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Abstract  25	

Previous work has identified six Large-Scale Meteorological Patterns (LSMPs) of 26	

dynamic tropopause height associated with extreme precipitation over the Northeast US, with 27	

extreme precipitation defined as the top one percent of daily station precipitation. Here, we 28	

examine the three-dimensional structure of the tropopause LSMPs in terms of circulation and 29	

factors relevant to precipitation, including moisture, stability, and synoptic mechanisms 30	

associated with lifting. Within each pattern, the link between the different factors and extreme 31	

precipitation is further investigated by comparing the relative strength of the factors between 32	

days with and without the occurrence of extreme precipitation. 33	

The six tropopause LSMPs include two ridge patterns, two eastern US troughs, and two 34	

troughs centered over the Ohio Valley, with a strong seasonality associated with each pattern. 35	

Extreme precipitation in the ridge patterns is associated with both convective mechanisms 36	

(instability combined with moisture transport from the Great Lakes and Western Atlantic) and 37	

synoptic forcing related to Great Lakes storm tracks and embedded shortwaves. Extreme 38	

precipitation associated with eastern US troughs involves intense southerly moisture transport 39	

and strong quasi-geostrophic forcing of vertical velocity. Ohio Valley troughs are associated 40	

with warm fronts and intense warm conveyor belts that deliver large amounts of moisture ahead 41	

of storms, but little direct quasi-geostrophic forcing. Factors that show the largest difference 42	

between days with and without extreme precipitation include integrated moisture transport, low-43	

level moisture convergence, warm conveyor belts, and quasi-geostrophic forcing, with the 44	

relative importance varying between patterns.   45	
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1 Introduction 46	

Extreme precipitation is responsible for some of the most destructive and costly, in terms 47	

of human lives and resources, natural disasters in the Northeast US (Kunkel et al. 2013). These 48	

disasters include localized flash flooding in streams due to summertime convective events, urban 49	

flooding due to extreme rainfall and poor drainage, and widespread river flooding due to tropical 50	

cyclones and spring rains combined with snowmelt. Unfortunately, the vulnerability of this 51	

region to the effects of extreme precipitation is expected to grow, as 99th-percentile daily 52	

precipitation in the region has increased 74% from 1958–2010 (Groisman et al. 2013), while 53	

future winter and spring precipitation over this region, based on a range of model projections 54	

using the A2 emissions scenario, is expected to increase between 5–20% by the end of this 55	

century (Melillo et al. 2014). The goal of this study is to investigate the dynamical mechanisms 56	

and moisture ingredients associated with Northeast US (hereafter “Northeast”) extreme 57	

precipitation by building on previous work that identifies several large-scale circulation patterns 58	

associated with this extreme precipitation (Agel et al. 2017), and providing a first step toward 59	

being able to accurately predict and prepare for future precipitation challenges for the region.  60	

The mechanisms by which precipitation is delivered to the Northeast depend upon 61	

location relative to the coastline. Precipitation in the coastal region is strongly influenced by 62	

extratropical storms traveling along the high-density North Atlantic storm track (Hoskins and 63	

Hodges 2002). Precipitation in the inland region, while influenced by the North Atlantic storm 64	

track as well as extratropical storms traveling across the Great Lakes region, is also 65	

orographically influenced by the Adirondack, Green, and White Mountain ranges. These 66	

different regional influences result in fewer precipitation days at coastal stations than at inland 67	

stations, but with considerably higher daily intensity at coastal stations (Agel et al. 2015). At 68	
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inland stations the highest daily intensity occurs in warm months, while at coastal stations peaks 69	

in daily intensity occur in spring and fall. Extreme daily precipitation (based on top 1% daily 70	

station precipitation) varies from 30+ mm at inland locations to 70+ mm at coastal locations. For 71	

both inland and coastal locations, extreme precipitation days tend to occur embedded within 72	

multiple-day precipitation events. 73	

Accordingly, a complete dynamical analysis of extreme precipitation in the Northeast 74	

needs to consider both synoptic-scale influences as they apply to the entire region, as well as 75	

localized and sub-regional responses to those larger-scale influences. Several researchers, as part 76	

of larger-domain or global studies, have addressed the first issue by evaluating the role of 77	

synoptic-scale influences on extreme precipitation in the Northeast. Pfahl and Wernli (2012), 78	

using 99th percentile 6-hourly modeled precipitation, estimated that 60–80% of extreme 79	

precipitation along the eastern US seaboard occurs near extratropical cyclone centers. Pfahl and 80	

Sprenger (2016) quantified the role of cyclone intensity and moisture availability in generating 81	

precipitation, and found that intensity and moisture scale well to precipitation, especially in low-82	

latitudes, but that moisture availability can act as an independent factor in mid- and high-83	

latitudes. Collow et al. (2016) found strong anomalous moisture transport and lower sea level 84	

pressure associated with summertime Northeast cyclones for 95th percentile precipitation events. 85	

Kunkel et al. (2012), using daily precipitation exceeding a 1-in-5-year occurrence, found that 86	

Northeast extreme precipitation can be attributed in 16% of the cases to nearby extratropical 87	

cyclones, in 47% of the cases to frontal processes, and in 36% of the cases to tropical cyclones. 88	

Dowdy and Catto (2017) found that the combination of a cyclone and a front is the most 89	

common cause of extreme precipitation (6-hourly 99th percentile) in the Northeast.  90	
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Several studies have further explored the relevance of fronts to precipitation. Based on 91	

global figures from Catto et al. (2012), approximately 18-30% of Northeast annual total daily 92	

precipitation is related to cold fronts, while 30-42% is related to warm fronts. However, extreme 93	

precipitation is more likely to be associated with warm fronts: Catto and Pfahl (2013) found that 94	

40-50% of 6-hourly ERA-Interim extreme precipitation occurs with nearby warm fronts in the 95	

Northeast, despite the fact that only 5-10% of fronts generate extreme precipitation.  96	

Warm conveyor belts (WCBs), well-defined moist airstreams in an extratropical 97	

cyclone’s warm sector that rise from the boundary layer into the upper troposphere (Green et al. 98	

1966, Harrold 1973, Wernli and Davies 1997) and feature intense latent heat release (Browning 99	

1990), are also linked to extreme precipitation. For the eastern US, Pfahl et al. (2014) showed 100	

that about 50-70% of all extreme precipitation events between 1979 and 2010 were related to 101	

WCBs. WCBs, particularly those linked to extreme precipitation, often occur in conjunction with 102	

warm and cold fronts in the Northeast (Catto et al. 2015). WCBs also play an important role for 103	

atmospheric dynamics. In the early phase of the WCB ascent, diabatic potential vorticity (PV) 104	

production leads to the formation of a positive PV anomaly (Wernli and Davies 1997), which is 105	

essential for the intensification of many strongly deepening cyclones (Stoelinga 1996; Binder et 106	

al. 2016), while in the upper troposphere diabatic PV reduction produces negative PV anomalies 107	

that can amplify upper-level ridges and influence the downstream flow evolution (Wernli 1997, 108	

Pomroy and Thorpe 2000, Grams et al. 2011).  109	

In the current study, we build on these previous results, while also examining the sub-110	

regional response to larger-scale synoptic forcings, by taking a detailed view of the processes 111	

related to extreme Northeast precipitation within the context of several Large-Scale 112	

Meteorological Patterns (LSMPs; Grotjahn et al. 2016). LSMPs are typically defined at a scale 113	
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larger than the mesoscale but smaller than the scale of climate variability, and relate to some 114	

observed phenomena, such as precipitation or temperature extremes (e.g., Loikeith and Broccoli 115	

2012, Glisan and Gutowski 2014, Callow et al. 2016, Roller et al. 2016). Here, the LSMPs used 116	

are six previously-defined upper-level circulation patterns of dynamic tropopause height that are 117	

linked to the top 1% of daily extreme precipitation in the Northeast (Agel et al. 2017). Dynamic 118	

tropopause height is an effective field to use for large-scale pattern identification, since it 119	

provides a compact representation of the upper-level flow, as gradients of PV along the 120	

tropopause are directly related to the strength of upper-level troughs and ridges (Hoskins et al. 121	

1985, Nielson-Gammon 2001). For each tropopause LSMP, we examine the associated three-122	

dimensional large-scale circulation, as well as a range of factors relevant to precipitation, 123	

including moisture, stability, and synoptic mechanisms associated with lifting. Because the six 124	

LSMPs are linked to extreme precipitation days only, we extend our analysis by also considering 125	

six similar patterns drawn from a set of LSMPs identified for all days 1979–2008 (Agel et al. 126	

2017). For the similar-patterned LSMPs, we compare the relative strength of the circulation and 127	

factors between days with and without the occurrence of extreme precipitation.  128	

The paper is organized as follows. In Section 2, the data products and methods used to 129	

develop the tropopause patterns and to identify the key ingredients or processes related to 130	

extreme precipitation within each tropopause pattern are described. In Section 3, the tropopause 131	

LSMPs are described and a set of composite figures showing key circulation fields, moisture 132	

fields, instability measures, and synoptic mechanisms for each set of pattern days, as well as the 133	

differences between several of these fields on extreme vs. non-extreme days, are used to examine 134	

how these factors relate to extreme precipitation within each LSMP. In Section 4 we provide a 135	

summary of our results (including a summary schematic of how circulation, moisture, and 136	
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instability contribute to extreme precipitation within each of our tropopause patterns), as well as 137	

further discussion regarding the role of moisture transport, and a brief discussion of future work. 138	

2 Data and Methods 139	

2.1 Extreme precipitation days 140	

Northeast extreme precipitation is identified as the top 1% of daily precipitation 141	

exceeding 0.01 in, or 0.254 mm, at 35 United States Historical Climatology Network (USHCN; 142	

Easterling et al. 1999) stations for the years 1979–2008, as developed in Agel et al. (2015). Each 143	

station is missing no more than 1% of the daily values. Extreme days related to tropical cyclones, 144	

defined as days where a station experiencing extreme precipitation is within 1000 km of a 145	

HURDAT2 (Landsea and Franklin 2013) tropical cyclone track, are eliminated, leaving a total of 146	

691 unique dates with non-tropical cyclone-related extreme precipitation at one or more stations. 147	

The station locations, regional variation of top 1% threshold values, and seasonal frequency of 148	

the extreme dataset are shown in Online Resource 1, reproduced from Agel et al. (2015), where 149	

the division of coastal and inland stations runs roughly along the 45 mm day-1 threshold contour. 150	

The seasonal categories used here and throughout the paper are December–February (DJF), 151	

March–April (MAM), June–August (JJA), and September–November (SON). The National 152	

Oceanic and Atmospheric Administration (NOAA) Climate Prediction Center (CPC) 0.25° x 153	

0.25° Daily U.S. Unified Precipitation (CPCU; Chen et al. 2008) is also used to show region-154	

wide precipitation, and is provided by NOAA/OAR/ESRL PSD 155	

(http://www.esrl.noaa.gov/psd/http://www.esrl.noaa.gov/psd/data/gridded/data.unified.daily.conu156	

s.html). 157	

2.2 Dynamic tropopause patterns 158	
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The six tropopause LSMPs, previously identified in Agel et al. (2017), are created by 159	

applying k-means clustering (KMC; Diday and Simon 1976, Michelangeli et al. 1995) to daily 160	

standardized anomalies of dynamic tropopause height for the 691 extreme precipitation days 161	

defined above. The standardized anomaly fields are created from daily means of the National 162	

Aeronautics and Space Administration (NASA) Modern Era Retrospective Reanalysis for 163	

Research and Application (MERRA, Rienecker et al. 2011) blended tropopause height (provided 164	

in units of pressure, at 1-hourly intervals on a 2/3° x 1/2° grid). This field is a smoothed mix of 165	

PV-based tropopause pressure at higher latitudes and temperature-based tropopause pressure at 166	

lower latitudes. Because we use MERRA’s blended approach to defining the tropopause height, 167	

we use the terms “dynamic tropopause height” and “tropopause pressure” interchangeably here. 168	

The standardized anomalies are produced by removing the long-term daily mean from the daily 169	

mean at each grid point, and dividing the result by the temporal standard deviation of the values 170	

at the grid point. The long-term daily mean is created at each grid point by taking a 30-year mean 171	

of each calendar day and smoothing the results with a 21-day running mean.  172	

In addition to KMC typing on extreme precipitation days, Self-Organizing Maps (SOMs, 173	

Kohonen 2001) of dynamic tropopause height for all days 1979–2008, previously developed in 174	

Agel et al. (2017), are used to identify the differences between extreme precipitation days and 175	

non-extreme precipitation days within each SOM pattern. The SOM technique applies 176	

unsupervised learning to neural network classifications, to create a number of distinct “nodes”, 177	

or patterns, for an input field. Here, the input field is identical to the dynamic tropopause height 178	

field used for the KMC analysis, and the SOM algorithm is specified to use linear initialization, 179	

200 initial training iterations, 1200 secondary training iterations, and a 5 x 6 rectangular pattern 180	
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space with an initial training radius of 6. A complete description of the KMC and SOM methods 181	

used to create the tropopause LSMPs is available in Agel et al. (2017). 182	

2.3 Additional reanalysis variables 183	

We use additional MERRA reanalysis data to evaluate the key dynamical fields and 184	

physical properties associated with the extreme precipitation-producing circulation patterns. 200-185	

hPa winds, 500-hPa geopotential heights, mean sea level pressure (MSLP), and 700-hPa vertical 186	

velocities are used to identify the three-dimensional circulation associated with each LSMP. 187	

Lowest model level winds and specific humidity are used to show low-level moisture 188	

convergence (LLMC), which can enhance precipitation amounts above that expected from a 189	

simple Clausius-Clapeyron perspective (Muller et al. 2011). Integrated vapor transport (IVT) is 190	

used to provide a measure of moisture flux into the region. The static stability parameter for an 191	

isobaric system, calculated at 750 hPa from temperature and pressure per Eq. 3.7 in Holton 192	

(2004), is used to show areas where buoyancy can enhance precipitation production. Ertel’s PV 193	

(EPV), for the 900–100-hPa layer, is used to show vertical cross-sections where lift may be 194	

enhanced by diabatic heating, particularly due to the release of latent heat during precipitation. 195	

The thermal wind form of quasi-geostrophic (QG) forcing (right-hand-side of Eq. 6.36 in Holton 196	

2004), specifically the advection of 700-hPa geostrophic relative vorticity by the 900–500 hPa 197	

thermal wind1, is used to identify areas where synoptic mechanisms such as temperature 198	

advection and vorticity advection may play a role in generating lift. The MERRA data is at two 199	

different resolutions – geopotential heights, temperature, MSLP, horizontal winds, EPV, specific 200	

humidity, and vertical velocity are provided at 3-hourly intervals on a 1.25° x 1.25° grid; while 201	

																																																								
1	The 900–500 hPa layer is chosen as opposed to the more familiar 1000–500 hPa layer because 
MERRA does not include interpolated values below the lowest model sigma level, resulting in 
many missing values at 1000 hPa for the Northeast.	
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IVT and other single-level fields are available at 1-hourly intervals on a 2/3° x 1/2° grid. Unless 202	

otherwise noted, the MERRA data is evaluated at 12 UTC. 203	

Convective Available Potential Energy (CAPE) from NOAA’s National Centers for 204	

Climate Prediction (NCEP) Climate Forecasting System Reanalysis (CFSR; Saha et al. 2010), a 205	

high-resolution coupled atmosphere-ocean-land surface-sea ice system, is used to show regions 206	

of potential convection2. The field is available at 6-hour intervals on a 0.5° x 0.5° grid. Here we 207	

use the 18 UTC field, as CAPE values for the Northeast tend to peak from 18–22 UTC (based on 208	

manual inspection for the dates considered).  209	

Anomalies of all reanalysis fields are calculated by subtracting the smoothed long-term 210	

daily means at each grid point from the 12 UTC (unless otherwise noted) fields. The long-term 211	

daily means are calculated as for MERRA tropopause height. 212	

2.4 Storm tracks 213	

Storm track data is derived by applying the tracking algorithm of Hoskins and Hodges 214	

(2002) to 6-hourly European Center for Medium-range Weather Forecasting (ECMWF) ERA-215	

Interim (Dee et al. 2011) 850-hPa relative vorticity with a methodology similar to Catto et al. 216	

(2010). The vorticity field is spectrally truncated at 42 wavenumbers (T42) to eliminate small-217	

scale features, and further filtered to remove wavenumbers n<=5 before identification of 218	

vorticity maxima. Tracks are established from the maxima using a nearest neighbor approach, 219	

from which the smoothest set of tracks, based on minimizing a cost function, are selected. The 220	

tracks are further filtered to those with duration of at least 2 days and propagation distance of at 221	

least 1000 km.  222	

																																																								
2	The CFSR CAPE field is used instead of calculation directly from MERRA due to the lack of 
MERRA interpolated values below 900 hPa for the Northeast.	
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The storm track data is used to identify extreme station precipitation as storm-related 223	

(non-storm-related) if the station experiencing precipitation is within (outside of) 800 km of a 224	

storm center on the day of precipitation. The 800-km threshold is based on a manual review of 225	

station precipitation and nearby storm tracks, and is used to capture the majority of storm-related 226	

dynamics, but does not necessarily include precipitation related to elongated fronts far removed 227	

from storm centers, or that due to other mechanisms such as localized convection and mesoscale 228	

convective complexes (MCCs).  229	

2.5 Fronts 230	

Cold and warm fronts are identical to those used in Catto et al. (2012), Catto and Pfahl 231	

(2013), and Catto et al. (2014). The fronts are derived from ECMWF ERA-Interim reanalysis, 232	

using an objective identification algorithm from Berry et al. (2011) to identify organized 233	

locations where a selected thermal front parameter (based on 850 hPa wet bulb potential 234	

temperature) is lower than a specified negative threshold value. Fronts are then placed where the 235	

gradient of the thermal front parameter is zero (Hewson 1998). The fronts are identified as warm 236	

or cold based on overall speed and direction, and are provided on a 2.5° x 2.5° grid at 6-hour 237	

intervals.  238	

Frontal density at each grid box is calculated per day based on the number of times a 239	

front is present in each grid box (0-4 counts per day). The densities are calculated in a station-240	

relative manner (that is, the front positions are shown in relation to the location of the stations 241	

experiencing extremes). In this case, for each extreme precipitation day (which may feature 242	

extreme precipitation at more than one station), the nearest frontal grid location is found for each 243	

station experiencing extreme precipitation, and a surrounding 35° latitude x 40° longitude box 244	

(with the station in the center) is used to gather the station-relative frontal density. Station-centric 245	
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frontal density on an extreme day is then calculated as the mean of these 35° x 40° station-246	

relative frontal densities. In addition, Online Resource 2 shows the actual composite location of 247	

the fronts for storm-related and non-storm-related days, as well as the station-centric warm and 248	

cold fronts separated by coastal and inland station extremes.  249	

2.6 Warm Conveyor Belts 250	

WCBs are obtained from the global climatology of Madonna et al. (2014), based on 6-251	

hourly ECMWF ERA-Interim reanalysis fields evaluated at 60 vertical levels and interpolated 252	

onto a 1° x 1° longitude-latitude grid. WCB trajectories are calculated with the trajectory tool 253	

LAGRANTO (Wernli and Davies 1997; Sprenger and Wernli 2015). At each 6-hourly time step, 254	

three-dimensional kinematic two-day forward trajectories are started from an equidistant grid in 255	

the lower troposphere (between 1050 and 790 hPa) with a horizontal spacing of 80 km and a 256	

vertical spacing of 20 hPa. Trajectories that ascend more than 600 hPa within two days in the 257	

vicinity of an extratropical cyclone are then classified as WCB trajectories (see Madonna et al. 258	

2014 for details). Analogous to Binder et al. (2016), low- and upper-level WCB trajectory 259	

frequencies are defined at each grid point as the percentage of pattern days associated with at 260	

least one WCB air parcel with p > 500 hPa and p < 500 hPa, respectively, at the grid point at 12 261	

UTC. 262	

2.7 Statistical significance 263	

Statistical significance, unless noted otherwise, is established through a Monte Carlo 264	

approach, in which the pattern assignments are randomly shuffled (among the 691 days for the 265	

KMC clusters, or among all days for the SOM patterns), and the desired quantity (for example, 266	

seasonal frequency of the KMC pattern dates) is recalculated. This process is repeated 1000 267	
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times, creating a range of values. A quantity is considered statistically significant if it falls below 268	

the bottom 2.5% or above the top 97.5% of the randomly generated values. 269	

2.8 Comparison of fields between extreme and non-extreme days 270	

Differences between extreme-precipitation days and non-extreme precipitation days 271	

within each LSMP are explored for select fields using the all-days SOM patterns most similar to 272	

the KMC patterns. To identify these differences, each of the KMC patterns must also occur in the 273	

all-day SOM context, and the SOM patterns most similar to the KMC patterns must explain the 274	

majority of extreme precipitation. Online Resource 3, reproduced from Agel et al. (2017), shows 275	

the tropopause SOM patterns, the frequency of extreme precipitation days represented by each 276	

SOM pattern, and the frequency of KMC pattern days C1–C6 represented by each SOM pattern. 277	

The SOM patterns most representative of the C1–C6 patterns and used in this paper are SOM4, 278	

SOM26, SOM13, SOM8, SOM20, and SOM1, respectively.  279	

For each field, the non-extreme-day composite is subtracted from the extreme-day 280	

composite, and the results are standardized at each grid point by subtracting the grid point mean 281	

and dividing by the grid point temporal standard deviation. This allows a comparison of the 282	

relative strength of the fields’ differences, independent of the units of the original fields. Only 283	

statistically significant differences at the 0.05 level as defined through Monte Carlo resampling 284	

are considered. 285	

3 Results 286	

The six tropopause LSMPs (Agel et al. 2017) are reproduced here in Fig. 1a, along with 287	

the seasonal frequency of the patterns (Fig 1b), and the location of precipitation and extreme 288	

precipitation events within each pattern (Fig 1c). The patterns represent three basic tropopause 289	

configurations: a ridge over the Northeast, a trough along the eastern US, and a trough over the 290	
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Ohio Valley. The six-pattern set of LSMPs includes two distinct ridge patterns (C1 and C4, 291	

together representing over 44% of the extremes), two seasonal variations of the eastern trough 292	

(C2 and C5), and two seasonal variations of the Ohio Valley trough (C3 and C6). The remainder 293	

of this section will address each of the ridge patterns separately, followed by an analysis of the 294	

eastern troughs together, and finally an analysis of the Ohio Valley troughs together.  295	

3.1 Ridge pattern C1 296	

The C1 pattern features an anomalously high tropopause ridge spread across the eastern 297	

US (Fig. 1a). Although extreme precipitation can occur anywhere in this pattern, it occurs most 298	

often along the Canadian/New England border during JJA (Fig. 1b,c). However, overall 299	

precipitation is light, suggesting localized processes for extreme precipitation. The pattern is 300	

associated with predominantly westerly flow at mid- and upper-levels (Fig. 2a,b) and widespread 301	

anomalously low MSLP to the west of the region (Fig. 2c). There is widespread slightly 302	

anomalous upward motion (approximately -0.5 Pa s-1, consistent through a deep layer of the air 303	

column) at grid scale (Fig. 2d). There are regions with low-level moisture convergence (LLMC) 304	

anomalies, particularly to the northwest along the Great Lakes (Fig. 2e), and anomalously high 305	

IVT values extending from the Ohio Valley into the interior Northeast (Fig. 2f). These anomalies 306	

are often in place at least 48 hours before extreme precipitation occurs (not shown). Static 307	

stability (Fig. 2g) is anomalously low for the entire pattern, but is especially low in western New 308	

York, where LLMC and IVT are largest. The warm moist air mass and weak synoptic-scale 309	

forcing suggests that convection plays an important role in extreme precipitation production for 310	

this pattern. This is supported by the CAPE anomalies in Fig. 2h, which are the highest and most 311	

widespread of the six patterns for the Northeast region.  312	
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While organized convection is likely a key factor in these extremes, a more complex 313	

situation is revealed when nearness to storm tracks and surface fronts are explored. Although the 314	

storm track density is the weakest of the six patterns, and, accordingly, the percent of storm-315	

related extremes is the lowest for the six patterns (Table 1), still more than 70% of the extremes 316	

in this pattern are storm-related, suggesting the important role of synoptic-scale triggering of 317	

mesoscale processes. However, anomalies for storm-related fields, such as QG forcing (Fig. 2i), 318	

WCBs (Fig. 2j), and EPV (Fig. 2k) are very small, indicating that storms in this pattern are likely 319	

weak and shallow.  320	

For both storm-related and non-storm-related extremes, warm fronts tend to be located 321	

nearby (Fig. 2l). Cold fronts also appear nearby to stations experiencing non-storm-related 322	

extremes. These cold fronts may be associated with distant storm centers, or they may be surface 323	

fronts caused by other mechanisms such as cold pools and mesoscale convective system 324	

outflows (Schumacher and Johnson 2005). The frontal patterns may also be consistent with small 325	

frontal-wave cyclones spinning up on trailing cold fronts, which could explain the presence of 326	

cold fronts to the northeast of the stations and the high frequency of warm fronts in the non-327	

storm related composites.  328	

Thermal fronts can be initiated by shortwaves passing through a ridge environment. Fig. 329	

2c shows a composite “kink” in the MSLP over the Great Lakes, which could reflect a surface 330	

response to shortwaves. Although the composite 500-hPa heights do not show this, many of the 331	

individual 500-hPa height maps do show evidence of shortwaves in the overall flow. This is 332	

consistent with the findings of Milrad et al. (2014), who found that vorticity maxima propagating 333	

through longwave ridges often provided a warm-season trigger for convection in Montreal. The 334	

presence of anomalous LLMC in western New York may also provide some evidence of 335	
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shortwave activity and attendant surface circulation. In Fig. 3 we composite station-relative 336	

MERRA 500-hPa geopotential heights for the C1 pattern on the higher-resolution 2/3° x 1/2° 337	

grid, separated into storm-related and non-storm-related extremes. There is a noticeable 338	

shortwave in the composite pattern for storm-related extremes, along with an area of positive 339	

relative vorticity, which is not present for the non-storm-related extremes, confirming that at 340	

least some of the precipitation extremes in this pattern may be related to shortwaves and their 341	

attendant surface disturbances.  342	

Many of the circulation features and moisture variables in this pattern occur on non-343	

extreme precipitation days as well, based on similar patterns in the all-day SOM analysis. 344	

However, the ingredients most important for generating extreme precipitation as opposed to 345	

ordinary precipitation in the C1 pattern include surface lows (possibly due to shortwaves) over 346	

western New York (Fig. 4b), moisture availability due to strong southwesterly IVT and LLMC 347	

(Fig. 4c,d), and convection in regions of relatively high CAPE (Fig. 4f). 348	

3.2 Ridge/trough C4 349	

Like C1, the C4 pattern features an anomalously high tropopause ridge over the 350	

Northeast, but unlike C1, the C4 ridge is part of a shallow tropopause ridge/trough couplet 351	

located across the eastern US (Fig. 1a). This pattern is also similar to C1 in seasonality (mostly 352	

JJA; Fig. 1b), precipitation features (widespread light precipitation), and location of extremes 353	

(more extremes inland and to the northwest; Fig. 1c). Upper- and mid-level circulation fields 354	

(Fig. 5a,b) also mirror the tropopause trough/ridge, with a widespread area of anomalously low 355	

MSLP (Fig. 5c) across the Northeast. There is slightly more upward vertical motion (Fig. 5d) 356	

than for pure ridge C1, possibly aided by a 200-hPa jet streak over northern New England, but 357	

overall upward motion is not particularly extreme, except in localized pockets. Surface heating is 358	
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strong over coastal regions, with a thermal boundary along northern and western New England 359	

separating cooler air to the north (not shown). Despite extremes occurring more frequently 360	

inland, localized pockets of heavy precipitation also occur along the coast, where moderate 361	

moisture availability, in terms of LLMC (Fig. 5e) and IVT (Fig. 5f), is present. Like C1, static 362	

stability is anomalously low (Fig. 5g), and convection appears to be associated with some of the 363	

extremes, particularly in New York (Fig. 5h).   364	

QG forcing (Fig. 5i) is moderate over regions with high numbers of extremes (western 365	

New York), consistent with the enhanced frequency of inland storms (Table 1). Coastal regions 366	

contain areas of weak WCB density (Fig. 5j), and slightly elevated EPV at low levels (Fig. 5k). 367	

Cold and warm fronts are associated with both storm-related and non-storm-related extremes 368	

(Fig. 5l). This indicates that at least some of the storm-related extremes in coastal regions are 369	

linked to WCBs ascending over the warm or cold fronts of the associated storms. Otherwise the 370	

pattern is consistent with relatively weak synoptic systems at inland locations, or trailing cold 371	

fronts associated with remote cyclones to the northeast. The key factors linked to extreme 372	

precipitation in this pattern, as opposed to ordinary precipitation, are enhanced moisture transport 373	

due to IVT and LLMC along the coast (Fig. 6c,d), the presence of WCBs near the coast (Fig. 6e), 374	

and slightly elevated CAPE in southern regions (Fig. 6f).  375	

3.3 Eastern troughs C2 and C5  376	

The C2 and C5 patterns feature tropospheric troughs across the eastern US. The C2 377	

trough axis extends from the Great Lakes through the Carolinas, with a slight negative tilt and a 378	

closed or nearly closed upper-level low (Fig. 1a). The C5 pattern is both shallower and shifted 379	

slightly farther east than C2, and unlike C2, features a slight progressive tilt (Fig. 1a). The C2 380	

pattern occurs preferentially during DJF and MAM, while the C5 pattern occurs preferentially 381	
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during JJA (Fig. 1b). Unlike the other patterns, the stations experiencing the highest number of 382	

extremes in these patterns are located along the eastern seaboard – to the extreme southeast for 383	

C2, and in Maine for C5 (Fig. 1c). The composite daily precipitation intensity in C2 is the 384	

strongest of the patterns (71.2 mm day-1).  385	

Over 90% of the extreme days in C2 are associated with nearby storms (Table 1), with 386	

roughly 2/3 of the storm-related extremes occurring at coastal stations. Composite circulation 387	

shows an absence of jet streaks (Fig. 7a), a nearly closed mid-level circulation with a slightly 388	

regressive tilt (Fig. 7b), and a well-defined surface low with central pressure that is the lowest of 389	

the six patterns (Fig. 7c). There is a strong thermal gradient between an anomalously cool Ohio 390	

Valley and an anomalously warm Northeast (not shown). Upward motion anomalies are among 391	

the highest of the patterns (Fig. 7d), peaking at nearly -1.0 Pa s-1 around 750 hPa. The pattern 392	

also features strong coastal LLMC (Fig. 7e), along with enhanced south-southeast moisture 393	

transport over the relatively warm Western Atlantic (Fig. 7f), beginning up to 48 hours before 394	

the extreme event. Overall static stability is very low along the immediate coast (Fig. 7g), but 395	

CAPE is not anomalously high (Fig. 7h). Consequently, QG forcing appears to be the dominant 396	

mechanism in C2 for lift, and is in fact the strongest of the six patterns (Fig. 7i). There is also 397	

relatively frequent WCB ascent (Fig. 7j) at the upstream edge of the upper-level disturbance 398	

(although this is mostly located offshore). EPV is enhanced at low levels in the regions 399	

experiencing extreme precipitation (Fig. 7k), indicating that diabatic heating may provide a 400	

positive feedback mechanism for additional lift in this pattern. For storm-related extremes, the 401	

most frequent frontal mechanism for lift appears to be attendant warm fronts (Fig. 7l).  Based on 402	

the above composite features, the C2 pattern is consistent with many of the features of traditional 403	

nor’easters (Maglaras et al. 1995, Kocin and Uccellini 2004), unusually strong storms that form 404	



	 19	

along the Mid-Atlantic coastline and travel north through or near to New England along a dense 405	

track location off the New Jersey/Southern New England coast.  406	

For the summertime C5 pattern, mid- and upper-level circulation is more open and 407	

progressive than for the wintertime C2 pattern (Fig. 8a,b). Like C2, the extremes in this pattern 408	

have a high likelihood to be storm-related (Table 1). The composite surface low is located along 409	

the Maine coast (Fig. 8c), where the highest-intensity precipitation occurs (Fig. 1c). Storms in 410	

this pattern tend to track from southern Ontario towards southeastern New England before 411	

moving northeast through Maine (not shown). Lift is noticeably weaker in this pattern than for 412	

C2 (Fig. 8d), except along the Maine coast. This is a rather dry pattern throughout the rest of the 413	

region, as the anomalous moisture flow for both LLMC and IVT is from the north (Fig. 8e,f). 414	

However, there is weak instability (Fig. 8g), and slightly enhanced CAPE at inland locations 415	

(Fig. 8h). In addition, there is moderate QG forcing throughout the region (Fig. 8i), but only 416	

weak WCB frequency located offshore (Fig. 8j), and no notable diabatic heating suggested by 417	

the EPV cross-section (Fig. 8k). Fronts appear to be too far from station locations to provide 418	

triggering mechanisms, except in the case of non-storm-related cold fronts (Fig. 8l), especially at 419	

inland stations. In these cases, the cold fronts are located both to the southwest and northeast of 420	

the station location, suggesting that some extremes may be related to remote cyclones with 421	

trailing cold fronts. Hence in this pattern the inland extremes may be associated with both direct 422	

QG forcing from weak storms and lift associated with trailing cold fronts; while the coastal 423	

extremes may be associated with direct QG forcing by stronger storms, and possibly southerly 424	

moisture transport in offshore WCBs and warm fronts.  425	

Although C2 and C5 differ in some respects, the key elements that distinguish extreme 426	

precipitation-producing days from non-extreme precipitation-producing days are very similar. 427	
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These include enhanced tropospheric ridging over southeastern Canada (Figs. 9a, 10a), a well-428	

defined storm track with more intense storms (Figs. 9b, 10b), and stronger southerly moisture 429	

feed embedded in WCBs (Figs. 9d,e, 10d,e); but notably do not include enhanced QG forcing in 430	

the regions experiencing the highest number of extremes (Figs. 9f, 10f). 431	

3.4 Ohio Valley troughs C3 and C6 432	

The Ohio Valley trough patterns C3 and C6 represent the deepest tropopause troughs 433	

associated with Northeast extreme precipitation, with trough axes extending from the western 434	

Great Lakes through the southern US states. C3 represents the deepest troposphere trough (Fig. 435	

1a), and is common in MAM and SON (Fig. 1b); while the C6 trough is both slightly shallower 436	

and shifted farther west than its C3 counterpart (Fig. 1a), and occurs preferentially in DJF (Fig. 437	

1b). The C6 pattern, featuring the strongest ridging of the six patterns (concentrated over 438	

southeastern Canada), is the least frequent of the six patterns (only 9% of extreme precipitation 439	

days fall into this category). There is widespread anomalously intense precipitation over the 440	

entire region for C3, and over more southerly regions for C6 (Fig. 1c).  441	

Large-scale circulation is similar for both patterns (but more pronounced for C6), with jet 442	

streaks over extreme northern New England (Figs. 11,12a), well-defined anomalous 500-hPa 443	

troughs and ridges (Figs. 11,12b), and surface lows tracking across inland portions of the eastern 444	

US (Figs. 11,12c). In general, however, the composite surface lows for C3 and C6 are not as 445	

deep as those for the C2 pattern. The Northeast is wedged between anomalously cold and warm 446	

air masses (not shown), and there is strong lift over the Northeast (Figs. 11,12d). Enhanced 447	

LLMC is concentrated along the southeast coast (Figs. 11,12e), and IVT (Figs. 11,12f) is the 448	

strongest of the patterns, with anomalously high values extending from the Florida coast into 449	

interior New England. QG forcing is present for western locations in C6 and throughout most of 450	
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the domain for C3 (Figs. 11,12i), but the forcing is weaker than that for C2 and C5. However, the 451	

frequency of WCBs (Figs. 11,12j), especially for C6, is the highest of the patterns. In addition, 452	

anomalously high EPV values are present throughout the cross section (Figs. 11,12k), hinting at 453	

intense latent heating within the ascending WCB airstreams. Warm fronts are near to stations 454	

experiencing extremes (Figs. 11,12l), for both storm-related and non-storm-related precipitation, 455	

and at both inland and coastal stations. For non-storm-related extremes, cold fronts may also 456	

accompany extremes, especially for inland locations.  457	

Despite the cohesiveness of the WCB high-frequency locations in relation to the areas 458	

experiencing extremes, there is no well-defined storm track, but rather a loose cluster of tracks 459	

over the region for C3, and a smaller cluster of tracks to the south of New York and Connecticut 460	

for C6 (not shown). This stands in sharp contrast to the C2 pattern, where most extremes feature 461	

surface lows tracking in the same area along the eastern seaboard. Accordingly, extreme 462	

precipitation in these patterns is likely linked, at least in part, to the strength (intensity of ascent) 463	

of the WCBs, which are linked to the strong QG forcing to the west of the domain (where the 464	

surface lows are positioned). Overall, although the C3 and C6 patterns share many similar 465	

features, the higher intensity of the C6 dynamical and moisture factors (particularly WCBs) 466	

appears to be linked to and mirrored by the enhanced tropospheric ridging over eastern sections. 467	

This enhanced ridging is most likely related to the net cross-isentropic transport of low-PV air 468	

into the tropopause region within the WCBs, resulting from the destruction of PV above the 469	

diabatic heating maximum (Wernli and Davies 1997, Grams et al. 2011).  Not surprisingly, 470	

extreme precipitation in these patterns, versus ordinary precipitation, is more likely to feature 471	

tropospheric ridging (Figs. 13a, 14a), strong southerly IVT (Fig. 13d, 14d), and WCBs (Figs. 472	

13e, 14e). 473	
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4 Summary 474	

Previously, six large-scale meteorological patterns (LSMPs) of dynamic tropopause 475	

height associated with extreme precipitation in the Northeast were identified by Agel et al. 476	

(2017). In this study, we examine the three-dimensional structure associated with these LSMPs, 477	

in terms of circulation patterns and factors relevant to precipitation, including moisture, stability, 478	

and synoptic mechanisms associated with lifting. Within each pattern, the link between the 479	

different factors and extreme precipitation is further investigated by comparing the relative 480	

strength of the factors between days with and without the occurrence of extreme precipitation. 481	

The relevant factors linked to extreme precipitation differ among the patterns, but in general 482	

include abundant moisture from integrated vapor transport (IVT) and low-level moisture 483	

convergence (LLMC) acting in the presence of synoptic-scale mechanisms for ascent, such as 484	

frontal boundaries and warm conveyor belts (WCBs) associated with extratropical storms. In Fig. 485	

15 we summarize and outline the dominant mechanisms for extreme precipitation for each of the 486	

patterns. 487	

The LSMPs include a ridge pattern (C1), a shallow trough/ridge pattern (C4), two 488	

seasonal variations of “eastern troughs” (C2, C5) and two seasonal variations of “Ohio Valley” 489	

troughs (C3, C6). The ridge and trough/ridge patterns are significant in that they represent nearly 490	

45% of the extreme precipitation days, but the precipitation in these patterns is often not directly 491	

associated with nearby synoptic storms. In contrast, the other patterns are more directly linked to 492	

synoptic dynamics. For example, the eastern trough patterns feature extreme precipitation that 493	

occurs near synoptic storms nearly 90% of the time.  494	

Extreme precipitation occurring in conjunction with a widespread tropopause ridge in the 495	

Northeast (C1) appears to be generated by a number of processes. Precipitation under these 496	



	 23	

ridges is generally light at the grid level, suggesting localized extremes.  Although these 497	

extremes can occur at any station, they more commonly occur inland along the New 498	

York/Canadian border. Consistent factors associated with these extremes include anomalous 499	

moisture feed (IVT) from the Great Lakes, sometimes remaining in place for several days 500	

leading up to the extreme event, and enhanced LLMC. Potential for convective activity is 501	

strongest in this pattern. Weak Great Lakes synoptic storms (perhaps related to shortwaves 502	

embedded in the upper-level flow), along with their attendant cold and warm fronts, are also 503	

associated with inland extremes. In addition, some cold fronts may be associated with low-level 504	

thermal contrasts due to organized convection, or be extensions of cold fronts draped across the 505	

Northeast and originating from synoptic systems located well to the north of the region.  506	

For the other patterns (the shallow trough/ridge, the eastern troughs, and the Ohio Valley 507	

troughs), the presence of nearby synoptic storms is critical to understanding the processes that 508	

lead to extreme precipitation. The warm-season trough/ridge pattern C4 appears to be related 509	

inland to ample moisture flow and moderate synoptic forcing associated with enhanced 510	

instability and a storm track to the west of the region. For the eastern troughs C2 and C5, 511	

dynamical lift is generated by quasi-geostrophic (QG) forcing, which is particularly strong for 512	

the wintertime C2 pattern. The C2 pattern appears to represent classic ‘nor’easter-type’ synoptic 513	

storms, with strong southerly flow of moisture up to 48 hours before extreme events in the 514	

presence of WCBs just offshore; while the C5 pattern represents a warm-season shallow trough 515	

in nearly the same location, but with comparatively less moisture availability, and the strongest 516	

dynamical forcing mechanisms to the west in the form of cold fronts, and in Maine with warm 517	

fronts related to offshore WCBs. In contrast, the wintertime Ohio Valley troughs C3 and C6 518	

represent storms travelling inland from the Atlantic seaboard through New England. Abundant 519	



	 24	

moisture transported from the south ahead of the storms, and vigorous upward motion associated 520	

with the accompanying WCBs account for many of the precipitation extremes in these patterns, 521	

with QG forcing linked to some extremes in western New York.  522	

All patterns show stronger IVT on extreme precipitation days, with southerly anomalies 523	

for the eastern and Ohio Valley troughs, southwesterly anomalies for the trough/ridge C4 and 524	

near-westerly anomalies for ridge pattern C1. The IVT differences are among the largest 525	

magnitude differences between extreme and non-extreme days and indicate that moisture 526	

availability is a very important ingredient for extreme precipitation production in each pattern 527	

type. In addition, moisture transport tends to be more southerly on extreme days than for non-528	

extreme days for each pattern type. By constructing a simple “IVT index” of standardized 529	

anomalies of mean IVT over a select area (38°N–48°N, 82°W–67°W), we find that 23.9% of 530	

extreme IVT days (defined here as 2.5+ standard anomalies) occur in conjunction with extreme 531	

precipitation, while 9.9% of extreme precipitation days involve extreme IVT. For pattern C6, this 532	

number is larger, with 27.5% of the extreme days featuring extreme IVT. 533	

Equally important for generating extreme precipitation as opposed to ordinary 534	

precipitation within the trough patterns is the presence of WCBs. In fact, the differences of WCB 535	

frequency between extreme and non-extreme precipitation days for each of the patterns, 536	

including the ridge C1 and the shallow trough/ridge C4, are among the largest standardized 537	

differences for the patterns. To better quantify the relationship between extreme precipitation and 538	

WCBs for the Northeast, we calculate the mean WCB frequency over the domain for each day 539	

containing at least one WCB, and define the top 10% as “high WCB frequency days”. We find 540	

that for Ohio Valley trough C6, 43.5% of extreme precipitation occurs on high WCB frequency 541	

days. For C2 and C3, the values drop to 25.6% and 20.6%, respectively, but are still considerably 542	
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higher than that for the ridge patterns C1 (5%) and C4 (5.4%), and the summertime eastern 543	

trough C5 (2.5%). Tools such as the “IVT index” or “high WCB frequency days” can be 544	

valuable additions to the compositing techniques largely used here to identify the factors 545	

associated with extreme precipitation. 546	

In this study we look at several upper-level patterns, or LSMPs, that occur during 547	

extreme precipitation events, and seek to understand how the key processes and ingredients for 548	

extreme precipitation (i.e. lift mechanisms, moisture, and instability) are informed by those 549	

patterns. Our approach focuses on composite representations of these factors. To the extent that 550	

individual pattern days share the same features as the composites, this provides a reasonable 551	

first-order assessment of what leads to extreme precipitation for various upper-level circulation 552	

patterns. However, individual events within each pattern type may yield quite different results. 553	

For example, for the summertime eastern trough C5, manual inspection reveals that some days 554	

feature large levels of instability, while others feature greater lift due to synoptic QG forcing. An 555	

important next step is to investigate representative days within these pattern types for a more 556	

nuanced understanding of how extreme precipitation is generated, and to determine if the LSMPs 557	

can be further broken into representative sub-patterns. In addition, it is important to understand 558	

how these large-scale factors interact with sub-grid-scale processes. To this end, we intend to 559	

look more closely at the frontal processes (QG, slantwise instability, and other mesoscale 560	

dynamics) implicated in extreme precipitation, which are best done by event, or within an event-561	

centric framework. As a final step, we also intend to examine the explanatory power of the 562	

extreme precipitation factors identified here, perhaps through the use of simple predictive models 563	

and measures such as the “IVT index”. 564	

  565	
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Table 1 Relative frequency (%) of select categories within each pattern type C1–C6. Categories 566	

are based on station location (coastal or inland) and nearness (within 800 km) to Era-Interim 567	

storm tracks on day of extreme precipitation. Frequencies higher (lower) than expected due to 568	

chance are followed by an “H” (“L”), based on Monte Carlo resampling 569	

 570	

Category C1 C2 C3 C4 C5 C6 

Coastal 27.1(L) 63.7(H) 43.2 33.3(L) 40.0 40.9 

Inland 72.9(H) 36.3(L) 56.8 66.7(H) 60.0 59.1 

Storm-related 70.3(L) 90.7(H) 76.8 77.9 88.7(H) 80.3 

Non-Storm-related 29.7(H) 09.3(L) 23.2 22.1 11.3(L) 19.7 

Coastal/Storm 22.7(L) 59.1(H) 29.2 25.5(L) 38.0 31.4 

Coastal/Non-Storm 04.4 04.7 14.0(H) 07.9 02.1(L) 09.5 

Inland/Storm 47.6 31.7(L) 47.6 52.4(H) 50.8 48.9 

Inland/Non-Storm 25.3(H) 04.6(L) 09.2 14.2 9.23 10.2 

  571	
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Figure Captions 711	

 712	

Fig. 1 Results of k-means separation of MERRA blended tropopause height anomalies for 691 713	

top 1% extreme precipitation days, 1979-2008, into six patterns C1–C6, showing (a) composites 714	

of tropopause pressure (contours, in 20 hPa intervals, and anomalies, shaded), (b) seasonal 715	

frequency (expressed as a percent) of each pattern (red if greater than that expected due to 716	

chance, blue if less than that expected due to chance, black otherwise), and (c) the percentage of 717	

pattern days accounted for by extremes at each station (black dots, with size proportional to 718	

percentage, ranging from 0 to 8 percent), overlaid on CPCU gridded precipitation anomaly 719	

composite for each pattern (shaded, mm) . The text above each pattern in (a) indicates the 720	

number of dates in each composite. The significance in (b) is based on 95% confidence interval 721	

using Monte Carlo sampling (shown as grey boxes). Anomalies calculated by subtracting 30-722	

year smoothed daily mean from daily values. Figure reproduced from Agel et al. (2017) 723	

 724	

Fig. 2 Composite fields for ridge pattern C1 days, showing a) 200-hPa wind magnitude (m s-1, 725	

contours and shaded anomalies) and direction (arrows), b) 500-hPa geopotential height (dm, 726	

contours and shaded anomalies), c) MSLP (hPa, contours and shaded anomalies), d) 700-hPa 727	

vertical velocity anomalies (Pa s-1, shaded), e) LLMC, represented by lowest model-level wind 728	

anomalies (m s-1, arrows) and lowest model-level specific humidity anomalies (g kg-1, shaded), f) 729	

IVT magnitude (kg m-1 s-1, contours and shaded anomalies) and direction (arrows), g) 750-hPa 730	

static stability (K Pa-1, contours and shaded anomalies), h) CFSR CAPE (J kg-1, shaded 731	

anomalies) at 18 UTC, i) QG forcing based on thermal wind formulation, i.e. 700-hPa relative 732	

vorticity (1e-5 s-1, shaded) advection by the 900–500 hPa thermal wind (isotherms of 900–500 733	
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thickness, m, are shown to indicate thermal wind direction), j) WCB trajectory frequency, i.e. 734	

percentage of extreme precipitation days associated with at least one WCB at each grid point 735	

(below 500 hPa, color shading, and above 500 hPa, blue contours for 5, 10, 20, 30, 40 and 50%), 736	

potential vorticity at 315K (thick black contours for 2, 3 and 4 PVU), and MSLP (black contours 737	

every 3 hPa), k) Ertel’s PV anomaly cross-sections (shaded, PVU) at 43°N for 900-200 hPa, and 738	

l) density of warm fronts (red shading) and cold fronts (red shading) relative to stations 739	

experiencing extreme precipitation (black dot in center of 40° longitude x 36° latitude grid), 740	

separated into storm-related (within 800 km of Era-Interim storm track based on 850-hPa relative 741	

vorticity) and non-storm-related extremes. Unless otherwise noted, all fields are from MERRA 742	

and evaluated at 12 UTC 743	

 744	

Fig. 3 500-hPa geopotential height (dm) and relative vorticity (1e-5 s-1, shaded), relative to 745	

stations experiencing extreme precipitation (black dot in center of 40° longitude x 36° latitude 746	

grid) for (a) storm-related extreme precipitation, and (b) non-storm-related extreme precipitation 747	

for ridge pattern C1. 748	

 749	

Fig. 4 Extreme day composite minus non-extreme day composite for SOM4 (similar to C1), 750	

showing differences in standardized a) tropopause height anomalies, b) MSLP anomalies, c) 751	

LLMC anomalies, d) IVT anomalies, e) WCB frequencies, and f) CAPE anomalies. The fields 752	

are standardized before differencing by dividing by the temporal standard deviation. Only 753	

differences significant to the 0.05 level are shown   754	

 755	

Fig. 5 Same as Fig. 2, but for trough/ridge pattern C4 756	
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 757	

Fig. 6 Same as Fig. 4, but for SOM8 (similar to C4) 758	

 759	

Fig. 7 Same as Fig. 2, but for eastern trough C2 760	

 761	

Fig. 8 Same as Fig. 2, but for eastern trough C5 762	

 763	

Fig. 9 Same as Fig. 4, but for SOM26 (similar to C2), and with f) thermal wind form of QG 764	

forcing, i.e. 700-hPa relative vorticity and 900–500 hPa thermal wind (arrows)  765	

 766	

Fig. 10 Same as Fig. 9, but for SOM20 (similar to C5) 767	

 768	

Fig. 11 Same as Fig. 2, but for Ohio Valley trough C3 769	

 770	

Fig. 12 Same as Fig. 2, but for Ohio Valley trough C6 771	

 772	

Fig. 13 Same as Fig. 9, but SOM13 (similar to C3) 773	

 774	

Fig. 14 Same as Fig. 9, but for SOM1 (similar to C6) 775	

 776	

Fig. 15 Identification of key ingredients and processes linked to extreme precipitation for each of 777	

the k-means patterns C1–C6. Shown are dominant moisture processes (LLMC, IVT, WCBs; 778	

green arrows), cold fronts, warm fronts, and low pressure centers (orange L symbol), and station 779	
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locations experiencing extremes (black dots, with size of dot indicating relative frequency of 780	

extremes within pattern) 781	

 782	



	



Fig. 1 Results of k-means separation of MERRA blended tropopause height anomalies for 691 

top 1% extreme precipitation days, 1979-2008, into six patterns C1–C6, showing (a) composites 

of tropopause pressure (contours, in 20 hPa intervals, and anomalies, shaded), (b) seasonal 

frequency (expressed as a percent) of each pattern (red if greater than that expected due to 

chance, blue if less than that expected due to chance, black otherwise), and (c) the percentage of 

pattern days accounted for by extremes at each station (black dots, with size proportional to 

percentage, ranging from 0 to 8 percent), overlaid on CPCU gridded precipitation anomaly 

composite for each pattern (shaded, mm) . The text above each pattern in (a) indicates the 

number of dates in each composite. The significance in (b) is based on 95% confidence interval 

using Monte Carlo sampling (shown as grey boxes). Anomalies calculated by subtracting 30-

year smoothed daily mean from daily values. Figure reproduced from Agel et al. (2017) 

	



	
	
Fig. 2 Composite fields for ridge pattern C1 days, showing a) 200-hPa wind magnitude (m s-1, 

contours and shaded anomalies) and direction (arrows), b) 500-hPa geopotential height (dm, 

contours and shaded anomalies), c) MSLP (hPa, contours and shaded anomalies), d) 700-hPa 

vertical velocity anomalies (Pa s-1, shaded), e) LLMC, represented by lowest model-level wind 



anomalies (m s-1, arrows) and lowest model-level specific humidity anomalies (g kg-1, shaded), f) 

IVT magnitude (kg m-1 s-1, contours and shaded anomalies) and direction (arrows), g) 750-hPa 

static stability (K Pa-1, contours and shaded anomalies), h) CFSR CAPE (J kg-1, shaded 

anomalies) at 18 UTC, i) QG forcing based on thermal wind formulation, i.e. 700-hPa relative 

vorticity (1e-5 s-1, shaded) advection by the 900–500 hPa thermal wind (isotherms of 900–500 

thickness, m, are shown to indicate thermal wind direction), j) WCB trajectory frequency, i.e. 

percentage of extreme precipitation days associated with at least one WCB at each grid point 

(below 500 hPa, color shading, and above 500 hPa, blue contours for 5, 10, 20, 30, 40 and 50%), 

potential vorticity at 315K (thick black contours for 2, 3 and 4 PVU), and MSLP (black contours 

every 3 hPa), k) Ertel’s PV anomaly cross-sections (shaded, PVU) at 43°N for 900-200 hPa, and 

l) density of warm fronts (red shading) and cold fronts (red shading) relative to stations 

experiencing extreme precipitation (black dot in center of 40° longitude x 36° latitude grid), 

separated into storm-related (within 800 km of Era-Interim storm track based on 850-hPa relative 

vorticity) and non-storm-related extremes. Unless otherwise noted, all fields are from MERRA 

and evaluated at 12 UTC 

  



	
	
Fig. 3 500-hPa geopotential height (dm) and relative vorticity (1e-5 s-1, shaded), relative to 

stations experiencing extreme precipitation (black dot in center of 40° longitude x 36° latitude 

grid) for (a) storm-related extreme precipitation, and (b) non-storm-related extreme precipitation 

for ridge pattern C1. 

	 	



	
	
Fig. 4 Extreme day composite minus non-extreme day composite for SOM4 (similar to C1), 

showing differences in standardized a) tropopause height anomalies, b) MSLP anomalies, c) 

LLMC anomalies, d) IVT anomalies, e) WCB frequencies, and f) CAPE anomalies. The fields 

are standardized before differencing by dividing by the temporal standard deviation. Only 

differences significant to the 0.05 level are shown  	

	 	



	
	
Fig. 5 Same as Fig. 2, but for trough/ridge pattern C4 

  



 

Fig. 6 Same as Fig. 3, but for SOM8 (similar to C4) 

 

	



	
	
Fig. 7 Same as Fig. 2, but for eastern trough C2 

	 	



	
	
Fig. 8 Same as Fig. 2, but for eastern trough C5 

	 	



	
	
Fig. 9 Same as Fig. 3, but for SOM26 (similar to C2), and with f) thermal wind form of QG 

forcing, i.e. 700-hPa relative vorticity and 900–500 hPa thermal wind (arrows)  

	 	



	
Fig. 10 Same as Fig. 9, but for SOM20 (similar to C5) 

 

 



	
	
Fig. 11 Same as Fig. 2, but for Ohio Valley trough C3 

	
	



	
	
Fig. 12 Same as Fig. 2, but for Ohio Valley trough C6 

	 	



	
	
Fig. 13 Same as Fig. 9, but SOM13 (similar to C3) 

 

  



 

	

	
	
Fig. 14 Same as Fig. 9, but for SOM1 (similar to C6) 

	 	



	

	
	
Fig. 15 Identification of key ingredients and processes linked to extreme precipitation for each of 

the k-means patterns C1–C6. Shown are dominant moisture processes (LLMC, IVT, WCBs; 

green arrows), cold fronts, warm fronts, and low pressure centers (orange L symbol), and station 

locations experiencing extremes (black dots, with size of dot indicating relative frequency of 

extremes within pattern) 

	



 
Fig. 1 Plots of (a) USHCN station locations (black dots) and top 1% daily precipitation thresholds 
interpolated from station locations (shaded, in mm), (b) seasonal frequency of top 1% extreme precipitation 
days excluding those due to tropical cyclones (shown as a percent of n=691 days), and (c) domain used for 
typing (bounded by thick black line). Top 1% thresholds based on wet-day precipitation, 1979-2008. Figure 
reproduced from Agel et al. (2017). 

Reference:  

Agel L, Barlow M, Feldstein SB, Gutowski WJ (2017) Identification of large-scale meteorological patterns 
associated with extreme precipitation in the US northeast. Climate Dynamics 1-21 
doi:10.1007/s00382-017-3724-8 

 

	



 
 
Fig. 1 Composite coastal station storm-related (when there are synoptic storm centers within 800 km of a 
station experiencing extreme precipitation) a) warm and b) cold frontal density; and composite coastal 
station non-storm-related (when there are no synoptic storm centers within 800 km of a station 
experiencing extreme precipitation) c) warm and d) cold frontal density for KMC pattern C1–C6 days. The 
frontal densities are calculated based on relative position to station location, with the station location shown 
in center (black dot) of 40° longitude x 36° latitude grid. The value following the pattern title above each 
frame represents the number of station-extremes included in the composite. Fronts based on Era-Interim 
reanalysis as in Catto et al. (2014). 
 
 
 



 
 
Fig. 2 Composite inland station storm-related (when there are synoptic storm centers within 800 km of a 
station experiencing extreme precipitation) a) warm and b) cold frontal density; and composite inland 
station non-storm-related (when there are no synoptic storm centers within 800 km of a station 
experiencing extreme precipitation) c) warm and d) cold frontal density for KMC pattern C1–C6 days. The 
frontal densities are calculated based on relative position to station location, with the station location shown 
in center (black dot) of 40° longitude x 36° latitude grid. The value following the pattern title above each 
frame represents the number of station-extremes included in the composite. Fronts based on Era-Interim 
reanalysis as in Catto et al. (2014). 
 
 
 
 
 
 



 
Fig. 3 Composite storm-related (when there are synoptic storm centers within 800 km of a station 
experiencing extreme precipitation) a) warm and b) cold frontal density; and composite non-storm-related 
(when there are no synoptic storm centers within 800 km of a station experiencing extreme precipitation) c) 
warm and d) cold frontal density for KMC pattern C1–C6 days. Fronts based on Era-Interim reanalysis as 
in Catto et al. (2014). 
 
 
References: 
 
Catto JL, Nicholls N, Jakob C, Shelton KL (2014) Atmospheric fronts in current and future climates 

Geophysical Research Letters 41:7642-7650 doi:10.1002/2014GL061943 
 



 
 
Fig. 1 This figure shows the (a) SOM separation of MERRA 1979-2008 daily tropopause pressure 
(contours, in 20 hPa intervals, and anomalies, shaded), separated into a 5 x 6 rectangular phase-space, (b) 
fraction of 691 top 1% extreme precipitation days represented by each SOM pattern, with size of circles 
proportional to values, and red, blue, and black circles indicating significantly higher, lower, or average, 
respectively, values than expected based on Monte Carlo resampling, and (c) fraction of KMC C1–C6 
patterns represented by each SOM pattern, with size of circles proportional to values. Figure recreated from 
Agel et al. 2017. 
 
Reference:  
Agel L, Barlow M, Feldstein SB, Gutowski WJ (2017) Identification of large-scale meteorological patterns 

associated with extreme precipitation in the US northeast. Climate Dynamics 1-21 
doi:10.1007/s00382-017-3724-8 
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