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ABSTRACT 

Reducing the cost and time required to isolate leakages occurring in Water Distribution Networks 

(WDNs) is the main task for resilient and sustainable management of these systems. The paper 

presents a systematic model-based leak detection and localization framework using optimization. 

The approach prerequisites a well calibrated WDN hydraulic model. The leakage localization 

model splits into two stages: (a) the search reduction stage where the number of decision variables 

and the range of possible values are reduced, and (b) the leak detection and localization stage for 

isolating the fault. The leakage localization method is formulated to optimize the leakage node 

locations and their associated emitter coefficients, such that the differences between the model 

predicted and the field observed values for pressure and flow are minimized. The optimization 

problem is solved by using a non sorting genetic algorithm. A real case from a UK system is 

presented with the outcome showing that the method reduces the leak search space within 10% of 

the WDN, while contributing to earlier leakage hotspot detection and localization. The framework 

for predicting leakage hotspots can be effective despite the recognized challenges of model 

calibration and the physical measurement limitations from the collected pressure and flow data. 

 

Keywords: Leak Localization; Hydraulic Modelling; Optimization 

1 Introduction 

Leaks often remain undiscovered regularly resulting in large water and revenue losses for Water 

Distribution Network (WDN) operators. With time, their impact grows and may result in 

catastrophic bursts, causing significant changes in the system’s operation. Finding leaks early is 

critical to a water company for either economic, environmental or reputational reasons. Historically, 

finding leaks has been challenging because even a substantial event can potentially show no 

manifest signs [1]. A wide range of leak detection and location techniques exists, relying on various 

approaches [2]. However, there is no universally agreed methodology for leak detection and 

localization with the number of techniques currently used by practitioners being limited.  

Automatic leak detection requires pressure and flow field measurements. The smaller the monitored 

area, the easier it is to detect a leak automatically. Leak localization is frequently performed using 

acoustic equipment such as listening rods, leak correlators, leak noise loggers and non-acoustic 

methods, such as gas injection, ground penetrating radar technology and infrared photography [3]. 

These methods are accurate, however, it takes intense labor effort and long time to find a leak, even 

in small District Metered Areas (DMAs). To expedite the leak localization process, software-based 

methods, such as mathematical modelling are needed in addition to the hardware-based methods.  

Compared to a leak-free situation, a leak causes larger flow in a pipe, resulting in larger head loss 

and different pressures within the WDN [4]. In a well monitored WDN, this creates a unique 

“signature” on pressure and flow data, which can be used to find its size and location. Calibrated 
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models can be used to perform reliable WDN simulations and compare against the field data. Such 

automatic leak localization techniques can reduce the area of interest and facilitate traditional 

district audits to find the leak. Besides large volumes of water, this can save time and money.  

The literature on leak detection and localization methods for WDN focuses on how to prioritize 

areas for leak surveys and facilitate pinpointing of leaks. Such research started with a seminal paper 

[5] that formulates the leak detection and localization problem as a least-squares estimation 

problem. However, parameter estimation is not an easy task, due to the non-linear nature of WDN 

models and the limited availability of field measurements relative to the number of parameters to be 

estimated, resulting in an underdetermined problem [6]. Many of these approaches are based on 

transient analysis, which is mainly used on a single, grounded pipeline due to the high effect of the 

system uncertainty on results. Non-transient model-based techniques have been also developed in 

recent years. Through the use of optimization techniques, these approaches analyse the difference 

between measurements and estimated values from leaky scenarios to signal the probability of a zone 

experiencing leakage.  In addition, some of these model-based methodologies hypothesize a single 

leak in a WDN [7]. To date, model-based leak detection methodologies have not reached the 

maturity required for mainstream adoption by the water industry.  

A prerequisite of accurate leak localisation is a well-calibrated model. However, the inverse 

problem is often ill-posed, characterized by the non-uniqueness of the identified parameters. Thus, 

multiple combinations of decision variable values can produce equally fit solutions, but inaccurate 

leak localisation. A solution to this problem can be to improve the accuracy of leak localisation by 

reducing the search space without losing optimum solutions. A study reported in [8] detected and 

localized leakage as a pressure driven demand (using emitter coefficients), providing a tool for 

assisting leakage detection engineers to identify leakage hotspots. The developed method reduced 

the problem dimensionality by specifying the maximum number of possible leaks within a system.  

However, the method did not narrow down the number of candidate leakage hotspot locations or the 

range of flows, prior to conducting the leakage hotspot detection via inverse modelling. Thus, it is 

easy for an algorithm to prematurely converge in a large search space, which further affects the 

accuracy of the leak localization. A novel optimization method called step-by-step elimination 

method combined with a Genetic Algorithm (GA) was proposed in [9] to calibrate the model and 

detect leakage. The staged approach eliminated node locations where leakages were not reported 

during the optimisation process, however, it was only tested in hypothetical and laboratory 

networks. Another approach [10], proposed a model pre-processing method based on sensitivity 

analysis to simplify the calibration problem for leak detection purposes. However, it did not ensure 

that the optimum solution remained in the search space. 

This article presents an improved model-based approach for finding leaks in DMAs from pressure 

and flow data. The method is based on search space reduction, ensuring that the optimum solution is 

not lost. It exploits existing WDN analysis methods to narrow down the search space of the inverse 

modelling problem to highly sensitive decision variables. The method uses an optimization model 

for leakage localisation applications in real WDSs. A GA is used to solve the optimization problem 

searching for calibration parameters values, while minimizing discrepancies between observations 

and model predictions. The proposed methodology is applied to a real WDN from the UK.  

2 Methodology 

2.1 Overview 

The proposed method detects and localizes leaks in DMAs using emitter coefficients, based on the 

simultaneous comparison of all available pressure and flow data captured from deployed sensors 
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with the hydraulic model outputs, as part of a simulation-optimization framework. A well-calibrated 

model is a prerequisite for this approach. The methodology involves two main stages (a) the Search 

Space Reduction (SSR) stage and (b) the Leak Detection and Localization (LDL) stage. Simulations 

were run using EPANET [11] Programmer’s Toolkit linked with a MATLAB optimization code. 

During the SSR stage, the number of decision variables and the range of possible values is reduced 

through the implementation of three main steps. The three steps include a reduction via: (a) Problem 

Simplification, (b) Analysis of Minimum Detectable Nodal Leakage (MDNL), and (c) Optimization 

Analyses. Then, at the LDL stage, an optimization problem of searching for calibration parameter 

values is solved to indicate the size and location of leaks in the WDN. 

2.2 SSR via Problem Simplification 

A node is considered a candidate leak location for adjustment during the inverse modelling process 

if there is uncertainty in its emitter value. Thus, all nodes in a WDN model (including pipes, valves, 

pumps and tanks) could be potential leak locations resulting in a vast combinatorial search space. In 

reality, the majority of leaks happen on pipes, but the model normally assigns aggregated demands 

to nearby nodes. In a WDN model, not all nodes represent areas of aggregated demand. For 

example, it is normal practice to add two nodes to a pipe section just upstream and downstream of a 

valve, without assigning any demand to them. Although it is true that valves can leak due to a weak 

stem, the losses are often insignificant relative to the inlet flow, or to the undetected leaks. Step 1 of 

the SSR stage reduces the number of decision variables, assuming that leaks only happen on pipes, 

thus, all nodes associated with non-pipe components are removed. 

2.3 SSR via Analysis of Minimum Detectable Leakage 

Depending on the sensor configuration there is limited observable WDN space, i.e., the length of 

pipes that can be monitored for leakage. Furthermore, all devices are accurate within a specified 

range. Thus, if the pressure change from a leak is below the device’s accuracy range, the event will 

remain undetectable regardless the distance from the sensor. Based on the number of sensors, 

location and reading accuracy range, there is a minimum detectable flow for each location, which 

establishes a lower bound for the subsequent optimization analysis. The Minimum Detectable 

Nodal Leakage (MDNL) process (Step 2) starts by simulating the boundary conditions and 

analysing the resulting pressure at nodes where sensors are present. Then, a leak with a large emitter 

flow relative to the inlet is simulated at every candidate leakage node. The pressure residuals 

between a no-leak and leak scenario are determined for all possible leak nodes. Each time the leak 

size is systematically reduced until the residuals from the simulated leak flow across all sensors do 

not exceed the sensor accuracy range. This establishes the MDNL for each potential leak node in 

the WDN model.  

2.4 SSR via Optimization Analysis 

The third step estimates the total losses and the approximate number of leaks in the WDN, to further 

reduce both the number of potential leak locations and the range of flows. A number of implicit 

non-linear optimization problems for parameter identification are formulated for a different number 

of potential leaks to test various scenarios for the WDN state. This is to emulate that leaks do not 

happen everywhere, but only on few pipes at a time. Solutions are evaluated by the discrepancy 

between simulated and field measured pressure heads and pipe flows. Step 3 divides into two parts. 

In Part I, the optimization analysis estimates the total water losses in the WDN and in Part II a 

second optimization problem is solved with the updated list of candidates and range of flows, to 

estimate the number of possible leaks. In both parts, optimization is formulated with a fixed number 

of decision variables. For any possible leak in the WDN two decision variables are defined, one for 

the leak location and one for the leak flow value [10]. The problems are subject to two sets of 
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constraints: (1) the implicit constraints considering mass and energy balance equations; and (2) the 

explicit constraints used as bounds for the solution search space for each decision variable. The 

optimization is formulated as: 

Search for: X = (LNi
n, Ki

n);   LNi
n ϵ Jn;   n = 1,….,NLeak;   i = 1,…,NIndexn  (1) 

Minimize: F(X)                (2) 

Subject to: 0 ≤ Ki
n ≤  K

n  (3)     Pi
n ≥ 0                   (4) ∑NLdup

n  (5) 

where LNi
n is the index for node i for the specified leak n, Ki

n is the emitter coefficient for node i for 

leak n, Jn is the set of candidate nodes for leak n, NLeak is the number of specified leaks to be 

identified, NIndexn is the number of the candidates for the group of specified leakage nodes n to be 

identified, Kn is the maximum emitter coefficient for specified leak n, Pi
n is the pressure head at the 

detected leakage node i within group n and NLdup
n is the number of the duplicated nodes that are 

identified as leakage emitters in one solution for group n. 

In Part I a single leak is assumed, and a total of two decision variables are considered in the 

optimization problem minimizing the weighted sum of squared flow differences, given by:  

Minimize:             (6) 

where Qonf(t) is the observed flow of the nf-th link at time step t; Qsnf(t) is the simulated flow of the 

nf-th link at time step t; Qpnt is the flow per fitness point, which converts flow differences into a 

dimensionless value based on the meter’s reading accuracy; NF is the number of observed flows; 

Wnf is the normalized weighting factor for observed flows.  

At each analysis Ki
n is allowed to systematically vary for ±50%, ±25%, ±10%, ±5% and ±1% 

relative to the specified emitter flow value. The search begins with an initial Ki
n
 equal to the 

maximum flow difference. When a fit solution is identified, the range of flow adjustments is 

consistently applied and Ki
n is updated with the optimal value. At the end of Part I the upper bound 

flow, Kn, for all candidate nodes is established. If the estimated flow is below the MDNL value of a 

specific candidate node, then, the node is removed from the search space. During Part II a series of 

possible leak scenarios with fixed n is simulated based on the Kn value and the average MDNL of 

the remaining candidates. Optimization analyses are carried out, minimizing the weighted sum of 

squared differences between observed and simulated values for both heads and flows, given by:  

Minimize:         (7) 

where Honh(t) designates the observed pressure head of the nh-th junction at time step t; Hsnh(t)  the 

simulated hydraulic grade of the nh-th junction at time step t; Hpnt is the hydraulic head per fitness 

point, which converts head differences into a dimensionless value based on the sensor’s reading 

accuracy; NH is the number of observed heads; Wnh is the normalized weighting factor for observed 

heads; All flow-related symbols are similar as in Part I formulation.  

The fittest scenario establishes the lower bound emitter, Kn, for the candidate leaks as well as the 

possible number of leaks in the WDN. If the estimated Kn
 is less than the MDNL value for a 

candidate node it is, again, removed from the search space. 

2.5 Leak Detection and Localization 

At the LDL stage, the problem is formulated similarly to Part II of the SSR stage based on 

optimization. The process detects the leakage flow for every node location minimizing the weighted 

sum of differences between both head and flow observations. However, n is fixed depending on the 

optimum solution in Part II of SSR, while the decision variables involve the reduced list of 

candidate leakage nodes and the corresponding range of flows as a result of SSR. This stage can be 

NLeak 

n = 1 
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combined with model calibration to verify the status of valves and the state of pipes. Thus, during 

LDL it is possible to include additional decision variables, such as candidate valve components or 

groups of pipe roughness to calibrate the status/setting and the friction coefficients, respectively. 

3 Case Study 

The methodology was tested in a 

real DMA in the United Kingdom 

(UK), with a real leak event, 

considering that the WDN had 

historically high recorded leakage 

levels. The system has 45km of 

mains and serves a rural area of 

over 20km2 and approximately 

1,000 properties. Flow from the 

source node normally varies 

between 2.6 l/s at Minimum 

Night Flow (MNF) and 8 l/s 

during the morning peak demand. 

The hydraulic model is composed 

of 461 pipes, 601 nodes, while 

there is one inlet and three Pressure Reducing Valves. In Figure 1, the EPANET model of the 

system is presented. The DMA has flow and pressure sensors at the inlet, and 10 inner pressure 

sensors, whose placement is marked using a red circle symbol. The DMA has a large variation in 

the elevation with the lowest point being at 28m and the highest at 221m, which results in a 

pressure range between 20 and 148 meters of water head and an average of 53.8m. On November 7, 

2016, a leak started at 15:30 hours and lasted for around seven days. Its exact location is indicated 

by a blue star in Figure 1, where it was found and repaired. The effect of the leak can be observed in 

Figure 2, which demonstrates a significant increase in the MNF. To assess the leak localization 

methodology a calibrated average day model was used, i.e. a model which simulates pressures at the 

sensor locations with an accuracy range of ±2m relative to the observations prior to the leak start, 

according to the company’s standards. The observed data for the leak localization part involved the 

time series for flows into the system and the pressures at 11 locations. The training data involved 

the collected pressures and flows on November 8, in order to test whether the leakage localization 

methodology could report the leak location and flow at an earlier stage. A total of 96 field 

observation data sets over 24 hour period from midnight of November 8 to midnight of November 

9, have been imported into the optimization modelling tool. Each data set represents a complete 

snapshot of system conditions, the 

observed inflow into the DMA and the 

11 pressures used for evaluating the 

quality of leak detection and localization. 

A systematic flow difference between 2.2 

and 2.55 l/s was observed at the MNFs 

throughout the seven days when the leak 

was running, from 2.65 l/s to 5.15 l/s. 

Interestingly there was a large variation 

in demand during the morning peak 

hours, as the leak only caused an increase 

of around 1 l/s compared to the day 

before the leak started.  

Figure 1. The District Water System and Sensor Configuration. 

Figure 2. Inlet flow before and after leak reparation. 
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4 Results 

Simplification reduced the search space to only 

47% of network nodes (i.e. from 602 nodes to 

283 nodes). Prior to any optimization run for 

identifying possible leakage hotspots, the 

system evaluation was conducted by comparing 

the field observed inflows with the simulated 

inflows of actual consumptions over 24 hours. 

This provided a starting point for defining the 

MDNL flows for each candidate leak location. 

The difference between average observed 

inflow and the average modelled inflow 

corresponded to losses of 27%. Considering the 

large variation and inconsistency in demand during the morning peak hours and throughout the day, 

an increased weight was given to the pressure and flow differences during the hours of low demand, 

i.e., between 00:00 and 06:00. Following Part I of the optimization-based search reduction a leak of 

2.49 l/s was detected and the average MDNL, after eliminating the nodes with MDNL values higher 

than the detected leaks, was approximately 0.14 l/s, corresponding to 18 different leak scenarios. 

Part II showed that the most likely leak scenario was the existence of a single large leak in the 

WDN as this was the fittest scenario, as shown in Figure 3. The final list of candidates involved 

only 27% of the WDN nodes as potential leak locations (i.e. 162 nodes). LDL was, then, run for 

finding a single leak, while the setting of the three PRVs was also included in the optimization 

analysis and was allowed to adjust ±10%, to emulate the response of a PRV’s setting to a real leak. 

The optimum solution reported a leak on the branch where the true leak occurred and 800m 

upstream of the true leak location (Figure 3). Considering the length of the WDN mains this 

represents an error of 2% (by length). Interestingly, the leak was found on a pipe section where 

there is no demand node and, thus, the closest node to the leak within the candidate list was 61m 

away from the true leak location. On the other hand, the search for the leak was narrowed down 

between sensors P6 and P7, which corresponds to a search space of only 10% of the total mains 

length. In addition, the leak was found seven days after its occurrence, which means that the 

approach can contribute to a much earlier detection and localization of the leak. An extended period 

simulation analysis was completed with the updated emitter in the hydraulic model and the inflow 

comparison for the leak period, between the observed flow data, and the simulated outputs before 

and after LDL is illustrated in Figure 4. 

The model simulated flow with the 

detected leakage emitter matches much 

better than the original modelled flow 

over 24 hour period. Between the hours 

of low demand and before the morning 

peak, the optimized model completely 

matches the observations of November 8 

used to train the model. Interestingly, 

although the training dataset involved 

measurements for November 8, by 

comparing the updated flow data with 

the rest of the flows between November 

9 and November 14, before the leak was 

found and repaired, an even better match 
Figure 4. The Flow Differences before and after leakage 

detection. 

Figure 3. Part II optimization analysis outcome 

for the approximate hotspot number in the WDN. 
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is produced. The larger difference on the November 12 and 13 is due to the weekend demand, 

which follows a different pattern, relative to the weekdays.  

5 Discussion 

5.1 Industry Benefits in Leak Search Space and Time 

Minimizing costs and time in finding leakages occurring in WDNs is a challenging task for water 

utilities. The approach used in this study helps demonstrate the benefits that could be achieved by 

developing an optimization-based approach. Furthermore, the next generation of models for 

operational uses can improve the custom-and-practice methods that have now remained broadly the 

same for 20 years, in both calibration and leakage localization. Although both models used prior and 

after leakage localization do not represent fully calibrated models, the approach shows success in 

narrowing down the leak search space and contributing to earlier leak localization. The search 

reduction methodology was able to narrow down the leak search space to within 27% candidate 

leakage hotspots and after LDL to within two pressure sensors, which allows for a maximum search 

space of 10% of the WDN (by length). Furthermore, considering that the leak flow was on average 

2.49 l/s and running for a week with the associated cost of water of £1.5/m3, there were losses of 

around 1,500m3, corresponding to more than £2,000. If the offline approach was implemented to 

detect the leak using the data of November 8 and allowing the leak to be found and repaired by the 

Leakage Technicians on the afternoon of November 9, there would have been volumetric and 

monetary savings in water of more than 70%. The resulting model serves as a very good baseline 

for further calibration, following the localization of the leak in the field. A point to raise, considers 

the fact that PRVs follow a profile variation at their setting throughout the day. Such functionality is 

currently not supported by the EPANET hydraulic simulator used for leak localization. This implies 

that the leakage localization method developed in this paper not only facilitates earlier leakage 

detection but also contributes to model calibration. 

5.2 Model Calibration and Data Challenges 

A key requirement for accurate leak localization and message from this work is the use of well 

calibrated models of the WDN. With the advent of cheaper telemetry and monitoring devices, there 

are opportunities to further exploit the information captured, used in WDN modelling for operations 

at mains level. Optimisation can be a powerful tool for leakage hotspot detection. Thus, systematic 

approaches that leverage hydraulic models along with optimization techniques can be beneficial for 

WDN operations, if accompanied by good quality data. A large amount of accurate data is a 

necessary step for estimating calibration parameters with sufficient confidence, taking into account 

the increased complexity of large city WDNs and the ill-posedness problem in WDN modelling. 

Significant improvements in the accuracy of the model calibration and leak localization process can 

be secured with the inclusion of additional flow measurements captured from key flow routes in the 

WDN. Furthermore, the impact caused by small unknown leaks, or the local effect caused by 

unknown closed valves can be often insufficient to allow detection due to the measurement noise 

levels compared to model accuracy. However, this is a characteristic of optimization analyses when 

dealing with traditional WDN models. Incorporated unknown closed valves that may have been left 

open due to data anomalies, can be carried over during the calibration process, resulting in false 

positive leakage hotspot detection. This may be associated with incorrect pipe group roughness 

values that also exist in same flawed models in which unknown closed valves were assumed open 

during the model calibration process. Current WDN models are calibrated to simulate observed 

pressures within ±1m, whereas field pressure transducer accuracy lies within an order of magnitude 

less. Thus, hard-to-find leaks and topological anomalies can remain undetected due to small head 

losses. It would be unfortunate to forego the opportunity to move from calibration criteria of ±1.0m 
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to ±0.1m, the latter being similar to the specified 0.1% full scale deflection for the 10bar 

transducers often used in the field work. By grasping this opportunity, the way will be open to the 

new generation modelling tools to provide far superior model calibration with increased 

opportunities for more successful detection of those previously undetected model anomalies. 

6 Conclusions 

An offline model-based leak search-space reduction approach was presented that reduces the 

complexity of the leak detection and localisation problem formulated as a calibration problem. 

Based on the case study results obtained here, the approach minimises the possibility of the 

optimum solution being eliminated and contributes to earlier leak localisation using an optimisation 

method. The method systematically reduces the number of decision variables and the range of 

possible values, considering the error in observations, while avoiding unnecessary simulation of 

solutions that do not cause any impact on model fitness. The approach has been tested on a real leak 

event, where the search was reduced to only 10% of the WDN (by length) and could lead to 

volumetric and monetary savings in water of more than 70%. A discussion is also provided on the 

major issues with the traditional calibration of WDN models and the ill-posedness of the calibration 

problem. In practice, the promising approach can leverage the use of hydraulic models for network 

operations and lead to significant benefits for the water industry. 
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