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Abstract

Many observed phenomena in geophysical systems, such as quasigeostrophy, and turbulence

effects in rotating fluids, can be attributed to the resonances that emerge from multiple scale anal-

ysis. In this thesis the multiple scale method of asymptotic expansion is used to study resonant

wave interactions in the context of quasigeostrophic geophysical systems, including and extend-

ing triad interactions. The one and two layer rotating shallow water equations and the equations

for uniformly stratified fluid under the Boussinesq assumption are studied in detail, we evaluate

their asymptotic expansions, and analyse their behaviour. Of particular interest is the expansion

for the two layer equations, where we investigate a resonance not previously considered in the

literature. We formulate general theory concerning the behaviour of the splitting of the dynamics

into the fast and slow parts of the systems. We find that all layered shallow water type equations

cannot have any interaction between a set of fast waves that produces a slow wave, regardless

of whether they are resonant or non-resonant. In the stratified case we find that this is not true,

although these interactions are constrained to a slow timescale.

Building on the resonant expansion, we then reformulate the expansions to allow the inclu-

sion of near resonant interactions. We detail a new formulation of the near resonances as the

representation of higher order interactions that are sufficiently fast acting to be included at the

triad order of interaction. We then demonstrate the effectiveness of this near resonant expansion

by direct numerical simulation and evaluation of the rotating shallow water equations. We derive

qualitatively different behaviour, found analytically in the near resonant expansion of the stratified

equations, showing that many higher order interactions not accessible in the layered equations

are possible in the stratified case.

Finally we consider the expansions in the wavepacket framework, with the introduction of multi-

ple spatial scales. We find that consideration of the magnitude of the difference between the group

velocities of component wavepackets in a quartet interaction is sufficient to derive the higher or-

der behaviour previously found by other methods in the literature. It then follows from this that

the near resonant expansion can contain many types of interaction that are not possible between
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wavepackets if only exact resonances are considered.
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Chapter 1

Introduction

The mathematical language of the oceans and atmosphere is that of partial differential equations.

The nonlinearities involved in these are the major source of difficulty in the analysis; the linear

problems would be analytically soluble, whereas those that are nonlinear are often not just diffi-

cult to solve, but non-integrable. However for analytic results extra assumptions can be made, a

particularly common one being weak nonlinearity. Amplitude expansions are then used with mul-

tiple time, and sometimes space, scales. Defining ε � 1, multiple times scales are represented

in the mathematics: fast time t/ε, and slow times t, εt etc. Successive parts of the expansion can

then be accounted for by different dynamical equations acting on each of the different timescales,

depending on whether the effect is fast or slow acting.

Resonances emerge at each timescale of this expansion: particular nonlinear combinations

that contribute to the dynamics on that timescale, while non-resonances can only contribute on

a subsequent one. These resonances, to be introduced shortly, occur throughout the geophysi-

cal fluids literature: resonances give rise to the quasigeostrophy of Charney 1948, in turbulence

studies resonances and the related near resonances have been linked to the formation of quasi-

two-dimensional flows (Smith and Waleffe 1999), as well as being key to the theory of meso-

scopic systems studied in the wave turbulence community (Kartashova and Mayrhofer 2007).

Resonances are key to the understanding of many geophysical phenomena, many related to the

splitting into the fast/slow and barotropic/baroclinic modes that arise naturally in the linear part of

the systems. This thesis aims to explore some of the less trodden ground in the resonant litera-

ture: resonances at quartet order and beyond, as well as the extension of the theory to include

near resonances. As well as this analysis, applications will be made to a few key rotating fluid

systems, leading to some new results. In particular, new triad order results are found in the two

layer rotating shallow water system, this work was originally detailed in Owen, Grimshaw, and
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Wingate 2018.

All of the weakly nonlinear equations we will consider will take the general form:

∂u

∂t
+

1

ε
Lu = −N (u,u), (1.1)

where u is some state vector, L a linear operator acting on the spatial coordinates, and N is a

bilinear operator, that represents a quadratic linearity.

For our initial discussion of the resonant behaviour that we will be investigating we will reduce

the problem to the simpler but related form:

∂χ

∂t
+ Lχ = εf(t), (1.2)

for some forcing function f that acts as a stand in for the nonlinear term. Although reducing to

a linear system breaks the feedback mechanism by which the flow acts back on itself, it does

provide a minimal model for resonance. We have changed to the scalar dependent variable χ for

further simplicity, and implicitly rescaled so that the ε multiplies the forcing term.

The first stage of the analysis is to form an asymptotic expansion; we expand the dependent

variable in the following manner:

χ = χ0 + εχ1 + ε2χ2 + ... . (1.3)

We require that in all subsequent motion the asymptotic variables remain O(1) (big-O notation is

defined in appendix A.1). In other words, the separation between orders of the asymptotic series

must be maintained. The phenomenon in which this fails is generally referred to as resonance:

where parts of the solution are able to grow indefinitely. A basic example of resonance is the

equation:

dχ

dt
+ iωχ = εe−iλt. (1.4)

This equation can be considered the complex form of forced simple harmonic motion (by equating

χ = dx/dt − ωxi), producing oscillating motion, with natural frequency ω. We will consider this

example as a way of gaining intuition as to how the more complicated nonlinear resonances evolve

- the focus of this thesis.
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We start by solving equation (1.4) using basic techniques:

χ = Ae−iωt − iε

ω − λe
−iλt λ 6= ω, (1.5)

χ = Ae−iωt + εte−iωt λ = ω. (1.6)

Here A is a complex constant of integration.

In the case of resonance where λ = ω, as t increases the forced particular integral term εte−iωt

can become unacceptably large when εt ∼ O(1). However with our standard asymptotic expan-

sion (1.3) we would have considered this term to relate to our smaller χ1 part of the expansion,

due to the presence of ε. To resolve this, we can introduce infinitely separated (and therefore

independent) timescales. That is to say, we want to allow this change to take place over the ‘slow

timescale’ T = εt. We make the change of variables t→ t+ T and use the chain rule to calculate

the new time derivative:

d

dt
→ d

dt
+ ε

d

dT
.

To first order we now obtain the unforced equation in χ0 resulting in the same complementary

function as found in (1.5):

dχ0

dt
+ iωχ0 = 0, (1.7)

χ0 = Ae−iωt. (1.8)

To next order we obtain:

dχ1

dt
+ iωχ1 = −dχ0

dT
+ e−iωt.

Now, to avoid the resonance we must remove secular terms: in other words we remove the forcing

on χ1 responsible for the unhindered growth of the solution. We now want those terms that can

become too large to be contained within the χ0 variation and we achieve this by setting the right

hand side to 0 so that these terms are cancelled out of the equation for χ1:

−dχ0

dT
+ e−iωt = 0

⇒ χ0 = Te−iωt + g(t)

⇒ χ0 = Ae−iωt + Te−iωt. (1.9)

Here g(t) appeared due to integration with respect to T and is the already known complementary

function (1.8).
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We have recovered the original non-asymptotic solution (1.6) but it is now in a valid asymptotic

expansion to first order - due to the introduction of a slow timescale.

We now return to the full nonlinear equation (1.1). The role of the forcing from this example

is returned to the nonlinear ‘forcing’ given by a quadratic nonlinear term N . It is important that,

although the resonance behaves in a similar manner to the oscillator example, the source of the

resonance is in the flow itself. Parts of the flow are able to modulate each other such that the

timescales on which the system evolves are intrinsic to the system itself.

The linear operator L on the left hand side of (1.1) will produce dynamics with some funda-

mental frequency ω (given by the dispersion relation, derived in chapter 2), in the same man-

ner as before. This can be succinctly represented by terms of the form ui = ûie
−iωit. The

fundamental frequencies of the two inputs into the nonlinear term are then summed (because

e−iω1te−iω2t = e−i(ω1+ω2)t) to give the ‘forcing’ frequency: λ = ω1 + ω2. We can then use this to

update our resonance condition from (1.6) to the nonlinear resonance condition:

ω = λ ⇒ ω = ω1 + ω2. (1.10)

For our nonlinear system, the integration with respect to T that was performed in (1.9) is not

straightforward, and so this is simply left as a dynamical equation in slow time. As one progresses

with the analysis this generates a hierarchy of equations defining the dynamics for each timescale.

In chapter 3, the resonant expansion is formally derived for systems of equations, not just to this

first slow timescale but to those beyond. This will be seen to generate what will be defined as

triad, quartet and higher order resonances.

Returning to the example, we need to consider what happens close to a resonance, does

the behaviour act like the non-resonant case (1.5) or like the resonant case (1.6)? The resonant

detuning, defined as Ω = ω − λ, can be used to keep track of the proximity to resonance. It is

small (∼ ε) where the system is near to resonance. If we take the non-resonant solution (1.5) but

with Ω = ε, we can use Taylor series to write the solution as:

χ = Ae−iωt − iε

ε
e−i(ω−ε)t

= Ae−iωt +−ie−iωteiεt

= (A− i)e−iωt + εteiωt +O(ε2t2)

= A′e−iωt + εteiωt +O(ε2t2), (1.11)

which shows that for small ε the solution approximates the resonant one (1.6) until t becomes too

large. Figure 1.1 shows (the real parts of) these three solutions: exactly resonant, near resonant
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and non-resonant. The figure suggests how for some given timescale the near resonant solution

behaves in the same secular manner as the exact resonance. Using the same reasoning as above

where we derived (1.10) we arrive at the nonlinear near resonance condition:

ω ∼ λ ⇒ ω − ω1 − ω2 ∼ O(ε).

Figure 1.1: The three cases: non-resonance (red), near resonance (green), and resonance (blue).
For a timescale of around t = 35s there is minor separation between the behaviours of the near
and exact resonances, and so they can be treated similarly.

In these cases one must be very careful about the balances between the various possible small

parameters that are necessarily introduced, specifically the timescale, amplitude and the resonant

detuning: all of these can potentially shift terms around within our asymptotic expansion.

Some detailed reasoning on when near resonances are important can be found in Nazarenko

2011, Kartashova, Nazarenko, and Rudenko 2008, Harper, Bustamante, and Nazarenko 2013

and other related papers. In these papers a scaling argument is made for when the near reso-

nances will be of importance. It is assumed that the model being considered exists on a discrete

grid of wavenumbers, spaced at intervals ∆k. Then an approximate spacing between the intrinsic

frequencies can be given by ∆ω ∼ ∆k ∂ω/∂k, where the derivative is derived from the disper-

sion relation of the system under consideration. This quantity is then compared to the detuning

Ω = ω − ω1 − ω2. If Ω� ∆ω, then it would be expected that many near resonances can be found

in the system, and hence they must be considered in any expansion. This is shown in figure 1.2.

The opposite case Ω� ∆ω would prerequisite exclusion of them. As we intend to investigate the

effects of near resonances in a non-discrete domain, where ∆k → 0, we make the assumption

throughout the later chapters that we are in the first regime: where near resonances are vital to

the dynamics. The near resonant expansion will be derived in chapter 5, in a manner designed to

21



relate the near resonances back to the exact resonances we will have already explored.

k

ω(k)

ω1 + ω2 Ω
∆ω

∆k

k

ω(k)

ω1 + ω2 Ω
∆ω

∆k

Ω > ∆ω Ω < ∆ω

Figure 1.2: Wavenumber spacing affects the availability of near resonances. Here the dispersion
relation linking k to ω is given by ω(k), which links the ∆k spacing to the ∆ω spacing. Dashed
lines represent distinct ω values in the simulation, while the red area represents the area within
which the near resonances lie, where the distance from a prescribed ω1 + ω2 is less than the
given detuning. On the left with tighter spacing there are multiple near resonances, on the right
with larger ∆k there are no near resonances for the given detuning.

These ideas of near and exact resonances will be explored in the context of geophysical fluid

dynamics. These types of flows often exhibit a particular characteristic that will be exploited in the

subsequent work: fast-slow splitting. For weakly nonlinear systems the fastest part of the flow is

the linear part, and in the linear part a balance can be found between the Coriolis and pressure

terms such that at most only O(ε) time variation can occur. This balanced part can only evolve

slowly due to the weak nonlinear terms. The phase speed (cp) determines the velocity of the

linear motion and it can be shown that cp = ω/k ∼ O(ε) in these systems. Meanwhile any non-

balanced part of the flow evolves due to the linear terms, and is the faster part of the flow, where

cp ∼ O(1). This is known as geostrophic balance, the systematic development of which is usually

attributed to Charney 1948. In the cases studied in this thesis, with constant Coriolis parameter

f , the assumption is slightly stronger such that for the balanced part cp = ω = 0. It is immediately

clear that the resonance condition is always met by the balanced slow modes, whereas for the

non-balanced fast modes resonance can be a very limiting constraint: the behaviour of the two

modes in the nonlinear part is distinct and will be a central issue that we explore. This behaviour

will be derived fully in chapter 2 in a very general context, so that it can be exploited to gain insight

into a range of systems in the subsequent chapters.

This thesis has two major goals. The first goal is to explore the classical multiscale approach in

the context of slow-fast systems, and the second main goal is to investigate the effect of resonant

detuning on the amplitude equations. As well as presenting the theory, application to example

systems will be included, some of which has been published in Owen, Grimshaw, and Wingate

2018. Some development of the theory in the context of wavepackets will also be discussed.
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1.1 Historical background

All resonance theory starts by taking amplitude expansions, and not without reason these are

sometimes referred to as Stokes’ expansions: one of the early investigations into nonlinear wave

behaviour in fluids was performed in Stokes 1847 (reprinted in Stokes 1880). For surface waves

an approximate solution was found by linearisation of the equations, and going further than any

previous work Stokes expanded up to third order in the nonlinear terms, to derive corrections

caused by the wave interacting with itself. Although this is widely considered the classical work

on water waves it was based on earlier works, in which single waves were considered, but nonlin-

earity neglected, by some of the most famous mathematicians of the eighteenth and nineteenth

centuries, such as Laplace, Lagrange, and Cauchy - these contributions are detailed in the review

of Craik 2004. A common approach in these times was to use the ‘method of parallel sections’:

now normally termed columnar motion, the restriction that leads to the derivation of the shallow

water equations, one of the core applications given in this thesis. To some extent Stokes set the

precedent for the approach of the coming century, and so it is worth noting that this assumed

a single wave; no wave interaction was considered, leading to some consternation later when

interaction between different waves was introduced. As some of the work of this thesis will con-

centrate on two layer flow it is interesting that the same paper by Stokes seems to be the first

place where two layer fluids were considered mathematically, although observations on the in-

ternal wave speed in these layered fluids can be found as far back as Franklin and Brownrigg

1774 (this observation is made even more impressive by how busy one would imagine Benjamin

Franklin’s schedule to have been in those years).

Later, theories were developed showing that in the linear approximations of many fluid systems

there is a separation into fast and slow parts. Almost unnoticed at the time, Hough 1898 derived

the Hough functions for the Laplace tidal equations (shallow water on the rotating sphere). These

are the basis linear functions of the equations and received more attention after the papers of

Rossby 1939b, Rossby 1939a, and Haurwitz 1937, Haurwitz 1940 where a specific form of slow

mode was shown to have an important role in meteorology: the Rossby wave. Rossby and

Haurwitz introduced the Rossby wave solutions on the beta-plane and sphere respectively and

these became a pivotal part of early weather prediction and understanding. These ideas directly

led to the development of quasigeostrophic theory, normally attributed to Charney 1948. The

geostrophic part of the motion is exactly the Rossby wave for a beta-plane model (where Coriolis

term is approximated such that it varies linearly with latitude), and synonymous with our slow

modes for an f-plane (where Coriolis term is deemed constant). This was another nonlinear

extension of the basic theory, however unlike that of Stokes in the previous century this was not

limited to a single wave: the waves of different sizes were able to interact, and the nonlinearities
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were between distinct waves, unlike Stoke’s frequency correction terms. However, this still made

a strong assumption, specifically geostrophic balance had to be assumed at first order, such that

there was no possible interaction of fast and slow motions. Any of the fast components not in this

balance were not considered in this theory, interactions of both components required mathematics

that would come into play a decade later.

In the 60s the more general multiple scale method of asymptotic expansion started to find

its place in geophysical fluids, indeed over the decade a large number of papers covered this

topic. The first to use this concept was Phillips 1960 for the problem of surface wave interactions.

However he was unknowingly reinventing the method already well known in other disciplines:

Ziman 1960 used the theory in electron interactions for example. He found that sets of four

waves could form resonances and allow nonlinear interactions to take place between waves.

Interestingly, in his review paper, Phillips 1981 he recounts his initial presentation of his work at

a meeting in 1962 where he received heavy criticism: despite solitary wave developments, the

work of Stokes was still so dominant that the prevailing assumption for water waves was that no

interactions could occur between different waves. However over the next decade several papers

followed applying the new method to different situations: Ball 1964 applied the ideas to two layer

non-rotating systems, and McGoldrick 1965 for capillary waves, both of which have a suitable

dispersion relation for the interaction of three waves. Thorpe 1966 also studied interaction of

external and internal waves for stably stratified fluid. Other related work that expanded knowledge

of different time scales included: Hasselmann 1962 who furthered the surface wave work and

generalised it from the special case of Phillips (although he originally started work on the problem

independently), and Benney 1962 and Benney and Newell 1967 who further generalised the

method, as well as Newell 1969 who applied it to Rossby wavepackets. One paper, Benney and

Saffman 1966, received some further controversy with the publication of Hasselmann 1967 which

cast doubt on the validity of the work in the absence of a statistical closure. A second version of

the paper Hasselmann and Saffman 1967 was published, which included a rebuke from Saffmann

suggesting that Hasselmann had simply made an error, and by the publication of Newell 1968 it

would seem that it was accepted that the mathematics didn’t require specific closure to be valid.

Many of the papers from this period included multiple spatial scales, giving rise to wavepack-

ets. This was particularly important in the derivation of modulational instability theory, notably

in Zakharov 1967 and Zakharov 1968 - the original Russian paper was published in 1967 and

widely regarded as the original work on the subject. However almost simultaneously, and entirely

separately, the derivation was also given by Benjamin and Feir 1967 and Benney and Newell

1967. Also the work of Lighthill 1965 indirectly derived the same phenomenon via averaged La-

grangian theory of Whitham 1965. Details of these developments can be found in Zakharov and
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Ostrovsky 2009. In these papers it was shown that the expansions to quartet order led to the

nonlinear Schrodinger equation, the focussing or defocussing version depending on the param-

eters. It followed that a long wave perturbation of the envelope could be unstable, an effect now

widely known as modulational instability. In this period, simultaneous experimental work was per-

formed to confirm the theory, some examples include two of the early confirmations of the theory:

McGoldrick et al. 1966, and Longuet-Higgins and Smith 1966. The theoretical work would have

included the second part of the work of Benjamin and Feir, which unfortunately never made it to

print.

It should be mentioned that during this period there was much development of strongly nonlin-

ear theory in the context of solitary wave solutions of the KdV equation (although it is itself derived

from weakly nonlinear theory). This was famously initialised by the 1834 observations of of John

Scott Russell in the Union canal near Edinburgh (published in Russell 1845). The equation then

first appeared in a footnote and the solitary wave solution first written down in Boussinesq 1877,

but then rediscovered with the solitary wave recalculated by Korteweg and De Vries 1895. How-

ever the real progress in this theory came with the development of soliton theory (Zabusky and

Kruskal 1965) and the inverse scattering transform in Gardner et al. 1967 and Miura, Gardner,

and Kruskal 1968, contemporaneously with the wave interaction theory. Indeed many of the key

investigators were involved in both areas: soon after the discovery of the inverse scattering trans-

form the papers by Shabat and Zakharov 1972 and Zakharov and Manakov 1976 extended the

method in a manner that allowed solutions of the nonlinear Schrödinger and three wave equations

respectively: equations that regularly occur during the type of resonance work discussed in the

previous two paragraphs. More details can be found in Kaup, Reiman, and Bers 1979 where the

three wave results are examined in detail, and another approach related to that of Zakharov and

Shabat is that of Ablowitz et al. 1974.

Later the role of rotation in resonant interactions, initially for the shallow water equations,

was studied by Warn 1986, and after by Babin, Mahalov, and Nicolaenko 1997, and Embid and

Majda 1996. The approach of this last paper is used in parts of this thesis. In Embid and Majda

1996 the one layer shallow water equations were approached using the parameter limit from

quasigeostrophy but retaining a fast time scale. It was found that the dynamics split into two

equations: an equation of motion describing the well-known quasigeostrophic approximation for

the geostrophically balanced part, and also a second equation, coupled to the first, describing the

gravity waves (on the fast time scale) interacting with the geostrophic part. This interaction was

shown to be one-way: the balanced part is unaffected by the gravity waves and acts as a catalyst

to the gravity wave interactions (for detail see Ward and Dewar 2010).

A series of papers by Reznik, Zeitlin and collaborators have examined the wave interactions of
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layered fluid models. We note especially Reznik, Zeitlin, and Ben Jelloul 2001 which explored dif-

ferent geostrophic limits in the one layer shallow water equations with compact support assumed

for the initial conditions, and Zeitlin, Reznik, and Ben Jelloul 2003 who considered a two layer

shallow water model in the rigid lid limit. They found that the long-time evolution of the slow part

of the flow is unaffected by the fast part as the infinite domain allowed the fast modes to disperse.

Recently Thomas 2016 re-examined the one layer model, and found that a restriction to a peri-

odic domain might allow a continuing interaction between the fast and slow modes. We also note

that Zeitlin 2013 investigated similarly a two layer model in the half-plane case where there is a

boundary along which Kelvin waves can propagate.

Alongside the development of the multiple scales theory an important extension to include

detuning of the resonance condition branched off towards the end of the sixties: near resonant

interaction theory. Here the assumption that only exact resonances contribute to the nonlinear

interaction is relaxed to the near resonant assumption by allowing the nonlinearity to be of com-

parable size to the detuning parameter for some triads. Several notable researchers working

on near resonances attribute the original ideas of near resonance to the Newell 1969 paper, al-

though it would perhaps be better to assign the origin of the idea to the earlier work of Bretherton

1964 where the three-wave equations (for periodic waves) with non-exact resonance were solved

exactly. These equations regained some prominence recently when they were re-examined by

Vanneste 2007, although work had been done on their solutions using geometric fluid mechanics

ideas in Alber et al. 1998. Near resonance is a particularly important concept in numerical sim-

ulations, as the discretisation of the problem may actually render exact resonances inaccessible

where they involve modes that lie off-grid. From the 1990’s various numerical studies into near

resonance were published such as Smith and Waleffe 1999, Smith and Lee 2005. Recent work

has taken advantage of near resonant behaviour to create novel numerical integration methods

including the parallel in time method described in the thesis of Peddle 2018, the specific scheme

was first introduced by Haut and Wingate 2014 and Haut et al. 2015. These schemes rely on the

averaging out of small oscillations for the non-near resonances to safely push these terms to the

scale of the numerical error in the integration.

A major current research area that considers near resonances, but for a finite number of

wavenumbers, such as are found in a numerical model, is considered in the field of wave turbu-

lence. This is a similar topic to the one we discuss, except that the focus of the theory is on the

behaviour of statistical properties of the fluid in question, rather than its dynamics. However many

elements of the theory are relevant to our discussion throughout the thesis. Much of this theory

is contained in the book by Nazarenko 2011. Here he quotes Peierls 1929 who he credits with

the introduction of wave turbulence, including an equation of the joint probability density function,

26



a direction that the theory has now moved towards in the last few decades. Also intrinsically

connected to the theory is Zakharov, who can be linked in his ‘academic family tree’ to almost

every researcher in the subject area through supervisory roles in their early careers. Although the

weakly nonlinear regime is only one area of wave turbulence, it is one of the major current areas

of research on weakly nonlinear fluid dynamics as a whole.

An important issue that arises in wave turbulence theory is the finite box vs continuous limit

that was illustrated in figure 1.2. This theorises the difference between a discrete and continu-

ous wave spectrum, by considering the wavenumber spacing of a system. In discrete domains

there can be an extremely limited set of exact resonances. Work on the number theory problem

of finding these resonances has been done between Kartashova 1990, Kartashova 1998, sum-

marised in her book Kartashova 2010. It is even possible, as for the resonance discussed in

Owen, Grimshaw, and Wingate 2018, that entire branches of resonances are absent, removing

behaviour from a simulation. At the other extreme, the importance of near resonances allows

the ‘modified dispersion relation’ to take a large range of values - the near resonant traces be-

come broad resulting in less constrained dynamics. As suggested by Kartashova, Nazarenko,

and Rudenko 2008, because this allows large resonant clusters to exist, the motion moves into

a chaotic regime, although no claims are made about the behaviour of this transition to chaos.

In this thesis we mostly concern ourselves with this second case, where we have a continuous

spectrum of wavenumbers, and near resonances are important to the motion.

This thesis will build upon the existing resonant and near resonant theory, avoiding the trunca-

tions of the system that are regularly made for simplification, in order to develop general theory for

the behaviour of fast/slow systems, as well as then applying this to commonly used geophysical

models.

1.2 Thesis outline

In this thesis we examine the theory of triad and higher order resonances, and the role that near

resonances play, with a focus on fast-slow systems in geophysical fluid dynamics. These systems

will be introduced in chapter 2. Some new results in the two layer equations are analysed in

the exact resonant framework before moving on to near resonant theory. The intention is to give

clear intuition as to where results on resonances and near resonances come from. The shallow

water quartet resonances of Thomas 2016 that allow energy exchange between fast and slow

parts of the flow are re-formed in a more general context and then discussed in a near resonant

framework. General ideas about observations of qualitatively different behaviour in near resonant
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simulations such as those in the simulations of Smith and Lee 2005 are discussed.

We start at the beginning: the derivation of key equations and quantities that will be used

throughout the thesis, detailed in chapter 2. There are three main systems of interest in this

thesis: the rotating shallow water equations, the two layer rotating shallow water equations, and

the rotating stably stratified equations under the Boussinesq approximation. All of these systems

are common rotating/stratified models in geophysical fluid dynamics and are derived from the

incompressible Euler equations. A general derivation of Ertel potential vorticity is given, to be

used later to draw conclusions common to all relevant systems.

In the next chapter we derive the resonant expansion (Chapter 3), to high order, by defining

a new framework in which interaction coefficients are given in generalised form. We then move

on to an expanded derivation in which we also include the near resonances (Chapter 5). This

formulates the expansion so as to make clear the connections between the two forms, showing

how near resonances can be considered a reordering of the asymptotic expansion to include the

strongest parts of the higher order terms found in the exact resonant expansion.

Chapters are included after each of these sections giving results derived from the example

systems (Chapters 4 and 6). For exact resonances these results are presented analytically. Some

of the results in the literature are derived using the new framework, in order to showcase the clarity

of the understanding given by the formulation. It can be seen where old results fit into a more

general framework while giving added intuition. The results on the rotating two layer equations

are a new application taken from the paper Owen, Grimshaw, and Wingate 2018. For the near

resonant examples a case study is presented using the results of a full one layer shallow water

numerical simulation. This demonstrates clearly how the near resonant expansion explains the

dynamics much more accurately than the exact resonances, and gives the opportunity to pick out

the pathways of energy exchange between modes.

Finally some observations are made of these results in the context of wavepackets in 7. The

main takeaway from this chapter is how the wavepacket formulation adds another restriction to the

possible resonant interactions, and has the potential to reduce the effectiveness of the interaction.

All the results are then summarised and concluded in chapter 8.
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Chapter 2

Equations of Motion

In this chapter the main geophysical fluid systems in the thesis are derived from the incompress-

ible Euler equations. The systems that will be analysed are the rotating shallow water equations,

the two layer rotating shallow water equations and the uniformly stratified equations under the

Boussinesq assumption. The rotating shallow water equations provide a simple example of a

fluid system to analyse, while the other two represent two ways to introduce stratification into the

system, an important property in geophysical contexts. Importantly all of them have a conserved

enstrophy (defined in section 2.2.2) that is central to some of the generalisations of the thesis.

The concept of a zero mode system is introduced and an argument made to suggest that this and

quadratic nonlinearity are common properties that arise naturally out of fluid systems, specifically

those without internal forces or internal energy exchange. These two features will be used in

chapter 4 to pinpoint where properties of the asymptotic expansions come from. The systems are

each decomposed into their fundamental eigenmode structure and other key properties such as

potential vorticity are derived for use in the later analysis in chapters 4, 6 and 7. In these chap-

ters exact resonant, near resonant, and wavepacket expansions are derived respectively for each

example system.
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2.1 Derivations of the fluid systems

All the systems considered in this thesis can be derived from the incompressible Euler equations

with a constant rotational component (known as the f-plane assumption) and the action of gravity:

ρ
Du

Dt
+ ρf × u = −∇P − ρgẑ, (2.1)

Dρ

Dt
= 0, (2.2)

∇ · u = 0. (2.3)

Here ρ(x, t) is the fluid density, p(x, t) is the pressure, u(x, t) the velocity, g the gravitational

acceleration, and f = f ẑ. D/Dt = ∂/∂t+(u ·∇) is the usual Lagrangian derivative, that accounts

for advection of the flow. These equations are the momentum equation, conservation of mass,

and incompressibility condition respectively. We note that all the nonlinear terms are quadratic.

The three simplifications that follow all modify the pressure part of the equations by making

some assumption, namely the hydrostatic assumption, as well as different simplifying assump-

tions on the effect of gravity. A consequence of these simplifications is that the nonlinearities in

the equations are always exactly quadratic. This will affect the formation of triads and quartets

derived in chapter 3, allowing a general framework to be formulated.

2.1.1 Shallow water equations

The shallow water equations provide a common simplification used to study fluid where vertical

motion is expected to be small in comparison to horizontal motion. It is also very useful from a

theoretical perspective: the incompressibility condition is converted into an evolutionary equation,

resulting in three evolutionary equations in three unknowns, reducing some of the complexity of

the analysis. In section 4.2 the exact resonant expansion will be found to quartet order, and higher

for specific cases. In section 6.1 a numerical simulation of the equations will be analysed in the

context of the exact and near resonant frameworks set out over the following chapters.

The following derivation can be found for example in Salmon 1998 or Vallis 2006. We start

from equations (2.1)-(2.3). We will consider only columnar motion and hence we will integrate

over the vertical domain (in effect we replace the vertical variation with its average). We replace

the density with an average density across the layer, ρ0, eliminating the need for equation (2.2).

By integrating the hydrostatic balance equation ∂P
∂z − ρ0g and assuming zero pressure at the top

boundary we see that the pressure will be simply represented by a linear function of the layer
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height:

P (x, y, z, t) = ρ0g(h(x, y, t)− z), (2.4)

⇒ Dv

Dt
+ f × v = −g∇h, (2.5)

where v = (u, v)T are the horizontal components of the velocity.

We now consider the incompressibility condition (2.3). We can integrate for the vertical column

in z:

∫ h

0

∇ · v +
∂w

∂z
dz = 0 ⇒ w|z=h − w|z=0 = −h(∇ · v). (2.6)

But, by the definition of the free surface and the fixed base surface we can write:

w|z=h =
Dh

Dt
, (2.7)

w|z=0 = 0, (2.8)

and so we can write the ‘density’ equation for the shallow water system as:

Dh

Dt
+ h(∇ · v) = 0 or

∂h

∂t
+∇ · (hv) = 0. (2.9)

Our full system is determined by the 3 equations:

Dv

Dt
+ f × v = −g∇h, (2.10a)

∂h

∂t
+∇ · (hv) = 0. (2.10b)

This forms a nonlinear hyperbolic system. With the inclusion of rotation, although these equations

can form shocks, we expect his to only occur at small scale and hence we will not concern our-

selves with the possibility in this thesis and continue on the assumption that only negligible shocks

will occur.

Figure 2.1 shows the set up of this system. We will regularly use the surface displacement

η = h−H in calculations, as it is natural to assume the smallness of the quantity η/H, making it

useful for scaling arguments.
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h(x, y, t)

x
y

Hρ

Figure 2.1: Diagram showing the set up of the one layer shallow water equations.

2.1.2 Two layer shallow water equations

The two layer version of the shallow water equations provide a basic system in which stratification

can alter the flow, allowing one to maintain some of the advantages of the simplicity of the usual

shallow water equations. It can be used as a minimal model of the interaction of the barotropic

and baroclinic parts (defined later in section 2.3.2, an important concept in meteorology and

oceanography) of the motion. Much of the work on two layer equations in this thesis is taken from

Owen, Grimshaw, and Wingate 2018, the majority of which is contained in section 4.3.

Here we will make a similar columnar motion assumption to the single layer case. Now, how-

ever, we will assume that there is an interface, with separate fluid of different densities above and

below, each part restricted individually to columnar motion. This is shown in figure 2.2. We calcu-

late our pressure terms using these two layers and the boundary conditions P (z = h1 + h2) = 0,

and P1(z = h2) = P2(z = h2):

P1(x, y, z, t) = ρ1g(h1(x, y, t) + h2(x, y, t)− z) z > h2, (2.11)

P2(x, y, z, t) = ρ1gh1(x, y, t) + ρ2g(h2(x, y, t)− z) z < h2. (2.12)

Substitution into the momentum equation for each layer gives:

D1v1

Dt
+ f × v1 = −g∇(h1 + h2), (2.13)

D2v2

Dt
+ f × v2 = −g∇(rh1 + h2), (2.14)

where r = ρ1/ρ2 and Di/Dt = ∂/∂t+ (vi · ∇).

We now apply the same process to the incompressibility condition as was used in the one

layer version:

w|z=h1+h2
− w|z=h2

= −h1(∇ · v1), (2.15)

w|z=h2
= −h2(∇ · v2). (2.16)
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Using the definitions of the free surface layers we have:

D1(h1 + h2)

Dt
− D1h2

Dt
=
D1h1

Dt
= −h1(∇ · v1), (2.17)

D2h2

Dt
= −h2(∇ · v2). (2.18)

The mass conservation equations then take the same form as for the shallow water equations in

each of the layers:

D1v1

Dt
+ f × v1 = −g∇(h1 + h2), (2.19a)

D2v2

Dt
+ f × v2 = −g∇(rh1 + h2), (2.19b)

D1h1

Dt
+ h1(∇ · v1) = 0, (2.19c)

D2h2

Dt
+ h2(∇ · v2) = 0. (2.19d)

h1

h2

h

H1

H2

H

ρ1

ρ2

x
y

Figure 2.2: Diagram showing the set up of the two layer shallow water equations.

Similarly to the one layer equations the layer height perturbation will be used in many places:

ηi = hi −Hi.

2.1.3 Uniformly stratified Equations

In this thesis we will refer throughout to the stably-stratified incompressible rotating Euler equa-

tions under the Boussinesq approximation simply as the ‘stratified equations’. The Boussinesq

approximation is a commonly used assumption to avoid the complications arising from variable

density, whilst maintaining the strongest effects it causes: those due to buoyancy.

For the stratified equations it is standard to assume that the changes in the density are small

compared to a background variation in the vertical direction and are only important in the buoyancy

term. There are assumed to be only small density changes horizontally. The density can therefore
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be written as:

ρ = ρ̄+ ρ0(z) + ρ′(x, y, z, t). (2.20)

Where ρ̄ is the mean value of the density, and ρ′/ρ0 � 1 by the stated assumption, so that

the greatest changes in density are in the vertical direction and accounted for in ρ0. It is often

assumed that ρ0 is a linear function of z for simplicity, we will use this assumption as well to allow

use of a periodic domain in the later analysis.

We substitute this form into the momentum equation (2.1) and neglect all but the mean value

everywhere except for the gravity term. Dividing though by the density then making this assump-

tion we get:

Du

Dt
+ f × u = −∇P

ρ̄
− ρ0(z)

ρ̄
gẑ − ρ′(x, y, z, t)

ρ̄
gẑ. (2.21)

We can absorb the ρ0gẑ into the pressure term (referring to it as P0) and can therefore eliminate

the term from our momentum equation:

Du

Dt
+ f × u = −∇P ′ − σẑ, (2.22)

where P ′ = (P − P0)/ρ̄ and we have defined the negative buoyancy as σ = ρ′g/ρ̄.

We now consider the conservation of mass equation (2.2) multiplied by g/ρ̄ :

g

ρ̄

∂ρ′

∂t
+
g

ρ̄
(u · ∇)ρ′ +

gw

ρ̄

∂ρ0

∂z
= 0. (2.23)

We define the Brunt-Väisälä frequency:

N2 = −g
ρ̄

∂ρ0

∂z
, (2.24)

and because of our assumption of a linear density gradient this is a constant. The remaining is

our final equation:

∂σ

∂t
+ (u · ∇)σ −N2w = 0. (2.25)
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We are left with the full equations:

Du

Dt
+ f × u = −∇P ′ − σẑ, (2.26)

∂σ

∂t
+ (u · ∇)σ −N2w = 0, (2.27)

∇ · u = 0. (2.28)

2.2 Conservation Laws

The following section contains derivations of the conservation laws for the systems. First we

will derive Ertel potential vorticity, a general form of potential vorticity conservation in many fluid

systems. This makes clear that the existence of this conservation is a common property that

occurs provided there are no internal energy exchanges (entropy changes for example) or internal

forces (magnetism for example). Linearisation of the potential vorticity property is then shown to

underlie the slow-fast splitting of the fluid, leading to zero modes. The potential vorticity, enstrophy

and energy conservation is then derived for each of the example systems.

2.2.1 Ertel Potential Vorticity

Here we derive a very general form of potential vorticity, known as Ertel potential vorticity (potential

vorticity will be abbreviated to PV in the remainder of this work). This can be done starting from

the compressible Euler equations, (2.1) and (2.2) (without (2.3)). Then given the existence of

some materially (pointwise) conserved quantity in the specific equation set under consideration

a potential vorticity can be derived. In all of our geophysical examples this conserved quantity

corresponds to some proxy for buoyancy associated motions. The following proof is based closely

on that given in Müller 1995.

Before we start we will briefly note that to generalise the momentum equation slightly further

we will replace the gravitational force with the more general external force ρ∇Φ, where Φ is some

potential field. The gravitational case is recovered by setting Φ = gz. For additional clarity we

divide through by the density field to arrive at the form:

Du

Dt
+ f × u = −1

ρ
∇P −∇Φ. (2.29)
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We take the curl of the momentum equation (2.29):

Dζ

Dt
− (ζ · ∇)u+ ζ(∇ · u) =

1

ρ2
∇ρ×∇P, (2.30)

where ζ = ∇× u + f is the absolute vorticity and the right hand side benefited from the relation

∇×∇ = 0.

Rearranging the mass equation (2.2) we write:

∇ · u = −1

ρ

Dρ

Dt
= ρ

D

Dt

1

ρ
, (2.31)

which we can use to simplify (2.30) to:

D

Dt

ζ

ρ
− 1

ρ
(ζ · ∇)u =

1

ρ3
∇ρ×∇P. (2.32)

We now require a materially conserved quantity θ such that Dθ/Dt = 0. We take the scalar

product of (2.32) with ∇θ:

(
D

Dt

ζ

ρ

)
· ∇θ − 1

ρ
(ζ · ∇)u · ∇θ =

D

Dt

(
ζ · ∇θ
ρ

)
− ζ
ρ
· D∇θ
Dt

− 1

ρ
(ζ · ∇)u · ∇θ

=
D

Dt

(
ζ · ∇θ
ρ

)
− ζ
ρ
· ∇Dθ

Dt
=

D

Dt

(
ζ · ∇θ
ρ

)

⇒ D

Dt

(
ζ · ∇θ
ρ

)
=

1

ρ3
(∇ρ×∇P ) · ∇θ. (2.33)

We now require one more constraint to have complete conservation of the bracketed term, that

the right hand side is zero. This occurs in many situations (see Vallis 2006 for discussion). In our

examples this comes from relations of the form θ = θ(ρ), such that ∇ρ and ∇θ are parallel.

This gives the Ertel conservation relation:

Dq

Dt
= 0, (2.34)

q =
(∇× u+ f) · ∇θ

ρ
. (2.35)

All other PV conservation laws can be derived from this, and so we can draw general conclusions

from this conservation law.

As an aside, another alternative derivation is via a Casimir conserved quantity in the Hamil-

tonian framework. For more information the reader is referred to Morrison 1998 and Shepherd

1990 for example. This derivation is particularly powerful in revealing that the conservation can
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be considered to be due to the null space of the non-canonical transformation from Lagrangian to

Eulerian frames that underlies all fluid systems.

From potential vorticity to zero modes

We will now use the potential vorticity conservation to directly prove the existence of non-propagating

linear modes of the equations, such that they have a zero eigenvalue: the zero modes. Slow

modes can refer to any mode with phase speed of O(ε), and the zero modes form a subset of

these. Because we use examples in an f-plane throughout, the phase speeds are exactly 0 and

so we interchange the terms slow and zero modes. Discussion of the situation where the phase

speed is small but non-zero is included in chapter 8.

The next step is to linearise the conservation law, then from the linearised version we will show

how the existence of the conservation law automatically leads to the existence of linear modes

that do not propagate in the linear solution - zero modes. This will form the justification for the

generalisation of the theory in the later chapters to zero mode systems as a common form of fluid

systems.

If we assume that the variables can be written in the forms:

u = U + u′, ρ = P + ρ′, θ = Θ + θ′ u′, ρ′, θ′ ∼ O(ε), (2.36)

for ε small, then we can approximate to first order the linearised version of the conservation law:

(
∂

∂t
+ (U · ∇)

)(
(∇× u′) · ∇Θ + (∇×U + f) · ∇θ′

P
− ρ′ (∇×U + f) · ∇Θ

P 2

)
+ (u′ · ∇)

(
(∇× u′) · ∇Θ + (∇×U + f) · ∇Θ

P

)
= 0. (2.37)

Here we have made the assumption that the Coriolis force is constant and O(1).

If we assume that the first order of the velocity is 0, and that the rotation parameter is indepen-

dent of the spatial variables this reduces to the simple form:

∂Q

∂t
= 0, (2.38)

Q =
(P∇× u′ − ρ′f) · ∇Θ + Pf · ∇θ′

P 2
. (2.39)

This is a general definition for the linearised PV. As this equation is dependent on all of the

linearised equations of motion, it is equally valid to substitute this equation for any other in the

linearised set, as the resultant set will still be a set of n independent equations in n variables. This
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immediately defines a splitting in the eigenmodes of the linear system: there must be a mode

with eigenvalue 0, that contains all of the linearised conserved quantity. The remainder of the

eigenmodes will not ‘carry’ any of the linearised quantity and will have non zero eigenvalue.

We write this process out explicitly for a linearised three variable equation set. In the original

equations we have variables u, v, p representing two components of velocity and some measure

of pressure respectively. We define the state vector u = (u, v, p)T . We invert the definition of

the linearly conserved quantity Q so that p = p(u, v,Q) and substitute this into the momentum

equations defining a new state vector û = (u, v,Q)T :

∂u

∂t
= Lu→ ∂û

∂t
= L̂û or

∂

∂t


u

v

Q

 = L̂


u

v

Q

 , (2.40)

where L is the linear part of the equations in variables u, v, p and L̂ is the linear part in u, v, Q.

We consider the situation u = 0, v = 0, then due to our conservation law:

∂

∂t


0

0

Q

 = L̂


0

0

Q

 = 0. (2.41)

We recognise this as the statement of an eigenfunction of L̂ with eigenvalue 0: a zero mode. We

can convert back to the original coordinates simply by using the relation p = p(u, v,Q). In a real

conservative system (with constant parameters) a first order linear operator will be antisymmetric,

with an eigenfunction basis that forms an orthogonal set. It follows that the other eigenfunctions

must have Q = 0, and so we have a neat partitioning with all of the linearly conserved quantity in

a single eigenmode that does not evolve linearly.

The Lagrangian to Eulerian transform ubiquitous in fluid dynamics is responsible for introduc-

ing the conserved potential vorticity quantity, as well as introducing quadratic interaction terms.

These two qualities together form the basis of the generalisations made in this thesis. This def-

inition deliberately made less assumptions than in any of the example systems investigated, to

demonstrate how the theory extends beyond the given examples. One slightly more specific

conclusion will now be drawn to differentiate the attributes of layered and continuously stratified

equations.
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Layered vs continuous PV

The Ertel PV given by:

q =
(∇× u+ f) · ∇θ

ρ
, (2.42)

can be found for the layered equations using the conservation with the flow of the ratio θ = z/hi

(see Vallis 2006). This leads to a PV of the form:

q =
(∇× v + f) · ẑ

h
. (2.43)

Here the z component is the only that is non-zero, and hence we consider only the scalar value.

Additionally it can be noted that a constant term can be removed from this that will not be relevant

to the evolution of the quantity: f/H. We define the PV perturbation qpert = q − f/H.

The pointwise enstrophy perturbation (defined shortly in section 2.2.2) is then given by 1
2hq

2
pert,

which can be written:

Z =
1

2
hq2
pert =

Q2

2h
, (2.44)

where Q is again the linearised PV. More details will be given in section 2.2.2. As we have just

shown that all linearised PV is contained in the zero modes, if the contributions to the Q2 term in

the enstrophy only come from fast modes, the enstrophy is exactly zero to all orders. This will be

used in chapter 4 to prove that certain mode interactions are impossible at all orders of expansion

for layered systems. This distinguishes the layered-type equations from the stratified equations,

and will be shown to be an important difference between the behaviours of the asymptotic expan-

sions.

2.2.2 Potential Vorticity and Enstrophy

The potential vorticity and enstrophy conservation laws will be used in section 4.4. They will give

a direct method of showing that two fast modes cannot interact to form a slow mode due to the

splitting of linear PV into the slow modes as shown in (2.34), which is otherwise a time consuming

algebra exercise.
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Enstrophy

Enstrophy is an integral conserved quantity that can be derived from the potential vorticity. We

multiply the Ertel PV conservation equation (2.34) by ρq:

ρq
Dq

Dt
=

∂

∂t

(
1

2
ρq2

)
+∇ ·

(
1

2
ρq2u

)
− 1

2

(
∂ρ

∂t
+∇ · (ρu)

)
q2 = 0. (2.45)

The last term is 0 by conservation of mass (2.2), and we define the pointwise enstrophy Z = ρq2/2

so that:

∂Z

∂t
+∇ · (Zu) = 0. (2.46)

Integrating this over a volume V moving with the fluid and using the divergence theorem we obtain

the integral conservation law for enstrophy:

∂Z
∂t

= 0, (2.47)

Z =

∫
V

ZdV. (2.48)

We have also assumed that there are no sources or sinks, as we are considering conservative

systems.

In individual systems the form of Z can vary based on the density ρ in each system. In the

Boussinesq system this is a constant mean value and so can be omitted so that Z = q2/2. In the

shallow water equations the layer height h acts as a proxy for the density and so this replaces it in

the enstrophy definition to give Z = hq2/2. It can also be noted that the derivation follows exactly

the same for the PV perturbation qpert, giving an enstrophy perturbation ρqpert/2, and equivalent

specific forms for a given equation set.

In the following sections we define the form of the potential vorticity and enstrophy for each

system.

Shallow water equations

The potential vorticity is formed by taking the curl of the momentum equation and using the con-

servation of mass equation to put into the conservation form:

Dq

Dt
= 0, q =

ζ + f

h
, (2.49)
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where ζ = (∇ × v)z is the relative vorticity. As discussed in section 2.2.1, we normally wish to

consider the perturbation to this, qpert = q − f/H. At next order, in the linear part of the problem,

we have:

∂Q

∂t
= 0, Q = ζ − fη

H
. (2.50)

As previously proved in section 2.2.1, the linear PV will always be exactly zero for a fast mode.

The (pointwise) enstrophy perturbation is given by:

∂Z

∂t
+∇ · (Zv) = 0, Z =

1

2
hq2
pert. (2.51)

It will be useful to write this in the form:

Z =
1

2
hq2
pert =

Q2

2h
. (2.52)

Which is derived by a Taylor expansion in η/H. As explained in section 2.2.1, this form is important

as it will be shown in section 4.4.1 that for many configurations the enstrophy is then 0 to all orders,

leading to conclusions about the interactions of different modes.

Two layer shallow water equations

The only coupling between layers is in the pressure part, which is lost when the curl is considered,

and so by the same derivation:

Diqi
Dt

= 0, qi =
ζi + f

hi
, (2.53)

where Di/Dt is the Lagrangian derivative for the flow in the ith layer and ζi = (∇ × vi)z is the

relative vorticity. For the linear part of the problem we have:

∂Qi
∂t

= 0, Qi = ζi −
fηi
Hi

. (2.54)

The (pointwise) enstrophy perturbation is given by:

∂Zi
∂t

+∇ · (Zivi) = 0, Zi =
1

2
hiq

2
i . (2.55)
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Here we have assumed that qi is the perturbation of the PV. We write this in the form:

Z =
1

2
hiq

2
i =

Q2
i

2hi
. (2.56)

Again, this is similar to the form given for the one layer case and will be referred to in section 4.4.1.

It can also be shown that the n-layer equations will take this exact same form of conservation, as

each layer will have its independent conservation law.

Stratified Equations

The potential vorticity is defined as:

Dq

Dt
= 0, q = (ζ + f) · ∇(σ +N2z), (2.57)

with ζ = ∇× u. The linear potential vorticity is then defined as:

∂Q

∂t
= 0, Q = N2ζh + f

∂σ

∂z
, (2.58)

where ζh is the vertical component of vorticity and it can be checked that this is again 0 for the

fast linear modes. The (pointwise) enstrophy is given by:

∂Z

∂t
+∇ · (Zu) = 0, Z =

1

2
q2. (2.59)

We can write this:

Z =
1

2
(Q+ ζ · ∇σ)2. (2.60)

2.2.3 Energy conservation

The energy conservation law is now stated for each system, to be used in section 4.4 as a way to

derive the asymptotic expansion of a system.

Rotating shallow water equations

The pointwise energy of the rotating shallow water equations is derived by taking the scalar prod-

uct of the momentum equation with u and then manipulating into flux form using the conservation
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of mass. This gives:

∂E

∂t
+∇ · F = 0, (2.61)

E =
1

2
h|u|2 +

1

2
gh2, (2.62)

F =
1

2
h|u|2u+ gh2u. (2.63)

Integrating over a volume moving with the flow we obtain the integral form:

∂E
∂t

= 0, (2.64)

E =

∫
D

1

2
h|u|2 +

1

2
gh2 dx. (2.65)

Two layer rotating shallow water equations

By taking scalar products per layer, the pointwise energy of the two layer system is given by:

∂E

∂t
+∇ · F = 0, (2.66)

E =
1

2
rh1|u1|2 +

1

2
h2|u2|2 +

1

2
rgh2

1 + rgh1h2 +
1

2
gh2

2, (2.67)

F =
1

2
(rh1|u1|2u1 + h2|u2|2u2 + rP1h1u1 + P2h2u2). (2.68)

Here P1 = g(h1 + h2) and P2 = g(rh1 + h2).

Or in integral form:

∂E
∂t

= 0, (2.69)

E =

∫
D

1

2
rh1|u1|2 +

1

2
h2|u2|2 +

1

2
rgh2

1 + rgh1h2 +
1

2
gh2

2 dx. (2.70)

Stratified equations

In the same manner as the other two equation sets, the energy is given by:

∂E

∂t
+∇ · F = 0, (2.71)

E =
1

2
|u|2 +

σ2

2N2
, (2.72)

F =

(
1

2
|u|2 + P ′ +

σ2

2N2

)
u, (2.73)
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and so:

∂E
∂t

= 0, (2.74)

E =

∫
D

1

2
|u|2 +

σ2

2N2
dx. (2.75)

2.3 Eigenvector formulation

It will be useful to consider the linearised form of all of the equations, as this naturally forms the first

stage of weakly nonlinear calculations. The linear part of the equations can then be transformed

to its eigenbasis, each component of which will evolve according to its eigenvalue. These are also

commonly known as modal functions, in oceanography for instance, but here we shall use the

term eigenfunctions.

The eigenmodes will interact with each other in sets of 3, 4, 5 etc to form triad, quartet, and

higher order interactions that will be derived in chapter 3. These modes each have an intrinsic

frequency given by the eigenvalue. This is the fundamental frequency referred to in the exposition

of chapter 1, that forms the components of the resonance condition. As shown in section 2.2.1

there will be a fast-slow splitting, with the eigenvalues of the slow modes equal to zero so that

they only evolve nonlinearly. In all of our examples the slow modes will physically correspond to

PV modes, those that obey geostrophic balance. The fast modes correspond to gravity waves.

We shall assume boundary conditions that admit Fourier transforms (this will apply throughout

this thesis from this point onwards) and then derive the eigenfunctions in spectral space for each

equation set.

2.3.1 Rotating shallow water equations

We now explicitly derive the fast/slow modes for the linear part of the shallow water system. To

linearise we assume the following scaling:

v ∼ ε, H ∼ 1, η ∼ ε.
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The viscosity has been assumed to be 0 from the start and so the system will be conservative.

This scaling will remove all nonlinear terms at first order leaving the linearised equations:

∂v

∂t
+ f × v = −g∇η, (2.76)

∂η

∂t
+H∇ · v = 0. (2.77)

We define c =
√
gH and φ = gη/c, this will simplify the later calculations by introducing symmetry

in the linear part. This c scales like a velocity and, as will be seen, corresponds to the phase

velocity of gravity waves in the system with small enough wavelength to neglect the Coriolis effect.

With these substitutions the equations now read:

∂v

∂t
+ f × v = −c∇φ, (2.78)

∂φ

∂t
+ c∇ · v = 0. (2.79)

We proceed by assuming that the solutions will take a Fourier form:

v =
∑
k

v̂ke
i(k·x−ωt), (2.80)

φ =
∑
k

φ̂ke
i(k·x−ωt). (2.81)

For a given wavenumber this gives the simple mapping for the derivatives:

∇ → ik,
∂

∂t
→ −iω. (2.82)

Substitution into the equations gives the following system of equations written in vector form:

−iω


û

v̂

φ̂

 =


0 −f ick

f 0 icl

ick icl 0




û

v̂

φ̂

 . (2.83)

This is a skew-Hermitian matrix (inherited from the skew-symmetry property of the Poisson bracket:

this is a conservative system). In a skew-Hermitian matrix the eigenvectors form an orthogonal

set, whilst the eigenvalues are pure imaginary values.

From the form of equation (2.83) the eigenvalues of the right hand side are by definition the

45



wave frequency, −iω, on the left. We solve for the eigenvalues and eigenvectors and obtain:

ωαk = −
√
c2|k|2 + f2, 0,

√
c2|k|2 + f2, (2.84)

rαk =


(−kω+ifl)√

2|k|ω

(−ifk−lω)√
2|k|ω

|k|c√
2ω


,


− ilcω
ikc
ω

f
ω


,


(kω+ifl)√

2|k|ω

(−ifk+lω)√
2|k|ω

|k|c√
2ω


. (2.85)

Here is the unsigned wave frequency: ω =
√
c2|k|2 + f2 in the construction of each eigenvector,

it should be noted that this is still non-zero for the slow modes. The superscript α = −, 0, + will

be used to refer to each mode respectively, while k defines the wavenumber of the Fourier mode.

The eigenvectors have been normalised and form an orthonormal basis.

These eigenvectors correspond to two gravity waves (one travelling in each direction, the fast

modes) and the slow mode that contains the linear part of the potential vorticity of the system and

doesn’t move at all in the linear system due to the 0 eigenvalue.

To decompose the system into eigenvectors we use the matrix T = (r−k , r
0
k, r

+
k )T . Due to the

orthonormality of the eigenvectors, left multiplication of the vector (u, v, φ)T by T will return the

amplitude of each eigenvector in the system for the given wavenumber.

The full Fourier modes will now take the form:

u =
∑
k,α

aαkr
α
ke

i(k·x−ωt), (2.86)

where u combines all three variables into a state vector (u, v, φ)T , and aαk is the amplitude of the

particular eigenmode at that wavenumber.

Group velocity

The group velocity is defined as:

cg =
∂ω

∂k
. (2.87)

By differentiation of the three branches of the dispersion relation solutions (2.84) we obtain:

c0
g = 0, (2.88)

c±g = ± c2√
c2|k|2 + f2

k. (2.89)
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The group velocity is in the direction of propagation, and in the case of the zero modes wavepack-

ets will be stationary.

2.3.2 Two layer rotating shallow water equations

We now extend the derivation of the fast/slow modes for the linear part, but this time in the two

layer shallow water system.

The process for two layers is similar except for the initial scaling step to put the resulting matrix

into skew-hermitian form. The two layers are coupled by the gravity terms and so some way of

combining the two layers into linearly independent modes must be found. This is in fact the well

known barotropic/baroclinic decomposition (see for example Gill 1982). These are also referred

to as external and internal modes respectively. Similarly to the one layer equations, the linearised

form of the two layer equations is:

∂v1

∂t
+ f × v1 = −g∇(η1 + η2), (2.90)

∂v2

∂t
+ f × v2 = −g∇(rη1 + η2), (2.91)

∂η1

∂t
+H1(∇ · v1) = 0, (2.92)

∂η2

∂t
+H2(∇ · v2) = 0. (2.93)

We wish to find some scaling such that these form a decoupled system. We write:

vm = LmH1v1 +H2v2, (2.94)

where the subscript m will indicate the vertical mode of the variable. To define the transformation

we need to calculate Lm.

Applying (2.94) to the conservation of mass equations:

∂

∂t
(Lmη1 + η2) +∇ · vm = 0, (2.95)

and so to maintain the decoupling we define:

pm = cm(Lmη1 + η2), (2.96)
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so that:

∂

∂t
pm + cm∇ · vm = 0. (2.97)

We now apply the transformation to the momentum equations:

∂vm
∂t

+ f × vm = −∇((LmH1 + rH2)gη1 + (LmH1 +H2)gη2) (2.98)

= −∇
(
g(LmH1 +H2)

(
LmH1 + rH2

LmH1 +H2
η1 + η2

))
, (2.99)

and so to maintain decoupling we enforce the form (2.96) in a RHS that will equal cm∇pm giving

the following relations:

LmH1 + rH2

LmH1 +H2
= Lm, (2.100)

LmH1 +H2 =
c2m
g
. (2.101)

Equation (2.100) is a quadratic equation in Lm, and cm can then be calculated from (2.101) for

each root. Solving these equations defines the required transformation:

LmH1 =
H1 −H2

2
+m

√(
H1 −H2

2

)2

+H1H2r, (2.102)

c2m = g
H1 +H2

2
+mg

√(
H1 −H2

2

)2

+H1H2r, (2.103)

m = ±.

Writing the transformed equations in Fourier space we get:

iω



û+

v̂+

p̂+

û−

v̂−

p̂−



=



0 −f c+ki 0 0 0

f 0 c+li 0 0 0

c+ki c+li 0 0 0 0

0 0 0 0 −f c−ki

0 0 0 f 0 c−li

0 0 0 c−ki c−li 0





û+

v̂+

p̂+

û−

v̂−

p̂−



. (2.104)

Solving the eigenproblem to find ω goes as before:

ω =−
√
c2+|k|2 + f2, 0,

√
c2+|k|2 + f2, −

√
c2−|k|2 + f2, 0,

√
c2−|k|2 + f2, (2.105)
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with corresponding (orthonormalised) modal functions respectively:



(−kω++ifl)√
2|k|ω+

(−ifk−lω+)√
2|k|ω+

|k|c+√
2ω+

0

0

0



,



− ilc+ω+

ikc+
ω+

f
ω+

0

0

0



,



(kω++ifl)√
2|k|ω+

(−ifk+lω+)√
2|k|ω+

|k|c+√
2ω+

0

0

0



,



0

0

0

(−kω−+ifl)√
2|k|ω−

(−ifk−lω−)√
2|k|ω−

|k|c−√
2ω−



,



0

0

0

− ilc−ω−
ikc−
ω−

f
ω−



,



0

0

0

(kω−+ifl)√
2|k|ω−

(−ifk+lω−)√
2|k|ω−

|k|c−√
2ω−



.

(2.106)

Where ω± =
√
c2±|k|2 + f2. The physical explanation of the eigenvectors is similar to in the one

layer equations, but now mode-wise: each vertical mode has its own distinct fast and slow modes.

It should be noted that the transform (2.94) changes the form of the nonlinear terms. These

now look like:

Nm
u =

∑
m1,m2

Amm1m2
(vm1

· ∇)vm2
, (2.107)

Nm
p =

∑
m1,m2

cm
cm1

Amm1m2
∇ · (pm1

vm2
). (2.108)

Where:

Amm1m2
=

m1m2

(L+ − L−)2

[
Lm
H1

+
L−m1

L−m2

H2

]
, (2.109)

and the the terms Nm
u and Nm

p are the nonlinear part of the new momentum and pressure equa-

tions respectively, for vertical mode m.

Group velocities

From (2.105) we obtain:

c0m
g = 0, (2.110)

c±mg = ± c2m√
c2m|k|2 + f2

k. (2.111)
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2.3.3 Stratified equations

The derivation of the eigenmodes in the stratified equations is slightly different, as we must deal

with the non-evolving incompressibility condition.

Linearising the equations we get:

∂u

∂t
+ f × u = −∇P ′ − σẑ, (2.112)

∂σ

∂t
−N2w = 0, (2.113)

∇ · u = 0. (2.114)

We can remove the pressure dependence by using the incompressibility condition. Taking the

divergence of the momentum equation and using incompressibility we get:

P ′ = ∆−1(f · ∇ × u− ∂σ

∂z
). (2.115)

Our remaining linearised equations then become:

∂u

∂t
+ f × u+∇∆−1(f · ∇ × u−N ∂σ̂

∂z
) +Nσ̂ẑ = 0, (2.116)

∂σ̂

∂t
−Nw = 0, (2.117)

where we have scaled σ̂ = σ/N for convenience.

We now proceed as with the layered equations, taking Fourier transforms and putting into

vector form:

−iω



û

v̂

ŵ

σ̂


+



− fkl
|k|2 − f(l2+m2)

|k|2 0 −N mk
|k|2

f(k2+m2)
|k|2

fkl
|k|2 0 −N ml

|k|2

− fml|k|2
fmk
|k|2 0 N k2+l2

|k|2

0 0 −N 0





û

v̂

ŵ

σ̂


= 0. (2.118)

This system has the characteristic polynomial:

ω2

(
ω2 − m2f2 +N2(k2 + l2)

|k|2
)

= 0. (2.119)

The eigenvalues are then:

ω−k = −
√
m2f2 +N2(k2 + l2)

|k| , ω0
k = 0, ω+

k =

√
m2f2 +N2(k2 + l2)

|k| , (2.120)
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with associated eigenvectors:

r−k =



−flm−iωkm√
2ω|k|

√
k2+l2

fkm−iωlm√
2ω|k|

√
k2+l2

i
√
k2+l2√
2|k|

N
√
k2+l2√

2ω|k|


, r0

k =



Nl
ω|k|

− Nk
ω|k|

0

fm
ω|k|


, r+

k =



−flm+iωkm√
2ω|k|

√
k2+l2

fkm+iωlm√
2ω|k|

√
k2+l2

− i
√
k2+l2√
2|k|

N
√
k2+l2√

2ω|k|


, (2.121)

where ω = ω+
k =

√
m2f2+N2(k2+l2)

|k| .

The repeated 0 root also leads to another generalised eigenvector that is only accessible by

breaking the incompressibility condition (see Embid and Majda 1996) and so we will ignore it.

In all the following we will use the same notation as the layered equations for the state vector

u which consists of the velocities and the negative buoyancy variable: (u, v, w, σ)T .

Group Velocities

From (2.120) we obtain:

c0
g = 0, (2.122)

c±g = ± (N2 − f2)m

|k|3
√
f2m2 +N2(k2 + l2)


mk

ml

−(k2 + l2)

 . (2.123)

Taking the dot product with the wavenumber vector (k, l,m)T gives a zero result: the group velocity

is perpendicular to the wave vector. However by inspection the horizontal parts are parallel. This

means the energy will propagate vertically in the opposite direction to the vertical wave vector

component. The relation of wavenumber and group velocity direction is illustrated in figure 2.3.
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Figure 2.3: Diagram showing the direction of the group velocity (dashed) in the vertical plane of
the wave vector but perpendicular to it due to the vertical component.
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2.4 Chapter summary

In this chapter the following main points were covered:

• The specific systems that will be considered through the thesis were derived, to be referred

to in chapters 4 and 6 where exact and near resonant asymptotic expansions are formed

respectively, and then analysed.

• It was demonstrated that systems that support zero modes and quadratic nonlinearity occur

naturally in fluid systems in the absence of internal forces and energy changes, this will

help generalise some of the conclusions in chapter 4. Explicit forms of potential vorticity,

enstrophy and energy were given for each system, also for use in chapter 4.

• The eigenstructure of each system was established. This determines the behaviour of the

modes in the linear part of each system. These modes will be seen to form the building

blocks of the triads, quartets etc from chapter 3 onwards, and their frequencies, given by the

eigenvalues, will be those of the resonance condition stated in chapter 1.

• Group velocity was stated, for later use in chapter 7 where wavepackets will be considered.
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Chapter 3

Multiscale asymptotic expansion

In this chapter we derive the full resonant expansion in the context of a system of equations with

quadratic nonlinearity. This is the formal derivation of the ideas discussed in chapter 1 corre-

sponding to the situations where a resonance leads to a secular growth and parts of the system

are able to grow on a slow timescale.

Initially the expansion is calculated up to triad order as in Owen, Grimshaw, and Wingate

2018, however the expansion is then continued beyond the usual triad/quartet orders to establish

a general formula for high order interaction coefficients. We develop the theory here so that

in chapter 4 we can apply the techniques to the geophysical systems described in chapter 2,

leading to conclusions about the nonlinear interactions that occur in each case. This chapter can

be compared to chapter 5, where a similar process will be performed but to form the near resonant

expansion.

3.1 Weakly nonlinear limit

We are interested in taking the weakly nonlinear limit in our equations, so that a valid asymptotic

expansion can be formed. Weak nonlinearity is defined as a scaling such that the linear part of the

equation takes the prominent role with all nonlinear terms considered to be ε smaller in amplitude.

In systems with no parameters this is achieved by taking the size of the variables to be ∼ ε.

This automatically gifts linear terms ∼ ε and quadratic terms ∼ ε2 (in the cases we consider, and

many idealised fluid models the nonlinear term is exactly quadratic). In systems with parameters

the scalings can be made in relation to the physical parameters, and in this thesis we use the

quasigeostrophic scaling which will be described in chapter 4, for each system before the theory
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is applied.

By taking the weakly nonlinear limit we are able to form an asymptotic expansion, where we

approximate the exact solution with a series of increasingly small terms, such that truncating the

series at any term will leave the remainder (or the error) that is smaller than everything that has

come before. Defined formally we write an asymptotic series for u as:

u = u0 + εu1 + ε2u2 +O(ε3),

u0,u1,u2 ∼ O(1), (3.1)

where we have used big-O notation, described in appendix A.1.

3.2 Expansion to triad order

When we form the asymptotic expansion, the first order at which the nonlinearity is involved allows

the formation of triads. We now perform these calculations to derive the triads.

We take a completely general dynamical equation with quadratic nonlinearity, scaling such that

it is weakly nonlinear:

∂u

∂t
+

1

ε
Lu+N (u,u) = 0. (3.2)

Here we follow Embid and Majda 1996 by expressing the weakly nonlinear scaling so that the

linear part scales like 1/ε instead of the more common scaling with N ∼ ε. This shifts our fastest

timescale to a 1/ε scaling but other than this shift the process follows as normal.

The nonlinear terms are represented by the bilinear operator N . This operator has two argu-

ments, but only one input, u, and hence we have some freedom in its definition. We choose to

define it symmetrically, so that it operates equivalently on the first and second arguments. We

write:

N (a, b) =
1

2
(N (a, b) +N (b,a)) . (3.3)

We define the fast time scale τ = t/ε as in Embid and Majda 1996 and slow timescales tn = εnt,

n ∈ Z+ and write u = u(x, τ, t0, t1, ...) as a function of multiple time scales. Then (3.2) becomes:

1

ε

(
∂u

∂τ
+ Lu

)
= −

(
∂u

∂t0
+N (u,u)

)
−
( ∞∑
n=1

εn
∂u

∂tn

)
. (3.4)
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We expand the variable u as follows:

u(x, τ, t0, t1, ...) = u0(x, τ, t0, t1, ...) + εu1(x, τ, t0, t1, ...) + ... . (3.5)

Substitution into equation (3.4) gives the following at each order:

O(ε−1)
∂u0

∂τ
+ Lu0 = 0, (3.6)

O(1)
∂u1

∂τ
+ Lu1 = −

(
∂u0

∂t0
+N (u0,u0)

)
, (3.7)

O(ε)
∂u2

∂τ
+ Lu2 = −

(
∂u1

∂t0
+
∂u0

∂t1
+N (u0,u1) +N (u1,u0)

)
. (3.8)

It can be noted here that because our nonlinearity is quadratic (3.8) can only contain nonlinear

terms that are combinations of the previous ui. If there were a cubic nonlinearity this would appear

directly here as a combination of the u0 modes. In this thesis we will deliberately concentrate on

quadratic nonlinearities and so the following all assumes this.

At first order the equation is linear and so we can solve using linear theory. We assume that

the appropriate conditions are met such that Fourier transforms can be taken on the domain, then

using the exponential operator (defined in appendix A.2) and the integrating factor technique we

write:

∂

∂τ

(
eτLu0

)
= 0. (3.9)

Solving this:

u0(x, τ, t0, t1, ...) =e−τLū(x, t0, t1, ...), (3.10)

ū =u0(x, 0, t0, t1, ...). (3.11)

At next order we perform the same integration factor technique on the left hand side and

integrate to get:

u1e
τL = u1|τ=0 −

(
τ
∂ū

∂t0
+

∫ τ

0

esLN (e−sLū, e−sLū)ds

)
. (3.12)

With the equation in this form we can identify possible secular terms as any of O(τ) or higher:

those in the round brackets. This mirrors the process taken in the introductory example in chapter

1. To maintain the separation of scales for the velocities/pressures as defined in (3.5) these terms

must be o(τ) in the limit τ →∞. This is the ‘cancellation of oscillations’ concept, used by Schochet

1994, where he used the concept to prove convergence for general hyperbolic equations. To make
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clearer the specific wave components that lead to resonances we will also write the vector ū as

a sum over its (complete) eigenbasis. Written in the eigenbasis the matrix exponential is just the

exponential of the frequency of the corresponding eigenvalue (e−iωτ ) for each component of the

sum, and we have:

e−sLū =
∑
k,α

aαkr
α
ke

i(k·x−ωαk s). (3.13)

Using this substitution gives the following:

{
∂ū

∂t0

}α
k

= − lim
τ→∞

1

τ

∫ τ

0

esLN (e−sLū, e−sLū)ds

=− lim
τ→∞

1

τ

∫ τ

0

∑
k,k1,k2
α,α1,α2
k=k1+k2

Cα1α2α
k1k2k

aα1

k1
aα2

k2
rαke

ik·xe−i(ω
α1
k1

+ω
α2
k2
−ωαk )sds, (3.14)

where aαiki represents the wave amplitude of each eigenfunction which varies on all slower timescales

tn but is fixed over fast timescale τ such that all fast motion is accounted for in the structure of

the eigenbasis. Similarly, the notation {...}αk represents the part of the expression in the bracket

formed of waves with wavenumber k of eigenmodes α.The interaction coefficient is defined as:

Cα1α2α
k1k2k

=
〈
N (rα1

k1
, rα2

k2
), rαk

〉
, (3.15)

where 〈·, ·〉 is the scalar product of the system and derivatives in the operator N are expressed in

the spectral space. In the case of Fourier transforms this uses the mapping:

∂

∂x
→ ik. (3.16)

The integral (3.14) can be computed exactly. In the limit, the integral of all oscillatory contri-

butions exactly cancel to 0 and so the only contributions come from the non-oscillatory constant

contributions where Ω = ωαk − ωα1

k1
− ωα2

k2
= 0: the resonant triads. These are exactly equivalent

to the situation in which ω = λ in the forced simple harmonic motion example in chapter 1.

This allows the integral to be performed simply such that the integrand is constant in fast time

τ :

∂ū

∂t0
= lim
τ→∞

1

τ

∫ τ

0

ds
∑

k,k1,k2
α,α1,α2

Cα1α2α
k1k2k

aα1m1

k1
aα2

k2
rαke

ik·xδk−k1−k2δω−ω1−ω2

=
∑

k,k1,k2
α,α1,α2

Cα1α2α
k1k2k

aα1m1

k1
aα2

k2
rαke

ik·xδk−k1−k2
δω−ω1−ω2

, (3.17)
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or in terms of only wave amplitudes:

∂aαk
∂t0

=
∑

k,k1,k2
α,α1,α2

Cα1α2α
k1k2k

aα1

k1
aα2

k2
δk−k1−k2δω−ω1−ω2 . (3.18)

This defines the dynamics of the u0 modes up to this timescale. This asymptotic representation

is correct for times up to O(1), the t0 timescale.

3.3 Expansion to quartet order

Having formed the triads we continue with the calculations to form quartets. It will be seen that

due to the quadratic nonlinearity no direct quartets can be found, quartets will instead be formed

of the non-resonant triads from the previous order of interaction. These must first be calculated

to continue the analysis.

We now calculate the u1 terms. We return to (3.7):

∂u1

∂τ
+ Lu1 = −

(
∂u0

∂t
+N (u0,u0)

)
. (3.19)

We remove the secular terms that we have just fixed to zero (using equation (3.14)):

∂u1

∂τ
+ Lu1 = −Nnr(u0,u0). (3.20)

Here we have written Nnr to indicate that only the non-resonant parts, where ω − ω1 − ω2 6= 0,

of the nonlinear term are included. We now solve for u1. As the left hand side has the same

form as (3.6) the complementary function would find linear modes of the same form as for u0.

We can assume that these contributions to the solution are accounted for in the u0 terms (this is

possible as O(1 + ε) = O(1); the entire initial condition can be accounted for at the previous order,

see Ablowitz 2011). Hence we set the complementary function to be identically 0 at this (and all

subsequent orders). Now we simply need to find the particular integral for our right hand side:

u1 = −e−τL
∫ τ

0

esLNnr(e−sLū, e−sLū)ds, (3.21)
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or in the eigenmode basis:

{u1}αaka = −
∑
k1,k2
α1,α2

Cα1α2αa
k1k2ka

∣∣
nr
aα1

k1
aα2

k2
rαaka e

−ωaτ
∫ τ

0

ei(−ω1−ω2+ωa)sds δka−k1−k2

=
∑
k1,k2
α1,α2

Cα1α2αa
k1k2ka

∣∣
nr
aα1

k1
aα2

k2

i(ωa − ω1 − ω2)
rαaka e

−i(ω1+ω2)τ δka−k1−k2
. (3.22)

Note that u1 (the slaved modes) does not evolve according to the dispersion relation: by the

definition of non-resonance ωa 6= ω1 +ω2. This means that it is not a solution to the linear problem,

it is distinct from the u0 linear solutions, although we have a complete spatial basis and so we

can break u1 into ‘mode-like’ parts (fast-like and slow-like parts), allowing us to use the same

nonlinear interaction coefficient as for the usual linear modes. It is also important to note that the

motion of this mode is entirely determined by the aαks and so it does not evolve independently:

the modes are slaved to the zeroth order approximation. We have also assumed that u1|τ=0 = 0;

there are no slaved modes in the initial condition, because the initial condition is assumed to be

entirely accounted for in the u0 part.

Now that we have the form of u1 we can continue to the next order of expansion in (3.8):

∂u2

∂τ
+ Lu2 = −

(
∂u1

∂t0
+
∂u0

∂t1
+N (u0,u1) +N (u1,u0)

)
. (3.23)

Following the same process of removing secular terms that we used to derive equation (3.14) we

have the equation:

∂ū

∂t1
= − lim

τ→∞
1

τ

∫ τ

0

esL
(
e−sL

′ ∂ū1

∂t0
+N (e−sLū, e−sL

′
ū1) +N (e−sL

′
ū1, e

−sLū)

)
ds, (3.24)

where u1 = e−τL
′
ū1, expressed as {ū1}αke−i(ω1+ω2)τ in the eigenmode basis for some input

modes subscripted 1 and 2. We now consider each term individually. Taking the first term on the

right hand side:

− lim
τ→∞

1

τ

∫ τ

0

{
es(L−L

′) ∂ū1

∂t0

}α
k

ds

= −
∑
k1,k2
α1,α2

Cα1α2α
k1k2k

∣∣
nr

i(ω − ω1 − ω2)
δk−k1−k2

lim
τ→∞

1

τ

∫ τ

0

∂

∂t0
(aα1

k1
aα2

k2
)rαke

i(ω−ω1−ω2)sds. (3.25)
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Now from (3.18) the derivative in the integrand can be expanded:

∂

∂t0
(aα1

k1
aα2

k2
) =aα1

k1

∂

∂t0
(aα2

k2
) + aα2

k2

∂

∂t0
(aα1

k1
)

= aα1

k1

∑
ka,kb

α2,αa,αb
k2=ka+kb

Cαaαbα2

kakbk2
aαakaa

αb
kb

+ aα2

k2

∑
ka,kb
αa,αb

k1=ka+kb

Cαaαbα1

kakbk1
aαakaa

αb
kb
. (3.26)

None of these terms have any τ dependence, and so the derivative can be moved outside the

integral and the limit:

− lim
τ→∞

1

τ

∫ τ

0

{
es(L−L

′) ∂ū1

∂t0

}α
k

ds

= −
∑
k1,k2
α1,α2

Cα1α2α
k1k2k

∣∣
nr

i(ω − ω1 − ω2)
δk−k1−k2

∂

∂t0
(aα1

k1
aα2

k2
)rαk lim

τ→∞
1

τ

∫ τ

0

ei(ω−ω1−ω2)sds. (3.27)

We now have, similarly to the treatment of equation (3.14) at the triad order, that the limit:

lim
τ→∞

1

τ

∫ τ

0

ei(ω−ω1−ω2)sds, (3.28)

will send every term to 0 by cancellation of oscillations, unless ω − ω1 − ω2 = 0. We know that no

terms have this form as we required the triad to be non-resonant and hence this term must be 0.

We now consider the second term of (3.24). Writing in the eigenmode basis we see that upon

substitution of (3.22) we form various quartet resonances from the terms within the integral:

− lim
τ→∞

1

τ

∫ τ

0

{
esLN (e−sLū, e−sL

′
ū1)
}α
k
ds

= − lim
τ→∞

1

τ

∫ τ

0

∑
ka,k3
αa,α3

Cαaα3α
kak3k

rαka
α3

k3
e−iω3sδk−ka−k3

∑
k1,k2
α1,α2

Cα1α2αa
k1k2ka

∣∣
nr
aα1

k1
aα2

k2

i(ωa − ω1 − ω2)
e−i(ω1+ω2)s δka−k1−k2e

iωsds

= −
∑
ka,k3
αa,α3

∑
k1,k2
α1,α2

lim
τ→∞

1

τ

∫ τ

0

Cαaα3α
kak3k

Cα1α2αa
k1k2ka

∣∣
nr

i(ωa − ω1 − ω2)
aα1

k1
aα2

k2
aα3

k3
rαke

i(ω−ω1−ω2−ω3)s δk−k1−k2−k3
ds

= −
∑

k1,k2,k3
αa,α1,α2,α3

Cαaα3α
kak3k

Cα1α2αa
k1k2ka

∣∣
nr

i(ωa − ω1 − ω2)
aα1

k1
aα2

k2
aα3

k3
rαkδω−ω1−ω2−ω3

δk−k1−k2−k3
. (3.29)

By the symmetry of the nonlinear interaction coefficient the third term of (3.24) is identical to the

second and so we can now write the whole equation as:

∂

∂t1
{ū}αk = −

∑
k1,k2,k3
α1,α2,α3

Qα1α2α3α
k1k2k3k

aα1

k1
aα2

k2
aα3

k3
rαkδω−ω1−ω2−ω3

δk−k1−k2−k3
, (3.30)
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where:

Qα1α2α3α
k1k2k3k

=
∑
αa

2Cαaα3α
kak3k

Cα1α2αa
k1k2ka

∣∣
nr

i(ωa − ω1 − ω2)
, (3.31)

and ka = k1 + k2 and ka = k − k3.

Similarly to the triad case it is useful to symmetrise this in the input coefficients (1,2,3) as

follows:

Qα1α2α3α
k1k2k3k

=
2

3

[∑
αa

Cαaα3α
kak3k

Cα1α2αa
k1k2ka

∣∣
nr

i(ωa − ω1 − ω2)
+
∑
αb

Cαbα1α
kbk1k

Cα2α3αb
k2k3kb

∣∣
nr

i(ωb − ω2 − ω3)
+
∑
αc

Cαcα2α
kck2k

Cα3α1αc
k3k1kc

∣∣
nr

i(ωc − ω3 − ω1)

]
.

(3.32)

Here each of the three permutations of waves 1, 2, 3 has been summed,and then divided by 3,

such that the interaction coefficient is identical no matter the ordering of the input waves.

Figure 3.1 shows diagrammatically how the non-resonant triads combine to form a quartet.

k1

k2

ka

k

k3

Quartet construction.

Figure 3.1: Quartet construction, as in Equation (3.31). The wave vector ka takes the form of a
slaved mode that can be projected onto our eigenbasis such that there are fast-like parts and a
slow-like part. Each quartet has three possible sets of wavenumbers that can contribute to the
quartet, ie ka = k1 + k2, kb = k3 + k2, and kc = k1 + k3.

This completes the asymptotic expansion up to the quartet order of expansion, defining all

dynamics up to the t1 timescale. We can now move on to the higher orders of expansion.
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3.4 Above quartet order

In a similar manner of linking triads together one can form ‘n-tets’, a term we introduce as the

generalisation of triads, quartets, quintets, sextets etc, for combinations of n modes. In the fol-

lowing we establish a general form for the mathematics of these interactions, from which we can

deduce results that hold to all orders of expansion.

The n-tets are defined by the pth order equation:

O(εp)
∂up+1

∂τ
+ Lup+1 = −

p∑
m=0

(
∂up−m
∂tm

+N (um,up−m)

)
, (3.33)

the general form of equations (3.6)-(3.8), where p = n− 3.

u0 u1 u2 u3 u4 ...
O(1/ε) τ - - - - ...
O(1) t0 τ - - - ...
O(ε) t1 t0 τ - - ...
O(ε2) t2 t1 t0 τ - ...
O(ε3) t3 t2 t1 t0 τ ...

...
...

...
...

...
...

. . .

Table 3.1: For given order of the equations, the timescale to which each order of the solution is
considered is given. The timescales given in red are completely determined as they are simply
derived from slaved modes and so their behaviour is inherited from the behaviour of u0 to the
required timescale.

Consider table 3.1, which breaks down the dependence of each order of the asymptotic series

in terms of its dependence on the various timescales. The terms in red are those which are

already determined by the behaviour of u0, ie slaved. Hence, in the same manner with which we

justified that the left hand term in (3.24) was negligible, our secularity condition will never contain

any of the time derivatives in (3.33) other than that of ∂u0/∂tp. Crucially, this means that the terms

defining the evolution on the tp timescale will always reduce to just the nonlinear combinations

N (ua,ub) for all non-negative integers a, b such that p = a + b. The dynamics of each of the

contributing components ua,ub can be calculated as a function of those at lower orders which in

turn behave in the same way, until all motion is determined by the u0 terms. We can therefore

calculate a general higher order interaction coefficient as a recurrence relation.

We start by calculating the different possible combinations a, b available for the nonlinear part

N (ua,ub). Given some input ua this must be formed of a+1 u0 modes in an a+2-tet, and similarly

for ub. In the output triad we have a+ b+ 2 input u0 modes that must be split into the two groups

of sizes a+ 1, b+ 1. Define n = a+ b+ 1 so that n is the order of interaction (n = 1 corresponds

to triads), and r = b + 1, the number of input modes into the second triad, the first triad then has

n − r + 1 = a + 1 input modes. The number of possible mode permutations then corresponds to
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(n + 1)! where these are shared between the two input n-tets in the division determined by the

value of r.

To symmetrise the interaction coefficient we must add all permutations of the input wavenum-

bers and then divide by the number of them, (n + 1)!. Due to symmetries in the input interaction

coefficients there will be repeated contributions ie Cα1α2αa
k1k2ka

and Cα2α1αa
k2k1ka

will both appear in differ-

ent terms of the relation, although both are equal. However the relation is most simply stated in

the form given below.

For each of the permutations the quantity required will be the multiplication of the two input

n-tet coefficients with a triad coefficient that takes these two outputs as its inputs and returns the

output. This manner of combining smaller n-tets is displayed diagrammatically in figure 3.2. We

then need to sum over each possible r, to give all possible splittings into two n-tets.

Combining these components we get the interaction coefficients, to any desired order, defined

inductively as follows:

{C(n)}α1...αn+2α
k1...kn+1k

=

1

(n+ 1)!

n∑
r=1

[ ∑
αa,αb

{C(1)}αaαbαkakbk
{C(r−1)}αn−r+2...αn+1αb

kn−r+2...kn+1kb

∣∣∣
nr
{C(n−r)}α1...αn−r+1αa

k1...kn−r+1ka

∣∣∣
nr

−{Ω(n−r)}a1,...,n−r+1{Ω(r−1)}bn−r+2,...,n+1

+ input wavenumber permutations

]
,

(3.34)

where: {Ω(n)}ab,...,c = ωa − ωb − ...− ωc.

Where C(n) is the nonlinear interaction coefficient at the nth closure (ie n = 1 would be triad

interactions at the first closure). We need to define the particular case of {C(0)}αiαkik
= 1 such that

it is simply an identity mapping with ki = k, αi = α. We also define separately Ω(0) = −i. These

special cases are necessary terms corresponding to N (u0,un−1) where an n− 1-tet is combined

with a mode, not another n-tet.

This allows one to algorithmically compute a given interaction coefficient to any order, making

higher order resonant simulations feasible. Although the coefficients are very computationally

intensive to calculate (exponential complexity in the order n of the coefficent), they are fixed

quantities of a system and can be calculated and stored before the simulation is run. Symmetries

may allow for a more efficient calculation although they will not be explored here.
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k1

ka

kb

kn−r+1

kn−r+2

kn+1

k

N-tet A

N-tet B

output onto aαa

ka
from:

output onto aαb

kb
from:

{C(r−1)}αn−r+2...αn+1αb

kn−r+2...kn+1kb

{C(n−r)}α1...αn−r+1αa

k1...kn−r+1ka

{C(1)}αaαbα
kakbk

n-tet construction.

Figure 3.2: Diagram of the n-tet construction, Two smaller N-tets, A&B of sizes n− r+ 2 and r+ 1
respectively, output the two modes a, and b that go into a connecting triad that returns the output
mode with wavenumber k. All possible combinations must be considered in a similar manner,
summed, and then the coefficient symmetrised to give the equation in (3.34)
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3.5 Chapter summary

The following constitute the key points of the chapter:

• The method of multiple scales as a valid asymptotic approximation for weakly nonlinear

equations was derived.

• The resonances that describe the key contributing components at each timescale of the

equations were derived.

• It was shown how higher order resonances are formed by combination of non-resonant

triads.

• A new generalised higher order interaction coefficient was defined by recurrence relation for

any system with quadratic nonlinearity (3.34).
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Chapter 4

Applications to rotating stratified

flows

The geophysical fluid systems introduced in chapter 2 are now investigated using the theory

of the previous chapter to form an expansion up to triad order and then beyond. This allows

several conclusions to be drawn about the behaviour of each system, specifically new conclusions

are drawn on the fast wave interactions in the two layer rotating shallow water equations, and

generalisations are made about the higher order behaviour of all the examples.

We start, in section 4.1 by defining the quasigeostrophic limit in each system by showing

how the equations can be put in non-dimensional form. Then in sections 4.2, 4.3 and 4.5 we

perform the multiscale expansion to each equation set. Section 4.4 gives an alternative method

of deriving the asymptotic series from which we can use conservation laws to derive interaction

coefficients of the equations, and from this we can draw conclusions general to layered equations.

The existing literature on the shallow water equations is recovered up to triad order, and to higher

orders the literature is reconfirmed in the new general setting, and extends to arbitrary order using

the new framework. For the two layer shallow water equations (with the analysis based on that

of Owen, Grimshaw, and Wingate 2018) we find new behaviour, with interactions between fast

modes in the barotropic and baroclinic parts of the flow, which we discuss in detail. The strength

of these new interactions is considered against the others present in the flow, and it is discussed

how the new interaction could be entirely neglected in a discrete domain, unless near resonances

are taken into account. This motivates the following chapters where near resonant expansions

will be derived and applied to the systems, and it will be found that a subset of the higher order

interactions can occur on the triad timescale. The stratified equations are briefly discussed in a

general manner to show the difference in some of the conclusions of the higher order theory to
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the layered systems.

4.1 The quasigeostrophic limit

In the following sections the specific weakly nonlinear limit that will be taken for the example

systems is derived in each case.

4.1.1 Rotating shallow water equations

We non-dimensionalise the variables as follows:

x, y ∼ L, u, v ∼ U, t ∼ L/U,

H ∼ H, η ∼ D, (4.1)

where L, D and U are appropriate scales for each quantity, and hence:

∇ ∼ 1

L
, (u · ∇)u ∼ U2

L
,

∂

∂t
∼ U

L
. (4.2)

We reduce the parameters to the standard non-dimensional set of Rossby, Froude, and amplitude

ratio respectively:

Ro =
U

fL
, Fr =

U√
gH

, θ =
D

H
. (4.3)

The resulting non-dimensional equations are:

Du′

Dt′
+Ro−1ẑ × u′ = −Fr−2θ∇η′, (4.4)

∂η′

∂t′
+ θ−1∇ · u′ +∇ · (η′u′) = 0, (4.5)

where ′ indicates the non-dimensionalised variables.

We consider the linear terms in the expression, those where we have gathered the non-

dimensional parameters. We want these to be an order greater than the nonlinear terms which

we have now scaled to O(1), and hence we require:

Ro−1 ∼ ε−1, F r−2θ ∼ ε−1, θ−1 ∼ ε−1. (4.6)
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From which we read off Ro ∼ ε, Fr ∼ ε, θ ∼ ε, which we note is just a more precise version of

the statement all variables scale like ε, where the sizes have been defined with reference to the

parameters and length scales. We also define at this point the Burger number Bu = Ro2/Fr2 ∼

O(1).

This is the standard quasigeostrophic limit, originally used by Charney 1948. In order to con-

sider different physical scenarios when we continue the analysis, the original dimensional vari-

ables will be used. However there is an underlying assumption that implicitly this is an asymptotic

limit as ε→ 0.

4.1.2 Two layer Rotating shallow water equations

The quasigeostrophic scaling for the two layer case follows similarly.

We non-dimensionalise (assuming that the variables in each layer are the same order of mag-

nitude) as follows:

x, y ∼ L, ui, vi ∼ U, t ∼ L/U,

Hi ∼ H, ηi ∼ D, pi ∼ gD. (4.7)

The length scale L can be chosen to be one of the two deformation scales cm/f where cm is

the linear long wave phase speed defined above in (2.103). We reduce to Rossby, Froude, and

amplitude ratio as with the one layer equations in section 4.1.1 above, and the resulting non-

dimensional equations are similar but now layer-wise:

Du′i
Dt′

+Ro−1ẑ × u′i = −Fr−2θ∇p′i, (4.8)

∂η′i
∂t′

+ θ−1∇ · u′i +∇ · (η′iu′i) = 0, (4.9)

where ′ indicates the non-dimensionalised variables.

It should be noted that the assumption that the scalings are the same in each layer automati-

cally leads to the same assumption in each vertical mode (as defined above in (2.106)). However

we have said nothing about the relative density or height scaling between the layers. Two com-

mon possible scalings are the rigid lid limit and the thin layer limit which we shall define here

(taken from Owen, Grimshaw, and Wingate 2018) for completeness. However later results will be

provided for the more pedestrian limit where both densities are assumed to be O(1).
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Rigid lid limit

The rigid lid approximation is a specific case of the two layer equations used in geophysical

applications. The rigid lid equations are only physically realised when the top layer is at a fixed

solid boundary, otherwise they are an approximation based on the (unphysical) assumptions that

the gravitational force is large compared to the Coriolis force and the densities of the two layers

are close. In this parameter regime the sizes of waves on the external boundary are negligible

compared to the size of the waves on the internal layer. The limit g → ∞ is used to force rigidity

in the upper layer when no physical boundary actually exists. This limit is taken separately to the

asymptotic limit we are taking; this defines the basic system before any other assumptions are

made.

We start the derivation (see Salmon 1998) by taking r → 1 and defining the reduced gravity

g′ = g(1 − r) which we then require to be finite in the limit. The transformation to external and

internal modes then becomes:

Lm =


1 m = +,

−H2

H1
m = −,

(4.10)

c2m =


g(H1 +H2) m = +,

g′H1H2

H1+H2
m = −,

(4.11)

by setting r = 1− δ, g′ = gδ, δ � 1 and taking Taylor series in δ.

Because in this limit we take g →∞, the external wave speed becomes infinite (c+ →∞) and

the corresponding external Rossby radius of deformation λ+ = c+/f →∞ as well. By definition,

below the Rossby radius of deformation the surface displacement, and hence fast modes, are

negligible and so for an infinite radius all fast modes must be neglected. This corresponds to the

external boundary becoming fixed in the long wave limit. Effectively waves cannot propagate on

the external boundary and so it becomes ‘rigid’.

Another consequence of this limit is that the pressure in the external mode becomes unde-

fined, changing the structure of the equations: this pressure can no longer evolve in time. This

means that if the external mode is initially defined as motionless the equations only describe the

internal mode in a one layer system similar to the usual one.

When we subsequently consider the two layer equations we are interested in the interactions

between the layers, and hence the rigid rid limit will not be imposed so as not to reduce the

degrees of freedom of the two layers.
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Thin layer limit

Another application relevant to the ocean is to make the upper layer thin compared to the lower

layer. However this would change the analysis completely: the thin layer/internal mode will be

pushed to the next order of the expansion and so the leading order effects will be equivalent

to the one layer case, with corrections at higher order. Effectively this would violate the weakly

nonlinear assumption we have just made, we wish to maintain amplitude separation of the linear

and nonlinear parts.

To see this consider the amplitude ratio D/H ∼ ε. If we choose one of our layer depths to

be asymptotically small, to avoid violation of this condition we require D ∼ ε2 and so all of the

dynamics of this layer can only affect the O(ε2) terms and higher in the non-triad interactions.

Equivalently setting H1 = H, H2 = Hε in (2.103):

c2m = gH


1 +

rρ
4 ε +O(ε2) m = +,

(1− rρ
4 )ε +O(ε2) m = −,

Lm =


1− (

rρ
4 − 1)ε +O(ε2) m = +,

− rρ4 ε +O(ε2) m = −,

which shows that the internal mode will be asymptotically small and asymptotically slow in our

calculations.

4.1.3 Stratified equations

To form the quasigeostrophic limit for the stratified equations we start by non-dimensionalising

(similarly to Embid and Majda 1996 for example) as follows:

x, y, z ∼ L, u, v, w ∼ U, t ∼ L/U,

σ ∼ S, η ∼ D, P ∼ P. (4.12)

We reduce the parameters to the Rossby, Froude, and Euler numbers and a ratio of buoyancy to

velocity, now defined as:

Ro =
U

fL
, Fr =

U

LN
, Eu =

P

U2
, Γ =

SL

U2
. (4.13)
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The resulting non-dimensional equations are:

Du′

Dt′
+Ro−1ẑ × u′ = −Eu∇′P ′ − Γσẑ, (4.14)

∂σ′

∂t′
+ (u′ · ∇′)σ′ − Fr−2Γ−1w′ = 0, (4.15)

∇′ · u′ = 0, (4.16)

where ′ indicates the non-dimensionalised variables.

As for the layered equations we need the linear part to scale like ε−1 and so we have the

following scalings:

Ro, Fr ∼ ε, Eu, Γ ∼ ε−1. (4.17)

This defines the quasigeostrophic scaling for the stratified equations.

The geostrophic limit will be assumed in all of the following examples, rendering them weakly

nonlinear, and therefore appropriate for multiple scale theory.

4.2 Rotating Shallow Water Equations

We now derive the multiscale expansion for the rotating shallow water equations, the simplest of

the geophysical applications presented in this thesis.

There are many sources for the multiple scales theory on the rotating shallow water equations.

A few relevant examples amongst the many are Warn 1986, and Embid and Majda 1996, and

examples that expand up to the quartet order include Reznik, Zeitlin, and Ben Jelloul 2001 and

Thomas 2016. We will use the theory of Chapter 3 to rederive this expansion up to triad order, and

then to deduce the higher order results, recovering some of their work and extending it further.

The aim is to try to show that the specific quartet results of these authors are easily explained in

the context of zero mode systems, using the framework set out in the previous chapter.
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4.2.1 Nonlinear Interaction coefficient

From (3.15) the interaction coefficient takes the form:

Cα1α2α
k1k2k

=
i

2

[
(vα1

k1
· k2)(vα2

k2
· vαk ) + (vα2

k2
· k1)(vα1

k1
· vαk )

+(vα1

k1
· (k1 + k2))φα2

k2
φαm∗k + (vα2

k2
· (k1 + k2))φα1

k1
φα∗k
]
, (4.18)

where v = (u, v)T , rαk = (vαk , φ
α
k)T and * denotes the complex conjugate.

We then calculate the interaction coefficients explicitly by substitution of the system’s eigen-

vectors (2.85) into (4.18): For the slow modes:

C0,0,0
k1k2k

=
c(k2 × k1)

2ωω1ω2

(
ω2

2 − ω2
1

)
. (4.19)

Here ωi is the unsigned frequency for the wave with wavenumber ki.

For two slow and one fast mode:

Cα1,0,0
k1k2k

=
iω2

2
√

2ωω1|k1|
[
if(k2 × k1)z + α1ω1(k1 · k)

]
, (4.20)

C0,0,α
k1k2k

=
i(k1 × k2)z

2
√

2ωω1ω2c2|k|
[
2αω(k2 × k1)z + ifc2

(
ω2

1 − ω2
2

) ]
. (4.21)

For two fast and a slow mode:

Cα1α20
k1k2k

= 0, (4.22)

Cα10α
k1k2k

=
i

4cωω1ω2|k||k1|
[
2i(αα1ω1ω − f2)c2(k · k1)(k1 × k)z)

− iαα1ω1ωc
2(k1 × k)z|k1|2 + α1ω1fc

2(k · k1)|k1|2)

+ 2αωc2f(k × k1)2
z + ic4|k1|2|k|2(k × k1)z

]
.

(4.23)
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For three fast modes:

Cα1α2α
k1k2k

=
i

4
√

2ωω1ω2|k||k1||k2|
[

(
α1ω1α2αωω2(|k1|2 + |k2|2) + (α1ω1|k1|2 + α2ω2|k2|2)f2

)
(k1 · k2)

+(2α1ω1α2αωω2 + (α1ω1 + α2ω2)f2)(k1 · k2)2 + f2(α2ω2 − α1ω1)(k1 × k2)2
z

+if(α2αωω2 + f2)|k2|2(k2 × k1)z − if(α1αωω1 + f2)|k1|2(k2 × k1)z

+c2(ω1α1+ω2α2)|k2|2|k|2|k1|2 + c2(ω1α1|k2|2 + ω2α2|k1|2)|k|2(k1 · k2)

+ ifc2(|k2|2 − |k1|2)|k|2(k2 × k1)z

]
.

(4.24)

These interaction coefficients were previously found in, and agree with those calculated in Ward

and Dewar 2010 for example.

Throughout the thesis triads will be referred to in the format: type-type-type, so for example:

slow-slow-fast triads. This should be understood to be two input slow modes acting to alter a fast

mode: the right hand mode type will always represent the ‘output’ of the interaction. A second

equivalent notation is used as well: (α1, α2;α), which for this example is written (0, 0;±). Both

notations extend to higher order interactions, with the output mode on the far right hand side.

Trivially there can be no resonances between a fast mode and two slow ones. It can also

be shown (see fast-fast-fast resonances subsection below) that there are no possible fast-only

resonances. The only remaining interactions are the slow-slow-slow and the fast-slow-fast inter-

actions. This gives a set of coupled equations, one for the slow mode evolution and the second

to describe the evolution of the fast mode due to interaction with the slow mode (referred to as

scattering by Ward and Dewar 2010 for example, also sometimes called the catalytic interaction).

This is a key result in the fast-slow splitting of a system: the slow part of the flow is unaffected by

the fast, and as only scattering of fast waves occurs there is no energy transfer between the two

parts to triad order. It can be shown (for instance in the aforementioned references) that the slow

mode evolution is exactly the usual barotropic quasigeostrophic equations.

Fast-fast-fast resonances

Here we prove that no resonances are possible between triads of three fast waves in this system.

Other proofs can be found in Embid and Majda 1996 and Ward and Dewar 2010 for example. A

graphical proof is also possible, as is done in the similar case of the two layer rotating shallow

water equations in section 4.3.2.
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We combine the triad and resonance conditions and write them explicitly as follows:

±
√
c2|k1 + k2|2 + f2 = ±

√
c2|k1|2 + f2 ±

√
c2|k2|2 + f2. (4.25)

We write F = f/(c|k2|), cos θ = (k1 · k2)/|k1||k2| and K = |k1|/|k2|, transforming the equation to:

±
√

1 +K2 + 2K cos θ + F 2 = ±
√
K2 + F 2 ±

√
1 + F 2. (4.26)

We square both sides rearrange and square again:

2K cos θ − F 2 = ±2
√
K2 + F 2

√
1 + F 2, (4.27)

K2(F 2 + sin2 θ)− F 2K cos θ + F 2 +
3

4
F 4 = 0. (4.28)

Equation (4.28) is quadratic in K and has no solutions as shown by the negative discriminant:

F 4 cos2 θ − (3F 4 + 4F 2)(F 2 + sin2 θ) =

− 3F 4 − 4F 4 sin2 θ − 3F 6 − 4F 2 sin2 θ) ≤ 0, (4.29)

where equality is only achieved by F = 0, which requires 0 rotation. Approximate solutions can

exist where F = f/(c|k2|) is small (this is highly relevant to the near resonant expansion of the

later chapters).

4.2.2 Higher Order theory

We have shown that the possible triad interactions are very limited, only two possible sets of

modes can interact. We continue to higher order to see what other interactions can take place,

and whether the unused triad combinations can act as building blocks to form a resonant pathway

for quartet and higher order interactions.

We continue by using the theory from chapter 3 to write the quartets as combinations of non-

resonant triads. The possible quartets (minus permutations) are:

1. (0, 0, 0; 0),

2. (0, 0, 0;±), 3. (±, 0, 0; 0),

4. (0, 0,±;±), 5. (0,±,±; 0),

6. (0,±,±;±), 7. (±,±,±; 0),

8. (±,±,±;±),
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where the notation (a, b, c; d) is understood to mean mode types a, b, and c acting on the output

mode of type d, similarly to the triad notation defined above.

Of these, 2 and 3 can trivially never resonate. Quartet 1 is the next order of interaction between

the zero modes, found by both Reznik, Zeitlin, and Ben Jelloul 2001 and Thomas 2016. 4 and 5

belong to the quartet given in the Thomas paper, referred to there as ‘wave dragging’. Quartet 6

can be shown to be exchanges between triads of fast modes catalysed by a zero mode and 7 will

shortly be shown to have an interaction coefficient of zero (this is due to conservation of linear

PV). Quartet 8 is formed of combinations of fast modes, and this includes self interaction, which

leads to modulational instability given by the nonlinear Schrödinger equation (see Zakharov and

Ostrovsky 2009 for example). We now consider each possible non-trivial quartet one by one.

For quartet 1, from the general form (3.32) we write the interaction coefficient as follows:

Q0 0 0 0
k1k2k3k =

2

3

[ ∑
αa=±

Cαa 0 0
kak3k

C0 0 αa
k1k2ka

∣∣
nr

i(ωa − ω1 − ω2)
+
∑
αb=±

Cαb0 0
kbk1k

C0 0 αb
k2k3kb

∣∣
nr

i(ωb − ω2 − ω3)
+
∑
αc=±

Cαc 0 0
kck2k

C0 0 αc
k3k1kc

∣∣
nr

i(ωc − ω3 − ω1)

]
.

The point of interest to highlight here is that, because we require that the component triads cannot

themselves be resonant, the interactions must be mediated via a fast-like slaved mode (αa, αb, or

αc). In the standard derivation of the barotropic quasigeostrophic equations where the motion is

limited to the balanced zero modes from the outset, there can be no quartet interaction, despite

the appearance of zero-only quartet interactions in the full equations. This is due to the omission

of fast wave motions that occurs during the derivation.

We now consider resonance 5 (the type of which Thomas 2016 gives an example):

Q0 ± ∓ 0
k1k2k3k

=
2

3

[∑
αa

Cαa∓ 0
kak3k

C0 ± αa
k1k2ka

∣∣
nr

i(ωa − ω1 − ω2)
+
∑
αb

Cαb0 0
kbk1k

C± ∓ αb
k2k3kb

∣∣
nr

i(ωb − ω2 − ω3)
+
∑
αc

Cαc± 0
kck2k

C∓ 0 αc
k3k1kc

∣∣
nr

i(ωc − ω3 − ω1)

]
.

Now using the resonance conditions and the fact that C± ∓ 0
k1k2k

= 0 we can reduce the possible

combinations to αa = 0, αb = ±, and αc = 0:

Q0 ± ∓ 0
k1k2k3k

=
2

3

[
C0∓ 0

kak3k
C0 ± 0

k1k2ka

∣∣
nr

i(ωa − ω1 − ω2)
+
∑
αb=±

C±0 0
kbk1k

C± ∓ ±k2k3kb

∣∣
nr

i(ωb − ω2 − ω3)
+
C0± 0

kck2k
C∓ 0 0

k3k1kc

∣∣
nr

i(ωc − ω3 − ω1)

]
.

Our quartets include combinations of slow-fast-slow triads and fast-fast-fast triads: the two pos-

sible triad interactions that did not occur to first approximation due to the resonance condition.

We can therefore expect that any physical behaviour of the full system that these triads cause, by

moving energy between these modes, is captured at second order in the asymptotic expansion,

as a two stage movement of energy between modes. By considering the quartets as combinations

of triads, the physical interactions are less obscured in the mathematics. Technically it remains to
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prove that this particular combination of triads does not have zero interaction coefficient, but as

a specific example is included in the appendix of Thomas 2016 this is sufficient to show that this

resonance is present in the expansion.

We now consider resonance 7. In this case we can draw a more general conclusion about all

orders of the expansion for resonances of the form (±, ...,±; 0) and so we move straight to the

more general form of the interaction coefficient given by (3.34). We write:

{C(n)}±... ± 0
k1...kn+1k

=

n∑
r=1

1

(n+ 1)!

 ∑
αa,αb

{C(1)}αaαb0kakbk
{C(r−1)}±...±αbkn−r+2...kn+1kb

∣∣∣
nr
{C(n−r)}±...±αak1...kn−r+1ka

∣∣∣
nr

{Ω(n−r)}a1,...,n−r+1{Ω(r−1)}bn−r+2,...,n+1

+ perm.

 .
We will use an inductive argument. We assume that {C(p)}±...± 0

k1...kp+1ka
= 0 for all p < n. The

contribution for αa = 0 will cause the right hand coefficient (C(n−r)) to be 0. Similarly αb = 0

will cause the middle coefficient (C(r−1)) to be 0. But for the only remaining option, αa, αb = ±,

the left hand interaction coefficient (C(1)) has the same form and so that is also 0. All possible

combinations contribute 0 to the interaction coefficient and so the output is always 0. We note

also that all permutations have the same form in this case. Hence we have an inductive step,

and can conclude that because a set of only fast modes cannot affect slow modes at first order

(C±±0 = 0), this is true for all orders. This higher order expansion has not been calculated before

to the best of the author’s knowledge. Although it was somewhat apparent from conservation of

linear PV that conservation of this form might be expected, this derivation shows that the higher

orders terms in the PV will not introduce higher order alterations to the PV in the rotating shallow

water equations.

As noted in section 4.2.1, we also cannot have a resonant interaction between a single fast

mode and the slow modes such as resonances 2 and 3 (because ω + 0 + ... + 0 6= 0). This

limits our interactions with a zero mode output so that for the nth closure with resonance between

n + 2 modes the number of fast modes (nf ∈ N) must be in the range 1 < nf < n + 1 (hence

at first closure there is no possible value of nf ). This is our generalisation of the conclusion in

Thomas 2016 that there exist energy exchanges between fast and slow modes at closures above

first order.

The conclusions of this example are in fact general to any system with zero modes, that has

C±±0 = 0. Section 4.4 will provide a different method of establishing the relation C±±0 = 0 that

will deepen our understanding, and is simply generalised to all layered zero mode systems. It is

generally accepted that the first order of expansion is dominant (for example: for rotating shallow

water equations this is triad order, for surface waves quartet order) however for systems with
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distinguished zero modes there will always be interactions that are never present at triad order,

and hence the full physics is not in the model unless both triad and quartets are considered. We

suggest that above this order, but not before, there is no particular benefit to greater expansion,

as all physics is included and higher orders will simply be weaker interactions important only on

longer timescales.

To summarise, we have shown that the only possible resonant quartets with slow mode output

are the (0, 0, 0; 0) quartet, that can only exist due to small u1 fast-like modes, and (0,±,∓; 0)

quartets, an example of which was given in Thomas 2016. We also generalise the finding of zero

interaction coefficient for the triad (±,∓; 0) to all n-tets of the form (±, ...,±; 0)

4.3 Two Layer Rotating Shallow Water Equations

The work in this section is based on Owen, Grimshaw, and Wingate 2018, and is an example

of the expansion up to triad order of the multiple scales expansion. We take the eigenfunction

decomposition into vertical and wave modes from chapter 2 and continue to explicitly define the

nonlinear effects in this specific case. Extra detail is presented where the behaviour diverges

significantly from that of the one layer case.

The interaction coefficient is defined using (2.107) and (2.108) as:

C
α1α2α
m1m2m
k1k2k

=
iAmm1m2

2

[
(vα1m1

k1
· k2)(vα2m2

k2
· vαmk ) + (vα2m2

k2
· k1)(vα1m1

k1
· vαmk )

+
cm
cm2

(vα1m1

k1
· (k1 + k2))pα2m2

k2
pαm∗k +

cm
cm1

(vα2m2

k2
· (k1 + k2))pα1m1

k1
pαm∗k

]
.

(4.30)

Here v = (u, v)T , and for clarity in distinguishing between the vertical modes in the following, the

mode information is encoded into two superscripts α and m. This gives the following explicit triad

resonance condition and t0 evolution equation:

ωαmk − ωα1m1

k1
− ωα2m2

k2
= 0, (4.31)

∂

∂t0
aαmk =

∑
k,k1,k2
α,α1,α2

C
α1α2α
m1m2m
k1k2k

aα1m1

k1
(t)aα2m2

k2
(t)δk−k1−k2δω−ω1−ω2 . (4.32)
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The only possible resonances are the combinations of modes in the form (α1, α2;α):

a) (0,±;±), (±, 0;±),

b) (±,±; 0), (4.33)

c) (±,±;±),

d) (0, 0; 0).

The first and second in (4.33a) are treated as equivalent due to the symmetry of the input

modes chosen in the interaction coefficient C. Combination (4.33b) leads to an interaction term

of zero as will be shown presently in section 4.3.1 by direct substitution of the eigenvectors into C

in (4.30).

There are only three types of interactions remaining. Slow-slow-slow (4.33d) that define the

development of the PV modes over the longer time scale t, and fast-slow-fast (4.33a), and fast-

fast-fast (4.33c) that define the scattering of fast modes off a slow mode and interactions of fast

modes amongst themselves respectively.

For the one layer equations it was shown in section 4.2.1 that there are no fast-fast-fast reso-

nances, and further, that the equations for the slow part have no dependence on the fast modes.

In the following it is shown that in the two layer case the slow part again evolves independently

of the fast, giving the quasigeostrophic equation. However unlike the one layer case it can be

shown that there are interactions amongst the fast waves for the two layer system, provided they

are between different vertical modes.

4.3.1 Interaction coefficients

To begin the analysis of the evolution equation (4.32) we calculate the interaction coefficients,

after which we will look at the resonance condition. When these two parts are defined the full

evolution of the equations to triad order will be known.

The interaction coefficients are worked out explicitly for the different possible mode combina-

tions. This is achieved by substitution of the specific mode forms given in (2.106) into the general

form given in (4.30). This allows us to examine in detail and categorise the different possible

nonlinear interactions in this system. The vertical mode parameter mi is left general and setting

m = m1 = m2 returns a comparable expression to the one derived in section 4.2.1 for the one

layer case.
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For the slow modes:

C
0,0,0

m1m2m
k1k2k

=
Amm1m2

cm(k2 × k1)

2ωω1ω2

(
cm1

ω2
2

cm2

− cm2

ω2
1

cm1

)
(4.34a)

=
iAmm1m2

2

cm
ω

(
ω2

cm2

(v1 · k2) +
ω1

cm1

(v2 · k1)

)
. (4.34b)

For two slow and a fast mode:

C
α1,0,0
m1m2m
k1k2k

=
icmω2A

m
m1m2

2
√

2ωω1cm2
|k1|

[
if(k2 × k1)z + α1ω1(k1 · k)

]
, (4.35)

C
0,0,α

m1m2m
k1k2k

=
iAmm1m2

(k1 × k2)z

2
√

2ωω1ω2cm1
cm2
|k|
[
2αω(k2 × k1)z + if

(
c2m2

(ω2
1 + ω2)− c2m1

(ω2
2 + ω2)

) ]
. (4.36)

For two fast and a slow mode (no resonance possible):

C
α1α20
m1m2m
k1k2k

= 0, (4.37)

C
α10α

m1m2m
k1k2k

=
iAmm1m2

4cm2ωω1ω2|k||k1|
[
(if2(c2m − c2m2

)|k|2(k × k1)z + 2if2c2m2
(k · k1)(k × k1)z)

+ α1ω1f(c2m − c2m2
)|k|2(k1 · k)− iαα1ω1ωc

2
m2

(k1 × k)z|k1|2

+ α1ω1fc
2
m2

(k · k1)|k1|2 + 2iαα1ω1ωc
2
m2

(k1 × k)z(k1 · k)

+ 2αωc2m2
f(k × k1)2

z + ic2m2
c2m|k1|2|k|2(k × k1)z

]
.

(4.38)

For three fast modes:

C
α1α2α
m1m2m
k1k2k

=
iAmm1m2

4
√

2ωω1ω2|k||k1||k2|
[

+
(
α1ω1α2αωω2(|k1|2 + |k2|2) + (α1ω1|k1|2 + α2ω2|k2|2)f2

)
(k1 · k2)

+ (2α1ω1α2αωω2 + (α1ω1 + α2ω2)f2)(k1 · k2)2 + f2(α2ω2 − α1ω1)(k1 × k2)2
z

+ if(α2αωω2 + f2)|k2|2(k2 × k1)z − if(α1αωω1 + f2)|k1|2(k2 × k1)z

+ c2m(ω1α1 + ω2α2)|k2|2|k|2|k1|2 + c2m(ω1α1|k2|2 + ω2α2|k1|2)|k|2(k1 · k2)

+ ifc2m(|k2|2 − |k1|2)|k|2(k2 × k1)z

]
.

(4.39)

We recover the second version of the slow-slow-slow interactions (4.34b) from the usual quasi-

geostrophic equations, as will now be demonstrated.

As the fast modes have zero linear PV the restriction to slow modes is equivalent to the as-
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sumption that the flow, to first approximation, is solely the geostrophic part. The second part

of the quasigeostrophic approximation is to assume the advection of the flow is due only to this

geostrophic part (the slow mode interaction), and hence we would expect that the equation for the

slow part:

∂a0m
k

∂t
+
∑
1,2

C
0,0,0

m1m2m
k1k2k

a0m1

k1
a0m2

k2
δk−k1+k2

= 0, (4.40)

is equivalent to the quasigeostrophic equations:

∂Qi
∂t

+ ((ug)i · ∇)Qi = 0. (4.41)

To prove this equivalence between (4.40) and (4.41), we start by transforming (4.41) into the mode

basis:

∂Qm
∂t

+
∑
m1m2

Amm1m2
((ug)m1

· ∇)Qm2
= 0. (4.42)

For a general slow eigenvector r0m
k we now consider the linear potential vorticity: Qmk = −ωmk a0m

k /cm

calculated directly from the form in (2.106) using the linear PV relation Qm = ζm − fpm/cm. With

this we then write the quasigeostrophic equation symmetrically in Fourier space to see:

∂a0m
k

∂t
+
∑
1,2

iAmm1m2

2

cm
ω

(
ω2

cm2

(v1 · k2) +
ω1

cm1

(v2 · k1)

)
a0m1

k1
a0m2

k2
δk−k1−k2

=
∂a0m

k

∂t
+
∑
1,2

C
0,0,0

m1m2m
k1k2k

a0m1

k1
a0m2

k2
δk−k1−k2

= 0. (4.43)

This confirms that the two layer quasigeostrophic equations are recovered as they were in the one

layer case (see Embid and Majda 1996). These are still the usual quasigeostrophic equations in

our limit, even though we have included a fast time scale.

4.3.2 Fast-fast-fast Resonances

Of particular interest in the two-layer equations are the fast-fast-fast resonances. These are a

clear difference to the single layer version of the shallow water equations, where they cannot oc-

cur. We now consider where these resonances are permitted by the dispersion relations. The

fast-fast-fast resonances were originally considered by Ball 1964 for the simpler case with no

Coriolis force. The following subsection shows graphically how these resonances can exist (this

graphical method was discovered independently by researchers in different fields, for example Zi-

man 1960 and Ball 1964). In addition to the graphical method, the full derivation of the resonances
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is given in the next subsection.

Graphical method

Figure 4.1 shows possible resonances using the graphical method of finding resonances (cf Ball

1964). The method involves drawing all the branches of the dispersion relation twice, once centred

around the origin and the second time around a chosen point on any of the surfaces representing

a possible frequency ω1(k1). This second set of resonances then give all possible solutions to

ω1 + ω2(= ω) on coordinates given by k1 + k2(= k). Therefore any point that lies on both of the

dispersion relation sets must solve the triad and resonance conditions. Due to the large number

of branches of the dispersion relation we here restrict each diagram to specific branches, drawing

only the leaves relevant for discussion.

Case (a) in the diagram shows that there are no resonances between waves of the same

vertical mode, equivalent to the one layer case. However we find that the resonances always

exist for any combination of fast modes with different vertical modes: cases (b), (c), and (d) in

figure 4.1. In addition there is another more unusual resonance (seen in the lower sheet of the

light hyperboloid in case (d) in figure 4.1) where the ratio of the input and output wave speeds is

less than 1 (cm2
/cm < 1). Where the output wave is an external wave and one of the inputs is

internal if we then consider sufficiently large values of the Burger number for the external mode

(Bu = c2+|k1|2/f2 = L2
r/L

2) this resonance will exist. This condition corresponds to wavelengths

at least
√

3 times smaller than the radius of deformation (see below). It should be noted that the

apparent simplicity of this bound is due to the limiting assumptions made to get an absolute bound,

namely the angle of incidence between the waves is 0, and the ratio of baroclinic to barotropic

wave speeds is 0 (clearly this is non-physical, but provides a good approximation where the ratio

is small).

Alternatively the equivalent resonance also exists where the two input waves are of different

type to the output. Here the ratio of input to output wave speeds needs to be greater than 1 and

so the input waves are both external modes. We then require that the wavelength of one input

mode is such that the external Burger number is sufficiently large: Bu = c2+|k1|2/f2 > 3.

These resonances are unusual in that they only exist for angles of incidence within a range

around ±π. Figure 4.2 shows the intersections of the surfaces from figure 4.1d projected into the

(k, l) plane and shows more clearly the angle dependence of the resonance. It can be seen that

without the Coriolis force the angle of incidence is in a range (−π/2, π/2) but as the Coriolis force

becomes more dominant the range of angles is limited to be closer to −π.
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(a) All same mode (b) Two -, one + mode

(c) Two +, one - mode, c+ ∼ c− (d) Two +, one - mode c+ >> c−

Figure 4.1: Graphical method to find possible resonant triads in the fast-fast-fast interactions. The
dark hyperboloid is the manifold on which the ω1 may lie (defined by the dispersion relation for
k1), the light hyperboloid is centred around a chosen ω1 in the first manifold. Any crossing point
of the light and dark hyperboloids represents a possible resonance.
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O O Ok1 k1 k1θ θ
θ

a) Bu = ∞ (f = 0) b) Bu � Bucrit c) Bu ∼ Bucrit, Bu > Bucrit

Figure 4.2: Projection onto wave space of the intersections of the surfaces in figure 4.1d showing
the two sets of resonances. a) The non-rotating case equivalent to the diagram in Ball 1964, b)
The case for large external Burgers number, and c) shows Burger number close to the critical
value of the Burgers number such that the angle of incidence in the resonance must be small.

Algebraic method

The following is the exact method to find the resonances discussed with reference to the graphical

method. This is taken from the appendix of Owen, Grimshaw, and Wingate 2018.

We seek to solve:

αω = α1ω1 + α2ω2, (4.44)

where αi = ±1. We substitute the relevant branches of the dispersion relation:

α
√
c2m|k|2 + f2 = α1

√
c2m1
|k1|2 + f2 + α2

√
c2m2
|k2|2 + f2, (4.45)

we square both sides and rearrange:

c2m|k|2 − c2m1
|k1|2 − c2m2

|k2|2 − f2 = 2α1α2

√
c2m1
|k1|2 + f2

√
c2m2
|k2|2 + f2, (4.46)

we square again:

(c2m(|k1|2 + 2(k1 · k2) + |k2|2)− c2m1
|k1|2 − c2m2

|k2|2 − f2)2 = 4(c2m1
|k1|2 + f2)(c2m2

|k2|2 + f2),

(4.47)
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we expand and gather terms:

(c2m − c2m1
)2|k1|4 + (c2m − c2m2

)2|k2|4

+4c2m(c2m − c2m1
)(k1 · k2)|k1|2 + 4c2m(c2m − c2m2

)(k1 · k2)|k2|2

+4c4m(k1 · k2)2 + 2(−c2m2
c2m1

+ c4m − c2mc2m1
− c2m2

c2m)|k1|2|k2|2

−2(c2m + c2m1
)|k1|2f2 − 2(c2m + c2m2

)|k2|2f2 − 4c2m(k1 · k2)f2 − 3f4 = 0. (4.48)

We define K = |k2|/|k1|, R1 = c2m1
/c2m, R2 = c2m2

/c2m and F = f/cm|k1| with θ as the angle

between the two input wave vectors. Writing the equation as a quartic in K:

AK4 +BK3 + CK2 +DK + E = 0,

A = (1−R2)2,

B = 4(1−R2) cos θ,

C = 4 cos2 θ + 2(1−R2)(1−R1)− 4R1R2 − 2(1 +R2)F 2, (4.49)

D = 4((1−R1)− F 2) cos θ,

E = (1−R1)2 − 2(1 +R1)F 2 − 3F 4.

There are three distinct cases to consider:

1. R1 = R2 = 1 (Reduces to the one layer case - no solution).

2. R1 = 1 6= R2.

3. R1 = R2 6= 1.

Within each of these cases Ri > 1 Ri < 1 need to be considered.

Considering the second case R1 = 1, equations (4.49) become:

AK4 +BK3 + CK2 +DK + E = 0,

A = (1−R2)2,

B = 4(1−R2) cos θ,

C = 4 cos2 θ − 4R2 − 4F 2, (4.50)

D = −4F 2 cos θ,

E = −4F 2 − 3F 4.

Following Rees 1922, we define p, q, s as the coefficients of the reduced quartic, then for all
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Figure 4.3: The quartic discriminant ∆ for R2 = {0, 0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2} represented
as surfaces in parameter space {F 2, θ}. Red shows values greater than 1, where there are 4
solutions and therefore the directional resonance (the resonance in figure 4.1d which can have
limited angle of incidence between the waves) exists.

parameter values our equation has: q < 0, p = s− q2/4 < 0. This means that there are either 2 or

4 real solutions when the quartic discriminant ∆ is less than or greater than 0 respectively. This

is plotted in figure 4.3. The areas of 4 solutions correspond to the second crossing point shown

in the hyperboloid diagrams in figure 4.1.

86



The definitions of ∆, q and p are:

q = 8AC − 3B2, (4.51)

p = 64A3E − 16A2C2 + 16AB2C − 16A2BD − 3B4, (4.52)

∆ = 256A3E3 − 192A2BDE2 − 128A2C2E2 + 144A2CD2E

− 27A2D4 + 144AB2CE2 − 6AB2D2E − 80ABC2DE

+ 18ABCD3 + 16AC4E − 4AC3D2 − 27B4E2 + 18B3CDE

− 4B3D3 − 4B2C3E +B2C2D2. (4.53)

In full:

q =− 16(R2 − 1)2(F 2(R2 + 1) + 2R2 + cos2 θ) ≤ 0, (4.54)

p =− 256(F 2 + 1)(R2 − 1)4(F 2(R2
2 −R2 + 1) +R2

2 + 2R2 cos2 θ) ≤ 0, (4.55)

∆ =− 4096F 2(1 + F 2)2(R2 − 1)2
[
4R2(R2 − cos2 θ)3

+ (R2
2(11R2

2 − 8R2 + 8)− 2R2(R2 + 10)(2R2 − 1) cos2 θ + (2R2 − 1)(10R2 + 1) cos4 θ)F 2

+ (2(R2
2 −R2 + 1)(5R2

2 − 2R2 + 2) + 2(2R2 − 1)(R2
2 − 7R2 + 1) cos2 θ)F 4

+ 3(R2
2 −R2 + 1)2F 6

]
. (4.56)

The largest value of F 2 with 4 solutions occurs at R2 = 0, cos2 θ = 1. In this case the discriminant

is as follows:

∆ =− 4096F 4(1 + F 2)2
[
−1 + 2F 2 + 3F 4

]
, (4.57)

and so the point from which the resonance occurs, where there is a bifurcation from 2 to 4 solu-

tions of the quartic, is given by the solutions to:

−1 + 2F 2 + 3F 4 = 0, (4.58)

F 2 = −1 or
1

3
. (4.59)

As F is real this only occurs at the solution F 2 = 1/3. For values greater than this ∆ < 0 and so

the directional resonance (that of figure 4.1d) doesn’t occur. This means 1/F 2 = c2m|k1|2/f2 =

Bu > 3 is the range of values for which this resonance can exist.

So with reference to the original resonance equation (4.44) to recover α values we find that

there are three distinct types of resonances:

1. R2 > 1: where α = α2 = −α1.
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2. R2 < 1: where α = α2 = α1.

3. R2 < 1, ∆ > 0: where α = α1 = −α2.

It is then possible to map these resonances onto those with R1 = R2 6= 1 by rearranging the input

and output waves and relabelling:

α1ω1(k1) + α2ω2(k2) = αω(k), (4.60)

⇒ α1ω1(k1)− αω(k) = −α2ω2(k2), (4.61)

⇒ αaωa(ka) + αbωb(kb) = αcωc(kc), (4.62)

where αa = α1, αb = −α, αc = −α2 and the wavenumber vectors are ka = −k1, kb = k = k1 + k2,

kc = k2. In the new set of resonances Ra = c2m1
/c2m2

, Rb = c2m/c
2
m2

(
= R−1

2

)
, F = f/cm|k1|. We

then have the equivalent set of 3 resonances:

1. Ra = Rb < 1: where αb = αc = αa.

2. Ra = Rb > 1: where αb = αc = −αa.

3. Ra = Rb > 1, ∆ > 0: where −αb = αa = αc.

It should be noted that the angle θ is now the angle between the first input wave and the output

wave.

To conclude we add the fast-fast-fast resonances into the equations describing the first closure

to form:

∂a0m
k

∂t
+
∑
1,2

C
0,0,0

m1m2m
k1k2k

a0m1

k1
a0m2

k2
δk−k1−k2

= 0, (4.63)

∂aαmk
∂t

+
∑
1,2

C
0,α2,α
m1m2m
k1k2k

a0m1

k1
aα2m2

k2
δk−k1−k2

δω−ω2

+
∑
1,2

C
α1,α2,α
m1m2m
k1k2k

aα1m1

k1
aα2m2

k2
δk−k1−k2δω−ω1−ω2 = 0, (4.64)

with the interaction coefficients from section (4.3.1).

4.3.3 Comparative strength of resonances

In order to examine the strength of the new resonance within the full equation 3.49 we position the

fast-fast-fast resonance against the fast-slow-fast resonance by numerical evaluation of the size of
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the interaction coefficient in the case of each triad for the same given wavelengths. The parame-

ters were chosen to be physically applicable in an oceanic context with typical wave speeds of or-

ders ∼ 100ms−1, 10ms−1 for the barotropic and baroclinic parts respectively. Wavenumbers were

then chosen such that the fast-fast-fast triad is exactly at resonance and the fast-slow-fast triad it

is close to resonance. Sets of wavenumbers are chosen with θ ∼ 1◦, θ ∼ 45◦ and θ ∼ 176◦ where

θ is the angle between the input and output barotropic modes. This is to check that this angle does

not affect the size of the interaction, to pick out an interaction lying on each of the two branches

of the traces previously sketched in figure 4.2, and to have examples with barotropic wavelengths

larger and smaller than the baroclinic. For reference the wavelength of the wavenumber (500, 0)

barotropic mode would be ∼ 200m, the (−15.21, 10) baroclinic/barotropic mode ∼ 5.5km, and the

(−967.25, 30) mode is ∼ 100m.

In table 4.1 the maximum absolute value of the different interaction coefficients in any per-

mutation of mixed vertical modes is given, for mixed vertical modes on lines 1, 3 and 5 and for

a single vertical mode on lines 2, 4, 6. The α parts of the modes correspond respectively with

the wavenumbers given in the left hand column with the vertical mode information m quoted with

the wavenumber. Fast-fast-fast interactions within a single vertical mode are not displayed as this

interaction doesn’t occur. Assuming that all mode amplitudes are within an order of magnitude of

each other, this should scale like the change in time of each part of the reduced equations (4.64).

We find that both interactions have a similar order of magnitude. However it should be noted that

if we choose a single vertical mode for all of the constituent modes (lines 2, 4, and 8) a larger

interaction coefficient can occur for the catalytic scattering case. This suggests that although the

overall dynamics may be dominated by the same resonances present in the one layer case, the

new resonance is important in evaluating energy exchange between the baroclinic and barotropic

modes. The difference in amplitude between the single and mixed mode cases is almost entirely

due to the Amm1m2
term (defined in (2.109)), and for this parameter set the coupling between the

modes is weak due to density ratio r ∼ 1. This relates to the rigid lid limit: from section 4.1.2

we see that for similar densities L− ∼ −H2/H1 and so for the mixed mode layers substitution into

Amm1m2
leads to almost exact cancellation. For applications with a smaller density ratio it would

be expected that the mixed mode terms would become a more significant part of the overall flow,

however in general the barotropic part of the flow could be expected to dominate the dynamics.

4.3.4 Discussion

These resonances are equivalent to those found by Ball 1964 but now extended to the rotating

case. Unlike those found by Ball, for certain parameter regimes some of these triads showed
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Wavenumbers and vertical mode Max |C±0±| Max |C±±±|
(500, 0,+), (−15.21, 10,−), (484.79, 10,+) 3.02× 10−10 8.04× 10−10

(500, 0,+), (−15.21, 10,+), (484.79, 10,+) 3.05× 10−7 -

(500, 0,+), (−122.49, 300,−), (377.51, 300,+) 3.99× 10−10 6.07× 10−10

(500, 0,+), (−122.49, 300,+), (377.51, 300,+) 4.03× 10−7 -

(500, 0,+), (−967.25, 30,−), (−467.25, 30,+) 1.07× 10−10 4.51× 10−10

(500, 0,+), (−967.25, 30,+), (−467.25, 30,+) 1.93× 10−7 -

Table 4.1: Size of the interaction coefficients for the given wavenumbers, chosen to form a reso-
nant triad of fast-fast-fast modes and a near resonant triad for sets of fast-slow-fast modes. This
shows that for the barotropic/baroclinic interactions the fast-fast-fast resonance is of similar magni-
tude to the fast-slow-fast one. However the dominant interactions will still be those occurring within
a single vertical mode. Physical parameters used were as follows: g = 10ms−2, f = 0.0001s−1,
H1 = 500m, H2 = 4000m, L = 100/2π km, the non-dimensional wavenumbers are quoted as k
where the physical wavenumber is k/L and physical wavelength is 2πL/|k|.

unusual behaviour with waves interacting preferentially with waves of a small angle of incidence.

In addition this resonance ceases to exist for wavelengths more than some factor greater than

the Rossby deformation radius. This resonance is very likely to always be present in applications

to real oceanic or atmospheric conditions with large deformation radii. However in other planets

where the length scales and planetary rotation rates may be different, it could be possible to

have parameter regimes such that certain resonances exist for different wavenumbers at different

latitudes. Particularly interesting are the cases with parameters such that this resonance affects

very small wavenumbers. In these cases the resonance is almost entirely between waves with

angles of incidence close to zero. In addition this resonance can be arbitrarily strong, dependent

on the size of the other waves, due to the |k|, |k2| terms in the interaction coefficient (4.39). This

describes a possible mechanism for energy to be transferred to low wavenumbers.

Similarly to the one layer case, in section 4.3.1 the slow modes were shown to behave exactly

as the quasigeostrophic equations for two layers. The weakly nonlinear approximation to this

order allows the motion to be split into two equations, the quasigeostrophic equation for the slow

part and equations describing the interactions of the fast modes with the slow modes and amongst

themselves.

Our ‘critical Burger number’ condition can be interpreted as a maximum wavenumber at which

this particular resonance will exist. However we can also show that a more general, minimum

wavenumber at which fast-fast-fast resonances occur must exist. For this we simply take the limit

|k| → 0 in the resonance condition:

ω = f +
c2m
2f
|k|2 + ... ∼ f,
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and this clearly shows that no resonances can exist, provided the Burger number of each wave

involved is sufficiently small to make this approximation. In most applications we might expect that

this limit will not be reached due to the large size of the Burger number, although it might arise for

large fast-rotating planets.

A fundamental issue arises when considering numerical simulations of the equations (4.63-

4.64), using discrete wavenumbers. The dispersion relation is a function of k which takes all real

values. When we have discrete values of k such as in a numerical simulation of the equations,

or when there is a periodic domain, it is possible for the loci of the dispersion relation (such as

in figure 4.2) to lie ‘off-grid’, never crossing any of the grid points corresponding to the discrete

wavenumbers. More precisely: we have a countable set of frequencies ω in our model, forming a

countable subset of the reals. Adding any pair of this subset doesn’t necessarily return a member

of the subset (an analogy would be that no integer a exists such that
√

2 +
√

3 =
√
a). There is

no guarantee that the frequencies will ever exactly resonate and in general only near resonances

may appear. We find that even if we explicitly choose parameter values to ensure that some

particular triad is exactly resonant, it does not automatically follow that any other exact resonant

triad appears in the discrete set of wavenumbers (barring the trivial permutations where k→ −k).

The entire resonance may be absent, removing its physical effect from the model.

This observation has been previously made in Smith and Waleffe 1999. Investigations of this

nature into the existence of resonant sets in discrete domains have been carried out, details of

which can be found in Kartashova 2010 for example. However the progress made with this number

theoretic issue is mostly restricted to problems in which the dispersion relation is proportional to a

rational power of k. This is not the case here, and we cannot establish the existence of resonant

sets in this way. This is an interesting problem that seems to be due to the interplay between

resonances and a periodic domain. This is a good example of the limits of exact resonances

compared to near resonances: with any exactly resonant theory it may not be possible to simulate

on a periodic domain without losing physical effects. Near resonant interactions (as in for example

Smith and Lee 2005) would reintroduce missing resonances, and hence missing physics into the

simulations.

At higher orders of the expansion one might expect that terms will appear in which the fast

wave modes influence the slow, as found in the one layer system by Thomas 2016. If we consider

only the set of modes in one vertical mode the dynamics behaves identically to a single layer.

Because of this, in terms of wave interactions, we don’t expect to lose behaviours within the

two layer model: all the dynamics from the one layer model will be present plus any additional

interactions.
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4.3.5 Higher Order theory

The higher order theory actually requires very little extension from the one layer theory. All the

results will pass in the same way, such is the strength of using the generalised higher order

interaction coefficient. We expect all combinations of fast waves acting on a slow wave to have an

interaction coefficient of zero as given in (4.37). Then, by the same inductive argument as given

for the one layer equations in section 4.2.2, it follows that all combinations of fast modes cannot

output a slow mode.

All possible triad mode combinations will take part in the triad or quartet interactions (except

the fast-fast-slow interactions, as explained) the main difference being that some fast-fast-fast

interactions had been promoted to triad order as shown in the triad order analysis.

4.4 Alternative method of expansion using conservation laws

In this section before continuing onto the stratified equations, we explore a different manner of

calculating the expansion, based on conservation laws. The aim is to provide insight into the

physical cause of the results of the previous section. The analysis follows closely that contained

in Owen, Grimshaw, and Wingate 2018, which is based on that of Vanneste 2007, extending it to

special cases, and to the quartet order of the expansion. It gives a general proof that fast modes

alone cannot combine to create a zero mode in layered equations.

Before we continue we define some more compact notation. This method requires less con-

sideration of wavenumbers and so the necessity to write everything explicitly in subscripts and

superscripts is reduced. We therefore reduce (slightly) the number of coefficients by defining

notation that combines information into a reduced form. The C and a are now defined as:

Cqrp = Cα1α2α
k1k2k

, ap = aαk ,

p = {k, α}, q = {k1, α1}, r = {k2, α2}.

The subscript now defines the output mode with the superscripts denoting the inputs. Mode

information has been conglomerated into a single identifier. This will hopefully make the content

of the section more readable, and worth the expense of introducing a second notation.

We will extend the argument in Vanneste 2007 (more details in Vanneste and Vial 1994, and

Ripa 1981). We start by defining the nonlinear interaction coefficient in terms of the quadratic part
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of the energy and/or enstrophy. This is done by defining quadratic forms that, as well as giving

the first terms of the conservation laws, form an orthogonality condition over the different modes.

First we consider the linearised problem. The dispersion relation is derived where the different

branches give rise to different modes, as given in chapter 2. We now write the quadratic part of

the energy (or enstrophy) in the form:

E(2) =
1

2

∫
D

u†Eu dx, (4.65)

where u is the state vector, u† is its conjugate transpose and E is a Hermitian matrix. It can be

proven Vanneste 2007 that this must obey the following orthogonality relation:

u†pEuq = E(2)
p δpq. (4.66)

This relation defines the constants E(2)
p .

We now solve the nonlinear problem by taking Fourier transforms and splitting into the eigen-

modes from the linear problem. We can use this orthogonality relation to isolate the effect on the

amplitude of each mode:

ȧp =
1

2

∑
qr

Cqrp a
∗
qa
∗
re
iΩpqrtδkp+kq+kr , (4.67)

Cqrp = u†pE[N(uq,ur) +N(ur,uq)]
∗/E(2)

p , (4.68)

Ωpqr = ωp + ωq + ωr, (4.69)

where ȧ denotes differentiation of a with respect to time. The slightly different form of Ω is due to

using the conjugates of the modes, and using the reality condition a∗p = a−p.

So far equations (4.67)-(4.69) are identical to Vanneste’s work, but also equivalent to the

multiscale analysis in this and the preceding chapters; the selection of the orthonormal basis

simply chooses the basis in which E = I and E(2)
p = 1.

Using the conservation of energy and enstrophy laws: the energy (or enstrophy) can be ex-

panded as:

E = E(2) + E(3) + ... =
1

2

∑
p

E(2)
p |ap|2 +

1

6

∑
pqr

E(3)
pqra

∗
pa
∗
qa
∗
re
iΩpqrt + ... . (4.70)

Here the coefficient E(3)
pqr is symmetric in it’s arguments and can be derived from the form of the

enstrophy and energy for the equation set being studied. However, the exact form of the cubic
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energy is not needed for our purpose and we omit it here, the form of the enstrophy is given

and used shortly in section 4.4.1. We differentiate (4.70) in time and, because it is a conserved

quantity, this derivative must be equal to zero at each order. The lowest order terms are:

Ė(2) =
1

2

∑
pqr

E(2)
p Cqrp a

∗
pa
∗
qa
∗
re
iΩpqrtδkp+kq+kr + c.c + ..., (4.71)

Ė(3) =
1

6

∑
pqr

iΩpqrE
(3)
pqra

∗
pa
∗
qa
∗
re
iΩpqrt + ..., (4.72)

where these terms are both approximately 0. Here we have used equation (4.67) to express the

time derivative as a terms. This equality will hold for arbitrary amplitudes and so we choose to

consider the case where every wave amplitude is 0 apart from three that form a resonant triad.

Summing the different permutations over a chosen triad (a, b, c) and then repeating the method

for enstrophy:

E(2)
a Cbca + E

(2)
b Cacb + E(2)

c Cbac = −iΩabcE(3)
abc, (4.73)

Z(2)
a Cbca + Z

(2)
b Cacb + Z(2)

c Cbac = −iΩabcZ(3)
abc. (4.74)

Here Z(3)
abc is defined equivalently to E(3)

abc but represents instead the cubic enstrophy. We consider

the resonant cases Ωabc = 0, to the first order time scale.

From section 2.2.1, fast modes have zero quadratic enstrophy contribution: Zi = 0 and so in

the case of two fast modes (b, c) combining to make a slow mode (a) all that remains in (4.74) is:

Cbca = 0.

4.4.1 Higher order expansion

In section 4.2.2 we found that to all orders sets of fast modes cannot output a zero mode. Here

we repeat that finding using this alternative derivation. This is new work, extending the previous

literature to higher order. It is assumed, and necessary for the following manipulations, that the

nonlinearity is quadratic with no cubic or higher order terms present, as is the case in all the

applications we consider.

We continue to higher order for the enstrophy. Expanding the enstrophy to 4th order in ampli-
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tude:

Z = Z(2) + Z(3) + ... =
∑
p

Z(2)
p |ap|2 +

∑
pqr

Z(3)
pqra

∗
pa
∗
qa
∗
re
iΩpqrt

+
∑
pqrs

Z(4)
pqrsa

∗
pa
∗
qa
∗
sa
∗
re
iΩpqrst + ... . (4.75)

We then take derivatives in time:

∂Z
∂t

=
∂Z(2)

∂t
+
∂Z(3)

∂t
+ ...

=
∑
pqr

Z(2)
p Cqrp a

∗
pa
∗
qa
∗
re
iΩpqrt +

∑
pqr

iΩpqrZ
(3)
pqra

∗
pa
∗
qa
∗
re
iΩpqrt

+
∑
pqrs

CrsmZ
(3)
pqma

∗
pa
∗
qa
∗
sa
∗
re
iΩpqrst +

∑
pqrs

iΩpqrsZ
(4)
pqrsa

∗
pa
∗
qa
∗
sa
∗
re
iΩpqrst + ... . (4.76)

We choose to consider only the terms that are 4th order in amplitude:

∂Z(3)

∂t
+ ... =

∑
pqrs

(CrsmZ
(3)
pqm + iΩpqrsZ

(4)
pqrs)a

∗
pa
∗
qa
∗
sa
∗
re
iΩpqrst = 0. (4.77)

We consider an isolated quartet, as before we are free to do this due to the arbitrariness of the

wave amplitudes. We are left with the following:

C12
a Z

(3)
34a + C23

b Z
(3)
41b + C34

c Z
(3)
12c + C41

d Z
(3)
23d = −iΩ1234Z

(4)
1234. (4.78)

Here a, b, c, d are modes such that the wavenumber is ka = k1 + k2 etc. From section 2.2.2 we

have the form of Z(3) for the one and two layer equations:

Z
(3)
i = −ηiQ2

i , (4.79)

and so after symmetrisation:

Z
(3)
123 =

1

3
(η1Q2Q3 + η3Q1Q2 + η2Q3Q1) , (4.80)

where Q is the linear PV of the mode. We see that if two or three of the modes in the Z
(3)
123 are

fast modes, say Q1 = Q2 = 0 for example, then Z(3)
123 = 0. We now consider equation (4.78) for

modes 2, 3, 4 fast and mode 1 slow. We first consider the 1st and 4th terms on the left hand side.

If modes a and d are fast or slow then we have the situation described above: Z(3)
34a = Z

(3)
23d = 0.

For the 2nd and 3rd terms this occurs for b and c fast. However if b, and c are slow we can then

consider the interaction coefficients. However from the previous order for fast modes interacting

to form a slow mode we have: C23
b = C34

c = 0. Every term must be identically zero either due to

the quadratic enstrophy conservation, or due to the zero interaction coefficient from the previous
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order.

It follows that enstrophy is conserved to 3rd order. This did not require any new constraints:

the first order behaviour automatically caused fast mode combinations to be unable to impact an

output zero mode. This is the same situation as we found in the inductive argument made above in

section 4.2.2 on the interaction coefficient. This will repeat similarly at every order for the layered

equations due to the form of the enstrophy given in (2.52) and (2.56).

This analysis shows that conservation of enstrophy in interactions of many fast modes with a

single slow mode is entirely fulfilled where the triad interaction coefficient C23
1 = 0. It is also irrele-

vant to this construction that the detuning needs to be zero as the Z(n) term in layered equations

is always 0 for less than 2 slow mode combinations. The key point is that this is independent of

resonances, and the analysis is completely generalisable for all zero mode systems with a similar

form of potential vorticity (ie layered type equations).

In contrast the stratified equations have the weaker condition that C23
1 = 0 only for an exact

resonance. This breaks the logic of the preceding paragraphs; it doesn’t follow that the interac-

tions will be 0 to every order. This is observed in the following section in the form of the interaction

coefficient. We note that as this is due to the linearised structure of the potential vorticity, if the

investigation were performed using the full nonlinearised PV to define the slow mode then one

would expect the conservation to hold once more, and indeed the full PV mode would be obtained

from our slow mode by a near-identity transform. However, as linearisation and asymptotic expan-

sion in the manner presented here is ubiquitous in the field it is of importance that the behaviour is

qualitatively different in this paradigm and so we will contrast the layered and stratified equations

in this way in the remainder of the work.

4.5 Stratified Equations

Work on stratified flow using the Boussinesq approximation exists in McComas and Bretherton

1977 where a triad similar to the mixed mode fast-fast-fast triad, the interactions between gravity

waves, was investigated. In that and related subsequent work by Bartello 1995 amongst others,

the inclusion of vertical wavenumbers means that the form of the triads are fundamentally dif-

ferent from the layered cases just considered. One would expect that interaction between gravity

waves of different vertical modes in the two layer equations mimics transfer of gravity wave energy

vertically, and that there is an equivalent process in the stratified case. This correlates with the

observation that in the continuously stratified equations there are no interactions between grav-

ity waves lying in the same horizontal plane (Lelong and Riley 1991), but that for non-horizontal
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gravity waves resonant interactions do exist. This suggests that the asymptotically expanded two

layer equations may act as a proxy for understanding of the fully stratified case.

We now examine the stratified equations using the framework from chapter 3 to continue to

higher orders, not previously investigated in this manner. We will then compare this to the layered

equations. We find that whilst the gravity waves will interact in the manner described, similarly to

the layered equations, the fast-fast-slow modes have a fundamentally different character to those

of the shallow water systems.

4.5.1 Nonlinear Interaction Coefficient

Here we derive the form of the nonlinear interaction coefficient for this equation set in each triad

type. The main difference from the layered equations is the coefficient for the (±,±; 0) interaction,

which is no longer identically 0, as indicated by the form of the enstrophy and the theory of section

4.4.1.

The interaction coefficient for these equations takes the form:

Cα1α2α
k1k2k

=
i

2

[
(uα1

k1
· k2)(rα2

k2
· rαk ) + (uα2

k2
· k1)(rα1

k1
· rαk )

]
. (4.81)

This was calculated in each individual case. For brevity we define the horizontal part of the

wavenumber kh = (k, l)T , so that |kh|2 +m2 = |k|2.

For the slow modes:

C0,0,0
k1k2k

=
iN(k1 × k2)z

2ωω1ω2|k||k1||k2|
[
N2(|kh1 |2 − |kh2 |2) + f2(m2

1 −m2
2)
]

=
iN(k1 × k2)z

2ωω1ω2|k||k1||k2|
[
ω2

1 |k1|2 − ω2
2 |k2|2

]
. (4.82)

For two slow and one fast mode:

Cα1,0,0
k1k2k

=
i

2
√

2ω1ω2ω|k2||k||k1||kh1 |
[
(f(k × k2)z − iα1ω1(kh · kh2 ))N2(m1|kh2 |2 +m2|kh1 |2)

+iα1ω1m1N
2|kh|2|kh2 |2 +

[
fm1(k × k2)z + iα1ω1m1(kh1 · kh2 )− iα1ω1m2|kh1 |2

]
f2(mm2)

]
,

(4.83)

C0,0,α
k1k2k

=
iN2(k2 × k1)z√

2ωω1ω2|k||k1||k2||kh|
[
f(m2 −m1)|kh|2 + fm(|kh1 |2 − |kh2 |2) + 2iαωm(k2 × k1)z

]
.

(4.84)
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For two fast and a slow mode:

Cα1α20
k1k2k

=
iN

2ωω1ω2|k||k1||k2||kh1 ||kh2 |
[
i(α1ω1 + α2ω2)f(kh1 · kh2 )(m2

1|kh2 |2 +m2
2|kh1 |2)

−2i(α1ω1 + α2ω2)fm2m1|kh1 |2|kh2 |2 + (α1α2ω2ω1 + f2)(m2
2|kh1 |2 −m2

1|kh2 |2)(k2 × k1)z

]
.

(4.85)

For this interaction coefficient we can simplify further. Using the dispersion relation (2.120), we

write:

(α1ω1 − α2ω2)(α1ω1 + α2ω2) = ω2
1 − ω2

2 =
(N2 − f2)(m2

2|kh1 |2 −m2
1|kh2 |2)

|k1|2|k2|2
. (4.86)

This can then be used to rewrite the last term of the interaction coefficient, and hence:

Cα1α20
k1k2k

=
iN(α1ω1 + α2ω2)

2ωω1ω2|k||k1||k2||kh1 ||kh2 |
[
if(kh1 · kh2 )(m2

1|kh2 |2 +m2
2|kh1 |2)

− 2ifm2m1|kh1 |2|kh2 |2 +
1

N2 − f2
(α1ω1 − α2ω2)(α1α2ω2ω1 + f2)|k1|2|k2|2(k2 × k1)z

]
.

(4.87)

The resonance condition in this case is given by:

α1ω1 + α2ω2 = 0, (4.88)

and so for a resonant triad Cα1α20
k1k2k

= 0. This coefficient will be commented on further in chapter

6, when this resonance is explored in a near resonant framework. Here significant differences are

found from the layered equations in the previous sections. For the triad order expansion there is

no such difference as the term is 0.

Cα10α
k1k2k

=
iN

4ωω1ω2|k||k1||k2||kh1 ||kh|[[
fmi(k × kj)z + iαiωimi(k

h
i · khj )

− iαiωimj |khi |2
][
fm(kh · khi ) + iαωm(kj × k)z − fmi(k

h · khj )
]

+ (kj × ki)z
[
f2mmj((N

2 + ωωj)|khj |2|kh|2

+ (ααjωωj + f2)mmj(k
h · khj ) + ifmmj(αω + αjωj)(k × kj)z

]]
.

(4.89)
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For three fast modes:

Cα1α2α
k1k2k

=
i

4
√

2ω1ωω2|k||k1||k2||kh1 ||kh2 ||kh|[[
fm1(k × k2)z + iα1ω1m1(kh1 · kh2 )− iα1ω1m2|kh1 |2

][
f2mm2((N2 + ωω2)|kh2 |2|kh|2

+ (αα2ωω2 + f2)mm2(kh · kh2 ) + ifmm2(αω + α2ω2)(k × k2)z

]
+
[
fm2(k × k1)z + iα2ω2m2(kh2 · kh1 )− iα2ω2m1|kh2 |2

][
f2mm1((N2 + ωω1)|kh1 |2|kh|2

+ (αα1ωω1 + f2)mm1(kh · kh1 ) + ifmm1(αω + α1ω1)(k × k1)z

]]
.

(4.90)

The implementation of the theory to triad order is very similar to the layered equations of the

previous sections. No resonant interactions are possible between two fast modes to return a

slow mode, but the three fast modes can interact provided that the modes are not all travelling

horizontally or all vertically. If they are all horizontal/vertical the resonance condition becomes the

following:

±N ±N ±N = 0, or ± f ± f ± f = 0, (4.91)

which can never be satisfied for non-zero stratification/rotation. This was previously found in Le-

long and Riley 1991 and complements the finding that in the one layer equations such resonances

cannot exist, while in the two layer mixed vertical mode interactions (akin to non-horizontal motion)

are permitted.

One key difference from the layered equations is due to the fast-fast-slow interaction. In the lay-

ered equations this interaction coefficient was identically zero, however in the stratified equations

it is only identically zero in the case of exact resonant triads. At the higher orders of interaction

where the non-resonant triads form building blocks of the quartets, and larger n-tets, these reso-

nances are able to participate in energy exchanges. This is reflected in the theory of the previous

section. For the stratified equations the cubic part of the enstrophy is given in (2.60):

Z3 =

(
N(∇× u)z + f

∂σ

∂z

)
(∇σ · ∇ × u) . (4.92)

Unlike the layered equations the cubic order of an enstrophy expansion won’t be 0 for com-

binations containing only one slow mode. The slow-fast splitting separates the modes based on

linear PV content. This means that although we still expect the interaction coefficient Cα1α20
k1k2k

to

be zero for a resonant triad, it should not be identically zero for the non-resonant triads, as in

the case of the layered equations (this is commented on in Lelong and Riley 1991). To see this
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we consider equation (4.74). It is now not true that Z(3)
abc = 0 and so the result Cα1α20

k1k2k
= 0 is

dependent on the condition Ωabc = 0, that the triad is resonant. This breaks the reasoning applied

to equation (4.78) for the layered cases in which we concluded that {C(n)}α1...αn+10
k1...kn+1k

= 0. For

the stratified equations these interactions are viable and in comparison to the layered equations

the constraint on the number of fast modes in a mixed mode resonant interaction at nth order

becomes the slightly more lenient 1 < nf ≤ n + 1 for n ≥ 2. More will be concluded about these

particular resonances in the following chapters in the near resonant context.

Although we found that the barotropic/baroclinic fast mode interactions in the two layer rotat-

ing shallow water equations appear to mirror the vertically propagating mode interactions in the

stratified equations, it doesn’t appear that the same can be said for the slow modes of the sys-

tem. This isolates a key difference between the layered and stratified equations. The restriction to

layers removes many higher order resonant pathways from the system. To quartet order there is

a fundamental difference in the interactions due to the spontaneous creation of slow modes from

the fast modes. However the change in total enstrophy would be unaffected if the contributions

from the u1 part were to be considered. We investigate this further in the near resonant case in

chapter 6, where some u1 terms can be promoted up an order in the asymptotic expansion, due

to faster growth.

4.6 Chapter summary

The key points in this chapter were:

• We applied the theory of chapter 3 to the one layer equations. This confirmed existing work

and generalised the higher order resonant theory.

• We presented new work from the application of the theory to the two layer rotating shallow

water equations, evaluating the contribution to vertical energy movement in the fast modes.

We discussed how this resonance may be completely absent in a discrete domain without

consideration of near resonant modes.

• We demonstrated an alternative method extending that of Vanneste 2007 for deriving inter-

action coefficients from conserved quantities. This demonstrated directly how the conser-

vation laws lead to behaviour of the interaction coefficients.

• We derived general theory during the application of the conservation laws that applies to

all layered zero mode quadratic systems (and hence many fluid applications) and this was

contrasted to the situation in the stratified equations.
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In each of the applications considered, examples of where the theory requires extension to near

resonant expansions were identified: in the one layer equations it was seen that fast only inter-

actions can be arbitrarily close to resonance but never exactly, in the two layer equations the

fast-fast-fast resonance discussed was such that it might not appear at all in a discrete domain,

and in the stratified equations it was seen that conservation of enstrophy may appear to be broken

if one is not able to consider the evolution of some slaved mode u1 parts of the dynamics on the

same timescale as the triads. All of these reasons point towards the necessity of a near resonant

expansion. This will now be explored in the subsequent chapters.
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Chapter 5

Near resonant expansion

As discussed in chapter 1, where resonant detuning is sufficiently small we expect the behaviour

to approximate the exact resonances. In the development of the asymptotic expansion near res-

onances become relevant due to bad ordering of the series: slaved modes that we assumed to

be O(ε) may in fact grow large enough that they need to be included in the larger part of the

expansion. If the description of the possible issue sounds like the description of secular terms in

the original multiple scale expansion of chapter 3, that is because that is exactly the issue which

arises; the set of secular terms must be expanded to take into account all of the terms that grow

on the timescale t0 ∼ εt: the near resonances.

These small changes to the expansion cause a step change in the behaviour of the expanded

system. Numerical examples of this physically different behaviour can be found in for instance

Smith and Lee 2005 and related papers. The effects in numerical examples can be particularly

noticeable, where the wavenumber spacing can decimate the number of available exact reso-

nances. Here we will describe a new framework that can quantify how the near resonant system

links to the exact resonant system of the previous chapters by effectively ‘promoting’ higher order

resonances to the triad timescale. We will then apply the framework to the example geophysi-

cal systems in chapter 6 where we will see that it gives a much better approximation of the true

solution.

5.1 Triad order expansion

The theory in the subsequent sections is presented in a similar manner to the theory in chapter

3. This is by design, to reflect that the method is derived similarly but now extends the exact
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expansion. In this vein, we start with the triad derivation as in section 3.2, but we will now include

the broader range of secular terms represented by the near resonances.

We set up the expansion similarly to the exact resonant case and begin with the equivalent

equations, those of (3.6-3.8), restated here:

O(ε−1)
∂u0

∂τ
+ Lu0 = 0, (5.1)

O(1)
∂u1

∂τ
+ Lu1 = −

(
∂u0

∂t0
+N (u0,u0)

)
, (5.2)

O(ε)
∂u2

∂τ
+ Lu2 = −

(
∂u1

∂t0
+
∂u0

∂t1
+N (u0,u1) +N (u1,u0)

)
. (5.3)

If we were to continue as in section 3.2, at first order the equation is linear and we can write the

solution in terms of the exponential operator and ū, constant in fast time:

u0(x, τ, t0, t1) = e−τLū(x, t0, t1),

ū = u0(x, 0, t0, t1). (5.4)

Then solving at the next order:

eτLu1 = u1|τ=0 −
(
τ
∂ū

∂t0
+

∫ τ

0

esLN (e−sLū, e−sLū)ds

)
. (5.5)

We need to make sure that, as previously in (3.18), the u1 terms are the leading order error to the

expansion in u0 and that they do not grow to O(1) size. We equate the secular terms:

∂ū

∂t0
= −1

τ

∫ τ

0

esLN (e−sLū, e−sLū)ds

=− 1

τ

∫ τ

0

∑
k,k1,k2
α,α1,α2
k=k1+k2

Cα1α2α
k1k2k

aα1

k1
aα2

k2
rαke

ik·xe−i(ω
α1
k1

+ω
α2
k2
−ωαk )sds. (5.6)

This is almost equivalent to equation (3.14) except that we take more care in the limit to identify

the secular terms. This will allow the near resonances to remain in our expansion.

We can bound the size of the integral to determine the size of the contribution to the series,

to ensure that u1 is not going to contain modes that grow too large. A maximum bound on the

integral can be given by:

∣∣∣∣1τ
∫ τ

0

eiΩsds

∣∣∣∣ =

∣∣∣∣eiΩτ − 1

τΩ

∣∣∣∣ ≤ 2

τ |Ω| ∼ O
( ε

Ω

)
,

where: Ω = ωαk − ωα1

k1
− ωα2

k2
. (5.7)

It is apparent that in the case of near resonances (Ω ∼ ε) we cannot bound the contributions to
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O(ε) and so they cannot be pushed to the next order in the expansion: they are secular. We define

Ωlim as the maximum detuning size at which we consider there to be resonance. In the weakly

nonlinear limit ε → 0, it follows that the appropriate maximum resonant detuning Ωlim → 0 and

so there are no near resonances to contribute, and the exact expansion would be appropriate.

Because the sizes of the possible Ω’s of each triad grouping are determined by the system, but

the nonlinearity size ε has been imposed, we always expect near resonances in the system for

small but finite ε. Therefore, in the pursuit of a practical limit, we maintain near resonances in our

expansion. For the remainder of the work we will fix Ωlim = O(ε).

We contrast the two cases of near and exact resonance in terms of the minimum non-zero

detuning in the system Ωmin (also shown in Figure 5.1):

• ε < Ωmin

– Exact resonances - Ω = 0, formed by the terms that remain secular in the limit.

– Non-resonances - All non-exact resonances. These behave as slaved modes, shown

in chapter 3

• ε > Ωmin

– Near resonances - Ω ∼ O(ε), these terms with sufficiently small Ω vary at the same

rate as exact resonances; they are secular terms.

– Non-resonances - Ω = O(1) formed by all non-near resonances, these behave as

slaved modes

When ε > Ωmin, the non-exact resonances are distributed such that some belong to the near res-

onant group. As will be seen the near resonances cause similar behaviour to the non-resonances

and are only differentiated by the timescale on which they act.

The exact resonances can be considered a special case (or a subset) of the near resonances.

For use later, to explicitly avoid division by small terms, we must define the concept of a super-

near resonance: a subset of the near resonances with Ω ∼ O(εn), n ≥ 2. This notion is explored

in section 5.1.3.

Sections 5.1.1, 5.1.2, and 5.1.3 perform essentially the same process as one another: calcu-

lating the output from a triad interaction and placing it at the appropriate timescale, in the cases

of non-resonance, near resonance, and super-near resonance respectively.
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0 ε

Near resonances Non-resonances

Non-resonances

Ω

Exact resonances

ε < Ωmin

ε > Ωmin

Figure 5.1: Diagram showing the definitions of the different terms. The size of Ω compared to ε
determines the type of mode formed. When ε < Ωmin the near resonances disappear and the
non-resonances are identically slaved modes.

5.1.1 Slaved modes

Where the triads have Ω large, such that no resonance occurs, we simply cannot consider them

on the t0 timescale. We proceed as we did for exact resonances in section 3.3, solving to calculate

their behaviour, as slaved modes that contribute to the next order in the term u1. These will then

be passed back into the quadratic nonlinearity as before to form a ‘pseudo’ cubic interaction. We

return to (5.2):

∂u1

∂τ
+ Lu1 = −

(
∂u0

∂t0
+N (u0,u0)

)
. (5.8)

We remove the exact and near resonant secular terms, that will instead contribute to the motion

as a slow change to the u0 term as part of equation (5.12). These remaining non-resonant terms

will be equated with the τ derivative and linear operator from the left hand side:

∂u1

∂τ
+ Lu1 = −Nnnr(u0,u0). (5.9)

Here we have written Nnnr to indicate that only the non-near resonant parts of the nonlinear term

are included, this constitutes the main difference from the exactly resonant case. We now solve

for u1. The complementary function would find linear modes of the same form as for u0 and

hence we can assume they are identically 0 as the solution in this form is accounted for in those

first order terms (see Craik 1988 for instance). Now we simply need to find the particular integral

for our right hand side. This is given by:

u1 = −e−τL
∫ τ

0

esLNnnr(e−sLū, e−sLū)ds, (5.10)
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or in the eigenmode basis:

{u1}αaka = −
∑
k1,k2
α1,α2

Cα1α2αa
k1k2ka

∣∣
nnr

aα1

k1
aα2

k2
rαaka e

ik·xe−iωaτ
∫ τ

0

ei(−ω1−ω2+ωa)sds δka−k1−k2

=
∑
k1,k2
α1,α2

Cα1α2αa
k1k2ka

∣∣
nnr

aα1

k1
aα2

k2

i(ωa − ω1 − ω2)
rαaka e

ik·xe−i(ω1+ω2)τ δka−k1−k2
. (5.11)

In the integration we used u1(τ = 0) = 0, because the initial conditions are entirely accounted

for in the u0 terms. We see that u1 does not evolve according to the dispersion relation: by the

definition of non-resonance ωa 6= ω1 + ω2. These are the slaved modes: they evolve only through

the change to the two underlying modes aα1

k1
, aα2

k2
.

5.1.2 Near resonances

Literature describing isolated near resonant triads can be found starting originally in Bretherton

1964 and more recently in Vanneste 2007. In the isolated case not much is changed from exact

resonant interactions, the detuning can only affect the phase by an O(1) amount and changes to

the behaviour of the amplitude can only be O(ε). Here we consider the triads in a non-isolated

manner, such that they may interact with one another as permitted by the triad condition k = k1 +

k2. This will lead to qualitatively different behaviour compared to the exact resonant expansion.

To see this, we first return to (5.6):

∂ū

∂t0
=− 1

τ

∫ τ

0

∑
k,k1,k2
α,α1,α2
k=k1+k2

Cα1α2α
k1k2k

aα1

k1
(t0, t1)aα2

k2
(t0, t1)rαke

ik·xeiΩ
α1α2α

k1k2k sds.

However we now explicitly write the ε scaling of Ω such that τΩ = τε∆ = t0∆, with ∆ = O(1)

which slows the dependence of the exponential to the t0 timescale:

∂aαk
∂t0

=−
∑
k1,k2
α1,α2

k=k1+k2

Cα1α2α
k1k2k

aα1

k1
(t0, t1)aα2

k2
(t0, t1)ei∆

α1α2α

k1k2k t0
1

τ

∫ τ

0

ds

=−
∑
k1,k2
α1,α2

k=k1+k2

Cα1α2α
k1k2k

aα1

k1
(t0, t1)aα2

k2
(t0, t1)ei∆

α1α2α

k1k2k t0 . (5.12)

This dynamical equation is similar to that of the exact resonances (3.18), except for the exponen-

tial term. It defines evolution on the t0 timescale, as before.

For use later we now also perform the integration in t0. This is similar to finding the particu-

lar integral for the slaved modes in the previous section (equation (5.10)), except on the slower
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timescale t0 (and larger u0). This is done by parts:

aαk = −
∑
k1,k2
α1,α2

k=k1+k2

Cα1α2α
k1k2k

(
aα1

k1
(t0, t1)aα2

k2
(t0, t1)

i∆α1α2α
k1k2k

ei∆
α1α2α

k1k2k t0

−
∫ t0

0

∂
∂s (aα1

k1
(s, t1))aα2

k2
(s, t1) + aα1

k1
(s, t1) ∂∂s (aα2

k2
(s, t1))

i∆α1α2α
k1k2k

ei∆
α1α2α

k1k2k sds

)
. (5.13)

We will pause this analysis here until we have completed the derivation of the quartets, save to

mention two things. Firstly, the left hand term in the sum has the same form as the slaved modes,

except for the timescale of the exponential. Secondly the right hand term can be integrated again

in the same manner, which we will see mirrors the quartet expansion process. For this reason the

t1 dependence has been explicitly written in the arguments of the amplitudes.

The key observation is that the near resonances behave exactly as the slaved mode interac-

tions, except that instead of affecting the u1 part on timescale τ they affect the u0 part on timescale

t0. This allows them to evolve independently; they are not behaving in the slaved manner of the

u1 part.

5.1.3 Super-near resonances

In this section we will introduce new terminology, super-near resonance, to describe near reso-

nances that are extra close to being exactly resonant, such that Ω ∼ O(ε2). This is necessary to

avoid division by a small quantity in (5.13). It is seen that super-near resonances will behave like

exact resonances until quartet order or higher.

In the previous section we assumed a scaling on Ω ofO(ε) so that ∆ ∼ O(1). This is necessary

to avoid problems arising from division by ε - a form of secularity. We therefore need to treat

differently any super-near resonance, which we define as those with Ω ∼ O(εn), n ≥ 2. This is

illustrated in figure 5.2. Similarly to section 5.1.2 we will change the timescale over which these

resonances act. We change:

Ωτ → ∆(n)tn for Ω ∼ O(εn+1),

∆(n) ∼ O(1), (5.14)

where we can identify ∆ = ∆(0).

In these cases the exponential has no t0 dependence, and so these expansion terms will

behave in the same manner as the exact resonances, albeit with extra slow time exponential
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terms modulating their behaviour:

∂

∂t0
aαk =

∑
exact resonances+

∑
near resonances

+
∑
k1,k2
α1,α2

Cα1α2α
k1k2k

aα1

k1
(t0, t1)aα2

k2
(t0, t1)ei∆(n)tnδk−k1−k2 . (5.15)

These terms do not require different treatment to the exact resonances, although on the longer

timescales they will cause a shift to the wave phases of any amplitude affected by them. Figure

5.2 shows this splitting of the different super-near resonant parts.

0...ε4 ε3 ε2 ε

Super-near res. Near res. Non-res.

Ω

Figure 5.2: Diagram showing the super-near resonant splitting. All of the super-near resonant
terms will be treated similarly to the exact resonances on the t0 timescale. At the next timescale
the largest of the super-near resonant terms will affect the motion, and so on for each timescale.

5.2 Quartet Order expansion

We have the form of u1 from section 5.1.1 we can continue to the next order of expansion given

by (5.3):

∂u2

∂τ
+ Lu2 = −

(
∂u1

∂t0
+
∂u0

∂t1
+N (u0,u1) +N (u1,u0)

)
. (5.16)

We are able to write the nonlinear part in this manner as we are only considering systems with

quadratic nonlinearity; if there were cubic nonlinearity it’s effects would appear in the equations

here. Because of this the only manner in which quartet terms can arise is by interaction of slaved

modes with the basic modes. The following is almost identical to the expansion for the resonant

case, the key difference being that the u1 terms are now only formed by the non-near resonant

interactions, those formed by the near resonances belong in the u0 part and are no longer

considered slaved.

Following the same process of removing secular terms we have the equation:

∂ū

∂t1
= −1

τ

∫ τ

0

es(L−L
′) ∂ū1

∂t0
+ esL

(
N (e−sLū, e−sL

′
ū1) +N (e−sL

′
ū1, e

−sLū)
)
ds, (5.17)

where u1 = ū1e
−τL′ , shorthand for {ū1}αke−i(ω1+ω2)τ in the eigenbasis. Writing in the eigenmode
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basis we see that we form various quartet resonances from the terms within the integral. We will

analyse each term on the right hand side of (5.17) individually. Taking the first term:

− 1

τ

∫ τ

0

{
es(L−L

′) ∂ū1

∂t0

}α
k

ds = −
∑
k1,k2
α1,α2

Cα1α2α
k1k2k

∣∣
nnr

i(ω − ω1 − ω2)
δk−k1−k2

1

τ

∫ τ

0

∂

∂t0
(aα1

k1
aα2

k2
)rαke

i(ω−ω1−ω2)sds.

(5.18)

At this point if we were to expand the derivatives in t0 using (5.12) we will not alter the dependence

of the exponential term on τ , which is the important component of the integral. We now have,

similarly to at the triad order, that:

1

τ

∫ τ

0

ei(ω−ω1−ω2)sds,

will send every term to O(ε) by cancellation of oscillations, unless ω − ω1 − ω2 ∼ O(ε). We know

that no terms have this form as we required the triad to be non-near resonant, and hence this term

must be 0. This is in effect the statement that slaved modes do not evolve on the t0 timescale.

We now consider the second term, substituting into it (5.11):

− 1

τ

∫ τ

0

{
esLN (e−sLū, e−sL

′
ū1)
}α
k
ds

= −1

τ

∫ τ

0

∑
ka,k3
αa,α3

Cαaα3α
kak3k

rαka
α3

k3
e−iω3sδk−ka−k3

∑
k1,k2
α1,α2

Cα1α2αa
k1k2ka

∣∣
nnr

aα1

k1
aα2

k2

i(ωa − ω1 − ω2)
e−i(ω1+ω2)s eiωsδka−k1−k2

ds

= −
∑
ka,k3
αa,α3

∑
k1,k2
α1,α2

1

τ

∫ τ

0

Cαaα3α
kak3k

Cα1α2αa
k1k2ka

∣∣
nnr

i(ωa − ω1 − ω2)
aα1

k1
aα2

k2
aα3

k3
rαke

i(ω−ω1−ω2−ω3)s δk−k1−k2−k3ds

= −
∑

k1,k2,k3
αa,α1,α2,α3

Cαaα3α
kak3k

Cα1α2αa
k1k2ka

∣∣
nnr

i(ωa − ω1 − ω2)
aα1

k1
aα2

k2
aα3

k3
rαkδω−ω1−ω2−ω3 δk−k1−k2−k3 . (5.19)

Here we have only considered the exact quartet resonances, although the quartet near reso-

nances follow similarly to the previous order. We will briefly reproduce the scaling argument from

(5.7) for the quartet near resonances. Because we now want to consider timescales up to t1,

our τ must reach a size ∼ 1/ε2. This also means that we should consider the t0 variation in the

amplitudes, which we write as ετ . We write, using integration by parts and chain rule:

∣∣∣∣∣1τ
∫ τ

0

Cαaα3α
kak3k

Cα1α2αa
k1k2ka

∣∣
nnr

i(ωa − ω1 − ω2)
aα1

k1
(ετ)aα2

k2
(ετ)aα3

k3
(ετ)rαke

iΩ(2)s ds

∣∣∣∣∣
=

1

τ

∣∣∣∣∣C
αaα3α
kak3k

Cα1α2αa
k1k2ka

∣∣
nnr

i(ωa − ω1 − ω2)
rαk

∣∣∣∣∣
∣∣∣∣∣aα1

k1
aα2

k2
aα3

k3

eiΩ
(2)s − 1

iΩ(2)
+ ε

∫ τ

0

∂

∂t0

(
aα1

k1
(t0)aα2

k2
(t0)aα3

k3
(t0)

) eiΩ(2)s

Ω(2)
ds

∣∣∣∣∣
.

1

τ

∣∣∣∣∣C
αaα3α
kak3k

Cα1α2αa
k1k2ka

∣∣
nnr

i(ωa − ω1 − ω2)
rαk

∣∣∣∣∣
∣∣∣∣∣aα1

k1
aα2

k2
aα3

k3

eiΩ
(2)s − 1

iΩ(2)

∣∣∣∣∣ ∼ ε2

Ω(2)
. (5.20)
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Here we used the notation Ω(2) for the quartet detuning: ω−ω1−ω2−ω3. In the same manner as

the near resonant triads, the near resonant quartets require Ω(2) ∼ ε2. In effect, we are averaging

over the t0 timescale when solving for this order of the dynamics. We know all variation of the am-

plitudes for timescale t0 from the triad near resonances and so this can be computed by equation

(5.12), although unlike the averaging over τ there is not necessarily any well behaved oscillating

behaviour to simplify the expression. Some work has been done to try to investigate resonances

that might occur in situations where well behaved oscillating behaviour can be assumed of the

nonlinear evolution in t0 for example in Bustamante, Quinn, and Lucas 2014, however these

mechanisms appear to depend on contrived situations in which a triad is assumed to simultane-

ously evolve independently from all other modes, to give a regular nonlinear oscillation, and act

on another mode, which contradicts the assumption of independence. In (5.20) we have made

the assumption that variation of the amplitudes will not produce coherent growth, and so we could

push the second part of the integral to O(ε3) and ignore it in our scaling argument.

One main point of note is that any possible quartet can only be formed of non-near resonant

slaved modes in this expansion. The requirement is that Ωαaα3α
kak3k

∼ O(1) as well as Ωα1α2α3α
k1k2k3k

∼

O(ε2). Some corollaries of this are given in section 5.4.1, and section 5.3.2.

By the symmetry of the nonlinear interaction coefficient the third term in (5.17) is identical to

the second and so we have:

∂

∂t1
aαk = −

∑
k1,k2,k3
α1,α2,α3

Ω(2)≤ε2

Qα1α2α3α
k1k2k3k

aα1

k1
aα2

k2
aα3

k3
δk−k1−k2−k3

, (5.21)

where:

Qα1α2α3α
k1k2k3k

=
∑
αa

2Cαaα3α
kak3k

Cα1α2αa
k1k2ka

∣∣
nnr

i(ωa − ω1 − ω2)
, (5.22)

with ka = k1 + k2, ka = k − k3, and Ω(2) ≤ ε2.

Similarly to the triad case it is useful to symmetrise this in the input coefficients (1,2,3) as

follows:

Qα1α2α3α
k1k2k3k

=
2

3

[∑
αa

Cαaα3α
kak3k

Cα1α2αa
k1k2ka

∣∣
nnr

i(ωa − ω1 − ω2)
+
∑
αb

Cαbα1α
kbk1k

Cα2α3αb
k2k3kb

∣∣
nnr

i(ωb − ω2 − ω3)
+
∑
αc

Cαcα2α
kck2k

Cα3α1αc
k3k1kc

∣∣
nnr

i(ωc − ω3 − ω1)

]
.

(5.23)

It should be noted that this symmetrisation might not be possible: some of the combinations of

triads may be near resonant, and so do not form slaved modes, and hence cannot be considered

in the same manner. These are dealt with in the next section.
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We can visualise this construction as in figure 5.3, where two non-near resonant triads form

the quartet.

k1

k2

ka

k

k3

Quartet construction.

Figure 5.3: Quartet construction, as in equation (5.22). This figure is the same as figure 3.1,
repeated here for convenience. The wavevector ka takes the form of a slaved mode that can be
projected onto our eigenbasis such that there are fast-like parts and a slow-like part. Each quartet
has three possible slaved modes that can contribute to the quartet.

5.2.1 Continuation of the near resonant part of the expansion

Th previous section followed almost the identical analysis to the exact-resonant expansion. We

now continue with the near resonant triads. To form the next ‘order’ of the near resonant expansion

we will follow what is effectively the same process again, although there are now key differences

in the mathematics, notably in the timescales. We assume that at least one of the amplitudes in

the RHS of (5.12) is also a member of another near resonant triad† and substitute (5.13) in its

place:

∂aαk
∂t0

=−
∑
k3,ka
α3,αa

k=k3+ka

∑
k1,k2
α1,α2

ka=k1+k2

Cα3αaα
k3kak

Cα1α2αa
k1k2ka

i∆α1α2αa
k1k2ka

aα3

k3
aα1

k1
aα2

k2
ei∆

α1α2αa
k1k2ka

t0ei∆
α3αaα

k3kak t0

+ above quartet terms, (5.24)

where the right hand term of (5.13) gets pushed into the ‘above quartet terms’ because the ∂/∂s

terms will be functions of two or more amplitudes as shown by (5.12). The assumption † is justified

provided the wavenumber spacing is sufficiently small, as discussed in the opening of chapter 1.

This again mirrors the exact resonant quartet expansion (the same interaction coefficient Q as

given in (5.22), although scaled by ε, would be formed), except that the evolution is still on the t0

112



timescale. Because of our imposed structure we should note that the near resonant triads can

only form a ‘higher order interaction’ with other near resonant sets, and slaved modes can only

form a higher order resonance by combination with each other.

The near resonant expansion (that evolves according to dynamical equation (5.12)) contains

a subset of the exact quartet resonances from the analysis of chapter 3, which behave as before,

but now acting on the faster t0 timescale instead of t1. The near resonant expansion contains

the strongest of the exact quartet resonances, constructed from near resonant triads, without

proceeding to a higher order.

One way to interpret this is to say that in forming the exact quartet interaction coefficient

given by equation (3.32) we divide by Ω, but in the case of the near resonant component triads

this causes an extremely large interaction coefficient ∼ 1/ε. The near resonant interactions pick

out the cases where the higher order interaction coefficient is large enough to rearrange the

asymptotic ordering.

5.3 Expansion to arbitrary order

We previously defined the general interaction coefficient (3.34):

{C(n)}α1...αn+2α
k1...kn+1k

=

1

(n+ 1)!

n∑
r=1

[ ∑
αa,αb

{C(1)}αaαbαkakbk
{C(r−1)}αn−r+2...αn+1αb

kn−r+2...kn+1kb

∣∣∣
nr
{C(n−r)}α1...αn−r+1αa

k1...kn−r+1ka

∣∣∣
nr

−{Ω(n−r)}a1,...,n−r+1{Ω(r−1)}bn−r+2,...,n+1

+ input wavenumber permutations

]
,

(5.25)

where: {Ω(n)}ab,...,c = ωa − ωb − ...− ωc.

Where C(n) is the nonlinear interaction coefficient at the nth closure (ie n = 1 would be triad

interactions at the first closure). We need to define the particular case of {C(0)}αaαkak
= 1 such that

it is simply an identity mapping with ka = k, αa = α. We also define separately Ω(0) = −i. It can

be noted that the detuning terms are assumed to be large, because anywhere that they would be

small they have been included with the near resonant interactions.

We will now see that the triad near resonances in fact reproduce this coefficient at all orders.
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5.3.1 Near resonances

As occurred for quartets in section 5.2.1, the near resonances will expand in the same manner

as the exact resonant part, except that the n-tets, for every order n are all evolving on the t0

timescale. To show the equivalent higher order behaviour in the near resonances we will continue

the expansion using integration by parts, as we did in section 5.1.2.

We take one of the right hand terms (with minor relabelling) of (5.13) and substitute into (5.12)

to replace the derivative in t0:

∑
k1,ka
α1,αa

k=k1+ka

Cα1αaα
k1kak

∫ t0

0

∂
∂s (aαaka (s, t1))aα1

k1
(s, t1)

i∆α1αaα
k1kak

ei∆
α1αaα

k1kak sds

=
∑
k1,ka
α1,αa

k=k1+ka

∑
k2,k3
α2,α3

ka=k2+k3

Cα1αaα
k1kak

Cα2α3αa
k2k3ka

i∆α1αaα
k1kak

∫ t0

0

aα1

k1
(s, t1)aα2

k2
(s, t1)aα3

k3
(s, t1)ei∆

α1αaα

k1kak sei∆
α2α3αa
k2k3ka

sds.

(5.26)

This process would then be continued by repeatedly expanding the integral by parts, each time

the integral remainder treated similarly, forming an expansion containing all combinations of n

amplitudes (for n > 2) that obey the n-tet condition
∑n−1
i=1 ki = k. This expansion is then sub-

stituted back into the equation (5.13) in every place that an amplitude is involved in another near

resonance. This will return, after some more relabelling, (5.24) except that we can now see the

form of the previously omitted ‘above quartet terms’:

∂aαk
∂t0

=−
∑
k3,ka
α3,αa

k=k3+ka

∑
k1,k2
α1,α2
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k3kak

Cα1α2αa
k1k2ka

i∆α1α2αa
k1k2ka

aα3

k3
aα1

k1
aα2

k2
ei∆

α1α2αa
k1k2ka

t0ei∆
α3αaα

k3kak t0

−
∑
kb,ka
αb,αa

k=kb+ka

∑
k1,k2
α1,α2

ka=k1+k2

∑
k3,k4
α3,α4

kb=k3+k4

Cαbαaαkbkak
Cα1α2αa

k1k2ka
Cα3α4αb

k3k4kb

−∆α3α4αb
k3k4kb

∆α1α2αa
k1k2ka

aα1

k1
aα2

k2
aα3

k3
aα4

k4
ei∆

α1α2α3α4α

k1k2k3k4k t0

−
∑
k4,ka
α4,αa

k=k4+ka

∑
k1,k2k3
α1,α2α3

ka=k1+k2

+k3

Cα4αaα
k4kak

{C(2)}α1α2α3αa
k1k2k3ka

i∆α1α2α3αa
k1k2k3ka

aα1

k1
aα2

k2
aα3

k3
aα4

k4
ei∆

α1α2α3α4α

k1k2k3k4k t0 + ... . (5.27)

This is exactly as for the general higher order coefficient (3.34), except for some ε scaling. If

one were to continue this, always substituting in for near resonant terms, then the expansion will

eventually contain only exact and super-near resonances. All of these will look identical in form to

a subset of the exact resonant expansion, but will take place on the t0 timescale.

This expansion is not necessary in the practical use of the near resonant expansion. It is

simply a method to show that the near resonant triads interact exactly like the strongest parts of a
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full exact expansion. All of the dynamics is captured simply by maintaining the near resonances

in the triad equations given in (5.12).

5.3.2 Splitting of n-tets in the near resonant part

Interestingly, n-tets can be split between orders in the near resonant expansion. As an example,

consider the rotating shallow water equations with small f (where fast modes have ω ∼ αc|k|) for

the following quartet of modes:

k1, α1 = +, (5.28a)

k2 = k⊥1 , α2 = +, (5.28b)

k3 = −k1 + ε2k⊥1 , α3 = −, (5.28c)

k = k⊥1 (1 + ε2), α = +. (5.28d)

This forms a near resonant quartet. From these we calculate the slaved mode wavenumbers that

would contribute to the quartet:

ka = k1 + k2 = k1 + k⊥1 , (5.29a)

kb = k2 + k3 = −k1 + (1 + ε2)k⊥1 , (5.29b)

kc = k3 + k1 = ε2k⊥1 . (5.29c)

Calculating Ω in each case (assuming all fast modes):

Ω12a = ω(k1 + k⊥1 )− ω(k1)− ω(k⊥1 ) ≈ c(
√

2− 2)|k1|, (5.30a)

Ω23b = ω(−k1 + (1 + ε2)k⊥1 )− ω(k1) + ω(−k1 + ε2k⊥1 ) ≈ c(
√

2)|k1|, (5.30b)

Ω13c = ω(ε2k⊥1 ) + ω(k1)− ω(−k1 + ε2k⊥1 ) ≈ cε2|k1|. (5.30c)

We see that a fast mode c will be part of a near resonant triad. However fast-like mode a or b

would not be included in the near resonant triads.

5.4 Overview of expansion structure

In order to compare the two versions of the asymptotic expansion we summarise the expansions

as given in chapters 3 and 5 here. We start by describing an exactly resonant expansion as
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follows:

1. To first order we solve for the linear modes of the system (equation (3.6), with solution

(3.11)).

2. At second order:

• We solve to remove secular terms giving the variation of u0 on the first slow timescale

t0. Equation (3.18) (no explicit solution).

• We solve the remaining nonlinearly forced equation (3.20) to give the slaved modes in

u1 (solution in (3.22)).

3. At third order:

• Substitution of slaved modes in u1 into nonlinear part to form quartets (Equation (3.30)).

• Removal of secular terms to give evolution of u0 on timescale t1 (Equation (3.29)).

• Solution for slaved modes in u2 as particular integral of remaining O(ε) equation (not

explicitly shown).

4. At higher orders:

• The same process is repeated, forming n-tets in the nonlinear part and calculating

the effect on u0 to timescale tn. The interaction coefficient is given by the recurrence

relation (3.34).

For the near resonant expansion this process is augmented:

1. To first order we solve for the linear modes of the system (equation (5.1), with solution (5.4)).

There is no change compared to the exact expansion at this order.

2. At second order:

• We solve to remove secular terms (these now include near resonances) giving the

variation of u0 on the first slow timescale t0. This is now equation (5.12). We can write

this as (5.24), or with the inclusion of some above quartet terms: (5.27). This moves

n-tet terms that were previously in the subsequent orders to act on timescale t0, where

all components were formed of near resonant triads with Ω ∼ O(ε).

• We solve the remaining forced equation to give the slaved modes in u1 (solution (5.11))

as the particular integral of (5.9).

3. At third order:
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• Substitution of slaved modes u1 (these are now only formed of non-near resonances)

into nonlinear part to form quartets (Equation (5.17)).

• Removal of secular terms (including near resonances) to give evolution of u0 on timescale

t1 gives near resonant quartets as in equation (5.21). In (5.20) the resonant quartet

condition was derived: Ω ∼ ε2. These are not the same as quartets formed of near

resonant triads.

• Solution for slaved modes in u2 as particular integral of remaining O(ε) equation (not

explicitly shown).

4. At higher orders:

• The same process is repeated, forming n-tets in the nonlinear part and calculating the

effect on u0 to timescale tn.

The near resonant expansion does not require any of the stages in equations (5.24) and (5.27),

these are just expressions derived from the near resonant dynamics equation, the n-tet interac-

tions in the near resonant expansion exist just by allowing the near resonant triads to interact. The

quartet near resonant expansion gives the behaviour on the next timescale, and a general n-tet

near resonant expansion would also be possible.

5.4.1 Caveats

There are a few caveats to the resonant expansion, made more relevant where ε is considered

larger.

• With small but finite ε the definition of what constitutes O(εn) may become problematic. For

example if ε = 0.1, then a term of size 0.2 might be considered O(ε) but 0.24 = 0.0016 ∼ ε3.

This is increasingly problematic as ε → 1. If the ‘size’ of a term is not well defined making

an arbitrary cut-off point - say Ω = O(ε) is not rigorous.

• A key requirement for this expansion is that if ε is not asymptotically small it needs to be the

dominant small term everywhere; it is implicitly assumed that all other terms, if not stated,

are O(1). Unfortunately all that is required to break the hierarchy of sizes is for one of the

interaction coefficients to become O(1/ε) large. However above a certain wavenumber size

|k| the size of the maximum size of the interaction coefficient can be approximated as a

linear function of |k| (C ∼ U2|k|). So the separation of the hierarchy is maintained up to a

given wavenumber, above this the asymptotic series can be disrupted by the strength of the

interaction coefficient alone.
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5.5 Chapter summary

In this chapter the main points were:

• We derived the resonant expansion but now taking into account near resonances as a

source of secularity. This maintains the asymptotic ordering that would previously have

broken down, in particular when the small value ε would take a slightly larger value.

• Any higher order resonance constructed only from near resonant triads will be ‘promoted’ to

triad order. This effect can be considered to be due to higher order interaction coefficients

being large enough to upset the asymptotic sequence.

• We defined the concept of super-near resonance to ensure that no issues were caused in

the asymptotic expansion due to detuning values that are O(ε2) or smaller.

• Larger ε values open up the possibility of other parts of the expansion reaching comparable

size to 1/ε and so we discussed some of these dangers. In particular the interaction coeffi-

cient becomes larger with larger wavenumbers, in general, and could upset the ordering of

any expansion.

• An exact quartet resonance may be constructed with (three) different combinations of triads.

There are cases of quartets where some of these are near resonant triads and some are

non-near resonant triads. This means that the quartet resonances will be represented in the

near resonant expansion, but only by some of the triad combinations, a somewhat strange

behaviour when compared to the exact theory.

The combination of the outcomes of this chapter allow us a new perspective on the near resonant

expansion, as a restructuring of the exact resonant asymptotics to allow promotion of certain high

order terms to the triad timescale. This will be seen to lead to fundamentally different behaviour

in the following chapter where we apply the near resonant theory to our example systems.
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Chapter 6

Applications of the near resonant

theory to rotating stratified flow

The applications presented here follow on naturally from the exactly resonant examples of chapter

4. The first section takes the one layer shallow water equations and solves them numerically.

Whilst the numerical solution is far from unique in the literature, the intent of the simulation is, we

evaluate the results with respect to the theory of the preceding chapter. It is shown that the near

resonant expansion is a good approximation of the full resonant expansion, and hence a good

approximation of the full equations, in contrast to an expansion limited to the exact resonances.

In particular it was shown that a near resonance is not limited to being in the vicinity of an exact

resonance - they are not simply an approximation of the exact resonant part, but something more

intrinsic to the motion. It is also seen clearly in the simulation output that the modes driven only by

non-resonances oscillate rapidly but these oscillations prevent a coherent direction of growth such

that the amplitudes of those modes never grow on a slower timescale: demonstrating directly how

the underlying theory of near resonances (due to non-cancellation of oscillations) functions.

The two layer rotating shallow water equations are not investigated numerically here. The

layered equations are prone to Kelvin-Helmholtz instability, substantially increasing the numerical

difficulties. Based on this, and the expectation that the outcomes for the particular behaviour being

investigated would not be substantially different to the one layer case, they were not investigated

numerically.

The stratified equations are considered analytically, with particular attention paid to the fast-

fast-slow interaction that is not found in the layered equations. It is shown that the near resonances

behave strangely in this case: the smallness of the interaction coefficient exactly balances that of
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the detuning, such that these interactions cannot show a ‘promotion’ to higher order, but must still

be considered near resonant as they can only form higher order resonant interactions when they

pair with other near resonant sets. Many numerical integrations of these equations have been

performed and evaluated in the literature, however numerical simulations are not explored here.

6.1 One layer rotating shallow water equations

6.1.1 Numerical method

To demonstrate the theory, the one layer equations were solved numerically. The equations were

solved for periodic boundary conditions in both directions using spectral methods. Dealiasing was

applied using the 2/3rds method and the time stepping used the Runge-Kutta 4th order scheme.

A 160x160 grid was used with side lengths 20x20m, giving wavenumbers of k̂ = π
10k where

k ∈ N2. Parameters used were: f = 1s−1, g = 10ms−2, H = 5m, L = 20m. The amplitudes of

the input eigenvectors were scaled by 0.1. Approximate Rossby and Froude numbers are then

∼ 0.003 − 0.05, ∼ 0.02 respectively, we can then take ε = 0.1 as a reasonable scaling, as the

largest of the 3 small numbers with all 3 greater than ε2.

For discussion we will always refer to the integer valued non-dimensional wavenumber k for

clarity. However quoted values of Ω are dimensional but are directly comparable to ε values as

f = 1.

6.1.2 Initial conditions

Specific initial conditions (chosen to demonstrate most clearly the theory) were used, with the

eigenfunctions given by the following modes:

α = 0, k =(0, 1)T , (1, 1)T , (1, 0)T , (1,−1)T ,

(0,−1)T , (−1,−1)T , (−1, 0)T , (−1, 1)T ,

(0, 2)T , (0,−2)T , (2, 0)T , (−2, 0)T ,

α = +, k =(15, 15)T (ω ≈ 47.13),

α = −, k =(14, 14)T (ω ≈ −43.99),
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so that there is a ring of low wavenumber slow modes and two fast modes. The formulae for

the eigenfunctions can be found in (2.85). This configuration is somewhat similar to an idealised

version of the simulation found in Ward and Dewar 2010, but here the focus of the analysis is on

showing the role of resonant interactions as described in the theory of chapters 3 and 5.

From these initial conditions the only exact resonances available are those between the slow

modes, as these are all resonant. Any triad between the two input fast modes and any other

mode,for example (15, 15,+), (14, 14,−), and (1, 1, α) is non-resonant. In a non-discretised model

it would be possible for there to be exact modes from fast-slow-fast triads, but here there can only

exist near resonant modes, strongest of which are those with the output fast mode very close to

the input fast mode, for example (15, 15,+), (1,−1, 0), (16, 14,+).

6.1.3 Results

From the limited number of modes present it becomes possible to isolate the interaction types that

must be responsible for the spread of energy amongst the wave modes. For discussion we will

refer to long, medium and short waves as those with wavenumbers in the vicinity of (0, 0), (15, 15),

and (30+, 30+) respectively. By these definitions the simulation is started with short zero modes

and medium fast modes at around an amplitude of 10−1. We split the motion into 5 regions for

discussion, as shown in figure 6.5.
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Figure 6.1: Distribution with time of the eigenmode amplitudes. Each graph shows the wavenum-
ber k on the x and y axes, and the mode types α are −, 0,+ from left to right in the columns. Time
increases downwards with graphs showing the distribution at 0s, 1s and 19s into the simulation.
In the later times (on the triad timescale t0) the output shows stimulated amplitudes in the zero
modes close to k = (0, 0) that correspond to resonant interactions, and in the fast modes ampli-
tudes increasing at k = (15n, 15n), n ∈ Z that could only have been produced by near resonances
as the fast-fast-fast interactions are never exactly resonant in the rotating shallow water equations.
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Figure 6.2: Distribution with time of the log of the eigenmode amplitudes. The log scaling shows
in much greater detail the distribution of energy amongst the different modes compared to fig
6.1. Many areas can be seen to have been stimulated, although on scales that correspond to
the u1 parts of the expansion. With the log scaling in addition to what was visible in figure 6.1
the resonance between a slow mode and two fast modes with equal wavenumber modulus but
different direction can be seen by the arcs of the circle forming close to k = (±15,±15) and
k = (±30,±30). It is also clear that there is a complicated redistribution of a small amount of
energy amongst the slow modes.
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Figure 6.3: Distribution with time of specific eigenmode amplitudes. The amplitudes show how
the energy of selected modes varies, with low wavenumber modes shown in the bottom row and
higher wavenumbers in the top row. The left and right hand columns show the α = ± fast modes
respectively and the middle column shows the slow modes. In general the modes affected by
the exact and near resonances show gradual changes on a slow timescale, whilst the amplitudes
only involved in non-resonances show rapid oscillations but no sustained change. For example in
the top right frame, the α = + modes, slow changes can be seen in mode (15, 15,+), which is
involved in a near resonant triad with several other modes, for example (14, 16,+) and (−1, 1, 0) (a
close grid point to the exact resonance that forms the circular trace in figure 6.2), and (15, 15,+)
and (30, 30,+) a near resonance that shows strong growth. In the bottom left frame the low
wavenumber fast modes can be seen to oscillate rapidly with only minor sustained changes, a
symptom of the lack of near or exact resonances affecting them.
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Figure 6.4: Distribution with time of the log of specific eigenmode amplitudes. This figure follows
the layout of fig 6.3 but on a log scale. On the log scale it can be seen clearly that rapidly oscillating
amplitudes do not grow to the scales seen for the modes that do interact resonantly.

4

2

3

1

5

Figure 6.5: Diagram showing the regions referred to in the text, and the possible fast-slow-fast
interactions of the input and double input wavelengths.
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Region 1

The only exact resonances in the simulation are the slow-slow-slow resonances. These are seen

to spread slowly to higher wavelengths although they have only limited change away from the

long wavelengths. By comparison to figure 6.6 where the simulation was run without the initial

fast modes we can see that in this region the motion is dominated by the exact resonances, as

predicted by the usual resonance theory.

However figure 6.6 also makes clear that some interaction must be occurring due to slow-slow-

fast interactions due to the presence of the fast mode of amplitude ∼ 10−3 after the simulation

has been running for some time. The small size of the amplitudes can be attributed to the lack

of near or exact resonance in the triads. These low amplitude modes would then be able to

interact back onto the slow modes, and in fact the trace in the fast modes can be regarded as

the fast part of the smaller amplitude u1 term of our theory, and hence what is being described is

the slow-slow-slow-slow exact quartet interaction, where the transfer of energy is via the smaller

amplitude u1 modes in a pathway composed of a pair of non-resonant triads. This corresponds

to the interaction coefficient of the type:

Q0 0 0 0
k1k2k3k =

2

3

[ ∑
αa=±

Cαa 0 0
kak3k

C0 0 αa
k1k2ka

∣∣
nr

i(ωa − ω1 − ω2)
+
∑
αb=±

Cαb0 0
kbk1k

C0 0 αb
k2k3kb

∣∣
nr

i(ωb − ω2 − ω3)
+
∑
αc=±

Cαc 0 0
kck2k

C0 0 αc
k3k1kc

∣∣
nr

i(ωc − ω3 − ω1)

]
.

This is the higher order interaction considered by Reznik, Zeitlin, and Ben Jelloul 2001 for the

non-periodic case, with compact initial conditions.
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Figure 6.6: Distribution with time of the log of the eigenmode amplitudes. Time increases from
top to bottom from 0s, to 1s, to 19s. The central column shows the slow modes and the outside
columns show the fast modes. In this simulation only the slow modes were included in the initial
condition. In comparison to fig 6.2 there is no spread of energy to the higher wavenumber slow
modes. It is clear that some energy has spread to the fast modes at low wavenumbers (the
amplitudes close to the origin in the left and right columns). This is on a scale associated with
the u1 part of the expansion, and can be associated with the (0, 0, 0; 0) resonance of Reznik,
Zeitlin, and Ben Jelloul 2001. Without the low energy fast modes providing a pathway via the
slow-slow-fast and fast-slow-slow interactions this resonance would not be possible.
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Region 2

As the simulation progresses the strongest spread of energy is seen in the vicinity of the medium

length fast modes, visible even on the absolute amplitude graphs, with amplitudes in the region

of 10−2 after a second of simulation time. These must (at least initially) be due to the fast-slow-

fast interactions where the resonant condition is equivalent to |k1| = |k| (marked in figure 6.5).

However on this discrete grid no exact resonance can exist in the region of the initial wave. This

can therefore only be interpreted as either near resonant or higher order interaction. The closest

points to resonances from the initial conditions are those such as:

(−1, 1, 0), (15, 15,±), (14, 16,±), Ω = ∓0.209 ∼ ε.

The exactly resonant quintet:

(−1, 1, 0), (15, 15,±), (14, 16,±),

(1,−1, 0), (−15,−15,∓), (14, 16,±), Ω = 0,

would also be able to cause this behaviour, although this would require some amplitude to be

present in the output mode initially, and would also be expected to interact on the t2 timescale:

around 100s. In this case the exact resonant theory simply doesn’t represent the true behaviour

of the system.

Adding additional strength to the near resonance is the size of the interaction coefficient. Fig-

ure 6.7 (middle second row) shows that the strongest interaction coefficients coincide with the

area of near resonance. This is important as relative sizes of the interaction coefficient can be

∼ ε−1 or larger, especially for large |k|, which has the potential to disrupt the asymptotic series.
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Figure 6.7: Graphs showing the relative strength of the real part of the interaction coefficients for
different wavenumbers in each relevant case. The first wavenumber is fixed to (15,15), and the
heat maps are given on axes corresponding to the output wavenumber k, with k2 calculated from
the other two wavenumbers. The top row shows the possible mode combinations outputting onto
the slow mode. The middle row gives the output of mixed mode triads onto a fast mode, and
the bottom row shows the possible fast mode only triads. From the differences in amplitude it is
clear that some interactions will be weakened by the small size of the interaction coefficient. It
should also be noted that these interactions are not necessarily resonant. For example from the
central graph we can see that the fast-slow-fast interaction has O(1) interaction coefficient in the
region of the resonance (the circular resonance seen in figure 6.2), this suggests that as well as
forming a resonant interaction, the energy exchange between the modes will not be limited by
the interaction coefficient, whereas from the centre top graph slow-fast-slow interactions between
(15,15,+) and any other slow mode will not only be non-resonant, but limited by an interaction
coefficient an order of magnitude smaller.
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Region 3

Region three provides a good example of where near resonant theory is a much better approxi-

mation of the motion than exactly resonant theory.

Closely following the first two regions are the short fast modes that are excited to around an

amplitude of 10−3 − 10−2 within the first second of the simulation. These can only be attributed

to fast-fast-fast interactions, although these cannot be exactly resonant at triad order. Again we

conclude that these must be either near resonant or higher order interactions.

Considering the possible quartets that would be almost exactly resonant we find that the dy-

namics must be initially governed by quartets of the form:

(1, 1,±), (14, 14,±), (15, 15,±), (30, 30,±), Ω = 0.0874 ∼ ε.

By the theory in the previous section for these to be comparable with the triad resonances

there would need to be at least one pairing of the constituent triads that are near resonant, and

indeed there is:

(1, 1,±), (14, 14,±), (15, 15,±), Ω = 0.00795 ∼ ε2,

(15, 15,±), (15, 15,±), (30, 30,±), Ω = 0.0795 ∼ ε.

It can be noted that the other triad pair combinations within this triad do not have this behaviour,

highlighting the point of section 5.3.2 that a quartet can be split between orders for a near resonant

expansion.

No exact resonance is know at higher order n-tets, and running a numerical search is compu-

tationally intensive, having exponential order of operations An for some constant A that in practice

is reasonably large. Although this problem is trivially parallelisable we have not yet done this. Due

to these limitations only limited searches have been run, for possible combinations of modes in

the vicinity of the starting modes, up to sextet order. The closest approach of the resonances up

to these orders are the following:

(−4,−4,∓), (17, 17,±), (17, 17,±), (30, 30,±), Ω = 0.0132,

(−1,−2, 0), (3, 2,±), (14, 16,±), (14, 14,±), (30, 30,±), Ω = −0.000219,

(1, 1,±), (13, 14,±), (15, 16,±),

(−16,−16,±), (17, 15,∓), (30, 30,±), Ω = 0.000116.
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That is to say if an exact resonance exists that could explain the appearance of energy in region 3

it is operating on, at a minimum, the timescale t3 ∼ ε3, and so we would expect noticeable effects

to occur at around 1000s of simulation time. This highlights an important point of near resonant

theory. Near resonances should not be considered to exist solely in the vicinity of wavenumber

space where exact resonances occur, and do not play the role of exact resonance approxima-

tion, they are more intrinsic, as this case shows, where energy is strongly transferred to higher

wavenumbers in t0 time, which is simply not the case in the exact resonant theory.

Another behaviour is also derived from the fast-fast-fast modes in this region: the radial spread-

ing of the wave energy. This is due to near resonant triads (and super-near resonant) such as

(−1,−1,±), (−14,−14,±), (−15,−15,±), Ω = 0.00795 ∼ ε2,

(1, 1,∓), (30, 30,±), (29, 29,±), Ω = 0.0792 ∼ ε.

Both these behaviours are seen in the same simulation run with the zero modes removed, shown

in figure 6.8. This confirms that these fast mode only interactions must be responsible for the

behaviours seen.

Here the near resonant interactions describe the behaviour of the system much better than

the exact resonances.

Region 4

Similarly to region 3 the long fast wave modes are excited, although to a lesser extent (amplitudes

around 10−3-10−4) than the short wave modes. Here the dominant interaction is the slow-slow-

fast interaction, from comparison to the simulation without initial fast modes (that shown in figure

6.6).

This can never be resonant, and the closest to resonance that it can approach is for smaller

wavenumbers, giving a minimum for the interaction:

(1, 1, 0), (−1, 0, 0), (0, 1,±), Ω = 4.55 ∼ 1.

The size of the real part of the interaction coefficient is shown in figure 6.9 in the centre left panel

for one particular mode. Here the interaction coefficient is also small, and we would expect that

the modes would not be able to grow to a large size, as is the case. The small amplitudes reflect

this. Once there are fast modes present at the low wavenumbers the fast-slow-fast interaction can

transfer energy amongst the modes, with its relatively strong coefficient (central and centre right
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Figure 6.8: Distribution with time of the log of the eigenmode amplitudes. Time increases from
top to bottom from 0s, to 1s, to 19s. The central column shows the slow modes and the outside
columns show the fast modes. In this simulation only the fast modes were included in the initial
conditions. No energy is transferred to the slow modes, as expected from the proof in chapter
4 that the interaction coefficient for (±, ...,±, 0) is always zero. It can be seen that both the self
interaction and radial spreading of energy occur without the presence of slow modes, it follows
that the radial spreading can be attributed to the near-resonant fast-fast-fast interactions such as
mode (15,15,+) with mode (15,15,+) to form (30,30,+). It can also be seen that the spread of
energy to low wavenumbers is very weak from fast mode only interactions, suggesting that the
spread of energy to these modes will be mostly from interactions with slow modes.
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panels) and possible near resonant interaction.

Figure 6.9: Graphs showing the relative strength of the real part of the interaction coefficients for
different wavenumbers in each relevant case. The first wavenumber is fixed to (0,1), and the heat
maps are given on axes corresponding to the output wavenumber k, with k2 calculated from the
other two wavenumbers. The top row shows the possible mode combinations outputting onto the
slow mode. The middle row gives the output of mixed mode triads onto a fast mode, and the
bottom row shows the possible fast mode only triads. From the differences in amplitude it is clear
that some interactions will be weakened by the small size of the interaction coefficient. It should
also be noted that these interactions are not necessarily resonant. For the smaller wavenumber
the complexity of the graphs is contained close to the origin, and the majority of the interaction
coefficient follows a radial pattern, mostly dependent only on the angle of incidence between the
modes. As an example the centre-right graph shows that the fast-slow-fast interaction that would
cause energy to spread to wavenumbers close to (15,15,+) has an O(1) interaction coefficient,
in this region there are resonances and near resonances, and the expected spreading of energy
can be observed in figure 6.2 as the region of higher amplitudes around the (15,15,+) mode.
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Region 5

This region is the least stimulated of all those considered, with amplitudes of around 10−6, lower

for shorter wavelengths. However by comparison with figure 6.6 it is clear that the shorter waves,

although low amplitude, have a very different energy distribution due to interaction with the fast

modes. For the energy to have reached this region of the mode space must be, at least in part,

due to the quartet interaction of Thomas 2016: slow-fast-fast-slow. However the amplitudes are

even lower than might be expected for a resonant quartet interaction, and there is reason for this.

Considering the full quartet interaction coefficient:

Q0 ± ∓ 0
k1k2k3k

=
2

3

[
C0∓ 0

kak3k
C0 ± 0

k1k2ka

∣∣
nr

i(ωa − ω1 − ω2)
+
∑
αb=±

Cαb0 0
kbk1k

C± ∓ αb
k2k3kb

∣∣
nr

i(ωb − ω2 − ω3)
+
C0± 0

kck2k
C∓ 0 0

k3k1kc

∣∣
nr

i(ωc − ω3 − ω1)

]
.

It is clear that every triad pairing must contain a fast-slow-slow triad, which can never be near

resonant, and so these quartets will never be ‘bumped up an order’ like those considered in

region 3. If we consider the exactly resonant quartet:

(15, 15, 0), (1, 1,±), (−1,−1,∓), (15, 15, 0), Ω = 0,

the triad pairings give:

1. (15, 15, 0), (1, 1,±), (16, 16, 0), Ω = 6.36,

(16, 16, 0), (−1,−1,∓), (15, 15, 0), Ω = −6.36.

2. (15, 15, 0), (−1,−1,∓), (14, 14, 0), Ω = −6.36,

(14, 14, 0), (1, 1,±), (15, 15, 0), Ω = 6.36.

3. (−1,−1,∓), (1, 1,±), (0, 0,+), Ω = −1,

(0, 0,+), , (15, 15, 0), (15, 15, 0) Ω = 1.

4. (−1,−1,∓), (1, 1,±), (0, 0,−), Ω = 1,

(0, 0,−), (15, 15, 0), (15, 15, 0), Ω = −1.

It follows that this quartet interaction is formed of non-near resonant triads, explaining the small

amplitudes in the region.
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The other possible quartet combination that could have moved energy to this region is the

quartet (0, 0,±; 0). It is clear that this can never be near resonant as the quartet detuning is O(1).

All Regions

A feature visible in all of the time series in figures 6.3-6.4 is that the behaviour of the regions driven

by non-resonances have high frequency oscillations present. This is visible in the theory: the non-

resonances have an exponential term eiΩτ , which then drives them on a fast timescale, whereas

the near resonances have the alternative exponential ei∆(n)tn which does not lead to these fast

oscillations. We are seeing the effect of averaging: fast oscillations force the amplitudes in both

directions in rapid succession causing little net change, whereas slow oscillations have a direction

that is consistent for a longer time, leading to coherent growth of a mode.

A near resonant expansion

From the analysis of this section, we can conclude that limiting a simulation to only the near

resonant modes of the shallow water equations would only exclude stimulation of modes that

never grow to greater than 10−3 in amplitude during the ∼ t0 timescale, and so all of the strong

behaviour would be captured. Conversely an exact resonant expansion would not capture some

of the strongest effects of the motion. Also, misleadingly, exact resonant quartets that would

be included at next order have a smaller effect on the dynamics than interactions that would be

excluded until some unknown higher order (at least sextet or times of ∼ 106s by the numerical

calculation in the region 3 analysis above).

One area that complicates the theory is the size of the triad interaction coefficient, this typically

varies in a manner such that at sufficiently large wavenumbers it can be of size ε−1. This would

make it necessary to include interactions in these regions further from resonance, introducing

strong rapidly oscillating amplitudes.

6.2 Stratified Equations

The stratified equations are now considered analytically. This case is interesting due to the fast-

fast-fast triad that was found to be 0 only when the triad interaction is exactly resonant, unlike the

layered equations for which it is always 0. This is however not true for a near resonant fast-fast-

slow triad, and therefore for any higher order interaction containing them.
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For the stratified equations we will concentrate only on the near resonant fast-fast-slow inter-

actions: those that could not occur in the layered equations. The interaction coefficient was given

by:

Cα1α20
k1k2k

=
iN(α1ω1 + α2ω2)

2ωω1ω2|k||k1||k2||kh1 ||kh2 |
[
if(kh1 · kh2 )(m2

1|kh2 |2 +m2
2|kh1 |2)

− 2ifm2m1|kh1 |2|kh2 |2 +
1

N2 − f2
(α1ω1 − α2ω2)(α1α2ω2ω1 + f2)|k1|2|k2|2(k2 × k1)z

]
.

(6.1)

In this interaction we expect the interaction coefficient to be close to 0 in the vicinity of a reso-

nance, and so even though we might expect a near resonance it may have an ε small interaction

coefficient. However in the specific scenario that f/N ∼ 1 + ε, we must check that this cannot be

broken. The largest part of the interaction coefficient would then be the last term. To O(1):

Cα1α20
k1k2k

=
i

2|k||kh1 ||kh2 |
[
(m2|k1| −m1|k2|)(α1α2 + 1)(k2 × k1)z

]
.

However because all near resonant interactions have α1 = −α2 the α1α2 + 1 term makes this

exactly 0, and so even in this special case the interaction coefficient is O(ε). So despite this term

appearing in the near resonances, the interaction coefficient will ensure that the interaction is

always small.

We have a situation in which including the near resonances in this particular case would result

in inclusion of lower order terms in the expansion. However, in this construction, for them to

interact as a component of a quartet resonance they must be grouped with the near resonances,

if they were considered a slaved mode they could never resonate with the normal slaved modes

as O(1) + O(ε) = O(1). They would then only be able to take part in quintet and higher order

interactions. However for the triad interactions one could easily pair them with the slaved modes

- showing that their effect is equivalent to a slower timescale quartet (or higher order) interaction.

Another compelling case for inclusion in the near resonant terms is the better approximation

of enstrophy conservation. The fast-fast-slow interactions result in an O(ε) error in the enstrophy

conservation of u0 due to the changes in the u1 terms, but in the near resonant expansion the

fastest growing of these terms would be included in the u0 part of the expansion, resulting in a

smaller anomaly for the largest part of the flow on the t0 timescale.

To show how this near resonant triad behaves differently to the exactly resonant version we
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consider the resonant triad set:

∂a±k1

∂t0
= C∓ 0 ±

k2k3k1
a∓k2

a0
k3
, (6.2)

∂a∓k2

∂t0
= C± 0 ∓

k1k3k2
a±k1

a0
k3
, (6.3)

∂a0
k3

∂t0
= 0. (6.4)

From this we can derive the two energy conservation laws:

1

2

∂|a0
k3
|2

∂t0
= 0⇒ |a0

k3
(t0)| = |a0

k3
(0)|, (6.5)

1

2

∂|a±k1
|2

∂t0
+

1

2

∂|a∓k2
|2

∂t0
= 0, (6.6)

and clearly no energy is exchanged with the slow mode, leaving it unaffected.

In the near resonant case however, the situation is different:

∂a±k1

∂t0
= C∓ 0 ±

k2k3k1
a∓k2

a0
k3
eiΩ
∓ 0 ±
k2k3k1

τ , (6.7)

∂a∓k2

∂t0
= C± 0 ∓

k1k3k2
a±k1

a0
k3
eiΩ
± 0 ∓
k1k3k2

τ , (6.8)

∂a0
k3

∂t0
= C± ∓ 0

k1k2k3
a±k1

a∓k2
eiΩ
± ∓ 0
k1k2k3

τ , (6.9)

with energy conservation law:

1

2

∂|a0
k3
|2

∂t0
+

1

2

∂|a±k1
|2

∂t0
+

1

2

∂|a∓k2
|2

∂t0
= 0. (6.10)

In the near resonant case there is energy exchange between the slow and fast modes, and hence

the near resonant interaction can’t be considered just a scattering of the fast modes, as found

in the shallow water equations (Ward and Dewar 2010). However this energy exchange will be

constrained by the interaction coefficient of O(ε).

If we reconsider a resonance of the type in Thomas 2016 - slow-fast-fast-slow, unlike in the

layered case we cannot rule out these fast-fast-slow resonances and so the interaction coefficient

looks like:

Q0 ± ∓ 0
k1k2k3k

=
2

3

[∑
αa

Cαa∓ 0
kak3k

C0 ± αa
k1k2ka

∣∣
nr

i(ωa − ω1 − ω2)
+
∑
αb=±

Cαb0 0
kbk1k

C± ∓ αb
k2k3kb

∣∣
nr

i(ωb − ω2 − ω3)
+
∑
αc

Cαc± 0
kck2k

C∓ 0 αc
k3k1kc

∣∣
nr

i(ωc − ω3 − ω1)

]
.

All the possible pairing of mode types are:

1. (±,±; 0)†, (0,±;±),
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2. (0,±; 0)∗, (0,±; 0)∗,

3. (±, 0; 0)∗, (±,±;±),

where ∗ marks the triads that can never be near resonant, and †marks the fast-fast-slow triads that

despite being near resonant can only act mildly on the system due to the interaction coefficient

size.

It is clear that these interactions will not be made up of near resonances, unless they contain

the fast-fast-slow triad that limits the speed of the interaction anyway. A similar process can be

applied to the (±,±,±; 0) (this interaction now exists but will always be slowed by the process

described) and (±, 0, 0; 0) interactions. Despite the possibility of near resonant interactions, the

slow mode can never be affected on the t0 timescale by any interaction other than the usual

quasigeostrophic (0,0;0) interaction, the same conclusion as found in the layered equations.

Similarly the quartets (0, 0, 0;±) can never be formed of near resonances, due to the (0, 0;±)

triad components. This suggests that spontaneous production of gravity waves (fast modes) will

also only ever occur on timescales ∼ t1.

All mixed mode interactions that lead to energy exchanges between the fast and slow compo-

nents can only occur on the longer t1 timescale, even where ε takes larger values. This finding

helps to explain the strength of the fast-slow splitting observed in quasigeostrophic systems.

6.3 Chapter Summary

The main points covered in this chapter were:

• The simple numerical example of the shallow water equations was chosen, demonstrating

the theory of chapter 5. This included confirmation that near resonances can evolve on the

t0 timescale along with the exact resonances (section 5.1.2) and the formation of higher

order n-tets from near resonant triads (section 5.2.1).

• The better approximation of the full equations given by the near resonances was demon-

strated for the rotating shallow water equations by numerical computation.

• Specific cases were found that showed strong energy transfer in regions that can never

contain exact resonances - it was found in a numeric search for resonances that this is true

up to sextet order for all wave amplitudes close to those present initially.
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• Energy exchange due to the resonance given in Thomas 2016 was found, but in this context

it can be seen to be a weak interaction as it is not formed of near resonances. A very similar

conclusion was reached for the equivalent interaction in the stratified equations.

• The amplitude of the interaction coefficient was discussed in relation to the limits of the near

resonant theory. This was especially explored in the context of the fast-fast-slow interaction

in the stratified equations where the near resonance condition enforces smallness of the

interaction coefficient.

In general it was found that the near resonant theory, and the framework based on promotion

of higher order interactions of chapter 5 is a much better approximation of the dynamics of the

systems considered than the expansion in terms of the exact resonances.
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Chapter 7

Wavepackets

An often neglected aspect of asymptotics is that there can be slow spatial variation of a solution.

If we have variation on a range of spatial scales such that the small scales are of a size ε smaller

than the larger ones we must consider introducing multiple scales in the spatial dimension as

well. This leads to wavepacket theory, the real distinction of which emerges on infinite domains,

as opposed to the finite periodic domains the previous analysis has been most relevant to.

In this chapter we introduce wavepackets and consider the implications of this extension from

the expansions previously derived for periodic domains in the preceding chapters. The extra

condition of the time of coincidence of wavepackets is considered in conjunction with the previous

theory, with the aim of ascertaining extra limits on the feasibility of a given interaction. In particular

the conclusions are related to the findings of Reznik, Zeitlin, and Ben Jelloul 2001 and Thomas

2016 where certain higher order interactions were found to exist in a periodic domain, but not in

the scenario in which there is an infinite domain with compact initial conditions. It is found that

the expansion of the exact resonances will agree with those findings, but that taking into account

near resonances can allow interactions that would otherwise be absent to all orders to appear in

the system once again. Near resonances are needed for interactions other than self interaction

of a wavepacket to occur.

Wavepacket theory decreases the effectiveness of nonlinear interactions, however, isolated

packets of waves cannot be considered any more representative of the reality than periodic wave

trains. Reality might be expected to rest in the middle between these two extremes.
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7.1 Derivation of a wavepacket

In the standard manner (see Whitham 1974 or Vallis 2006 for example), we want to consider a

wavepacket (in one space dimensional for simplicity, though the equivalent results hold in higher

dimensions) that is composed of wavenumbers in a small region around the main wavenumber

k∗. We write:

A(x, t)ei(k
∗x−ω(k∗)t) =

∫ ∞
−∞

a(k∗ + εK)ei((k
∗+εK)x−ω(k∗+εK)t)dK. (7.1)

Where εK is the perturbation from the main wavenumber, and the x and t coordinates are cur-

rently unscaled. It should be noted that when there are multiple branches of the dispersion relation

this is still valid, with each branch given by a separate integral.

We will assume that the wavepacket is composed entirely of waves from one branch of the

dispersion relation so that we can Taylor expand:

ω(k∗ + εK) ≈ ω(k∗) + εK
∂ω

∂K
(k) +

ε2

2
K2 ∂

2ω

∂K2
(k∗) + ... . (7.2)

We can then isolate the part that contributes to A:

A(x, t) =

∫ ∞
−∞

a(k∗ + εK)ei(εKx−(εKω′(k∗)+ ε2

2 K
2ω′′(k∗+...)t)dK. (7.3)

Assuming we can exchange the order of differentiation and integration we can write:

Ax =

∫ ∞
−∞

iεKa dK, (7.4)

Axx =

∫ ∞
−∞
−ε2K2a dK, (7.5)

At =

∫ ∞
−∞
−i(εKω′(k∗) +

ε2

2
K2ω′′(k∗))a+ ... dK , (7.6)

and from this we can write:

At + εω′(k∗)Ax −
iε2

2
ω′′(k∗)Axx + ... = 0, (7.7)

We can reintroduce the time scalings used in the multiple scale expansion, as well as a spatial

scale x0 ∼ ε to split this into:

At0 + ω′(k∗)Ax0
= 0, (7.8)

At1 −
i

2
ω′′(k∗)Ax0x0

= 0. (7.9)
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These two parts together form the linear Schrödinger equation. This is the behaviour of a wavepacket

that is only evolving linearly, in the full equations these terms will simply replace the previous time

derivatives in the nonlinear expansions. When the two parts are combined for a single wavepacket

together with the nonlinear quartets (triads are assumed absent) then a change of variables into

the frame moving with the group velocity returns the nonlinear Schrödinger equation, as seen in

Benney and Newell 1967 or Zakharov 1967 for instance. This derivation underlies the modula-

tional instability. With more wavepackets a similar derivation gives the three wave equations at

the earlier triad order (see Kaup, Reiman, and Bers 1979 for instance). In the following we will not

be making the assumption that there is only a single wavepacket, neither will it be assumed that

there are no triads, or only triads.

7.2 Multiple scale expansion in time and space

We introduce multiple spatial scales (cf Newell 1969 or Benney and Roskes 1969 for example)

into the analysis of chapters 3 and 5, choosing the scaling x0 ∼ εx such that the triad resonances

operate on the timescale at which the wave packet moves with its group velocity:

x ∼ x, x0 ∼ εx, t ∼ t, t0 ∼ εt, (7.10)

∂

∂x
→ ∂

∂x
+ ε

∂

∂x0
, (7.11)

∂

∂t
→ ∂

∂t
+ ε

∂

∂t0
. (7.12)

We define the following:

L = L0 + εL1 + ... , (7.13)

N = N0 + εN1 + ... , (7.14)

where the new spatial variables introduce ε dependence into the operators.
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The multiple scale expansion will now look as follows:

O(ε−1)
∂u0

∂τ
+ L0u0 = 0, (7.15)

O(1)
∂u1

∂τ
+ L0u1 = −

(
∂u0

∂t0
+ L1u0 +N0(u0,u0)

)
, (7.16)

O(ε)
∂u2

∂τ
+ L0u2 = −

(
∂u1

∂t0
+
∂u0

∂t1
+ L1u1 + L2u0

+N0(u0,u1) +N0(u1,u0) +N1(u0,u0)

)
.

(7.17)

The first new term is at the triad order of interaction: L1u0. To understand this term we consider

L(k), the linear operator in Fourier space. We Taylor expand in K about the peak wavenumber

k∗ where L0 = L(k∗) = L(k − εK):

L(k) ≈ L0 + ε(∇kL(k∗)) ·K +
1

2
ε2K · (∇Tk∇kL(k∗)) ·K + ... . (7.18)

We then convert the vectors K back to real space using iK = ∇x0
:

L ≈ L0 − iε(∇kL(k∗)) · ∇x0
− 1

2
ε2∇Tx0

· (∇Tk∇kL(k∗)) · ∇x0
+ ... . (7.19)

By comparison to (7.13) we have:

L1 = −i(∇kL(k∗)) · ∇x0
, (7.20)

L2 = −1

2
∇Tx0

· (∇Tk∇kL(k∗)) · ∇x0 . (7.21)

We then apply these operators to an eigenmode multiplied by some wave envelope: A(x0, t)r
α
k∗ ,

and use the fact that L0r
α
k∗ = iωαk∗r

α
k∗ :

L1r
α
k∗A(x0, t) = ((∇kω

α
k∗) · ∇x0

)A(x0, t)r
α
k∗ = ({cg}αk∗ · ∇x0

)A(x0, t)r
α
k∗ , (7.22)

L2r
α
k∗A(x0, t) = (− i

2
∇Tx0

· (∇Tk∇kω
α
k∗) · ∇x0

)A(x0, t)r
α
k∗ = (− i

2
∇Tx0

Qαk∗∇x0
)A(x0, t)r

α
k∗ ,

(7.23)

where Qαk = ∇kcg = ∇Tk∇kω
α
k is the second moment of the wavepacket that defines its linear

spreading.

The L1u1 term represents the translation of slaved mode wavepackets by the usual group

velocity. We shall see later that these terms will not affect the quartet order interactions.
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7.2.1 Structure of the wave envelope for a mode

It is necessary to note that whilst in scalar equations one can arbitrarily define the wavepacket

envelope as any function of the slowly varying spatial scale x0, in vector systems there are no

extra degrees of freedom in wavepacket choice, and so once one has chosen the shape of the

wavepacket in one field, the other fields are prescribed. To describe a well defined wavepacket

each dimension must obey the polarisation relations. For slowly varying x0 probably the clearest

way to do this is by considering the small changes in the wavenumber k = k∗ + εK as defining

the variation around peak wavenumber k∗.

For example we consider a Gaussian wavepacket in the height field of a slow mode of the

shallow water equations, with wavenumbers grouped in a range of size ε around k∗. Using the

eigenvector from (2.85) we would then have the full wavepacket shape:

uαk =
σ2

2π

∫ ∞
−∞

∫ ∞
−∞


−i(l∗ + εL)c

i(k∗ + εK)c

f

e−σ
2|K|2

2 ei(εK+k∗)·x dK =
1√
2σ


−icl∗σ2 + εcy0

ick∗σ2 − εcx0

fσ2
√

2

 eik
∗·xe−

|x0|2
2σ2 ,

(7.24)

and so the envelope for the u and v components has a correction term in the shape of a dipole.

This wavepacket is illustrated in figure 7.1 where the adjusted wavepacket and the correction term

are shown for a given parameter set. In other modes and equation sets it may be impossible to

write the wavepacket in an explicit form and only an integral form can be found.

We need to understand the effect these correction terms will have on the nonlinear part. We

write the Taylor series:

N (uα1

k1
,uα2

k2
) = N0(uα1

k∗1
,uα2

k∗2
) + εK · ∇kN (uα1

k1
,uα2

k2
)|k∗ +O(ε2), (7.25)

uαk = uαk∗ + εK · ∇ku
α
k |k∗ +O(ε2). (7.26)

In (7.26) we can identify the terms as the main and correction parts of the wavepacket calculated

above in (7.24). We now follow how this affects the nonlinear part. From (7.25) we consider

N (uα1

k1
,uα2

k2
):

N (uα1

k1
,uα2

k2
) = N0(uα1

k∗1
,uα2

k∗2
) + εKi · ∇kiN (uα1

k1
,uα2

k2
)|k∗ +O(ε2)

= N0(uα1

k∗1
,uα2

k∗2
) + ε(Ki · ∇kiN )(uα1

k1
,uα2

k2
)|k∗

+N0(εK1 · ∇ku
α1

k1
,uα2

k2
)|k∗ +N0(uα1

k1
, εK2 · ∇ku

α2

k2
)|k∗ +O(ε2)

= N0(uα1

k1
,uα2

k2
) + εN1(uα1

k∗1
,uα2

k∗2
) +O(ε2), (7.27)
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Figure 7.1: The wavepacket, in each field u, v, h for central wavenumber k∗ for the case of α = 0
in the shallow water equations with c = 0.5, f = 1 and ε = 0.35. In the height field in the right hand
frame a Gaussian wavepacket has been chosen, dictating the shape of the wavepackets in the
other two fields given in the left hand and centre frames. The second row shows only the order ε
correction term that adjusts the shape away from a simple Gaussian envelope.

where we used (7.26) to recombine the correction part of the wavepacket in the N0 terms. We

can see that the two parts of equation (7.25) are split between the N0 and N1 terms. In a similar

manner this would continue at each order with small terms re-accounted for at the next order of

expansion. The key point is that the N0 term has the form:

N0(uα1

k1
,uα2

k2
) = N0(uα1

k∗1
,uα2

k∗2
) +N0(εK1 · ∇ku

α1

k1
,uα2

k2
)|k∗ +N0(uα1

k1
, εK2 · ∇ku

α2

k2
)|k∗ + ... .

(7.28)

The left hand term on the right hand side is identical to the nonlinear term used in the previous

chapters, but the right hand terms represent a small adjustment to this due to the correction to the

wavepacket envelope in each field. This suggests that with caution the same interaction coeffi-

cients as previously (found in sections 4.2.1, 4.30, and 4.5.1) may be used, on the understanding

that they are accurate to O(ε). This needs particular caution where the interaction coefficient is

expected to be 0, as is the case for (±,±; 0) triads in the layered equations for example (see

section ??). In this case, in (7.25) each term is individually 0 in the expansion. This leads to the

equality:

ε(Ki · ∇kiN )(uα1

k1
,uα2

k2
)|k∗ +N0(εK1 · ∇ku

α1

k1
,uα2

k2
)|k∗ +N0(uα1

k1
, εK2 · ∇ku

α2

k2
)|k∗ = 0, (7.29)
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and hence:

N0(uα1

k1
,uα2

k2
) = −εN1(uα1

k∗1
,uα2

k∗2
). (7.30)

This will continue at all orders. In effect, spurious terms will appear in the expansion due to the

truncation, allowing what should be a non-interaction to appear as a small error term. With this

in mind one can rule out the interaction {N1({u}±k1
, {u}±k2

)}0k that could otherwise appear in the

analysis of layered equations at timescale t1.

7.3 Restrictions on wavepacket interactions between multiple

packets

We now rework the analysis of chapters 3 and 5 to include slow spatial variation. The first new

term, L1u0, appears at the removal of secular terms stage (equivalent to equation (3.14)), and so

we will jump in here. Removing secular terms from the right hand side of (7.16):

{
∂ū

∂t0
+ L1ū

}α
k

= − lim
τ→∞

1

τ

∫ τ

0

esL0N0(e−sL0ū(x0, t0), e−sL0ū(x0, t0))ds. (7.31)

We should here be clearer about what the limit of τ is doing. The right hand side forms an average

over the fast oscillations that will affect the t0 timescale. This can be expressed as ∼ τ/ε and so

the limit we are interested in at this order is τ → 1/ε. On this timescale we can assume that t0 is

not varying. We need to consider the coincidence time of the wavepackets: if they don’t overlap

for sufficient time for significant energy exchange to occur, the interaction would not appear as a

secular term.

The basic premise is that the width of a wavepacket scales like x0 ∼ 1/ε, the amplitude of

each mode like ε and so for a significant interaction to take place the difference in group velocities

|cg1−cg2| cannot be more than a1a2x0tn/at ∼ tn/t for the timescale tn ∼ εnt. This is not a problem

for triad interactions on the t0 timescale: in these cases the difference in group velocities can be

O(1) and the interaction will be significant whilst the wavepackets coincide. However for quartet

interactions on the timescale t1 the difference between all input group velocities is restricted to

O(ε). If |cg1 − cg2| ∼ O(1) the component triad interactions producing slaved modes will only

output modes of order ε2, belonging to u2 and demoting the quartet interaction to slower than the

t1 timescale. This constraint is accentuated in more than one dimension: if the wavepackets move

perpendicularly the only way in which they can interact on the t1 timescale is if they have group

velocities cg ∼ O(ε). We will first consider triad interactions.
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For simplicity we show this for a simple case: two wavepackets that do not form a triad reso-

nance, that are initialised both at x0 = 0 with wavepackets with shape a(x0) = e−|x0|2/2 + O(ε).

The equations of the two wavepacket amplitudes on the t0 timescale are given by:

∂a1

∂t0
+ (cg1 · ∇)a1 ⇒ a1 = a1(x0 − cg1t0) = a(x0 − cg1t0), (7.32)

∂a2

∂t0
+ (cg2 · ∇)a2 ⇒ a2 = a2(x0 − cg2t0) = a(x0 − cg2t0). (7.33)

The amplitude of the nonlinear term in equation (7.31) is then a1a2. Changing the coordinates to

centre around a1 we write:

a(0)a((cg2 − cg1)t0), (7.34)

and then given a maximum |x0| ∼ 1/ε value, at which the amplitude is O(1) we can write the time

over which the packets can interact as:

t =
|x0|

|cg2 − cg1|
, (7.35)

here we have dropped the scaling on time, the size of the right hand side will determine the

timescale over which the interaction occurs, so O(1) implies the t0 timescale etc. As the scale of

|x0| is fixed, this is effectively governed by the size of 1/|cg2−cg1|. In general we assume that this

cannot take values larger than O(1). For this reason we will not need to consider the coincidence

of wavepackets at this timescale, however it will become important later, in the quartet order

interactions.

Because the wavepackets don’t separate on this timescale we can perform the integration in

(7.31) as in the previous chapters to find that our resonance condition is Ω ∼ ε. At this order the

only difference is the introduction of the group velocity term.

However the u1 terms need to be considered in what is a fundamentally different manner to

the periodic case. We need to solve the remainder of equation (7.16) after removing the resonant

terms, as was done previously in equation (3.20):

∂u1

∂τ
+ L0u1 = −N0(u0,u0)|nr,

⇒ u1 = e−τL0

∫ τ

0

−esL0N0(e−sL0ū0(x0, t0), e−sL0ū0(x0, t0))|nr ds. (7.36)

This has the same result as before, except that now the nonlinear term is only non-zero whilst the

two parts of the input u0 modes coincide in the spatial direction. The wavepacket will propagate at

the weighted average of the two inputs: cga = (σ2
2cg1+σ2

1cg2)/(σ2
1 +σ2

2) where σ is the wavepacket
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width. This means that u1 modes cannot be generated and then propagated away from the area

of interaction. When these then participate in a quartet interaction, all three input modes must

therefore be coincident for a length of time of the order of t1. This will then impose restrictions on

the possible group velocities of the components of the interaction.

We now want to calculate the t1 variation. We take equation (7.17) and perform the same

machinations as we did in chapter 3 and 5 to remove secular terms. This leads to the wavepacket

version of equation (3.24):

lim
τ→1/ε2

1

τ

∫ τ

0

es(L0−L′0) ∂ū1

∂t0
+
∂ū0

∂t1

+ es(L0−L′0)L1ū1 + L2ū0 + esL0

(
N0(e−sL0ū0, e

−sL′0ū1)

+N0(e−sL
′
0ū1, e

−sL0ū0) +N1(e−sL0ū0, e
−sL0ū0)

)
ds = 0.

(7.37)

Similarly to the previous chapters, we find that for large τ ∼ t1 ∼ O(1/ε2) the first and third terms

containing u1 must disappear from the integral as they are by definition non-resonant. In addition

if the underlying modes of the u1 term are only coincident on the t0 timescale the integral will be

O(1) but the division by τ will make this 0 in the limit. The second and fourth terms have no τ

dependence and so they are maintained after averaging. We now consider the N0 terms:

lim
τ→1/ε2

1

τ

∫ τ

0

esL0N0(e−sL0ū0(x0, ετ), e−sL
′
0ū1(x0, ετ))ds. (7.38)

We now must take into account the movement of the wavepackets. We will bound the wavepacket

envelopes by a square envelope of width 1 (in x0) and height ai. We consider a resonant quartet

of wavepackets so that:

lim
τ→1/ε2

1

τ

∣∣∣∣∫ τ

0

N0({ū0}α1

k1
, {ū1}αaka ) + permutations ds

∣∣∣∣
< lim
τ→1/ε2

1

τ

∣∣∣∣∣
∫ τinit+ε/|cga−cg1|

τinit

rαkQ
α1α2α3α
k1k2k3k

aα1

k1
aα2

k2
aα3

k3
+ permutations ds

∣∣∣∣∣
=

∣∣∣∣ ε

|cga − cg1|
rαkQ

α1α2α3α
k1k2k3k

aα1

k1
aα2

k2
aα3

k3

∣∣∣∣ , (7.39)

where Q is given by (3.32), the quartet interaction coefficient, and tinit is the time at the onset

of coincidence. For an O(1) contribution all three group velocities must be separated by an O(ε)

amount, so that the input modes are coincident.

In a similar manner the N1 terms require the two input modes to be coincident on the t1

timescale. As previously discussed in section 7.2.1, parts of the N1 term will effectively act to

negate the small differences between the wavepacket interactions and the previously calculated
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coefficients.

This leaves:

∂ū0

∂t1
+ L2ū0 +N rc

0 (ū0, ū1) +N rc
0 (ū1, ū0) +N rc

1 (ū0, ū0) = 0, (7.40)

where N rc are the resonant parts of the nonlinearity where the modes are coincident for t1 time.

The remainder of the terms will then become the ‘forcing’ on the u2 equation:

∂u2

∂τ
+ L0u2 = −

(
∂u1

∂t0
+ L1u1 +Nnrc

0 (u0,u1) +Nnrc
0 (u1,u0) +Nnrc

1 (u0,u0)

)
, (7.41)

and so the non-coincident, and/or non-resonant triads will affect only the smaller scale u2 part of

the expansion.

However for the quartets formed of near resonant triads, as shown in chapter 5, the interaction

is promoted to the faster t0 timescale, and so these can occur between group velocities separated

by O(1) amounts. In the following we are considering only n-tets formed of non-near resonant u1

modes, for each possibility of mode type combinations. We also assume that the initial conditions

are such that either the wavepackets are initially coincident or will cross each other during the

time considered.

7.3.1 Slow mode input interactions

The simple case of n-tets involving only slow mode inputs has the simple property that all of the

component triads have zero group velocity and so provided that they are initially coincident they

are able to continuously interact to produce higher order slow mode interactions and higher order

spontaneous fast wave emission interactions (0, ..., 0;±). In these cases the slow only interactions

will always be exactly resonant, whilst the fast wave emission interactions will never resonate. This

suggests that slow mode interactions will appear in the expansion while spontaneous emission

will only occur on slower timescales.

7.3.2 Mixed mode input interactions

For mixed modes with the usual quasigeostrophic assumptions all fast modes will have greater

than O(ε) group velocity and will therefore never coincide with fast modes for sufficient time to

cause an interaction. In this case, despite the possibility of resonant interactions, they would be

severely limited in a wavepacket expansion due to the amount of time for which the wavepackets
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interact, they would therefore not appear in an expansion in the continuous domain.

However for different scaling assumptions it could be possible for the group velocity of certain

fast modes to be of O(ε), allowing for interactions, notably for those very close to k = 0.

7.3.3 Fast mode input interactions

For the fast mode input interactions the condition will be cg1 ∼ cg2 ∼ cg3. which in many circum-

stances can be severely limiting to the possible quartet interactions: generally the possibility of

interaction only occurs for wavenumbers ε close to one another, which can therefore only be con-

sidered to belong to the same wavepacket. This just allows for the appearance of modulational

instability, although in more than the original 1 dimension.

However depending on the form of the group velocity function in the vicinity of the wavenum-

bers considered it may be possible to consider interactions with a greater separation. Writing the

Taylor expansion of the group velocity:

cg(k + δk) ≈ cg(k) + δk · ∇cg(k) + ...

⇒ cg(k + δk)− cg(k) ≈ δk · ∇cg(k). (7.42)

For an O(ε) difference between the group velocities but with δk ∼ O(1) we require∇cg(k) ∼ O(ε).

In this case it is possible to have larger differences between the input wave modes. In general

this occurs for large values of |k|, close to the non-dispersive limit. These wavepackets also

maintain coherency for a longer time (longer than the timescale of the quartet interaction) as the

linear spreading term ∇Tx0
Q∇x0

will be small.

These resonances might be expected to appear in an expansion. It should also be noted that

the 1 dimensional case is in fact integrable (Kaup, Reiman, and Bers 1979), whereas this is not

true in more dimensions.

7.3.4 A special case

We now analyse a special case of the fast input interactions. We consider the case where Ω ∼ √ε.

This will not be resonant as it does not meet the resonance criterion Ω ∼ ε, and so it will form a
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slaved mode. From (3.22):

{u1}αaka =
∑
k1,k2
α1,α2

Cα1α2αa
k1k2ka

∣∣
nr
aα1

k1
aα2

k2

iΩ12a
rαaka e

−i(ω1+ω2)τ δka−k1−k2
∼ 1√

ε
.

Then when this mode goes on to form a quartet, as in (7.38) above, we can alter the scaling of

(7.39) to get:

√
ε

|cga − cg1|
rαkQ

α1α2α3α
k1k2k3k

aα1

k1
aα2

k2
aα3

k3
.

This reduces the restriction on the group velocity difference to:

|cga − cg1| ∼
√
ε. (7.43)

In these special conditions the non-resonant, non-coincident wavepackets are able to form a

quartet resonance that evolves on the t1 timescale.

Further there is a specific situation in which the detuning and the group velocities are both

small: when a near resonance occurs that is not close to an exact resonance. In this case we

have:

min(ω − ω1 − ω2) ∼ ε 6= 0, (7.44)

and so, given that each branch of the dispersion relation is continuous, the closest approach is

given by the stationary point of Ω. We fix the output wavenumber (k = k1 +k2) such that by chain

rule:

∂

∂k1
= − ∂

∂k2
, (7.45)

and then:

∂Ω

∂k1
= cg2 − cg1. (7.46)

It follows that at the closest approach where Ω ∼ ε, the group velocities are identical. On the

assumption that group velocities are O(1) we find that Ω ∼ √ε then implies that |cg2 − cg1| ∼
√
ε.

This will always occur for triads corresponding to self interaction of a wavepacket.
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7.4 Applications

Some effects of these interaction limitations will now be discussed in the context of the geophysical

examples we have considered throughout.

7.4.1 Shallow water equations

Here we compare our conclusions for wavepacket interactions to the work in Reznik, Zeitlin, and

Ben Jelloul 2001 on the shallow water equations where it was found in the case of compact initial

conditions that slow-slow-slow-slow interactions were the only permissible ones affecting the slow

mode.

By the theory of section 7.3 the only possible quartet interactions would be subsets of the

(0, 0, 0; 0), (0, 0, 0;±), (±,±,±; 0) and (±,±,±;±) interactions. In the case of exact resonances

the (0, 0, 0;±) interaction is easily ruled out. We can then use the theory of chapter 3 to ignore

the (±,±,±; 0) interaction, as only fast wave inputs cannot cause a slow mode output.

The remaining (fast-only and slow-only) interactions are all that were found to exist in Reznik,

Zeitlin, and Ben Jelloul 2001. The main difference to the case with a doubly-periodic domain is

the (0,±,±; 0) that is removed by the inability of the quartet interaction to take place before the

slow and fast wavepackets have propagated apart.

The effect of near resonant interactions changes these conclusions. Because the near res-

onant triads interact on a timescale for which the group velocity differences can be O(1), any

quartet that can be formed by a combination of near resonant (±, 0;±) and (±,±;±) triads will

be present in the expansion. This includes (0,±,±;±), (0, 0,±;±), and (±,±,±;±) quartets.

However it is still not possible to affect the slow part.

7.4.2 Two layer rotating shallow water equations

Many of the results for the two layer case follow exactly as for the one layer. However we now

evaluate the new resonance between sets of fast modes from section 4.3.2, in the context of

wavepackets. The resonance in fig 4.1d can now exactly fit the criteria described in section 7.3.4,

allowing the relaxing of the resonance and coincidence conditions for the quartet resonances to

appear so that interactions may occur when |cga−c1| ∼
√
ε and Ω ∼ √ε. This allows this particular

interaction to be one of the component triads in a dominant t1 order energy exchange.
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7.4.3 Stratified equations

In the stratified equations the situation is somewhat similar to the layered equations. Although the

near resonant (±,±; 0) interaction exists, it does not act fast enough that the group velocities can

be markedly different to one another.

However the fact that these interactions are non-zero does allow the (±,±,±; 0) quartets to

occur, even in the non-periodic case. This means that a combination of wavepackets at larger

wavenumbers should be able to interact to spontaneously produce a zero mode, on a quartet

timescale. The relevant interaction coefficient is the following:

Q± ± ± 0
k1k2k3k

=
2

3

[
C±± 0

kak3k
C± ± ±k1k2ka

∣∣
nr

i(ωa − ω1 − ω2)
+
C±± 0

kbk1k
C± ± ±k2k3kb

∣∣
nr

i(ωb − ω2 − ω3)
+
C±± 0

kck2k
C± ± ±k3k1kc

∣∣
nr

i(ωc − ω3 − ω1)

]
.

7.5 Chapter summary

In this chapter:

• Wavepackets were incorporated into the multiple scale theory.

• The restriction of wavepacket shape for systems of equations was discussed.

• The conditions in which wavepackets are concurrent for sufficient time to interact on a quar-

tet order were discussed. It was found that in the wavepacket context near resonances have

a substantial effect on the behaviour of a system, allowing interactions to take place that

would otherwise not appear until a much higher order of the expansion.

• A special case was discussed that allows the quartet order interaction to occur on timescale

t1 with the weaker pair of conditions |cga − c1| ∼
√
ε and Ω ∼ √ε
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Chapter 8

Conclusions

8.1 Summary

In this thesis we formulated a general framework for calculating higher order exact resonant ex-

pansions (chapter 3), including the general form of the interaction coefficient for all orders given

in (3.34). In chapter 4, we then formed particular conclusions for the application of this to fast-

slow systems, which occur frequently in atmospheric and oceanic contexts. This allowed the

reappraisal of several papers in the literature concerned with the rotating shallow water equations

(eg Thomas 2016, Reznik, Zeitlin, and Ben Jelloul 2001). We saw that the higher order effects

of these papers can be considered more generally to belong to any layered equation and, more

generally still, any equation with a pointwise conserved potential vorticity of the form:

q =
ζ′ + f
H + η′

,

where variables marked with a ‘ are O(ε) to leading order and f is constant.

For the more general form of Ertel PV:

q = (ζ′ + f) · ∇θ,

we have shown that in the weakly nonlinear approximation the fast-slow interactions are still limited

to no higher than the quartet order timescale t1. However this is still an interesting fundamental

difference between the layered and stratified equations: above triad order the n-layer equations

would not approximate the nonlinear part of the stratified equations, regardless of how large a

value of n one might choose.
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The particular case of the two-layer rotating shallow water equations (work originally published

in Owen, Grimshaw, and Wingate 2018) contained newly derived resonant triad interactions that

allow the exchange of energy between gravity waves in different vertical modes: the barotropic

and baroclinic parts. We investigated this thoroughly, including the unusual feature of a set of

resonances that can exist in some parameter ranges but not others, and in many cases are highly

directional in nature. We found that in a discretisation of the system this resonance could be

entirely absent, prompting the need to consider near resonant interactions.

In both the two layer shallow water and stratified equations we derived the interaction coef-

ficients in full (for the first time to the best of the author’s knowledge). This allowed detailed

examination of possible interactions.

We then extended the theory (chapter 5) in a general manner to include the near resonant

interactions. We have shown that near resonant interactions are a simple method for picking

out all of the higher order interactions that happen fast enough that they can skip to the faster

t0 timescale in the expansion. Where the n-tets of the interactions are formed entirely of near

resonant triads their dynamics will be on the t0 triad timescale, regardless of the order they would

have occurred at in the exact resonant expansion. Here we have also shown that for layered

type equations the fast-fast-slow interactions cannot occur at all, and for the more general form

of Ertel PV found in other equations we have shown that they can never occur significantly at the

faster time due to the small size of the interaction coefficient. From this and the earlier theory on

triad combinations we can conclude that the non-near resonance of the slow-slow-fast triads is

single-handedly responsible for the strength of the fast-slow splitting of any zero-mode system.

Other than the scattering fast-slow-fast resonance of eg Ward and Dewar 2010, there can be no

fast-slow interaction that generates slow modes until quartet order (t1 time) interactions, and we

have now shown that this is true in the more general near resonant expansion, for any system

with potential vorticity conservation in an f -plane.

We analysed a numerical simulation of the rotating shallow water equations in terms of the

possible near and exact resonances, and we found that the near resonant theory was a much

more accurate description of the system’s behaviour. This included near resonances that exist

in regions that do not contain exact resonances, demonstrating clearly that near resonant theory

cannot be understood as an approximation of exact resonances: the near resonances are impor-

tant in their own right. This is a point that is easily lost on the reader in the existing literature,

where terminology such as detuning suggest an adjustment to an exact resonance.

In chapter 7 we extended the theory further to include multiple spatial scales and the assump-

tion of wavepackets. We then showed that consideration of the interaction times was sufficient to
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explain the difference between the periodic and continuous results found in Thomas 2016, and

Reznik, Zeitlin, and Ben Jelloul 2001. Further, we have shown that for the more general near

resonant case extra interactions may be allowed that would be prevented by the exact theory for

wavepackets. This theory was also formulated in a manner that makes it applicable to wave-

packet interactions in multiple dimensions, something that is less commonly found in the literature

and can be seen in the near resonant context to require more consideration. We also found a spe-

cial case where the resonance and coincidence conditions were weaker, and made an argument

that this is an important consideration where near resonances exist that are not in the vicinity of

an exact resonance.

To summarise, the theory of this thesis is a method of multiscale expansion that allows the si-

multaneous usage of effects from conservation laws and the usual timescale analysis to determine

some very general properties of flow timescales. The extension to near resonances increases the

applicability of the theory to a greater range of ε values. The extension to wavepacket theory

shows that the near resonances can fundamentally change the behaviour that would be predicted

when one expands using the exact resonances.

8.2 Discussion and Future work

Some possible limitations of the work were highlighted through the thesis. One of the most major

of these was the implications for using a range of wavenumbers such that the ratio of smallest to

largest is comparable to ε. In this case the interaction coefficient, which scales like U2|k| could

become sufficiently large as to disrupt the asymptotic ordering, rendering the expansion invalid.

This can be considered equivalent to taking the non-dispersive limit of the equations, and would

result in qualitatively different behaviour.

We have everywhere been implicitly assuming that no shocks will form. However in hyperbolic

equations dissipative effects have been ignored. Whilst neglecting viscosity is a useful assump-

tion, in order to be able to use results from conservative systems, it is not particularly realistic. As

dissipative effects (including wave breaking) are considered to be one of the major ways in which

the gravity waves can act on the balanced flow, inclusion may significantly affect the theory. For

discussion of the applicability of higher order asymptotic expansions in shallow water one may

refer to Bühler 2000. The implications of wave breaking and dissipation on the near resonant

expansion could be the subject of future work.

Two of the major underlying assumptions of all the work presented here were that the system

does not consider internal energy/entropy, and the rotating frame obeys the f -plane assumption.
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This led to the exact pointwise conservation of potential vorticity and to the quadratic nature of the

nonlinearity. However, if both of these assumptions are slackened slightly, the resulting range of

systems includes many more common geophysical fluid models, those on a sphere or on a beta-

plane, and those which allow for temperature/salinity variation and compressibility. Relaxation of

the f -plane assumption might allow analysis of a linear PV of the form found in the f -plane but

only conserved up to O(ε). For compressible systems we might expect an order 2 + ε nonlinearity.

In both cases, an O(ε) adjustment to the theory we have discussed in the thesis. It may therefore

be possible to extend the theory of this thesis to a more general class of systems. The exact

algebra may be significantly more complicated, particularly where Fourier transforms would not

be valid and more complicated basis functions are needed, but exploiting the asymptotic similarity

with the work here may make it a tractable problem.

Of particular interest would be if the conclusions on the interactions between fast and slow

modes remained relatively similar, such that zero modes become ‘ε modes’, and fast-fast-slow

interactions are still at least approximately inaccessible. It seems likely that this may be true in

the extension to the beta-plane. At mid latitudes this would give an ε-order adjustment to the

propagation speed of the slow modes. This same approximation is used in Bühler and McIntyre

1998 to consider beta-plane effects at a later order of interaction than the first order part of the

rotation.

The conclusion that strong fast-slow splitting derives from the non-near resonance of the slow-

slow-fast triads could then be challenged by any fast terms with small ω interacting with the largest

of the ε modes. This could theoretically provide a pathway by which to evaluate the specific

situations in which quasigeostrophy is least applicable, and hence conversion of energy between

slow and fast waves is strongest. This could be invaluable in considerations of the ocean’s energy

budget for instance, where it is thought that energy is dissipated by the large wavenumber gravity

waves, as well as work on parametrising gravity waves in numerical simulations.

To conclude, this thesis has explored the weakly nonlinear limit of a common class of fluid

equations: those with quadratic linearity and a conserved potential vorticity. The resonant analysis

finds its use in a wide range of geophysical fluid systems and has been extended here to high

order, near resonance and to multidimensional wavepackets, exploring the effects that might occur

due to the interactions of fast and slow parts of the flow. This analysis could form the building

blocks for analysis of the more detailed systems that occur in atmospheric and oceanic study.
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Appendix A

Appendix

A.1 Big and Little O notation

Big-o and little-o notation are defined (in the specific limit for small ε) as:

f(ε) = O(g(ε)) iff
∣∣∣∣limε→0

f(ε)

g(ε)

∣∣∣∣ ≤ A, where A is a finite constant, (A.1)

f(ε) = o(g(ε)) iff lim
ε→0

f(ε)

g(ε)
= 0. (A.2)

In words O(ε) refers to something that has variation of maximum size∼ ε and o(ε) means anything

with variation of maximum size smaller than ε.

A.2 Matrix Exponential

In this thesis the matrix exponential is used to reduce the notation and so a brief description is

included here.

The matrix exponential is defined similarly to the scalar exponential function as follows:

eA = I +A+
1

2
A2 + ... . (A.3)

There is much theory on the matrix exponential, particularly on its efficient computation, for

example in Moler and Van Loan 2003. However thanks to the conservative systems we intend to

consider we will find that we will always be able to diagonalise (i.e. put into its eigenbasis) the
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matrix that we wish to exponentiate:

D = T−1AT . (A.4)

Where T is the transform matrix to the space in which the matrix is diagonal.

We note that:

Dn = T−1ATT−1AT ...T−1AT ,

= T−1AnT , (A.5)

and hence:

T−1eAT = I +D +
1

2
D2 + ... = eD. (A.6)

We then use that {Dn}ii = {Dii}n for a diagonal matrix. From this it follows that:

{eD}ii = eDii , (A.7)

and what we effectively have is element by element exponentiation.

Physically we have a linear system of rank(D) equations that are all decoupled and are there-

fore soluble separately. The power of the matrix exponential in our case is in fact just notational

as it allows us to write any of the different linear equations from our system in the same manner.

In the thesis the elements Dii are iωiτ where ωi is the frequency from the ith branch of the

dispersion relation.
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