; none showed any improvement to increasing the 

amount of soluble protein produced. Different expression cell lines, Bl21 (DE3) 

pLysS, BL21-CodonPlus (DE3) RIPL and Arctic Express (DE3) were also tested, 

using both the standard protocol and the variations mentioned above. Again, 

none showed any protein in the soluble fractions by SDS-PAGE for any of the 

cell lines or expression conditions. 

 

Eventually, attempts to express and purify the B1 lactonase protein were halted 

in favour of homology modelling to solve the structure. The sequence was 

submitted as described in the materials and methods to I-TASSER (Zhang, 

2008), Phyre2 (Kelly et al., 2015) and SWISS-MODEL (Biasini et al., 2014). Out 
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of all the models generated, the best one, determined by Ramachandran plots 

generated by Rampage, was from SWISS-MODEL. 

 

The Ramachandran plot for the B1 enol lactonase (Fig. 5.1 A) showed 91.4 % of 

all amino acids in a favoured conformation, 7.5 % in an allowed conformation, 

and the remaining 1.1 % as outliers. These outliers were identified as: Arg 65, 

the first amino acid of a β-strand, which is not uncommon as amino acids that 

border transition in secondary structure can be found in an unfavourable 

conformation; Pro 138, located in the middle of a loop; and Arg 193, the first 

amino acid of an α-helix which, as with Arg 65, is a normal place to find an amino 

acid in an unusual conformation. The model was a standard α/β hydrolase fold 

with a β-sheet consisting of eight β-strands connected by six α-helices (Fig. 5.1 

B). The analysis of the model gave a QMEAN of −3.02 and superposition gave a 

mean RMSD of 2.8 Å over all residues with the structure of the closest related 

enol lactonase identified from a BLAST search of the Protein Data Bank from 

B. xenovorans (PDB code 2XUA). Although this belongs to a different class of 

enzyme it was still logical for the program to select it as lactonases and epoxide 

hydrolases share common ancestry. Beyond both being α/β hydrolases, both 

proteins were found to be located within the same monophyletic group in the α/β 

hydrolase superfamily (Popiel et al., 2014) and possessed homologous 

conserved residues. A total of seven salt bridges were identified within the 

structure of the B1 lactonase model. Of particular note is the salt bridge cluster 

formed between Arg 16, Arg 65 and Asp 29 as this double salt bridge to a single 

aspartic acid would confer stability to this region. The number of salt bridges is 

the same as in the mesophilic protein. This indicates that salt bridges do not 

provide any extra thermostability and that this must be attributed to other features 

such as hydrophobic interactions. The cap region as indicated in Fig. 5.1 B 

contains mostly loops and fewer α-helices than the 2XUA structure making it 

much more flexible in comparison. This would indicate that the substrate binding 

pocket likely exists in multiple conformations. This would mean the active site is 

affected by solvent dynamics more and is less restrictive with respect to substrate 

specificity. 

 

Comparison of the active site (Fig. 5.1 C) with the epoxide hydrolase showed a 

similar catalytic triad (Bains et al., 2011) with one small variation between the 
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residues, but the residues are in the same positions showing the catalytic triad is 

highly conserved between the two different enzymes. The triad in the epoxide 

hydrolase consists of two aspartic acid and a histidine, whereas in the lactonase 

one of the aspartic acids is substituted by a serine in the same position. This 

difference between a negatively charged residue and a polar residue would most 

likely be expected to cause a difference in substrate specificity or activity between 

the two enzymes. Fig. 5.1 D shows the surface of the model represented by white 

for hydrophobic regions, red for negatively charged and blue for positively 

charged regions. The active site is observed to be open and exposed to the 

solvent through a narrow channel, as seen by the cavity indicated in Fig. 5.1 D. 

This would potentially alter depending on the position of the cap region. 
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Fig. 5.1. Homology modelling of the B1 lactonase. (A) Ramachandran plot of the model. 

91.4 % of the residues are in a in a favoured conformation, 7.5 % are in an allowed 

conformation, and 1.1 % are outliers which are highlighted in red. (B) Cartoon 

representation of the model generated by SWISS-PROT. The structure is a standard α/β 

hydrolase fold with a core of β-sheet consisting of eight β-strands (red) connected by six 

α-helices (dark blue). A cap domain can be seen as indicated (C) Active site histidine, 

aspartic acid and serine/aspartic acid residues compared between the two superposed 

structures, the B1 lactonase model in blue, and the 2XUA structure in brown. There were 

small variations in the positions of the side chains, but not enough to likely affect 

substrate specificity and activity from these alone. (D) Surface representation of the B1 

lactonase, white is uncharged, red is negatively charged and blue is positively charged. 

Arrow indicates location of the active site. 
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Looking at the composition of amino acids with another enol lactonase from the 

mesophile B. xenovorans (PDB code 2XUA) there is a noticeable difference 

between the percentages of certain amino acids (Table 9). Most notably the B1 

lactonase consists of 9.1 % alanine, compared to the 2XUA of 14.4 %, a 

difference of 5.3 % overall. With this there was also seen more leucine residues, 

with the B1 lactonase consisting of 14.3 % leucine and lactonase 2XUA 

consisting of 8.3 %, a difference of 6.0 %. This suggests that there is substitution 

of alanines for leucines, which would provide higher levels of hydrophobic 

interactions within the protein as leucine is far more hydrophobic than alanine. 

When the structure is examined (Fig. 5.2) this appears to be case for half of the 

alanine that are lost, mostly on the β-strands. But the others on α-helices are 

either substituted for residues that are more hydrophobic or charged residues. 

This is a typical adaptation with thermophilic enzymes to resist hot environments 

by creating more ionic interactions with the solvent facing side of the α-helices 

and stronger hydrophobic interactions with the core facing side. There is also 

2.8 % more proline residues present in the B1 lactonase which would make the 

structure more rigid and stabilising it further. These extra prolines are mostly 

located on loop regions, stabilising them by reducing their flexibility. Cysteines 

are nearly absent (0.3 %) in the B1 lactonase, compared with 1.4 % in lactonase 

2XUA. This is commonly observed in thermophilic proteins as cysteines are 

highly susceptible to oxidation at high temperatures. And while there is no 

indication that lysines are substituted for arginine as there is very little difference 

in the number of lysine present, there were more arginine seen with 9.4 % 

compared to 6.9 % indicating they are necessary for stabilising the enzyme. This 

is most likely achieved through its ability to form electrostatic interactions in three 

directions (Sokalingam et al., 2012).These are primarily located in the loops and 

α-helices of the B1 lactonase. 

 

Visual inspection of the structure with COOT revealed that there was a slight 

increase in the number of hydrophobic interactions seen in the structure in 

comparison to the epoxide hydrolase it was modelled after from Mycobacterium 

thermoresistibile (PDB code 5CW2). Approximately 10 % more hydrophobic 

interactions were seen in the B1 lactonase. Loop regions were seen to be shorter 

in B1 and had fewer glycines and more prolines in them that would increase their 
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stability. There was low structural homology between the two which meant there 

were few superposed secondary structure features to compare so it was difficult 

to be conclusive about the differences. 
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Table 9. Percentage composition of amino acids in the B1 lactonase and 2XUA. 

Amino acids 2XUA B1 

Ala 14.4 % 9.1 % 

Arg 6.9 % 9.4 % 

Asn 2.9 % 1.4 % 

Asp 6.1 % 5.2 % 

Cys 1.4 % 0.3 % 

Gln 2.0 % 5.6 % 

Glu 6.3 % 4.5 % 

Gly 7.6 % 7.0 % 

His 4.3 % 2.1 % 

Ile 5.1 % 3.1 % 

Leu 8.3 % 14.3 % 

Lys 2.9 % 2.8 % 

Met 2.5 % 1.7 % 

Phe 2.2 % 4.5 % 

Pro 4.9 % 7.7 % 

Ser 4.5 % 6.3 % 

Thr 5.8 % 3.5 % 

Trp 1.4 % 2.1 % 

Tyr 2.5 % 2.1 % 

Val 7.2 % 7.0 % 
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Fig. 5.2. Secondary structure and amino acid sequence alignment between the B1 lactonase and the 2XUA lactonase made using the ESPript 3 

sequence and structure alignment server (Robert and Gouet, 2014). Residues highlighted in red are conserved, residues in blue boxes are conserved 

substitutions.
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Lactonase and epoxide hydrolases are evolutionarily related and share similar 

structures and active site residues (Popiel et al., 2014). To look into their 

similarities the homology model generated for the B1 enol lactonase was 

superposed to an epoxide hydrolase whose active site residues are known, from 

Mus musculus (PDB code 1CQZ), as the M. thermoresistibile epoxide hydrolase 

has no structure published to date.  Both enzymes share 26 % sequence identity 

and when superposed in Chimera had a mean RMSD of 3.8 Å over all residues, 

showing that the overall structures of the enzymes are very similar. When the 

active sites were examined (Fig. 5.3) it was observed that the positions of the 

catalytic residues of the enol lactonase are mostly conserved in the epoxide 

hydrolase. Both the active site histidine and aspartic acid of the enol lactonase 

(His 270 and Asp 242) are conserved in the epoxide hydrolase, although the 

aspartic acid (Asp 495) has not been identified as being involved in catalytic 

activity for the epoxide hydrolase enzyme. The active site serine, Ser 111, in the 

lactonase has been substituted by an aspartic acid which would mean an 

additional negative charge in the active site, the same as for the 2XUA lactonase 

so it is a conserved substitution. The majority of the differences in the active site 

were observed when the residues identified as being involved in catalysis in the 

epoxide hydrolase but not the enol lactonase were compared. The tryptophan 

(Trp 334) in the epoxide hydrolases active site has been substituted for a 

methionine in the lactonase, since methionine is also a hydrophobic residue this 

was a conserved substitution. One of the tyrosines, Tyr 381, is located on an α-

helix in the epoxide hydrolase and has been replaced by a loop instead in the 

lactonase that is not present in the same location as the α-helix, instead the loop 

moves away from the active site. The other tyrosine in the epoxide hydrolase 

important for activity, Tyr 465, is located on another α-helix that has also been 

replaced by a loop region in the lactonase. The loop is in a similar position to the 

α-alpha helix the Tyr 465 is located on but the residue in the equivalent location 

is a methionine which has its side chain pointing away from the active site, leaving 

the area where the tyrosine would have been located empty. Either these 

residues were unnecessary for activity and have been lost over time or have been 

lost to accommodate different substrate binding. 
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Fig. 5.3. Superposition of the active site residues of the B1 enol lactonase homology 

model (brown) and an epoxide hydrolase from M. musculus PDB code 1CQZ (blue). The 

catalytic histidine and aspartic acid residues from the lactonase were fully conserved in 

the epoxide hydrolase and there was a weakly conserved substitution of the polar serine 

residue for a charged aspartic acid. The active site tyrosines from the epoxide hydrolase 

were completely missing in the lactonase with nothing occupying the space they had 

been in and the epoxide hydrolase tryptophan was seen to have a conserved substitution 

for a methionine. 

 

While unfortunate that the protein was not able to be purified in the soluble 

fraction, this is not an uncommon result when expressing recombinant protein in 

a foreign host. Currently it has been approximated that around 70 % of all 

recombinant proteins that are expressed form inclusion bodies (Yang et al., 

2011). The homology model itself gives some insight into the structure of the 

protein, with the most interesting aspect being the substitution of one residue of 

the catalytic triad. Without any soluble protein it will be impossible to test if this 

gives a difference in activity. A possibility would be to unfold and refold the 

insoluble protein, to attempt to get a properly folded and soluble protein. This was 

not done during this project as it is a time intensive experiment. 

  

His 270 

Ser 111 

Asp 242 

Asp 333 

Trp 334 

Tyr 381 

Tyr 465 

Met 112 



 

[132] 

 

5.3 Summary  

 

With the difficulties encountered trying to purify the protein in the soluble fraction 

a homology model was generated for the B1 enol lactonase. The model showed 

strong similarities to the enol lactonase from B. xenovorans (PDB code 2XUA) in 

terms of overall structure and active site residues. It was also shown to be similar 

to an epoxide hydrolase from M. musculus where although half of the active site 

residues from the epoxide hydrolase were not present in the enol lactonase, there 

was conserved substitution of a tryptophan and an aspartic acid for a methionine 

and a serine respectively in the enol lactonase and conservation of a histidine 

present in both enzymes.  

 

With the last class of lactonase investigated, the next step of the project was to 

look at another class of thermophilic enzymes of great industrial interest to our 

collaborators, DXP synthases.  
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6. DXP synthase 
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6.1 Introduction 

 

1-deoxy-D-xylulose-5-phosphate (DXP) synthases were investigated because of 

the close relationship with transketolase enzymes. Transketolases are found in 

the pentose phosphate pathway and biologically are involved with the 

rearrangement of sugar phosphates by transferring a two carbon unit from one 

sugar and transferring it to another using the cofactor thiamine pyrophosphate. 

The transketolases are used synthetically for industrial processes where they 

able to use hydroxypyruvate as a ketol donor with a variety of aldehydes to 

synthesise sugar products such as erythrulose. The release of CO2 makes the 

reaction irreversible (Hobbs et al., 1996). The DXP reaction  catalyses the 

conversion of D-glyceraldehyde 3-phosphate and pyruvate to 1-deoxy-D-

xylulose-5-phosphate and CO2 (Demuynck et al., 1991) with a very narrow 

specificity for sugar substrates. The industrial interest is generated from the fact 

that DXP synthases use pyruvate as a substrate in the catalysed reaction as 

opposed to hydroxypyruvate for transketolase which is a more expensive 

substrate. The goal was to solve the structures of the native DXP synthases, as 

well as substrates bound to the active site and a transition state, to determine 

what features allow these enzymes to use the substrate pyruvate and not 

hydroxypyruvate.  This would further the goal of designing a transketolase 

enzyme that would not only have broader substrate specificity but could use the 

cheaper pyruvate as a substrate rather than hydroxypyruvate for the reaction. 

The reason thermophilic DXP synthases were investigated is because they would 

be more stable for other  industrial applications. These enzymes should be also 

be less flexible so could hopefully crystallise more easily. The two structures 

currently available for DXP synthases are of limited resolution, one structure at 

2.9 Å and the other at 2.4 Å. 
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6.2 Materials and methods 

 

6.2.1 Resuspension of gBlock gene fragments 

 

Synthetic genes ordered from Integrated DNA Technologies (IDT) (Iowa, United 

States) were provided as dry pellets and were resuspended in TE buffer (10 mM 

Tris-HCl pH 8.0, 1 mM EDTA) to a final concentration of 10 ng µl−1 of DNA. The 

solution was vortexed, followed by incubation at 50 °C for 20 min and then 

vortexed a second time to fully resuspend the pellets. 

 

6.2.2 Buffers 

 

Cell paste resuspension buffer was 50 mM HEPES pH 7.5 and 500 mM NaCl, 

elution buffer for nickel chromatography was 50 mM HEPES pH 7.5 and 1 M 

imidazole, and gel filtration buffer was 50 mM HEPES pH 7.5, 100 mM NaCl, 2 

mM CaCl2 and 50 µM thiamine pyrophosphate.  

 

6.2.3 Protein sample preparation 

 

Protein samples were concentrated to a range of concentration between 2 mg 

ml−1 and 22 mg ml−1 in a Merck Millipore centrifuge concentrator with a 50 kDa 

molecular weight cut off at 4000 rpm. 
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6.3 Results and discussion 

 

Two DXP synthases were identified from genomes of two thermophilic 

organisms, one from an anaerobic Gram-negative bacterium, Thermovibrio 

ammonificans (TaDXP) and the other from an anaerobic Gram-positive 

bacterium, Carboxydothermus hydroformans (ChDXP). These were identified 

through a BLAST search (Altschul et al., 1990), TaDXP was found to have 50 % 

amino acid sequence identity to a DXP synthase from E. coli (accession code 

2O1S_A) and ChDXP was found to have 48 % sequence identity to a DXP 

synthase from Pseudomonas aeruginosa (accession code 2O1X_A) and they 

were shown to possess 57 % sequence identity to each other using Clustal 

Omega (Sievers et al., 2011). 

 

Genomic DNA from both organisms was amplified through use of a GenomiPhi 

DNA amplification kit, then the DXP synthase genes were amplified by PCR and 

inserted into both pLATE31 and pLATE51 vectors, the former of which has a C-

terminal histidine tag sequence and the latter an N-terminal, to increase the 

chances of having the tag exposed and not buried within the structure for binding 

to a nickel affinity resin. These were then successfully cloned in E. coli XL10 gold 

cells and the amplified plasmid constructs were transformed for protein 

expression into E. coli BL21 (DE3) pLysS cells. Expression studies showed no 

protein in either the soluble or insoluble fraction. Analysis of the coding regions 

of the genes revealed many rare codons; 24 % of T. ammonificans and 17 % of 

C. hydroformans DXP synthase codons were below the 20 % codon usage 

threshold for E. coli (Maduro, 2014) (E. coli Codon Usage Analyzer 2) with several 

instances of consecutive rare codons in each gene which could cause translation 

to arrest. This is always a possibility when expressing a gene from a foreign 

organism in E. coli, particularly as distinguishable patterns of codon usage have 

been reported between thermophiles and mesophiles; it has been hypothesised 

that these differences are due to selective pressure on thermophilic species 

towards more stable mRNA molecules and thus better translation efficiency 

under high temperatures (Lynn, 2002). So, both genes were cloned in BL21-

CodonPlus (DE3) cell lines which have been designed to express proteins 

containing more rare codons. However even this proved ineffectual to express 

either protein, so the coding sequences were optimised for expression in E. coli 
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and the codon-optimised genes were synthesised by Integrated DNA 

Technologies (IDT) (California, USA). The recombinant DNA was successfully 

cloned into XL10-Gold cell lines (Fig. 6.1).  

 

A variety of expression trials were conducted for both N- and C-tagged constructs 

to determine the optimal conditions for protein expression, including expression 

in E. coli cell lines BL21 (DE3) pLysS, Rosetta, RIPL and Arctic Express. The 

concentration of IPTG used to induce expression was varied in different 

expression trials between 0.2 mM and 1mM. The expression with autoinduction 

media was also investigated, as well as altering the temperature after induction 

between 12 °C and 37 °C. For most trials the majority of the protein was present 

as inclusion bodies in the insoluble fraction. Overall it was not possible to obtain 

a significant amount of the C. hydroformans DXP synthase in the soluble fraction, 

with only a faint band visible at the corresponding molecular weight on SDS-

PAGE gels (Fig 6.2). The DXP synthase from T. ammonificans was however 

successfully expressed in soluble form by induction with 1 mM IPTG and 

incubation for 4-5 hours at 37 °C before being cooled to 4 °C and left overnight 

before harvesting the cells. Yield was further improved by using a high salt 

resuspension buffer containing 500 mM NaCl; high salt concentration has been 

shown to improve the stability of thermophilic proteins (Mao et al., 2007). The 

focus of study was accordingly shifted to purification and crystallisation of the 

DXP synthase from T. ammonificans.  

 

TaDXP was successfully purified by nickel affinity chromatography and gel 

filtration (Fig 6.3). Confirmation that the protein purified was indeed the DXP 

synthase was confirmed using Western blotting which showed it possessed a 

histidine tag. It was found that the protein with a C-terminal histidine tag bound to 

the nickel column whereas the N-terminal histidine tagged protein did not 

indicating that the N-terminal tag was not exposed and most likely buried within 

the structure.  
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Fig. 6.1. DNA agarose gels of ChDXP gene amplification. A: ChDXP colony PCR. Lanes: 

1 ladder (in kb); 2-8 colonies for gene in pLATE 51. B: TaDXP colony PCR. 1; ladder (in 

kb), 2-7; colonies for gene in pLATE 31, 8-16; colonies for gene in pLATE 51.  
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Fig. 6.2. A SDS-PAGE of ChDXP from nickel affinity chromatography. Lanes: 1. Ladder 

(in kDa); 2-3. Insoluble fraction; 4-5. Crude lysate; 6-7. Unbound fraction; 8-9. Bound 

fraction. Band intensities reveal the majority of the protein is present within the insoluble 

fraction. 
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Fig. 6.3. (A) Size exclusion chromatography trace for the purification of TaDXP protein. 

(B) SDS-PAGE of TaDXP from nickel affinity and gel filtration chromatography. Lanes: 

1. Ladder (in kDa); 2. Insoluble fraction; 3. Supernatant; 4. Elution fraction from nickel 

affinity chromatography (NiAC); 5-7. Peak fraction from gel filtration chromatography (C). 

Western blot of SDS-PAGE analysis of gel filtration chromatography peak. Bands 

represent proteins possessing a histidine tag confirming purification of the tagged DXP 

synthase protein. An identical protein ladder to the SDS-PAGE gel was used and all 

marker proteins possessed a histidine tag. 
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There was no straightforward way to perform an activity assay on the purified 

enzyme. Currently the only known assay available is a coupled-enzyme assay 

(Altincicek et al., 2000). This current method uses pyruvate and D-glyceraldehyde 

3-phosphate, which are converted to 1-deoxy-D-xylulose 5-phosphate. It is here 

that a second enzyme is required, DXP reductoisomerase, to convert the product 

to 2-C-methyl-D-erythritol 4-phosphate in an NADPH-dependent reaction. The 

conversion of NADPH to NADP+ can be monitored spectrophotometrically at 

365 nm. The main issue preventing the same assay being performed here is that 

DXP reductoisomerase is not commercially available. To acquire it would require 

synthesising the gene synthetically, cloning, expression and purification of the 

enzyme to carry out the assay. It was not considered cost effective nor time 

efficient to do this at this time for this project.  

 

Differential scanning fluorimetry was performed on the purified protein to 

determine its thermostability at a range of different temperatures to determine the 

temperature where it denatures (Fig. 6.4). A standard buffer of 50 mM HEPES 

pH 7.5 and 100 mM NaCl was used. Two clear fluorescence peaks were 

observed giving Tm values at 57.0 °C and another at and 84.5 °C. DXP synthase 

and transketolase monomers contain three domains (Nikkola et al., 1994; Xiang 

et al., 2013). The peaks are most likely to correspond to the unfolding of the 

different domains and simultaneous dissociation of the dimer into monomers.  
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Fig. 6.4. Differential scanning fluorimetry for TaDXP using SYPRO Orange. Peaks 

indicate exposure of hydrophobic regions due to denaturation. Peaks are located at 

57.0 °C and 84.5 °C. The peak at 57.0 °C most likely represents unfolding of the protein 

tertiary structure. The second peak is most likely unfolding of the secondary structure.  

 

After successful purification the protein was concentrated in preparation for 

crystallisation trials. A 50 kDa cut off concentrator was used due to the large size 

of the protein for shorter centrifugation and to further reduce the chances of 

contaminants. The highest concentration of TaDXP protein that could be 

achieved before precipitation occurred was around 25 mg ml−1 so initial 

crystallisation trials by microbatch screening were conducted with 22 mg ml−1 

protein concentration with JCSG-plus. Immediate precipitation was seen in most 

of the wells so concentrations were lowered and tested at 20, 16, 12, 8, 6, 4 and 

2 mg ml−1 to try and find a concentration that produced cleared wells instead of 

precipitate to give an indication of what concentration to use for other crystal 

screens. Unfortunately the majority of wells in the microbatch screens, even those 

at the lowest concentration of 2 mg ml−1 showed precipitate. This was unusual 

when taking into consideration the maximum concentration this protein could 

achieve indicating the protein to be reasonably soluble. So crystallisation trials 

were repeated with the other screens in our possession: MIDASplus, Morpheus 
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II, SG1, MultiXtal and Stura FootPrint, Structure Screen 1 + 2, The PGA Screen 

and Proplex. The majority of wells from these conditions had precipitated. 

Crystals that had the appearance and properties of protein crystals were found in 

the MultiXtal screen produced with protein at 12 mg ml−1 in the following 

conditions: 0.5 M sodium chloride, 0.1 M sodium phosphate pH 7 and 30 % v/v 

PEG 300. Three crystals were frozen straight from the droplet as the high 

concentration of PEG 300 meant they were already cryo-protected. The 

remaining crystals in the well were used for seeding. It was not possible to confirm 

whether the crystals frozen were protein before creating seeds due to a three 

month wait for the next beam time at the Diamond Light Source Synchrotron. So, 

rather than wait, the seed stocks were used immediately to propagate more 

crystals and microbatch screening with seeding was conducted. The first screens 

tested were MultiXtal from which the protein originated from and JCSG-Plus. The 

official protocol from Douglas Instruments, who supplied the seed-making kit, 

called for 50 µl of stock solution to be used, however this caused small clusters 

of many crystals to form in the wells indicating that there was far too high a 

concentration of seeds within the solution. So the stock of crystal seeds was 

diluted tenfold with more of the stock solution. Crystals were found and frozen 

from the JSCG-plus screen in: 0.1 M HEPES pH 7.5, 10 % w/v PEG 8000 and 

8 % v/v ethylene glycol; and 0.2 M lithium sulphate, 0.1 M Tris-HCl pH 8.5 and 

40 % v/v PEG 400. None of these crystals provided any X-ray diffraction data and 

no further usable crystals were obtained from this method despite testing the 

other screens and reducing the protein concentration to 10 mg ml−1 in an attempt 

to create conditions with the protein concentration in the metastable phase for the 

seeds to propagate crystals. When the first three crystals were analysed for 

diffraction at the Diamond Synchrotron the data obtained was inconclusive since 

no spots were seen in the 3-5 Å range so it wasn’t salt but none were seen in the 

15-20 Å range either so it may not have been disordered protein either. It was not 

possible to tell if the crystals were either protein or salt from the data. 

 

A further strategy adopted was to try to crystallise the enzyme in the presence of 

molecules that would increase stability and improve chances of obtaining an 

ordered crystal. The buffer used for gel filtration and crystallisation was modified 

by addition of the cofactor, thiamine pyrophosphate, to 50 µM. As well as this, 

2 mM calcium chloride was added to the buffer solution, the rationale for this is 
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that in the structure of the transketolase from E. coli there is a calcium ion 

stabilising a loop  close to the cofactor thiamine pyrophosphate, in the structure 

and there is a high probability based on the fact both enzymes share related 

structures that the same could be seen here (Littlechild et al., 1995). Microbatch 

screening yielded crystals at protein concentrations of 12 mg ml−1 and 16 mg ml−1 

in the same conditions as mentioned above with the first screening trials and 

seeding. In addition, crystals were also seen in the conditions listed in Table 10. 

Like the other crystals tested, data collection at the Diamond Synchrotron was 

inconclusive. No further attempts to crystallise were conducted due to time 

constraints. 

 

Table 10. Crystallisation conditions for TaDXP. 

Screen Well Ligand Buffer pH Precipitant  

MultiXtal C3 0.5 M sodium chloride 
0.1 M sodium 
phosphate 

7 30 % v/v PEG 300 

  F4 
0.2 M calcium chloride 
dihydrate 

0.1 M MES 6.5 30 % v/v PEG 400 

JCSG-
Plus 

B4 None 0.1 M HEPES 7.5 
10 % w/v PEG 8000,  
8% v/v ethylene glycol 

  D7  0.2 M lithium sulphate 0.1 M Tris-HCl 8.5 40 % v/v PEG 400 

  E11 
0.16 M calcium 
acetate 

0.08 M sodium 
cacodylate 

6.5 
14.4 % w/v PEG 8000, 
v/v 20 % glycerol 

SG1 G10 0.2 M sodium fluoride None - 20 % w/v PEG 3350 

 

Since no X-ray structure could be obtained for the TaDXP homology modelling 

was carried out. The best model produced for the TaDXP protein, based on the 

Ramachandran plot made by Rampage, came from Phyre2 and was calculated 

to have a good QMEAN of −2.44. The Ramachandran plot (Fig. 6.5 A) showed 

92.6 % of all amino acids in a favoured conformation, 5.4 % in an allowed 

conformation, and the remaining 2.0 % as outliers. These outliers were identified 

as: Ser 7, which is the first amino acid of a β-strand; Thr 37, which is on a short 

loop connecting two anti-parallel α-helices; Gly 38,Gly 112 and Gly 294, 

considering the flexibility of glycine it is not uncommon to find them in unusual 

conformations; Gln 305, in the middle of a loop with the side chain facing the 

solvent; Pro 307, the last amino acid of a loop before an α-helix; Met 334, which 

is located in the binding pocket where unusual conformations are common in 

enzymes; Arg 457, on a loop with the side chain facing the solvent, alternative 

conformations cause a steric clash; Glu 475, on a loop facing the solvent; and 

finally Asp 493, the first amino acid of a β-strand. The TaDXP possessed an α/β 
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fold with parallel β-sheets located in the centre of each domain surrounded by α-

helices (Fig. 6.5 B). Superposition with the closest homologue identified from a 

BLAST search of the PDB, a DXP synthase from D. radiodurans (PDB code 

2O1X) with 43 % sequence identity, gave a RMSD of 1.3 Å. The side chains of 

the divalent coordinating amino acids identified through Clustal Omega, Asp 143 

and Asn 172, aligned well with the equivalent side chains in the DXP synthase 

from D. radiodurans to the extent that there was no visible difference (Fig. 6.5 C). 

The side chains of the amino acids involved in substrate binding, His 40, Tyr 380, 

Asp 415 and Arg 465, also showed no visible difference between the superposed 

models (Fig. 6.5 D). Fig. 6.5 E shows the surface charge of the dimer interface of 

an individual TaDXP subunit. At the interface between the subunits the surface 

is mostly charged with little hydrophobicity. This suggests the dimer is stabilised 

primarily by polar interactions. 
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Fig. 6.5. Homology modelling of TaDXP. (A) Ramachandran plot of the model, 92.6 % of 

residues in a favoured conformation, 5.4 % in an allowed conformation, and 2.0 % as 

outliers highlighted in red. (B) Structure of the model generated by Phyre2 with each 

different colour corresponding to domains, made using CCP4mg. It possesses an α/β 

fold with parallel β-sheets located in the centre of each domain. (C) Divalent coordinating 

residues Asp 143 and Asn 172, superposed with DXP synthase from D. radiodurans 

(PDB code 2O1X, model in brown, 2O1X in blue) residue side chains were aligned 

identically. (D) Superposed substrate binding site residues of TaDXP and 2O1X, showing 

that the position of residues involved in substrate binding is once again conserved in 

comparison to the known structure. Overall RMSD between the two structures was 1.3 

Å. (E) Surface charge of a subunit in the dimer. Blue is positively charged, red is 

negatively charged, white is hydrophobic, highlighted box shows location of dimer 

interface 
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Homology modelling was also carried out for ChDXP since no soluble protein 

could be produced for crystallisation studies. The best model produced for the 

ChDXP protein, determined by the Ramachandran plot generated by Rampage, 

also came from Phyre2. It had a good QMEAN of −1.98. The Ramachandran plot 

(Fig. 6.6 A) showed 92.9 % of all amino acids in a favoured conformation, 5.0 % 

in an allowed conformation, and the remaining 2.1 % as outliers. These outliers 

were identified as: Leu 8, which is near the active site where unfavourable bond 

angles are commonly present; Asn 38, also near the active site; Gly 38,Gly 114 

and Gly 296, as glycine is the most flexible amino acid it is common to find them 

in unusual conformations; Pro 307, which is near the end of β-strand acting as 

structural disruptor to allow it to progress to a loop; Met 340, located in the active 

site; Thr 480, located on an external flexible loop region; Asp 498, which is the 

last amino acid on a loop before a β-strand; Pro 550 and Pro 590, again these 

are the last amino acids on loops before another β-strand; and Leu 617, the first 

amino acid of a loop after an α-helix.  

 

The ChDXP possessed an α/β fold with parallel β-sheets located in the centre of 

each domain surrounded by α-helices (Fig. 6.6 B). Superposition with the closest 

homologue identified from a BLAST search, found to be the same DXP synthase 

as before from D. radiodurans (PDB code 2O1X), with 46 % sequence homology, 

gave a mean RMSD of 0.5 Å over all residues (Fig. 6.6 B). The side chains of the 

divalent coordinating amino acids identified through Clustal Omega, Asp 144 and 

Asn 173, aligned well with the equivalent side chains in the DXP synthase from 

D. radiodurans and, like the TaDXP model, there was no visible difference 

observed between the side chains (Fig. 6.5 C). The side chains of the amino 

acids involved in substrate binding – His 41, Tyr 386, Asp 421 and Arg 471 – also 

showed no visible difference between the superposed models (Fig. 6.5 D). A total 

of 10 salt bridges within each subunit were identified within the structure of the 

ChDXP model and 12 in the TaDXP model. These were actually fewer than in 

the mesophilic DXP synthase which possessed 18.  

 

The similarities between the two homology models made and the DXP synthase 

from D. radiodurans in terms of the active site residues, where there is no visible 

difference between any of the superposed structures, suggests that the residues 

themselves and their positions within the active site are highly conserved 
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between DXP synthases. To assess this hypothesis, the only other DXP synthase 

in the PDB at this time was superposed with the homology model generated for 

TaDXP. This DXP synthase was isolated from E. coli (PDB code 2O1S) and when 

superposed with the TaDXP model had a RMSD of 2.1 Å showing that there was 

little difference between the overall structures of the two enzymes. Analysis of the 

active site showed that the divalent coordinating residues were conserved: for the 

E. coli DXP synthase these were Asp 152 and Asn 181, which did not vary much 

in position from the TaDXP model (Fig. 6.7 A). As for the substrate binding site 

(Fig. 6.7 B), the amino acids involved were again conserved and the equivalent 

amino acids in E. coli DXP synthase were His 49, Tyr 392, Asp 427 and Arg 478. 

None of the amino acid side chain positions varied significantly in the two 

superposed models, apart from the arginine residues, which differed by 3.2 Å. 

However this difference could be attributed to the high flexibility of the arginine 

side chains and cannot be explored without high resolution X-ray structures. In 

general, the homology models of the T. ammonificans and C. hydroformans DXP 

synthases show strong similarity to the only two DXP synthases currently 

available, both in terms of overall structure, with the superposed structures 

showing reasonable RMSDs, as well as the positions of the active site residues. 

Fig. 6.6 E shows the surface of the enzyme around the active site. This region is 

mainly surrounded by loops and is accessible to the solvent. 
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Fig. 6.6. Homology modelling of ChDXP. (A) Ramachandran plot of the model, 92.9 % 

of residues in a in a favoured conformation, 5.0 % in an allowed conformation, and 2.1 % 

as outliers shown in red. (B) Model of the monomer generated by Phyre2 with each 

different colours corresponding to domains, made using CCP4mg. It possess an α/β fold 

with parallel β-sheets located in the centre of each domain.  (C) Divalent coordinating 

residues D143 and N172, superposed with DXP synthase from D. radiodurans (PDB 

code 2O1X, model in brown, 2O1X in blue) residue side chains were aligned identically. 

(D) Substrate binding site, position of residues involved in binding is once again 

conserved in comparison to the known structure. Overall RMSD between the two 

structures was 0.5 Å. (E) Surface representation of the ChDXP synthase, white is 

uncharged, red is negatively charged and blue is positively charged. Arrow indicated 

location of active site. 
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Fig. 6.7. Homology model of TaDXP, coloured in brown, superposed with a DXP 

synthase from E. coli (PDB code 2O1S) coloured in blue. The RMSD between the two 

structures was calculated to be 2.1 Å. (A) Divalent cation coordinating residues Asp 143 

and Asn 172. The residue side chains align reasonably well with only small positional 

differences. (B) Substrate binding site showing positions of residues involved in substrate 

binding. These residues have relatively similar positions apart from the arginine.  
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The residues responsible for binding TDP are conserved between both of the 

DXP synthases under investigation and their homologues, this would suggest 

that the binding affinity for the co-factor is unchanged. Also the residues 

implicated in substrate binding also remain unchanged with only slight variances 

in their positions seen. This along with the size, shape and accessibility of the 

binding pockets to the solvent would suggest very similar substrate specificity 

and activity. There is currently very little research into the activity and substrate 

specificity of this class of enzyme. However it can be deduced that the strong 

similarities would indicate activity towards D-glyceraldehyde 3-phosphate and 

pyruvate which are shown to be substrates of the M. tuberculosis DXP synthase 

(2O1X) (Basta et al., 2014). 

 

Looking at the primary sequences of the two thermophilic DXP synthases and the 

percentage composition of amino acids present in each one in comparison to the 

mesophilic DXP synthase 2O1X from D. radiodurans, a trend was seen (Table 

11). One of the things usually seen is more proline residues due to their stable 

structure; interestingly very little difference is seen with the ChDXP and 4.6 % of 

the TaDXP consists of prolines compared to the 5.6 % seen in 2O1X. In general, 

there are slightly more hydrophobic residues: for valine there is 1.2 % more for 

TaDXP and 1.9 % for ChDXP; for isoleucine there is no change seen for TaDXP 

but 0.7% more for ChDXP; for leucine there was little difference, 0.8 % more for 

TaDXP and hardly any change for ChDXP; for phenylalanine there is not much 

change seen in TaDXP and 1.0 % more in ChDXP. These substitutions occur in 

all secondary structure types; for tyrosine an increase of 1.2 % is seen for TaDXP 

although there is no difference for ChDXP; for tryptophan very little difference 

was seen for either enzyme and both showed fewer alanines residues overall. 

The remaining alanine residues in the TaDXP and ChDXP enzymes were mostly 

located in α-helices where their presence would help stabilise them due to their 

small hydrophobic side chains, rather than in loop regions that was the case 

2O1X (Fig. 6.8). In their equivalent place in the thermophilic enzymes are more 

charged and polar residues. Also observed in TaDXP and ChDXP were more 

valines and fewer threonines in α-helices and β-strands, suggesting that 

hydrophobic interactions play more of a role than hydrogen bonding in these 

structures. This information suggests higher levels of hydrophobic forces within 
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the enzymes and that these are potentially responsible for the increase in 

thermostability required by thermophilic enzymes. Cysteines in the protein were 

found to be nearly absent in the ChDXP (0.3 %), and none at all are present in 

the TaDXP, in comparison to 1.0 % in the 2O1X. The elimination of cysteine 

residues is commonly seen in thermophilic species as they are highly susceptible 

to oxidation at high temperatures. 

 

 

Visual inspection of the TaDXP structure with COOT revealed that there was a 

slight increase in the number of hydrophobic interactions seen in the structure in 

comparison to the 2O1X structure. Several instances were seen where 

hydrophobic interactions replaced hydrogen bonding showing the TaDXP 

structure relies on a different mechanism from the mesophilic 2O1X structure for 

stability. There were approximately 20 % more hydrophobic interactions seen in 

the TaDXP. On the dimer interface there was little hydrophobicity, instead most 

of the surface was charged, so it is assumed that this is the main element that 

stabilises the dimeric complex. ChDXP was not examined as it is highly similar to 

the TaDXP enzyme and would share similar adaptations.  
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Table 11. Composition of amino acids in DXP synthases. 

Amino acids 2O1X TaDXP ChDXP 

Ala 8.9 % 7.9 % 8.4 % 

Arg 4.7 % 5.1 % 4.0 % 

Asn 3.1 % 2.3 % 3.1 % 

Asp 5.2 % 4.9 % 4.0 % 

Cys 1.0 % 0.0 % 0.3 % 

Gln 2.4 % 2.0 % 2.4 % 

Glu 6.6 % 8.0 % 7.7 % 

Gly 9.7 % 9.2 % 9.7 % 

His 2.9 % 2.5 % 3.1 % 

Ile 6.1 % 6.1 % 6.8 % 

Leu 10.5 % 11.3 % 10.2 % 

Lys 5.8 % 8.0 % 6.5 % 

Met 3.4 % 0.8 % 2.3 % 

Phe 3.7 % 4.1 % 4.7 % 

Pro 5.6 % 4.6 % 5.3 % 

Ser 5.6 % 5.6 % 4.5 % 

Thr 4.5 % 5.7 % 4.5 % 

Trp 0.6 % 0.7 % 0.3 % 

Tyr 3.1 % 3.1 % 3.5 % 

Val 6.8 % 8.0 % 8.7 % 

 

 



 

[161] 

 

   

A 



 

[162] 

 

 

 



 

[163] 

 

  

B 



 

[164] 

 

 

Fig. 6.8. Secondary structure and amino acid sequence alignment between the homology model of ChDXP and the 2O1X DXP synthase (A) and the  

homology model of TaDXP and the 2O1X DXP synthase (B) made using the ESPript 3 sequence and structure alignment server (Robert and Gouet, 

2014). Residues highlighted in red are conserved, residues in blue boxes are conserved substitutions. Black arrows represent β-strands, loops 

represent α-helices.
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DXP synthases and transketolases are evolutionarily related and share related 

structures and both use the cofactor thiamine pyrophosphate (Lois et al., 1998). 

Where DXP synthases use pyruvate as a substrate, transketolases use 

hydroxypyruvate in the industrial process. The reason for this difference is not yet 

understood and the homology models do not provide enough data to draw any 

conclusions as even good crystal structures would be hard pressed to find a 

difference since the difference between the two substrates is only one oxygen 

atom. The requirement for understanding the basics of this mechanism would be 

three high resolution structures of the enzyme in its native state, bound to a 

substrate/inhibitor complex.  

 

Most transketolase enzymes and both of the known DXP synthases are known 

to be dimers as this is usually critical for activity in both of these enzymes (Xiang 

et al., 2013). With the model generated as a monomer it was necessary for proper 

comparison to predict its dimeric form. The model for TaDXP was duplicated in 

COOT and superposed on top of the dimer of the 2O1X structure. No overlaps in 

the loops were seen (Fig. 6.9 A). To confirm the accuracy of this the monomeric 

structure was submitted to the FRODOCK 2.0 protein-protein docking server 

(Ramírez-Aportela et al., 2016). This generated a dimer very similar to the one 

created in manually in COOT (Fig. 6.9 B). When the overall structures of the 

dimeric TaDXP synthase homology model and a transketolase from E. coli (PDB 

code 1QGD) (Fig. 6.9 C) are compared it is clear that both enzymes share very 

similar structures. The RMSD between the monomeric subunits two when 

superposed was 2.1 Å. The biggest difference comes from the positions of the 

large and small domains. Both enzymes share the same domains but in the DXP 

synthase they have been swapped. The transketolase possesses a long loop 

region that connects the large and small domains causing the C-terminal domain 

to be positioned directly below the N-terminal domain of the neighbouring subunit 

(Fig. 6.9 A). The DXP synthase on the other hand has a much shorter loop 

connecting the domains causing the C-terminal domain to be positioned below 

the N-terminal domain of the same subunit (Fig. 6.9 B). The active sites of the 

two DXP synthases, the transketolase from E. coli and a transketolase from 

Burkholderia pseudomallei (PDB code 3UTP) were very similar with all active site 
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residues conserved. The main difference was a conserved substitution of the 

catalytic tyrosine in the DXP synthases for a phenylalanine in the transketolases 

(Fig 6.9 D). 

 

While only homology models were obtained for these DXP synthase enzymes, it 

was shown that the TaDXP protein did crystallise, though poorly, and that given 

more time it may be possible to eventually find conditions that would produce an 

ordered crystal. Alternative methods to be tested include lysine methylation, and 

co-crystallisation trials with the substrates pyruvate and D-glyceraldehyde 3-

phosphate. There has also been identified an inhibitor of DXP synthases, 

butylacetylphosphonate, although this is not currently commercially available and 

the authors of the paper synthesised it themselves through a series of reactions 

(Smith et al., 2014). Another potential inhibitor, β-fluoropyruvate, that is 

commercially available was identified through single-molecule force 

spectroscopy (Sisquella et al., 2010).  The homology models obtained in this 

project are important in the ongoing research into DXP synthases especially since 

to date there are only two structures in the Protein Data Bank for this class of 

enzymes. While it would be better to obtain crystal structures, these models 

nevertheless provide another step in our understanding of these enzymes. 
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1QGD       GNYIHYGVREFGMTAIANGISLHGGFLPYTSTFLMFVEYARN 442 

3UPT       GNHINYGVREFGMSAAINGLVLHGGYKPFGGTFLTFSDYSRN 489 

TaDXP      -RYFDVGIAEQHAVTFAAGLA-KKGLRPVVAIYSTFLQRAYD 389 

ChDXP      -RFYDVGIAEQHAVTMAAGMA-CEGLKPVVAIYSTFLQRSFD 395 

 

Fig. 6.9. (A) Dimeric structure of the homology model for TaDXP with different subunits 

in blue and yellow. Images made using COOT and CCP4mg. (B) Dimer formed by the 

protein docking server FRODOCK (Ramírez-Aportela et al., 2016) (C) Dimeric structure 

of transketolase from E. coli (PDB code 1QGD) with different monomers in blue and 

yellow. (D) Multiple sequence alignment made with Clustal Omega between the two DXP 

synthases, the transketolase from E. coli and a transketolase from B. pseudomallei (PDB 

code 3UTP). The residues highlighted in red show the conserved substitution of a 

tyrosine in the DXP synthases for a phenylalanine in the transketolases. 
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6.4 Summary 

 

Two DXP synthases from different thermophiles were successfully cloned but 

only one was expressed as a soluble protein. This TaDXP was then purified and 

underwent crystallisation trials where several crystals were found growing. 

Unfortunately, none of these crystals produced X-ray diffraction data that could 

be analysed and so two homology models for both proteins were made. Using 

these it was shown that there were more hydrophobic interactions within both 

thermophilic DXP synthases in comparison to mesophilic equivalents.  However 

without high resolution X-ray diffraction data it is not possible to deduce how the 

mechanism of this enzyme allows it to use pyruvate as a substrate over 

hydroxypyruvate that transketolase enzymes use in the industrial process.  
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7. Conclusion 
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This project has allowed the successful biochemical characterisation of a quorum 

sensing lactonase from the thermophilic archaeon Vulcanisaeta moutnovskia. 

This enzyme has been shown to be active towards a broad range of substrates: 

γ-butyrolactone, γ-valerolactone, γ-caprolactone, whiskey lactone and δ-

dodecalactone. This shows differences from the substrates used by a related 

lactonase from Sulfolobus. This difference in substrate specificity is proposed to 

be attributed to a α-helix near the active site of the enzyme as revealed in the 

crystal structure, which is observed to be a flexible loop region in other quorum 

sensing lactonases.  

 

The gene encoding a gluconolactonase called lac11 from a thermophilic 

Planctomyces species was successfully cloned and the enzyme was over-

expressed, purified and crystallised. These crystals were of sufficient quality to 

provide X-ray diffraction data to a resolution of 2.4 Å at the Diamond Synchrotron. 

This allowed a structure to be determined to an R factor of 0.28 and a free R 

factor of 0.32 through structural refinement and was observed to be a monomeric 

six bladed β-propeller with the active site present in the centre of all six blades. 

The activity and substrate specificity of this enzyme was investigated with 

commercially available substrates: D-glucono-1,5-lactone, D-glucuronic acid-1,4-

lactone, L-gulonic acid-1,4-lactone, D-threono-1,4-lactone, D-arabino-1,4-

lactone, L-arabino-1,4-lactone, D-xylano-1,4-lactone, L-fucono-1,4-lactone, D-

altrono-1,4-lactone, L-rhamnono-1,4-lactone and D-rhamnono-1,5-lactone. Four 

other enzymes were also investigated, a second quorum sensing lactonase and 

an enol lactonase derived from metagenomic DNA sequences, and two DXP 

synthases from Thermovibrio ammonificans and 

Carboxydothermus hydroformans. The quorum sensing lactonase and the DXP 

synthase from T. ammonificans were successfully over-expressed in soluble form 

and the enzymes purified. 

 

Out of five enzymes that were successfully expressed in soluble form and 

subsequently purified, only one crystallised to give crystals with high enough 

quality to collect X-ray diffraction data. This is not unusual when attempting to 

crystallise proteins as the rate of success for creating good quality crystals is low. 
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For example, the Robotic Crystallization Facility at the University of Auckland set 

up 10000 crystallisation drops for 140 different proteins, covering 672 different 

crystallisation conditions. Out of all of these, 300 conditions provided protein 

crystals, representing a 3 % success rate, where 56 % of the proteins tested failed 

to crystallise to high enough quality for X-ray diffraction or failed to crystallise at 

all (Ivanovic et al., 2009).  

 

All of the proteins examined showed strong similarities in terms of secondary and 

tertiary structure to their mesophilic counterparts with RMSDs ranging between 

0.5 Å and 5.2 Å. The differences in thermal stability are therefore determined by 

different interactions in the tertiary structure provided by changes in the primary 

structure between the mesophilic and thermophilic homologues. These changes 

are usually away from the active site and  in loops and on the surface of the 

protein (Littlechild et al., 2007, 2013). All of the proteins examined, apart from the 

Tomsk lactonase, showed a greater number of hydrophobic interactions within 

the structures in comparison to mesophilic variants. In the case of the Tomsk 

lactonase there were roughly the same number of hydrophobic interactions as its 

mesophilic variant which would be most likely due to its being obtained from a 

hot spring at 46 °C; this was the lowest temperature out of all the hot springs from 

which proteins were examined in this project and was not that much higher than 

mesophilic conditions. The enzymes that showed the greatest frequency of 

hydrophobic interactions were the DXP synthases, although the dimer interfaces 

were shown to be primarily stabilised through ionic interactions 

 

All of the thermophilic lactonase enzymes investigated showed more proline 

residues in loop regions, and shorter loops, in comparison to the mesophilic 

proteins, both of which would also aid in the thermostability of the enzymes. A 

high number of proline residues is especially seen in organisms with DNA with 

high G-C content such as the thermophilic bacterium Thermus thermophilus 

(Kumar and Kaur, 2014). As well as this there are fewer cysteine residues seen 

because these are vulnerable to oxidation which is more likely to occur at higher 

temperatures. For the Tomsk lactonase there were also fewer lysine residues 

and more arginine residues because the side chain of arginine can form more 
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electrostatic interactions in comparison to lysine (Sokalingam et al., 2012). And 

while it did not appear that lysine residues were substituted in this way in the B1 

lactonase there was a significantly greater number of arginine residues when 

compared to a mesophilic lactonase. 

 

A possibility for future work in regards to the DXP synthases would be to attempt 

to crystallise the TaDXP in the presence of a herbicide called ketoclomazone 

which has been found to inhibit activity (Matsue et al., 2010). It was found to bind 

to an unidentified inhibitor binding site, different from both of the substrate binding 

sites and not blocking the pyruvate binding site or the D-glyceraldehyde 3-

phosphate binding site, making it an uncompetitive inhibitor. With an inhibitor 

bound, the enzyme would in theory be more stable than on its own and would 

hopefully provide higher quality crystals that could diffract X-rays to a high enough 

resolution to determine the structure. Structures are required of the native DXP 

synthase enzyme, the enzyme bound to its substrate and an intermediate to 

provide insight as to what allows this enzyme to utilise pyruvate instead of 

hydroxypyruvate as a ketol donor. 
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The pD441-CH expression plasmid provided by ATUM (California, USA) and is 

part of their Electra cloning system. Genes that were synthesised were inserted 

into this gene containing a T5 promoter with a strong ribosome binding site, a C-

terminal histidine tag, and a kanamycin resistance gene to selection purposes. 

Expression of the gene was controlled by the lacI operon and IPTG inducible.  
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Takara chaperone plasmids. Plasmids contain a chloramphenicol resistance 

gene and one or more of the following chaperones: GroEL with a size of 60 

kDa; GroES at 10 kDa; DnaK at 70 kDa; DnaJ at 40 kDa; Tf at 56 kDa; GrpE at 

pG-KJE8 pGro7 

Cm r 

Cm r 

Cm r 

Cm r 

ara C 

ara C 

ara C 

tet R 

tet R 

ori pACYC 

pACYC 
ori pACYC 

ori pACYC ara B 

ara B 

dna k 

gro EL 

grp E 

dna J dna K 

gro ES 

gro ES 

gro EL 

tig 

gro EL 
gro ES 

ara B 

Pzt -1 

Pzt-1 

dna J 
grp E 

( 11.1  kb ) 

pKJE7 

(  kb 7.2 ) 
pG-Tf2 

( 8.3  kb ) 

( 5.4  kb ) 

rrn BT1T2 

ori 

Cm r 

ara C 

ori pACYC 

ara B 

tig 

pTf16 

( 5  kb ) 
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22 kDa. Gene expression is controlled by arabinose through the araB promoter, 

or by tetracycline via the Pzt-1 promoter. 

 

Enzyme amino acid sequences 

 

Vulcanisaeta moutnovskia lactonase –  

GMVRISIAGGNEIDPGSMGLTLFHEHLRLITEVVRWNWPHLYNEDEELKRAIDA

VNAAKKYGVKTIIDLTVAGIGCDVRFNEKVAKATGVNIIMGTGFYTYTEIPFYFK

NRGIDSLVDAFVHDITIGIQGTNTRAAFVKAVIDSSGLTKDVEMAIRAAAKAHIKT

DVPIITHSFVGNKSSLDLIRIFKEEGVDLARTVIGHVGDTDDISFIEQILREGAFIG

LDRFGLDIYLPLDKRVKTAIELIKRGWIDQLLLSHDYCPTIDWYPPEVVRSTVPD

WTMTLIFEKVIPRMRSEGITEEQINRVLIDNPRRLFTGR 

 

Tomsk lactonase – 

MLAARPSAPDGVWHGEVSVAGGKVSFAMAGDGLPLILLHGWTLDHRMWRP

QIGQLSRDFLLVMPDRRGCGASTAPPDLSREAEDVIAIADFLGFERFGLLGLS

QGAVVALDVARKFSSRLTGLVVSGAPLPCLVERDEAIPLDRYRAMVAAGDVA

GMRRDWARHPLMRTHDPDARTLAAAMLADYDGRDLAAVSEPPGLPREVLSH

LAVPVLALAGEHDTPWRRACAAALADCAPRGRHALIGRAGHLANCDNPQDFN

ALAGFLRTCADPRTRANR 

 

B1 lactonase –

MTPKFTVPDHLKPYQRRISANGVGLHLYDSGPAQAHDPTFLLIHGLGDEADS

WRKVFPLLTGRGRVIAPDLPGFGRSEHPRRAYTLNFFADTMAALLESLKVPQA

VLVGSSMGAAVALRVALRRADLVARLVLVDGPPVRGRLNRVQLMFLIPGQGE

KLYNSFRSSQEAAFESLRPYYASLDALPPEDRQFLRERVWDRVWSDDQRRA

FFSTFRWMALESLLGRARLGQVKTPTLLVWGEQDAVIPLEAAKTLQSWIPGSQ

LQVIPSCGHLPQQEKPLELIRLILQ 

 

Lac11 –  

MRKLLGSSAIHVLSRRTGYGMYFLILALGVATQVVFGAEPSQNPSEKVAWIER

ADPGLDDLIAPDAQVEVLAEGFEWSEGPVWIPEGGYLLFSDVPKNTIYRWKE

GQGIDIFLKPSGYTGFRERGGESGSNGLALDRQGRLLLCQHGDRRVARWEK
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GCFITLADQYEGKPLNSPNDLVVKSNGDIYFTDPPYGMTPEAQRDPNALGFC

GVYRISADGKLTLLVRDMTRPNGIAFSPDEKTLYVAQSDPQRPLWMAFPVRE 

DGTLGEGKVFFDAKPWQQSGLPGLPDGMKVDQKGNLFATGPGGVNIFRPD 

GTFLGRIRVKVPTANCAFGDDGSTLYITADMYLLRVKTKTKGLGF 

 

TaDXP – 

ILDKVNSPDDLKKLTTQELKQLASELRDYIISVVEKTGGHLASSLGVVELTIALLK

VFSPPKDEIVWDVGHQSYPYKILTDRKEKFKTLRQFGGISGFPSIKESPYDAFG

TGHSSTSISAALGIKVGKRLKGEEGHVIAVIGDGALTAGEAYEGLNNAGQLKED

LIVILNDNEMSISKNIGAISNYLTKLTTGESLRRAKERLEEVTKKIFGDTFYKGLK

RVEDLIVKGLFPPGMLFEELGFRYVGPIDGHDIETLVTTLRNVSKMRGPTLVHV

LTKKGKGHKPAEERPDKFHGVSPKKLLSEPQPPTYTEVFSKTLVEMAEKDSSI

VAITAAMPSGTGLDRFAARFPERYFDVGIAEQHAVTFAAGLAKKGLRPVVAIYS

TFLQRAYDQIIHDVALQELPVTFAIDRAGLVGEDGATHHGAFDLSYLRVVPNLV

VAAPKDEEELRHLLYTAVYSGRPFAVRYPRGRGYGVTLREPLKKIPIGSWEVL

REGGDLLILATGWTVYQALEAARELSAEGIEATVVNARFIKPLDEKLLKELALKH

STVITVEENAVKGGFGSAVNEFLALWYNGRVFNLGLPDKFIEHGSQALLRKLV

KIDKDGIKESVRE 

 

ChDXP – 

PILERISLPEDIKKLKPSELMALAQELREYIITVASQNGGHLAPSLGVVELTIALH

FVFEAPKDKIIWDVGHQAYAHKILTGRKKQFKTLRTFGGLSGFPKRDESPYDA

FGVGHSSTSISAALGMALARDLKGEQYEVVAVIGDGALTGGMAFEALNHAGH

LQKKLIVVVNDNEMSIAQNVGALSAYLSRIRTDPKYSRGKDELEALIKKIPHIGP

TMVKIGERLKDSFKYLLVPGMLFEELGFTYLGPIDGHNIKEMIEVFSRAKTFAG

PVVVHVITKKGKGYHWAEENPDGFHGVGKFYISTGEPVEAPRVSFTEVFGKA

LVELAQDRPEVVAITAAMPTGTGLNYFAQNYPERFYDVGIAEQHAVTMAAGM

ACEGLKPVVAIYSTFLQRSFDQIIHDVCLQNLPVVFAVDRAGIVGEDGPTHHGI

FDLSYLRMIPNLTIMVPRNEDMLRKMLFTALNHSGPVALRYPRGAAVGVELTP

YEQLPIGTAEILKEGSDGVVIGVGRPLNYALKAAQKLENEGISLTVIDARFVKPL

DYKLLEEVGSLHKPVITVEENVVAGGFGSAVNEYFSFRGIGTKVVNLGIADEFP

PHGKVEEILNLYGLTEEKLYLKFREILSKL 
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