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Abstract 

 

 

The application of optimisation to Water Distribution Network (WDN) Modelling 

involves the use of computer-based techniques to many different problems, such 

as leakage detection and localisation. The success in the application of any 

model-based methodology for finding leaks highly depends on the availability of 

a well-calibrated model. Both leak detection and localisation, as well as model 

calibration are procedures that constitute the field of inverse problems in WDN 

modelling. The procedures are interlinked and dependent as when a leak is found 

and the model is updated its quality improves, while when a model is calibrated 

its ability to detect and localise leaks also improves. This is because both inverse 

problems are solved with the aim to mimic the behaviour of the real system as 

closely as possible using field measurements. In this research, both inverse 

problems are formulated as constrained optimisation problems.  

 

Evolutionary Optimisation techniques, of which Genetic Algorithms are the best-

known examples, are search methods that are increasingly applied in WDN 

modelling with the aim to improve the quality of a solution for a given problem. 

This, ultimately, aids practitioners in these facets of management and operation 

of WDNs. Evolutionary Optimisation employs processes that mimic the biological 

process of natural selection and “survival of the fittest” in an artificial framework. 

Based on this philosophy a population of individual solutions to the problem is 

manipulated and, over time, “evolves” towards optimal solutions. However, such 

algorithms are characterised by large numbers of function evaluations. This, 

coupled with the computational complexity associated with the hydraulic 

simulation of WDNs incurs significant computational burden, can limit the 

applicability and scalability of this technology across the Water Industry. In 

addition, the inverse problem is often “ill-posed”. In practice, the ill-posed 

condition is typically manifested by the non-uniqueness of the problem solution 

and it is usually a consequence of inadequate quantity and/or quality of field 

observations.  
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Accordingly, this thesis presents a methodology for applying Genetic Algorithms 

to solve leakage related inverse problems in WDN Modelling. A number of new 

procedures are presented for improving the performance of such algorithms 

when applied to the complex inverse problems of leak detection and localisation, 

as well as model calibration. A novel reformulation of the inverse problem is 

developed as part of a decision support framework that minimizes the impact of 

the inherent computational complexity and dimensionality of these problems. A 

search space reduction technique is proposed, i.e., a reduction in the number of 

possible solution combinations to the inverse problem, to improve its condition 

considering the accuracy of the available measurements. Eventually, this 

corresponds to a targeted starting point for initiating the search process and 

therefore more robust stochastic optimisations. The ultimate purpose is to 

increase the reliability of the WDN hydraulic model in localising leaks in real 

District Metered Areas, i.e., to reduce the number false positives. In addition, to 

speed up the leak search process (both computationally and physically) and, 

improve the overall model accuracy.  

 

A calibrated model of the WDN is not always available for supporting work at 

distribution mains level. Consequently, two separate problem-specific methods 

are proposed to meet the abovementioned purpose: (a) a Leak Inspection 

Method used for the detection and localisation of leaks and; (b) a Calibration 

Method for producing an accurate average day model that is fit for the purpose 

of leak detection and localisation. Both methods integrate a three-step Search 

Space Reduction stage, which is implemented before solving the inverse 

problem. The aim is to minimize the number of decision variables and the range 

of possible values, while trying to preserve the optimum solution, i.e., reduce the 

inverse problem dimensionality. The search space reduction technique is 

established to generate a reduced set of highly sensitive decision variables. 

Eventually this is done to provide a viable, scalable technique for accelerating 

evolutionary optimisation applications in inverse problems being worthwhile on 

both academic and practical grounds.  

 

The novel methodologies presented here for leak detection and localisation, as 

well as for model calibration are verified successfully on four case studies. The 
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case studies include two real WDN examples with artificially generated data, 

which investigate the limits of each method separately. The other two case 

studies implement both methods on real District Metered Areas in the United 

Kingdom, firstly to calibrate the hydraulic network model and, then, to detect and 

localise a single leak event that has actually happened. The research results 

suggest that leaks and unknown closed or open throttle valves that cause a 

hydraulic impact larger than the sensor data error can be detected and localised 

with the proposed framework which solves the inverse problem after search 

space reduction. Moreover, the quality of solutions can dramatically improve for 

given runtime of the algorithm, as 99.99% of infeasible solution combinations are 

removed, compared to the case where no search space reduction is performed. 

The outcomes of the real cases show that the presented search space reduction 

technique can reduce the search area for finding the leak to within 10% of the 

WDN (by length). The framework can also contribute to more timely detection 

and localisation of leakage hotspots, thus reducing economic and environmental 

impacts. The optimisation model for predicting leakage hotspots can be effective 

despite the recognized challenges of model calibration and the physical 

measurement limitations from the pressure and flow field tests. 
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𝑎   Pressure exponent of leak orifice equation 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝  Sensor device reading percentage error 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑄  Flow device reading percentage error 

𝐵𝑗,𝑝   Baseline demand for demand type 𝑝 at junction 𝑗 

𝐵𝑆𝑘   Baseline head, setting or speed at model component 𝑘 

𝑐𝑖   Emitter coefficient depicting the leak orifice area at node 𝑖 

𝑐𝑖
𝑛   Emitter coefficient for node 𝑖 for the possible leak 𝑛 

𝐶𝑀𝐷𝑃𝑅𝐶  Number of hydraulic simulations required to determine all the  
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𝐶𝑀𝐷𝑉𝐶   Number of hydraulic simulations required to determine all the  
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𝐶𝑀𝑀𝐷𝑁𝐿  Number of hydraulic simulations required for the MDNL  
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𝐶𝑀𝑃𝑎𝑟𝑡𝐼  Number of hydraulic simulations required to detect the total  

water losses in Part I of Step 3 in SSR 

𝐶𝑉𝑘
𝑣   Index of valve 𝑘 corresponding to possible closed valve 𝑣 

𝑑   Day 

𝑑𝑖   Time distance from 𝑦𝑜,𝑘 

𝑑𝑧 User-specified range of possible emitter coefficient values 

for optimisation analysis 𝑧  

𝐷𝑃𝑅𝐶𝑝𝑔,𝑝𝑚 Set of possible roughness values for detectable pipe group 

𝑝𝑔 of material 𝑝𝑚 

𝐷𝑉   Number of decision variables for the optimisation problem 

𝐹   Number of flow metered pipes 
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𝑓𝑖𝑧   Fitness improvement after optimisation analysis 𝑧 

𝐹𝐼𝑔   Set of fitness improvement values for pipe group scenario 𝑔 

𝑔   Pipe group scenario 
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Algorithm 

𝐺𝑆   Ranked list of sensitive pipe groups  
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𝐻𝑠𝑠(𝑡)   Simulated head at node 𝑠 at time 𝑡 
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𝐿𝑁𝑖
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𝑚   Sensor device location 
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𝑀   Number of sensor devices 
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𝑛   Possible leak  
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specifies the maximum possible flow before the MDNL 

analysis 
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𝑁𝐼𝑛𝑑𝑒𝑥  Number of candidate nodes for any possible leak 𝑛 
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𝑃   Pressure at any node 

𝑝0�̂�   Pressure at node 𝑠 for a leak-free scenario 

𝑝𝑖   Pressure at node 𝑖 

𝑝𝑘,𝑠 Pressure response at node 𝑠 for a change in the status of 

valve  𝑘 

𝑝𝑄,𝑙,𝑠 Pressure response at node 𝑠 for leak flow rate 𝑄 at candidate 

location 𝑙 

𝑝𝜆𝑝𝑔,𝑝𝑚,𝑠 Pressure response at node 𝑠 for a change in roughness 

value 𝜆 of pipe group 𝑝𝑔 of material 𝑝𝑚 

𝑝𝑎𝑝𝑚   Pipe age sub-class for material 𝑝𝑚 

𝑃𝐴𝑝𝑚   Number of pipe age sub-classes for material 𝑝𝑚 

𝑃𝐴   Number of pipe age groups 

𝑝𝑔   Pipe group 

𝑝𝑔𝑝𝑎𝑝𝑚
  Pipe diameter group for age sub-class 𝑝𝑎 for material 𝑝𝑚 

𝑃𝐺   Number of pipe diameter groups 

𝑃𝐺𝑝𝑎𝑝𝑚
 Number of pipe diameter groups for age sub-class 𝑝𝑎 for 

material 𝑝𝑚 

𝑃𝑘(𝑡)   Pressure at the model component 𝑘 at time 𝑡 

𝑝𝑚   Pipe Material Class 

𝑃𝑀   Number of pipe material classes 

𝑃𝑀𝑡
𝑝
   Pattern multiplier for pattern 𝑝 at time step 𝑡 

𝑝𝑄,𝑙,𝑠   Pressure at node 𝑠 for leak flow 𝑄 at candidate location  𝑙  

𝑃𝑠   Average observed pressure at sensor nodes 

𝑃𝑝   Set of pattern multipliers for pattern 𝑝 

𝑃𝑃𝑎𝑡𝑘(𝑡) Pattern multiplier for the baseline head, setting or speed 𝐵𝑆𝑘 

of model component 𝑘 at time 𝑡 

𝑃𝑆   User defined population size for the number of solutions  

generated by the Genetic Algorithm 

𝑄   Leakage flow rate 

𝑄𝑖   Leakage flow rate at node 𝑖 
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𝑄𝑗(𝑡)   Total demand at junction 𝑗 at time 𝑡 

�̅�𝑖𝑛   Average global system demand 

𝑞𝑙   Leakage flow at candidate leak location 𝑙 

𝑄𝑐𝑛   Detected leak flow 

𝑄𝑚𝑖𝑛𝑙 Minimum Detectable Nodal Leakage flow value for candidate 

location, 𝑙 

𝑄𝑜𝑓(𝑡)   Observed flow in link 𝑓 at time 𝑡 

𝑄𝑃𝑎𝑡𝑗,𝑝(𝑡)  Pattern multiplier for demand type 𝑝 at junction 𝑗 at time 𝑡 

𝑄𝑠𝑓(𝑡)   Simulated flow in link 𝑓 at time 𝑡 

𝑄𝑝𝑛𝑡   Flow device reading error 

𝑟   Residual error between measured and observed value 

𝑟𝑘(𝑡)   Residual error for a change in the status of valve 𝑘 

𝑟𝑚 Residual error between measured and simulated value at 

location 𝑚  

𝑟𝑄,𝑙(𝑡)   Residual error for leak flow rate 𝑄 at candidate location 𝑙 

𝑟𝜆𝑝𝑔,𝑝𝑚
(𝑡) Residual error between the minimum nominal roughness 

value and the adjusted roughness coefficient 𝜆𝑝𝑔,𝑝𝑚 for pipe 

group 𝑝𝑔 of material 𝑝𝑚 

𝑅𝐼𝑛𝑑𝑒𝑥  Number of possible roughness values for pipe group 𝑔 

𝑅𝑉𝑝𝑚   Set of possible roughness values for pipe material class 𝑝𝑚 

𝑅𝑉𝑝𝑔,𝑝𝑚 Set of possible roughness values for pipe group 𝑝𝑔 of 

material 𝑝𝑚 

𝑠   Sensor node location 

𝑆   Number of sensor locations 

𝑠𝑘,𝑡   status of valve 𝑘 at time step 𝑡 

𝑆𝑆𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒𝑉𝑎𝑙𝑣𝑒𝑠 Number of hydraulic simulations required to evaluate any 

possible solution to the base case optimisation problem for 

detecting the status of valves without any reduction in space 

𝑆𝑆𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒𝐿𝑒𝑎𝑘𝑠 Number of hydraulic simulations required to evaluate any 

possible solution to the base case optimisation problem for 

leak detection and localisation without any reduction in 

space 

𝑆𝑆𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒𝑃𝑖𝑝𝑒𝑠 Number of hydraulic simulations required to evaluate any  
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possible solution to the base case optimisation problem for 

calibrating the roughness coefficient of pipe components 

without any reduction in space 

𝑆𝑆𝐶𝑙𝑜𝑠𝑒𝑑𝑉𝑎𝑙𝑣𝑒𝑠  Number of hydraulic simulations required to evaluate any  

possible solution to the optimisation problem in finding the 

maximum number of closed valves 

𝑆𝑆𝐿𝐷𝐿   Number of hydraulic simulations required to evaluate any  

possible solution to the ultimate leak detection and  

localisation problem 

𝑆𝑆𝑃𝑎𝑟𝑡𝐼𝐼 Number of hydraulic simulations required to evaluate any 

possible solution to the optimisation problem in Part II of SSR 

𝑆𝑆𝑃𝑅𝐶𝐺   Number of hydraulic simulations required to evaluate any  

possible solution to the optimisation problem in finding the 

maximum number of pipe roughness calibration groups 

𝑡   Time step 

𝑇   Total number of days considered in set of measurements 

𝑣   Closed valve scenario 

𝑉   Set of candidate valve locations 

𝑉𝐼𝑛𝑑𝑒𝑥 Number of candidate valves for any possible closed valve 

𝑤𝑓   Weighting factor for observed flow in pipe 𝑓 

𝑤𝑘(𝑡)   Tri-cube weight function at time step 𝑡 

𝑤𝑚   Weighting vector corresponding to set of measurements, 𝑦𝑜 

𝑤𝑠   Weighting factor for observed head at sensor 𝑠 

𝑥   Set of parameters for the inverse problem 

𝑥𝑖   Decision variable 𝑖 of the optimisation problem 

𝑥𝑆𝑆𝑅   Reduced set of parameters for the inverse problem 

�⃗�   Set of decision variables for the optimisation problem 

𝑦𝑎   Actual value of measurement(s) 

𝑦𝑜   Sensor device reading(s) 

𝑦𝑜
∗   Smoothed value for observation(s) 

𝑦𝑜,𝑖   Nearest neighbour, 𝑖 of 𝑦𝑜,𝑘 

𝑦𝑜,𝑘   Observation value to be smoothed 

𝑦𝑜,𝑚̅̅ ̅̅ ̅̅ (𝑡)  Average value of the readings from device 𝑚 at time 𝑡 
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𝑦𝑜,𝑚,𝑑(𝑡)   Reading value from device 𝑚 at time 𝑡 on day 𝑑 

𝑦𝑠(𝑥) Model prediction(s) corresponding to measurement(s), 𝑦𝑜 

𝑧   Optimisation analysIs 

𝑍   User defined number of optimisation analyses for the tested  

range of emitter coefficient values 

𝜀   Sensor device error 

𝜆𝑗
𝑔
 Roughness coefficient value for group of pipes 𝑔 

corresponding to index 𝑗 

𝜆𝑝𝑚   Roughness coefficient value for pipe material class 𝑝𝑚 

𝜆𝑝𝑔,𝑝𝑚 Roughness coefficient value for pipe group 𝑝𝑔 of material 

𝑝𝑚 

𝛬   Number of possible roughness values for pipe group 𝑝𝑔 

𝜆𝑚𝑖𝑛𝑝𝑚  Minimum nominal roughness coefficient for pipe material 𝑝𝑚 
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CHAPTER 1  Introduction 

Introduction 
 

 

1.1 Background 

Water is a valuable resource and essential for the human survival. It is used for 

drinking, food production, several social purposes and contributes to the 

economic growth of societies. However, less than 1% of the Earth’s water is 

available for direct human consumption (USGS, 2011). This fraction is also 

unevenly distributed spatially and temporally (Gleick, 1995). Furthermore, 

demographic, socioeconomic and environmental factors, such as the accelerated 

population growth, unsustainable consumption patterns, pollution of underground 

and surface water, and extreme environmental fluctuations, put increasing 

pressure on the availability of fresh water resources. Thus, securing water supply 

for future generations is a compelling and critical issue. As a result, more 

emphasis is shifted towards managing demand by better utilising the water that 

is already available.  

 

Water is supplied to consumers through water distribution networks (WDN). 

Considerable financial resources are allocated to the design and construction of 

a network that satisfies the supply and quality standards. On the other hand, a 

significant proportion of the water distributed is lost through leakage. Leakage in 

WDNs includes water that escapes from the pipe network by means other than 

through a controlled action (Ofwat, 2008a). According to a World Bank study, 

about 48 billion m3 of water are lost annually from WDNs, costing water utilities 

approximately US$141 billion per year around the world (Kingdom et al., 2006; 

van den Berg, 2014).  

 

In view of the concerning future water scarcity and environmental problems, water 

utilities have played a central role in conserving water through advances in 

leakage management. For example, leakage in England and Wales has been 
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reduced by 38% since the water industry privatization in 1989, from a peak of 

5,155 to 3,183 Ml/day (Discover Water, 2018). Nevertheless, 35% of the saved 

water was achieved within the first 15 years and since then, the leakage reduction 

progress has been very slow (Environment Agency, 2008). Still, the total leakage 

reduction is equivalent to the daily needs of more than 14 million domestic 

customers (Ofwat, 2018). The overall progress in managing leakage was brought 

about by an investment in leak detection, repair and replacement of WDNs. 

Furthermore, as a result of managing pressures in WDNs and water mains 

rehabilitation programs. Yet, water infrastructure in various countries including 

the United Kingdom (UK) is ageing and new infrastructure is not being installed 

quickly enough to maintain current standards (Speight, 2015). Consequently, the 

lack of investment in pipe renewal will lead to an increase in pipe failure rates and 

greater levels of leakages in the future. Hence, water companies need to find 

solutions towards reducing risks and ensure more resilient systems. 

 

Most water utilities have adopted operational strategies to address the leakage 

challenge. Nevertheless, they have limited effectiveness and do not address the 

root cause. Although plugging the leaks seems to be the most direct approach to 

solving the problem of water lost through leakage that is not a trivial task. As 

WDNs are buried, locating the leaks is extremely difficult. Many leaks do not 

manifest themselves in any visible way, such as water bubbling to the surface, 

and may go undetected indefinitely. Even when water does reach the surface, it 

may appear nowhere near the actual leak.  

 

There are a number of technologies available for detecting leaks without digging, 

such as a variety of acoustic methods and step-wise testing of individual 

segments of the piping systems (Puust et al., 2010). However, these approaches 

are not effective in pinpointing leaks and still require fairly exhaustive 

examinations of the water systems. They are, therefore, expensive and time-

consuming. Water suppliers generally seek to reach an “economic level of 

leakage”, i.e., ‘the level beyond which it is no longer economical to detect and 

repair leaks compared to other means of balancing supply and demand’ (Ofwat, 

2008b). Nevertheless, even if water suppliers approach their “economic” level of 

leakage, they face further challenges. For example, the volume of water “wasted” 
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through leakage is becoming increasingly unacceptable in the eyes of the 

consumer. However, consumers are generally not willing to pay for an increase 

in charges to fund further reductions in leakage. As it is becoming increasingly 

difficult to find undiscovered leaks, the attention has turned to modelling 

technology that can detect and localise leaks.   

 

Obviously, a mathematical model that can simulate WDN behaviour as closely as 

possible is of great importance to every WDN authority. Today, computer-based 

hydraulic simulators of the WDN are widely used by engineers for planning, 

design and operational purposes. These hydraulic models represent the real 

systems using mathematical equations to analyse the WDN behaviour and 

predict its response under a wide range of conditions (Walski et al., 2001). 

Therefore, it is important that the model represents the real state of the system 

to provide adequate solutions for various purposes (Walski, 2000). For example, 

a well-calibrated WDN hydraulic model can be used to detect and localise leaks.  

 

1.2 Motivation for Research 

Water distribution network hydraulic models are in widespread use by planners, 

water utility personnel, consultants and many others for the analysis, design, 

operation or maintenance of WDN. With the advent and subsequent evolution of 

this technology, engineers have been able to analyse the status and operations 

of WDN, as well as to investigate the impacts of proposed changes. Using a 

hydraulic model to identify areas of leakage has long been a goal for the 

practitioners. This challenge can be posed as an inverse problem. In an inverse 

problem in WDN modelling actual measurements are taken from the field and are 

compared with the outputs from simulated scenarios associated with the state of 

the WDN. The solution to the problem aims to determine the simulated scenario 

that yields the best match with the actual measurements and represents the real 

system situation, e.g., the size and the location of leaks. Solving the inverse 

problem for leak detection and localisation could use pressure and flow data 

obtained in the field to run an optimisation analysis using a pressure-driven 

hydraulic model to locate leaks for further investigation.  
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A considerable aspect of effective and meaningful network modelling is the 

calibration of models. This is a process in which model parameters regarding the 

state and status of the WDN are adjusted until the model matches (as closely as 

possible) the behaviour of the real WDN (Shamir & Howard, 1977). Calibration is 

an inverse problem related to WDN modelling, also called the “calibration 

problem”. The process is normally employed to simulate pressures within an 

accuracy of ±1 metre relative to the observations. However, for supporting 

operational work at the distribution mains level, such as finding leaks, this is too 

coarse a criterion. Reasons for this involve undiscovered leaks, incorrect pipe 

state information and/or system anomalies that cause changes in the observed 

pressures which are smaller than the ±1m accuracy range of hydraulic models. 

For example, throttle valves that were accidentally left closed (or open) without 

being correctly included in the model raise significant modelling challenges. 

These are not updated in the Geographic Information Systems of the water utility 

and can be carried over in the water mains records used for model building and 

calibration. Except from that, traditionally, calibration was, and, in some cases 

still is treated as a manual task that is subject to the engineer’s judgement. All 

the above mentioned factors cause a considerable effect on how accurately can 

the model simulate WDN hydraulics and, consequently, on the leak localisation 

process. On the other hand, relative to the traditional trial-and-error approaches, 

much better results can be achieved if the calibration problem is formulated as 

an optimisation problem (Savic & Walters, 1995).  

 

Automated analysis and optimisation tools have been used to provide a 

mechanism for improving various facets of WDNs including, model calibration, 

and leakage detection and localisation (Puust et al., 2010). Such tools represent 

an attempt to provide assistance to practitioners through the means of intelligent, 

knowledge-based techniques. An optimisation model helps engineers find a 

solution for a given problem. When linked with a pressure-driven hydraulic model 

it can be used to generate multiple solutions that are, then, simulated and their 

corresponding impact on the WDN is recorded. Through a simulation-

optimisation approach the quality of a solution generated by the optimisation 

model can be evaluated. On the other hand, the application of optimisation to 

WDNs is generally characterised by extended runtimes owing to the 
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computational load imposed by the simulation model. Determining the WDN 

hydraulics numerically is iterative in nature and the time taken to run a hydraulic 

simulation is largely dependent on the size and configuration of the network 

model itself. In addition, a significant problem associated with the quality of the 

generated solutions and shortfall in the efficacy of real-life WDN hydraulic models 

is the lack of measurements in the WDN. This can lead to the formulation of an 

ill-posed inverse problem, characterised by non-uniqueness and instability of 

solutions. So far, not much research effort has been put into tackling this problem.  

 

Evolutionary Algorithms are search methods that are often used for optimising 

complex problems (Hassan et al., 2005). These methods have been successfully 

applied in WDN modelling in the past with the aim to improve the quality of a 

solution for a given problem (Mala-Jetmarova et al., 2015). However, they require 

a large number of solution evaluations and appear to be ill-suited for practical 

WDN applications. Their popularity in research rose due to their ability to 

converge rapidly on an optimal or near-optimal solution, whilst having analysed 

a mere fraction of the total solution search space. Despite inexorable 

improvements in computer power, there is still a need to improve the performance 

of these algorithms, to permit practical WDN applications. Such search methods 

need to be utilized with acceptable computational efficiency and effectiveness to 

meet the demands of the more complex optimisation problems faced in real life.  

 

1.3 Aims and Objectives of Research 

A family of population-based search algorithms known as evolutionary algorithms 

has been extensively considered in the field of WDN modelling (Goldberg, 1989). 

However, very few of the algorithms have received widespread acceptance in the 

commercial applications. This is because most algorithms require high number 

of function evaluations and computational time to solve even a simple problem. 

The aim of this research work is to develop novel approaches for simplifying the 

deployment of optimisation techniques in WDN modelling applications, such as 

model calibration and leak detection and localisation. The developed 

methodology aims to detect the state of assets and their status changes in a fast 

and reliable way. The ultimate purpose is to increase the reliability of the WDN 
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hydraulic model in localising leaks in real District Metered Areas (DMAs), speed 

up the search for leaks (both computationally and physically) and improve the 

model accuracy. 

 

Novel approaches are proposed in the thesis to improve the condition of the 

inverse problem. They are aimed at improving the efficiency of the evolutionary 

optimisation algorithms by reducing the search space, i.e., the number of possible 

solutions to the inverse problem. This ensures that the algorithms minimize 

computational wastage by avoiding the evaluation of solutions do not cause 

impact on the model fitness. It also promotes the efficient convergence of the 

population to an optimal solution. Considering the high computational burden of 

optimisation techniques, accelerating their performance is of great importance. 

 

The main objective of this thesis is to develop a decision-support framework for 

solving the inverse problem in WDN modelling, including calibration and leak 

detection and localisation, being worthwhile on both academic and practical 

grounds. The inverse problem formulation is solved using an optimisation 

technique linked to a pressure-driven hydraulic model. It is hypothesised that the 

search reduction approach will enhance the efficiency of the optimisation 

algorithm for solving inverse problems in WDN modelling, such as calibration and 

leak detection and localisation.  

 

More specifically, the detailed objectives are as follows: 

(1) To develop a universal approach for reducing the search area for a 

detecting leak/burst event or unknown throttle valve status that can be 

applied to any DMA network. The approach will take into account the 

sensor configuration and sensitivity of pressure instrumentation to 

leak/burst events or changes in the status of throttle valves. 

(2) To develop systematic procedures for improved network analysis and 

calibration based on the available information and the sensitivity of the 

decision variables. Before solving the inverse problem the approach 

reduces its dimensionality to reveal a targeted starting point search space 

for subsequent optimisations. 



CHAPTER 1 – Introduction

 

 

33 
 

(3) To further develop and expand the functionalities of the optimisation 

algorithm, in terms of its:  

(a) computational efficiency measured by number of simulations 

required to obtain optimal solution; 

(b) ability to precisely identify global optimum, i.e., to get as closely as 

possible (preferably exactly) to the global optimum;  

(c) ability to perform robust search in terms of method convergence 

and stability. This will include optimisation of: (i) throttle valve status 

and functionality to detect inflows at unknown open inlet 

boundaries, (ii) pipe roughness coefficient values, (iii) pressure 

reducing valve profile, (iv) variable speed pump profile and (v) 

demand pattern multiplier coefficients.  

(4) To analyse the sensitivity of this methodology with respect to the accurate 

detection and localisation of leaks based on a number of different sensor 

configurations. 

(5) To demonstrate, verify and evaluate the decision-support framework in 

improving the hydraulic model accuracy and for finding leaks on a number 

of representative and real-life case studies from the UK. 

 

Finally, special attention is given in this thesis to the following aspects: 

(1) To theoretical and practical benefits regarding the proposed novel 

approaches. 

(2) To quantitative and qualitative comparisons of the proposed approaches 

to: (1) the existing theoretical approaches previously described in the 

relevant literature; (2) the practical trial-and-error approaches, based on 

engineering judgement and (3) the existing optimisation-based software 

applications used by the water industry.  

 

1.4 Thesis Layout 

This thesis is divided into six chapters including this introductory chapter.  

 

In Chapter 2 a review of the relevant literature is provided. The review provides 

insight into inverse problems in WDN modelling. An introduction to the parameter 
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estimation theory and the formulation of optimisation problems is also given. 

Then, a wide overview of the model calibration procedure and the available 

techniques for the identification and localisation of leakages in the WDNs is 

presented. It also highlights their individual advantages and disadvantages 

through a critical analysis of the approaches used. The main emphasis is given 

in those approaches that make use of a WDN hydraulic model.  

 

In Chapter 3 a systematic search space reduction technique is presented as part 

of the proposed decision-support framework to fulfil objective one. This is based 

on the general Inverse Problem Theory and Genetic Algorithm Optimisation, 

analysed in Chapter 2. The aim is to reduce the inverse problem dimensionality, 

which ultimately leads to a reduced search effort during an optimisation analysis. 

The decision-support framework is divided into two stages: (a) a Search Space 

Reduction stage, where the number of decision variables and the range of 

possible values is reduced; and (b) an Inverse Problem Solving stage, which 

considers the reduced set of decision variables in an optimisation analysis to 

solve the inverse problem. 

 

In Chapter 4 two practical simulation-optimisation methods are proposed that 

make use of the search space reduction technique presented in Chapter 3. 

Utilizing one or both of these methods rely on the starting model for leak 

localisation, i.e., whether it is calibrated or not. The two methods are developed 

along the objectives two and three. When a calibrated model is available, then, 

leak localisation can be performed. In the opposite situation, the starting 

uncalibrated model has to be calibrated first before performing leak localisation. 

Based on the above situations, the following methods were developed: (1) A 

Leakage Inspection Method, which highlights the leakage area and makes 

pinpointing of leaks faster; and (2) A Calibration Method, which improves the 

WDN model accuracy so it can serve as the basis for use in (1). 

 

In Chapter 5 the applicability of the techniques introduced in the prior chapters is 

demonstrated through their application in a number of semi-real and real case 

studies at a DMA level with a single source. The results of a number of analyses 

carried out on four case studies are presented to address objectives four and five. 



CHAPTER 1 – Introduction

 

 

35 
 

Artificially generated and real data from pressure and flow devices are used to 

implement the methodology on semi-real and real case studies, respectively. All 

case studies have the same purpose, which is to ultimately detect and localise a 

single leak event that has happened in a DMA.  

 

In Chapter 6 a summary is made. After that, relevant conclusions are drawn. This 

is followed by suggestions for future research work. 

 

1.5 Related Publications 

The author has published the research related with the thesis in multiple 

conferences and journals. A list of published works that derived from or influenced 

the thesis development are presented next: 

 Sophocleous et al., 2015: Conference paper that raises issues and 

challenges required to advance WDN Modelling in practice. These are 

associated with data availability, the calibration approach and the 

accuracy criteria, which affect the leak detection and localisation accuracy. 

This work motivated the development of methods to improve the quality of 

WDN hydraulic models. 

 Sophocleous et al., 2016: Conference paper that presents a new graph-

theory-based technique to simplify the inverse problem, before the leak 

detection and localisation procedure. This work motivated the 

development of the search space reduction methodology.  

 Sophocleous et al., 2017: Conference paper that presents a two-stage 

approach for solving the inverse problem for leak detection and 

localisation. The search space is reduced initially using an optimisation 

analysis, before solving the inverse problem in the second stage. This 

work inspired the use of optimisation analysis as part of the search space 

reduction methodology.  

 Sophocleous et al., 2017b: Conference paper that presents a systematic 

approach for narrowing down the search area for the detection of leaks 

and unknown closed valves, considering noise in pressure measurements. 

The practical aspect of the search space reduction method in taking into 
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account the sensor configuration and the sensitivity of pressure 

instrumentation was driven by this work.  

 Sophocleous et al., 2018: Conference paper that presents an overview 

and a real life application of a proposed leak detection and localisation 

methodology that simplifies the inverse problem before solving it. This 

work shaped the final version of the proposed inverse problem solving 

framework from this research.  

 Sophocleous et al., (2018b – accepted): Journal paper that presents the 

proposed framework for solving the inverse problem for leak detection and 

localisation purposes. The framework is implemented on a semi-real and 

real cases. 
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CHAPTER 2  Inverse Problems in Water Distribution Network Modelling 

Inverse Problems in Water 

Distribution Network Modelling 

 

 

2.1 Introduction 

Physical theories allow us to make predictions, whereby given a complete 

description of a system we can predict its behaviour. To apply these theories, 

there must be a valid mathematical model of the system under study. The 

problem of predicting the behaviour of a specified system is called the solution to 

the forward problem. When the forward problem has been completely solved, 

there are unknown parameters in the mathematical model, representing the 

physical properties of the system. The goal of “Inverse Theory” is to determine 

the values of those parameters using available observations by means of data 

collecting devices, i.e., solving an inverse problem (Tarantola, 2005). The name 

inverse problem originates from the fact that one has to first know a forward 

problem, which describes the dependency of the given observations on the 

unknown parameters. Therefore the forward problem aims to determine the 

consequences from causes and the inverse problem the opposite.  

 

A hydraulic model of the Water Distribution Network (WDN) is a mathematical 

description of the real system’s hydraulic behaviour. During a hydraulic simulation 

analysis the physical properties of the system are considered to predict the 

hydraulic measurements of the WDN, such as pressure and flow, i.e., solving the 

forward problem. To ensure that the simulated behaviour matches the real WDN 

conditions as much as possible, hydraulic models are calibrated (Walski, 1983). 

This is an inverse problem, as actual measurements are taken from the field and 

are used to determine the values of the WDN model parameters. An accurate 

WDN hydraulic model can be used for a variety of applications, such as for finding 

leaks. Detection and localisation of leaks in the WDN by means of hydraulic 

modelling is also an inverse problem, which aims to identify parameter values 
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associated with the whereabouts and size of leaks. When a leak happens in a 

well-monitored WDN, it creates a unique “signature” on pressure and flow data, 

which can be used to automatically find its size and location. This brings multiple 

benefits of localising leaks and improving hydraulic model calibration, as by 

finding leaks the model becomes more accurate in simulating the real situation.  

 

This chapter aims to identify the gaps in knowledge in the field of inverse 

problems in WDN modelling. These gaps, then, form the basis for the work done 

in the thesis. A literature review is presented, associated with model calibration 

and leak detection and localisation. Bearing this in mind, the chapter is organised 

as follows. After this introduction the theoretical framework of the inverse problem 

formulation and solution is firstly addressed in Section 2.2. In Section 2.3 the 

important role of optimisation techniques is addressed when solving inverse 

problems. Then, Section 2.4 and Section 2.5 analyse applications of the “Inverse 

Theory” in Model Calibration and in Leak Detection and Localisation, 

respectively. Finally, in the Section 2.6, a summary is provided and relevant 

conclusions are drawn. 

 

 

2.2 The Inverse Problem 

2.2.1 Background 

In an inverse problem in WDN modelling a number of locations in the system are 

monitored and some network parameters are assumed known. On the other 

hand, some parameters are unknown (e.g., leaks, demands, pipe states, valve 

statuses), which affect the system’s hydraulics. These parameters cannot be 

determined explicitly by direct measurement, or there is no available data for 

them. The aim of the inverse problem is to determine the values of the unknown 

WDN model parameters that represent the real system behaviour. Hence, they 

are determined implicitly by comparing available observations (typically 

pressures and flows) with simulated outputs, as opposed to the forward problem, 

where these parameters are assumed known and are used to predict the system 

behaviour. This is demonstrated schematically in Figure 2.1.  
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Figure 2.1. Forward vs Inverse Problem. 

 

When measurements are available for every unknown parameter the inverse 

problem is characterised as even-determined. If the number of measurements is 

larger than the unknown parameters, then the problem is over-determined, in 

contrast to the under-determined case where there are more causal parameters 

(Menke, 2012). An over-determined case is the most desirable from the point of 

view of parameter determination as it gives more dependable results so that the 

unknown parameters can be determined. However, due to the non-linear nature 

of WDN models and the limited availability of field data relative to the number of 

parameters to be estimated, this results in an under-determined problem (Savic 

et al., 2009). A partly monitored system, however, can still give information. In 

addition, if there are fewer measurements than parameters, the causal 

parameters cannot be determined uniquely. Finally, a system can be mixed-

determined where there are as many or more measurements and equations than 

unknowns, but still insufficient information to find a unique solution to the problem.  

 

2.2.2 Problem Formulation 

The general inverse problem (Tarantola, 2005) in WDN modelling (Pudar & 

Liggett, 1992) aims to determine the values for a set of parameters, 𝑥, called 

“decision variables”. This is so that the discrepancies, between some set of 

measured values and the corresponding set of WDN model predicted (simulated) 

values, referred as “residual” or “error”, are minimized. The ultimate purpose can 

WDN Hydraulic Model 
(Unknown Network Parameters) 
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(Pressure and Flow Measurements) 
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be for model calibration, leak detection and localisation, or any other problem that 

requires the analysis of the hydraulic model. In the general case, the residual 

consists of the following two basic parts: (1) modelling error, i.e., the discrepancy 

between true value (known to Mother Nature only) and the simulated value and; 

(2) measurement error, i.e., the discrepancy between the true value and the 

measured value. Both modelling and measurement error have a systematic 

and/or random component (Koppel & Vassiljev, 2012). An example of systematic 

type error is associated with uncalibrated measurement devices, e.g., an offset 

of readings. In contrast, the random component is usually a consequence of the 

imperfectness of the measuring device. The set of measurements or 

observations, 𝑦𝑜, collected from deployed sensors at certain locations, 𝑚, in the 

WDN typically record pressure and flow data. The device reading, 𝑦𝑜, comprises 

of two components, the true value, 𝑦𝑎, and the measurement error, 𝜀, associated 

with the device accuracy range (systematic uncertainty), given by: 

                                                      𝑦𝑜 = 𝑦𝑎 + 𝜀                                                  (2.1) 

The set of model predictions 𝑦𝑠(𝑥) that correspond to the observations are a 

function of the decision variable values, typically determined based on a criterion 

for the quality of solutions to the inverse problem (Shamir & Howard, 1968). This 

is represented by the residual errors, associated with the differences between 

measured and model predicted values, given by:  

                                                  𝑟 =  𝑦𝑜 −  𝑦𝑠(𝑥)                                              (2.2) 

In mathematical terms, the quality of a solution is expressed through an Objective 

Function (OF) and is associated with the values of the decision variables. The 

inverse problem is formulated as a constrained optimisation problem of weighted 

least-square type OF, given by: 

 

Minimize: 𝑓(𝑥) = ∑ 𝑤𝑚(𝑟𝑚)2𝑀
𝑚=1                                                                     (2.3) 

Where:  𝑓(𝑥) is the OF value to be minimized;  

𝑤𝑚 is the weighting vector corresponding to observations, 𝑦𝑜.  

 

The weight vector, 𝑤𝑚, has two main related functions (Hill, 1998): (1) To reduce 

the influence of less accurate observations and increase the influence of those 

that are more accurate; and (2) To produce residuals that have the same units, 

i.e., that can be summed in Equation 2.3. With respect to the OF, several 
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alternatives exist, such as the weighted sum of absolute residuals. This method 

evenly spreads the influence over all observed datasets, as opposed to the 

squared residuals which places more emphases on bad data points because of 

squaring the difference values (Wu et al., 2011). However, the squared residuals 

OF demonstrated a better convergence of the gradient type method (Reddy et 

al., 1996). Conversely, as pointed by Vitkovsky & Simpson (1997), and Chen & 

Brdys (1995), a weighted sum of absolute residuals may be preferable in other 

cases. 

 

Inverse problems become particularly interesting (and difficult) when the solution 

is required to satisfy hard (i.e., required) and/or soft (i.e., desirable) constraints, 

as in the case of model calibration and leak detection and localisation. These 

ensure that feasible, robust and stable solutions are produced, which can improve 

computational performance. However, naturally, sometimes adding constraints 

to an inverse problem will reduce the achievable performance. A feasible solution 

in WDN modelling is subject to two sets of constraints:  

(1) Implicit System Constraints, defined by the relevant mass balance and 

energy/momentum equations, which are implicitly satisfied by using a 

hydraulic simulation model (Walski et al., 2004). 

(2) Explicit Constraints, associated with maximum and minimum bounds for 

the value of each decision variable. 

 

2.2.3 Well-Posed Vs Ill-Posed Inverse Problem 

When searching for a solution to the inverse problem, the concern is not just 

finding a mathematically acceptable solution, as by their nature, such problems 

may usually have more than one solution. This characterises the problem as non-

unique, or not well-posed mathematically. The essential conditions for a well-

posed problem were introduced by Hadamard (1923) as follows (Figure 2.2):  

(a) Solution Existence, i.e., there exists a solution for all admissible data. 

(b) Solution Uniqueness, i.e., there is at most one solution to the problem. 

(c) Solution Stability, i.e., the solution is robust against noise.  

Typically none of these criteria is satisfied and almost always at least one is not 

satisfied. In such situation the problem is called as an ill–posed inverse problem.  



CHAPTER 2 – Inverse Problems in Water Distribution Network Modelling 

 

 

 
43 

 

 

Figure 2.2. The conditions of a well-posed inverse problem. 

 

There may be no solution that exactly fits the data (Yu, 1991). Therefore, before 

attempting to determine any parameters, the data that are associated with the 

model, need to be characterised (Parker, 1977). “Characterisation” concerns 

solution existence (Bilicz et al., 2010; Unser, 2016). It is of great importance to 

test the assumptions behind any mathematical model, as it contains 

simplifications and approximations, some of which may be hard to justify initially. 

A solution may fail to exist because the mathematical model of the system is 

approximate, or because of noisy data (e.g. corrupted, distorted, etc.). If the 

output space is defined as a set of solutions to the forward problem, the existence 

of a solution is clear. Nevertheless, solution existence is really a non-issue in 

realistic situations because the physical reality must be a solution.  

 

If there is a solution for a given set of data, then, it is necessary to determine 

whether there is only one such solution, or there are many even for an infinite 

number of exact data points (Parker, 1977; Suzuki, 1983). The “Identifiability” 

problem is concerned whether there is enough data to determine the solution 

uniquely (Kool et al., 1987). Profound consequences follow if the solution is non-
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unique as even perfect data (complete and exact) do not contain enough 

information to determine the unknown parameters. This is because different 

combinations of parameter values lead to similar observations. Uniqueness of a 

solution to the inverse problem is an important issue, however, it is often not easy 

to prove (Santamarina & Fratta, 2005). An important and thorny issue with 

problems that have non-unique solutions is that an estimated model may be 

significantly smoothed or otherwise biased relative to the true situation. One 

useful strategy to handle the non-uniqueness issue is to utilize a priori information 

as additional constraints (Bekey & Kogan, 2003). A more aggressive approach 

would be to use a Bayesian approach and incorporate prior knowledge 

probabilistically, such as the Tikhonov regularization (Tikhonov, 1963). Another 

fruitful approach is via search. Given a set of measurements and some defined 

constraints, optimisation algorithms can be used to search a hypothesis space of 

solutions to the problem. If uniqueness is not guaranteed by the given data, then 

either additional data have to be collected or the set of admissible solutions has 

to be restricted using a-priori information on the solution. In other words, a remedy 

against non-uniqueness can be a reformulation of the problem.  

 

Mathematically, a problem is said to be stable if the solution depends 

continuously on the initial data (Bertero et al., 1980; Baumeister, 1987; 

Kabanikhin, 2008). This means that for all data sets lying close to a particular set 

of values, the solutions fall close to each other (Parker, 1977). A solution is often 

extremely unstable, whereby a small change in measurements can lead to an 

enormous change in the estimated set of unknown parameters. In this case, 

inevitable measurement and round-off errors can be amplified by an arbitrarily 

large factor and make a solution completely useless. It is possible to stabilize the 

inversion process by imposing additional constraints that bias the solution, a 

process that is generally referred to as regularization (Cheng & He, 2011). 

Regularization is frequently essential to produce a usable solution to an otherwise 

intractable ill–posed inverse problem, by limiting the solution space, i.e., replacing 

an ill-conditioned problem with a better conditioned problem (Tikhonov & Arsenin, 

1977; Petrov & Sizikov, 2005).  
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2.2.4 Practical Considerations 

Inverse problems in WDN modelling are often ill-posed, usually characterised by 

non-uniqueness and instability of the identified parameters (Yeh, 1986; Kool et 

al., 1987; Groetsch, 1993). Therefore, if possible, it would be valuable to know 

under what condition(s) the solution to the inverse problem is identifiable, unique 

and stable. System identifiability resolves whether the parameters of the system can 

be determined, i.e., whether different vectors of decision variables 𝑥 may lead to 

(almost) the same vector of model predictions, 𝑦𝑠(𝑥), that are close to 

observations, 𝑦𝑜. As noted by Carrera & Neuman (1986), the problem of 

identifiability is closely related to problem of the uniqueness of the calibration 

problem solution, however, significant difference exists. Uniqueness, concerns 

exactly the opposite question, i.e., whether different values of parameter vectors 

may originate from the same vector of measurements and, thus, multiple 

parameter vectors correspond to similar values of OF. Identifiability condition is 

necessary but not sufficient for the uniqueness of the inverse problem solution. A 

sufficient condition for uniqueness is that the OF is convex within the domain of 

definition of the decision parameters (Carrera & Neuman, 1986). The information 

necessary to judge the problem of identifiability is available in Kapelan, 2002.  

 

The problem of solution stability is also important, that deals with how small 

changes in the data disturb the corresponding solutions. It occurs when small 

observation errors, 𝜀, lead to significant errors in the identified parameters 𝑥. 

Obviously, the problem of instability is closely related to the problem of 

identifiability. Parameters that are difficult to identify are those that are, typically, 

causing stability problems. Except from that, in practical inverse problems as in 

WDN modelling the available measurements are never exactly the same as in 

the mathematical formulation. There are several reasons for this (Walski et al., 

2004; Santamarina & Fratta, 2005): 

1. Pressure and flow devices have limited accuracy.  

2. The forward problem theory is not necessarily completely correct. It 

may contain approximations.  

3. There can be external disturbances in the measurement environment.  

4. In numerical calculations, the real numbers are replaced by floating 

point numbers that are of finite accuracy. 
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Overall, the inverse problem condition can be improved (Kabanikhin, 2008; 

Santamarina & Fratta, 2005) by (a) reducing the dimensionality of the parameter 

vector, i.e., by reduced 𝑥; (b) considering alternative parameterisation schemes 

of the inverse problem, i.e., considering alternative vectors, 𝑥; (c) increasing the 

quantity of observations using additional field measurements. 

 

2.2.5 Strategy for solving Inverse Problems  

Successful inverse problem solving starts before data inversion. In fact, the first 

and most important step is to develop a detailed understanding of the WDN 

boundaries and underlying system hydraulics. Then one must set clear and 

realizable expectations and goals for the solution to the problem. The following 

steps provide a robust framework for the solution of inverse problems 

(Santamarina & Fratta, 2005): (1) Analysis of the problem; (2) Design of sensor 

placement; (3) Collection of high-quality data and pre-processing; (4) Selection 

of a hydraulic model of adequate detail; (5) Solving the inverse problem based 

on various methods; (6) Analysis of the problem solution. 

 

Having an acute understanding of the problem is necessary to establish clear 

expectations for the problem solution. This involves knowledge of the: (a) 

underlying physical processes and constraints; (b) measurement and transducer-

related issues; and (c) inherent difficulties in the inverse problem, such as non-

linearity, the number of unknowns, the number of measurements and available 

information, which all relate to the ill-posedness issue.  

 

The type, number, locations, accuracy range and monitoring frequency of the 

installed sensors in the field determines the viability of a solution (Aral et al., 

2010). Therefore the sensor configuration placement plan is critical for collecting 

data of high quality (Walski, 1983). The sampling design procedure distributes 

devices and thus, measurements, to attain a proper coverage of the solution 

space (De Schaetzen, 2000; Ostfeld & Salomons, 2004; Ostfeld et al., 2008). The 

ultimate purpose is to collect data that, when used for the relevant inverse 

problem, will yield the optimum results (Kapelan et al., 2004). The sampling 

design addresses two critical aspects: (a) the distribution of measurements at 

optimal locations to attain a good coverage of the solution space, associated 
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specifically with the problem solved; and (b) the selection of instrumentation type 

and number to allow the collection of a good-quality and sufficient set of 

measurement. The optimal sampling design procedure depends on the specific 

problem that is investigated (e.g., model calibration, leak detection and 

localisation) and aims to determine the optimum type, number, locations and 

timeliness of observations at the least cost.  

 

High-quality data are needed to improve the condition of the inverse problem. 

Data pre-processing permits identification and removal of outliers and provides 

valuable information to guide and stabilize the solutions, which can ultimately be 

used to generate a viable initial guess of the solution to the unknown parameters, 

𝑥. A suitable strategy that permits diagnosing problems in the raw sensor data, 

associated with offsets or any other faults on devices is necessary. The 

simultaneous display of readings collected at neighbouring locations or time 

steps is particularly convenient to spot sudden changes in the system, to 

diagnose and remediate equipment failures, and to identify possible outliers. It is 

also important to be aware of how accurate each device is, which allows to 

differentiate the weight of information conveyed from each device. This can also 

help identify salient characteristics of the system. For instance, by performing 

simple computations and graphical display strategies insight is gained with 

respect to the measurements (noise level, outliers, and spatial coverage) and the 

solution characteristics (mean properties, spatial trends, presence of anomalies).  

 

A hydraulic model of the WDN with an adequate level of detail must be 

considered that properly captures all essential aspects of the system. An 

inappropriate model represents the system inaccurately, adds error and hinders 

the inversion of a meaningful solution. In addition, the time required to compute 

the model is crucial if a massive forward simulation strategy is necessary to solve 

the problem, thus, computational demands should always be taken into account.  

 

The problem should be solved based on various inversion methods, such as 

heuristics and the parametric representation of the problem, or less constrained 

representations of the problem and with a reduced number of unknowns. For 

repetitive problems, multiple forward simulations can be run and a library of 
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"solved cases" can be assembled as a scenario guide that can be used to identify 

an initial guess by data matching.  

 

The physical and practical meaningfulness of the output solution to the problem 

must be analysed. The solution may be completely wrong even when the data 

are well justified and the residuals are small. Indeed, this is very likely in an ill-

posed situation. Finally, the procedure that was followed to obtain measurements 

should be reanalysed to understand if all planned measurements were taken. The 

assumptions for the underlying physical processes should be reassessed in light 

of the results that were obtained and consider all available information. 

Furthermore, any systematic error propagation or accidental error magnification 

should be investigated and any correlation between parameters should be 

scrutinised. The solved inverse problem can convey unprecedented information, 

thus, in all cases, the hydraulics of the system should lead the way. 

 

 

2.3 Optimisation and Inverse Problems 

2.3.1 Optimisation Problem Formulation 

The inverse problem can be solved by employing a search, or optimisation 

technique. Optimisation is the process of finding the conditions that minimize or 

maximize the value of a function which represents the effort required or the 

desired benefit. It is essentially the act of obtaining the best result under the given 

circumstances. With hard constraints in WDN analysis, optimisation becomes a 

“natural” way to proceed for solving inverse problems. An OF is used to measure 

how close the model outputs are to the observations, and a search is then 

conducted to find the parameter set which minimizes the OF value. Any 

optimisation problem is comprised of three basic ingredients (NEOS, 1996): 

(1) An Objective Function, to be minimized, or maximized (Equation 2.3). 

(2) A set of Unknowns, or Decision Variables, whereby their values are 

adjusted so that the OF value changes.  

(3) A set of Constraints that allows the decision variables to adopt certain 

values or combinations of values, but excludes others so that feasible 

solutions are produced.  
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The optimisation problem aims to find the set of decision variable values, which 

minimize or maximize the OF while satisfying the constraints, formulated as: 

 

Search for: �⃗� = (𝑥𝑖);            𝑖 = 1, … , 𝐷𝑉                                                                  (2.4) 

Minimize: 𝐹(�⃗�)                                                                                           (2.5)                        

Subject to: 𝑥𝑖  ≤  𝑥𝑖  ≤  𝑥𝑖                                                                               (2.6) 

Where:  �⃗� is the vector of decision variables to be identified (similar to 𝑥);  

𝑥𝑖 is the 𝑖-th decision variable to be identified;  

𝐷𝑉 is the number of decision variables;  

𝐹(�⃗�) is the OF (similar to Equation 2.3), usually formulated as a 

fitness function to be minimized, or maximized; 

𝑥𝑖 is the minimum (lower) bound and 𝑥𝑖 is the maximum (upper) 

bound for the 𝑖-th decision variable 𝑥𝑖; 

 

Although, typically, optimisation problems have a single objective function, in 

other cases a problem can have multiple objective functions (Farmani et al. 

2005). These are optimised simultaneously, leading to a set of equally efficient 

alternative solutions called the "Pareto-optimal set" (Marques et al., 2015; 

Tanyimboh & Seyoum, 2016). The different objectives are generally conflicting, 

resulting in non-dominated solutions, where the variables which improve one 

objective will cause worsening of at least one of the others. Problems with 

multiple objectives can be reformulated to single-objective problems by either 

forming a weighted combination of the different objectives or by replacing some 

of the objectives into constraints.  

 

2.3.2 Search Space of Optimisation Problem 

Optimisation searches for the best solution among a set of possible solutions. 

The space, or domain of all feasible solutions, i.e., the set of solutions among 

which the desired solution resides, is called search space (also state space). Any 

point in the search space represents one possible solution that is associated with 

a fitness value. The search process for finding the optimal solution to the 

optimisation problem works as follows: 
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1. Choose a “solution” from the search space and evaluate it. Define this as 

the current solution. In WDN modelling solution evaluation is performed by 

firstly solving the forward problem where the values 𝑦𝑠(𝑥) are calculated. 

Then, the residuals 𝑟 are determined and used to find the OF (Eq. 2.3). 

2. Transform the current solution to create and evaluate a new solution. 

3. If the new solution is better than the current solution then exchange it with 

the current solution, otherwise discard the new solution. 

4. Repeat steps 2 and 3 until no transformation in the given set improves the 

current solution. 

 

The fitness landscape helps visualise the search space as a surface with peaks 

and troughs. The height of each point is analogous to the solution fitness value. 

The task of finding the best solution to the problem, i.e., the global optimum, is 

equivalent to finding the highest or lowest point, depending on the aim of the OF. 

The computational cost of a search process relies on the size and complexity of 

the search space. In addition, the time complexity of the optimisation algorithm 

(i.e., solution generation/transformation) and the hydraulic solver (i.e., solution 

simulation).  

 

The complexity of the fitness landscape can severely affect the search process 

in reaching the global optimum as a result of: (a) local optima, (b) plateaux (flat 

local optima or shoulders), and/or (c) ridges (Figure 2.3). Depending on the 

starting point of the search process, the optimisation algorithm may converge 

prematurely to a local optimum, i.e., a state that is optimal within a limited part of 

the fitness landscape (Russel & Norvig, 2010). A similar stagnation in the search 

process can happen if a plateau in the search space landscape is reached, where 

the OF is constant in an area around it (Michalewicz & Fogel, 2004; Hoos & 

Stützle, 2004). In a plateau situation whose edges go downhill it is also called as 

a “flat local optimum”, whereas if there is an uphill edge, then it is called a 

“shoulder” (Figure 2.3).  

 

Typically the solution space can be explored through Random search (Zabinsky, 

2011), Gradient (Ruder, 2016) or Direct Methods (Lewis et al., 2000). A Random 

search algorithm refers to an algorithm that uses some kind of randomness or 
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probability and is useful for ill-conditioned global optimisation problems. In 

Gradient methods the gradient of the objective function is used to guide the 

direction of search. Finally, in Direct methods the objective function drives the 

search exploration. Gradient and Direct methods only perform well with unimodal 

functions, i.e., with a single optimal value, since they can be trapped in a local 

optimum with multi-modal functions. Random search and gradient methods are 

often combined together.  

 

 

Figure 2.3. Example of Landscape in search space. 

 

2.3.3 Genetic Algorithm Optimisation 

In a WDN hydraulic model a large number of parameters cannot be easily 

optimised through standard non-linear function optimisation techniques. The 

search can often be fooled into declaring convergence far short of the true 

optimum. This occurs because of high dimensionality and irregularities contained 

in the fitness (OF) landscape (Figure 2.3) such as multiple optima, un-

smoothness, discontinuity, elongated ridges, fiat plateaus, and so on. These 

difficulties, however, may be overcome to a large extent using Genetic Algorithms 

(GAs). These type of algorithms are a group of adaptive search methods, or 

metaheuristics, which may be used to solve various optimisation problems.  
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A GA belongs to a class of non-deterministic search algorithms based on artificial 

evolution, i.e., an artificial form of Darwin’s evolution theory, in other words an 

evolutionary algorithm (Holland, 1975; De Jong, 1975; Goldberg, 1989; Bäck et 

al., 1997). GAs were introduced into the area of inverse problem solving for WDN 

model calibration by, Savic & Walters 1995. The method is inspired by biological 

evolution and the mechanics of real genetic processes and natural selection, 

through an artificial survival-of-the-fittest framework. They emulate nature’s 

evolution using an artificial analogy of preferential survival, reproduction of the 

fittest members of the population, maintenance of a population with diverse 

members, inheritance of genetic material from parents, occasional mutation of 

genes, etc. A population of solutions is created and evolved among generations, 

whereby natural selection ensures that solutions with better fitness will propagate 

in the next populations. 

 

A typical GA search process starts with the random generation of a population of 

individual chromosomes. Each chromosome represents a single possible 

solution to the optimisation problem and is associated with a fitness value 

according to the OF (Equation 2.5) and any introduced penalty functions 

(Camponogara & Talukdar, 1997). After the evaluation of the OF, a pair of 

individuals are selected from the population as the parents to reproduce the next 

generation of chromosomes, based on a probability proportional to their fitness. 

This imposes the survival-of-the-fittest mechanism on the candidate solutions. 

Parts of the parental solutions are recombined through a crossover operator, to 

produce new solutions, namely the child solutions.  

 

To ensure that the solutions in a population do not become stuck at a non-optimal 

solution, a randomization element is introduced following recombination known 

as "mutation". Mutation introduces new features into the solutions to maintain 

diversity in the population and permits local search around a given solution. The 

mutation probability is generally kept low for steady convergence, as otherwise 

the solution finding process mimics a random search. Eventually, a new 

population of solutions is reproduced, and the fitness of each of them is 

evaluated. The least fit chromosomes are replaced when creating a new 

generation. An elitist strategy may be used to preserve the best chromosomes 
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within the next generation (Goldberg, 1989). The GA process typically terminates 

when a pre-specified number of generations is reached, or alternatively, when 

complete convergence has occurred. Besides convergence criteria, premature 

convergence is another issue, where the GA becomes trapped in a local 

optimum. A way to tackle premature convergence can be through fitness scaling, 

increasing the population size, adding non-random chromosomes in the initial 

population and increasing the mutation rate (South et al., 1993). 

 

2.3.4 Optimisation Methods Comparison 

GAs are often referred to as a global adaptive search technique best suited to 

solving large scale combinatorial optimisation problems which cannot be solved 

using conventional operational research methods. They differ from traditional 

optimisation methods (e.g., direct, gradient methods) in five significant points: 

 They search parallel from a population of points. Therefore, it allows for 

efficient exploration of large, complex, multi-modal search spaces and 

provides the ability to avoid being trapped in local optimal solution like 

traditional methods, which search from a single point. 

 They use probabilistic selection rules, not deterministic ones. 

 They work on the “Chromosome”, which is encoded version of potential 

solutions’ parameters, rather the parameters themselves. Therefore, they 

can deal with a large number of parameters. 

 They use fitness score, which is obtained from objective functions, without 

the need other derivative or auxiliary information. Thus, they can deal with 

non-smooth and noisy objective functions.  

 They can be easily modified for solving different problems and can handle 

multiple objectives in parallel. 

The GA and its many versions have been popular in academia and the industry 

mainly because of its intuitiveness, ease of implementation, and the ability to 

effectively solve highly nonlinear, mixed integer (discrete and continuous) 

optimisation problems that are typical of complex engineering systems (Hassan 

et al., 2005). The drawback of the GA is its expensive computational cost.  

 

Particle Swarm Optimisation (PSO) is a metaheuristic search method whose 

mechanics are inspired by the swarming or collaborative behaviour of biological 
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populations (Kennedy & Eberhart, 1995). Like a GA, PSO is also a population-

based search method that uses a combination of deterministic and probabilistic 

rules. Although PSO and GA share many similarities, it has no evolution 

operators (as crossover and mutation in GA) and, thus is easier to implement. 

Compared to GAs, the advantages of PSO are that there are few parameters to 

adjust and the execution and convergence time is inexpensive. However, PSO 

converges fast because it can be implemented without too many parameters and 

operators. The main disadvantage of PSO is its poor local search ability. The 

mutation and crossover operators will help GA to jump the discontinuity in the 

search space and lead to better exploration. On the other hand, PSO will get 

stuck in a disconnected component of the search space. An important distinction 

is that GA is a mixed-integer technique suitable for non-linear combinatorial 

problems, whereas PSO is a continuous technique that is very poorly suited to 

combinatorial problems. In addition, if the search space is discrete and is highly 

constrained and discontinuous, as in WDN modelling, the GA can outperform in 

the quality solutions, as opposed to unconstrained non-linear problems with 

continuous variables.  

 

One of the latest evolutionary computational techniques apart from the PSO is 

the Differential Evolution (DE) algorithm (Storn & Price, 1995). DE is a stochastic 

direct search optimisation method that encodes solutions as vectors and uses 

operations such as vector addition, scalar multiplication and exchange of 

components to construct new solutions from the existing ones. The idea behind 

the DE method is that the difference between two vectors yields a difference 

vector which can be used with a scaling factor to traverse the search space. Like 

the GA, DE initiates with a random populations and allows each successive 

generation of solutions to ‘evolve’ from the previous generations and uses similar 

operators, i.e., crossover, mutation and selection. The DE differs from GA with 

respect to the mechanics of mutation, crossover and selection performed. GA 

relies on crossover while DE relies on mutation operation. In GA, the mutation 

takes place randomly, whereas in DE, it takes place by some rule. In DE, each 

variable’s value is represented by a real number and, thus, cannot deal with 

mixed-integer problems compared to the GA.  
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Simulated Annealing (SA) is another algorithm which is popular in metaheuristic 

optimisation (Metropolis et al., 1953; Kirkpatrick et al., 1983). SA is a single-

solution-based random-search technique that belongs to a class of algorithms 

called probabilistic hill-climbing (Romeo & Sangiovanni-Vincentelli, 1991). It 

exploits an analogy between the way in which a metal cools and freezes into a 

minimum energy crystalline structure (the annealing process) and the search for 

a minimum in a more general system. SA's major advantage over other methods 

is an ability to avoid becoming trapped in local minima and exploitation of the 

search space as it searches the local solution space "around" its initial solution, 

which tends to find local improvements efficiently. The disadvantage against a 

GA is that SA is seeded randomly and so is not efficient in exploring large solution 

spaces. In addition, it modifies and improves as single solution, rather than 

multiple candidate solutions as in a GA. 

 

2.3.5 Search Space Exploration Enhancement 

Obviously, the nature of the search space landscape (Figure 2.3) dictates how 

an optimisation algorithm will perform. Except from that, solving optimisation 

problems in WDN modelling involves various constraints. The difficulties in 

solving constrained optimisation problems arise from the challenge of finding 

good feasible solutions. However, the cardinality of the set of feasible solutions 

is generally too intractably large and the cost evaluation of all feasible solutions 

is, thus, impossible in a reasonable time. The problem is much more challenging 

when the feasible space is very tiny compared to the search space. Solving such 

problems requires serious computational effort in finding the feasible space. 

 

When the search space to be searched is large, it may often prove more efficient 

to first reduce it based on prior knowledge, and then to search that reduced 

space, instead of just searching the entire, initial search space. The gain will be 

increased if the search space will be searched several times, perhaps to find 

solutions characteristics. However, when reducing the search space, care must 

be taken not to eliminate the optimal solutions to the original problem, or more 

generally, the interesting solutions to this problem. Search space reduction 

restricts the original search space to some promising sub-space. The purpose of 
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search space reduction is to move some of the randomly generated initial poor 

solutions towards the feasible region, as demonstrated by Figure 2.4.  

 

 

Figure 2.4. Search Space Reduction. 
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In population-based algorithms the quality of the initial population plays an 

important role on their performance. As the initial population is randomly 

generated to ensure diversity, it may cause delay (being over diversified) in 

reaching a reasonably good solution for tiny feasible space. If the initial population 

contains some good solutions the algorithms converge quickly. However, it is not 

expected that the random solutions should always be of good quality.  

 

To enhance the performance of the algorithm in reaching the feasible space 

quickly the original search space can be reduced before starting the evolutionary 

process. Hence, the initial population is generated at a better starting point 

moving towards the feasible region of solutions. The solutions search for the 

global optimum from the feasible search space with some good infeasible 

solutions (here we are considering those solutions having less constraint 

violations). By applying search space reduction the randomly generated solutions 

are no longer random rather they have learnt a direction towards the feasible 

space which helps the algorithms to reach the feasible region faster and improve 

the solution quality. 

 

2.4 Water Distribution Network Model Calibration 

2.4.1 Introduction 

A WDN hydraulic model is a mathematical description of the real system’s 

hydraulic behaviour. Before it can be used it must be ensured that it predicts the 

behaviour of the WDN with a reasonable accuracy, i.e., it must be calibrated. 

Calibration is an inverse problem in WDN modelling, called the “calibration 

problem”. The parameters describing the system are adjusted until the model-

predicted performance reasonably agrees with the observed system 

performance, i.e., the field observations. Shamir & Howard (1977) stated that 

calibration “consists of determining the physical and operational characteristics 

of an existing system and determining the data, that when input to the computer 

model will yield realistic results”. Walski (1983) proposed a more precise 

definition, “Calibration of a WDN model is a two-step process consisting of: (1) 

comparison of predicted pressures and flows with observed pressures and flows 

for known operating conditions (i.e., pump operation, tank levels, pressure 
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reducing valve settings); and (2) adjustment of the input data for the model to 

improve agreement between observed and predicted values.  

 

A model is considered calibrated for a set of operating conditions and water uses 

if it can predict flows and pressures with “reasonable agreement”. The calibration 

process may include changing system demands, fine-tuning pipe roughness, 

altering pump operating characteristics, and adjusting other model attributes. All 

these adjustments affect simulation results and are necessary for the following 

reasons: 

 Confidence: Calibration demonstrates the model’s capability to reproduce 

existing conditions, thereby increasing the engineer’s confidence that the 

model accurately predicts the system behaviour. 

 Understanding: The calibration process provides excellent insight into 

the system behaviour and performance, as it can indicate which 

parameters and parameter values the model is most sensitive to.  

 Troubleshooting: The ability to uncover system and data anomalies 

describing the WDN, such as incorrect pipe diameters, missing pipes, or 

closed valves.  

 

On the other hand, model calibration challenges still remain (Savic et al., 2009) 

as there is no ideal WDN model, which can reproduce the real WDN conditions 

perfectly. Thus, the hydraulic model may not match the field observations. This 

can be because the cumulative effect of approximations, simplifications, 

uncertainties and errors can be so great that the model cannot distinguish 

between alternatives. According to AWWA (1999), calibration guidelines, various 

sources of errors, i.e., uncertainties exist which may influence the prediction 

accuracy of the calibrated WDN model, including: (a) Measurement readings; (b) 

Internal pipe roughness values; (c) System demands; (d) System map and 

System configuration e) Node elevations; (f) Tank levels; (g) Level of detail; (h) 

Geometric anomalies (e.g., crossing pipes, isolated valves, etc.); (i) Outdated 

pump characteristic curves, etc. 
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2.4.2 The Calibration Procedure 

Calibration of hydraulic models is a routine component of the modelling process 

where field measurements are necessary. The process generally first requires a 

series of field tests during which pressures and flows are recorded at strategic 

locations in the system, normally continuously over one or more days. This is 

followed by a desk exercise during which adjustments are made to the parameter 

values used in modelling the system until a satisfactory match is obtained 

between modelled and observed values. Common calibration errors can be due 

to unsuspected cross connections, wrongly assumed throttle valve status, by-

pass valves left open, valves between pressure zones left open or leaking and 

unexpectedly low demands from large consumers (Burrows, 1999).  

 

If no satisfactory match is obtainable, further site checks are usually made to 

investigate for issues, such as leaks, incorrect valve positions, unrecorded 

connections etc. The calibration process is an iterative one. Also, note that it is 

necessary to calibrate WDN hydraulic models periodically to reflect physical 

changes in the WDN. Generally the calibration procedure consists of the following 

basic steps (Ormsbee & Lingireddy, 1997; Ormsbee, 1989; Walski, 1995): (1) 

Identification of the intended use of the model; (2) Determination of initial 

estimates of the model parameters; (3) Collection of calibration data; (4) 

Evaluation of the model results; (5) Macro-level calibration; (6) Sensitivity 

analysis; (7) Micro-level calibration. 

 

2.4.3 Data Collection Process 

The data collection process for calibration is carried out through an activity 

commonly known as field testing. Flows in selected pipes and pressures at 

selected hydrants are recorded simultaneously. This field data is also typically 

supplemented with measurements of large consumer demands and detailed 

monitoring of control valves, pumps and reservoirs. A well-designed field test 

provides a good coverage of the WDN in terms of the type, number and locations 

of the devices, allowing to gather high-quality calibration data (Aral et al., 2010). 

A typical field test involves the following tasks (WRc, 1989): 
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(1) A field test plan or sampling design is defined, i.e., a plan of the proposed 

field test monitoring locations. The period of testing and the frequency of 

recording are also defined prior to the field test. 

(2) Zone boundary valves, bypass valves to meters and control valves are 

then checked to ensure that they are all shut. 

(3) Pressures and flows are continuously recorded simultaneously at the 

monitoring locations for the specified field testing period. 

 

Flow monitoring points are placed at all the import and export points of the 

system, inlets and outlets of water storage and at supplies to major non-domestic 

consumers. Pressure monitoring points are usually placed on important hydrants 

distributed throughout the WDN, which are modelled as junction nodes. For each 

monitored location, elevation measurements are taken which are used to 

calculate total head values. Those located on dead-end branches are rarely 

monitored due to the small and intermittent head losses occurring in those 

branches. Additional pressure monitoring points may be required where system 

problems are known to exist. However, the exact locations of those sensors in a 

WDN are often selected by subjective judgement and therefore do not ensure 

optimal or near optimal data collection for model calibration. Fire flow tests may 

also be undertaken. Such field testing methods stresses the WDN by opening 

one or more hydrants to increase the demand artificially. Although fire flow tests 

are more expensive than normal field tests, they produce generally more accurate 

estimates. The greater the flow carried in the pipes, the greater the head loss that 

is produced to accurately estimate the roughness values or detect unknown 

closed valves. It is often necessary to close some of the valves in order to isolate 

the tested pipes. 

 

2.4.4 Calibration Approaches 

Once the field test has been completed the model calibration process begins. 

Numerous calibration procedures have been developed since the 1970s, which 

can be generally grouped into three categories (Savic et al., 2009; Tabesh et al., 

2011): (1) iterative (trial-and-error) procedure models; (2) explicit models (or 

hydraulic simulation models); (3) implicit models (or optimisation models). 

Iterative calibration models are based on some, specifically developed, trial-and-
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error procedure (Rahal et al., 1980; Walski, 1983; Bhave, 1988). The current 

approach used by most of the water companies is still the traditional manual 

method of trial-and-error, whereby hydraulic tables are used to assist the 

modeller in estimating the roughness values depending on the pipe type.  

 

The modellers first estimate the parameter values and then run the model to 

compare model predictions with observations. If model predictions are not close 

enough to observed data, modellers return to adjust parameters and run the 

model again to obtain new predictions. Such procedures generally have to repeat 

many times, leading to time-consuming tasks. Historically, the main benefit from 

development of iterative procedures is in the establishment of some fundamental 

principles and guidelines regarding WDN model calibration. These principles 

were utilised later on in the development of more sophisticated explicit and 

implicit calibration models of improved efficiency.  

 

Explicit calibration models are based on solving an extended set of steady-state 

mass-balance and energy equations (Ormsbee & Wood, 1986; Boulos & Wood, 

1990; Boulos & Ormsbee, 1991; Ferreri et al., 1994). This extended set consists 

of initial equations (describing a steady-state network model) and a number of 

additional equations derived from available head and flow measurements (one 

additional equation per measurement). The extended set of equations is solved 

explicitly, usually by the Newton-Raphson method. Obviously, the number of 

unknown calibration parameters is limited by the number of available 

measurements, due to the need to translate the calibration problem to be even-

determined. Another limitation is that measurements are assumed to be 100% 

accurate. In addition, there is no way to quantify uncertainty in the estimated 

calibration parameters. Finally, these methods require considerable 

mathematical expertise and sophisticated solution tools, giving them only 

historical significance and no apparent influence on the current practice of model 

calibration.  

 

Implicit calibration refers to problems which are formulated as optimisation 

problems (Shamir, 1974; Ormsbee, 1989; Pudar & Liggett, 1992; Savic & 

Walters, 1995; Reddy et al., 1996; Greco & Del Giudice, 1999; Tucciarelli et al., 
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1999; Todini, 1999; De Schaetzen, 2000; Kapelan, 2002; Wu et al., 2002; 

Kapelan et al., 2007; Walski et al., 2008; Wu & Clark, 2009; Koppel & Vassiljev, 

2009; Alvisi & Franchini, 2010; Cheng & He, 2011; Wu & Walski, 2012; Ostfeld 

et al., 2012; Dini & Tabesh, 2014; Puust & Vassiljev, 2014; Vassiljev et al., 2015; 

Do et al., 2016; Xie et al., 2017). The inverse problem is solved using an 

optimisation technique coupled with a hydraulic solver, whereby using an OF the 

differences between the observations and simulated outputs are minimized 

(Figure 2.5). A summary of the key studies solving the calibration problem using 

optimisation techniques is given in Table 2.1. 

 

 

 

Figure 2.5. The Implicit Calibration Procedure (Savic et al., 2009). 

 

 

The set of constraints associated with this problem are implicit hydraulic 

constraints, known initial conditions (device statuses and tank levels), and 

boundary conditions (see Section 2.2.2). Rather than explicitly incorporating the 

equations of conservation of mass and energy into the optimisation process, later 

approaches have simply called out to a standard hydraulic simulation program to 

evaluate the hydraulics of the solution (Ormsbee, 1989; Lansey & Basnet, 1991). 

The most used network hydraulic modelling software that is freely available is 

EPANET 2 (Rossman, 2000). The stochastic search procedure of a GA is 

typically used, where the optimisation problem is formulated as: 

Optimisation 
Technique 

Hydraulic 
Solver 

Simulation Outputs 
e.g., heads, flows 

Calibration Parameters 
e.g., pipe roughness, nodal 

leakage, valve status 
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Search for:   �⃗� = (𝑓𝑖 , 𝑚𝑗,𝑡, 𝑠𝑘,𝑡);      𝑖 = 1, … , 𝑁𝐼;   𝑗 = 1, … , 𝑁𝐽;   𝑘 = 1, … , 𝑁𝐾   (2.7) 

Minimize: 𝐹(�⃗�)                                                                              (2.8) 

Subject to: 𝑓𝑖  ≤  𝑓𝑖  ≤  𝑓𝑖  (2.9)   𝑚𝑗,𝑡  ≤  𝑚𝑗,𝑡  ≤  𝑚𝑗,𝑡  (2.10)    𝑠𝑘,𝑡 ∈ {0,1} (2.11) 

Where:  �⃗� represents a set of decision variables; 

𝑓𝑖  and 𝑓𝑖 are the lower and upper limits of roughness coefficient for 

the 𝑖-th pipe or pipe group; 

𝑚𝑗,𝑡  and 𝑚𝑗,𝑡 are the lower and upper limits for the demand 

adjustment multiplier for the 𝑗-th junction or junction group at time 

step 𝑡;  

𝑠𝑘,𝑡 is the status of 𝑘-th throttle valve at time step 𝑡; 

𝐹(�⃗�) is the OF that measures the goodness-of-fit between the field 

observed values and the model simulated values (Equation 2.5).  

 

For an effective calibration process, when using implicit models it is critical to 

understand which parameters can be calibrated with confidence, as well as the 

acceptable level of discretization of calibration parameters. In addition, to 

establish how the quality of a solution is evaluated, through an appropriate OF. 

Finally, an acceptable level of agreement between the observations and model 

predictions is necessary.  

 

 

2.4.5 Model Performance Criteria and Validation 

Regardless of which calibration approach is adopted, a realistic model of the 

WDN should meet some performance criteria, i.e., a minimum required level of 

accuracy for calibrated model predictions (Hydraulic Research, 1983). In the 

United Kingdom, certain performance criteria have been established by the Water 

Research Centre (WRc, 1989) that are still in place and designers strive to meet 

these standards (Table 2.2). On the other hand, there are no explicit calibration 

guidelines in the United States.  
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Table 2.2. Calibration criteria for flow and pressure. 

Flow Criteria 

(1) Modelled flows should be within ±5% of the measured flows when the measured flow is 
more than 10% of the total demand. 

(2) Modelled flows should be within ±10% of the measured flows when the measured flow 
is less than 10% of the total demand. 

Pressure Criteria 

(1) Modelled pressures should be within ±0.5m or ±5% of the maximum head loss across 
the system for 85% of field test measurements. 

(2) Modelled pressures should be within ±0.75m or ±7.5% of the maximum head loss 
across the system, for 95% of field test measurements. 

(3) Modelled pressures should be within ±2m or ±15% of the maximum head loss across 
the system, for 100% of field test measurements. 

 

 

Nevertheless, many modellers agree that the level of effort required to calibrate 

a WDN hydraulic model and the desired accuracy level relies on its intended use 

(Ormsbee & Lingireddy, 1997; Cesario et al., 1996; Walski, 1995). Each 

application of a model is unique, and thus it is impossible to derive a single set of 

performance guidelines to evaluate calibration. The true test of model calibration 

is that the end user feels comfortable when using it to assist in decision making. 

After a model is calibrated to match a given set of test data, the modeller can gain 

confidence in the model and/or identify its shortcomings by validating it with test 

data from a period not used during model calibration, i.e., obtained under different 

conditions. Validation is an essential processes for quantifying and building 

confidence in WDN modelling and is concerned with quantifying the model 

accuracy by comparing simulated outputs to unseen test data, i.e., observations 

that were not used for the calibration process. Although it is desirable to validate 

every model, most utilities do not have the time or money required to perform a 

thorough verification of the entire system.  

 

2.5 Leak Detection and Localisation in Water Distribution 

Networks 

2.5.1 Introduction 

Leaks often remain undiscovered, regularly resulting in large losses of water and 

revenue for WDN operators. With time, their impact in the WDN grows and can 
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provoke catastrophic bursts, which can alter the system’s operation causing 

devastating consequences for the customers and the utility. In many WDNs, 

losses from leaks are estimated to account for up to 30% of the total volume of 

extracted water (Puust et al., 2010). This comprises a vital amount in a world 

struggling to satisfy water demands due to growing population and climate 

change. Leakage events differ as distinction can be made between bursts, leaks 

and ‘background’ leaks. Bursts are normally reported by consumers, as they 

became visible early following the pipe failure. Yet, the leaks that do not cause 

water to come up at the surface, can remain undiscovered for a long time and 

ultimately have similar or larger consequences as large bursts. Finding leaks at 

an early stage can save water and prevents small leaks turning into bursts, which 

is important to a water company for economic, environmental and reputational 

reasons.  

 

A range of strategies are adopted by water utilities to fulfil the purpose of 

controlling and reducing water losses (Goodwin, 1980; Water Authorities 

Association UK, 1980; Pearson & Trow, 2005). The traditional approach to 

leakage control is a passive one, whereby water companies take actions for a 

leak only when it becomes visible, or the event is discovered through ‘ad-hoc’ 

investigations following customer complaints, referred as “reported leaks”. This 

strategy is clearly simple and is a lower cost option for operating expenditures on 

resources, facilities and equipment. However, it is time consuming as it relies 

heavily on customer contacts and surveillance campaigns by the utility. 

Ultimately, this results in a higher leakage levels, due to the overall volume of 

water lost from undiscovered/unreported leaks, which run for a long period of time 

(Puust et al., 2010). Furthermore, a reactive approach presents inevitable 

problems for the customers (Ramos et al., 2001), depending on how fast a leak 

is repaired.  

 

Effective and efficient leakage management strategies involve water companies 

acting more proactively into targeted WDN areas, so that leakage can be 

controlled or reduced (Pearson & Trow, 2005). A typical integrated leakage 

management model is associated with activities such as Speed and Quality of 

Repairs, Pressure Management, Active Leakage Control and Infrastructure 
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Management (TWGWW, 1980; Lambert, 2001; Thornton, 2003). On the other 

hand, leak-free WDNs are not a realisable technical or economic objective, and 

a low level of leakage cannot be avoided, even in the best operated systems 

where water suppliers pay a lot of attention to leakage management. However, 

such activities aim to eliminate all the potentially recoverable water losses and 

reach the Unavoidable Annual Real Losses as closely as possible (Lambert & 

Lalonde, 2005). The extent of use of all such proactive approaches should be 

economic so according to the Economic Level of Leakage. 

 

2.5.2 The Leak Detection and Localisation Procedure 

Leakage can be minimized by shortening the detection, location and repair times. 

Historically, finding leaks has been challenging because even a substantial event 

can potentially show no manifest signs (Casillas Ponce et al., 2014). A wide range 

of leak detection and localisation techniques exists (Puust et al., 2010; Hamilton 

& Charalambous, 2013), however, there is no universally agreed methodology 

for finding leaks with the number of techniques currently used by practitioners 

being limited.  

 

The term “leak detection” is used to explain the discovery, or “narrowing down” 

of a leak to a particular section of a pipe network (Kapelan et al., 2003; Mounce 

& Boxall, 2010; Palau et al., 2012; Romano et al., 2014). It does not give any 

information about its precise location, but only the leak size. Automatic leak 

detection requires pressure and flow field measurements. The smaller the 

monitored area, the easier it is to detect a leak automatically. Consequently, 

WDNs are often divided into smaller areas, called ‘District Metered Areas’ 

(DMAs), which are easier to monitor and control (Moors et al., 2018). It is normal 

practice to monitor the DMA for detecting leakages by making water balances 

between the expected and actual water use. In addition, DMAs are useful to 

identify any unexpected increase of flow during the night, i.e., when consumption 

is low and hence the majority of the flow recorded represents leakage (Farley et 

al., 2008). Still, leakage detection is not easy, due to unpredictable variations in 

consumer demands, measurement noise and seasonal effects.  
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To reduce the search area for finding a leak within a DMA, hydrostatic leak 

detection methods, such as step-testing or pressure-testing is often applied, by 

redirecting flows through systematic valve openings and closures, or making 

pressure adjustments, respectively. These methods identify the presence of 

leakage by subdividing the WDN during the period of Minimum Night Flow (MNF), 

while observing the corresponding reduction in flow or pressure. While these 

techniques can reduce the search area, their main disadvantage is the shutting-

off supply to isolated parts of the network. This may be ineffective in networks 

with few isolation valves. They are also manually intensive and relatively 

expensive techniques as they require several steps over multiple nights because 

they provide information to a relatively small part of the network. In addition, they 

are not suitable for all DMAs (Puust et al., 2010) as they may interrupt water 

supply, cause back-siphonage or infiltration of groundwater, or create a burst, 

which are major reputational concerns for water utilities when adopting such 

approaches for finding leaks.  

 

Minimizing the search area is only part of the problem after a leak has been 

detected, hence, to find its exact location a leak localisation technique is 

necessary. “Leak localisation” (Romano et al., 2013) refers to an activity that 

identifies and prioritises the areas of leakage to make pinpointing of the exact 

position of leaks easier (Pilcher et al., 2007). Leakage detection and localisation 

techniques (Farley & Trow, 2003; Colombo et al., 2009) divide into externally-

based and internally-based techniques (ADEC, 1999). These are described in 

more detail in Sections 2.5.3 and 2.5.4. 

 

 

2.5.3 Externally-Based Methods 

Most frequently leak localisation is performed using externally-based methods, 

which use data from sensors installed or exploring outside of the pipe to pinpoint 

a leak. They are very accurate for finding leaks on pipelines, however, they take 

a long time to find a leak in a large search area (Li et al., 2015). Acoustic devices 

such as listening rods, stethoscopes, ground microphones, noise loggers and 

leak noise correlators are widely used in practice (Clark, 2012; Hartley, 2009). 

These devices rely on sound and vibration signals induced by leaks impacting 
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the soil from pipelines under pressure. The two traditional types of instruments 

used for finding leaks are the listening stick (stethoscope) and an electronic 

amplifier and detector. Technicians use their skill and experience to find the exact 

location of leaks in DMAs, often with the consultation of historical records from 

previous leak/burst locations (Pelletier et al., 2003).  

 

The effectiveness of acoustic methods has been successfully demonstrated for 

both metallic and plastic pipes (Fuchs & Riehle, 1991; Hunaidi & Chu, 1999). 

However, conventional acoustic equipment can be unreliable for “quiet” leaks in 

non-metallic (e.g., plastic) pipes and large-diameter pipes, as the leak noise is 

strongly attenuated (Hunaidi, 2000; Mutikanga et al., 2013). Acoustic leak 

detection with correlation, i.e., leak noise correlators, have been developed in the 

market in the last 20 years to become the most common method of pinpointing 

leaks. They can accurately locate leaks with low flow rates between 0.05 and 3.5 

m3/h to within 1 metre in most pipe sizes (Guttermann, 2014; Echologics, 2015; 

Sewerin, 2015).  

 

The disadvantages of acoustic technology is that the effectiveness of such 

methods depends on the operator’s experience, size of the leak(s), knowledge of 

exact pipe location and are limited to smaller size diameters of low depth. In 

addition, unwanted interference noise from traffic wind, water use etc., the leak 

shape, pipe material (e.g., acoustic dumping from plastic pipes) or the varying 

pressure conditions in the WDN may limit/change sound propagation (Seaford, 

1994). For larger diameter pipelines (>300mm), in-service pipeline methods using 

acoustic sensors have been developed that are also able to provide information 

on condition of the pipeline necessary for strategic asset management (Mergelas 

& Henrich, 2005; Wu et al., 2011; Ong & Rodil, 2012). However, they require 

depressurizing mains to enable removing the sensor from inside the pipeline and 

may not be suitable for mains with bends and in locations that are not easily 

accessible by vehicles (Hamilton et al., 2012).  

 

Recent times have seen the introduction of some new and innovative techniques 

(Li et al., 2015), based on non-acoustic methods such as ground motion sensors, 

ground-penetrating radar (Hugenschmidt & Kalogeropoulos, 2009), infrared  
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thermography and pipeline inspection gauge have been found promising (Fanner 

et al., 2007; Hunaidi, 2000). In some rare instances tracer gases, using nontoxic 

odour gases or some electrically detectable gases, that are water-insoluble and 

lighter than air (e.g. helium, hydrogen, SF6), can be injected into isolated sections 

of water pipelines, along with a gas detector to improve the efficiency of 

surveillance (Field & Ratcliffe, 1978; Hunaidi, 2000; Farley & Trow, 2003). 

However, such method is costly and its effectiveness strongly depends on the 

weather conditions and wind direction (Black, 1992; Furness & Reet, 1998). In 

general, the abovementioned techniques are time consuming and costly, labour 

intensive, often imprecise and invasive. The main characteristics of externally-

based methods are summarized in Table 2.3. Automatic detection through the 

analysis of hydraulic measurements from permanently installed sensors is a more 

cost-effective method which can provide a rapid response to the on-set of a burst 

or leak event (Ye & Fenner, 2011).  

 

 

2.5.4 Internally-Based Methods 

2.5.4.1 Non-Mathematical Modelling 

Internally-based methods use field sensors to monitor internal pipeline 

parameters, such as pressure and flow, and infer the position of leaks using 

mathematical and non-mathematical methods. Non-Mathematical Modelling 

methods use Artificial Intelligence techniques which need historical sensor data 

for training (Li et al., 2015). This approach is typically to construct a data-driven 

model by extracting the good information from a large amount of data samples. 

For example, many systems now automate the monitoring of night flows based 

on data-driven models (Armon et al., 2011), saving time and errors arising from 

manual interpretation.  

 

The methods include: (1) traditional methods based on experience learning 

theory, such as the artificial neural network (Caputo & Pelagagge, 2002; Caputo 

& Pelagagge, 2003; Shinozuka et al., 2005; Feng & Zhang, 2006; Aksela et al., 

2009; Mounce & Boxall, 2010; Tao et al., 2014; Romano et al., 2014)  and the 

Bayes identification method (Poulakis et al., 2003; Rougier, 2005; Puust et al., 

2010; Kapelan et al., 2007; Romano et al., 2009; Romano et al., 2011; Zhou et 
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al., 2011; Barandouzi et al., 2012; Hutton et al., 2014; Costanzo et al., 2014) and 

(2) machine learning methods based on the statistical learning theory (Vapnik & 

Kotz, 1982), such as the support vector machine (Mashford et al., 2009; Mounce 

et al., 2011; Candelieri et al., 2014; Mamo et al., 2014; Zhang et al., 2016).  

 

The drawback of these techniques is that the required large amounts of training 

data are not always available (Li et al., 2015; Tao et al., 2014). When the size of 

the training samples is small, the performance of these methods will usually be 

affected. In addition, the applicability of these methodologies to real WDNs may 

be limited under certain circumstances, such as the hypotheses made which are 

usually impossible to meet due to systematic modelling errors and the limited 

experience and prior knowledge of the user. 

 

 

2.5.4.2 Mathematical Modelling 

2.5.4.2.1 Leakage Modelling 

Mathematical Modelling-based techniques exploit information provided on the 

WDN flow conditions and by field measurements to make a diagnosis related to 

model performance. They use a hydraulic model of the WDN and compare 

simulated results with field data (Li et al., 2015) through: (a) steady state analysis 

(involving steady state, extended period simulation and real-time modelling) and 

(b) transient (unsteady) state analysis. The conventional network hydraulic 

solvers analyse WDNs based on the assumption that nodal demands are fixed 

and independent of network pressures commonly referred to as demand-driven 

analysis (DDA). These assumptions are increasingly being challenged and new 

modelling techniques and algorithms are emerging (Giustolisi et al., 2008; Wu et 

al., 2010; Mahmoud et al., 2017). DDA is only appropriate when WDNs are 

simulated under normal conditions with adequate pressures which in practice is 

not always the case, e.g., during pipe failure. Leakage is often implicitly included 

in nodal demands during design of WDNs which is also not realistic. Leakage is 

a type of Pressure Driven Demand (PDD) and must be explicitly considered in 

order to simulate hydraulic characteristics.  
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This realisation motivated researchers to develop methods for realistic leakage 

modelling (Germanopoulos, 1985; Vela et al., 1991). Several researchers have 

assessed leakage using WDN hydraulic simulations that fully incorporate leakage 

as PDD (Almandoz et al., 2005; Burrows et al., 2003; Giustolisi et al., 2008; 

Tabesh et al., 2009; Tucciarelli et al., 1999). As an alternative, in EPANET 2 

(Rossman, 2000) a leak event can be simulated within a WDN by an orifice flow 

based on emitter hydraulics, as a means to represent leak flow discharge. 

Leakage along a pipe is allocated as a specified emitter coefficient to the 

connected nodes in a hydraulic model. The emitter nodes allow leakage to be 

modelled using appropriate pressure dependent outflow relationships, given as: 

 

                                                      𝑄𝑖 = 𝑐𝑖[𝑝𝑖]
𝑎                                           (2.12) 

 

Where:  𝑄𝑖 is the leakage flow rate (l/s) at node 𝑖; 

𝑐𝑖 is an emitter coefficient depicting the leak orifice area at node 𝑖;  

𝑝𝑖 is pressure (m) at node 𝑖;  

𝑎 is a pressure exponent commonly set to 0.5 under ideal 

conditions, in order to simplify the problem. However, 𝑎 can vary 

from 0.5 to 2.5 with the pipe material and leak shape and may 

impact leak localisation (Lambert, 2002).  

 

Equation 2.12 indicates that a positive emitter coefficient will result in leakage 

demand at a node. When its value is greater than zero at a node, that node is 

referred to as a leakage node or leakage hotspot indicating that leaks may exist 

on the pipes connected with the node. Applying a leak/burst event in this way has 

been done to match an increase in flow at the inlet. However, the volume of water 

lost from a leak will vary depending on the pressure in the system. As a result the 

volume lost from the leak will vary over the day as pressure changes.  

 

 

2.5.4.2.2 Inverse Analysis Methods 

The literature on model-based leak detection and localisation methods for WDNs 

focuses on how to prioritize areas for leak surveys and facilitate pinpointing of 

leaks. Such research started with the seminal paper of (Pudar & Liggett, 1992), 
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which formulates the leak detection and localisation problem as a least-squares 

inverse problem of parameter identification. In an inverse problem the system 

characteristics and the demands are known, except from some quantities (e.g. 

leaks, unaccounted nodal outflows), which are causal parameters for the 

system’s hydraulics. If there are sufficient field observations these unknown 

parameters, i.e. the leak size and location(s), can be determined. However, due 

to the non-linear nature of WDN models and the limited availability of field data 

relative to the number of parameters to be estimated, this results in an 

underdetermined problem (Savic et al., 2009).  

 

A variety of methods have been applied to solve for the inverse problem. Many 

of these techniques are based on pressure transient analysis in pipes (Liggett & 

Chen, 1995; Vıtkovsky et al., 2000; Wang et al., 2001; Covas, 2003; Kapelan et 

al., 2004; Taghvaei et al., 2006; Colombo et al., 2009). After the appearance of a 

leak, the pressure wave can accurately be localised by the use of sensors with 

high sampling intervals. However, these methods have been mainly used on a 

single, grounded pipeline due to the high effect of the exact system configuration, 

which is often unknown in real WDNs, the uncertainty on results and the 

unwillingness to generate water hammer in the system. This results in a costly 

and time consuming process that is computationally demanding, labour-intensive 

and requires large amounts of high-frequency data (Li et al., 2015; Puust et al., 

2010).  

 

Non-transient model-based leakage localisation techniques have been also 

developed recently (Wu & Sage, 2006; Wu et al., 2010; Farley et al., 2013; Goulet 

et al., 2013; Moser et al., 2018). These approaches analyse the difference 

between field observations and modelled outputs from leaky scenarios and signal 

an area experiencing leakage by assigning emitter flows as a way to simulate 

leaks. The inverse problem is solved by employing an optimisation technique 

(Figure 2.3), such as Genetic Algorithms (Savic & Walters, 1995; Kapelan, 2002), 

Particle Swarm Optimisation (Sreepathi & Mahinthakumar, 2013; Debiasi et al., 

2014), Simulated Annealing (Sousa et al., 2015; Ribeiro et al., 2015), or other 

methods (Berglund et al., 2017; Kun et al. 2018), coupled with a hydraulic model 

to simulate the hydraulic responses for the possible leakage solutions 
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corresponding to the size and location of leaks. The general procedure requires 

collecting field data so that the objective function can be quantified for each 

solution. In order to identify leaks, the optimisation model needs to be formulated 

to optimise the node emitter coefficients (𝑐𝑖 in Equation 2.12) so that the 

differences between the observed and simulated responses (pressures and 

flows) are minimized. In the general formulation the optimisation is formulated as: 

 

Search for: �⃗� =  (𝑞𝑙),     𝑙 = 1, … , 𝑁𝐿𝑒𝑎𝑘                                  (2.13) 

Minimize: 𝐹(�⃗�)                  (2.14) 

Where:  𝑞𝑙 is the 𝑙-th leak to be identified; 

𝑁𝐿𝑒𝑎𝑘 is the number of leaks to be identified; 

𝐹(�⃗�) is the objective function (Equation 2.5).  

 

Wu & Sage (2006) combined leakage detection with hydraulic model calibration 

as a parameter identification problem with the same objective function and used 

a GA to solve the problem. The leakage emitter coefficients for each candidate 

leak location node were optimised and the approach showed success in 

identifying leaks in a small case problem and a real district metered area. 

However, in a real system, it would require the optimisation of hundreds of emitter 

coefficients to include all possible leak locations. Based on the same rationale 

the leak detection and localisation was defined as an inverse problem with the 

task of determining nodal demands and/or demand patterns (Wu et al., 2002; 

Cheng & He, 2011; Di Nardo et al., 2015; Sanz & Pérez, 2014; Sanz et al., 2016; 

Kun et al., 2015; Do et al., 2016). During the calibration process leakage was 

treated as nodal demand. By comparing the calibrated parameters with their 

historical values, the approach can identify if changes in these parameters are 

caused by leakage. However, an accurate estimation of consumer demands is 

necessary, because of their impact on pressure variation, unless the leak size is 

large relative to the inlet (Moors et al., 2018). To date, model-based 

methodologies have not reached the maturity required for mainstream adoption 

by water utilities. 

 



CHAPTER 2 – Inverse Problems in Water Distribution Network Modelling 

 

 
76 

 

The inverse problem is often ill-posed, characterised by the non-uniqueness of 

the identified parameters. Even in well-monitored systems multiple combinations 

of decision variable values could produce equally fit solutions, but inaccurate leak 

localisation. This is a consequence of small impact caused by a leak on the 

pressure and flow data due to a small velocity change in the pipe experiencing 

leakage or sub-optimal sensor placement. Currently, there is no optimisation 

algorithm that can efficiently and effectively solve a non-linear inverse problem 

with thousands of decision variables. A solution to this problem can be to reduce 

the search space without losing optimum solutions.  

 

Wu (2009) and Wu et al. (2010) used inverse analysis, i.e., formulated an inverse 

problem, to detect and localise leaks. The developed method reduced the 

problem dimensionality by specifying the maximum number of possible leaks 

within a WDN. This is based on the fact that it is the nature of leakage that the 

sizable and restorable leaks can often be associated with a small number of 

candidate locations. Thus, they reformulated the problem such that it identifies a 

given number of leakage nodes and corresponding emitter coefficients. This was 

done by fixing the number of decision parameters, according to the number of 

leaks being identified, whereby the emitter locations and the corresponding 

emitter coefficients were optimised simultaneously. For each possible leak two 

decision variables were defined, one associated with the discrete location and 

one for the continuous emitter coefficient value, formulated as: 

 

Search for: �⃗� = (𝐿𝑁𝑖
𝑛, 𝑐𝑖

𝑛);            𝐿𝑁𝑖
𝑛 ∈ 𝐽;                    𝑐𝑖

𝑛 ∈ 𝐾;                         (2.15) 

𝑛 = 1, … , 𝑁𝐿𝑒𝑎𝑘;    𝑖 = 1, … , 𝑁𝐼𝑛𝑑𝑒𝑥               

Minimize: 𝐹(�⃗�)                                                                   (2.16)      

Subject to: 𝑐𝑛  ≤  𝑐𝑖
𝑛  ≤  𝑐𝑛     (2.17)     𝑃 > 0     (2.18)     𝑁𝐿𝑑𝑢𝑝𝑛 = 0     (2.19) 

Where:  𝐿𝑁𝑖
𝑛 is the index for node 𝑖 for the possible leak 𝑛; 

𝑐𝑖
𝑛 is the emitter coefficient (equivalent to 𝑐𝑖 in Equation 2.12), 

respectively, for node 𝑖 for the possible leak 𝑛; 

 𝐽 is the set of potential leak locations for any possible leak; 

𝐾 is the range of possible values for any possible leak; 

𝑁𝐿𝑒𝑎𝑘 is the number of possible leaks to be identified; 

𝑁𝐼𝑛𝑑𝑒𝑥 is the number of the candidate nodes for any possible leak; 
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𝑐𝑖
𝑛 and 𝑐𝑛 are the minimum and maximum emitter coefficients, 

respectively for the node 𝑖 for the possible leak 𝑛 along with a 

possible value of 0 that can be selected to indicate a no-leak case; 

𝑃 is the pressure at any WDN node and 𝑁𝐿𝑑𝑢𝑝𝑛 is the number of 

the duplicate nodes that are identified as leakage emitters in the 

same solution. The constraints for pressure and the number of 

duplicate nodes are handled by using a penalty function and are 

necessary for the GA to search for good and realistic solutions. This 

leads to avoidance of solutions that may cause negative pressures 

in the system or those where a node is identified as a location of 

multiple leaks if 𝑛 > 1. 

 

Even though this method reduces the search space by assigning the leakage 

location a decision variable with a user specified maximum number of possible 

leaks within a system, it does not narrow down the number of candidate leak 

locations nor the range of flow values prior to conducting the leak localisation. 

Furthermore, the reduction process is severely subjective based on engineering 

judgement. Thus, it is easy for an optimisation algorithm to converge prematurely 

in a large search space, which affects the accuracy of the leak localisation.  

 

Another optimisation-based approach, called step-by-step elimination method, 

was proposed in Nasirian et al. (2013) to calibrate the WDN hydraulic model and 

detect leaks. The approach was tested on hypothetical and laboratory networks, 

where nodes that were not reported as leaks during the optimisation process 

were eliminated. Although the search domain was reduced, the process requires 

iterations to converge to a reduced list of candidate locations before the final 

optimisation analysis. In a real WDN model this would be too time-consuming. 

Moreover, none of the abovementioned methodologies ensured that the optimum 

solution remained in the search space after the reduction. Therefore, if the 

specified number of possible leaks is lower than the true WDN state, or the true 

leak location is eliminated due to premature convergence during the first 

iterations, the solution would miss the optimum. A summary of all approaches 

that solved an inverse problem to find leaks in the WDN, is given in Table 2.4. 
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2.5.4.2.3 Residual Analysis Methods  

Residual Analysis techniques are model-based leakage localisation techniques 

that exploit information provided by field measurements to make a diagnosis 

related to model performance, whereby a leak is identified based on a sensitivity 

analysis (Perez et al., 2011; Farley et al., 2012; Casillas Ponce et al., 2012; 

Casillas Ponce et al., 2014; Casillas et al., 2015; Sala & Kołakowski, 2014; 

Sarrate et al., 2014; Ferrandez-Gamot et al., 2015; Blesa et al., 2016; Soldevila 

et al., 2016; Soldevila et al., 2017; Gamboa-Medina & Reis, 2017). They seek for 

pressure anomalies between field measurements and simulated values from a 

hydraulic model in a ‘leak-free situation’ above a certain threshold. It depends on 

analysis of the residuals using a threshold that considers the modelling noise and 

uncertainty. When residuals exceed their threshold, an abnormal event can be 

determined by comparing against the leak sensitivity matrix to discover which of 

the possible leaks is present. Although this approach can work under ideal 

conditions, it has been shown that its performance decreases due to the nodal 

demand uncertainty and noise in the measurements.  

 

For this reason, Pérez et al. (2009) have recommended to perform leak 

localisation during night hours when there is less consumption and hence less 

noise in the pressure data. This approach has been applied to a real network in 

Barcelona by Pérez  et al. (2011, 2014) to identify the most probable location of 

the leak, while Meseguer et al. (2014) developed a decision support tool for online 

leak detection and localisation. A serious limitation for the practical applicability 

of this approach is that accurate estimates of the spatial distribution of customers’ 

water demand are necessary, because of its influence on pressure variations and 

therefore also leak localisation performance (Cugueró-Escofet et al., 2015; 

Meseguer et al., 2014; Mirats-Tur et al., 2014; Perez et al., 2011; Sanz & Pérez, 

2014; Sanz et al., 2016). Such detailed demand data are often unavailable. In 

addition, this method has only been demonstrated for small networks and for 

simplified scenarios such as single leak cases and zonal leak localisation with no 

regard to magnitude. Rosich & Puig (2013) and Rosich et al. (2015), generated 

a new class of structured residuals that allows to detect leaks in an efficient way, 

but it may be time-consuming due to the numerical algorithm used to compute 

the residuals. The methodology of Perez et al. (2011) has been improved in 
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Casillas Ponce et al. (2014, 2015), who introduced a time horizon analysis, called 

the Leak Signature Space, that associates a specific signature to each leak 

location being minimally affected by leak magnitude. In this case, the efficiency 

is improved despite the leak magnitude uncertainty still affecting the 

performance. Moreover, the resolution of the sensors strongly affects the 

performance of the leak location.  

 

Goulet et al. (2013) proposed a leakage detection methodology based on an error 

domain model falsification whereby model instances (parameter sets) for which 

the pressure residuals were larger than the maximum plausible error were 

falsified. The method was able to find large leaks of 100l/min in a WDN with 295 

pipes using 14 flow sensor devices. The detected flow is not adequate for full-

scale applications, as practitioners are interested in detecting much smaller leaks 

with that level of monitoring. In addition in real WDNs such flow data availability 

is scarce. Moser et al. (2015) presented a methodology for simplification of WDN 

models combined with error-domain model falsification for leak detection. Using 

the same WDN as in Goulet et al. (2013), the computational time was reduced to 

20% of the initial model, but the leak diagnostic performance reduced. Moser et 

al. (2018), applied the error-domain model falsification approach in a larger WDN 

demonstrating potential for practical use with less flow sensors (i.e., 10 devices). 

However, this work was only able to find a leak of large magnitude, i.e., 200l/min.  

 

Soldevila et al. (2016), presented a new approach for online leak localisation in 

WDNs that can only be used once the leak has been detected. The approach 

relies on the computation of pressure residuals that are analysed through a 

Bayesian Classifier. This online scheme relies on a previous offline work, in which 

the network model is obtained and the classifier is trained with data generated in 

extensive simulations of the network. Considering the dynamic operation of 

WDNs and the always unpredictable appearance of leaks, the time required for 

such analyses may limit their practical use. Finally, Salguero et al. (2018), located 

leaks based on a simplified calculation of the sensitivity of the elements of the 

network, combining the knowledge of the specific average behaviour of each 

element following an increase in demand at any point of the network, and the 

information provided by the pressure sensors. However, with no model reduction 
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a real application would be computationally intensive. A summary of the main 

approaches that used forward analysis of the hydraulic model to find leaks, is 

given in Table 2.5. In addition the main characteristics of the presented internally-

based methods are compared in Table 2.6.    

 

Table 2.5. Summary of Leak Detection and Localisation Procedures based on 
Forward Analysis. 

Author 
Leakage 

Parameters1 

Leak 
Diagnosis 
Method2 

Test Example Number of: 
Pipes/Nodes/Pressure 

Sensors 

Perez et al., 2011 ND RM -/1600/8; -/260/5; -/2132/10 

Farley et al., 2013 LOC RM -/260-1091/3 

Goulet et al., 2013 ND MF 295/263/- 

Perez et al., 2014 LOC RM 3442/3377/6 

Ferrandez-Gamot et al., 2015 ND RM 34/31/3 

Casillas et al., 2015 LOC LSS 239/197/2-5 

Soldevila et al., 2016 ND RM 34/31/2 

Moors et al., 2018 ND RM 3243/3218/13 

Moser et al., 2018 LOC MF 295/263/-; 904/900/- 

Salguero et al., 2018 ND RM 58/38/5 
Abbreviations:   
1) LOC - Leak Orifice Coefficient, ND - Nodal Demand. 
2) RM - Residuals Matrix, MF - Model Falsification, LSS - Leak Signature Space. 

 

2.6 Concluding Remarks 

In this chapter, the theoretical background of Inverse Theory and literature review 

associated with its applications on WDN model calibration and leak localisation 

was presented. Solving the inverse problem in WDN modelling is usually a very 

complex task that requires field measurements that are used to determine the 

unknown causal parameters, relevant to model calibration and leak localisation 

purposes. Rather than using some trial-and-error approach, an implicit type 

procedure should be used to solve it, where the problem (i.e., model calibration 

or leak detection and localisation) is formulated as an optimisation problem driven 

by the weighted least square type objective subject to a set of implicit and explicit 

type constraints (see section 2.2.2 for details). Therefore the unknown causal 

parameters can be determined effectively and efficiently. However, for a well 

posed problem to be formulated a solution must exist, be unique and be stable to 

changes on data.  
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The issues associated with the ill-posedness of inverse problems were 

addressed and a strategy for solving them was presented. Subsequently, the 

efficient and powerful global search method of Genetic Algorithms was 

addressed, which are based on the genetic process of biological organisms and 

are capable of dealing with the non-linear inverse problems. However, in practical 

problems non-uniqueness and stability of solutions is a serious issues, due to the 

approximations of in physical theories and inadequate quantity and/or quality of 

observed information combined with the errors usually contained within.  

 

The literature review on model calibration and leak detection and localisation 

presented various approaches to solve such inverse problems that are mainly 

costly, time consuming and labour-intensive. The following gap in knowledge has 

been identified, that forms the basis for the work done in this thesis: 

 

“Both problems can be mathematically formulated as an optimisation problem, 

however, in a large search space it would be computationally too demanding to 

allow its effective use in practical applications. Several improvements can be 

made to condition an ill-posed problem, such as to reduce the search space, 

without losing optimum solutions. This allows the optimisation analysis to begin 

at a better starting point, while the computations required to explore the search 

space are minimized. However, none of the abovementioned techniques has 

tried to solve the inverse problem in by reducing the original problem.”  

 

Having recognised the need to improve the condition of the inverse problem in 

the next Chapter a novel search space reduction technique of the optimisation 

problem is developed and presented using prior information of the system and 

available data. 
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CHAPTER 3  Search Space Reduction of Inverse Problems in Water Distribution Network Modelling  

Search Space Reduction of Inverse 

Problems in Water Distribution 

Network Modelling  

 

 

3.1 Introduction 

An optimisation analysis in WDN modelling requires many simulations of the 

forward problem which computations can be costly. However, by definition an 

inverse problem is an ill-posed problem. Even in well-monitored systems multiple 

combinations of decision variable values could produce equally fit solutions, but 

inaccurate results. This is a consequence of small or local impact caused by an 

anomaly in the WDN (e.g., a leak) on the pressure and flow data. Such hydraulic 

impact is due to an insignificant velocity change in the pipe experiencing it, or 

sub-optimal sensor placement. Except from that, the size of the WDN hydraulic 

models has significantly increased, which makes the inverse analysis much more 

complex process, due to the large dimensionality of the problem.  

 

Currently, there is no optimisation algorithm that can efficiently and effectively 

solve a non-linear inverse problem with thousands of decision variables (Nyarko 

et al., 2014; Beiranvand et al., 2017; Song & Chen, 2018). The use of global 

optimisation algorithms, such as the Genetic Algorithm (GA), is hampered mainly 

by two facts: (a) The high computation time needed to solve a hydraulic 

simulation; and (b) The large, multi-dimensional parameter space to be explored 

to identify best parameter values. Therefore, global optimisation methods 

become intractable for high dimensional problems. A solution to this challenge 

can be to reduce the search space without losing the optimum solution, in order 

to make the inverse problem less ill-conditioned. Adopting the parameter set that 
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results in well-posed conditions also reduces the number of dimensions in which 

the inverse problem is going to be solved. 

 

In Chapter 3 a search space reduction technique is presented that is developed 

based on the general Inverse Problem Theory (Tarantola, 2005) and Genetic 

Algorithm Optimisation, analysed in Chapter 2. The technique is part of the 

decision-support framework proposed in this thesis for solving the inverse 

problem in WDN modelling. The aim is to reduce the inverse problem 

dimensionality, which ultimately leads to a reduced search effort during an 

optimisation analysis. Bearing in mind the above, this chapter is organised as 

follows. After this introduction, an overview of the developed decision-support 

framework is presented in Section 3.2. The Sections 3.3, 3.4 and 3.5 provide 

insight on how the inverse problem size is reduced in three steps, using the 

developed search space reduction technique. Then, Section 3.6 provides the 

theoretical background on how the reduced inverse problem is solved. Finally, in 

Section 3.7 the summary and conclusions from this chapter are outlined. 

 

 

3.2 Decision-Support Framework Overview 

A model-based approach for reducing and solving the inverse problem is 

developed based on systematic search space reduction. The proposed decision-

support framework is divided into two stages, shown schematically in Figure 3.1:  

(a) a Search Space Reduction (SSR) stage, where the number of decision 

variables and the range of possible values is reduced using the developed 

search space reduction technique; and 

(b) an Inverse Problem Solving (IPS) stage, which considers the reduced set 

of decision variables in an optimisation analysis to solve the inverse 

problem. 

During the SSR stage, the number of decision variables in set, 𝑥, of the original 

inverse problem and the range of possible values is narrowed down prior to 

solving it, while trying to ensure that the optimum solution is not lost. The reduced 

set of decision variables, 𝑥𝑆𝑆𝑅, and values is, then, used as part of a simulation-

optimisation framework, for solving the inverse problem in the IPS stage.  
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Figure 3.1. Overview of the decision-support framework for solving inverse 

problems in WDN modelling based on search space reduction. 
 

The developed search space reduction technique allows the infeasible solutions 

of the randomly generated initial GA population, to move towards the feasible 

region, which contracts the search space. Consequently, in a reduced search 

space, the optimisation analysis for solving the inverse problem starts with a 

better population of solutions and is allowed to converge faster and more 

effectively towards the global optimum. In addition, the unnecessary simulation 

of solutions that cause no impact on model fitness is avoided. Three types of 

decision variables are considered, which are associated with: (i) Leak Detection 

and Localisation, and (ii) Model Calibration. These include: 

(a) The emitter coefficient values of nodes in the WDN hydraulic model used 

for leak detection and localisation; 

(b) The status of valve components used in model calibration for detecting 

faults in the hydraulic model or the real system, associated with unknown 

closed/open throttle valves;  
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(c) The roughness coefficient value of pipe components used in model 

calibration for determining pipe friction factors and, therefore, estimating 

velocities of flow paths in the real system. 

For each decision variable type the SSR stage is performed in three steps:  

(1) Inverse Problem Simplification (IPSI);  

(2) Parameter Sensitivity Analysis (PSA); and 

(3) Search Space Optimisation (SSO).  

The IPSI in Step 1, takes into account prior information, expert knowledge of the 

system and some assumptions, in order to reduce the inverse problem size. 

During PSA in Step 2, a number of scenarios are simulated. Considering the 

configuration and characteristics of pressure sensors in the WDN, any 

parameters or parameter values that cause no impact on the WDN model 

hydraulics are falsified. Finally, in SSO in Step 3, another set of scenarios is 

analysed and compared to the available observations. Those that do not affect 

the WDN model fitness are eliminated. Ultimately, the SSR stage ensures that 

the size of the original inverse problem is minimized, whereby the list of decision 

parameters for each parameter type is restricted to a reduced:  

(a) Number of candidate leak locations and range of possible flow values,  

(b) Number of candidate throttle valve locations with uncertain status, 

(c) Number of candidate pipes and range of possible roughness values. 

 

3.3 Inverse Problem Simplification 

3.3.1 Introduction 

In Step 1 of the SSR stage the number of decision variables of the original inverse 

problem is minimized. This is achieved through a simplification process that 

considers prior information and knowledge of the system, along with assumptions 

that either: (a) exclude decision variables of the problem, or (b) group them based 

on their characteristics. This results in a simplified set of parameters, which leads 

to a reduction in the problem dimensionality.   

 

3.3.2 Leakage Nodes 

A node is normally considered a potential leak location if there is no available 

data associated with its actual demand value. Therefore, all nodes in a WDN 
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model (linked to pipes, valves, pumps and tanks) could be potential leak locations 

(i.e., decision variables) resulting in a vast search space. In reality the majority of 

leaks happen on pipes, but the model normally assigns aggregated demands to 

nearby nodes, hence it is assumed here that leaks are located on network nodes 

only. In a WDN model not all nodes represent areas of aggregated demand. For 

example, in EPANET modelling software two nodes are added to a pipe section 

just upstream and downstream of a valve to indicate its boundaries, without 

assigning any demand to them. A similar process is used to indicate the physical 

limits of a pumping station. Although it is true that valves can leak due to a weak 

stem, the losses are normally insignificant relative to the inlet flow, or to the 

undetected leaks. In Step 1 of the SSR stage the number of potential leak 

locations is reduced, assuming that leaks only happen on pipes. Thus, in IPSI all 

nodes associated with non-pipe components are excluded (Figure 3.2). 

 

 

Figure 3.2. Reduction via Inverse Problem Simplification for the candidate leak 

locations. 

 

3.3.3 Valve Components 

A throttle valve is considered a calibration parameter (i.e., a decision variable) 

during model calibration if there is an associated uncertainty in its status, i.e., 

either open or closed. It is also possible that a throttle valve can be partially 

closed/open, however, this issue is beyond the scope of this thesis, due to the 

insignificant hydraulic impact of such condition, as opposed to the case when 

valves are fully closed/open. Nevertheless, most utilities have no live records for 

the status of all valves in the WDN. Consequently, all valves in a WDN model 

could be locations of uncertain status. This increases the complexity of the 

inverse problem. On the other hand, it is possible to falsify candidates and 

simplify the problem dimensionality, based on their location in the system.  

Pipe Section 
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In Step 1 the number of candidate valves with uncertain status is minimized by 

considering the available information associated with the valve location, as well 

as expert knowledge of the system. Any valve where live or recent data exists for 

its status can be excluded from the search space. The same stands for any valve 

that is located on a flow monitored pipe as its status can be determined indirectly, 

from the flow measurement value. If the flow is zero, then, the valve is closed, 

otherwise it is open. Furthermore, the status of valves that define the limits of a 

DMA is known, unless any unknown open boundary valves exist. Except from 

that, it is unlikely that a valve is unknowingly closed if it is located on a dead end 

pipe, or branched part of the WDN (Figure 3.3), unless the properties that are 

supplied from that pipe are fed from an unknown source, which is therefore not 

presented in the hydraulic model, or the Geographic Information Systems map. 

In a real system, unknown closed valves on any branched pipe would be sensed 

by the customers. This is because in such a situation the WDN part/segment 

would be isolated, causing an interruption to supply. Therefore, it is expected that 

any customer experiencing this situation would report it to the water utility.  

 

 

Figure 3.3. Network representation of valves that lead to isolation. 
 

In IPSI, the number of candidate valves with unknown status can be initially 

minimized, assuming that isolation valves, i.e., those located on branched parts 

of the WDN, or dead end pipes, are open. Thus, only valve components that are 

located on loops are included in the search space. In addition, from those that 

are located on loops some can be eliminated based on the consequences that a 

Source Node 
       Isolation Valve 

       Non Isolation Valve 
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change in their status would cause to the system’s functionality. For instance, the 

status PRVs, or valves that are located on by-passes can be determined indirectly 

from the pressure variability in the WDN. During normal conditions active PRVs 

are always open, whereas inactive PRVs are closed only if an open by-pass 

exists. Valves on by-passes are normally closed, as otherwise the pressure would 

not be managed by the PRV. In general, any valve whose status is uncertain is 

included in the search space for model calibration if: 

(a) There is no live/recent data for its status. 

(b) It is not located on a pipe with a flow meter. 

(c) It does not lead to boundary changes between two or more DMAs. 

(d) It does not lead to isolation of a WDN part/segment. 

(e) It is not an active PRV. 

(f) It is not located on a by-pass of an active PRV. 

 

3.3.4 Pipe Roughness Groups 

During the model calibration process any pipe in the WDN model can be 

calibration parameter (i.e., a decision variable) if there is no available information 

about its roughness coefficient values. The only way to know (or verify after model 

calibration) the true roughness value is to dig the ground and record data that can 

be used to determine it. However, in reality it is impossible to physically measure 

every pipe in the WDN as this would lead to huge costs for network operators. 

The pipe roughness coefficients can be estimated by solving the inverse problem, 

based on a number of collected measurements. On the other hand, with so many 

decision variables the search space of the optimisation process becomes huge.   

 

The number of decision variables can be reduced by considering similarities in 

pipe characteristics, based on the available information, and dividing them into 

different groups. The grouping process in Step 1 considers three main 

characteristics of pipes, including: (a) Material; (b) Age; and (c) Diameter. During 

IPSI, the WDN model pipes are firstly divided into, 𝑃𝑀, classes based on their 

material as pipes of same material share the same range of possible roughness 

values. If age information is available it is possible to sub-divide each material 

class, 𝑝𝑚, into, 𝑃𝐴𝑝𝑚, sub-classes. This is because pipes of same material and 

age are assumed to share a similar rate of change in their roughness coefficients. 
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However, not all water companies hold such records for the state of pipes in the 

WDN. Thus, this step is optional as it can only be carried out if this information is 

available, otherwise all pipes are assumed to have a similar age, i.e., 𝑝𝑎
𝑝𝑚

= 1. 

Then, it is possible to separate the resulting sub-classes into 𝑃𝐺𝑝𝑎𝑝𝑚
 groups 

based on the diameter. Pipes of same diameter are expected to affect head loss 

in a similar way due to their hydraulic boundaries on flow. Ultimately, the list of 

decision variables, 𝐷𝑉, for the calibration process is reduced to: 

                                           𝐷𝑉 = ∑ ∑ 𝑃𝐺𝑝𝑎𝑝𝑚
𝑃𝐴
𝑝𝑎=1

𝑃𝑀
𝑝𝑚=1                                                (3.1) 

 

3.4 Parameter Sensitivity Analysis 

3.4.1 Introduction 

Following Step 1, a reduced set of decision variables is established, which is used 

as an input to Step 2 of the SSR stage. In this step, a sensitivity analysis is carried 

out for each parameter (and for each parameter type). This is done to assess 

their effect on the simulated pressure, as pressure monitoring devices are used 

in a larger extent for data collection rather than flow metering devices. The aim is 

to identify the parameters and parameter values that cause little or no impact on 

the simulated pressure, relative to the defined boundary conditions. They are then 

removed from the search space. As a consequence, this will lead to avoidance 

of unnecessary simulation of solutions that do not affect the model fitness, i.e., 

the objective function, when solving the inverse problem. It also allows to reduce 

the inverse problem size and help with the non-uniqueness issue.  

 

During the PSA in Step 2, the accuracy range of the installed in pressure sensors 

the WDN is initially taken into account to set a threshold value for a minimum 

detectable pressure response. Each time, the value of a parameter, is 

systematically adjusted and the resulting pressure response is compared against 

the pressure from the defined boundary conditions. The philosophy of this step in 

SSR stage is that if the pressure perturbation from a simulated event is similar or 

less than the threshold detectable pressure response set from the accuracy range 

of pressure devices, then, the event will remain undetectable regardless of the 

distance from the sensor. This is because the uncertainty in measurement is 
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similar or larger than the impact caused by the change in the WDN model. Based 

on the decision variable type, the PSA ultimately determines: 

(a) The Minimum Detectable Nodal Leakage (MDNL) 

(b) The Detectable Valve Locations (DVLs) 

(c) The Detectable Pipe Roughness Coefficients (DPRCs) 

The resulting sets of decision variables and the corresponding range of values 

are subsequently considered as an input for Step 3 of SSR stage. 

 

3.4.2 Minimum Detectable Nodal Leakage 

Depending on the sensor configuration there is limited observable WDN space, 

i.e., the length of pipes that can be monitored for leakage. If the leak distance 

from the sensor increases, the minimum detectable flow increases due to the 

lower head loss. Furthermore, all devices are accurate within a specified range 

indicated by the manufacturers. Thus, if the pressure perturbation from a leak is 

below the device’s accuracy range, the event will remain undetectable regardless 

of the distance from the sensor. Based on the number, location and accuracy 

range of sensors there is a minimum detectable flow for each location, which 

establishes a lower bound when detecting leaks.  

 

The Minimum Detectable Nodal Leakage (MNDL) process starts by imposing the 

boundary conditions for the leak-free scenario and analysing the resulting 

pressure (𝑝0�̂�) at nodes, 𝑠, where sensors are present. Then, a leak with large 

flow, 𝑄 (specified by the user), relative to the system’s average demand over 24 

hours is simulated at every potential leak location, 𝑙, and the pressure 

response, 𝑝𝑄,𝑙,𝑠, at location 𝑠 is recorded. The number of potential leaks is equal 

to the number of nodes remaining after implementing Step 1 (Section 3.3.2). 

Leaks are simulated as emitters following Equation 2.12 (Chapter 2). The 

pressure residuals between a no-leak and leak scenario are determined for all 

possible leak nodes across all the simulation time steps. These differences 

between the boundary conditions and leak response pressure at sensor nodes 

are then averaged over all time steps, using: 

                                    𝑟𝑄,𝑙(𝑡) = [

𝑝𝑄,𝑙,1(𝑡) − 𝑝01̂(𝑡)

⋮
𝑝𝑄,𝑙,𝑠(𝑡) − 𝑝0�̂�(𝑡)

]                                      (3.2) 
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Each time, the simulated leak flow, 𝑄, is systematically reduced by adjusting the 

value of 𝑐 until the residuals across all sensors do not exceed their accuracy 

range, 𝜀, (e.g., typically ±0.1% measurement error of full scale: 0-10 bar). The 

value of 𝜀 sets the threshold value of minimum detectable pressure response. 

Ultimately, this establishes the MDNL, 𝑄𝑚𝑖𝑛𝑙, for each potential leak node in the 

WDN model.  

                                   𝑀𝐷𝑁𝐿 = [
𝑄𝑚𝑖𝑛1

⋮
𝑄𝑚𝑖𝑛𝑙

]                               (3.3) 

 

3.4.3 Detectable Valve Locations 

Similar to the case of MDNL, the sensor number, location and accuracy 

determines the observable WDN space where changes in the status of valves 

can be identified. Typically, the pressure impact from a change in valve status is 

local. Furthermore, in current WDNs, the main source of information in identifying 

such changes comes from pressure measurements, due to the lack of flow 

measurements. Based on the same philosophy as in the case of a leak, if the 

pressure perturbation from a change in valve status is below the device’s 

accuracy range, the event will remain undetectable.  

 

The analysis of Detectable Valve Locations (DVLs) starts by analysing the 

boundary pressures (𝑝0�̂�) at nodes, 𝑠, resulting from the situation when no 

changes in the status of any valve are made. Then, each time, the status of 

candidate valve, 𝑘, is changed, and the pressure response, 𝑝𝑘,𝑠, is recorded. If a 

valve is originally set as closed in the WDN hydraulic model, then, its status is 

changed to open, or vice versa. The number of candidate valves is equal to the 

remaining valve components after implementing IPSI in Step 1 (Section 3.3.3). 

The pressure residuals between a no-change case and change in valve status 

are determined for all candidate valves across all the simulation time steps as the 

difference between the boundary conditions and the valve status change 

response pressure at sensor nodes, respectively, using: 

                                         𝑟𝑘(𝑡) = [

𝑝𝑘,1(𝑡) −  𝑝01̂(𝑡)

⋮
𝑝𝑘,𝑠(𝑡) −  𝑝0�̂�(𝑡)

]                                                   (3.4) 
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Any valve that produces a response in simulated pressure across all sensors, of 

less than, or equal to the accuracy range, 𝜀, is classified as unobservable and is 

removed from the search space. This is because detection of a status change or 

error cannot be actually performed, as the effect on simulated pressures is less 

or similar to the measurement uncertainty. At the end of this procedure, the list of 

all DVLs in the WDN model is established, which is considered in the next step 

of the SSR. 

 

3.4.4 Detectable Pipe Roughness Coefficients 

Water utilities hold records for the range of possible roughness coefficient values 

for each pipe material class. This defines the range of possible discrete values 

for each pipe during model calibration, based on its material. However, changing 

the roughness coefficient value, 𝜆, of a single pipe, or new pipes in the WDN 

model would normally cause little or no change in the simulated hydraulics. 

Therefore, typically, during model calibration changes are performed in number 

or groups of pipes each time, where an observable impact on the simulated 

hydraulics is produced. Before outlining the approach used for pipe components 

it is important to clarify that the decision variable 𝜆 used here, for specifying the 

pipe condition is the value used to determine the friction factor and not the friction 

factor per se. The number of possible roughness values, 𝛬, for each group, 𝑝𝑔, 

depends on the material class, 𝑝𝑚, where those of same material class share the 

same range of possible roughness values, 𝑅𝑉𝑝𝑚. The range of possible 

roughness values for each material class is established from: 

                                          𝑅𝑉𝑝𝑚 = [

𝜆1,1 ⋯ 𝜆𝛬,1

⋮ ⋱ ⋮
𝜆1,𝑃𝑀 ⋯ 𝜆𝛬,𝑃𝑀

]                                      (3.5) 

Similarly to the case of nodes and valves, there is a limited number of pipes where 

calibration can be performed, depending on the sensor configuration. A pressure 

perturbation as a result of an adjustment in the pipe group’s roughness value of 

less than, or equal to the device’s accuracy range, 𝜀, cannot affect the fitness of 

the hydraulic model. The Detectable Pipe Roughness Coefficients (DPRCs) 

analysis applies the same philosophy as in sections 3.4.2 and 3.4.3. The process 

starts by setting the roughness value, 𝜆𝑝𝑔,𝑝𝑚, of all pipes in group, 𝑝𝑔, of material 

class, 𝑝𝑚, to a value equal to the minimum nominal value, 𝜆𝑚𝑖𝑛𝑝𝑚 and analysing 
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the resulting pressure (𝑝0�̂�) at sensor nodes, 𝑠. This sets the boundary conditions 

for the original case, i.e., when the pipes were new. Moreover, it establishes the 

minimum possible value, 𝜆1,𝑝𝑔,𝑝𝑚, for the pipe group. The number of pipe groups 

for each pipe material is equal to the 𝑃𝐺𝑝𝑎𝑝𝑚
 groups, following IPSI in Step 1 

(Section 3.3.4). The DPRC analysis compares the simulated pressures from 

boundary conditions with those resulting after the adjustment of the roughness 

values for the pipe group. To determine the DPRCs of any pipe group, 𝑝𝑔, of 

material, 𝑝𝑚, each time the roughness coefficient value, 𝜆𝑝𝑔,𝑝𝑚 of all pipes that 

belong in that group is changed to test all possible values in 𝑅𝑉𝑝𝑚 and the 

pressure response, 𝑝𝜆𝑝𝑔,𝑝𝑚,𝑠, is recorded. The pressure residuals between the 

minimum nominal roughness value and adjusted case are determined for each 

group across all the simulation time steps as in the previous sections using: 

                                 𝑟𝜆𝑝𝑔,𝑝𝑚
(𝑡) = [

𝑝𝜆1,𝑝𝑔,𝑝𝑚,1(𝑡) −  𝑝01̂(𝑡)

⋮
𝑝𝜆𝛬,𝑝𝑔,𝑝𝑚,𝑠(𝑡) −  𝑝0�̂�(𝑡)

]                               (3.6) 

Any 𝜆𝑝𝑔,𝑝𝑚 that produces a simulated pressure response across all sensors, of 

less than or equal to the accuracy range, 𝜀, is removed from the list of possible 

values for each pipe group. If none of the tested values in 𝑅𝑉𝑝𝑚 causes a residual, 

𝑟𝜆𝑝𝑔,𝑝𝑚
, larger than 𝜀, the whole pipe group is removed from the search space. 

Following DPRC analysis any unobservable pipe groups are excluded, as their 

inclusion in the search space will lead to simulations that cause no change in the 

model fitness during model calibration. Ultimately, this leads to a new reduced list 

of decision variables, 𝐷𝑉 = 𝑃𝐺 𝑥 𝑃𝑀, with their corresponding range of possible 

roughness coefficient values, 𝑅𝑉𝑝𝑔,𝑝𝑚. In addition, for each observable pipe group 

the range of possible roughness values, 𝐷𝑃𝑅𝐶𝑝𝑔,𝑝𝑚, is established as:  

                                     𝐷𝑃𝑅𝐶𝑝𝑔,𝑝𝑚 =  [

𝑅𝑉1,1 ⋯ 𝑅𝑉1,𝑃𝑀

⋮ ⋱ ⋮
𝑅𝑉𝑃𝐺,1 ⋯ 𝑅𝑉𝑃𝐺,𝑃𝑀

]                            (3.7) 

This set of decision parameters is subsequently considered in Step 3 of SSR.  

 

 

In Step 3, which is explained in the next section, final search domain for all 

decision variable types is established corresponding to the inverse problem being 

solved.  



CHAPTER 3 – Search Space Reduction of Inverse Problems in WDN modelling 

 

 

 
97 

 

3.5 Search Space Optimisation 

3.5.1 Introduction 

In Step 3 of the SSR a number of optimisation problems are formulated and 

solved with the ultimate purpose to minimize the number of decision variables 

and the range of possible values. A Genetic Algorithm (GA), that is a 

computationally fast and elitist evolutionary algorithm, is used (Deb et al., 2002). 

Both flow and head observations from pressure measurements are used along 

with the remaining parameters from PSA in Step 2. The output from the SSO 

process is the reduced final list of decision variables, 𝑥𝑆𝑆𝑅 (Figure 3.1), before 

solving the inverse problem. The problem is formulated using the two different 

sets of constraints, described in Section 2.2.2 (Chapter 2). 

 

Although optimisation is formulated differently depending on the decision variable 

type, in all cases this is done with a fixed number of decision variables. This is 

explained in more detail in subsections 3.5.2 – 3.5.4. Based on the decision 

variable type, the SSO process determines: 

(a) The total water losses and the maximum number of possible leaks in the 

WDN. 

(b) The maximum number of possible closed valves in the WDN. 

(c) The number of pipe groups that can be calibrated. 

 

3.5.2 Leak Locations and Range of Flow Values 

3.5.2.1 Overview 

The SSO in Step 3 of the SSR is divided into two parts, i.e., Part I and Part II. 

Here, different optimisation problems are solved to minimize the number of 

candidate leak locations and the range of possible flow values. For any possible 

leak two decision variables are defined, one for the discrete location and one for 

the continuous flow value (Wu et al., 2010).  

 

In Part I optimisation analysis the decision variables include the remaining nodes 

from PSA in Step 2, optimised as a single emitter coefficient. Using only observed 

flow measurements, the aim is to detect the total water losses in the WDN based 

on the simplest case scenario when the entire water loss volume is associated 
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with a single leak. The outcome of Part I defines the maximum emitter flow for 

each potential leak location, which reduces the range of flow values for the 

subsequent analyses (Figure 3.4). Moreover, it allows to falsify any candidate 

nodes with higher MDNL values than the losses detected in Part I.  

 

In Part II a second optimisation problem is solved with an updated list of 

candidates and range of flows. Here, the aim is to estimate the maximum number 

of possible leak locations occurring in the WDN, i.e., the most complex case 

scenario. Both flow and head (calculated from pressure and elevation) 

observations are considered during the optimisation analyses. Using the value of 

the detected total water losses from Part I, and the identified maximum possible 

leak scenario, the outcome defines the minimum emitter flow for each remaining 

candidate. Consequently, it leads to further reduction in the number of possible 

flow values for each potential leak location.  

 

Based on the output of Part II optimisation analyses, the final search domain is 

defined. It is comprised of the reduced list of potential leak locations and the 

corresponding reduced range of flow values (including a zero leakage value). The 

optimisation problems are solved similarly in both parts. The optimisation in each 

part (Figure 3.4) is formulated as follows: 

 

Search for:  �⃗� = (𝐿𝑁𝑖
𝑛, 𝑐𝑖

𝑛);         𝐿𝑁𝑖
𝑛 ∈ 𝐽;                    𝑐𝑖

𝑛 ∈ 𝐾;   

                                                   𝑛 = 1, … , 𝑁𝐿𝑒𝑎𝑘;     𝑖 = 1, … , 𝑁𝐼𝑛𝑑𝑒𝑥                 (3.8) 

Minimize: 𝐹(�⃗�)                                                                                        (3.9) 

Subject to: [0, 𝑐𝑛  ≤  𝑐𝑖
𝑛  ≤  𝑐𝑛]   (3.10)      𝑃 > 0   (3.11)     𝑁𝐿𝑑𝑢𝑝𝑛 = 0    (3.12) 

Where:  𝐿𝑁𝑖
𝑛 is the index for node 𝑖, representing the location of the  

possible leak 𝑛; 

𝑐𝑖
𝑛 is the emitter coefficient (equivalent to 𝑐𝑖 in Equation 2.12 – 

Chapter 2), for node 𝑖, representing the size of the possible leak 𝑛; 

𝐽 is the set of potential leak locations for any possible leak size; 

𝐾 is the range of possible values for any potential leak location; 

𝑁𝐿𝑒𝑎𝑘 is the number of possible leak locations to be identified; 
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𝑁𝐼𝑛𝑑𝑒𝑥 is the number of the candidate nodes for any possible leak 

size;  

𝑐𝑖
𝑛 and 𝑐𝑛 are the minimum and maximum emitter coefficients, 

respectively, for the node 𝑖 for the possible leak 𝑛 along with a 

possible value of 0 that can be selected to indicate a no-leak case; 

𝑃 is the pressure at any WDN node; 

𝑁𝐿𝑑𝑢𝑝𝑛 is the number of the duplicate nodes that are identified as 

leakage emitters in the same solution.  

 

The constraints given by Equations 3.11 and 3.12 are handled by introducing an 

artificial penalty for violating the constraint. They penalize solutions by reducing 

their fitness values in proportion to the degrees of constraint violation. These are 

necessary for the GA to search for good and realistic solutions. Thus, any 

solutions that may cause negative pressures in the system or those where a node 

is identified as a location of multiple leaks if 𝑛 > 1, are avoided. 

 

3.5.2.2 Part I 

In Part I a single leak scenario (𝑛 = 1) is assumed, i.e., 𝑐𝑖
1, to only detect the total 

water losses in the WDN. Therefore, no information is sought about the precise 

leak location(s). A series of short (user specified) optimisation analyses, 𝑍, are 

undertaken, where at each analysis, 𝑧, the emitter coefficient, 𝑐𝑖
1, is allowed to 

vary within a specified range 𝑑𝑧 (user specified), corresponding to the maximum 

and minimum flow bounds, while zero is not included as an option. The first 

analysis, 𝑧 = 1, begins with, 𝑐𝑖
1, equal to the maximum difference between the 

observed and simulated system’s demand throughout the 24 hours. This includes 

both the error caused by leakage as well as the modelling and measurement 

uncertainty. Each solution’s 𝑐𝑖
1 values are allowed to vary within a wide range, 

e.g., 𝑑1 = ±50% relative to the 𝑐𝑖
1 value that initiates the process. The wider range 

of values at the start allows to compensate for premature convergence caused 

by large differences in pressures across the WDN that may result in different 

optimal 𝑐𝑖
𝑛 values for the same leak flow. Furthermore, to mitigate the impact 

caused by the idealized pressure exponent value of 𝑎 (Equation 2.12 - Section 

2.5.4.2.1, Chapter 2) that is considered here as part of the leak orifice equation. 
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When a fit solution is found, the emitter value for the next analysis is updated with 

the optimal solution found. In addition, the range of adjustment, 𝑑𝑧+1, is reduced 

to fine tune the solution for detecting the total water loss. For example, if the 

optimal solution in analysis, 𝑧, is fitter than the previous, 𝑧 − 1, the identified 

emitter is used to specify 𝑐𝑖
1 for the next one, 𝑧 + 1. For subsequent analyses the 

bounds of the 𝑐𝑖
1 initiating the optimisation process are systematically reduced to 

eventually reach, 𝑑𝑍 = ±1% (e.g., ±25%, ±10%, ±5% and ±1%). Those values 

are relative to the optimum solution of the previous analysis, which allows for both 

global and local exploration of the search space. The optimisation minimizes the 

weighted sum of squared flow differences, given by:  

 

Minimize: 𝐹(�⃗�) =  ∑ [𝑇
𝑡=1 ∑

𝑤𝑓(
𝑄𝑜𝑓(𝑡)−𝑄𝑠𝑓(𝑡)

𝑄𝑝𝑛𝑡
)

2

𝐹
]𝐹

𝑓=1              (3.13) 

Where:  𝑄𝑜𝑓(𝑡) is the observed flow (l/s), in link 𝑓 at time 𝑡; 

𝑄𝑠𝑓(𝑡) is the simulated flow (l/s), in link 𝑓 at time 𝑡;   

𝑄𝑝𝑛𝑡 is the measurement error (l/s), which converts flow differences 

into a dimensionless value based on the meter accuracy. This is 

done so that the flow error can be compared to the pressure error, 

which is used in the next part when pressure measurements are 

considered, given by: 

                                              𝑄𝑝𝑛𝑡 = �̅�𝑖𝑛𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑄                                                 (3.14) 

�̅�𝑖𝑛 is the average global system demand; 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑄 is the flow reading percentage error as indicated by the 

meter manufacturer;  

𝐹 is the number of metered pipes, used to mitigate the impact 

caused by great differences in the number of available pressure 

and flow measurements;  

𝑤𝑓 is a weighting factor for observed flows, which is used to 

differentiate the value of information gained by the measurements 

during different times of the day, such as the hours of low demand. 

 

Following all optimisation analyses the optimal 𝑐𝑖
1 corresponds to the leak flow 

value (l/s), which represents the global water losses without considering the local 
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modelled pressure variation, which still does not match the observations. The 

leak flow value is used in Equation 2.12 (Chapter 2) to calculate the final emitter 

coefficient based on the average pressure obtained from all sensor 

measurements and assuming an average value of 𝑎 = 0.5 across the system. As 

it is based on a single orifice, it establishes an upper bound flow, 𝑐𝑛, for all 

potential leaks. Any potential leak node with a larger MDNL than the leak flow, 

𝑄𝑐𝑛 , as a result of 𝑐𝑛 is removed from the search space. Therefore the potential 

leak locations are redefined, producing the final list of candidate nodes. 

  

3.5.2.3 Part II 

In Part II a series of 𝑛 leak scenarios are simulated to estimate the maximum 

number of possible leaks occurring in the WDN and ultimately define the 

minimum emitter flows for the remaining leak locations. The total number of leak 

scenarios, 𝑁𝐿𝑒𝑎𝑘, is derived from 𝑄𝑐𝑛  and the average MDNL from the remaining 

candidates, using: 

                                            𝑁𝐿𝑒𝑎𝑘 =
𝑄

𝑐𝑛

𝑀𝐷𝑁𝐿 𝑎𝑣𝑔.
                                                          (3.15) 

Optimisation analyses are carried out to minimize the weighted sum of squared 

differences between observed and simulated values for both heads and flows as 

follows:  

 

Minimize: 𝐹(�⃗�) =  ∑ [∑
𝑤𝑠(

𝐻𝑜𝑠(𝑡)−𝐻𝑠𝑠(𝑡)

𝐻𝑝𝑛𝑡
)

2

𝑆
+  ∑

𝑤𝑓(
𝑄𝑜𝑓(𝑡)−𝑄𝑠𝑓(𝑡)

𝑄𝑝𝑛𝑡
)

2

𝐹
]𝐹

𝑓=1
𝑆
𝑠=1

𝑇
𝑡=1          (3.16) 

Where:  𝐻𝑜𝑠(𝑡) is the observed head (m) of node 𝑠 at time 𝑡; 

𝐻𝑠𝑠(𝑡) is the simulated head (m) of node 𝑠 at time 𝑡; 

𝐻𝑝𝑛𝑡 is the measurement error (m), which converts head 

differences into a dimensionless value based on the sensor’s 

reading accuracy, given by: 

                                            𝐻𝑝𝑛𝑡 =  𝑃𝑠𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝                                           (3.17) 

𝑃𝑠 is the average observed pressure (m) at sensor nodes;  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑝 is the sensor reading percentage error as indicated by 

the manufacturer;  

𝑆 is the number of sensors, used similarly as 𝐹; 
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𝑤𝑠 is a weighting factor for observed heads, used similarly as 𝑤𝑓; 

All flow-related symbols are similar as in Part I formulation.  

 

 

Figure 3.4. Search Space Optimisation for Leakage Nodes. 
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The fittest 𝑛 scenario establishes the minimum emitter, 𝑐𝑛, for the candidate leak 

locations as the total leakage from the identified leaks in the optimal solution 

should equal the total water losses, 𝑐𝑛, determined in Part I. The range of flows 

for any node with larger MDNL than 𝑐𝑛 is adjusted within its MDNL and 𝑐𝑛. The 

process flow chart for Step 3 is presented in Figure 3.4.  

 

3.5.3 Closed Valves 

A series of scenarios, 𝑣, are simulated with the ultimate purpose to estimate the 

maximum number for possible closed valves in the WDN. The outcome of this 

process also corresponds to the number of possible open valves, thus, allowing 

to ultimately detect both unknown closed and open valves in the WDN model. 

The total scenarios 𝑁𝑉𝑎𝑙𝑣𝑒 is equal to the number of candidate valves remaining 

from PSA in Step 2. The optimisation framework with fixed number of decision 

variables, associates one parameter for any possible closed valve that also 

corresponds to the scenario, 𝑣. Using only observed heads from pressure 

measurements, the aim is to estimate the maximum number of possible closed 

valves in the WDN, which limits the search to a defined space. The decision 

variables of the optimisation problem include the set of remaining valve locations, 

𝑉, following Step 2, which is formulated as: 

 

Search for:  �⃗� = (𝐶𝑉𝑘
𝑣);    𝐶𝑉𝑘

𝑣 ∈  𝑉;  𝑣 = 1, … , 𝑁𝑉𝑎𝑙𝑣𝑒;  𝑘 = 0, … , 𝑉𝐼𝑛𝑑𝑒𝑥   (3.18) 

Minimize: 𝐹(�⃗�)                  (3.19) 

Subject to: 𝑃 > 0                     (3.20)                        𝑁𝐿𝑑𝑢𝑝𝑣 = 0                  (3.21) 

Where: 𝐶𝑉𝑘
𝑣 is the index of locations 𝑘 corresponding to the possible closed 

valve 𝑣;  

𝑉 is the set of candidate locations for any possible closed valve; 

𝑁𝑉𝑎𝑙𝑣𝑒 is the number of possible closed valves to be identified; 

𝑉𝐼𝑛𝑑𝑒𝑥 is the number of the candidate locations for any possible 

closed valve; 

𝑃 is the head at any node; 

𝑁𝐿𝑑𝑢𝑝𝑣 is the number of the duplicate valve locations that are 

identified as closed in one solution for the possible valves 𝑣. The 

number 0 is also included in the range of index values, 𝑘, for a 
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closed valve location. This is added for more flexibility so that a 

solution with less than 𝑣 closed valves is also possible. The 

constraints given by Equations 3.20 and 3.21 are equivalent to Eq. 

3.11 and 3.12 for the GA to search for good solutions.  

 

The optimisation analyses are carried out to minimize the weighted sum of 

squared differences between observed and simulated head values, given by:  

 

Minimize: 𝐹(�⃗�) =  ∑ [𝑇
𝑡=1 ∑

𝑤𝑠(
𝐻𝑜𝑠(𝑡)−𝐻𝑠𝑠(𝑡)

𝐻𝑝𝑛𝑡
)

2

𝑆
]𝑆

𝑠=1                                           (3.22) 

 

The abbreviations have a similar meaning as in Section 3.5.2. The fittest scenario 

establishes the maximum number of possible closed valves, 𝑁𝑉𝑎𝑙𝑣𝑒, in the WDN. 

This is used during the IPS stage and allows to identify both unknown closed and 

open valves. The process flow chart for the valve search space optimisation is 

presented in Figure 3.5. 

 

 

 

Figure 3.5. Search Space Optimisation for Valve Components. 
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3.5.4 Pipe Roughness Calibration Groups 

Step 3 for Pipe Roughness Calibration Groups is also associated with a series of 

scenarios, 𝑁𝐺𝑟𝑜𝑢𝑝𝑠. A number of short (user specified) optimisation analyses, 𝑍, 

are simulated at each scenario, 𝑔, with the ultimate purpose to estimate the 

maximum number of candidate pipe roughness calibration groups (Figure 3.6). 

This limits the calibration procedure to a defined number of pipes and possible 

roughness values. The optimisation framework with fixed number of decision 

variables, associates one decision variable for the roughness value of any pipe 

group that also corresponds to the scenario, 𝑔. This represents a group of 

discrete pipes whose discretized roughness value is adjusted. The decision 

variables include the remaining pipe groups and the corresponding roughness 

coefficients from Step 2 (section 3.4.3). Using only observed heads from pressure 

measurements (as in 3.5.3), the aim during each scenario is to two-fold:  

(a) To evaluate the improvement caused on the model fitness as a result of 

any changes in the roughness value of each pipe group.  

(b) To rank each considered pipe group according to its sensitivity on the 

objective function value.  

This allows to falsify the groups of pipes that cause no impact on the model 

fitness, and eventually reduce the problem dimensionality. At the end of Step 3 

the final search domain for the calibration of pipe roughness is defined, comprised 

of the reduced list of pipe groups and their corresponding range of possible 

roughness values. The optimisation problems are formulated as: 

Search for:  �⃗� = (𝜆𝑗
𝑔

);                  𝜆𝑗
𝑔

∈  𝑅𝑉𝑝𝑔,𝑝𝑚;           

                                                   𝑔 = 1, … , 𝑁𝐺𝑟𝑜𝑢𝑝𝑠;      𝑗 = 1, … , 𝑅𝐼𝑛𝑑𝑒𝑥;     (3.23) 

Minimize: 𝐹(�⃗�)                  (3.24) 

Subject to: [𝜆𝑗
𝑔

≤ 𝜆𝑗
𝑔

≤  𝜆𝑗
𝑔

]               (3.25)                       𝑃 > 0               (3.26)                                                           

Where: 𝜆𝑗
𝑔
 is the roughness coefficient value for the group of pipes 𝑔 

corresponding to index 𝑗 in set 𝑅𝑉𝑝𝑔,𝑝𝑚 associated with 𝑝𝑔 of 

material class 𝑝𝑚;  

𝑅𝑉𝑝𝑔,𝑝𝑚 is the set of possible roughness values that belongs 

in 𝐷𝑃𝑅𝐶𝑝𝑔,𝑝𝑚 for the group 𝑔 associated with 𝑝𝑔 and material class 

𝑝𝑚; 
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𝑁𝐺𝑟𝑜𝑢𝑝𝑠 is the total number of pipe groups to be calibrated; 

𝑅𝐼𝑛𝑑𝑒𝑥 is the number of possible roughness values for pipe 

group, 𝑔, associated with 𝑝𝑔 and material class, 𝑝𝑚; 

𝑃 is the head at any node.  

 

The process starts by imposing a boundary objective function value, 𝑂𝐹0, 

associated with the no-change scenario, i.e., if no changes are made in the 

model. The first scenario, 𝑔 = 1, considers a single pipe group and 𝑍 = 𝑁𝐺𝑟𝑜𝑢𝑝𝑠 

optimisation analyses are carried out. At each analysis, 𝑧, a different group of 

pipes, 𝑝𝑔, is considered for optimisation of its roughness value and the resulting 

change in objective function, 𝑂𝐹𝑧, is analysed. This is done to assess the 

improvement on the model fitness, i.e. the reduction in the objective function 

value, resulting from changes in the roughness coefficient value of a single pipe 

group. The process is undertaken for each pipe roughness group separately. The 

fitness improvement, 𝑓𝑖𝑧, for each 𝑧, which also represents a measure of 

sensitivity with respect to the objective function, is given by: 

                                                      𝑓𝑖𝑧 = 𝑂𝐹0 − 𝑂𝐹𝑧                                        (3.27)  

The optimisation minimizes the weighted sum of squared head differences, given 

by Equation 3.22 in section 3.5.3. Following all optimisation analyses the set of 

fitness improvement values 𝐹𝐼𝑔 for all tested pipe groups in scenario, 𝑔, is 

established, given by: 

                                               𝐹𝐼𝑔 = [
𝑓𝑖1

⋮
𝑓𝑖𝑍

]                                                      (3.28) 

The list 𝐹𝐼𝑔 ranks each pipe group considered during the optimisation analyses 

in a descending order, according to its sensitivity on the objective function. The 

pipe group that causes the largest fitness improvement (i.e. the most sensitive 

pipe group) is added as a decision variable in the next scenario, 𝑔 = 𝑔 + 1. It also 

populates the list 𝐺𝑆, which represents the decision variables ordered by their 

sensitivity on the OF. Subsequently, the remaining groups are optimised each 

time separately, in combination with the chosen pipe group in 𝑍 = 𝑁𝐺𝑟𝑜𝑢𝑝𝑠 − 𝑔 

optimisation analyses. The same philosophy is applied for the rest of the 

procedure until all scenarios 𝑔 = 𝑁𝐺𝑟𝑜𝑢𝑝𝑠 are tested and 𝐺𝑆 is fully populated. 

At each subsequent scenario the number of decision variables, 𝑔, is increased 
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by one, by adding the most sensitive group from the ranked 𝐹𝐼𝑔 and the resulting 

fitness improvement is analysed for all remaining pipe groups. This is done to test 

the fitness improvement (Eq. 3.27) with an extended set of decision variables 

where the optimised pipe roughness calibration groups are combined differently. 

Conversely, the number of analyses, 𝑍, at each scenario is decreased by one, as 

the chosen groups cannot be duplicated during the optimisation. When all 

scenarios, 𝑔 = 𝑁𝐺𝑟𝑜𝑢𝑝𝑠 are completed the scenario with the largest fitness 

improvement overall, establishes the chosen pipe groups from 𝐺𝑆 that are 

considered for calibration, while the rest are falsified, as a result of no, or worse 

fitness change. Ultimately this leads to a reduced list of highly sensitive pipe 

groups and their corresponding roughness coefficient values that serve as an 

input for the IPS stage. The process flow chart for the pipe group search space 

optimisation is presented in Figure 3.6. 

 

 

Figure 3.6. Search Space Optimisation for Pipe Groups. 
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as well as model calibration are presented. The decision variables include the list 

of parameters identified in SSO of the SSR stage. During the IPS stage both flow 

and head observations are used to minimize Equation 3.16.  

 

In this research during the hydraulic model calibration the optimisation 

determines the roughness coefficient value of each pipe group and/or the number 

and locations of closed valves (see Section 4.5.5). Therefore the problems 

formulated in sections 3.5.3 and 3.5.4 can be either solved separately, or 

together. For leak detection and localisation, here, the optimisation detects and 

localises the emitter flow values in the WDN (see Section 4.4.4). If necessary this 

stage in leak detection and localisation can be combined with hydraulic model 

calibration to identify any existing errors carried from previous model building and 

calibration procedures.  

 

3.7 Summary and Conclusions 

In this chapter, a search space reduction technique was presented to overcome 

the ill-posedness of inverse problems that concern, applications for either model 

calibration or leak detection and localisation. The technique is part of the 

proposed two-stage decision-support framework for solving inverse problems in 

WDN modelling and is implemented in three steps: (1) Inverse Problem 

Simplification, (2) Parameter Sensitivity Analysis and (3) Search Space 

Optimisation. In Step 1 prior information and knowledge of the system is used to 

simplify the problem and eliminate known, insensitive and unnecessary decision 

variables. In Step 2 the remaining decision variables are analysed with respect 

to their impact on the WDN model hydraulics and compared against the realistic 

boundary conditions. Any insensitive parameters are removed from the search 

space. Finally, in Step 3 the search space is further restricted based on additional 

optimisation analyses.  This step establishes the final list of decision parameters 

prior to solving the inverse problem.  

The main conclusions from this chapter are as follows: 

 Solving an inverse problem in WDN modelling is usually a complex task. 

Any available information that is directly or indirectly related to its aim 

should be used, even if it does not seem important initially. 
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 The technique can systematically reduce the number of decision variables 

and the range of possible values, considering the error in the available 

data. This is the key to reducing the inverse problem search space, as it 

provides a threshold value for the observable parameters.  

 Several improvements can be made to condition an ill-posed problem, 

e.g., reformulation of the problem, provision of additional measurements, 

and/or incorporation of prior information on decision variables. However, 

that does not guarantee that an improvement will be effective in converting 

an ill-posed problem into a well-posed one. This is done during the Inverse 

Problem Simplification process, which exploits prior information and 

knowledge of the system to simplify the inverse problem.  

 The Parameter Sensitivity Analysis establishes a threshold detectable 

response value for each decision variable. This is done, following a 

comparison of the uncertainty in observations against the hydraulic impact 

caused by a simulated change in a model parameter, to exclude candidate 

parameters or parameter values that do not cause significant impact on 

the model hydraulics.  

 The Search Space Optimisation uses an objective approach to reduce the 

search space before solving the inverse problem. This is done to provide 

a good starting point for the subsequent optimisation analysis, due to less 

solution combinations, and a reduced number of computations to explore 

the search space. 

 

The next chapter presents methods that apply the proposed decision-support 

framework with the ultimate purpose to improve the accuracy of leak localisation 

and the model quality. To do this, the methods use head and flow measurements, 

and integrate a search space reduction technique to increase the reliability of the 

detected network parameters and speed up the optimisation process. Two 

practical simulation-optimisation methods are proposed, depending on the 

accuracy of the starting model.  
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CHAPTER 4  Methods for Leakage Detection and Localisation, and Model Calibration based on Search Space Reduction 

Methods for Leakage Detection and 

Localisation, and Model Calibration 

based on Search Space Reduction 

 

4.1 Introduction 

For an accurate leak localisation it is necessary to have a model that has been 

calibrated. The reason for this is that due to the uncertainty associated with an 

uncalibrated model, a large impact on pressure and flow is required to be able to 

identify the event. However, a calibrated model is not always available, thus, 

many small leaks that cause a local impact in the hydraulics of the system remain 

undiscovered. Leak localisation and model calibration are interlinked and 

dependent procedures (Figure 4.1). When a leak is found and the model is 

updated its quality improves, while when a model is calibrated its ability to detect 

and localise leaks also improves. This is because both procedures are 

undertaken with the aim to minimize discrepancies between the observations and 

modelled outputs. Therefore, more observations from sensors would enable 

utilities not only to identify accurately, quickly and economically unknown leaks 

that do not rise to the surface, but also to calibrate Water Distribution Network 

(WDN) models more effectively. This can minimize the overall leak run times and 

establish a foundation for improved model quality assurance.  

 

Given the current status and trends in the availability of pressure and flow data, 

as well as in the complexity of inverse problems for WDN modelling, this chapter 

proposes two methods that both have an ultimate purpose of improved leak 

detection and localisation. This relies on having an initial model for leak 

localisation, i.e., whether it is calibrated or not. When a calibrated initial model is 

available, then leak localisation can be performed. The opposite situation is when 

the uncalibrated model has to be calibrated first before leak localisation is 
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performed. Based on the above, this Chapter proposes two practical simulation-

optimisation methods: 

(1) A Leakage Inspection Method (LIM), which highlights the leakage area 

and makes pinpointing of leaks faster.  

(2) A Calibration Method (CM) which improves the WDN model accuracy so 

it can be used in (1). 

 

 

Both methods formulate the problem as an inverse problem and integrate a 

search space reduction technique (see Chapter 3) to reduce its dimensionality. 

The LIM requires a calibrated initial model of the WDN. On the other hand, the 

CM is implemented when a calibrated model is not available, so that it can serve 

as a basis for the LIM. However, the same series of uninterrupted observations 

is used in both methods. More specifically the LIM uses observations after a leak 

has happened and the CM (when used before the LIM) observations before a 

leak has taken place. Bearing in mind the above, this Chapter is organised as 

follows. After this introduction the philosophy of the LIM is presented in Section 

4.2. Then, Section 4.3 provides an insight into the quality of monitoring, collecting 

and analysing data in WDNs that are used by both systems. Section 4.4 

describes the methodological details of the LIM, while Section 4.5 addresses the 

CM. Finally, Section 4.6 provides a summary and conclusions for this chapter. 

Before proceeding with the description of the two methods it is meaningful to 

elucidate the rationale of presenting the LIM before the CM. Although an accurate 

Leak Detection 
and 

Localisation 

Model 

Calibration 

Leak in 
WDN 

Updated 
Hydraulic Model  

Model according to 
Calibration Standards 

Identified and 
Fixed leaks 

Figure 4.1. The leak localisation and model calibration feedback loop. 
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hydraulic model is necessary for carrying out leak detection and localization, the 

motivation for carrying out this research is the identification of leakages and not 

the overall improvement of hydraulic modelling.  

 

4.2 The Overall Leakage Detection and Localisation Process 

4.2.1 Introduction 

There is no universally agreed procedure for finding leaks. Externally-based 

methods (see Section 2.5.3) are very accurate in pinpointing leaks on pipelines, 

however, the take long time in a large search space. On the other hand, internally-

based methods (see Section 2.5.4), such as those that use hydraulic modelling, 

exhibit higher uncertainty in how accurately system and data faults can be 

identified. This is due to the fact that the WDN model is only a simplified 

representation of the real system, yet these methods require less effort than the 

externally-based methods. Though most frequently leak localisation is performed 

using externally-based methods, to expedite the leak localisation process a 

synergy of internally-based methods, such as WDN hydraulic modelling, with 

externally-based methods is needed.  

 

The proposed data-driven leakage detection and localisation method exploits the 

advantages of internally-based methods to, eventually, facilitate externally-based 

methods for the ultimate purpose of faster and more accurate leakage 

pinpointing. The model-based search space reduction technique (see Chapter 3) 

can be used to reduce the number of computations required to explore the 

candidate leak locations. Therefore, through fast processing of the available 

pressure and flow data the LIM can highlight the areas of possible leakage. 

Consequently, this corresponds to a reduced search distance required for ground 

crews to pinpoint leaks, restricted to only part(s) of the WDN. To do this, an 

externally-based technique can be used, that is locally more accurate.  

 

When a calibrated starting model is not available the ability to detect accurately 

and localise leaks reduces, due to the deteriorated model quality. Consequently, 

the model needs to be calibrated according to the some standards, so that is can 

be used for leak detection and localisation. The proposed CM follows the same 
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philosophy as the LIM for model calibration with the only difference being that the 

CM uses data before a leak has happened whereas the LIM after the leak.  The 

historical, or incoming live measurements of pressure and flow provide 

information about the WDN state. Compared to an accurate model, an 

uncalibrated model may contain errors associated with the pipe, valve, or pump 

components. With sufficient data, such errors can be detected during the 

calibration process. In the proposed CM the inverse problem size is minimized 

through the implementation of a search space reduction scheme for pipe and 

valve components, before the model is calibrated.  

 

The novel offline methodologies use heads (calculated from pressures and 

elevations) and flow field measurements either collected from planned field tests, 

i.e., when pressure sensors are installed in the District Metered Area (DMA) for 

a limited period, or communicated from permanently deployed loggers. The 

former would also mean that the run time of any hard-to-find leaks that occur after 

the calibration of the hydraulic model or the leakage campaign, cannot be 

minimized unless the next calibration period follows on after the previous one. In 

view of this, permanent sensor installation is recommended. Bearing this in mind, 

Figure 4.2 provides a schematic representation of the overall proposed leak 

detection and localisation procedure and data flow route.  

 

It all starts from the pressure and flow monitoring devices, whereby the collected 

readings from each device are communicated and stored in the water utility’s 

sensor database. A data pre-processing process is, then, applied to the raw set 

of measurements. Any corrupt or inaccurate measurements are detected and 

corrected (or removed) and, ultimately, a well-behaved (see Section 4.3.2) 

problem dataset is prepared. The problem dataset is, then, fed into the LIM, 

whereby the output result is a highlighted WDN section where a likely leak event 

has been identified. An externally-based method follows next searching for the 

exact leak location(s) within the area proposed by the internally-based method. 

Any identified leaks or changes in the state of the system are, then, updated 

within the model, which is also expected to become more accurate, i.e., better 

calibrated. The updated hydraulic model can be used along with new incoming 

data from the sensors, whereby the LIM can reassess the WDN for further faults. 
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Figure 4.2. The proposed novel procedure used for leakage detection and 

localization. 
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4.2.2 Sensor Data 

Measurement devices in a DMA are normally equipped with a Global System for 

Mobile communications (GSM), which is capable of individual General Packet 

Radio Service (GPRS) data communication (i.e., newest UK best practice for 

leading water companies). The use of GPRS allows the data collected at regular 

time intervals (e.g., 15 minute) to be communicated to the water companies 

without incurring a per-call charge that is characteristic of other communication 

technologies (e.g., GSM calls, Short Message Service – SMS messages). The 

data from each sensor may be communicated at longer intervals (e.g., every 30 

minutes) to increase the sensor battery life. Thus, they typically capture readings 

every 15 minutes and initiate calls to the communication software, while in some 

cases the data from each sensor may be communicated at longer intervals in 

order to increase the sensor battery life. For each pressure and flow device a 

number of readings are obtained (e.g., 2 readings – assuming 15 minute sampled 

data, and communication frequency every 30 minutes).  

 

An export functionality in the communication software is used to automatically 

update a discrete set of Comma Separated Values (CSV) files. An Open 

Database Connectivity (ODBC) text driver is used to interface to the Time Series 

database storing the time series history of the DMA signals. Along with pressures 

and flows, when a monitoring device is installed, the water company collects 

manual measurements of the location (i.e., latitude and longitude) and elevation 

(altitude) of the sensor using the Global Positioning System, as well as the depth 

from the ground level. These allow to determine heads from pressure signals. 

The collected raw data should be assessed so that any faults in the sensor 

devices are identified. The quality of the available datasets can be evaluated 

through a Data Pre-Processing scheme, where the resulting output is a set of 

equally separated measurements of pressures and flows (in terms of time 

interval) for a specified period useful for enabling the implementation of the LIM 

or CM.  
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4.2.3 Internally-Based Method 

The data from all the DMA’s sensors signals are, then, used within the LIM so 

that any leaks in the WDN are identified. Depending on the sensor type, number, 

location and accuracy there is a limited observable WDN space, i.e., the length 

of pipes that can be monitored for leakage. If the pressure perturbation from a 

leak or any other fault is below the device’s accuracy range, the event will remain 

undetectable regardless of the distance from the sensor. However, this also 

allows to reduce the search space, which consequently decreases the 

computational and physical effort required to find leaks. Once the data from all 

the DMA signals are fully analysed within the LIM, the output of the leak detection 

and localisation methodology is a section of the network where a leak has likely 

occurred in the DMA. Additional information is also provided, which can be useful 

for the diagnosis of the event occurring, such as the path to pinpoint the event 

location. This provides a much shorter leak search distance, which enables the 

Leakage Technicians to pinpoint a leak faster, minimizing its run times. 

 

 

4.2.4 Externally-Based Method 

Once WDN section/part has been identified for leakage, an externally-based 

method is used to investigate the pipe section(s) in more detail and pinpoint the 

fault. Acoustic-based methods (e.g., listening sticks and leak noise correlators) 

still remain superior in terms of detection accuracy and the current-practice to 

sense a leak-induced signal. However, further developments of other equipment-

based leak detection methods are envisaged (e.g., pig-mounted acoustic sensing 

devices and/or ground penetrating radars). Pinpointing and fixing the fault does 

not complete the process, as after a leak is fixed the hydraulic model needs to be 

updated. This leads to additional benefits associated with model calibration. 

Based on a new set of measurements the WDN can be reassessed, which could 

lead to the identification of further leaks in it. It is, therefore, suggested that the 

process is carried out iteratively. 
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4.3 Sensor Data Pre-Processing 

4.3.1 Introduction 

A well-known characteristic of sensor data is that it can be uncertain and 

erroneous. The reason for this is that sensor batteries can fail, the communication 

network might experience interruptions, and/or the tendency of sensors to wear 

or drift. Other factors, such as low-cost sensors, freezing or heating of the casing 

or measurement device, accumulation of dirt, mechanical failure or vandalism 

(from humans or animals), affect heavily the quality of the sensor data. In general, 

these sources of errors can be classified broadly as either systematic errors (bias) 

or random errors (noise). Systematic errors arise due to changes in the operating 

conditions, e.g., temperature, humidity, etc., or other factors such as ageing of 

the sensor. The effect of random errors on sensor measurements may seriously 

affect the accuracy of the WDN modelling analyses. The sources of random 

errors include, but are not limited to:  

(1) Noise from external sources; 

(2) Random hardware noise;  

(3) Inaccuracies in the measurement technique (i.e., readings are not close 

enough to the actual value of the measured phenomenon); 

(4) Various environmental effects and noise; and 

(5) Imprecision in computing a derived value from the underlying 

measurements (i.e., sensors are not consistent in measuring the same 

phenomenon under the same conditions).  

 

All these errors may cause a significant problem with respect to data utilization, 

since leak detection and localisation using erroneous data may yield unsound 

results. Additional errors in the results can be caused by faulty elevation or depth 

measurements, as these are used to calculate heads. Hence, data quality 

assurance is a vital step prior to any analysis or application. The quality of 

decisions taken will depend on the quality of data used in the WDN modelling 

analyses. To address this problem, it is essential to detect and correct erroneous 

values in sensor data by employing data pre-processing. This activity converts 

raw data into fit-for-use data without errors, duplicates, and inconsistencies, i.e., 

high-quality data.  
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4.3.2 Sensor Data Quality 

Readings obtained from WDN monitoring devices can, in general, be classified 

as “dirty”, i.e., missing or unreliable (Ediriweera & Marshall, 2010). The main 

contributing factors for dirty readings is the lack of operator knowledge of 

communication systems issues and sensor management, weaknesses in the 

specification given to the equipment vendor, back end Information Technology 

system failures, and failing transducer hardware. Poor data quality manifests as 

sections of missing data, data from faulty loggers (offsets in reading values), and 

the presence of erroneous date stamps (offsets in reading times). Typical well-

behaved data (Batini & Scannapieco, 2006) from flow and pressure sensors 

should be characterised by: 

 Accuracy: It indicates the extent to which data reflects the real system 

hydraulics. If it is not 100% that means that there are errors in data.  

 Completeness: It refers to whether all available data is present, i.e., there 

are no gaps in the datasets. When data is due to unavailability, this does 

not represent a lack of completeness.  

 Consistency: The data is kept up to date and agrees with itself. This 

means there is no difference, when comparing two or more 

representations of the sensor data. 

 Timeliness: The degree to which data represent reality from the required 

point in time. 

 Uniqueness: Entities are recorded once and there should be no data 

duplicates reported. 

 Validity: Data are valid if it conforms to the syntax (format, type, range) of 

its definition. 

 

It is important to obtain up-to-date diagnostic information about the devices and 

conduct data validation to ensure the accuracy and validity of subsequent 

analysis or application. Communication failure alarms for remote sites are often 

overlooked, and the collection of increasing amounts of data requires a schedule 

for data validation. It has been estimated that water utilities in the UK use only 

10% of data (Water Briefing, 2013; Karimova, 2016), due in large part to low 

confidence in data quality. Ideally, basic data should be validated each time a 

logger is downloaded. Data checking should include: 
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(1) Whether the connection and download was successful. 

(2) Whether the data is correctly stored in the data management system. 

(3) The presence or absence of data. 

(4) The presence of zero or negative values, which usually indicate 

logger/sensor failure. 

(5) Whether the data value and time is “reasonable”. 

 

Some telemetry software systems provide facilities for flagging some of these 

issues. For example, alarm limits may help detect zero values. Validation 

techniques may be employed to highlight failing data points through exception 

reports and thus facilitate improved maintenance. However, often some manual 

interpretation is required from staff. As stated earlier, different locations within a 

network can yield significantly different levels of information about system 

performance. A further concern relates to the accuracy of monitoring devices 

used during field testing. Pressure and flow monitoring devices are accurate 

within a specified range. Provided that equipment calibration is maintained, 

standard sensors used for modelling purposes are normally accurate within a 

range of ±0.1% (Halaczkiewicz & Klima, 2018) of full scale 0-10 bar (i.e., typically 

accurate to ±0.1m), while flow meters within a range of ±1% (Peterson, 2018) for 

the recorded reading. Advances in pressure sensor calibration technology have 

now made it is possible to achieve accuracy ranges of ±0.0185% (General 

Electric, 2018), which is a 5-fold improvement in data quality. Pressure data 

should be collected at strategic points such as low pressure regions, control 

structures, areas of water quality complaints, and areas providing good 

calibration data. Significant improvements in the accuracy of the model 

calibration and leak localisation process can be secured with the inclusion of flow 

measurements captured from key flow routes in the WDN. Hence, data collection 

should be focused on such areas.  

 

4.3.3 Data Pre-Processing 

Data Pre-Processing (DPP) is the process of detecting and correcting (or 

removing) corrupt or inaccurate records from the sensor reading data (Rao et al., 

2012). This is achieved by identifying incomplete, incorrect, inaccurate or 

irrelevant parts of the data and then replacing, modifying, or deleting the dirty or 
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coarse data. DPP is an activity that consists of implementing error prevention 

strategies, such as screening, diagnosing, and editing (Van Den Broeck et al., 

2005) during:  

(1) Data Collection. 

(2) Data Communication/Transfer. 

(3) Data Transformation/Extraction. 

(4) Data Analysis/Exploration. 

 

Screening involves looking systematically for suspect features in the raw dataset 

(ACAPS, 2016). When screening data, it is convenient to distinguish oddities, 

such as lack or excess of data, outliers including inconsistencies and strange 

patterns. The identification of an error is followed by diagnosis, i.e., finding the 

cause for the defective data. The diagnosis and treatment phases of DPP 

requires an in depth understanding of all types and sources of possible errors 

encountered during data collection and entry processes (ACAPS, 2016). During 

diagnosis the treatment for the problematic observations can be:  

(1) Left unchanged: The most conservative course of action is to accept the 

data as a valid response and make no change to it. However, in a small 

dataset the impact of such action on the analysis result will be larger.  

(2) Edit: Changing the value of data shown to be incorrect. On the other hand, 

a change based on engineering judgement may bias the data as a result 

of introducing subjective impact.  

(3) Deleted: The data seems illogical and the value is so far from the norm 

that it will affect leak localisation or model calibration process. The 

drawback is that less data will be available. 

 

Following treatment, a set of pressure or flow data should be consistent with other 

similar data sets in the system and is now ready to load into the leakage 

inspection system. This output data from DPP is of high-quality, i.e., 

standardized, uniform, accurate and complete and can expedite the processing 

speed and performance of overall leak detection and localisation system. The 

DPP approach is demonstrated in Figure 4.3. 
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One serious data quality issue that must be addressed on the collected 

measurements prior to leakage detection and calibration analysis is that of 

missing readings. If the quantity of available data is sufficiently large, and the size 

of the affected readings is small, then the simplest approach may be to discard 

those patterns from the dataset (Batini & Scannapieco, 2006). This approach is 

based on the assumption that the omission of the data values is independent of 

the data itself and the description of patterns. If this is not the case, then this 

solution will modify the data distribution in an adverse way. Such an example 

would be a sensor that always fails to produce an output signal when the signal 

value exceeds a particular threshold.  
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Figure 4.3. Schematic Representation of Data Pre-Processing. 
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When there is “too little” data to consider (based on engineering judgement) 

discarding potentially useful information contained in partial patterns, then 

techniques for “filling in” such data must be considered (Dasu & Johnson, 2003). 

For a continuous stream of data such as a time series, it will usually be preferable 

to fill in the data to recreate the continuous stream. Various heuristics may be 

adopted for dealing with this “filling in”. The simplest approach is interpolation 

from adjacent points (which is only useful for small numbers of missing values). 

Alternatively, each missing value can be replaced by the mean of the 

corresponding variable over those patterns for which a value is available. For time 

series with fairly predictable cyclic behaviour, this technique is reasonable and 

can be used in a seasonal context. A more sophisticated approach is to express 

any variable that has missing values in terms of a regression over the other 

variables (assuming they are correlated) using the available data, and then use 

the regression function to fill in the missing values. To some extent, the method 

adopted also depends on whether isolated missing values are considered or 

there are long sequences of missing values, for which a more sophisticated 

approach may prove necessary. Bearing this in mind, note that this topic is 

beyond the scope of the work presented here and hence will not be discussed in 

greater detail. 

 

4.4 Leakage Inspection Method 

4.4.1 Overview 

The Leakage Inspection Method (LIM) detects and localises leaks in DMAs, 

based on systematic search space reduction. The leak localisation is formulated 

as an inverse problem where unknown leaks are simulated as emitter coefficients 

representing leak flow discharge. The leak location(s) and size are determined 

using an optimisation technique, where decision variables include the candidate 

leak locations and their corresponding emitter coefficients. A practical simulation-

optimisation framework highlights the leakage area and makes pinpointing of 

leaks faster. The quality of a generated solution is evaluated through the 

simultaneous comparison of the available heads and flows measured by 

deployed sensors with the simulated values from the hydraulic model. The LIM 
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method integrates two stages (Figure 4.4) based on the developed decision-

support framework for solving inverse problems  proposed in Section 3.2:  

1. a Search Space Reduction (SSR) stage for reducing the inverse problem 

size; 

2. a Leak Detection and Localisation (LDL) stage for finding leaks. 

 

All simulations in this research were carried out using the EPANET Programmer’s 

Toolkit (Rossman, 2000), while MATLAB was used to implement the developed 

optimisation-based algorithm. Eventually, a computer-based tool has been 

developed for the LIM, which automates the simulation-optimisation process and 

eliminates any manual task by the user on the hydraulic model. The full 

description of the automated tool is given in Appendix A, as the main focus of the 

thesis is on the developed methodology and not the software. During the SSR 

stage the LIM initially leverages the space reduction technique for node 

components proposed in Chapter 3. This is so that the search domain before leak 

localisation is objectively reduced and unnecessary simulation of solutions that 

cause no impact on model fitness is avoided. This is done by implementing three 

search reduction steps (see section 3.2) considering the WDN model nodes. 

Then, at the LDL stage an optimisation problem is solved, to indicate the size and 

location of leaks in the WDN. A calibrated hydraulic model is a prerequisite of this 

approach. A schematic framework of the LIM is given in Figure 4.4.  
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Figure 4.4. Overview of the Leak Localisation methodology framework. 
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4.4.2 Assumptions 

The effectiveness of the developed method relies on the following key 

assumptions: 

 Flow measurements from the inlet and outlet meter(s), as well as heads 

from pressure measurements at an indicative minimum spatial resolution 

of at least one sensor per 200 properties, are available (this is the current 

standard employed by the water utility supporting this work). This is 

collected at a time interval of 15 minutes and a duration of 24 hours to 

allow a full Extended Period Simulation (EPS) analysis.  

 Any leaks identified by the proposed method are located at network nodes. 

Note that this does not reduce the generality of this method and can still 

detect leaks located along network pipes. 

 The hydraulic model of the analysed water system is calibrated according 

to the acceptable standards (Ormsbee & Lingireddy, 1997) prior to any 

leakage detection.  

 The impact of any existing error in calibration, such as the existence of 

valves with unknown status or pipe friction coefficients, on the modelled 

outputs following leak detection and localisation is minimal.  

 The leak flow rate remains unchanged in the time horizon of the data used 

to detect and localise leaks. 

 

4.4.3 Search Space Reduction Stage 

The WDN model nodes are considered and the three-step search space 

reduction method proposed in Chapter 3 is implemented to minimize the number 

of candidate leakage node locations and the range of possible flow values. The 

outcome of the SSR stage establishes a reduced set of decision variables, 𝑥𝑆𝑆𝑅, 

for solving the inverse problem. The Inverse Problem Simplification at Step 1 

removes any nodes related to non-pipe components (see section 3.3.2). Then, at 

Parameter Sensitivity Analysis at Step 2 the Minimum Detectable Nodal Leakage 

for each candidate location is determined, where a user input is necessary for the 

starting flow value (see section 3.4.2). Based on the number, location and 

accuracy range of sensors a minimum bound flow for each location is established. 

Finally, the Search Space Optimisation at Step 3 defines the maximum number 
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of possible leak locations in the WDN and ultimately the range of possible flow 

values for each potential location (see section 3.5.2). The output from the SSR 

stage is a reduced list of candidate leak locations and range of possible flow 

values that is considered as the basis of the LDL stage, where the size and 

location of leaks is identified. 

 

4.4.4 Leakage Detection and Localisation Stage 

At the LDL stage, another inverse problem is formulated, similarly to Step 3 of 

SSR stage (see section 3.5.2), to detect and localise the emitter flow values in 

the WDN. The optimisation searches for a maximum of 𝑁𝐿𝑒𝑎𝑘 possible leaks 

based on the fittest 𝑛 scenario resulting from Part II of the Search Space 

Optimisation step. The decision variables include the nodes remaining in the list 

of leak locations 𝐽 and the range of their flow values, following Part II. The range 

of 𝑐𝑖
𝑛 values, involves a vector of equally separated discretized values between 

the upper, 𝑐𝑛, and lower, 𝑐𝑛, bounds established in Step 3 of SSR, also including 

the value of zero for no leakage. Again, the flow and head observations are 

considered during the optimisation analysis to minimize Equation 3.16 (see 

Section 3.5.2). Eventually, in a reduced set of decision variables, the leak 

detection and localisation process starts with a more targeted possible solutions 

as opposed to a case where no reduction is applied. 

 

4.5 Calibration Method 

4.5.1 Overview 

The Calibration Method (CM) determines the state of internal pipe roughness 

values,  detects the status of any throttle valves with uncertain position, and 

identifies the setting/speed of any pressure reducing valve/variable speed pump, 

as well as the multiplier coefficient of any demand pattern. Therefore, any network 

component that has an impact on the pressure and flow value and profile is 

calibrated. More specifically, the adjustment of the pipe roughness and throttle 

valve status can affect the WDN model pressure, while the demand pattern 

multiplier coefficients have an impact on flow. The optimisation of Pressure 

Reducing Valves (PRVs) and variable speed pumps is associated with the 

simulation of the response of those network components according to changes 
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in demand. The calibration is formulated as an inverse problem and applies the 

systematic search space reduction technique proposed in Chapter 3. Its aim is to 

produce a hydraulic model that accurately simulates the average day hydraulic 

conditions of the real system and hence can be used for leak detection and 

localisation. Through the use of head and flow data and an optimisation technique 

the aim is to improve the quality of the hydraulic model, i.e., to correctly simulate 

the flow path head losses and directions, as well as pressure and flow profiles in 

the WDN. In addition to speed up the calibration process and reduce the search 

effort required to identify errors associated with unknown closed or open throttle 

valves. The quality of a generated solution is evaluated through the simultaneous 

comparison of the available heads and flows measured by deployed sensors with 

the simulated values from the hydraulic model. A novel DPP approach is used to 

generate the problem dataset from the raw sensor data comprised of 

measurements that represent the average day conditions.  

 

The Calibration Method involves four stages (Figure 4.5):  

(1) Data Pre-Processing (DPP) stage to generate the calibration dataset. 

(2) A Profile Calibration (PC) stage for macro-level calibration of the WDN 

model.  

(3) A Search Space Reduction (SSR) stage for reducing the calibration 

problem size. 

(4) A Component Calibration (CC) stage for micro-level calibration. 

Similarly to the LIM, the EPANET Programmer’s Toolkit and MATLAB was used 

to implement the simulation-optimisation framework, leading to the development 

of a similar computer-based tool for automating all the stages in CM. The full 

description of the CM tool is provided in Appendix B following the main emphasis 

of this research. In addition, similar assumptions were made associated with the 

density and the interval of the collected flow and head measurements. On the 

other hand, the necessary duration of measurements is at least two weekdays to 

allow the representation of average day conditions. Furthermore, the impact of 

any existing error in calibration, such as the existence of background leaks, on 

the modelled outputs following model calibration is assumed to be minimal or null.  
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In the DPP stage the head and flow observations are pre-processed to convert 

the raw set of measurements to a 24-hour dataset that represents the average 

day hydraulic behaviour of the WDN. This is performed by implementing two 

steps: 

(1) Average Day Profile Dataset Generation.  

(2) De-Noised Dataset Generation. 

 

Following the DPP stage the problem dataset comprised of measurements for 

heads and flows for calibration is constructed, which is then used as an input for 

the next stages. During the PC stage the profile of any demand category and of 

any model component’s setting that affects the WDN model flow and pressure, 

respectively, is calibrated using inverse analysis. Each profile is developed using 

pattern multiplier coefficients applied against a baseline value for each time step. 

The GA optimises the profiles by implementing two steps, where decision 

variables include the pattern multipliers for candidate demand category or model 

component’s setting, respectively. The two steps include:  

(1) Demand Profile Calibration (DPC). 

(2) Pressure Profile Calibration (PPC). 

 

At the SSR stage, the pipe and valve components are considered and the search 

domain is reduced before the calibration of the WDN model, by implementing the 

three proposed steps (see Chapter 3). The decision variables include the pipe 

group roughness coefficients and the status of candidate valves. The three steps 

of SSR are implemented for each decision variable type separately and the 

outcome is a reduced list of candidate pipe roughness groups and valve 

components, which is considered in the CC stage. Then, at the CC stage, another 

optimisation problem is solved where the pipe group roughness coefficients and 

status of valves are fine-tuned to calibrate the WDN model at micro-level and 

indicate any unknown closed or open valves in the WDN. The updated hydraulic 

model should be calibrated according to the performance criteria and be available 

for uses in leak detection and localisation. A schematic framework that 

demonstrates the four stages of the CM is given in Figure 4.5. 
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4.5.2 Data Pre-Processing Stage 

4.5.2.1 Background 

Water usage in WDNs is inherently variable due to continuously changing 

demands. In order for an EPS model to reflect accurately the hydraulic behaviour 

of the real system, these demand fluctuations must be incorporated as profiles. 

Inverse Problem Simplification (Section 3.3.3 and 3.3.4) 

Uncalibrated WDN Hydraulic Model 

Parameter Sensitivity Analysis (Section 3.4.3 and 3.4.4) 

Search Space Optimisation (Section 3.5.3 and 3.5.4) 

Demand Profile Calibration 

S
S

R
 

P
C

 

Pressure Profile Calibration 

Pipe Roughness and Valve Status Calibration C
C

 
Average Day Profile Dataset Generation 

D
P

P
 

De-Noised Dataset Generation 

Figure 4.5. Overview of the Calibration Methodology framework. 
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The temporal variations in the water consumption of WDNs typically follow a 24-

hour cycle, called a diurnal demand profile, which also produces a corresponding 

pressure profile due to head losses. However, system flows experience changes 

not only on a daily basis, but also weekly, annually and in a long term. Seasonal 

differences in water usage have been related to climatic variables, such as 

temperature and precipitation, as well as the changing habits of customers, such 

as outdoor recreational and agricultural activities occurring in the summer 

months. As one might expect, weekend usage patterns often differ from weekday 

patterns, due to changing habits.  

 

The EPS hydraulic models are typically calibrated with the aim to produce an 

accurate representation of the average day’s pressure and flow profile in the real 

WDN, associated with a weekday. However, in practice, choosing the best 

dataset to calibrate the WDN model is subjective, as it depends on the engineer’s 

judgement and experience of the system. In a calibration campaign, the 

monitoring devices are typically deployed for limited period of time recording data 

for approximately 2-3 weeks. However, during the calibration process 

observations from one day (24 hours) are chosen out of all the recorded data. 

The choice for the day that represents the calibration dataset is based on the 

engineer’s judgement and experience of the WDN, so that it represents the 

hydraulic behaviour of an average day as closely as possible. Normally, the 

calibration dataset is associated with measurements recorded on either a 

Tuesday, Wednesday or Thursday. The rationale for this is because Monday and 

Friday are closer to weekend days and, thus, the consumption pattern may be 

affected by the weekend demand profile. On the other hand, the choice of a single 

day (either Tuesday, Wednesday or Thursday) as the calibration dataset for the 

average day conditions in the real system introduces a lot of uncertainty, due to 

the day-specific variability in consumption.  

 

4.5.2.2 Overview 

The Data Pre-Processing stage develops an objective method for preparing the 

calibration data with the aim to improve the calibration of average day models. 

The method prerequisites well-behaved data characterised by accuracy, 

completeness, consistency, timeliness, uniqueness and validity. The developed 
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Data Pre-Processing method uses the head and flow observations that are 

recorded during weekdays, i.e., Monday to Friday, to create an objective and 

accurate dataset for the average day hydraulic behaviour of the WDN. In other 

words, it aims to create the best reflection of observed data used to calibrate the 

hydraulic model. This is done in two steps: 

(1) Average Day Profile Dataset Generation 

(2) De-Noised Dataset Generation. 

 

In Step 1 (4.5.2.3), the pressure and flow data from weekdays (without weekends) 

are considered to generate a dataset of the average day for each monitoring 

device, where the raw set measurements is converted to a 24-hour dataset. Then, 

in Step 2 (Section 4.5.2.4) a data de-noising technique is implemented on the 

average day dataset to remove any noise caused by day-specific outliers. The 

resulting set of smoothed and equally separated head and flow measurements 

for 24-hours is then, used by the CM as the calibration dataset. An example of 

how the 24-hour calibration dataset is generated from raw observations during 

the DPP stage, is presented in Figure 4.6. 
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24-Hour Average 

Dataset 

Original Dataset 

24-Hour Calibration 

Dataset 

Figure 4.6. Example of the data pre-processing method applied on the 

available flow measurements. 
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4.5.2.3 Average Day Profile Dataset Generation 

In the Step 1 of the DPP stage the raw dataset of weekday heads from pressures 

and flow measurements from each device is used to create a 24-hour dataset 

that represents the average day. The number of time steps in the average day 

dataset depends on the temporal resolution of the available measurements. The 

increment readings captured by each device are used to determine the average 

value for head and flow at each time step, using: 

 

                                               𝑦𝑜,𝑚̅̅ ̅̅ ̅̅ (𝑡) =
∑ 𝑦𝑜,𝑚,𝑑(𝑡)𝑇

𝑑=1

𝑇
                                             (4.1) 

 

Where:  𝑦𝑜,𝑚̅̅ ̅̅ ̅̅ (𝑡) is the average value of the readings from device 𝑚 at time 𝑡; 

𝑦𝑜,𝑚,𝑑(𝑡) is the measurement value from device 𝑚 at time 𝑡 on day 𝑑; 

𝑇 is the total number of days in considered in the dataset of 

measurements.  

 

Ultimately, a 24-hour set of measurements is created for each device, 

representing the average day profile for the period of recorded data. An 

advantage of this method is that it does not require each device to have the same 

number of measurements, i.e., the total number of days, 𝑇, as it is based on the 

average conditions. 

 

4.5.2.4 De-Noised Dataset Generation 

Still, however, due to outliers in measurements caused by day- and time-specific 

variability in consumption, the resulting dataset pattern contains noise and may 

not be representative of the realistic average day conditions. For example, if the 

consumption pattern of a major customer has abruptly changed for a specific day 

when observations were recorded, this may significantly affect the average day 

dataset. To avoid such an impact on the calibration dataset as a result of temporal 

variability in consumption patterns, in Step 2 a smoothing technique is 

implemented to de-noise ADPD of each device.  

 

Smoothing techniques are often employed to capture general patterns in 

stressor-response relationships among variables and eliminate noisy data. The 
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classical procedure to smooth a dataset is to fit a polynomial of suitable degree. 

The problem with polynomial smoothing is that it is not resistant. A few data points 

at the extreme right of the dataset can very much affect the fitted values at the 

left of the scatterplot. In fact, this is a general problem of fitting curves with the 

least squares method. To tackle this, the Locally Weighted Polynomial 

Regression (LOWESS) method is used which is a data analysis technique for 

producing a “smooth” set of values from a time series which has been 

contaminated with noise, or from a scatter plot with a “noisy” relationship between 

the 2 variables. It was introduced in the statistical literature in the late 1970s 

(Cleveland, 1979) and later developed by many others (e.g. Jacoby, 2000; 

Loader, 2004).  

 

LOWESS regression is based on a smoothing procedure which pays greater 

attention to the local points. The smoothed value 𝑦𝑜
∗ corresponding to observation 

𝑦𝑜,𝑘 is obtained on the basis of the observations around it (nearest neighbours) 

within a band of certain width (i.e., time steps). The LOWESS procedure 

determines each smoothed observation by computing the regression weights for 

observation in the band. The smoothing band can vary in size and is specified as 

a fraction between 0 and 1, which represents the percentage of data (0-100%) 

the band covers. The point 𝑦𝑜,𝑘 is the midpoint of the band. The total data 

points, 𝑃, within the band are assigned weights in a way so that 𝑦𝑜,𝑘 has the 

highest weight. The weights for the other data points decline with their distance 

from 𝑦𝑜,𝑘 (local weighting), according to a weight function, given by the tri-cube 

function:  

 

                                              𝑤𝑘(𝑡) = (1 − |
𝑦𝑜,𝑖−𝑦𝑜,𝑘

𝑑𝑖
|

3

)
3

                                   (4.2) 

 

Where:  𝑤𝑘 is the is the tri-cube weight function for observation 𝑦𝑜,𝑘 at time 

step 𝑡; 

𝑦𝑜,𝑘 is the observation value to be smoothed; 

𝑦𝑜,𝑖 is the nearest neighbour, 𝑖 of 𝑦𝑜,𝑘 as defined by the span; 

𝑑𝑖 is the time distance from 𝑦𝑜,𝑘 to its 𝑃𝑡ℎ observation (the most 

distant value) within the span.  
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The weights have the following characteristics: 

 The data point to be smoothed has the largest weight and the most 

influence on the fit. 

 Data points outside the span have zero weight and no influence on the 

fit. 

A weighted linear least-squares regression is performed using a first degree 

polynomial. The smoothed value is given by the weighted regression at the 

predictor value of interest. The procedure is repeated for all the data points in the 

24-hour dataset and for each device. The outcome is a De-Noised dataset of 

generated measurements for 24 hours corresponding to the average conditions 

for each measurement device at each time step. The generated dataset is used 

as the observations by the CM so that the WDN model is calibrated to represent 

the average conditions for the period of recorded data.  

 

4.5.3 Profile Calibration Stage 

4.5.3.1 Background 

The pressures and flows in a hydraulic model are simulated as temporal patterns 

based on the demand type associated with each WDN model junction at a 

specific time step. When more than one demand type is allocated to a particular 

junction, the demand is said to be a composite. Determining the total rate of 

consumption for a junction node with a composite demand is a simple matter of 

summing the individual demand types. When temporal patterns are applied to 

composite demands, the total demand for a junction at any given time is equal to 

the sum of each baseline demand times its respective pattern multiplier for each 

time step of the hydraulic simulation. The series of demand pattern multipliers 

models the diurnal variation in demand and can be reused at nodes with similar 

usage characteristics. Therefore, any adjustment in the series of multipliers can 

directly affect flow and, consequently pressure. The baseline demand is often 

chosen to be the average daily demand (although peak day demand or some 

other value can be used).  

 

It is generally accepted in WDN modelling that demand patterns repeat every 24 

hours with only negligible differences. The amount of time between 



CHAPTER 4 – Methods for Leakage Detection and Localisation, and Calibration based on Search Space Reduction 

 

 

 
136 

 

measurements has a direct correlation to the resolution and precision of the 

constructed profile, i.e., the number of demand pattern multipliers. The demand 

profile for each junction can be constructed given by: 

 

                                          𝑄𝑗(𝑡) = ∑ 𝐵𝑗,𝑝𝑄𝑃𝑎𝑡𝑗,𝑝(𝑡)𝑃
𝑝=1                                        (4.3) 

 

Where: 𝑄𝑗(𝑡) is the total demand at junction 𝑗 at time 𝑡;  

𝐵𝑗,𝑝 is the baseline demand for demand type 𝑝 at junction 𝑗; 

𝑄𝑃𝑎𝑡𝑗,𝑝(𝑡) is the pattern multiplier for demand type 𝑝 at junction 𝑗 at 

time 𝑡. 

 

Nevertheless, flow and pressure are inversely related. An increase in 

consumption causes more head loss and, thus, reduction in pressure. On the 

other hand, the pressure of the system can be controlled at any time through the 

use of PRVs that reduce the available head, or pumps that increase it. For 

example, when a DMA is pressure managed the PRV setting may be set at a 

lower level during the night for leakage reduction purposes. Therefore, the 

pressure profile for each WDN part can be constructed by: 

 

                                                 𝑃𝑘(𝑡) = 𝐵𝑆𝑘𝑃𝑃𝑎𝑡𝑘(𝑡)                                       (4.4) 

 

Where:  𝑃𝑘(𝑡) is the pressure at the model component 𝑘 at time 𝑡. The model 

component 𝑘 can be either a source node (e.g., reservoir or tank), 

a PRV or a pump, where the head pattern, setting or speed can be 

adjusted, respectively. 

𝐵𝑆𝑘 is the baseline head, setting or speed at model component 𝑘;  

𝑃𝑃𝑎𝑡𝑘(𝑡) is the pattern multiplier for the baseline head, setting or 

speed 𝐵𝑆𝑘 of model component 𝑘 at time 𝑡. 

 

4.5.3.2 Overview 

The Profile Calibration is divided into two parts where different optimisation 

problems are solved with the ultimate purpose to macro-calibrate the WDN 

hydraulic model. During this stage, the model parameters that are associated with 
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the diurnal variation in demand and pressure profile are calibrated. Therefore, 

changes are made to the values of the PRV settings, pump speeds and the 

demand pattern multiplier coefficients. The calibration is formulated as an inverse 

problem where decision variables include the discrete multipliers for any pattern 

that impacts either the demand or pressure in the WDN model. Using the 

generated 24-hour calibration dataset after the DPP stage the aim is to optimise 

the discretized profile of any demand category and any setting of any model 

components associated with the hydraulic behaviour of the WDN. In both parts, 

the problem is formulated to optimise the pattern multiplier coefficient of one time 

step at a time, so that discrepancies between observed and simulated outputs 

are minimized. The number of pattern multipliers is equal to the total number of 

time steps associated with the problem dataset. The process begins by optimising 

the pattern multiplier for the first time-step of the EPS (e.g., at 00:00 hours) and 

ends when optimisation of all pattern multipliers for the length of the hydraulic 

simulation has been completed. The two parts of PC stage involve: 

(1) Demand Profile Calibration (DPC)  

(2) Pressure Profile Calibration (PPC).  

 

During DPC the decision variables include the pattern multipliers for all non-

leakage demand categories associated with the hydraulics of the WDN model 

and where measurements are available. Using only observed flow 

measurements from the generated calibration dataset the aim is to calibrate the 

profile of each demand type and consequently the model’s overall demand at all 

entry points. DPC is carried out before PPC as demands drive the head losses in 

the system. At the end of DPC, the resulting modelled flows should exactly match 

the available observations. Then, in PPC a second optimisation problem is solved 

with the updated demand profiles in the hydraulic model, to calibrate the profile, 

setting or speed of any model component that impacts pressure in the WDN. For 

example, the speed of a pump can be adjusted as a response to a change in 

WDN demand in order to maintain a desired pressure. Consequently, the 

optimisation of those model components aims to simulate such a situation. In this 

part only heads from pressure observations are considered and the outcome from 

this process is a hydraulic model that is calibrated at a macro-level and serves 

the foundation for the CC stage. The optimisation problems are solved similarly 
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in both parts and are subject to two different sets of constraints: (1) the set of 

implicit type constraints considering system hydraulics; and (2) the set of explicit 

constraints used as bounds for the algorithm solution search space for each 

decision variable. The optimisation in each part is formulated as: 

 

Search for: �⃗� = (𝑃𝑀𝑡
𝑝)       𝑃𝑀𝑡

𝑝 ∈  𝑃𝑝; 𝑝 = 1, … , 𝑁𝑝𝑎𝑡𝑡𝑒𝑟𝑛; 𝑡 = 1, … . 𝑁𝑆𝑡𝑒𝑝  (4.5) 

Minimize: 𝐹(�⃗�)                                                                                           (4.6) 

Subject to: [𝑃𝑀𝑡
𝑝  ≤  𝑃𝑀𝑡

𝑝  ≤  𝑃𝑀𝑡
𝑝]                                                               (4.7) 

Where:  𝑃𝑀𝑡
𝑝
 is the pattern multiplier for pattern 𝑝 at time step 𝑡; 

𝑃𝑝 is the set of pattern multipliers for pattern 𝑝; 

𝑁𝑝𝑎𝑡𝑡𝑒𝑟𝑛 is the total number of patterns to be calibrated; 

𝑁𝑆𝑡𝑒𝑝 is the number of time steps for each pattern 𝑝. 

 

4.5.3.3 Demand Profile Calibration 

In DPC part a series of short (user specified) optimisation analyses, 𝑁𝑆𝑡𝑒𝑝, are 

undertaken, where at each analysis, 𝑡, the demand multiplier, 𝑃𝑀𝑡
𝑝
 (equivalent to 

the multiplier 𝑄𝑃𝑎𝑡𝑗,𝑝(𝑡) in Equation 4.3), is optimised for 𝑁𝑝𝑎𝑡𝑡𝑒𝑟𝑛 demand types 

with the aim to minimize the weighted sum of squared flow difference given by 

Equation 3.13. Any demand type associated with the leakage profile is not 

considered in this process as it is assumed that the background leakage remains 

constant. Following all optimisation analyses, the outcome is a hydraulic model 

with calibrated demands that represent the average day consumption pattern.  

 

4.5.3.4 Pressure Profile Calibration 

A similar optimisation problem is formulated in PPC part using the updated 

hydraulic model. During PPC, 𝑁𝑆𝑡𝑒𝑝 optimisation analyses are undertaken, 

where at each analysis, 𝑡, the pattern, setting or speed multiplier, 𝑃𝑀𝑡
𝑝
 (equivalent 

to the multiplier 𝑃𝑃𝑎𝑡𝑘(𝑡) in Equation 4.4), is optimised for 𝑁𝑝𝑎𝑡𝑡𝑒𝑟𝑛 components. 

These are associated with the drive head of any source node, the setting of any 

PRV, or the speed of any pump in the WDN, respectively. The optimisation 

problem minimizes the weighted sum of squared head difference given by 

Equation 3.22. The outcome of PPC part is a hydraulic model where simulated 
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heads match the pattern shape and are close to observed ones, but still do not 

match them due to additional errors in the WDN model. The hydraulic model 

following the PC stage is considered for performing the SSR stage, where the 

micro-level calibration problem is minimized. 

 

4.5.4 Search Space Reduction Stage 

The WDN model pipes and valves are considered and the three step search 

space reduction method proposed in Chapter 3 is implemented to minimize the 

number of candidate pipe groups and valves for roughness and status calibration, 

respectively. The three steps of SSR are implemented for each decision variable 

type separately, i.e., one decision variable type is considered at a time. The 

Inverse Problem Simplification at Step 1 removes any valve of known or 

estimated status and allocates the WDN model pipes into groups according their 

characteristics (see section 3.3.4 and 3.3.5). Then, at the Parameter Sensitivity 

Analysis at Step 2 the Detectable Pipe Roughness Coefficients and Valve 

Components are determined, where the number, location and accuracy range of 

sensors is taken into account (see 3.4.4 and 3.4.5). Finally, the Search Space 

Optimisation at Step 3 defines the maximum number of pipe calibration groups 

and possible closed valves in the WDN (see 3.5.4 and 3.5.5). Following the SSR 

stage a reduced list of candidate pipe roughness groups and valve components, 

is prepared and considered as the basis of the CC stage, which is described in 

the next sub-section. 

 

4.5.5 Component Calibration Stage 

At the CC stage, another inverse problem is formulated to calibrate the hydraulic 

model at a micro-level. The aim of this stage is to improve the model quality and 

identify any undiscovered errors carried out from previous calibration procedures, 

which are associated with incorrect pipe states and flow topology. An optimisation 

problem is formulated to where decision parameters include the reduced set of 

pipe roughness groups and candidate valves with unknown status following the 

SSR stage. The optimisation searches for a maximum of 𝑁𝐺𝑟𝑜𝑢𝑝𝑠 possible 

calibration groups and 𝑁𝑉𝑎𝑙𝑣𝑒 possible closed valves based on the fittest 

scenario resulting from Step 3 of SSR stage for each decision variable type. The 

decision variables include the groups of pipes and the range of their possible 
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roughness values, along with the valves remaining in 𝑅𝑉𝑝𝑔,𝑝𝑚 and in the list of 

valve locations, 𝑉, respectively, following Part II. The range of 𝜆𝑗
𝑔
 values for each 

candidate pipe group, involves a vector of equally separated discretized values 

between the upper, 𝜆𝑗
𝑔
, and lower, 𝜆𝑗

𝑔
, bounds based on 𝐷𝑃𝑅𝐶𝑝𝑔,𝑝𝑚. Again, the 

flow and head observations are considered during the optimisation analysis to 

minimize Equation 3.16. The optimisation is formulated as: 

 

Search for:   �⃗� = (𝜆𝑗
𝑔

, 𝐶𝑉𝑘
𝑣);              𝜆𝑗

𝑔
∈  𝑅𝑉𝑝𝑔,𝑝𝑚;              𝐶𝑉𝑘

𝑠 ∈  𝑉𝑠 

                                                        𝑔 = 1, … , 𝑁𝐺𝑟𝑜𝑢𝑝𝑠;   𝑣 = 1, … , 𝑁𝑉𝑎𝑙𝑣𝑒 

                  𝑗 = 1, … , 𝑅𝐼𝑛𝑑𝑒𝑥;       𝑘 = 0, … , 𝑉𝐼𝑛𝑑𝑒𝑥     (4.8) 

Minimize: 𝐹(�⃗�)          (4.9) 

Subject to: 𝜆𝑗
𝑔

≤ 𝜆𝑗
𝑔

≤  𝜆𝑗
𝑔
                                    𝑃 > 0            (4.10) 

Where:  𝜆𝑗
𝑔
 is the roughness coefficient value for the group of pipes 𝑔 

corresponding to index 𝑗 in set 𝑅𝑉𝑝𝑔,𝑝𝑚 associated with 𝑝𝑔 of 

material class 𝑝𝑚;  

𝐶𝑉𝑘
𝑠 is the index for valve 𝑘 for the possible closed valve 𝑠;  

𝑅𝑉𝑝𝑔,𝑝𝑚 is the set of possible roughness values that belongs 

in 𝐷𝑃𝑅𝐶𝑝𝑔,𝑝𝑚 for the group 𝑔 associated with 𝑝𝑔 and material class 

𝑝𝑚; 

𝑉𝑠 is the set of candidate valves for the possible closed valve 𝑠; 

𝑁𝐺𝑟𝑜𝑢𝑝𝑠 is the total number of pipe groups to be calibrated; 

𝑁𝑉𝑎𝑙𝑣𝑒 is the number of possible closed valves to be identified; 

𝑅𝐼𝑛𝑑𝑒𝑥 is the number of possible roughness values for pipe 

group, 𝑔, associated with 𝑝𝑔 and material class, 𝑝𝑚; 

𝑉𝐼𝑛𝑑𝑒𝑥𝑠 is the number of the candidate valves for the possible 

closed valve 𝑠,  

𝜆𝑗
𝑔
 is the minimum and 𝜆𝑗

𝑔
 is the maximum roughness value 

associated with pipe group 𝑔. 

𝑃 is the head at any node.  
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4.6 Summary and Conclusions 

The head and flow data from deployed sensors provide a potentially useful source 

of information about the state of the WDN, which is beneficial for procedures such 

as leak detection and localisation, as well as model calibration. A novel offline 

model-based method for leak detection and localisation that makes use of these 

data has been presented in this chapter. This method is implemented in a 

computer-based system and has been developed as two separate tools, based 

on the quality of the starting model. The LIM, highlights the leakage area and 

makes pinpointing of leaks faster, whereas the CM improves the WDN model 

quality so it can be used for more accurate leak detection and localisation.  

 

The main conclusions from this chapter are as follows: 

 The accuracy of leak localisation and the effectiveness of model 

calibration is affected by the performance of each method, i.e., the LIM 

and CM, respectively. For an accurate leak localisation a calibrated model 

is necessary, as its ability to identify leak events improves with more 

accurate predictions. Similarly the hydraulic model predictive quality 

improves when a leak is found and the model is updated after the leak is 

fixed. 

 Internally- and Externally-based methods for leak detection and 

localisation have their individual advantages and disadvantages. A 

synergy of both methods is necessary for faster and more accurate 

leakage pinpointing. 

 The developed LIM and CM make use of a hydraulic simulation model of 

the WDN and an optimisation algorithm with the main purpose to enable 

more effective and efficient discovery of leaks and mimicking of the 

behaviour of the WDN. Both methods are implemented on several case 

studies, which are demonstrated in the next chapter.  

 The quality of the simulated outputs depends on the quality of data used 

in the WDN modelling analyses. A data pre-processing method has been 

proposed for detecting and correcting erroneous values in sensor data. Its 

abilities in converting raw data into fit-for-use data are shown in the next 

chapter  
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 The LIM uses a practical simulation-optimisation framework and 

systematic search space reduction to detect and localise leaks in DMAs. 

This allows to highlight the leakage area and expedite leak pinpointing.  

 The CM determines the state of internal pipe roughness, the setting/speed 

of any PRV/pump and detects the status of valves with uncertain position. 

 The SSR stage integrated in both systems can minimize the inverse 

problem dimensionality to only a number of highly sensitive decision 

variables, depending on the sensor type, number, location and accuracy. 

This can speed up the computational performance of the LIM and CM. 

 The novel DPP method serves as an objective approach for preparing the 

calibration dataset that captures the best reflection of general hydraulic 

patterns of the WDN in an average day. Its abilities in contributing to an 

improvement in model quality, and consequently leak localisation are 

demonstrated in Chapter 5. 

 

In the next chapter the LIM and CM methods are applied to both semi-real and 

real case studies and the results from each case study are presented and 

discussed, along with an evaluation of the proposed methods. 
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CHAPTER 5  Application of the Leakage Inspection and Calibration Methods to Case Studies 

Application of the Leakage 

Inspection and Calibration Methods 

to Case Studies 
 

 

5.1 Introduction 

This Chapter presents and discusses the results of four case studies where the 

Leak Inspection Method (LIM) and Calibration Method (CM), proposed in Chapter 

4 are validated and demonstrated. Both artificially generated and real pressure 

and flow data are used on semi-real (SR) and real (R) case studies, respectively, 

from Water Distribution Networks (WDNs) at District Metered Area (DMA) level 

in the United Kingdom (UK). In all presented case studies the ultimate purpose is 

the same, i.e., to detect and localise leak events. An overview of all the presented 

case studies is given in Table 5.1. The main objectives of these analyses are as 

follows:  

 To determine the benefits of the search space reduction stage in speeding 

up the inverse problem solving procedure.  

 To demonstrate and evaluate the capabilities of the LIM in increasing the 

reliability of detecting (i.e., reducing false positives) and localising (i.e., 

reducing the distance from the actual anomaly) leaks in both semi-real and 

real cases. 

 To assess the effectiveness of the CM in improving the WDN hydraulic 

model quality so it is fit for the purpose of leak detection and localisation.  

 To compare various calibration datasets under different hydraulic 

conditions and assess the corresponding model along with the overall 

effects on the leak localisation accuracy. 
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The SR1 case study aims to test the robustness of the LIM in finding leaks. To 

do this the LIM is implemented for a range of leak sizes and under a range of 

sensor reading accuracy values. In the SR2 case study the LIM is implemented 

to localise a number of leaks after firstly calibrating the hydraulic model based on 

various scenarios. The same model is calibrated based on four possible datasets 

and under a range of demand uncertainty scenarios. The aim is to assess the 

effectiveness of the CM in improving the starting model before leak localisation 

and investigate how the calibration procedure affects the accuracy of leak 

localisation. Also, to understand the effects of demand fluctuation in finding leaks. 

In the R1 and R2 case studies, the CM is firstly implemented to calibrate the WDN 

hydraulic model of a real system. Then, the LIM is used to detect and localise a 

real leak event that happened using field data captured from deployed flow and 

pressure devices. The aim is to validate the methodologies proposed for the LIM 

and CM on two different real systems.   

 

The chapter is organised as follows. After this introduction, Section 5.2 reports 

the results obtained after applying the novel systems to the semi-real case 

studies SR1 and SR2. Then, in Section 5.3 the results of the real district water 

system examples obtained in the real case studies R1 and R2, are presented. In 

each of these sections the description of the case study begins with details of: (a) 

the studied area; (b) the data used for the analyses; and (c) the problem setup in 

the specific case study being analysed. This introduction to the problem is, then, 

followed by the results of the various optimisation analyses that were performed. 

Once this is done, Section 5.4 discusses the operational and computational 

benefits of the two systems and evaluates their effectiveness, efficiency and 

practicality. Finally, a summary of the chapter and the main conclusions are given 

in Section 5.5. 

 

5.2 Semi-Real Applications 

5.2.1 Case Study SR1 

5.2.1.1 Experimental Design 

The aim of this experiment is to determine the robustness of the leak detection 

and localisation methodology and establish the minimum leak flow that could be 
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detected and localised. A series of desktop type experiments were conducted to 

detect and localise a leak of varying size for a range of sensor reading accuracy 

values using the LIM (Table 5.1). A number of scenarios based on a single leak 

of varying size were created where the locations of the leak and sensor devices 

remained constant. The impact of the timing of the leak was not investigated in 

this research and, thus, was assumed at 00:00 so that a full 24 hours of data 

were available. An artificial set of pressure and flow ‘observations’ was generated 

for each scenario using an Extended Period Simulation (EPS) analysis in 

EPANET considering the system state containing a leak. A number of nodes and 

the inlet pipe were chosen as locations for monitoring pressure and flow, 

respectively. This was determined based on the current standard in pressure 

sensor deployment by the water utility supporting this work, where 1 logger is 

installed for every approximately 200 households. The artificial measurements 

were generated for leak sizes of 50%, 33%, 25%, 20%, 15%, 10% and 5% 

relative to the average network inflow, here named as flow scenarios. Therefore, 

the capabilities of the LIM were tested for both small (5% and 10%), medium 

(20% and 25%) and large (33% and 50%) leak sizes. Four datasets were created 

for each leak flow size, resulting in 6 x 4 = 24 scenarios. The first includes perfect 

measurements, whereas the other datasets correspond to pressure 

measurements with random noise of various magnitude. The noise was 

generated considering a uniform distribution resulting in values ranging between 

±0.1%, ±0.25 and ±1% of the reading, here named as noise levels. The choice 

for the tested noise values was based on the accuracy of current pressure 

monitoring devices used in field testing, allowing for an additional 10-fold increase 

in noise (Halaczkiewicz & Klima, 2018). 

 

5.2.1.2 WDN Hydraulic Model Description 

The SR1 example is based on a real urban DMA in the UK, which is highly looped 

and is fed via a single inlet. The WDN model (Figure 5.1) is composed of 202 

junction nodes and 158 pipes with the total length of 9.4km. In addition, there are 

59 valves which are not presented in Figure 5.1. The average WDN pressure is 

25.3m with a maximum difference of 6.9m across the WDN. During a leak-free 

situation, flow from the source node varies between 1.3 l/s at Minimum Night Flow 

(MNF) and 7.8 l/s at morning peak demand, with an average of 3.6 l/s. The DMA 



CHAPTER 5 – Application of the Leakage Inspection and Calibration Methods on Benchmark and Real Case Studies 

 

 

 
148 

 

has flow and pressure sensors installed at the inlet and seven inner pressure 

sensors. The placement of the pressure sensors is marked using red circle 

symbols in Figure 5.1. ‘Field measurements’ generated through EPS simulation 

were recorded every 15 minutes for a period of 24 hours. This provided the total 

of 96 simulated field data points - from midnight to midnight. Each data set 

represents a complete snapshot of the system conditions. The observed inflow 

into the DMA and at the pressure at eight pressure sensor locations were used 

for evaluating the quality of leak detection and localisation. 

 

 

 

5.2.1.3 Leak Localisation Problem Set Up 

A leak was introduced at J-33, shown by the blue star symbol in Figure 5.1. The 

location at J-33 was chosen to occur on a looped part of the WDN. Looped WDN 

J-33 

 

     Source 
    Pressure Sensor 
     Leak 

Figure 5.1. The SR1 Case District Water System. 
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parts are more hydraulically reliable than branched WDN parts. Thus, there is 

less hydraulic impact from a leak event, which makes it more difficult to identify 

this leak. The pressure loggers were placed both upstream and downstream of 

the leak location. This was expected to allow the impact of the leak to be observed 

in most of the pressure data. The method was tested for leak sizes of 3.6 l/s 

(50%), 1.8 l/s (33%), 1.2 l/s (25%), 0.9 l/s (20%), 0.65 l/s (15%) 0.4 l/s (10%) and 

0.2 l/s (5%). Furthermore, four observed datasets were generated for each flow 

scenario. The first of the four sets of experiments used perfect pressure and flow 

data (i.e., with no noise) for all flow scenarios. The subsequent datasets involved 

a systematic pressure error ranging between ±0.025m, ±0.063m and ±0.250m, 

respectively, per recorded time step and for each device. On the other hand, the 

typical error range found in flow meter devices of ±1% (Peterson, 2018), was 

introduced to the flow measurements of all flow scenarios. 

 

5.2.1.4 Overall Inverse Problem Reduction 

The starting model contained no leakages. Based on the noise level, the 

Minimum Detectable Nodal Leakage (MDNL) for each candidate leak location 

differed. The MDNL process lasted approximately 10 minutes for each tested 

scenario. This led to a distinct range of possible flow values for each candidate 

node. Hence, following Step 3 of SSR, which took about 30 minutes to complete, 

this resulted in a different number of candidate nodes for each flow scenario. At 

the end of SSR, Part I, the detected water losses for each leak scenario always 

equalled the size of the actual simulated leak. Furthermore, any node with higher 

MDNL value was correctly excluded from consideration. Following on from Part 

II and under all flow scenarios, the fittest optimisation analysis corresponded to 

the WDN with a maximum one leak. Thus, in all cases the Leak Detection and 

Localisation (LDL) part involved two decision variables, i.e., the location and the 

size of a single leak.  

 

The percentage of nodes that remained in the final list of candidates for each flow 

scenario and for each noise level is presented in Figure 5.2. The base case used 

the perfect data and involved 42% of the WDN nodes. This resulted in 84 out of 

the 202 nodes as the potential locations for the single leak across all flow 

scenarios. The reduction was achieved by inverse problem simplification. As 
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noise level increased (or the leak size decreased), the number of candidate 

nodes was reduced. This is due to the fact that less accurate data provide a 

smaller flow resolution range for each node, i.e., possible leak flow values 

between the maximum and minimum emitter coefficient, because of a higher 

MDNL value for each location.  Consequently, there is less chance of finding 

leaks when the level of uncertainty is similar or higher than the head loss caused 

by the event. The downside of this is that leaks causing a small hydraulic impact 

cannot be detected. Interestingly, for a leak size of 5% (0.2 l/s) and a noise level 

of ±1% (±0.25m) the methodology fails to identify any candidate leak nodes for 

this WDN. The low head loss changes caused by the small leak, combined with 

the high pressure sensor noise level results in an undetectable leak situation. 

Therefore, the approach fails to detect and localise a leak for that flow scenario 

and the given noise level. However, in all other tested cases the optimum solution 

J-33 always remained in the reduced search space used for LDL. 

 

 

Figure 5.2. Percentage of the total WDN nodes representing potential leak 

locations that are left for the use with the detection and localisation 

methodology based on different leak sizes (figure legend) and noise levels. 
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5.2.1.5 Leak Detectability 

The mean pressure differences between ‘observations’ and simulated outputs for 

each leak scenario and noise level, are shown in Figure 5.3. The numbers given 

are shown as a percentage change relative to the leak-free situation. The data 

labels illustrate the corresponding pressure drops in metres of water head.  

 

 

Figure 5.3. Mean Percentage Pressure Difference for each leak flow scenario 

relative to leak-free case. 

 

As it can be seen from Figure 5.3, the mean pressure difference from the leak-

free case decreases with a decreasing leak size. Relative to the base case, the 

difference in pressure changes caused by different flow scenarios decrease with 

a reduced leak size and an increasing noise level. Interestingly, the pressure 

change at a noise level of 1% (±0.250m) is similar for leak sizes of 5% and 10%. 

Compared to the mean pressure perturbation, noise has a small impact at larger 

flows. At a 50% leak scenario there is a pressure drop of 1.68m, while this 

changes to 1.72m at a noise level of 1%, which comprises around 2.5% of the 

perturbation. In contrast, a 5% leak only causes 0.06m pressure change, using 

perfect dataset, whereas at the typical noise level of ±0.1%, the noise accounts 

for 25% of the variation. This variation rises to 75% at 1% noise level. Under such 
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condition, it would be impossible to localise a leak due to the large uncertainty. 

Furthermore, the small difference between the pressure changes at lower flows 

can result in a non-unique problem. As the leak size reduces, the observable 

change in the pressure data also decreases. This makes it difficult to find a 

distinct “signature” defined by the leak location J-33. 

 

Table 5.2. Comparison of geographical distances (m) of the detected leak from 

the assumed (true) leak location for each flow scenario and noise level. 

Noise level (%) 0.00 0.10 0.25 1 

Leak Size (%) Distance between the detected and actual leak locations (m)  

50 0 0 0 0 

33 0 0 0 0 

25 0 0 0 0 

20 0 0 0 0 

15 0 0 0 0 

10 0 9 9 420 

5 42 171 171 N/A 

 

 

Table 5.1 presents the distances of the leaks identified during the LDL stage 

relative to the true leak location at J-33. The LDL stage for each scenario was 

completed within one hour. As it can be seen from this table, the leak areas were 

successfully detected and localised up to the size of 10% (0.4 l/s) and up to the 

noise level of 0.25% (±0.063m). The latter corresponds to a mean pressure drop 

of 0.15m, where noise accounts for approximately 40% of the variation (Figure 

5.3). This demonstrates that it is possible to detect and localise a leak if the 

contribution on the pressure drop is larger than the variation caused by the 

introduced noise (simulating the accuracy of the device). Even with perfect data 

at a flow of 5%, the pressure impact is small, i.e., less than ±0.3%. This makes it 

difficult to identify a unique pressure signature for J-33 relative to the node 

detected 42m away. The approach fails to detect any leak at ±1% noise level and 

a leak size of up to 10%. This is due to the noise impact being larger than the 

pressure perturbation from the leak. In this particular case and assuming the 

noise level of contemporary logging devices, the approach can narrow down the 
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search area for finding a leak of the size up to 5% of the inlet flow. In this example, 

this corresponds to an actual leak search distance range within ±2% of the WDN, 

considering the mains length. This shows that the methodology can find the area 

of the leak even with considerable noise in the data. From a water utility point of 

view, the methodology can reduce the leak search distance range in a real WDN. 

By reducing it to a street level, the approach can contribute to earlier pinpointing 

of the leak. At a larger noise level, the uncertainty is so high that the recorded 

pressure variation was mainly caused by the reading error and not by the leak 

itself. This suggests that more loggers would be required for improved leak 

localisation. 

 

5.2.2 Case Study SR2 

5.2.2.1 Experimental Design 

In SR2 a series of desktop experiments (summarised in Table 5.3) were carried 

out to create a calibrated WDN model that can serve as a starting point for leak 

detection and localisation. The aim was two-fold. Firstly, to assess the 

effectiveness of the CM in improving the accuracy of average day models used 

to localise leaks (Table 5.1). Secondly, to compare different datasets used for 

model calibration and their effect on leak localisation accuracy. At each scenario, 

the starting WDN hydraulic model was calibrated and then used to determine the 

size and location of some leaks. Similarly to SR1, a number of nodes and the 

inlet pipe were chosen as locations for monitoring pressure and flow, respectively. 

Eventually, the leak localisation accuracy of each experiment was used to draw 

conclusions on the performance of the calibration methodology and compare the 

different datasets. 

 

A number of Demand Fluctuation (DF) scenarios were initially created, whereby 

the system demand was varied differently at each time step of the day compared 

to other days. This was to emulate a situation whereby a unique consumption 

pattern is produced every day, depending on the DMA consumption types. Urban 

and rural DMAs are being emulated together with domestic and industrial 

consumption types. For example, due to the unpredictable water usage coming 

from less users, the demand changes more abruptly in a rural DMA, as opposed 
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to a more stable pattern in an urban area. The same stands for a domestic type 

consumption over the more constant industrial consumption pattern. The flow 

chart for the experimental design process is presented in Figure 5.4. 

 

 

 

 

 

A number of DF scenarios were created. The first scenario (DF1) assumed an 

ideal condition where no variability exists, i.e. every day has the same demand 

profile. The rest of scenarios were generated so that the demand at a specific 

time step of each day can vary within a ±2.5% (DF2), ±5% (DF3), ±7.5% (DF4) 

and ±10% (DF5), compared to the average value of that time step. The variability 

Starting WDN 
model 

Adjust demand 
according to DF 

scenario 

Generate raw 
observations  

Generate calibration 
datasets according 

to each CAL 
scenario  

Introduce leaks in 
hydraulic model 

Generate artificial 
observations for leak 

detection and 
localisation 

Model Calibration 
Leak Detection and 

Localisation 

Figure 5.4. The general process flow chart for the experimental design. 
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was generated based on a random noise following a uniform distribution. Then, 

artificial ‘observations’ were generated for each DF scenario following an 

EPANET EPS analysis. Five days (i.e., 120 hour simulation) of “raw” 

observations, i.e., sensor data without any processing, were generated 

considering the system state with the actual pipe roughness values and status of 

valves. The five days of data represents a realistic field data collection period 

when deployed sensors record measurements for a specified period (e.g., one 

week).  

 

The collected raw ‘observations’, were, then, pre-processed before being used 

as the ‘calibration dataset’ in the model calibration procedure. All the artificial 

‘observations’ were generated to only emulate weekday consumption so that the 

calibration accuracy is not affected by the different weekend consumption 

pattern. Furthermore, an average weekday involves the system hydraulic 

conditions which the calibration outcome aims to simulate.  

 

For each DF scenario a different dataset was chosen to calibrate the model. The 

following Calibration (CAL) scenarios were tested:  

CAL A: A single day of data was chosen as the calibration dataset from the five 

day “raw” observations, i.e., similar to the traditional calibration dataset. 

CAL B: A single day of data was chosen from the five day dataset, where the 

“raw” observations were smoothed to generate a de-noised calibration dataset. 

CAL C: All raw observations were used to generate a calibration dataset 

corresponding to the average day. 

CAL D: All raw observations were used to generate a de-noised calibration 

dataset of the average day, i.e., following the DPP stage. 

 

Eventually, this resulted in 5 x 4 = 20 scenarios for calibrating the WDN model 

which are presented in Table 5.3.  

 

A number of leaks were introduced at randomly chosen locations of the WDN 

model to create the dataset for leak detection and localisation. Again, a dataset 

of artificial pressure and flow measurements were generated for each DF 

scenario, as explained in section 5.2.2.1. A 24 hour dataset was then used for 
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the purpose of leak detection and localisation so that a full EPS analysis can be 

performed. This is not representative of a real situation, where water utilities 

investigate any unexpected differences during the night to search for a leak. 

However, as the consumption in the WDN is low during the night, the leak impact 

on pressure can be insufficient, compared to the impact on flow, which can be 

used for leak detection. Therefore a 24 hour dataset provides more information 

on the leak pressure impact over the whole day which can be used for localising 

leaks. All generated datasets corresponded to measurements with random noise 

following using a uniform distribution. This resulted in a pressure value range of 

±0.1%, of the reading (typical error found in modern pressure measurement 

devices) and flow value range of ±1%.  

 

5.2.2.2 WDN Hydraulic Model Description 

The SR2 example is also based on a real urban DMA network in the UK, which 

is highly looped. The system, which is fed by one inlet, is outlined in Figure 5.5. 

The WDN hydraulic model is composed of 589 junction nodes, 178 valves (which 

are not shown in the presented layout) and 433 pipes with the total length of 

14.6km. Out of the total number, 58% of pipes (250) are made from Cast Iron 

(CI), 20% (87 pipes) from Asbestos Cement (AC) and 22% (96 pipes) from a High 

Performance Polyethylene (HPPE) material. The average WDN pressure is 

43.8m with a total range of 48m (21m – 69m) across parts of the WDN. The DMA 

has flow and pressure sensors at the inlet, and 11 inner pressure sensors, 

emulating a true situation where the sensor deployment density of 1 per 200 

properties, whose placement is also marked using red circle symbols in Figure 

5.5. The system is gravity-fed, whereby during a leak-free situation flow from the 

source node varies between 4.5 l/s at MNF and 18.9 l/s at morning peak demand, 

with an average of 11.1 l/s (without any leakages). Generated field 

measurements for calibration purposes were assumed to be recorded every 15 

minutes. The total period corresponded to 120 hours (five days) or 480 simulated 

field data. On the other hand, 96 signals for 24 hours were produced for leak 

localisation purposes, i.e., from midnight to midnight. Each data set represents a 

complete snapshot of the system conditions. That means, the observed inflow 

into the DMA and the 12 pressures were available and used for evaluating the 

quality of calibration or leak detection and localisation. 
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Figure 5.5. The SR2 Case District Water System. 

 

5.2.2.3 Calibration and Leak Localisation Problem Set Up 

The status of two randomly chosen valves (T1 and T2) was set incorrectly as 

“closed”, to emulate a situation of unknown closed valves. This often happens in 

reality when the hydraulic model has not been updated with the true status of 

valves. This is considered as the actual system state without introducing any 

leakages for generating the artificial observations for model calibration. Based on 

this WDN state, all the datasets corresponding to each DF scenario were 

generated for subsequent calibration. Three leaks of different size were 

introduced at different locations to assess the quality of the resulting model after 

calibration based on a different DF and CAL scenarios.  The locations are 

selected at nodes J-29, J-183 and J-305, as shown by the blue star symbols in 

Figure 5.5. This was done for two reasons: (a) to simulate a situation, when 

multiple leaks happen, or exist in WDNs (although normally one leak happens at 

a time); and (b) to test whether the leak localisation method is able to find multiple 

leaks of different size.  

  Source 

  Pressure Sensor 
  Leak 
  Unknown Closed Valve 

T2 
T1 J-29 

J-183 

J-305 
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The leak size at J-29 was 0.50 l/s, at J-183 0.95 l/s and at J-305 1.45 l/s, 

respectively. This totalled a global leakage of 2.90 l/s, which corresponds to 

approximately 20% of the average inlet demand. 

 

The inlet flow for each of the five DF scenarios is plotted in Figure 5.6. Based on 

the DF scenario the average demand variation at any time step of a day 

considering the five day dataset is ±0 l/s (DF1), ±0.19 l/s (DF2), ±0.38 l/s (DF3), 

±0.54 l/s (DF4) and ±0.73 l/s (DF5). For the idealized DF1 scenario, the demand 

pattern during all five days is kept the same. In contrast, the rest of the DF 

scenarios simulate a more realistic situation where each day’s demand pattern is 

unique and the morning peak demand can vary up to ±0.42 l/s (DF2), ±0.83 l/s 

(DF3), ±1.19 l/s (DF4) and ±1.65 l/s (DF5), respectively. 
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Figure 5.6. The generated inlet flow raw datasets for each DF scenario. 
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Four 24-hour calibration datasets were created for each DF scenario. For CAL A 

the third day of the dataset was randomly selected as the calibration dataset. For 

CAL B the third day as in CAL A was selected with the difference that the 

LOWESS de-noising technique was applied to the raw observations to before 

being used as the calibration dataset. CAL C used a calibration dataset after 

calculating the 24-hour raw data average over all five days. Finally, in CAL D the 

DPP stage was implemented, which created a 24 hour de-noised calibration 

dataset. An example of the four different 24-hour calibration datasets used in DF5 

are illustrated in Figure 5.7. All generated datasets, including the leak localisation 

ones, involved a pressure error ranging between ±0.04m per recorded time step, 

for each device, and flow error within ±0.28l/s for the inlet pipe measurements. 

 
Figure 5.7. The calibration dataset for scenario DF5. 

 

5.2.2.4 Calibration Performance 

In the starting hydraulic model of each calibration process the status of valves T1 

and T2 was set as “open”. In addition, the roughness values were artificially 

increased for 50 and 27 pipes associated with the CI and AC pipe material 

groups, respectively. In other words, their roughness value was increased to the 

next higher value from the available list of discretized roughness coefficients for 

each material. The location of the selected pipes was based on the fact that they 

occur on key flow routes where the average pipe velocity exceeds the average 

velocity across the entire system. In addition, the specific materials were chosen 
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considering that historically non-plastic and non-lined pipes have caused the 

majority of the model calibration problems. This is as due to the fact that their 

pipe roughness coefficient changes significantly faster than the lined and plastic 

pipes over their life cycle (Walski et al., 1988). Therefore, the roughness value of 

the selected pipes was adjusted to mimic the changes made to the roughness 

values during the traditional calibration procedure, by Modelling Engineers (Sage, 

2018, Personal Communication). All CI pipes, except three that had a roughness 

value of 1.5mm assigned to them, had their values adjusted to 2mm. For the rest, 

the values were changed from 3mm to 3.5mm. All AC pipes had a roughness 

value of 0.03mm that was adjusted to 0.06mm. This was assumed to be the 

correct system configuration before implementing the calibration procedure for 

each DF and CAL scenario. 

 

The water consumption profile in the hydraulic model is represented by a pattern 

of 96 15-minute coefficients. During the Demand Profile Calibration (DPC) part of 

the Profile Calibration (PC) stage the multiplier for the domestic consumption 

pattern was calibrated for all tested scenarios. In all DF and CAL scenarios the 

simulated inflow after DPC matched the corresponding calibration observations 

within the ±0.5% error over all time steps during the 24 hour period. As the 

system’s pressure is not managed by any PRVs or pumps, the pressure profile 

is controlled solely by the DPC outcome. Consequently, there was no need for a 

Pressure Profile Calibration (PPC) part. Overall the PC stage took 2.5 hours to 

complete for each of the 20 scenarios. The resulting hydraulic model was then 

used as a baseline for the Search Space Reduction (SSR) stage. 

 

The SSR stage considered all valve and pipe components of the WDN hydraulic 

model (sections 3.3.3-3.5.3 and 3.3.4-3.5.4). Following Step 1 of SSR (section 

3.3.3), the simplified problem was reduced to 74% the original valve components, 

i.e., 131 out of 178 valves. Then, at Step 2 (section 3.4.3) the search space was 

further restricted to 37% of components, or 65 detectable valves. Step 2 required 

about five minutes to complete. Following Search Space Optimisation (SSO) at 

Step 3 (section 3.5.3), the fittest scenario in all cases indicated the existence of 

a maximum two closed valves in the WDN. The process took about 20 minutes 

to run for each scenario after restricting the maximum number of possible valves 
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to 𝑣 = 10 as a means to expedite the analysis. The grouping procedure at Step 

1 (section 3.3.4) resulted in a total 21 different pipe groups. The CI, AC and HPPE 

material groups were divided into 11, 3 and 7 diameter groups, respectively 

(Table 5.4). Following Step 2 (section 3.4.4), only four pipe groups from the CI 

set remained in the search space after determining the Detectable Pipe 

Roughness Coefficient groups. Step 2 for the pipe components was completed 

within five minutes. In all scenarios the pipe groups 1, 3, 7 and 8, remained in the 

search space, which constitute 215 out of 433 pipes in the WDN (Table 5.4). This 

resulted in a reduction of more than 50%. 

 

Table 5.4.The Candidate Grouping after Step 1 of SSR Stage. 

Group 
Number 

Material 
Diameter 

(mm) 
Components 

Pipe Group 
Length (m) 

1 CI 66 110 3763 

2 CI 76 4 23 

3 CI 92 68 1528 

4 CI 99 1 2 

5 CI 101 18 252 

6 CI 106 2 61 

7 CI 117 5 653 

8 CI 142 32 716 

9 CI 152 2 4 

10 CI 157 5 104 

11 CI 209 3 69 

12 AC 75 4 69 

13 AC 97 79 3888 

14 AC 225 4 57 

15 HPPE 50 17 343 

16 HPPE 73 19 686 

17 HPPE 101 30 885 

18 HPPE 146 11 402 

19 HPPE 200 1 9 

20 HPPE 203 14 633 

21 HPPE 233 4 451 
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During the Component Calibration (CC) stage, two unknown closed valves were 

detected in all scenarios. However, none of the scenarios detected T1 and T2 as 

closed. Instead, the optimum result in each scenario identified the two valves just 

downstream of actual closed valves, T1 and T2, i.e., at a distance of 110m and 

50m, respectively. Although the true valve locations were not detected, the flow 

paths on each closed valve is located were found correctly. This allows for an 

inspection of the pipeline at a street level and identification of the actual closed 

valves. On the other hand, compared with the actual system state, the pipe 

roughness calibration outcome led to a smoother roughness coefficient (0.88mm 

or 1mm) for the smaller diameter groups (i.e., 66mm and 92mm). Conversely, a 

rougher coefficient (3.5mm, 5mm or 7.5mm) was selected for the larger diameter 

group (i.e., 116mm and 142mm). For all 20 tested scenarios, the calibration 

criteria (section 2.4.5) for all error bands were met for 100% of simulated outputs. 

Therefore, for all CAL and DF scenarios the resulting calibrated model matched 

the corresponding measurements within ±0.5m. Overall the CC stage required 

one hour to complete for each scenario. 

 

5.2.2.5 Leak Localisation Accuracy 

The LIM was, then, implemented for each CAL scenario and was tested on how 

well in performed for detecting and localising the three leaks for every DF 

scenario. The simplification step reduced the search space in all scenarios to 

40% of network nodes, i.e., to 233 out of 589 nodes. Following Part I of SSO, a 

leak of size 2.90 l/s was detected in each case. Any node where the MDNL is 

higher than the detected water losses was eliminated from consideration. This 

reduced the search space further to 38% of nodes as potential leak locations. 

The average MDNL for the 225 candidates was approximately 0.48 l/s in all 20 

desktop experiments (Table 5.3) where the model was calibrated before leak 

detection and localisation. This corresponded to six different scenarios for 

investigating the maximum possible number of leaks in the WDN, which ranged 

from a single large leak of 2.90 l/s up to six smaller leaks of 0.48 l/s. In all 20 

cases Part II optimisation analysis showed that the leak scenario with the 

minimum objective function value was the existence of either three or four leaks 

in the WDN. The SSR stage took a total time of about one hour to complete. LDL 

was, then, run to find the size and locations of a maximum of three or four leaks. 
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This depended on the outcome of Part II for each tested scenario. The LDL stage 

was completed after two hours of hydraulic simulation evaluations.  

 

Figure 5.8. Average distance between all the detected leaks compared to the 

actual leak locations, for each calibration and demand fluctuation scenario. 

Figure 5.8 compares the average distance between a detected and an actual leak 

location in the WDN for each CAL and DF scenario, averaged from the results of 

all three leaks. In general, in CAL B and D cases, where the model was calibrated 

using a de-noised dataset, the leak localisation performed better relative to CAL 

A and C. On average, for CAL B and D cases, a leak is reported between 60-

100m closer to the actual leak location. CAL A, which assumed a dataset similar 

to the currently used across the UK Water Industry can only achieve a good leak 

localisation when demand fluctuation in the DMA is low, i.e., at DF2. On the other 

hand, CAL B produced the best results for the ideal scenario DF1 and the highly 

variable scenario DF5. It appears that the de-noising technique reduced the noise 

caused by the measurement error and demand fluctuation in DF1 and DF5, 

respectively, which helps the technique to find the leak locations. The test case 

CAL C achieved the best leak localisation accuracy relative to the rest of 

scenarios at DF2. This is because the noise in measurements and demand was 

reduced and, thus, producing less impact on the leak localisation outcome. 

Finally, CAL D achieved the best results at DF3 and DF4, while similarly good 

results were also achieved at the DF2 and DF5 demand fluctuation scenarios.  
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Figure 5.9. Distance between each detected leak location relative to the actual 

leak locations, for each calibration and demand fluctuation scenario. 
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 A more detailed comparison on the leak localisation results for each reported 

leak is presented in Figure 5.9. The distance from each detected leak is 

compared with the actual leak locations J-305, J-183 and J-29 for each CAL 

scenario and with respect to the DF scenarios. CAL B and D performed equally 

well in finding the largest leak J-305. The average distance from the actual leak 

location across all DF scenarios was 339m (σ = 89m) and 327m (σ = 58m), 

respectively. However, CAL C achieved the best localisation for J-305 at an 

average distance of 250m (σ = 143m), while CAL A had the worst performance 

with 470m (σ = 362m) error. CAL B and D achieved the best results in localising 

J-183 within 212m (σ = 109m) and 277m (σ = 132m), respectively, as opposed 

to the 360m (σ = 144m) and 370m (σ = 133m) distance as a result of CAL A and 

C. The leak localisation for the smallest leak J-29 failed in all 20 desktop 

experiments, while, CAL D produced the best results with a 545m error (σ = 75m). 

A leak was detected in all cases. However, the similar size of the leak J-29 with 

the average MDNL value, i.e., 0.48 l/s, combined with the noise in measurements 

and/or the demand fluctuation severely affected its localisation. Overall, CAL D 

demonstrated the most robust results for all three leaks with the least variability 

in the reported leak distance, when demand fluctuation is larger than 0%, i.e., for 

all realistic scenarios. 

 

 

Figure 5.10. Comparison of reported leak size for each CAL scenario, averaged 

for scenarios DF2 – DF5. 
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The robustness of the CAL D case is also supported by the comparison in the 

detected leak size averaged for all DF scenarios, as presented in Figure 5.10. 

Although in all scenarios the global leakage value was correctly identified as 2.90 

l/s, the size of each reported leak differed for every CAL scenario. Overall, the 

CAL D case resulted in a leak size closer to the actual leakage values in all 

realistic demand variability scenarios, i.e. for DF2-DF5. The size of leak J-305 

could be more accurately detected following CAL D (1.42 l/s) and C (1.40 l/s), 

while the size of leak J-183 following CAL A (1.00 l/s) and D (1.03 l/s). Finally, 

the size of leak J-29 was simulated more accurately by CAL D (0.51 l/s).  

 

Interestingly, based on the optimum solution obtained for each tested scenario, 

in all desktop experiments CAL C led to a better match of the model outputs with 

the leak localisation data compared to all other CAL scenarios. This is presented 

in Figure 5.11, which compares the normalized objective function values after 

leak localisation for each CAL and DF scenario. This comes to an opposition with 

the actual results and raises a possibility of overfitting. It can be observed that for 

the CAL B and D cases, which used a de-noising technique for model calibration, 

that they do not fit the observations well in the idealized scenario DF1. 

Furthermore, their fitness increases at a higher demand uncertainty. This is 

because when demand fluctuations are introduced (i.e., random error), the model 

that is calibrated based on smoothed data can more accurately simulate the 

general consumption pattern, as fluctuations are eliminated.  

 

On the other hand, at a “zero-fluctuation” situation when the demand pattern is 

reliable, smoothing the data causes more uncertainty, as noise is being 

introduced instead of being removed. Finally, calibration based on CAL A, which 

mimics the current practice across the UK water industry, can lead to a good 

match with the leak observations only in an ideal demand fluctuation scenario, 

i.e., DF1. On the other hand, in a more realistic situation with larger variability, 

CAL A produces the worst fit with the leak observations, compared to the rest of 

the calibration scenarios. This can be a result of the bias introduced to the 

calibrated model after subjectively choosing a calibration dataset of a unique day 

from the raw observations. 
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Figure 5.11. Comparison of the normalized objective function value (0-worst, 1-

best) achieved after leak localisation for each CAL scenario as a result of 

changing demand fluctuation. 

 

5.3 Real District Water System Applications 

5.3.1 Case Study R1 

5.3.1.1 System Overview 

The LIM was tested further on a real UK DMA (Figure 5.12), which had historically 

high levels of leakage recorded. This case also used data of a real leak event, 

recorded by pressure and flow sensors deployed by the utility before the event 

happened. The system is fed by a single source that serves the domestic 

consumption associated with a rural area of approximately 1,000 properties. Flow 

from the source node varies normally between 2.6 l/s at MNF and 8 l/s during the 

morning peak demand. The hydraulic model contains 601 nodes, 461 pipes and 

159 valves (not presented in Figure 5.12). The length of the network is 45km. Out 

of the total number of pipes, 55% (254 pipes) are Asbestos Cement (AC), 9% (42 

pipes) Cast Iron (CI) and 36% (165 pipes) Polyethylene (e.g. PE, MDPE, HPPE). 

The DMA has flow and pressure sensors at the inlet, and 10 inner pressure 

sensors. Typically, the utility deploys one pressure logger per 200 properties. 

However, with the aim to introduce real time modelling of WDNs, the system’s 

logging density was increased to roughly one logger per 100 properties. The DMA 

contains three Pressure Reducing Valves (PRVs) due to the large range in 
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elevation between the lowest point at 28m and the highest at 221m. The result of 

the elevation differences is a huge pressure range of 20 to 148 metres of head 

(average of 53.8m).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3.1.2 Available Data 

The “raw” dataset of observations comprised of pressure and flow readings that 

were collected for 17 days for the period between October 31 and November 16, 

2016. The LIM process used data from a historical leak, which has been detected 

and localised by the utility. The leak started at 15:30 hours on November 7, 2016, 

and lasted for around seven days. The exact location where it was found and 

repaired by the leak detection engineers is indicated by the blue star in Figure 

5.12. A systematic flow difference in the range of 2.15 and 2.5 l/s was observed 

at the MNF throughout the seven days when leak was running, where the inlet 

flow increased from 2.7 l/s to 5.2 l/s. Moreover, the leak caused a significant head 

loss around the leak location of more than 30m (Figure 5.13). Interestingly, a 

large variation was observed during the morning peak hours, as the leak impact 

was not as obvious, compared to the night flow increase. The leak effect only 

caused an increase of approximately 1 l/s compared to the day before the leak 

Figure 5.12. The R1 Case District Water System. 
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started. This demonstrates the large uncertainty introduced in the leak detection 

and localisation process when the majority of the observed flow comes from 

customer consumption and not leakage.  

 

 

Figure 5.13. The time series field record of the inlet flow meter and pressure 

data from the closest sensors to the leak location. 

 

To assess the leak localisation methodology, a calibrated average day model of 

the system according to the company’s standards was necessary. In other words, 

a model that simulated pressures at the sensor locations with an accuracy range 

of ±2m relative to the observations. However, this was not available to the water 

company at the time of the leak. Therefore, the collected measurements before 

the leak occurred were used to calibrate the model using the CM so it can be 

used for finding the leak. The observations for the calibration part involved the 

time series of flows into the system and the pressures at 11 locations, between 

November 2 and 4. The collected measurements before the November 2 were 

not taken into account due to an unstable demand and pressure profile. This was 

as a result of an operational work in the WDN that had ended in the afternoon of 
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November 1. In addition, the collected data on November 5 and 6 involved a 

different consumption pattern due to the weekend, thus, they were not considered 

for simulating the average hydraulic conditions. A total of 96 calibration 

measurements over a 24-hour period were used for the calibration of the average 

day hydraulic model.  

 

On the other hand, the observed data for the leak detection and localisation part 

involved the time series of flows and pressures on November 8, i.e. one day 

following the leak start. This was to test whether the methodology could detect 

the leak location and flow at an earlier stage, compared to when it was really 

discovered and repaired, on November 14. A total of 96 field observation data 

sets over 24 hour period (from midnight of November 8 to midnight of November 

9), have been imported into the optimisation modelling tool of the LIS. 

 

5.3.1.3 Calibration Method Implementation 

5.3.1.3.1 Data Pre-Processing 

The system demand for the three-day dataset of raw measurements varies within 

±4.6% at any time step with respect to the average demand. Therefore, it was 

decided that a calibration approach, which uses a de-noised dataset of the 

average day, i.e., similar to CAL D scenario (Table 5.3), would be used for the 

model calibration process. The results from Case Study SR2 suggest that a more 

accurate representation of the average day conditions can be produced due to 

the large demand fluctuation. This can lead to improved leak localisation 

accuracy, due to the reduction in noise caused by demand fluctuation combined 

with the measurement error. The DPP stage took about 15 minutes to complete. 

Following the DPP stage, the readings from the three selected days were 

converted to a 24-hour dataset of the average conditions for subsequent model 

calibration. The outcome of the DPP stage is illustrated in Figure 5.14. The high 

variability manifested during each day results in a noisy demand pattern. This is 

due to the abrupt changes in consumption at each time step of the 24 hr dataset 

of the average conditions. However, using the LOWESS smoothing technique the 

demand-related noise was removed. The outcome was a de-noised calibration 

dataset that was used within the CS.  
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Figure 5.14. Comparison of the resulting average day dataset and the 

calibration dataset after the DPP stage, relative to the raw observations. 

 

5.3.1.3.2 Profile Calibration 

During the DPC part, the 96 multiplier coefficients that simulate the domestic 

consumption pattern were calibrated. Although a similar pattern exists for 

simulating background leakages in the WDN, that pattern was not included in the 

calibration procedure.  

 

 
Figure 5.15. Comparison of the updated hydraulic model before and after 

Demand Profile Calibration as well as relative to the calibration dataset. 
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This was decided assuming that there was no change in the amount of 

background leakage, with respect to the day before the leak happened. The DPC 

part was completed within three hours. The simulated inflow after DPC matched 

the calibration observations within ±1% error (typical flow meter error) over all 24 

time steps (Figure 5.15). An improved representation of the average hydraulic 

conditions during the same period was also achieved. 

 

 

 

Figure 5.16. Comparison of the observed and simulated heads for the 

uncalibrated model and optimised calibration solution during MNF at hour 3 

(top) and the morning peak at hour 8 (bottom). 
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Then, at PPC, the setting of the three PRVs was calibrated for each time step. 

The PPC part also took approximately three hours to complete. This ultimately 

led to a calibrated hydraulic model at a macro-level. In other words, observations 

are close to, but do not meet the desired performance criteria of ±2m accuracy 

relative to the observations. A comparison of the simulated heads at the sensor 

locations before and after calibration is given in Figure 5.16. The figure also 

provides the observation during the hours of MNF and the morning peak, i.e. at 

03:00 and 08:00 hours, respectively. The error achieved after PPC is less than 

1% across all sensors during both the MNF and the morning peak. The exception 

is P4 at MNF, where a difference of around 3% exists between the observed and 

simulated head values. Although this does not represent a fully calibrated model, 

it serves as a very good baseline for further calibration during the Component 

Calibration stage. 

 

5.3.1.3.3 Component Calibration 

Simplification reduced the search space to 57% of network valves, i.e. 90 out of 

159 valve components. The sensitivity analysis of valve status changes further 

restricted the candidates to 27% of the WDN, or 43 Detectable Valve Locations. 

The analysis was completed within five minutes. Prior to any optimisation run for 

identifying the detectable valve locations, the system evaluation was conducted 

by comparing the field observed heads with the simulated heads over 24 hours. 

This provided a starting point for defining the boundary conditions error, i.e., the 

objective function value when no valve status change is made in the WDN model. 

Considering the large inconsistency in demand during the hours when the 

majority of demand comes from customer consumption, an increased weight was 

given to the pressure and flow differences during the hours of low demand. This 

involved hours between 00:00 and 06:00 and was applied to all optimisation 

analyses that were performed. The weight value for the pressure and flow 

differences at each time step was derived by taking into account the standard 

deviation for each set of measurements during the considered hours, compared 

to the 24 hour standard deviation, i.e., for the whole day. The closer the standard 

deviation between 00:00-06:00 to the 24 hour value, the lower the weight given 

to the differences. In order to expedite the search space reduction process, a 

user specified value was used for the maximum number of closed valve scenarios 
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based on the expert knowledge of the system flow paths. In this case, the 

maximum number of possible closed valves was defined as 𝑣 = 10. Search 

Space Optimisation showed that the most likely valve scenario was the existence 

of one closed valve in the WDN. The analysis was carried out within 30 minutes. 

On the other hand, the grouping procedure resulted into 19 groups of pipes. They 

were grouped based on the material and diameter, as no age information was 

available for the pipes of the specific DMA. The possible roughness coefficients 

for each group were established from the company’s records depending on the 

material (Table 5.5). From those, only two of the pipe groups (2 and 11) remained 

in the search space after determining the Detectable Pipe Roughness Coefficient 

Groups. The analysis for the Detectable Pipe Roughness Coefficient Groups took 

about five minutes. Therefore, out of the total 461 pipes in the WDN model, only 

the 211 that constitute the two remaining groups were considered for calibration. 

This is because any change in the roughness value of the rest of the groups did 

not produce head loss larger than the sensor accuracy range.  

 

Table 5.5. The Candidate Grouping after Step 1 of SSR Stage. 
Group 

Number 
Material Diameter Components 

Pipe Group 
Length (m) 

Candidate Roughness Values (mm) 

1 AC 50 5 543 0.3, 0.2, 0.1, 0.08, 0.06, 0.03 

2 AC 75 169 21552 0.3, 0.2, 0.1, 0.08, 0.06, 0.03 

3 AC 76 41 1468 0.3, 0.2, 0.1, 0.08, 0.06, 0.03 

4 AC 97 11 527 0.3, 0.2, 0.1, 0.08, 0.06, 0.03 

5 AC 101 11 619 0.3, 0.2, 0.1, 0.08, 0.06, 0.03 

6 AC 122 6 475 0.3, 0.2, 0.1, 0.08, 0.06, 0.03 

7 AC 146 2 4 0.3, 0.2, 0.1, 0.08, 0.06, 0.03 

8 AC 150 1 11 0.3, 0.2, 0.1, 0.08, 0.06, 0.03 

9 AC 152 3 4 0.3, 0.2, 0.1, 0.08, 0.06, 0.03 

10 AC 157 5 14 0.3, 0.2, 0.1, 0.08, 0.06, 0.03 

11 CI 209 42 3784 7.5, 6, 5, 4, 3.5, 3, 2.5, 2, 1.5, 1, 0.88, 0.03 

12 HPPE 50 17 2187 0.01 

13 HPPE 73 47 3730 0.01 

14 HPPE 79 7 1891 0.01 

15 HPPE 81 5 58 0.01 

16 HPPE 101 1 3 0.01 

17 HPPE 106 7 7 0.01 

18 HPPE 158 41 4944 0.01 
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19 HPPE 207 40 3119 0.01 

 

To verify this, the diameter pipe groups were reconstructed by splitting the AC 

pipes into three groups based on user specified diameter ranges. In addition, all 

CI pipes and HPPE pipes were considered as additional two groups. This 

reduced the initial 19 pipe groups to five pipe groups before rerunning Step 2. 

Group 1 comprised of AC pipes with a ‘small’ diameter ranging from 50-80mm, 

Group 2 of AC pipes with a ‘medium’ diameter between 81-130mm, and Group 3 

of AC pipes with a ‘large’ diameter of 130mm and above. Group 4 comprised of 

CI pipes and finally, Group 5 of HPPE pipes. Again, only Group 1 and 4 remained 

in the search space after the pipe group reconstruction. Compared to the change 

in pressure caused individually by pipe group 2 and 11 (Table 5.5) there was no 

significant difference when Group 1 and 4 were tested. This indicated that the 

main impact on pressure is caused by pipe groups 2 and 11. The SSO at Step 3 

(completed within ten minutes) indicated that all possible combinations with the 

remaining pipe groups were increasing the objective function value, i.e., 

worsening the fitness. Therefore, no pipe groups were considered in the 

Component Calibration stage. The additional decision variable was the location 

of a one possible closed valve. 

Table 5.6 illustrates the optimisation outcome following the Component 

Calibration stage. One valve was found to be closed, which was verified in the 

field following the modelling analyses. Compared to the starting uncalibrated 

hydraulic model, where only 30% of simulated outputs met the desired criteria, 

the updated model matched the pressure observations much better over 24 

hours. The desired company’s criteria were met for the error band of ±2m, i.e. for 

100% of simulated outputs. On the other hand, the error bands of ±0.5m and 

±0.75m associated with the criteria in Section 2.4.5., were missed, but only for 

few cases. 

 

Table 5.6. Simulated Pressures relative to the calibration accuracy criteria. 

Error Range (m) ±0.5 ±0.75 ±1 ±2 

Before Calibration (%) 0 0 1 30 

After Calibration (%) 83 94 98 100 
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5.3.1.4 Leak Inspection Method Implementation 

5.3.1.4.1 Leak Search Area Reduction 

The simplification methodology reduced the search space to 47% of network 

nodes. Prior to any optimisation run for identifying possible leakage hotspots, the 

system evaluation was conducted by comparing the field observed inflows with 

the simulated inflows of actual consumption over 24 hours. This provided a 

starting point for defining the MDNL flows for each candidate leak location. The 

MDNL was computed based on a typical reading error of ±0.1% associated with 

the utility’s devices. The MDNL analysis was completed within ten minutes. 

Considering the large variation and inconsistency in demand during the morning 

peak hours and throughout the day, an increased weight was given to the 

pressure and flow differences during the hours of low demand, i.e., between 

00:00 and 06:00. Following Part I of the optimisation-based search reduction, a 

leak of size 2.25 l/s was detected. This corresponds to around 33% of the average 

inflow readings. The leak size in Part I was detected after ten minutes of 

calculations. After eliminating the nodes with MDNL values higher than the 

detected leaks, the average MDNL was approximately 0.13 l/s. This 

corresponded to 18 different scenarios for the possible number of leaks. This 

ranged from a single leak of 2.25 l/s up to 18 smaller leaks of 0.125 l/s.  

 

Figure 5.17. Part II optimisation analysis outcome for the different leak 

scenarios in the WDN (0-worst, 1-best). 
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Part II optimisation analysis was completed within 45 minutes and showed that 

the most likely leak scenario was the existence of a single large leak in the WDN. 

This was the scenario with the best objective function value (Equation 3.16 – 

Section 3.5.2), as shown in Figure 5.17. By removing all nodes where the MDNL 

value was larger than 2.25 l/s, the final list of leak location candidates resulted in 

27% of the network nodes. LDL was, then, run for finding a single leak, while the 

setting of the three PRVs was allowed to vary by ±10% to emulate the response 

of a PRV setting to a real leak. The analysis took about two hours to complete. 

 

The optimum solution indicated a node on the branch where the real leak 

occurred, but 800m downstream from it (Figure 5.18). Considering the length of 

the WDN mains this is an error of 2% (by length). This suggests that the approach 

was able to correctly identify the leakage area within a small distance of a true 

leak. Furthermore, the search for finding a leak was narrowed down between 

sensors P6 and P7, which corresponds to a maximum search distance of only 

10% of mains length. As the presented methodology used a 24-hour sensor data 

to detect the leak and that in reality it took seven days for the utility staff to locate 

the leak, the new approach can possibly contribute to a much earlier detection 

and localisation of the leak.  
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Figure 5.18. Leakage Hotspot Map after the optimisation analysis. 
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5.3.1.4.2 Model Calibration 

The fact that the detected leak in Figure 5.18 was reported downstream, instead 

of upstream of the sensor P6, could exhibit errors in the calibration process. It is 

possible that the roughness value of all the pipes between sensors P5 and P6 

that belong to Pipe Group 2 (Table 5.5) considered for calibration, were set at a 

higher value than it should be. This was done to compensate for the head loss 

and match the observed pressures within ±1m, before the leak happened. The 

results suggest that additional measurements upstream of P6 are necessary to 

get more accurate value for the pipe states. Nevertheless, an EPS analysis was 

completed with the updated hydraulic model, i.e., after simulating the identified 

leak. The simulated inflow after LDL matched observations much better than the 

original model over 24 hours (Figure 5.19). This is evident especially between 

00:00 and 06:00 across all days where an increased weight (approximately x10 

times larger) was assigned to pressure and flow differences. The leak localisation 

dataset involved measurements on the 8th of November. Interestingly, by 

comparing the updated inflow data in Figure 5.19 with the inflows between 

November 9 and November 14, before the leak was found and repaired, an even 

better match is produced. However, the hydraulic model outputs do not match 

with the weekend demand on November 12 and 13, as it follows a different profile, 

relative to weekdays. 

 

 

Figure 5.19. The Flow Differences before and after leakage detection. 
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A comparison of the observed and simulated heads at the sensor locations during 

the hours of MNF, at 03:00 hours is also given in Figure 5.20. From the calibration 

point of view, it can be observed from this figure that the error is equal to or lower 

than 1% at most sensors. The exception are P6 and P7, where a difference of 

around 3% exists between the observed and simulated head values. Although 

this does not represent a fully calibrated model, it serves as a very good baseline 

for further calibration, following the localisation of the leak in the field. Moreover, 

the approach successfully narrowed down the leak search space and could 

contribute to earlier leak localisation. A point to raise considers the fact that PRVs 

follow a profile variation at their setting throughout the day. This functionality 

could not be replicated by the EPANET model used during the leak localisation. 

Thus, the profile of the response in the setting of the three PRV’s could not be 

simulated. However, this does not invalidate the Leak Detection and Localisation 

methodology as the leak size and location could still be identified due to the large 

leak impact on pressure of at least 30m. On the other hand, if the leak impact on 

pressure around the leak location was similar to the pressure response 

introduced by the PRV, then, the approach could have failed in localising the leak. 

Therefore using a hydraulic solver which allows such functionality can be more 

beneficial.  

 

 

Figure 5.20. Comparison of the observed and simulated heads for the 

optimised leakage detection solution during MNF at hour 4.  
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5.3.2 Case Study R2 

5.3.2.1 System Overview 

Another implementation of the CM and LIM procedures was performed on a 

larger and more complex UK system (Figure 5.21). The purpose is the same, to 

eventually detect and localise a real leak event. The DMA is fed by a single source 

and serves a rural area of approximately 1,800 properties.  

 

 

Figure 5.21. The R2 Case District Water System. 

Gravity-fed 

Pumping Station-fed 

P1 

P2 

P4 

P3 P5 

P6 

P7 

P8 

P10 
P9 

P11 

P12 

P13 

P14 

      Source 

      Tank 

      Pump 

      Pressure Sensor 

      Flow Meter 

      Real Leak   

      Pressure Reducing Valve 



CHAPTER 5 – Application of the Leakage Inspection and Calibration Methods on Benchmark and Real Case Studies 

 

 

 
182 

 

Downstream of the inlet there is a tank where water is temporarily stored before 

it gets distributed across the system. The water is distributed to the customers in 

two ways. The lower elevation part of the DMA is suppled through gravity, based 

on the available head from the tank.  A pump is operated in the higher elevation 

part to boost the head and supply required demand. The net flow downstream of 

the tank varies normally between 3.6 l/s at MNF and 11.2 l/s during the morning 

peak demand. This represents the combined consumption with both ways of 

water distribution. The hydraulic model is composed of 940 nodes, 265 valves 

(not shown in the presented layout) and 702 pipes of total length 48km. From the 

total number of pipes 41% (287 pipes) are Asbestos Cement (AC), 10% (71 

pipes) are Cast Iron (CI) and 49% (343 pipes) are Polyethylene (e.g. PE, MDPE, 

HPPE). The DMA is monitored for pressure by sensor devices installed at the 

inlet and at an additional 14 inner locations downstream of the tank. Furthermore, 

there are flow metering devices at five locations downstream of the tank. This 

includes the pipe that supplies the gravity-fed part of the DMA and the pump. In 

total, the DMA contains six PRVs due to the large range in elevation with the 

lowest point being at 28m and the highest at 186m. The pressure in both parts 

varies similarly between 26 and 108 metres of head, with an average DMA 

pressure of 50.3m. 

 

5.3.2.2 Available Data 

The raw dataset of observations comprised of pressure and flow readings that 

were collected for 28 days during the period between November 13 and 

December 9, 2017 (Figure 5.22). The LIM process used data from a historical 

leak, which has been detected and localised by the utility. On November 22, 2017 

at 17:15 hours, a leak started within the sub-area supplied by the pump and lasted 

for around twenty days. The leak became visible and was reported by the public 

in the afternoon of November 30. The leak was fixed on December 12. The exact 

location where it was found and repaired by the leak detection engineers is 

indicated in Figure 5.21. A systematic and rising flow difference between 2.25 l/s 

and 3.05 l/s was observed at the MNF throughout the seventeen days when leak 

was running, from 1.50 l/s to 4.55 l/s. Moreover, the leak caused a significant and 

increasing head loss around the leak area of between 6m to 9m of head (Figure 

5.22).  
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Figure 5.22. The Field Record with the measurements used for model 

calibration and for finding the leak. 

 

Again, the WDN hydraulic model was calibrated before the leak localisation 

procedure was applied. This was needed to simulate the average day hydraulic 

behaviour of the system. A dataset of recorded raw observations for five days 

(between November 13 and 18, from midnight to midnight) before the leak 

happened were used to calibrate the model using the CS. The observations for 

the calibration part involved the time series of flows into the system and the 

pressures at 14 locations. Similarly to R1, a de-noised calibration dataset of the 

average day was produced from the raw observations, following the DPP stage. 

Therefore a total of 96 calibration measurements over a 24-hour period were 

used for the calibration of the average day hydraulic model. On the other hand, 

the observed data for the leak detection and localisation part using the LIM 

involved the 96 flow and pressure observation datasets from midnight of 

November 29 to midnight of November 30. This was twelve days before the leak 

became visible to the public. 
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5.3.2.3 Calibration Method Implementation  

5.3.2.3.1 Data Pre-Processing 

The consumption during every time step of each day in the raw observations 

varies within ±4.9%, with abrupt changes in the flow observations. This is 

because the consumption is mainly domestic and thus, a “noisy” pattern is an 

expected outcome. During the DPP stage the raw datasets for pressure and flow 

were analysed to create a smooth average profile for each device which served 

as the observations within the CS. The datasets for five days from each flow 

metering device were converted to a 24-hour dataset of the average conditions 

for subsequent model calibration. The calibration dataset was created within 20 

minutes. The outcome of the DPP stage is illustrated in Figure 5.23. 

 

 
Figure 5.23. Comparison of the resulting average day dataset and the 

calibration dataset after the DPP stage, relative to the raw observations. 

 

5.3.2.3.2 Profile Calibration 

The DPC was carried out by optimising the 96 demand multiplier coefficients for 

the domestic pattern. The aim was to match the simulated flows at the metered 
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resulting from the combined gravity-based demand and the demand supplied 

from the pumping station. Again, the pattern for simulating the background 

leakage profile was not considered in the calibration process, assuming that it 

remained constant relative to the day before the leak started. This does not 

impact the results from the LDL methodology, however, it can affect the 

calibration of the WDN model, as the change in background leakage m. Before 

DPC is implemented, the simulated net flow showed a discrepancy of at least 0.5 

l/s and up to 2.5 l/s. However, following DPC a good match was achieved with 

the observed net flow with an average error range over the 24 hours of ±2.5% 

(Figure 5.24). This created an improved representation of the average demand 

conditions in both the gravity-fed and the pumping station-fed areas, within five 

hours. Then, at PPC the setting of five of the system PRVs was considered for 

calibration. Additionally, the pump speed profile was also considered for 

calibration. The pattern multipliers were calibrated for each time step, which 

ultimately led to a calibrated hydraulic model at macro-level. The PPC process 

took another four hours of computational work. The macro-calibrated model was 

the fine-tuned in the CC stage. 

 

 
Figure 5.24. Comparison of the updated hydraulic model before and after 

Demand Profile Calibration as well as relative to the observations. 
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5.3.2.3.3 Component Calibration 

In the CC stage the search space was initially reduced, based on a similar method 

as in Case Study R1. Overall, about three hours of analyses were required for 

both valve and pipe components. After the SSR stage only 9% of the valve 

locations, i.e. 23 out of 245 components, were considered to identify a maximum 

of 5 closed valves within the gravity-fed area. In addition, 3 out of the total of 26 

pipe groups (one AC group and two CI groups) were optimised for their 

roughness values. This comprised 15% of the WDN pipes, i.e., 109 out of 702 

pipes in the WDN model. Following on from the CC stage, optimisation detected 

four closed valves in that part of the WDN (Figure 5.25). Two of those valves 

were identified at an incorrect status (Figure 5.25). One of the valves was 

unknowingly found to be closed and the other one open. This means that the flow 

path leading towards the sensor device P8 was simulated incorrectly in the 

hydraulic model. Before calibration the simulated output indicated that water was 

supplied to that part of the WDN after passing through the PRV, whereas in reality 

it is supplied without any pressure management. The status of these valves was 

later checked and verified in the field following the modelling analyses.  

 

 

 

 

Figure 5.25. The detected correct status of the identified valves following the 

model calibration. 

P3 

Flow path to P4 



CHAPTER 5 – Application of the Leakage Inspection and Calibration Methods on Benchmark and Real Case Studies 

 

 

 
187 

 

A comparison of the simulated heads at the sensor locations before and after 

calibration is given in Figure 5.26. The figure also shows the observations during 

the hours of MNF and the morning peak, i.e. at 03:30 and 08:00 hours, 

respectively. The initial model error was reduced to less than 2% across all 

sensors during both the MNF and the morning peak. The only exception is sensor 

P8, where a large difference of more than 11% is observed. This was caused by 

the two valves with incorrect status.  

 

 
Figure 5.26. Comparison of the observed and simulated heads for the 

uncalibrated model and optimised calibration solution during MNF at hour 3 

(top) and the morning peak at hour 8 (bottom). 
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Compared to the starting uncalibrated hydraulic model, the calibrated model 

matched the pressure observations within an error range of ±0.5% across all 

sensors. This is the calibrated model, which was used for leak localisation 

purposes. However, the calibration criteria were not fully met. The error ranges 

for the pressure specific criteria, i.e., ±0.5, 1 and 2 metres, were partially met for 

55%, 85% and 96% of pressure data. However, all criteria associated with the 

simulated head loss were fully met. The reason for missing the pressure specific 

criteria is associated with the limited modelling capability of the EPANET 

hydraulic solver. The hydraulic model used in this research for calibration was 

converted to the EPANET version from the original Synergi software model (DNV-

GL, 2018). That version is maintained by the water network operator. EPANET 

has limited abilities compared to other commercial products and, thus, various 

settings from Synergi are not supported and can be lost during the conversion 

process. For example, the profile variation of PRVs, a pump and a tank, which 

were all part of the presented system could not be fully replicated and combined 

by the EPANET model during calibration.  

 

5.3.2.4 Leak Inspection Method Implementation 

After the SSR stage, which took about two hours to complete, the domain was 

restricted to 11% of the WDN nodes as the search space for a single leak 

scenario. A similar weighting scheme as in Case Study R1 was used. This gave 

an increased weight to the pressure and flow differences during the hours of low 

demand, i.e., between 00:00 and 06:00. A leak of size 2.65 l/s was detected, 

which also corresponds to around 25% of the average inflow readings. Based on 

the detected flow and the MDNL values of the candidate nodes, 20 leak scenarios 

were simulated, ranging from a single leak of 2.65 l/s up to 20 smaller ones of 

approximately 0.13 l/s. The fittest scenario suggested a single leak in the WDN. 

When the leak detection and localisation approach was implemented, the speed 

setting of the pump was also allowed to vary in order to emulate the response of 

a real pump. This corresponds to a real situation in which the pump supplies more 

water and compensates the head loss when a leak happens. The LDL stage was 

completed within four hours. The optimum solution found a node on the pipe 

where the real leak occurred while being 150m upstream of the actual location 

(Figure 5.27).  
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Figure 5.27. Leakage Hotspot Map after the optimisation analysis. 
 

 

Considering the length of the WDN mains, this represents an error of less than 

0.5% (by length). This suggests that the approach was able to localise the 

leakage area within a street-level distance. It should be noted that the closest 

model node to the leak was the reported one. Furthermore, the search for a leak 

was narrowed down to the area between sensors P9 and P11. This corresponds 

to a maximum search distance of only 10% of the total mains length. The leak 

was reported to the utility on November 30, thus, the result suggests the approach 

could identify the leak before it reached the surface and became visible to the 

public. 
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The simulated flows using the updated hydraulic model, i.e., including the 

identified leak, showed a good match with the leak observations over 24 hours 

(Figure 5.28). Thus, the LDL methodology showed success in both identifying the 

leak size and location while calibrating the hydraulic model, although the 

continuous large variability in demand and the rising MNF. The simulated inflow 

after LDL produced a much better agreement with the observations on November 

29 and the following days. Moreover, a very good agreement was also observed 

with the observations on November 27 and 28 that were not considered in the 

LDL process. This is evident especially between 00:00 and 06:00 where a higher 

weight was assigned.  

 

 

Figure 5.28. The Flow Differences before and after leakage detection. 
 

The comparison of the observed and simulated heads at the sensor locations at 

03:30 hours demonstrates the good agreement with observations (Figure 5.29). 

The error dropped again in the range of ±0.5% across all sensors, which 

represents a well calibrated model, i.e. within ±1m accuracy relative to the 

observations.  

0

2

4

6

8

10

12

14

27 28 29 30 1 2

F
lo

w
 (

l/
s
)

Time (Day)

Observed Gravity Observed Pump Observed Net

Before Leak Localization Gravity Before Leak Localization Pump Before Leak Localization Net

After Leak Localization Gravity After Leak Localization Pump After Leak Localization Net



CHAPTER 5 – Application of the Leakage Inspection and Calibration Methods on Benchmark and Real Case Studies 

 

 

 
191 

 

 

Figure 5.29. Comparison of the observed and simulated heads for the 

optimised leakage detection solution during MNF at hour 4. 

 

 

5.4 Evaluation of LIM and CM 

5.4.1 Operational Benefits of LIM and CM 

The real case applications showed that significant operational savings can be 

achieved using both the LIM and CM. The use of LIM can reduce the time 

required to detect and localise a leak, as well as identify the lost volume of water. 

For example, considering that the leak flow in Case Study R1 was on average 

2.25 l/s and ran for a week, the total losses were around 1,400m3. If the offline 

approach was implemented using the data of November 8, which would have 

allowed the leak to be found and repaired by the Leakage Technicians on the 

afternoon of November 9, there would have been volumetric water savings of 

more than 70%. Using the same philosophy in Case Study R2, the leak 

localisation approach could have saved more than 55% of the lost water. This is 

based on the data used to find the 2.65 l/s leak event, a week before it was 

discovered and repaired. Except from the volumetric water savings, serious 

economic impacts can be avoided from costs in fines and insurance payments. 

Further environmental consequences, such as soil erosion, could also be 

reduced. For example, in 2011, Thames Water was fined £8.5m for missing their 
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leakage target (The Guardian, 2017). In addition, a single burst led to insurers to 

face a £4m payment due to flooding and impacts on transport, homes and 

businesses (Insurance Times, 2013). Finally, icy weather conditions caused a 

4,000% increase in Severn Trent’s burst alarms and millions of pounds worth of 

damage (Severn Trent Water Ltd, 2018). Therefore, the promising potential for a 

plethora of benefits for the water sector is obvious following the real case 

validation of the LIM. 

 

Using the CM, the average day hydraulic conditions of the WDN can be 

accurately represented in the hydraulic model for any DMA and consumption 

type. The CM considers the demand uncertainty, as a result of fluctuations in 

consumption, and determines the main flow and pressure profiles in the WDN. 

Furthermore, any system and data anomalies associated with unknown closed 

and open valves can be identified, therefore calibrating the flow paths in the WDN 

model. This not only improves the overall model accuracy, but also the outcome 

of the leak localisation procedure when implementing the LIM. In both real case 

studies presented, the starting uncalibrated hydraulic model of the WDN was 

adjusted to simulate the average conditions of the available measurements prior 

to the leak occurrence. Interestingly, in both WDNs the valves of incorrect status 

were detected and corrected. This led to a correct simulation of flow paths in both 

systems. These were later verified in the field after checking the reported flow 

routes. With a much improved representation of the WDN behaviour without 

considering new leaks, any anomaly from a new occurring event could be 

detected and localised more accurately and allow its earlier pinpointing in the 

field. The CM implemented on both real-life cases demonstrates the benefits that 

could be secured by developing an optimisation-based approach rather than 

pursuing the custom-and-practice methods that have remained broadly the same 

for 20 years across the UK Water Industry.  

 

The developed search space reduction methodology embedded in both the LIM 

and CM can highlight the observable and sensitive parts and components of the 

WDN that can be considered when solving the inverse problem. This reduces the 

number of identified false positive leaks and the incorrectly reported closed or 

open valves. Consequently, the search effort required to pinpoint the reported 
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anomalies is minimized. More specifically, during the parameter sensitivity 

analysis, any pipes and valves where a change in their state and status, 

respectively, produces a pressure change equal or less than the measurement 

error are excluded. Therefore the calibration problem is simplified. Furthermore, 

the MDNL analysis defines a threshold flow value that is detectable based on the 

sensor configuration. Therefore, smaller leaks that cause local impact (not 

captured by existing sensors) will require additional measurements. Except from 

that, the parameter sensitivity analysis provides the water utility an accurate 

estimate of the level of monitoring a DMA would require. Based on its outcome it 

can highlight parts of the WDN where more logging or flow metering is necessary 

for improved WDN observability and leakage control. Combined with externally-

based methods used for pinpointing leaks, the LIM provides the opportunity for 

reducing the time and space required to identify leaks and achieving monetary 

savings along with higher levels of operational efficiency. In addition, the CM can 

complement the LIM and contribute to identifying the better starting point for the 

leak localisation process. Eventually, the synergy between a hydraulic model, an 

optimisation technique and a systematic search reduction technique, can 

eventually automate leak localisation and model calibration, resulting in major 

advances in water network modelling across the UK Water Industry.  

 

5.4.1.1 Computational Benefits of Search Space Reduction 

Important benefits in both inverse problems of leak localisation and model 

calibration were secured through the problem simplification. This is achieved by 

removing unobservable components from the search space. This caused a 

significant reduction to the number of decision variables. That, in turn, achieves 

avoidance of unnecessary iterations during the optimisation analyses. The 

parameter sensitivity analysis restricted the number of components and the range 

of possible values they can be adjusted during the optimisation analysis. 

Therefore, the number of solution combinations in leak localisation and 

calibration procedures was minimized. Eventually, the sensitive and insensitive 

parameters of the hydraulic model are determined and considered in solving the 

inverse problem.  

 



CHAPTER 5 – Application of the Leakage Inspection and Calibration Methods on Benchmark and Real Case Studies 

 

 

 
194 

 

The MDNL flow analysis restricted the range of possible emitter coefficients to 

only highly sensitive values for the model fitness. To achieve this, the 

computations of the forward problem required by the MDNL analysis depends on 

the number of candidate nodes and the number of emitter coefficients after the 

user specifies the maximum possible flow. This is represented by Equation 5.1:  

                                                 𝐶𝑀𝑀𝐷𝑁𝐿 = 𝑁𝐶𝑁 𝑥 𝑁𝐸𝐶                                     (5.1) 

Where:  𝐶𝑀𝑀𝐷𝑁𝐿 is the number of hydraulic simulations required for the 

MDNL analysis. 

𝑁𝐶𝑁 is the number of candidate nodes after Step 1 of SSR. 

𝑁𝐸𝐶 is the number of emitter coefficients that result after the user 

specifies the maximum possible flow before the MDNL analysis. 

 

From the calibration point of view the number of detectable valve locations and 

the detectable pipe groups were established along with their corresponding range 

of roughness values. The number of computations required to establish the 

Detectable Valve Locations is equal to the number of candidate valve 

components represented by Equation 5.2:  

                                                       𝐶𝑀𝐷𝑉𝐶 = 𝑁𝐶𝑉𝐶                                          (5.2) 

Where: 𝐶𝑀𝐷𝑉𝐶 is the number of hydraulic simulations required to determine 

all the detectable valve locations. 

 𝑁𝐶𝑉𝐶 is the number of candidate valve components after Step 1 of 

SSR. 

 

On the other hand the Detectable Pipe Roughness Coefficients can be 

determined based on the number of pipe groups after Step 1 of SSR and the 

number of the corresponding roughness values given by Equation 5.3: 

                                               𝐶𝑀𝐷𝑃𝑅𝐶 = 𝑁𝑃𝐺 𝑥 𝑁𝑅𝐶                                         (5.3) 

Where: 𝐶𝑀𝐷𝑃𝑅𝐶 is the number of hydraulic simulations required to 

determine all the detectable pipe roughness coefficients. 

 𝑁𝑃𝐺 is the number of candidate pipe groups after Step 1 of SSR. 

𝑁𝑅𝐶 is the number of candidate roughness coefficient values that 

correspond to the candidate pipe groups. 
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Eventually any change in a parameter value that causes a similar pressure 

change or less than the measurements accuracy range would practically provide 

no beneficial use. It will also increase the dimensionality of the search space and, 

consequently the required computations during the subsequent optimisation 

analyses. In theory, an over-determined optimisation problem including 

observable parts of the network as decision variables can be solved with a 

reasonable accuracy.  

 

Further improvements were achieved by using short optimisation analyses during 

the SSR stage, i.e., during the SSO step. The power of Genetic Algorithms in 

significantly improving the objective function value at the initial generations of the 

optimisation was leveraged for reducing the inverse problem dimensionality, 

while avoiding long and time consuming runs. The number of combinatorial 

solutions decreased significantly due to the reduced range of possible values for 

each decision variable in both leak localisation and calibration. During Part I of 

the LIM in Case Study R1 the maximum emitter for all candidates was reduced 

by 22% relative to the maximum difference (2.88 l/s) between the observed and 

simulated system demand. This was achieved only after five optimisation 

analyses (Population Size: 50, Generations: 30).  This is an improvement that 

none of the previous model-based techniques that use search space reduction 

achieved. The overall number of hydraulic simulations required to determine the 

total water losses relies on Equation 5.4: 

                                                 𝐶𝑀𝑃𝑎𝑟𝑡𝐼 = 𝑃𝑆 𝑥 𝐺 𝑥 𝑍                                       (5.4) 

Where: 𝐶𝑀𝑃𝑎𝑟𝑡𝐼 is the number of hydraulic simulations required to detect 

the total water losses in Part I of Step 3 in SSR. 

 𝑃𝑆 is the user defined population size for the number of solutions 

generated by the Genetic Algorithm. 

𝐺 is the user defined generations number parameter of the Genetic 

Algorithm. 

𝑍 is the user defined number of optimisation analyses (Section 

3.5.2.2) for the tested range of emitter coefficient values.  

 

At the end of Part II an approximation of the WDN state was obtained, that 

involved searching for the location of a maximum one leak. This, reduced the 
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computations required to explore the search domain of the leak detection and 

localisation problem according to Equation 5.5: 

                                 𝑆𝑆𝑃𝑎𝑟𝑡𝐼𝐼 = 𝑁𝐼𝑛𝑑𝑒𝑥𝑁𝐿𝑒𝑎𝑘 𝑥 (𝐾 + 1)𝑁𝐿𝑒𝑎𝑘                            (5.5) 

Where: 𝑆𝑆𝑃𝑎𝑟𝑡𝐼𝐼 is the number of hydraulic simulations required to evaluate 

any possible solution to the optimisation problem in Part II of SSR 

and the ultimate leak detection and localisation problem, i.e., 

𝑆𝑆𝑃𝑎𝑟𝑡𝐼𝐼 =  𝑆𝑆𝐿𝐷𝐿.  

 𝑁𝐼𝑛𝑑𝑒𝑥 is the number of candidate nodes for any possible leak size. 

𝑁𝐿𝑒𝑎𝑘 is the maximum number leak locations to be identified. 

𝐾 is the number of possible emitter coefficient values for any 

potential leak location. 

 

This is based on an objective approach relative to the subjective approach 

proposed in Wu et al. (2010) and without perturbing the accuracy. If no reduction 

in the dimensionality of the inverse problem in Case Study R1 is undertaken, the 

search space in the Base Case requires 1x10601 computations to be explored. 

This is based on a discretised range of only 10 possible flow values following 

Equation 5.6: 

                                            𝑆𝑆𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒𝐿𝑒𝑎𝑘𝑠 = 𝐾𝑁𝐼𝑛𝑑𝑒𝑥                                      (5.6) 

Where: 𝑆𝑆𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒𝐿𝑒𝑎𝑘 is the number of hydraulic simulations required to 

evaluate any possible solution to the base case optimisation 

problem for leak detection and localisation without any reduction in 

space. 

𝑁𝐼𝑛𝑑𝑒𝑥 is the number of candidate leak location nodes. 

𝐾 is the number of possible emitter coefficient values for each 

potential leak location. 

 

These are a lot of computations for the algorithm to converge to an optimal 

solution, which were avoided using the proposed method. The restriction during 

the LDL stage to only a number of possible leaks with an additional reduction of 

the range of possible flow values can contribute to finding leaks earlier. Here, the 

maximum number of computations for exploring the search space reduced to only 

362. Consequently, reducing the search space before solving the inverse 

problem removed 99.99% of false positive solutions, which improves the leak 
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detection and localisation reliability. To verify this, the leak localisation in Case 

Study R1 (with the known leak) was solved without a reduced search space (i.e. 

100% of WDN nodes). The optimisation ran for 500 generations and a population 

size of 200, similarly to the case with a reduced search domain. However, the 

non-reduced case converged to an incorrect solution. The number of maximum 

possible closed valves in the WDN before model calibration were determined 

after a series of scenarios, based on Equation 5.7:  

                                          𝑆𝑆𝐶𝑙𝑜𝑠𝑒𝑑𝑉𝑎𝑙𝑣𝑒𝑠 = 𝑉𝐼𝑛𝑑𝑒𝑥𝑁𝑉𝑎𝑙𝑣𝑒                                  (5.7) 

Where: 𝑆𝑆𝐶𝑙𝑜𝑠𝑒𝑑𝑉𝑎𝑙𝑣𝑒𝑠 is the number of hydraulic simulations required to 

evaluate any possible solution to the optimisation problem in finding 

the maximum number of closed valves. 

 𝑁𝑉𝑎𝑙𝑣𝑒 is the maximum number of possible closed valves to be 

identified. 

 𝑉𝐼𝑛𝑑𝑒𝑥 is the number of candidate valve components for any 

possible closed valve. 

 

More specifically, the number of computations necessary for the search space 

exploration in Case Study R2 was reduced to 235, in contrast to the 2245, for the 

Base Case, i.e., without any implementing the SSR stage. This was a reduction 

of 99.99% in the number of possible solutions and was achieved following 

Equation 5.8:  

                                              𝑆𝑆𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒𝑉𝑎𝑙𝑣𝑒𝑠 = 2𝑉𝐼𝑛𝑑𝑒𝑥                                   (5.8) 

Where: 𝑆𝑆𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒𝑉𝑎𝑙𝑣𝑒𝑠 is the number of hydraulic simulations required to 

evaluate any possible solution to the base case optimisation 

problem for detecting the status of valves without any reduction in 

space. 

𝑉𝐼𝑛𝑑𝑒𝑥 is the number of candidate valve components. 

 

According to Equation 5.9 the problem dimensionality associated with the pipe 

roughness calibration groups was minimized to: 

                                                 𝑆𝑆𝑃𝑅𝐶𝐺 = 𝑅𝐼𝑛𝑑𝑒𝑥𝑁𝐺𝑟𝑜𝑢𝑝𝑠                                  (5.9) 

Where: 𝑆𝑆𝑃𝑅𝐶𝐺 is the number of hydraulic simulations required to evaluate 

any possible solution to the optimisation problem in finding the 

maximum number of pipe roughness calibration groups. 
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 𝑁𝐺𝑟𝑜𝑢𝑝𝑠 is the maximum number of possible pipe groups to be 

calibrated. 

 𝑅𝐼𝑛𝑑𝑒𝑥 is the number of possible roughness values for each pipe 

group. 

 

This resulted in roughly 123 necessary computations as opposed to the 12702 

required for the base case (i.e., 99.99% reduction), based on Equation 5.10: 

                                           𝑆𝑆𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒𝑃𝑖𝑝𝑒𝑠 = 𝑅𝐼𝑛𝑑𝑒𝑥𝑊𝐷𝑁𝑝𝑖𝑝𝑒𝑠                       (5.10) 

Where: 𝑆𝑆𝐵𝑎𝑠𝑒𝐶𝑎𝑠𝑒𝑃𝑖𝑝𝑒𝑠 is the number of hydraulic simulations required to 

evaluate any possible solution to the base case optimisation 

problem for calibrating the roughness coefficient of pipe 

components without any reduction in space. 

𝑊𝐷𝑁𝑝𝑖𝑝𝑒𝑠 is the total number of pipes in the WDN model. 

𝑅𝐼𝑛𝑑𝑒𝑥 is the number of candidate valve components. 

 

All of the above simulations were carried out on an Intel(R) Core(TM) i7-5600U 

processor of 2.6GHz speed and 16GB memory. Avoiding such a number of 

unnecessary solution combinations can vastly speed up the inverse problem 

solving procedure. The reason lies in the less decision variables and the 

complexity of the problem. For example, in practice, cost effective leaks are often 

associated with a small number of hotspots. Similarly, although the status of all 

valves in the WDN cannot be continuously monitored, those with an uncertain 

status are associated with just a few components. Consequently, the initial 

population of solutions to the inverse problem can begin at a better starting point.  

 

5.4.1.2 Practicality of the LIM 

The LIM is also applicable to larger WDNs and can detect and localise multiple 

leaks. However, its accuracy depends on the type, number and location of 

available pressure and flow measurements as this can affect the outcome of both 

the SSR and LDL stages. The method works best when the number of 

observations is larger than the number of potential leak locations. The SSR stage 

defines the WDN resolution, i.e., all model components that can be determined 

during inverse analysis. However, a larger number of sensors will lead to an 
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increased resolution and therefore a larger search space. On the other hand, 

more available measurements will result in a more unique pressure and flow 

signatures and, therefore, improved accuracy. Moreover, with a variety of sensor 

types (i.e., flow, pressure or noise logging) and data collection based on the 

optimal sampling design, the process can result in more unique solutions and 

improvement in the condition of the inverse problem.  

 

It is expected that any leak that causes a pressure drop larger than the 

uncertainty caused by inaccuracy of pressure sensors can be detected and 

approximately localised. This was shown by the semi-real and real case studies, 

allowing a reduced search effort and earlier pinpointing by the Leakage 

Technicians. Based on the outputs from the semi-real case studies, leaks of at 

least 5% relative to the average system demand can be localised at a street-level 

resolution. Considering the accuracy of contemporary pressure sensors, in Case 

Study SR1 the leak J-33 was localised within approximately 170m. 

Complementary, in Case Study SR2 leaks J-305 and J-183 were localised within 

330m and 280m, respectively, as an average distance for all demand fluctuation 

scenarios using CAL D (Table 5.3).  

 

A point to raise is associated with the automation developed in the LIM. This can 

contribute to significant search effort benefits, associated with the traditional 

labour-intensive leak detection and localisation procedures carried out by 

practitioners. However, it requires a calibrated hydraulic model (see section 

2.4.5) and a set of well-behaved data (see section 4.3.2). Another important point 

is associated with the impact caused by the idealized value of the pressure 

exponent 𝑎 (2.16 in Section 2.5.4.2.1) considered by the LDL methodology. To 

minimize that Zonal Tests can be undertaken (Lambert et al., 2017) for a more 

accurate estimate of 𝑎.  

 

Compared to other inverse methods, an advantage of this approach is that it 

takes into account the uncertainty in observations, which can minimize the 

number of non-unique solutions and false positives. Furthermore, it reduces the 

subjective impact coming from the user’s choices and establishes an objective 

system for finding leaks. This provides a much better starting point for the 
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generated population of solutions in the subsequent optimisation analyses during 

the leak detection and localisation procedure.  

 

Nevertheless, a drawback of the presented method lies in the outcome of Part II 

during the SSR stage, which may lead to an incorrect estimate of the WDN state. 

This can occur due to the premature convergence of the algorithm caused by the 

non-exhaustive optimisation analyses. The results suggest that multiple 

optimisation runs for different leakage scenarios prove beneficial for assessing 

the number of leaks in the network, although in larger systems that can be time 

consuming. Another key limitation of the LIM is that it can only work for new leaks 

that occur after the model has been calibrated. This is because background leaks 

already occurring in the DMA are masked in the calibrated model. Furthermore, 

a large number of sensors may be necessary. However, the cost of hydraulic 

sensor technology has reached the level that enables their large scale 

deployment in a WDN. Finally, due to the large number of simulations necessary 

to reduce the search space and converge to an optimum solution a real-time 

implementation of the LIM is currently not likely. From the presented case studies 

it is expected that a leak can only be identified at least 3 hours after it has 

happened (1 hour for SSR stage and 2 hours for LDL stage), thus, allowing only 

near-real time applications. However, this depends on the size of the hydraulic 

model and the ability of the optimisation technique to evaluate solutions. In 

addition, on the chosen number of optimisation analyses, the population size and 

the number of generations specified. On the other hand, with improving 

computing power or the scalability provided by cloud computing this can be 

significantly reduced. 

 

5.4.1.3 Practicality of the CM 

Similarly important is the type, number and location of available measurements 

for SSR and CC stage of the CM. However, for an improved model calibration it 

is strongly suggested that an increased number of flow measurements is used 

and at least one sensor every approximately 200 properties. This is because a 

change in the status of a valve, or state of a pipe, which is not located on a key 

flow route that conveys a significant fraction of the global demand, would cause 

very small changes in pressure. The starting model from Case Study R2, which 
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was calibrated based on flow readings from five devices led to a much more 

accurate leak localisation, as opposed to the starting model of Case Study R1, 

which only used the inlet flow. The detected leak in Case Study R2 was reported 

within a ±0.5% error (by length) relative to the 2% error in Case Study R1, 

although the network was larger, more complex and the pressure logging density 

was the same. In addition, the offline CM demonstrated the ability to match the 

simulated outputs in pressure and flow with the observed ones, while identifying 

valves with uncertain status. An important step in modelling the correct WDN 

hydraulic conditions was associated with the use of a well-behaved calibration 

dataset, following the DDP stage. Through the exploitation of all available 

measurements and the use of a de-noising technique the large demand 

fluctuation in both real cases was mitigated. This allowed to determine an 

accurate representation of the average hydraulic conditions. The Case Study 

SR2 which examined various scenarios of demand uncertainty and calibration, 

suggests that the CM can accurately calibrate any DMA type characterised by 

any consumption type. The CM is also an automated and objective procedure, 

which only requires a set of well-behaved raw measurements (see section 4.3.2) 

and a hydraulic solver combined with an optimisation technique. Therefore the 

time consuming trial-and-error adjustments in model parameters based on 

subjective decisions of the modelling engineers can be eliminated.  

 

A significant drawback of the CM lies within the capabilities of the EPANET 

hydraulic solver used in this research after its conversion from the original Synergi 

version. For example, in Case Study R2, it was impossible to calibrate the part of 

the WDN upstream of the tank as EPANET cannot support any functionalities 

related to the profile behaviour of the tank water level. Thus, 57 pipes and 23 

valves, i.e., 8% and 9% of WDN components, respectively, were not considered 

in the calibration procedure. In addition, there is no functionality to represent the 

profile behaviour of a changing PRV setting during the 24 hour simulation. 

However, a separate code was developed so that a time-step wise calibration of 

the PRV settings was achieved, similarly to the pattern multiplier calibration, used 

during the Profile Calibration. Although calibrating each step separately is more 

time-consuming, the missing functionality in EPANET is approximated and the 

resulting hydraulic model becomes more accurate. Finally, the WDN hydraulic 



CHAPTER 5 – Application of the Leakage Inspection and Calibration Methods on Benchmark and Real Case Studies 

 

 

 
202 

 

models used in the presented case studies were converted from an original 

Synergi version, maintained by Severn Trent Water, to an EPANET version. Due 

to this conversion and the limited hydraulic modelling ability of EPANET, many of 

such settings were lost. Even though, this issue does not invalidate the calibration 

methodology as a more accurate hydraulic model was still achieved, all of the 

above reasons suggest that the CM is applied to simpler WDNs for an improved 

accuracy. The practical use of the CM can be largely improved using a hydraulic 

solver where these functionalities are accessible, i.e., using a commercially 

available solver, or in an upgraded version of EPANET (e.g., EPANET 3).  

 

5.4.1.4 Model Calibration and Data Challenges 

A key requirement for accurate leak localisation using the LIM and the message 

from this work is the need to use a well calibrated model of a WDN. However, the 

traditional methods of calibration, i.e. adjusting pipe roughness coefficients and 

nodal demands through trial-and-error, have a low chance of meeting the even 

stricter calibration criterion now required for operational WDN modelling. As 

demonstrated by both the semi-real and real case studies, a calibrated model 

contributed to a more accurate leak localisation and improved model quality. With 

the advent of cheaper telemetry and monitoring devices, there are opportunities 

to further exploit the information captured for estimating decision variables with 

satisfactory confidence. More data is required due to the increased complexity of 

large urban WDNs and the ill-posedness problem associated with WDN 

modelling. Although the semi-real case SR1 studied a relatively small WDN and 

used data from the traditional sensor deployment density of 1 per 200 properties, 

the uniqueness problem was still an issue. This is because the mean pressure 

change was similar at a smaller leak size. Combined with the effect of noise, 

various combinations of solutions led to equally fit solutions and eventually to an 

incorrect localisation. Even using a perfect dataset, at a 5% leak the pressure 

changes were too small to produce a distinct “signature” that could be used to 

correctly localise the leak. Significant improvements in the accuracy of the model 

calibration and leak localisation process can be secured with the inclusion of 

additional flow measurements captured from key flow routes in the WDN. 

Furthermore, the impact caused by small unknown leaks, or the local effect 

caused by unknown closed/open valves, can be often insufficient to allow 
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detection. An unknown closed/open valve that due to data anomalies may have 

been left open/closed in the calibrated model, can result in false positive leak 

detection. This may be associated with incorrect pipe group roughness values 

that also exist in same flawed models. Therefore an increased number of flow 

measurements can facilitate the detection of valves with unknown status.  

 

Current WDN models are calibrated to a standard that assumes that simulated 

model fits observed pressures within ±1m. Thus, hard-to-find leaks and 

topological anomalies, i.e., faults that cause a pressure change of less than a 

metre, can remain undetected due to small head losses. It is time to move 

towards a stricter calibration criterion of ±0.1m, equal to the accuracy of field 

pressure transducers. This will then be able to provide far superior calibration 

with increased opportunities for more successful detection of previously 

undetected model anomalies. This will, therefore, allow mathematical optimisers 

to more clearly distinguish between leak induced head losses and those arising 

from other faults resulting from theft, unknown status valves, or incorrect pipe 

sizes and roughness values. The results in Case Study SR2 suggest that the 

calibration dataset quality can affect the model fitness in accurately localising 

leaks. Although all tested scenarios were calibrated within ±0.5m, i.e., better than 

the desired model performance criteria, demand fluctuation severely affected the 

distance and size of the reported leaks as opposed to the actual locations and 

flows. This relies on the DMA type, i.e., urban or rural, and the consumption type, 

i.e., domestic, industrial, etc. A calibrated hydraulic model of a DMA with large 

fluctuations in demand may include additional noise, which can mask small leak 

events and hide the impact caused by unknown closed or open valves. 

Eventually, the level of effort required to calibrate a WDN hydraulic model and 

the desired accuracy level relies on its intended use. For the inverse problems of 

leak detection and localisation and model calibration, which are interconnected 

in establishing the model quality, the set of model performance guidelines should 

consider demand uncertainty. 

 

Smoothing the raw measurements of a highly variable demand during the DPP 

stage of the CM proved beneficial in representing the main profile of flow and 

pressure in the real WDN. This contributed to more robust solutions during the 
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leak localisation and elimination of false positives. Therefore, choosing the right 

calibration dataset, based on the DMA and consumption type is key for accurate 

modelling of the WDNs. On the other hand, with the aim of matching simulated 

outputs with the observed ones, the subjective calibration dataset currently used 

across the UK Water Industry has a low chance of providing accurate leak 

localisation in systems with large demand uncertainty. Thus, calibration of WDN 

hydraulic models should consider the DMA and consumption type when choosing 

the ultimate right calibration dataset for modelling the average day hydraulic 

conditions of the system.  

 

5.5 Summary and Conclusions 

In this chapter, several case studies were carried out with the following main 

objectives: (1) to verify the leak inspection method and the calibration method 

proposed in Chapter 4; (2) to demonstrate and analyse the effects of the number, 

type, accuracy and locations of the available data in the accuracy of leak 

localisation and model calibration; (3) to compare various datasets used for 

calibrating hydraulic models which are used to find leaks in WDNs. Two offline 

model-based methods for leak detection and localisation and model calibration 

applications were presented. In both methods the size of the inverse problem is 

reduced before solving it. The LIM uses head and flow measurements to detect 

and localise leaks in WDNs, while the CM to accurately calibrate the WDN and 

identify any unknown closed or open valves.  

 

The LIM has been tested on four UK networks using artificial and real leak data, 

respectively. The desktop cases demonstrated the advantages and limitations of 

this method, depending on the quality of data and model calibration. The method 

was then validated by detecting a real leak event from two UK DMAs, proving 

that the area for finding the leak on the ground can be reduced to about 10% of 

the WDN (by length), which could have led to savings in water of more than 50%. 

In both semi real and real cases presented, the optimum solution was preserved 

in the final search space. The two systems were evaluated in terms of 

operational, computational and practical benefits. A discussion was also provided 

on the major issues with the traditional calibration of WDN models and the ill-
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posedness of the calibration problem. In the final chapter of this thesis an overall 

summary is provided and the main conclusions are drawn based on the key 

findings, along with suggestions for further avenues resulting from this research. 

The main conclusions from this chapter are as follows: 

 The search space reduction stage can be used to formulate a simplified 

version of the initial inverse problem, comprised of observable and 

sensitive parameters, while defining the number of its possible solutions. 

This achieves avoidance of unnecessary iterations during the optimisation 

analyses and reduces the number of identified false positive leaks and the 

incorrectly reported closed or open valves. 

 The LIM can be used for the automatic detection and localisation of leaks 

in rural and urban WDNs at a street-level resolution. Consequently, the 

search effort required to pinpoint the reported leaks is minimized. It is 

expected that any leak that causes a pressure drop larger than the 

uncertainty caused by inaccuracy of pressure sensors can be detected 

and approximately localised by the LIM. 

 The CM can be used as an automatic and objective procedure for the 

calibration of average day models and the identification of valves with 

uncertain status, where only highly sensitive parameters to the model 

fitness are adjusted. Therefore the time consuming trial-and-error 

adjustments in model parameters based on subjective decisions of the 

modelling engineers can be eliminated.  

 The calibration dataset and the demand uncertainty has a direct impact on 

the hydraulic model quality and the accuracy of leak localisation, even the 

calibration criteria are met. The availability of a larger number of flow 

measurements results in more precise detection of incorrectly modelled 

valves and improved model calibration. This can ultimately contribute to a 

more accurate leak localisation process. 
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CHAPTER 6  Summary, Conclusions and Further Work Recommendations 

Summary, Conclusions and Further 

Work Recommendations 

 

 

6.1 Introduction 

WDNs are critical infrastructures that increasingly large numbers of people rely 

on daily. As population grows, the demand on these critical infrastructures also 

increases. The need for accurate WDN modelling then becomes vital to ensuring 

reliable and adequate rehabilitation and operational solutions. Sensing 

technology has advanced to the point that the deployment of dense networks of 

low-cost pressure and flow sensors is now feasible. When placed at optimal 

locations, the increased density and availability of measurements from these 

devices can improve the observability of the system, i.e., the length of the network 

where the model parameters can be determined. This can enable more accurate 

leak detection and localisation, improved model calibration, and consequently, 

more proactive management of WDNs. 

 

The primary aim of this research was to develop novel approaches that simplify 

the deployment of optimisation techniques for solving inverse problems in WDN 

modelling applications. The particular applications considered are associated 

with leak detection and localisation, as well as model calibration. This is so that 

eventually the leak localisation process by means of hydraulic modelling 

becomes more reliable and faster, and the model quality improves. Since both 

inverse problems are non-linear, non-convex and multi-modal, a robust 

optimisation technique is required. A genetic algorithm has been commonly used 

with a WDN hydraulics solver engine to accomplish this task. Pressure and flow 

data collected at key points in the system are used to estimate the model 

parameter values. A summary of the results of this research is presented in the 

following sections. The contributions and conclusions drawn from this thesis are 
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presented next. Finally, some recommendations for further work are made, based 

on the results presented in this thesis. 

 

 

6.2 Summary of Present Work 

A novel search space reduction technique has been presented in this thesis as 

part of a proposed decision-support framework for solving inverse problems in 

WDN modelling. The technique has been developed so that the dimensionality of 

an inverse problem in WDN modelling is minimized. Its main characteristics are 

as follows: 

(1) Three types of decision variables are considered: (a) the node emitter 

coefficient values in the WDN hydraulic model used for leak detection and 

localisation; (b) the status of valve components used in model calibration 

for detecting data anomalies in the hydraulic model; (c) the roughness 

coefficient value of pipe components used in model calibration for 

estimating flow velocities in the real system.  

(2) For each decision variable type the search space reduction is performed 

in three steps: (Step 1) Inverse Problem Simplification; (Step 2) Parameter 

Sensitivity Analysis; and (Step 3) Search Space Optimisation.  

(3) Prior information, including expert knowledge of the system, and a number 

of assumptions are employed to simplify the inverse problem in Step 1.  

(4) The pressure sensor number, locations and accuracy range are 

considered and through a sensitivity analysis of parameter values the 

observable parameters and parameter values are identified in Step 2.  

(5) A number of optimisation analyses are performed in Step 3, based on 

various scenarios for the system state considering the available 

observations to, ultimately, restrict: (a) the number of candidate leak 

locations and the range of possible flow values; (b) the number of 

candidate valve locations with uncertain status and; (c) the number of 

candidate pipes and the range of possible roughness values. 
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To improve the reliability and timeliness in localising leaks and the overall model 

accuracy two methods were developed that integrate the search space reduction 

technique, so that the inverse problem dimensionality is reduced. 

 

6.2.1 Leak Detection and Localisation 

A novel Leakage Inspection Method for detecting and localising leaks was 

proposed with the following main characteristics: 

(1) A calibrated model is a necessary prerequisite for more reliable leak 

localisation results. 

(2) The leak localisation is formulated as a constrained optimisation problem 

of weighted least square type with a reduced decision search. 

(3) The Leakage Inspection Method detects and localises leaks in DMAs, 

based on systematic search space reduction, where unknown leaks are 

simulated as node emitter coefficients. This has been tested and validated 

on semi-real and real case studies. 

(4) The method integrates two stages: (a) a Search Space Reduction stage, 

where the number of candidate leak locations and the range of possible 

flow values is reduced; and (b) a Leak Detection and Localisation stage, 

which considers the reduced set of decision variables within an 

optimisation analysis to find the size and location of leaks. 

 

6.2.2 Hydraulic Network Model Calibration 

A new, consistent and unbiased Calibration Method has been developed that 

determines the state of internal pipe roughness values, the setting/speed of any 

PRV/pump and detects the correct status of any incorrectly modelled valves. Its 

main characteristics are as follows: 

(1) The calibration is formulated as a constrained optimisation problem of 

weighted least square type with a reduced number of decision variables. 

A systematic search space reduction is applied to reduce the problem 

dimensionality. 

(2) The Calibration Method involves four stages: (a) Data Pre-Processing 

stage to generate the calibration dataset; (b) a Profile Calibration stage for 

macro-level calibration of the WDN model; (c) a Search Space Reduction 
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stage for reducing the calibration problem size and; (d) a Component 

Calibration stage for micro-level calibration. The system has been tested 

on semi-real and real case studies.  

(3) The Data Pre-Processing stage generates a well-behaved problem 

dataset from the raw sensor data. Those datasets are comprised of 

measurements that represent the average day hydraulic conditions in the 

WDN. This is performed by implementing two steps: (Step 1) Average Day 

Profile Dataset Generation and (Step 2) De-Noised Dataset Generation. 

(4) During the Profile Calibration stage, the profile of any demand category 

and setting of any model component that affects the WDN model flow 

and/or pressure, is calibrated using inverse analysis.  

(5) At the Search Space Reduction stage, the pipe and valve components are 

analysed and the search domain is reduced before the calibration of the 

WDN model. 

(6) At the Component Calibration stage, an optimisation problem is formulated 

and solved where the pipe group roughness coefficients and status of 

valves are fine-tuned to calibrate the WDN model and detect any 

incorrectly modelled valves (i.e., closed or open) in the WDN. 

 

 

6.3 Research Contributions 

6.3.1 Inverse Problem 

The present work has made a number of contributions to the field of Inverse 

Problem solving, summarized as follows: 

 Development of a novel search space reduction methodology for 

solving leakage related inverse WDN problems: One of the main 

contributions of this thesis is the method that incorporates prior information 

for a number of components to alleviate difficulties with and improve the 

condition of the inverse problem associated with leakage detection and 

localisation, and model calibration. This minimizes the computational effort 

and improves efficiency of the corresponding optimisation problem. 

Ultimately, this increases the ability to perform robust search and get as 

closely as possible to the global optimum.  
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 Synergistic use of expert knowledge, the available data type, number 

and locations, as well as a search method to define a reduced 

number of possible solutions to the leakage related inverse WDN 

problems: Another main contribution of the work done in solving an 

inverse problem is the definition of the search space. The use of prior 

information and expert knowledge of the system has contributed into more 

practical and realistic solutions. Based on the type, number and location 

of the available data a threshold minimum and maximum value is defined 

for each candidate parameter. This is done for both the leak detection and 

localisation problem and the model calibration problem. The accuracy 

range of the pressure sensor devices determines the detectable 

parameters and defines the decision variable threshold (bounds) values. 

This provides the search process a better starting point and in minimizing 

the risk of premature convergence and increases the confidence in the 

possible solutions. 

 

6.3.2 Leak Detection and Localisation 

A number of contributions were made to the field of leakage management: 

 The development of new offline simulation-optimisation method for 

leak detection and localisation based on search space reduction: The 

proposed Leak Inspection Method uses a search space reduction method 

before applying leak localisation so that the computational effort in finding 

the leak(s) size and location(s) is minimized. Ultimately, the leak search 

process starts at more targeted locations, where a reduced area and effort 

is required to pinpoint leak/burst events.  

 A novel use of sensitivity analysis methods for determining the 

minimum detectable leakage flow and highlighting unobservable 

parts of the WDN: The parameter sensitivity analysis step of the search 

reduction method can be used to define the threshold detectable flow, for 

every candidate leak location in a WDN. As a direct outcome the analysis 

determines the parts of the WDN where more or different data are 

necessary to determine the WDN state. 

 



CHAPTER 6 – Summary, Conclusions and Further Work Recommendations 

 

 

 
212 

 

6.3.3 Model Calibration 

Finally, the contributions to the field of hydraulic network model calibration are as 

follows: 

 Development of a new calibration method for average day models 

based on data pre-processing and search space reduction:  The 

proposed calibration method combines a data pre-processing for 

generating an accurate dataset of the average system conditions, and a 

search space reduction method before the model calibration is attempted. 

This allows for a more efficient and effective calibration of WDN 

components  

 Exploitation of all available sensor data for calibration, and 

development of an effective data pre-processing method for 

determining average day patterns: The proposed data pre-processing 

method enables detecting and correcting erroneous values in sensor data, 

while capturing the general pattern of the average day hydraulic 

conditions, using all available field measurements. Therefore, the whole 

raw dataset can be effectively converted to fit-for-use data for model 

calibration. 

 

6.3.4 Water Distribution Network Modelling 

The present work has also made a number of contributions to the field of Water 

Distribution Network modelling: 

 Generalization of the inverse analysis methodology for 

straightforward application to any District Metered Area: The 

development of both methods for leak detection and localisation and 

model calibration has considered that the final application must be able to 

be applied to any District Metered Area. This is supported by the 

successful application of both methods on real networks of different size 

and complexity, as well as various scenarios for the leak size(s) and 

locations.  

 Development of a modular software suite that includes the developed 

methodologies: The proposed methodologies developed are being 

encapsulated in a MATLAB GUI, providing an automated system for 
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identifying the reduced parameter set and for allocating the optimised 

parameters. Therefore minimal effort is required by the Modelling 

Engineers. 

 

 

6.4 Research Conclusions 

A hydraulic network model can only be used with confidence if it reveals the real 

behaviour of the water distribution system with reasonable accuracy. Such 

models can provide adequate and automatic support in providing solutions 

associated with operational work at distribution mains level, such as finding leaks. 

Solving the inverse problem in WDN modelling is usually a very complex task that 

requires field measurements. Those are used to determine the unknown causal 

parameters, relevant to model calibration and leak localisation purposes. Rather 

than using some trial-and-error approach, an optimisation problem can be solved. 

However, to develop a well-posed formulation of the problem, the solution must 

be both unique and stable to noise in data. In population-based algorithms, such 

as a Genetic Algorithm, the quality of the initial population plays an important role 

for their performance. For example, if the initial population contains some good 

solutions, the algorithms converge quickly. This research showed that several 

improvements can be made to condition an ill-posed problem and to find better 

starting point for optimisation analyses. The improvements are achieved by 

reducing the search space while reducing the risk of missing the optimum 

solutions.  

 

The key messages from this research are as follows:  

 The Leak Inspection Method is able to detect and localise leaks effectively 

in a WDN using a calibrated model of the system. The approach is flexible 

and can be applied to networks of varying sizes and characteristics. This 

was demonstrated on two real case studies where the leaks were 

successfully identified. The method ensures that a good starting point is 

found, which achieves high computational efficiency leading to early and 

reliable leak localisation. When compared to the Wu et al. (2010) 

approach, which introduces a subjective element to the search for a 

solution, the LIM considerably reduces the risk of eliminating the best 
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solution and minimizes the subjective element of the leak localisation 

approach. In addition, the novel procedure suggested here minimizes the 

maximum number of computations needed before implementing the leak 

localisation. This improves the uncertain number of iterations required by 

other methods, such as Nasirian et al. (2013).  

 The Calibration Method can identify throttle valves with uncertain status, 

determine the state of internal pipe roughness and the setting/speed of 

any PRV/pump. Furthermore, it can simulate the average day hydraulic 

conditions and ensure that a good starting model is provided for leak 

detection and localisation. The calibration problem is solved automatically 

by an optimisation-based method, therefore, improving upon the custom-

and-practice WDN modelling procedures followed by practitioners. 

However, it is not reasonable to expect that the calibration problem will be 

solved using a completely automated procedure. 

 The accuracy of leak localisation and the effectiveness of model 

calibration is affected by the performance of the LIM and CM. For an 

accurate leak localisation a well calibrated model is necessary, as its ability 

to identify leak events improves with more accurate predictions. Similarly 

the hydraulic model predictive quality improves when a leak is found and 

the model is updated after the leak is fixed. Furthermore, collection of 

additional pressure and (especially) flow data, can bring multiple benefits 

to localising leaks and improving hydraulic model calibration. This is due 

to a unique “signature” being created on the recorded data for each 

situation in the real system, which helps to identify any anomalies more 

accurately. 

 The offline model-based methodology can improve the inverse problem 

condition. The improvement is achieved after a systematic reduction in the 

number of decision variables and the range of possible values by 

considering the error in the available data. However, the outcome of the 

search space reduction method depends on the type, number, accuracy 

and the topological placement of sensor devices. Therefore, the inverse 

problem condition and dimensionality is interconnected to the sensor 

placement design. 
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 At the beginning of any inverse problem in WDN modelling, it is important 

to develop a detailed understanding of the system hydraulics and water 

consumption. Furthermore, it is advantageous to identify clear and 

realizable expectations for the solution to the problem. Any information 

available that is directly or indirectly related to the aim of the inverse 

problem should be used. 

 Several improvements can be made to condition an ill-posed problem by 

the incorporation of prior information on decision variables parameters. 

The minimum leak size or the valve status that can be detected and 

localised is determined by: (a) the pressure change caused by the fault, 

and (b) the variation caused by the errors/uncertainty in pressure 

measurement readings. As long as the former exceeds the latter, any leak 

or valve status can be detected and localised. Moreover, it is shown in this 

thesis that when prior information associated with the decision variables is 

used following search space reduction, the condition of an ill-posed 

problem will always improve. Still, there is no guarantee that an 

improvement will be good enough to convert an ill-posed problem into a 

well-posed one.  

 The calibration performance criteria need to be revised for an improved 

leak detection and localisation. Incorrect conclusions can be drawn even 

after the calibration criteria have been met. An important aspect in the 

effectiveness of the model calibration is the consideration of demand 

fluctuation as a result of the network characteristics. Furthermore, a good 

model fit (measured by some objective function value) does not always 

solve the calibration problem. As shown in the semi real case study SR2 

analysed here, it may lead to unreliable results. Therefore, traditional 

modelling calibration methods are too coarse to routinely provide models 

for reliable leakage detection. The scope for error due to system and data 

anomalies has been demonstrated in SR2.  

 The real case study results have shown that the developed methods have 

a great potential not only for aiding the determination of the size and 

location of new leak/burst events, but also to improve the overall model 

quality. Through a synergy with externally-based methods, it is possible to 

reduce the search area and reduce the cost of finding the leak and the 
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volume of water lost. In practice, it should lead to a useful support tool for 

network operations. 

 

 

6.5 Further Work Recommendations 

The present research has identified a number of areas where further work can be 

undertaken. Firstly, it should be noted that the approaches presented in this 

thesis were only tested on four real-life networks with both artificially generated 

and real data. Additional tests on other WDNs should be considered, to establish 

that the results and conclusions are not network-specific. As noted in the review 

of the state of the art (Chapter 2), research on WDN calibration is continuously 

advancing with the search for the best methodology still continuing. The proposed 

methods provide a practical alternative that satisfied the requirement for most of 

the possible uses of WDN hydraulic models. This is because they can work 

synergistically with externally-based leak detection and localisation methods to 

find leaks in an effective and timely manner. However, further improvements are 

still possible. 

 

6.5.1 Leak Detection and Localisation 

Regarding leak detection and localisation the recommendations for further 

research work are as follows: 

 The leak detection method has proved to correctly detect and locate a real 

leak. Furthermore, the analysis with synthetic data has extracted 

additional conclusions about detectability of leaks. A future research 

should assess more thoroughly the robustness and the level of leak 

localisation accuracy of this methodology, as well as its applicability in 

engineering practice. This can be accomplished through a series of 

desktop experiments that systematically test the method’s accuracy on 

different case studies. The LIM can be tested on a variety of scenarios, 

such as for different network size and complexity, different leak size, 

number, and locations, as well as different number and locations of sensor 

devices. It is also of interest to test and validate the methodology on the 
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detection and localisation of multiple leaks to determine the ability to detect 

simultaneous events. 

 There is also a need to investigate any potential applications of this 

methodology in near real-time so that the trade-off benefit between the 

leak localisation accuracy and the available data can be benchmarked. 

The accuracy of the LIM in detecting and localising leaks can be assessed 

on a number of desktop and real cases, for different scenarios on the 

duration and frequency interval of the recorded pressure and flow data.   

 A detailed comparison of the performance of this method with previously 

published inverse methods should be performed. A number leak detection 

and localisation problems can be solved that compare this method’s 

accuracy and computational performance against the methods developed 

by Wu et al. (2010) and Nasirian et al. (2013). All methods can be tested 

for different leak sizes, numbers and locations.  

 Equally, a detailed comparison of the performance of the LIM can be 

performed compared with the optimisation-based methods used in the 

widely available commercial hydraulic modelling software such as 

WaterGEMS and Synergi. 

 Future work could also be undertaken to determine the effect of DMAs in 

a cascaded system. A leak/burst event in a DMA may cause a change in 

pressure in other DMAs that are in the cascaded system. Therefore, the 

question is how will the correct DMA be identified? To better understand 

the effect of leak/burst events in cascaded systems, field trials should also 

be conducted. 

 

6.5.2 Model Calibration 

Regarding calibration of WDN hydraulic models recommendations for further 

research work are as follows: 

 To assess the robustness of this methodology and its transferability to 

engineering practice after being tested on different case studies. A set of 

difficult, multimodal, calibration problems can be developed that test the 

method’s accuracy based on different network situations. The CM can be 
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tested for different number and locations of incorrectly modelled valves, as 

well as different number and location of sensor devices.  

 Benchmarking of the performance of this method with previously published 

calibration approaches should be performed. The CM can be compared 

with the traditional calibration approach used by practitioners (Puust & 

Vassiljev, 2014). In addition with approaches that used other optimisation 

techniques (Dini & Tabesh, 2014), or those where model calibration was 

combined with leak detection (Wu & Clark, 2009). 

 To validate the effect of a chosen calibration dataset on the outcome of 

the calibration methodology. This can be achieved by testing the CM on a 

number of real case studies, of different range of demand fluctuation, 

where different datasets can be chosen to calibrate the WDN hydraulic 

model.  

 To consider formulating the calibration problem as a two objective 

problem. The two objectives would minimize the weighted sum of squared 

differences considering the observed and validation data, respectively. 

This will help with understanding the possibility of overfitting. 

 

6.5.3 Optimisation Technique and Data Effect 

To further develop this work on a number of different research areas associated 

with the optimisation techniques could be explored on the outcome of calibration 

and leak localisation: 

 It would be of interest to compare the benefits of optimal instrument 

location on the outcome of both calibration and leak localisation against 

traditional sensor placement methods on a real case study. For example, 

one or more engineered events can be introduced in a real WDN, such as 

a leak and/or an unknown closed/open valve.   

 Because the Genetic Algorithm approach is a stochastic-search 

technique, the solutions obtained from different random seed values may 

be different. Further work is required to implement the proposed methods 

using other evolutionary and non-evolutionary optimisation techniques and 

compare them against the Genetic Algorithm optimisation.  
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 In order to improve the exploration and the exploitation of the solution 

space, a hybrid optimisation could be developed. The main idea would be 

the use of a genetic algorithm for global search, followed by a local search, 

such as a gradient method. In addition, a faster optimisation method 

compared to a Genetic Algorithm can be tested as an alternative for 

carrying out the third step of the search space reduction method. 

 

In conclusion, it is hoped that this thesis has provided a further insight into the 

challenges and complexities of the inverse problems in Water Distribution 

Network Modelling. Furthermore, it may have contributed in a small way to the 

better understanding and solution of these problems, thereby being worthwhile 

on both academic and practical grounds. 
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APPENDIX A Leakage Inspection 

Tool 

Appendix A provides insight on the developed Leakage Inspection Tool. It is 

aimed to be used as a guide for detecting and localising leaks using the tool. The 

presented information is divided into three main sections A1, A2 and A3. An 

introduction to the Leakage Inspection Tool is provided in section A1. Then, 

section A2 outlines the prerequisites for using the tool, before any analysis is 

undertaken. Finally, in section A3 the step-by-step user instructions are 

presented for carrying out the leak detection and localisation process.     

 

A.1 Tool Description 

The Leakage Inspection Tool is the computer-based system that was developed 

as an output from the proposed Leakage Inspection Method. It encapsulates the 

two stages of the decision-support framework for solving the inverse problem of 

leak detection and localisation, whereby the problem is reduced before being 

solved. Therefore, the number of candidate leak locations and the corresponding 

range of possible flow values is minimized before searching for any leak(s). The 

tool can be used for the detection and localisation of new, or existing leaks in 

District Metered Area (DMA) networks. This is done in two stages: 

1. The Search Space Reduction Stage (SSR) for reducing the inverse 

problem size; 

2. An Leak Detection and Localisation (LDL) Stage for finding leaks.  

Both stages of the Leakage Inspection Tool are carried out automatically, 

therefore, eliminating any manual effort by the user in adjusting any hydraulic 

model parameter. The tool was coded using MATLAB programming language. A 

simulation-optimisation framework comprises it’s main “engine”, whereby the 

EPANET Programmer’s Toolkit (Rossman, 2000) is used for running a hydraulic 

simulation and a Genetic Algorithm technique for generating and evaluating 

solutions. The quality of a generated solution is evaluated through the 

simultaneous comparison of head and flow measurements against the simulated 

values from the hydraulic model. Eventually, the output from this tool is a 

highlighted section or sections of the Water Distribution Network (WDN) where a 
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likely leak event has been identified, along with a proposed leak size. 

Consequently, the outcome can be used as support for reducing the search effort 

in finding the exact leak location(s) in the field with the use of externally-based 

methods (see Section 2.5.3). 

 

A.2 Prerequisites and Inputs - Outputs 

The prerequisites for using the Leakage Inspection Tool divide into (a) Hydraulic 

Model Prerequisites and (b) Data Prerequisites:  

 

Hydraulic Model Prerequisites 

1. The hydraulic model of the analysed water system should accurately 

represent the boundaries of the WDN, along with the number and locations 

of the all components.   

2. Independent to whether the user would like to identify new, or existing 

leaks, the hydraulic model of the analysed WDN must be calibrated 

according to the acceptable standards (Ormsbee & Lingireddy, 1997) prior 

to any leakage detection. More specifically, the hydraulic model should 

accurately simulate the hydraulic conditions of the system before the leak 

new, or existing leak has happened, in order to allow its detection after it 

has happened.    

 

Data Prerequisites    

1. Flow measurements from at least all the inlet and outlet meters. 

2. Head measurements at an indicative minimum spatial resolution of at least 

one sensor per 200 properties in a DMA. Therefore, for each location 

measurements for pressure and elevation are required. 

3. The flow and head measurements must be collected at a time interval of 

15 minutes and a duration of at least 24 hours to allow a full Extended 

Period Simulation analysis and comparison of the hydraulic model outputs. 

 

The necessary inputs for using the Leak Inspection Tool are: 

1. An EPANET version of the hydraulic model of the analysed WDN. 

2. A Microsoft Excel Spreadsheet of all the recorded flow and head 

measurements for each monitored location. The data should be presented 
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in a matrix format, whereby the recorded value for each location is shown 

for each 15-minute time step and for a duration of at least 24 hours. 

 

A.3 End User and Process Time Requirements 

The process for using the Leakage Inspection Tool requires the end user to go 

through six main steps in completing a full analysis for detecting and localising 

leaks in a WDN. These steps are: 

1. Data Preparation (Manual Step); 

2. Load Inputs (Automated Step);  

3. Run Step 1 and Step 2 of the SSR Stage (Automated Step); 

4. Prepare and Run the Step 3 of the SSR Stage (Automated Step); 

5. Prepare and Run the LDL stage (Automated Step); 

6. View and Save the results (Automated Step). 

 

1. Data Preparation 

The first step in using the Leakage Inspection Tool is to gather all the flow and 

head measurements in a Microsoft Excel Spreadsheet in a matrix format, i.e., the 

recorded value every time step (columns) for each monitored location (first row). 

This process is carried out manually by the user and the expected completion 

time relies on how readily available the recorded measurements are and whether 

any data pre-processing is required. Assuming well-behaved measurements (see 

Section 4.3.2) have been collected, downloaded and are already available on the 

user’s computer, the Data Preparation process takes only five to ten minutes. 

This is because the data from each sensor only need to be copied and pasted 

into the spreadsheet that will be loaded into the tool. On the other hand, if the 

monitored DMA is densely monitored, and/or the data need to be pre-processed 

to reach a well-behaved status, the process may require additional time. 

 

2. Load Inputs 

The second step in this analysis is to load the inputs into the Leakage Inspection 

Tool. The EPANET version of the hydraulic model of the analysed WDN and the 

Excel spreadsheet of the recorded measurements used for leak detection and 

localisation are inserted automatically into the tool, by pressing the related button.    
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3. Run Step 1 and Step 2 of the SSR Stage 

During the third step the Inverse Problem Simplification and Parameter Sensitivity 

Analysis are carried out automatically by pressing the relevant button. This step 

only uses the loaded hydraulic model and not the observed data. Before running 

the process, the user needs to specify starting leak size for initiating the 

Parameter Sensitivity Analysis as a percentage value of the average inlet flow. 

This step can take between 15-45 minutes depending on the number of hydraulic 

simulations required for the Parameter Sensitivity Analysis (𝐶𝑀𝑀𝐷𝑁𝐿 in section 

5.4.1.1) and the size of the hydraulic model (i.e., the complexity of the hydraulic 

simulation analysis). 

 

4. Prepare and Run Step 3 of the SSR Stage 

In the fourth step, the user needs to define the number and parameters of the 

optimisation analyses that will be carried out in Part I and Part II of the Search 

Space Optimisation step. The analysis is then, undertaken automatically. More 

specifically, for Part I the user must specify: 

(a) the number of optimisation analyses (𝑍 in equation 5.4);  

(b) the emitter coefficient range of adjustment (𝑑𝑧 in section 3.5.2.2.)  

for each optimisation analysis 𝑧. 

(c) the solution population size (𝑃𝑆 in equation 5.4); 

(d) the number of generations (𝐺 in equation 5.4); 

(e) the solution crossover fraction; 

(f) the solution mutation fraction.  

For Part II the user must specify the number of optimisation analyses 𝑍 carried 

out for each tested leak scenario (𝑛 in section 3.5.2.3). In this research the 

corresponding 𝑍 values in the fourth step were specified as (a) Part I: 𝑍 = 5 and, 

(b) Part II 𝑍 = 3, therefore the analyses were completed within 30 – 45 minutes. 

 

5. Prepare and Run the LDL Stage 

As in the previous step, during the fifth step, the user must specify the following 

parameters that are necessary to carry out the LDL stage: 

(a) the total number of times that the optimisation analyses will be carried out; 

(b) the solution population size; 

(c) the number of generations; 
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(d) the solution crossover fraction; 

(e) the solution mutation fraction. 

The LDL stage is undertaken automatically by pressing the relevant button, and 

total time required to complete it relies on the specified numbers for a, b and c. It 

is expected that the LDL stage will require at least one hour.  

 

6. View and Save the results 

Eventually, after all previous steps have been completed the user can view and 

save the results of all the optimisation analyses that have been carried out during 

the fifth step.  
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APPENDIX B Calibration Tool 

Appendix B presents the equivalent information required to use the Calibration 

Tool. This tool can be used to optimise a DMA hydraulic model so that it 

accurately simulates the average day hydraulic conditions in the WDN and hence 

can be used with more confidence for leak detection and localisation. It is 

expected that using the instructions in Appendix B, the end user will be able to 

carry out a calibration analysis of a DMA hydraulic model using this tool.  

 

B.1 Tool Description 

The Calibration Tool is the computer-based system that was developed as an 

output from the proposed Calibration Method. It determines the state of internal 

pipe roughness values and detects the status of any throttle valve with uncertain 

position. It also identifies the setting/speed of any pressure reducing 

valve/variable speed pump and the multiplier coefficient value of any demand 

pattern in a DMA network. As in the Leak Inspection Tool, the two stage decision-

support framework for solving the inverse problem of hydraulic model calibration 

is also encapsulated in the Calibration tool. Therefore, the number of candidate 

closed valve locations, as well as the number of candidate pipe roughness 

calibration groups and their corresponding range of roughness values is 

minimized before searching for the calibration analysis. This is done in four 

stages: 

1. A Data Pre-Processing (DPP) Stage for generating the calibration 

dataset; 

2. A Profile Calibration (PC) Stage for macro-level calibration of the 

WDN model.  

3. A Search Space Reduction Stage (SSR) for reducing the calibration 

problem size; 

4. A Component Calibration (CC) Stage for micro-level calibration.  

The first stage of the Calibration Tool is carried out manually and can be the most 

laborious process required by the end user. In contrast Stage 2, 3 and 4 are 

carried out automatically, eliminating the manual effort by the end user in 

adjusting any hydraulic model parameter. The MATLAB programming language 

was also used in creating this tool, which linked the EPANET Programmer’s 
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Toolkit (Rossman, 2000) with a Genetic Algorithm technique. Similarly to the 

Leakage Inspection Tool, a solution is evaluated through the simultaneous 

comparison of head and flow measurements against the simulated values from 

the hydraulic model. The output from this tool is a calibrated hydraulic model of 

the analysed WDN. Such model simulates the average hydraulic conditions of 

the system within the acceptable standards (Ormsbee & Lingireddy, 1997), thus, 

meeting the prerequisite hydraulic model quality so it can be used for leak 

detection and localisation purposes by the Leakage Inspection Tool. 

 

B.2 Prerequisites and Inputs - Outputs 

The prerequisites for using the Calibration Tool, are similar the Leakage 

Inspection Tool’s prerequisites with the only difference being that there is no need 

for a calibrated hydraulic model.  

 

The necessary inputs for using the Leak Inspection Tool are: 

1. An EPANET version of the hydraulic model of the analysed WDN. 

2. A Microsoft Excel Spreadsheet of the calibration dataset comprised of flow 

and head measurements for each monitored location. The calibration 

dataset should be presented in a matrix format, whereby the recorded 

value for each location is shown for each 15-minute time step and for a 

total duration of 24 hours.  

 

B.3 End User and Process Time Requirements 

The process for using the Calibration Tool also requires the end user to go 

through six main steps in completing the procedure of producing a model that 

simulates the WDN hydraulic conditions of an average day. These steps are: 

1. Raw Data Preparation (Manual Step) 

2. Calibration Dataset Preparation (Manual Step); 

3. Load Inputs (Automated Step);  

4. Prepare and Run the DPC Stage (Automated Step); 

5. Prepare and Run the PPC Stage (Automated Step); 

6. Prepare and Run the SSR Stage (Automated Step); 

7. Prepare and Run the CC stage (Automated Step); 

8. View and Save the results (Automated Step). 
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1. Raw Data Preparation 

The first step in using the Calibration Tool is to gather the dataset of all the raw 

measurements (e.g., for five weekdays) for flow and head into a Microsoft Excel 

spreadsheet in a matrix format similar to the Leakage Inspection Tool. The same 

manual process as for the Leakage Inspection Tool is carried out therefore the 

expected workload is similar.  

 

2. Calibration Dataset Preparation 

During the second step the calibration dataset is prepared by pre-processing the 

raw measurements. Any corrupt, or missing values in the raw dataset is 

diagnosed and treated so that a well-behaved dataset is available (see sections 

4.3.2 and 4.3.3). Applying the two-step procedure of the DPP stage on the raw 

measurements will then, create a 24-hour de-noised dataset that composes the 

calibration dataset. This DPP stage is carried out manually and the end user 

workload depends on the amount of pre-processing that must be carried out to 

ultimately create the 24-hour calibration dataset. Assuming well-behaved raw 

measurements (see Section 4.3.2) are already available, the Data Pre-

Processing stage process can be completed within 15-20 minutes. The data from 

each sensor for each day is averaged to create the Average Day Profile Dataset 

(see section 4.5.2.3). Then, the De-Noised Dataset (see section 4.5.2.4), which 

is then used in the following steps of the Calibration Tool is generated after 

applying a smoothing technique. However, if the monitored DMA is densely 

monitored, and/or the data need to be pre-processed to reach a well-behaved 

status, the process may require additional time. 

 

3. Load Hydraulic Model 

The third step in this procedure is to load the Excel spreadsheet of the calibration 

measurements, prepared during the previous step, into the Calibration tool, along 

with EPANET version of the hydraulic model of the analysed WDN. This is carried 

out automatically, by pressing the relevant button.   

 

4. Prepare and Run DPC Stage 

In the fourth step, the user needs to define the demand patterns that will be 

calibrated along with the optimisation analysis parameters. The analysis is then 
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undertaken automatically for each pattern multiplier. More specifically, the 

following need to be specified: 

a. the DMA Demand Profile Names considered for calibration; 

b. the solution population size at each time step; 

c. the number of generations at each time step; 

d. the solution crossover fraction; 

e. the solution mutation fraction.  

This analysis requires a large computational burden, as an optimisation analysis 

is carried out for each time step. Therefore, it can take between 2 – 5 hours 

depending on the specified population size and the number of generations for 

each time step, as well as the size of the hydraulic model (i.e., the complexity of 

the hydraulic simulation analysis). 

 

5. Prepare and Run PPC Stage 

The fifth step in using the Calibration Tool is very similar to the previous step. The 

end user must specify the equivalent optimisation analysis parameters. The 

difference lies on the fact that in the PPC Stage the names of all pressure 

reducing valves and variable speed pumps that will be calibrated need to be 

defined. It is expected that a similar computational time is required for completing 

this step. 

 

6. Prepare and Run the SSR Stage 

The Inverse Problem Simplification and Parameter Sensitivity Analysis are 

carried out automatically by pressing the relevant button. The Parameter 

Sensitivity Analysis can be completed within 5 – 15 minutes for either the valve 

or, pipe components. The required computational burden in the Parameter 

Sensitivity Analysis depends on the number of tested parameters (𝐶𝑀𝐷𝑉𝐶 and 

𝐶𝑀𝐷𝑃𝑅𝐶 in section 5.4.1.1.) and the size of the hydraulic model (i.e., the 

complexity of the hydraulic simulation analysis). The Search Space Optimisation 

step that is carried out after the Parameter Sensitivity Analysis is also automated. 

At this step the user only needs to define the parameters of the optimisation 

analyses that will be carried out: 

(a) the solution population size; 

(b) the number of generations; 
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(c) the solution crossover fraction; 

(d) the solution mutation fraction.  

Search Space Optimisation may require between 30 – 60 minutes for valve 

components and 10 – 30 minutes for pipe components. This depends on the 

specified parameters for a, b and c, as well as the number of candidate valves 

following the Parameter Sensitivity Analysis. 

 

7. Prepare and Run the CC Stage 

As in the previous step, during the CC stage, the user must specify the 

optimisation analysis parameters. In addition, the number of optimisation 

analyses that will be undertaken. The CC stage is, then, performed automatically, 

and the required computational time is at least one hour.  

 

8. View and Save the results 

Eventually, after all previous steps have been completed the user can view and 

save the results of all the optimisation analyses that have been carried out during 

the seventh step.  
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