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Abstract

Structured ferromagnetic metal-based metamaterials comprised of spherical parti-

cles exhibit properties that are attractive for microwave applications, such as a broad

frequency bandwidth and higher working frequencies when compared with bulk fer-

rimagnetic oxides. In this thesis, the dynamical properties of ferromagnetic spherical

shells are studied using a combination of analytical and numerical methods, to further

understanding and enhance the permeability of these materials towards higher fre-

quencies. Using linearised micromagnetic equations, saturated spherical shells are in-

vestigated in the exchange-dominated regime when assuming that surface anisotropy

is present at both the inner and outer boundaries. This configuration is amenable

to exact solutions for the resonance eigenvalues and to investigate the size/thickness

dependence of the resonance frequencies. It is found that the mode frequency can

increase with decreasing shell thickness or is driven rapidly towards the ferromagnetic

resonance frequency depending on the choice of the surface anisotropy constant at

each boundary. Moreover, surface anisotropy introduces a dependence of the zeroth

mode on shell thickness, removing the degeneracy with the ferromagnetic resonance

and leading to a pronounced size dependence of this mode for thin shells. A gener-

alised resonance theory is further outlined for a multilayered spherical nanoparticle

comprised of exchange-coupled concentric layers. It can be used to compute the

resonance spectra of core-shell nanoparticles, as in the case of a solid spherical ferro-

magnetic core surrounded by an outer oxide shell.

Detailed micromagnetic modelling of two- and three-dimensional ferromagnetic

particles was carried out to study the role of long-range magnetostatic interactions

between concentric rings and the influence of realistic domain structures on the dy-

namic susceptibility. Micromagnetic modelling of such structures demonstrates that

a family of higher-order flexural modes is present for spherical shells relaxed into the

vortex state, which can reach high-frequencies 20-25 GHz under weak-field excita-

tions. These simulations provide an alternative and more plausible interpretation of

observed high-frequency resonance modes in measured permeability spectra of spher-

ical shell particle composites, and aid in the design of high-frequency, light-weight

composite materials. The dynamical properties of three-dimensional permalloy ele-

ments supporting vortex domain structures were also investigated with micromagnetic

simulations and compared with experiment. This is to study the influence of non-

uniform field gradients and three-dimensional static magnetisation configurations on
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the dynamical behaviour. It is found that the permalloy elements support domain

walls with perpendicular out-of-plane components which can be switched dynamically

in response to specific magnetic pulse parameters.

This project further aimed to incorporate the fundamental nonlinear micromag-

netic and electromagnetic details, including exchange and magnetocrystalline anisotropy,

within the finite-difference time-domain (FDTD) method. This is to study the in-

teraction between magnetic materials and electromagnetic waves in the presence of

current and magnetic sources at microwave frequencies. Results are presented for

conducting semi-infinite permalloy pillars in the micrometer and sub-micrometer size

range. It is found that microwave absorption results primarily from edge modes lo-

calised at the boundaries of the pillar in accordance with the skin depth, which appear

at a lower frequency than the ferromagnetic resonance.
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Chapter 1

Introduction

High-frequency dynamics of magnetic materials has been the focus of intense research

in recent years [1], driven by the continuing demand for smaller and faster magnetic

devices in high density storage media, magnetic field sensors and microwave devices.

Structured ferromagnetic metal-based materials display remarkable dynamical prop-

erties which can differ markedly from their bulk counterparts [2, 3]. The origin of

this difference is the fact that in fine particles surface and exchange effects are not at

all negligible, in contrast with bulk materials [4, 5]. Composites comprised of these

magnetic materials are characterised by a non-zero imaginary component of the per-

meability, which stems from a gyromagnetic resonance phenomenon occurring in the

microwave frequency range. A detailed understanding of the high-frequency response

of such ferromagnetic materials is of primary interest. However, calculation of the

dynamic susceptibility can only be achieved with conventional analytical methods

for highly simplified systems. This is because the primary features of the resonance

spectra depend strongly on the static magnetisation configuration, in addition to the

gradient and orientation of the excitation field [6]. Hence, accurate determination of

the dynamic susceptibility spectra for nano- and sub-micrometer scale ferromagnetic

particles supporting inhomogeneous magnetisation configurations is a central topic of

this thesis.

Numerical micromagnetics can predict quantitatively the static magnetisation dis-

tribution in ferromagnetic materials [7], and is an appropriate method for inves-
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tigating the high-frequency properties of nano- and sub-micrometer particles with

inhomogeneous internal domain structures. Several methods exist for computing the

dynamic susceptibility spectra of ferromagnetic materials with complex domain con-

figurations, which can be categorized into frequency and time domain methods. In

the frequency domain approach the static configuration is first computed using an

iterative method [8]. The Landau-Lifshitz-Gilbert (LLG) equation of magnetisation

motion is then linearised about the stable magnetisation configuration and the dy-

namic susceptibility is solved by means of a complex dense linear system, assuming a

harmonic time dependence for the weakly excited magnetisation. In the time-domain

approach, the LLG equation is integrated directly with respect to time in the pres-

ence of a weak time-varying excitation field, where the specific parameters of the field

are user-defined. The Fourier analysis of the time domain data can then be used

to calculate the primary details of the susceptibility spectra, namely the linewidth,

frequency and intensity of the resonances, in addition to the spatial distribution of

the susceptibility throughout the material. This technique has been widely used to

study the dynamic susceptibility spectra of both homogeneous and inhomogeneous

domain structures [9, 10, 11, 12] and is adopted in this thesis.

In recent years, three-dimensional magnetisation dynamics has become a sub-

ject of general interest in the field of nanomagnetism [13]. This recent trend has

been stimulated by rapid advancements in chemical synthesis and nanotomography

techniques, in addition to new computational methods. The extension of 2D nanos-

tructures into 3D leads to the emergence of more complex magnetic configurations,

many with outstanding magnetic properties. For example, the presence of curva-

ture in shells brings about an effective curvature-induced anisotropy and an effective

Dzyaloshinskii-Moriya interaction (DMI) [14, 15]. This curvature-induced anisotropy

and effective DMI gives rise to a rich diversity of static and dynamic behaviour,

in addition to polarity-chirality coupling [16] and curvature-driven magnetochirality

[17]. The chiral symmetry of the magnetic vortex, which is intrinsically degenerate

9



in 2D nanomagnets, can be broken by 3D geometries. Recent micromagnetic studies

of cylindrical nanowires and nanotubes have shown that domain walls with an axial

vortex configuration can overcome the Walker breakdown due to a break in the chiral

symmetry induced by the surface curvature [18]. By tailoring the geometry of curved

elements these magnetochiral effects can lead to novel functionalities and devices,

with a wide range of unique physical properties.

Magnetic composites employing curved structures have garnered significant in-

terest in advanced and emerging magnetic technologies including ultrahigh-density

magnetic data storage, microwave devices and materials for communications, electro-

magnetic compatibility/interference and deference applications, and next generation

of low loss, high-power density electrical machines and devices. This interest evolved

with the ability to fabricate fine magnetic particles with small dimensions, controlled

magnetic properties and narrow particle size distributions. Independent control over

these intrinsic particle characteristics enable the tuning and the engineering of light-

weight, compact and high-frequency magnetic composites. However there is currently

limited understanding of the resonance mechanisms responsible for enhancing the

high-frequency response of magnetic composites, and of the correlation between the

intrinsic particle attributes and the high-frequency resonance modes in composites.

Experimental work on fine particle assemblies [3, 19, 20, 21] indicated the presence

of high-frequency resonance modes attributed to exchange resonances [22] and sur-

face effects [23] but with size dependences and modes that deviate from exchange

resonance theory on saturated particles [24]. The micromagnetic studies also ignored

the effects of the metallic nature of the particles and corresponding Eddy current

effects resulting from the interaction with electromagnetic waves experienced during

operation.

This theoretical research programme aimed to unravel the potential resonance

mechanisms and modes in sub-micrometer metallic magnetic particles, and identify

the correlation between the resonance modes and particle attributes under high-
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frequency magnetic field and electromagnetic wave excitations. This is to enable

the design and engineering of advanced magnetic composites for microwave materi-

als and devices with extended high-frequency response. This involved new develop-

ments in the analytical theory of ferromagnetic resonance in single and multi-shell

magnetic particles to understand the size dependence of these structures in the satu-

rated regime. Detailed numerical micromagnetic models of 3D nanometer multi-shell

structures were developed using MuMax3 and simulations of nanosecond pulse field

excitations were carried out for different relaxed ground states. This is to evaluate the

validity of the analytical micromagnetics, identify the resonance mechanism in prac-

ticable and non-saturated particles and investigate potential magnetic configurations

for enhancing the resonance frequencies. An efficient numerical algorithm for combin-

ing micromagnetics and electromagnetics based on the finite-difference time-domain

(FDTD) method was developed to fully simulate the complex electromagnetic wave

interaction with metallic magnetic structures and study the excited resonance modes.

Chapter 2 - Background

Chapter 2 introduces the relevant background concepts of magnetism for this the-

sis. This chapter briefly reviews Maxwell’s equations and the origins of spontaneous

magnetisation in ferromagnetic materials, with particular attention to the quantum

mechanical exchange interaction. The micromagnetic energy terms are then intro-

duced and the critical sizes and reversal properties of spherical particles are discussed.

This chapter closes with a discussion of the dynamical properties of spherical ferro-

magnetic particles in the micrometer, sub-micrometer and nanometer size ranges.

Chapter 3 - Theory and methodology

Chapter 3 introduces the numerical methodology used throughout this thesis. The
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energy terms used in micromagnetic solvers are introduced and the general prop-

erties of the discretized Landau-Lifshitz-Gilbert equation of magnetisation motion

are discussed. Finally, a generalised electromagnetic-micromagnetic approach which

incorporates the complete solution of Maxwell’s equation is presented. Simplified

analysis of numerical stability of the FDTD-LLG algorithm is discussed.

Chapter 4 - Exchange resonance in multilayered spherical particles

In Chapter 4, the dynamical properties of saturated spherical shells are investigated

analytically in the exchange-dominated regime when assuming that surface anisotropy

is present at both the inner and outer boundaries. This is to provide detailed under-

standing into the high-frequency dynamics for an idealised shell, before moving onto

more detailed micromagnetic computations. The theory is generalized to a core-shell

particle in the final section of this chapter, however the method of solution is appli-

cable to a concentric spherical particle with an arbitrary number of shells.

Chapter 4 - Dynamic susceptibility of concentric rings

In Chapter 5, the high-frequency dynamic behaviour of concentric permalloy nanor-

ings supporting vortex domain structures is investigated by micromagnetic simula-

tions. The aim is to explore the dynamic susceptibility of the concentric ring structure

as a function of geometric parameters of the system, with consideration of long-range

magnetostatic interactions. This serves as foundation for more complex numerical

work involving three-dimensional spherical structures.

Chapter 6 - Role of domain structure in microwave absorption

In Chapter 6, the dynamical properties of spherical shells are investigated when
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supporting fully three-dimensional domain configurations. This is to uncover poten-

tial resonance mechanisms and modes in sub-micrometer metallic magnetic particles,

and identify their intrinsic resonant behaviour. The dynamic susceptibility of sat-

urated shells is computed and compared with analytical predictions. The dynamic

susceptibility of ferromagnetic spherical shells with vortex domain structure is also

investigated in the sub-micrometer and nanometer size range. Finally, the dynamic

susceptibility response of a chiral magnetisation texture is computed and the full

mode spectrum is mapped out.

Chapter 7 - Three-dimensional domain wall dynamics in permalloy films

In Chapter 7, the dynamical properties of relatively thick (≈ 80 nm) permalloy ele-

ments supporting a vortex domain structure are investigated with numerical micro-

magnetic simulations, and compared with experiment. This is to study the three-

dimensional character of the static magnetisation configuration and its impact on the

dynamical properties. The role of an external DC field on the static behaviour is

also briefly investigated. This work is a collaborative effort of several people. The

individual contributions can be found in the relevant publication [25].

Chapter 8 - Wave propagation in metallic elements

In Chapter 8, a hybrid electromagnetic and micromagnetic method is proposed based

on the finite-difference time-domain (FDTD) Maxwell’s equation framework, offer-

ing numerical efficiency and stability for solving the complex system of the com-

bined Landau-Liftshitz-Gilbert (LLG) and Maxwell’s equations. In this chapter, the

FDTD-LLG algorithm is extended to model electromagnetic wave interaction with

metallic magnetic nano-structures. The results indicate the importance of the com-

bined electromagnetic-micromagnetic numerical approach to account for Eddy current
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screening and damping inside the magnetic material, and to enable the inclusion of

the full micromagnetic details in the dynamic permeability of the material.
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Chapter 2

Theory and Background

2.1 Maxwell’s equations

James Clerk Maxwell published the first unified theory of electromagnetism with a

set of fours equations which state the fundamentals of electricity and magnetism.

The theory combined all previously known results in electromagnetism and led to the

prediction of electromagnetic waves. The four equations in differential and integral

forms are given by

∇ ·D = ρv

∮
D · S =

∮
v

ρvdv (2.1)

∇ ·B = 0

∮
B · dS = 0 (2.2)

∇× E = −∂B

∂t

∮
L

E · dL = − ∂

∂t

∫
S

B · dS (2.3)

∇×H = J +
∂D

∂t

∮
L

H · dL =

∮
S

(
J +

∂D

∂t

)
· dS (2.4)

where ρv is the electric charge density, J is the electric current density, E is the

electric field, B is the magnetic field and D is the electric flux density and t is time.
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The continuity equation follows from equation (2.4)

∇ · J = −∂ρv
∂t

(2.5)

To equations (2.1) - (2.4) and (2.5) one should add the constitutive relations for a

linear, homogeneous and isotropic medium

D = εE = ε0E + P (2.6)

B = µH = µ0(H + M) (2.7)

J = σE +
∂D

∂t
(2.8)

where ε is the permittivity of free space, P is the polarisation vector, µ0 is the per-

meability of free space, H is the magnetic field, M is the magnetisation and σ is the

conductivity.

2.1.1 Wave equation

Maxwell’s curl equations in differential form are first order coupled equations, where

both the electric E and magnetic H fields appear in each equation. However, it is

often convenient to express these equations as second-order differential equations and

solve for the electric or magnetic field components separately. Taking the curl of both

sides of equation (2.3) and (2.4) we have

∇×∇× E = µ∇×
(
∂H

∂t

)
= −µ ∂

∂t
(∇×H) (2.9)

∇×∇×H = ∇×
(

J +
∂D

∂t

)
= σ∇× E + ε

∂

∂t
(∇× E) (2.10)
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Substituting equation (2.4) into (2.9) and using the vector identity ∇ × ∇ × A =

∇(∇ ·A)−∇2A leads to an expression in terms of the electric field only, namely

∇(∇ · E)−∇2E = −µσ∂E

∂t
− µε∂

2E

∂t2
(2.11)

where ε and µ correspond to a linear, homogeneous and isotropic material. For a

source free region ρv = 0 the wave equation reduces to

∇2E = µσ
∂E

∂t
+ µε

∂2E

∂t2
(2.12)

Using a similar argument, it can be shown that the wave equation for the magnetic

field is given by

∇2H = µσ
∂H

∂t
+ µε

∂2H

∂t2
(2.13)

When the material is also lossless (σ = 0) then the wave equations take the form

∇2E = µε
∂2E

∂t2
(2.14)

∇2H = µε
∂2H

∂t2
(2.15)

2.1.2 Skin depth

Skin effect is the tendency of an alternating electric current to become distributed

within a conductor. The electric current flows primarily at the surface (or ‘skin’)

of the conductor, and penetrates into the conductor to a depth known as the skin

depth. The skin depth decreases with increasing frequency and reduces the effective

cross-section of a conductor by causing the effective resistance to increase at higher

frequencies. Without loss of generality, let us restrict the solution to the electric

field E. Assume that a plane wave with electric field Ex and magnetic field Hy is
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propagating in the z-direction,

Ex ∝ ejωt−γ0z (2.16)

where ω is the frequency and γ0 is the propagation constant. Substituting (2.16) into

(2.11) leads to

γ = α + jβ = ±
√
−ω2µ

(
ε− j σ

ω

)
(2.17)

where γ and α are the propagation and attenuation constants, respectively. Here,

the propagation constant and attenuation constant should not be confused with the

gyromagnetic ratio and damping constant. By taking the square of equation (2.17)

and equating the real and imaginary components, the attenuation and phase constants

can be expressed

α = ω
√
µε

(
1

2

√
1 +

(
σ

ωε

)2

− 1

)1/2

(2.18)

and

β = ω
√
µε

(
1

2

√
1 +

(
σ

ωε

)2

+ 1

)1/2

(2.19)

for a travelling wave which is propagating in the z-direction. The skin depth δ is

given by

δ =
1

α
(2.20)

When the lossy material considered is a good conductor, the skin depth can be well

approximated by the expression

δ =

√
2

ωµσ
(2.21)

The equation describes a decay of the field E with a characteristic distance given

by the real part of 1/
√
jωµ(σ + jωε). The real component approaches zero as σ

approaches infinity, and thus the electric field must be zero everywhere inside an

ideal conductor.
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2.2 Ferromagnetism

Maxwell’s equation play a central role in the description of microwave magnetic mate-

rials. For ferromagnetic materials, which are a central focus of this thesis, the strongly

coupled atomic dipole moments tend to have a parallel alignment at sufficiently low

temperatures. As a result, ferromagnetic materials exhibit spontaneous magnetisa-

tion which can be present even in the absence of a magnetic field. Some examples of

room-temperature ferromagnetic materials are Fe, Ni, Co and their alloys. For such

materials a paramagnetic behaviour is observed above a critical temperature known

as the Curie temperature. A ferromagnetic material may still exhibit no magnetic

moment at temperatures below the Curie temperature despite the tendency for the

atomic dipole moments to align in a parallel fashion. However, after application of

a small magnetic field, the ferromagnetic material will produce a magnetic moment

which is orders of magnitude larger than paramagnetic materials.

Weiss introduced an internal field in order to describe the spontaneous alignment

of the magnetic moments in a ferromagnetic material. This postulated field, known

as the Weiss field, is proportional to the spontaneous magnetisation, such that

HW = NWM (2.22)

where HW is the Weiss field, NW is the molecular field constant and M is the spon-

taneous magnetisation. The total magnetic field, neglecting the demagnetizing and

Lorentz fields, can then be written

H = H0 +NWM, (2.23)

where H0 is the externally applied magnetic field. Here it should be noted that the

constant NW is of the order of magnitude NW = HW/M ≈ 104 which is significantly

larger than the Lorentz factor 4π/3. To first order the temperature dependence of
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Figure 2.1: Plot of the saturation magnetisation against the temperature for iron,
cobalt and nickel. Reproduced from “Introduction to Magnetic Materials”, B.D. Cul-
lity (1972).

the magnetisation of a ferromagnetic material is given by the expression

M(T ) = M(0)(1− T/Tc)3/2 (2.24)

where M(0) is the spontaneous magnetisation at absolute zero and Tc is the Curie

temperature. The saturation magnetisation as a function of temperature is shown in

Figure 2.1 for iron, cobalt and nickel.

2.2.1 Exchange interaction

The nature of the Weiss field was unclear until the advent of quantum mechanics.

Heisenberg developed a theory based on the Heitler-London method which showed

that the molecular field postulated by Weiss was a result of the quantum mechanical

exchange interaction. Consider two electrons moving in the potential fields V (~r1) and
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V (~r2), where ~r1 and ~r2 are the electron coordinates. When interaction between the

electrons is neglected, the system can be described by the Schrödinger equation

(
− ~2

2m

(
∇2

1 +∇2
2 + V (~r1) + V (~r2)

))
Φ = EΦ (2.25)

where the subscripts 1 and 2 refer to the two electrons, Φ is the electron wave function,

m is the electron mass, V is the potential energy and E is the total energy. It is readily

seen by substitution that two solutions for the wave function Φ are given by

ΦI = Φa(1)Φb(2) (2.26)

and

ΦII = Φa(2)Φb(1) (2.27)

where E = Ea + Eb in each case. The wave functions Φa(1) and Φb(2) represent

electron 1 in state a and electron 2 in state b, respectively. Conversely, Φa(2) and Φb(1)

are the wave functions when electrons 1 and 2 are interchanged. The requirement

that each electron is indistinguishable leads to the condition

|Φ(1, 2)|2d~r1d~r2 = |Φ(2, 1)|2d~r1d~r2 (2.28)

where the wave function Φ(1, 2) describes the two-electron system and the wave func-

tion Φ(2, 1) represents interchanged electrons. Two different cases result from equa-

tion (2.28)

Φ(1, 2) = +Φ(2, 1) (2.29)

or

Φ(1, 2) = −Φ(2, 1) (2.30)

which are known as symmetrical (2.29) and anti-symmetrical (2.30) wave functions.

The solutions (2.26)-(2.27) lack these properties and cannot be taken as legitimate
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solutions as a result. This can be resolved by replacing (2.26)-(2.27) with a set of

linear combinations

Φsym(1, 2) =
1√
2

(Φa(1)Φb(2) + Φa(2)Φb(1)) (2.31)

and

Φanti(1, 2) =
1√
2

(Φa(1)Φb(2)− Φa(2)Φb(1)) (2.32)

where 1/
√

2 is a normalising constant. From the Pauli exclusion principle, the proba-

bility that two electrons will be in the same state is zero. As a result, electrons always

have wave functions which are antisymmetric.

The single-electron wavefunctions depend on both the spatial coordinate and in-

trinsic spin. When the orbital motion is quenched, the one-electron wave functions

can be expressed in the form

Φ = ψ(r)χ (2.33)

where χ is a function of the spin coordinates only and ψ(r) represents the solution

of a Schrodinger equation for an electron with no spin. In the two-electron case, the

antisymmetrical wave functions of the electrons can have either two forms

Φsym(1, 2)χanti(1, 2) (2.34)

or

Φanti(1, 2)χsym(1, 2), (2.35)

where the spatial coordinate is represented by Φsym(1, 2) and Φanti(1, 2) for the sym-

metrical and antisymmetrical wave functions, respectively. The symmetrical and

antisymmetrical spin wave functions are expressed by χsym(1, 2) and χanti(1, 2), re-

spectively. It is possible to express the wave functions of equations (2.34)-(2.35) in

22



terms of one-electron wave functions

ΦI = A

(
Φa(1)Φb(2) + Φa(2)Φb(1)

)(
χα(1)χβ(2)− χα(2)χβ(1)

)
(2.36)

and

ΦII = B

(
Φa(1)Φb(2)− Φa(2)Φb(1)

)
χα(1) χα(2)

χα(1)χβ(2)+ χα(2)χβ(1)

χβ(1) χβ(2)

 (2.37)

where A and B are normalising factors. Equation (2.36) represents anti-parallel

alignment (singlet state) electron spins, whereas equation (2.37) represents parallel

alignment (triplet state).

The electrostatic interaction between two hydrogen atoms with nuclei a and b is

given by the Hamiltonian H12

H12 =
e2

rab
+
e2

r12

− e2

r1b

− e2

r2a

, (2.38)

where the distance between nuclei is given by rab, the distance between electrons is

r12 and the distance between a given nucleus and the electron on the other atom is

given by r1b and r2a. The energy of the singlet (S = 0) and triplet (S = 1) states

can be calculated as first order perturbations, where H12 is taken as the electrostatic

perturbation of the two-electron system. The correction to the energy is then given

by the standard expression

E =

∫
Φ∗H12Φdr (2.39)

The energy of the singlet and triplet states can be calculating using equation (2.39)

to give

EI = A2(K12 + J12) (2.40)
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and

EII = B2(K12 − J12), (2.41)

where

K12 =

∫
Φ∗a(1)Φ∗b(2)H12Φa(1)Φb(2)dt1dt2 (2.42)

and

J12 =

∫
Φ∗a(1)Φ∗b(2)H12Φa(2)Φb(1)dt1dt2. (2.43)

where K12 is the average Coulomb interaction energy and J12 is the exchange integral.

The exchange integral J12 is negative for the hydrogen molecule and as a result the

spins are antiparallel in the ground state. However, ferromagnetic behaviour occurs

when the exchange integral J12 is positive and the spins are aligned in parallel. The

conditions which lead to a positive sign of J12 are discussed below.

Assume that Φ∗a(1)Φ∗b(2)Φa(2)Φb(1) is positive, such that the wave functions Φa

and Φb have no nodes in the regions where their overlap is significant. It is then

possible to have a positive sign of J12 provided that the contributions from the positive

terms exceed that of the negative terms in the Hamiltonian. For the Hamiltonian of

equation (2.38) the term e2/r12 is large when r12 is small, i.e. for wave functions

which are large midway between the nuclei. The other terms −e2/r1b and −e2/r2a

in equation (2.38) are smallest for wave functions which are small near the nuclei.

This condition is satisfied when the interatomic spacing rab is large compared to the

radii of the orbitals. As a consequence, the exchange integral J12 is most likely to be

positive for d and f wave functions, as in the case of Fe, Ni and Co. Equations (2.36)

and (2.37) can be expressed in the operator form

E = K − 1

2
J12 − 2J12s1 · s2. (2.44)

where s1 · s2 is the scalar product of two-spins. From equation (2.44) it may appear

that neighbouring spins are directly coupled, however the interaction is electrostatic
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in origin. The spin-dependent term of equation (2.44) is all that will be used in this

thesis, because it is sufficient for typical ferromagnetic problems.

2.2.2 Static energy terms

Static micromagnetic models can be used to calculate the spatial distribution of the

magnetisation of a ferromagnetic body at equilibrium by minimizing the total mag-

netic energy [26]. Equilibrium of the magnetisation configuration is reached when we

have the condition

M×Heff = 0 (2.45)

where Heff is the total effective magnetic field. The total effective field can be ex-

pressed in terms of the functional derivative of the free energy density W with respect

to the magnetisation

Heff = −δW
δM

(2.46)

where the free energy density W is comprised of the following terms

W = wex + wz + wms + wani (2.47)

and wex, wz, wms, wani are the exchange, Zeeman, magnetostatic and magnetocrys-

talline anisotropy energy contributions. The details of these energy terms are outlined

below.

2.2.2.1 Magnetostatic energy

The magnetostatic field is a long-range dipole-dipole interaction between atomic mo-

ments within a ferromagnetic body. It is commonly known as the demagnetising field

to reflect the fact that it tends to oppose the magnetisation of the magnetic mate-

rial. In the magnetostatic approximation, the time variation of the electric field is

neglected and the demagnetising field can be calculated using only two of Maxwell’s
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equations, namely

∇×H = jf and ∇ ·H = −∇ ·M (2.48)

where jf is the free current density and H is the magnetostatic field. The general

solution of (2.48) can be expressed in terms of a 6-fold integral for the volume and

surface magnetostatic charges

U(r) = −
∫

volume

∇′ ·M(r’)

|r− r’|
dV ′ +

∫
surface

n ·M(r’)

|r - r’|
dS ′ (2.49)

where the integrals dV and dS are taken over the volume and surface of the ferromag-

netic body, respectively. As this field involves two integrals which must be calculated

over the entire volume and surface of the ferromagnetic material, calculation of the

6-fold integral (2.49) is the most computationally intensive part of numerical micro-

magnetics. The magnetostatic energy wms can be calculated from the expression

wms = −µ0

2

∫
volume

M ·HdV (2.50)

where the integral dV is taken over the volume of the material. When the electric

current density is zero, it is also possible to obtain a solution to eqns. (2.48) by

solving the differential equations

Hd = −∇U and ∇2U = ∇ ·M (2.51)

subject to the boundary conditions

Uin − Uout = 0 (2.52)

∂Uin
∂n
− ∂Uout

∂n
= M · n (2.53)

where Uin and Uout are scalar potentials inside and outside the ferromagnetic body and

n is the surface normal. The potential outside the material must be regular at infinity
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to ensure that the magnetic energy is finite. This approach is often more convenient

for analytical work. However, the equations are only tractable for a limited number

of cases, and often numerical computations are required to accurately calculate the

demagnetising field.

The preference for the magnetisation to be oriented along a particular axis of a

sample so that the magnetostatic energy can be minimised is called shape anisotropy.

In the case of a spherical specimen with no preferred orientation, the same applied

field will magnetise it to the same degree in any direction. However, in the case of

a non-spherical structure, it will be easier to magnetise it along certain directions.

In general, the field inside a uniformly magnetised ellipsoidal ferromagnet is itself

uniform. As a result, it is possible to define the demagnetising field

Hin = −N ·M (2.54)

where N is known the demagnetising factor. The demagnetising factor is a tensor

which depends on the shape of the material. Extensive tabulation of this factor has

been provided for ellipsoids, whereas volume and mid-plane averaged demagnetising

factors are available for non-ellipsoidal geometries.

2.2.2.2 Exchange energy

In a ferromagnetic material neighbouring magnetic moments tend to align parallel

to each other due to the quantum mechanical exchange interaction. For the purpose

of numerical computations, the exchange energy can be approximated by a classical

expression given by

Eex =
A

M2
s

∫
V

[
(∇Mx)

2 + (∇My)
2 + (∇Mz)

2
]
dV (2.55)

where A is the exchange constant representing the strength of the coupling between

neighbouring spins and M represents the components of the magnetisation. It follows
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from the condition ||M||2 = 1 that M · ∂M/∂x = M · ∂M/∂y = M · ∂M/∂z = 0.

Using the general relation |∇f |2 = ∇·(f∇f)−f∇2f equation (2.55) can be expressed

as

Eex = −
∫
V

AM ·
(
∂2M

∂x2
+
∂2M

∂y2
+
∂2M

∂z2

)
dV. (2.56)

Using the standard variational procedure, it can be shown [26] that the exchange

effective field is given by

Hex =
2A

µ0Ms

∇2Ms (2.57)

This approximation assumes that the exchange interaction is a nearest neighbour

interaction, i.e. the wavefunctions of the electrons in the atoms of the ferromagnetic

material only overlap with those of nearest neighbour atoms. Equation (2.57) further

assumes that the angle between neighbouring atomic moments is small. Therefore,

to obtain accurate numerical results it is important that the maximum spin angle is

kept as small as possible in every region of the simulation grid. The exchange energy

is minimised when neighbouring atomic moments align in the same direction, and an

energy penalty is incurred when the angle between neighbouring moments increases.

2.2.2.3 Zeeman energy

The potential energy of a ferromagnetic sample in the presence of an external static

magnetic field is known as the Zeeman energy. The magnetisation will tend to align

with the external magnetic field in order to minimise the overall energy of the system.

The potential energy increases when the magnetisation deviates from the direction of

the external DC field. This increase in energy is proportional to the angle between

the magnetisation and the field

wZ = −M ·H (2.58)
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where wZ is the Zeeman energy per unit volume, M is the magnetisation and H is

the magnetic field, which can be static or time-varying.

2.2.2.4 Magnetocrystalline anisotropy

When an external field is applied to a ferromagnetic sample in different directions, the

hysteresis of the material may vary depending on the orientation of the applied field.

When this preferred direction is due to the principal axes of the crystal lattice, it

is known as the magnetocrystalline anisotropy. This form of magnetic anisotropy

originates from the spin-orbit interaction of electrons. Phenomenological expres-

sions for the magnetocrystalline anisotropy energy can be obtained by expanding

the anisotropy contribution as a power series in the direction cosines α, β and γ of

the magnetisation vector M, given by

M = Mxi+Myj +Mzk (2.59)

α =
Mx

||Mx||
β =

My

||My||
γ =

Mz

||Mz||
(2.60)

To obtain simplified expressions for the purpose of numerical computations, the series

expansion is normally truncated after the first two terms. The anisotropy of crystal

systems with a single axis of high symmetry is known as uniaxial anisotropy. The

uniaxial crystalline anisotropy energy can be represented by

Euniaxial = Ku0 +Ku1 sin2 θ +Ku2 sin4 θ + ... (2.61)

where Ku0, Ku1, Ku2, ... are the crystalline anisotropy energy constants, and θ is the

angle between the anisotropy easy axis and magnetisation vector. The anisotropy

energy is minimised when the magnetisation is aligned with the anisotropy easy axis,

and maximised when the magnetisation is aligned along a hard axis. For a cubic
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crystal, the anisotropy energy density Ecubic is given by

Ecubic = K1(α2β2 + β2γ2 + γ2α2) +K2α
2β2γ2 (2.62)

where the constants K1 and K2 are determined experimentally and vary with tem-

perature. When the second term is negligible, the easy axes are the < 100 > axes

for K1 > 0 and the < 111 > directions for K1 < 0. When K2 is non-zero, the easy

axes depend on both magnetocrystalline anisotropy constants K1 and K2. The effec-

tive anisotropy field can be calculated from the derivative of the energy density with

respect to the magnetisation vector.

2.2.2.5 Surface anisotropy

Néel first recognised the importance of the reduced symmetry at the surface of a

ferromagnet. The exchange energy in the bulk cannot be the same at the surface

because the surface spins of a particle have nearest neighbours only on one side. When

the surface is deposited with a non-magnetic layer the surface spins see a different

environment again, as is the case at the interface between two different ferromagnetic

layers. From a phenomenological perspective, any surface anisotropy term should

reflect the tendency for the surface spins to lie either parallel or perpendicular to the

surface, similar to thin films. As a result, the surface anisotropy energy term takes

the form

Es =
1

2
Ks

∫
(n ·M)2dS (2.63)

where M is the magnetisation, n is a unit vector parallel to the normal pointing out

of the surface and the integration is taken over the surface of the material. The coef-

ficient Ks is the surface anisotropy constant which can be measured experimentally

or calculated from first principles using numerical computation.
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2.3 Critical sizes and domains

2.3.1 Equilibrium configurations

The equilibrium magnetisation configuration of a ferromagnetic material is deter-

mined by the competition between the free energy parameters described in Section

2.2. In contrast with planar elements, the equilibrium states of ferromagnetic spheres

always include two out-of-surface vortices with antipodal vortex cores [27]. The long-

range magnetostatic interaction forces the magnetisation distribution to lie tangential

to the surface by eliminating surface and volume magnetostatic charges, whereas the

exchange interaction favours out-of-surface vortex cores to prevent anti-parallel align-

ment of spins. The skyrmion number determines the topological properties of a 3D

vector field on a closed surface and depends on the polarities of the two vortex cores.

For magnetically soft spherical shells, the vortex ground state is reached where one

core is directed inward and another is directed outward the shell (see Figure 2.2).

The ground state of the shell may be either meridional (vortex) or parallel (onion)

depending on the geometrical and material properties.

In this section the discussion of ground states is limited to the single, 3D onion

and vortex domains (see Figure 2.2) because they are part of the π2-topological class

which contains the energetically preferable states. Following Sloika et al. [27], these

magnetisation configurations can be described by the shape function

f(θ, λ) =
π

2

(
e−θ/λ − e−θ − π/λ

1− eπ/λ

)
(2.64)

where θ is the polar angle and λ is the core-parameter which describes the core-size

of a single vortex. It varies from an entirely in-surface vortex (λ = 0) to the single

domain distribution (λ =∞). When λ is non-zero and the polar angle is in the range

π/2 < θ < λ the magnetisation is homogeneous (single domain) for a solid sphere

and primarily tangentially orientated (onion domain) for a thin shell.
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Figure 2.2: Phase diagram of equilibrium magnetisation structures in the spherical
shell. Symbols correspond to the boundary between the onion and the whirligig states
computed using micromagnetic simulations. Reproduced from [27].
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Figure 2.3: The declination angle as a function of inner radius for spherical shell with
thickness h = 10 nm. Reproduced from [27].

The critical size of domain transitions in spherical particles can be calculated by

considering the total energy of different states. For simplicity only the magnetostatic

and exchange energy contributions will be considered here. The exchange energy can

be calculated using the expressions provided in reference [14] for an arbitrary curved

shell. The magnetostatic energy can be calculated by the Legendre polynomials

technique used in previous studies [28].

E (ε, ω;λ,Φ) = E (ε, ω;λ)+E(ε, ω;λ) sin2(
Φ

2
) + E(ε, λ) sin4(

Φ

2
) (2.65)

where ε is the ratio of the shell thickness h to the inner radius R, ω is the reduced

exchange length and the parameter Φ is the declination angle which represents the

slope of the magnetisation with respect the meridian direction. The reduced exchange

length is written

ω = l/R (2.66)

where l =
√
A/4πMs. Equilibrium magnetisation states can be found by minimiz-
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Figure 2.4: Equilibrium magnetisation states according to different models. Repro-
duced from [27].

ing the energy E with respect to the variational parameters, where the equilibrium

condition of the core parameter λ must be evaluated numerically. This parameter

is plotted in Figure 2.3 as function of the inner shell radius. For a planar disk the

vortex core size is given by the expression ldisk =
√

2l when h ≤ l. This can be used

to provide a reasonable estimate for the vortex core parameter size in a spherical

shell. The vortex parameter of a planar disk is given by λdisk = ldisk/R = ω
√

2 which

according to numerical simulations corresponds reasonably well with that of the thin

shell (see Figure 2.3).

The critical curve separating onion and vortex domains can be calculated analyt-

ically in the limit of a thin shell or solid sphere. In the latter case it is possible to use

the single domain limit. This leads to the equation [27]

Rc

l
≈ 2
√

2− 2

3

h

l
(2.67)

This critical curve is represented by the solid line in Figure 2.2. In the other extreme
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of a very thin shell the critical behaviour is described by the equation

Rc

l
≈ 1.59

(
l

h

)2/3

(2.68)

It can be seen from (2.68) that for any given thickness h there always exists a critical

radius Rc below which the onion state is the ground state. Similarly, there always

exists some radius R > Rc such that the vortex domain is the ground state (see Figure

2.4).

2.3.2 Domain walls

The minimum-energy state of bulk ferromagnets is normally comprised of multi-

domains. At the interface between two domain regions, it is energetically favourable

for spins to alter their direction gradually rather than abruptly. This leads to the

formation of transition regions of finite length between any two domains. These

transition regions are known as domain walls and are determined by the free energy

parameters, in addition to local imperfections and the geometry of the ferromagnetic

material. In a bulk ferromagnet the direction of the magnetisation within the domain

wall changes such that the component of the magnetisation normal to the plane of the

wall is constant [29]. Thus, the spins rotate about an axis perpendicular to the wall.

These domain walls are known as Bloch walls. This occurs because the exchange

energy cost would be very high if the variation in the magnetisation were abrupt

between any two domains. The width of the domain wall is determined primarily

by the competition between the exchange and anisotropy energy contributions. The

exchange interaction tends to increase the width of the wall because a wider domain

wall can accommodate a more gradual change in the magnetisation. However, this

can result in an increase in the anisotropy energy if the direction of the spins are

not aligned with the easy axis of the magnetocrystalline anisotropy. The specific wall

energy of a Bloch wall γw is defined as the total energy per unit area of the wall,
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Figure 2.5: Schematic of magnetic domain wall. The arrows represent the magneti-
sation vector M for (a)-(b) Néel walls and (c) Bloch wall. Reproduced from [30].

given by the expression

γw = 4
√
AK (2.69)

where A and K are the exchange and anisotropy constants, respectively. The most

commonly used definition for the width of a Bloch domain wall δB is given by

δB = π

√
A

K
(2.70)

The length scales lie in the range of δB ≈ 100− 1000 nm and δB ≈ 5 nm for magnet-

ically soft and hard materials, respectively. In the other extreme of a very thin film,

it may be energetically favourable for the magnetisation to lie in plane rather than

out of plane. In this situation the stray fields at the surfaces are only separated by

a distance which is equal to the thickness of the film. As a result, the magnetisation

will rotate about an axis which is perpendicular to the plane of the film leading to

the formation of a Néel wall. For thin films the primary difference between these

two kinds of domain walls is their dependence on film thickness. At a specific critical

thickness the energy of the Néel wall becomes less than the energy of the Bloch wall

and a transition between the two regimes occurs [29].

36



2.4 Hysteresis

In this section the concept of hysteresis in ferromagnetic materials is introduced,

beginning with a discussion of the nucleation modes in ferromagnetic spheres. Nucle-

ation theory describes the size ranges under which specific reversal mechanisms take

place in ellipsoidal particles and has a close relationship to the dynamical equations

which govern spherical particles. The curling and coherent rotation modes will be

reviewed as they are the only possible reversal modes in a homogenous ferromagnetic

sphere in the absence of surface anisotropy. In the final section of this chapter, the

Stoner-Wohlfarth model is used to calculate the magnetic hysteresis loop of a single

domain particle.

2.4.1 Nucleation

Consider a ferromagnetic material which is placed in a magnetic field that is suffi-

ciently large to saturate the sample. Allow the magnetic field to be decreased slowly,

in order to avoid dynamic effects. During this process, the sample will reach a point

at which it is no longer stable along the initial direction of saturation. The point at

which this instability begins is known as the nucleation field. The nucleation process

can be studied by linearising Brown’s differential equations which neglects the higher-

order contributions to the magnetisation in directions perpendicular to the applied

field. These linearised differential equations can be written [29]

(
C∇2 − 2K1 −Ms(Ha −NzMs)

)
Mx = Ms

∂Uin
∂x

(2.71)

and (
C∇2 − 2K1 −Ms(Ha −NzMs)

)
My = Ms

∂Uin
∂y

(2.72)

inside the ferromagnetic body, where C is the exchange constant, Ha is the applied

field and K1 is the magnetocrystalline anisotropy constant. For simplicity, assume
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that a homogeneous magnetic field is applied parallel to the major axis of an ellipsoid,

which is also an easy axis of either cubic or uniaxial magnetocrystalline anisotropy. If

z is chosen as the direction of the magnetic field, it is readily seen that to first order

in Mx and My,

− ∂ωu
∂Mx

+
Mx

Mz

∂ωc
∂Mz

= −2K1Mx, (2.73)

where wu and wc are the uniaxial and volume magnetocrystalline anisotropy densities,

respectively. The demagnetising field of a saturated ellipsoid is homogeneous and is

given by the equations

Hx = −∂U
∂x

,Hy = −∂U
∂y

, (2.74)

Hz = Ha −NzMs −
∂U

∂z
, (2.75)

where Nz is the demagnetising factor in the z-direction for an ideally saturated ellip-

soid and U is the potential at the point of nucleation, which is the order of Mx and

My. The boundary conditions, in the absence of surface anisotropy, are given by

∂Mx

∂n
=
∂My

∂n
= 0 (2.76)

on the surface. Equations (2.71) and (2.72) need to be solved together with the

boundary conditions (2.76) and the equations which define the potential U . To first

order, the differential equations in this case are

∇2Uin = 4πMs

(
∂Mx

∂x
+
∂My

∂y

)
, (2.77)

and

∇2U = 0, (2.78)

with boundary conditions

Uin = Uout (2.79)
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Figure 2.6: Schematic of magnetisation reversal by coherent rotation (left) and curling
(right) in a long cylinder. Reproduced from [31].

and

∂Uin
∂n
− ∂Uout

∂n
= 4πMsM · n, (2.80)

on the surface, where the function for the potential is regular at infinity. It is

necessary to solve these equations for the complete eigenvalue spectrum of the applied

field Ha. However, only the largest nucleation field has any physical meaning, because

smaller nucleation fields can never be reached during reversal of the magnetisation.

Furthermore, it can be shown that only three reversal modes are possible for an

ellipsoid of revolution, namely the coherent rotation, curling and buckling modes. A

fourth reversal mode is strictly forbidden, because no other eigenvalue can ever lead

to the largest value of the nucleation field Ha. The nucleation theory is important

for determining the size ranges under which specific magnetisation reversal processes

take place, and is a useful guide for numerical computations. As will be shown in

later sections, the nucleation theory also has a close relationship to the dynamical

equations which govern spherical particles.
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2.4.1.1 Coherent rotation

If the components of the magnetisation Mx and My are constant then equation (2.76)

is fulfilled, the volume change is zero and the equation for the potential becomes

∇2U = 0 both inside and outside the ferromagnetic material. The problem is then

reduced to that of a uniformly magnetized ellipsoid,

∂Uin
∂x

= NxMsMx (2.81)

and

∂Uin
∂y

= NyMsMy, (2.82)

where Nx and Ny are the demagnetizing factors. Equations (2.71) and (2.72) are then

given by

(
2K1

Ms

+Ha + (Nx −Nz)Ms

)
Mx =

(
2K1

Ms

+Ha + (Ny −Nz)Ms

)
My = 0 (2.83)

reducing the nucleation problem to just two equations. For the saturated state,

the components of the magnetisation which are orthogonal to applied field are zero

Mx = My = 0 before nucleation. Nucleation occurs when either component of the

magnetisation becomes non-zero. For this mode, the magnetisation reverses in uni-

son and the rotation angle is the same everywhere inside the ferromagnetic body.

Hence, this mode has been named coherent rotation. For the case of a sphere the

demagnetizing factors are equal in all directions, leading to the nucleation field

Hn = −2K1

Ms

(2.84)

2.4.1.2 Curling

For the curling mode, the magnetisation nucleates by forming a vortex configuration

and the demagnetising field vanishes as a result. This particular reversal mode has a
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close relationship to the exchange resonance condition in nanoparticles, which neglects

the demagnetising field as a first approximation. In cylindrical coordinates ρ, z and

φ, the curling mode is the solution of Brown’s equations for the following constraints

Mx = −A(ρ, z) sinφ (2.85)

My = A(ρ, z) cosφ (2.86)

Uin = Uout = 0. (2.87)

When transforming to spherical coordinates r, θ, φ, the linearised equations can be

written

[
C

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ
− 1

r2 sin2 θ

)
−2K1−Ms

(
Ha−

1

3
Ms

)]
A(r, θ) = 0

(2.88)

where Nz = 1/3 for a sphere. The solution for the magnetisation in this case is given

by

A ∝ j1(kr) sin θ (2.89)

where j1 is the spherical Bessel function of the first kind. The expression (2.89) is a

solution of equation (2.88), provided that

CK2 + 2K1 +Ms

(
Ha −

Ms

3

)
= 0. (2.90)

and the boundary condition is satisfied if

(
dj1(kr)

dr

)
r=R

= 0, (2.91)

where R is the radius of the sphere. Equation (2.91) has an infinite number of solu-

tions, however only the smallest eigenvalue has a physical meaning. From equation
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Figure 2.7: Single domain ellipsoid with magnetisation vector M in the presence of
applied field H. Reproduced from [32].

(2.90), the nucleation field can then be written

Hn = −2K1

Ms

− Cq2
2

R2Ms

+
Ms

3
, (2.92)

where q2 is the smallest solution of (2.91). By equating equation (2.92) with the

coherent rotation mode for a sphere (2.84) it is seen that magnetisation reversal in a

sphere should start by coherent rotation if R < Rc, and by magnetisation curling if

R > Rc, where

Rc =
q2

Ms

√
3C

4π
. (2.93)

The cross-over from curling to coherent rotation occurs because the exchange energy

dominates below the threshold radius (2.93). This transition occurs abruptly unlike

the gradual transformation between magnetisation ground states described in section

2.3.1, which is a continuous transformation of the core parameter λ.
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2.4.2 Stoner-Wohlfarth model

For ferromagnetic spheres below the threshold radius (2.93) the exchange energy

does not tolerate spatial variation in the magnetisation, which leads to a parallel

orientation of the spins. As discussed in the previous section, in this situation the

exchange energy is constant and does not enter into the energy minimization. As

a result, it is sufficient to consider only the magnetocrystalline anisotropy, shape

anisotropy and the interaction of the ferromagnetic body with the externally applied

field. When the inter-particle interaction is negligible, the model which describes

the hysteresis of the ferromagnetic material is known as the Stoner-Wohlfarth model.

This model can describe the hysteresis of spherical particles when the magnetisation

reverses by coherent rotation. When an external field H is applied at an angle θ to

the easy axis of the uniaxial anisotropy, the magnetisation will rotate at an angle φ

towards the direction of the applied field. If the magnetisation of a particle is at an

angle φ − θ to the easy axis z, and a magnetic field H is applied along z, then the

total energy E is given by

E = K1V sin2(φ− θ)− µH cosφ, (2.94)

where K1 is the magnetocrystalline anisotropy constant, H is the applied field, µ is

the magnetic moment and V is the volume. The magnetisation will favour the angle

φ which minimizes the energy. Differentiating the reduced energy with respect to the

angle φ leads to the minimum energy, namely

∂η

∂φ
=

1

2
sin[2(φ− θ)] + h sinφ = 0, (2.95)

where the reduced energy is defined as η =
E

2K1V
+ const with h =

MsH

2K1

and the

magnetic moment has been replaced by MsV . In Figure 2.8 the hysteresis loop for an

ellipsoidal particle calculated with the Stoner-Wohlfarth model is shown for different
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Figure 2.8: Longitudinal hysteresis loop for various angles φ of the field H with the
easy axis. Reproduced from [32].

angles of the external DC field. Hysteretic behaviour is regularly exploited in control

systems, when different values of the output are required as the input excitation is

varied.

2.5 Ferromagnetic resonance

In the remaining sections of this chapter the dynamical properties of ferromagnetic

materials will be introduced and discussed. For simplicity it will be assumed that

a large DC field is present to saturate the sample, so that it possesses a single do-

main. Precession of the magnetisation about the equilibrium configuration can occur

when an excitation field is applied perpendicular to the direction of saturation. This

behaviour is known as ferromagnetic resonance (FMR) and is a characteristic fea-

ture of ferromagnetic materials. This precession is often uniform due to the strong

exchange interaction between neighbouring magnetic moments. However, under suit-

able experimental conditions ferromagnetic materials may also undergo non-uniform
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Figure 2.9: Time evolution of a single spin S about an effective field when damping
is neglected. Reproduced from [33].

magnetisation precession. These non-uniform resonances can play an important role

in the high-frequency properties of ferromagnetic materials, and are a central focus

of this thesis.

2.5.1 Equation of motion

The Landau-Lifshitz-Gilbert equation, named after Lev Landau, Evgeny Lifshitz and

T. L. Gilbert, describes the dynamic precession of a magnetic moment about an

effective field. The equation was first proposed by L. D. Landau and E. M. Lifshitz

in 1935 and later augmented by T. L. Gilbert in 1955 to account for large damping

in ferromagnetic materials. In this section the phenomenological damping term is

introduced and the general properties of the Landau-Lifshitz-Gilbert equation are

discussed.

Macroscopic equations of motion for the magnetisation can be derived quantum

mechanically, beginning with the time evolution of the spin operator. The time
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evolution of the spin operator can be described by the Heisenberg equation [33]

dŜj
dt

=
1

i~
[Ŝj, Ĥ] (2.96)

where Ŝ is the spin operator and Ĥ is the Hamiltonian of the system. The Hamiltonian

can be expanded in terms of spin operators,

[Ŝj, Ĥ] = −
∑
k

∂Ĥ

∂Ŝk
[Ŝk, Ŝj] +O(~2) (2.97)

where the components of the angular momentum are connected by the commutation

relations

[Sx, Sy] = i~Sz (2.98)

[Sy, Sz] = i~Sx (2.99)

[Sz, Sx] = i~Sy (2.100)

Inserting equation (2.97) into (2.96) results in the expression for the time derivative

of the spin operator

dŜ

dt
= −Ŝ × ∂Ĥ

∂S
+O(~) (2.101)

In the classical limit, the operators can be replaced with their expectation values

and the spin can be replaced with the classical magnetic moment. This leads to the

classical expression for the Landau-Lifshitz equation [33]

∂M

∂t
= −|γL|M×Heff (2.102)

where γL ≈ 1.761 × 1011s−1T−1 is the electron gyromagnetic ratio, Heff is the total

effective field, the expectation value Ĥ has been replaced with the energy E and

the second term O(~) goes to zero as ~ → 0. This equation describes the dynamic

precession of the magnetisation about an effective field in the absence of damping. In
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this thesis, the effective field Heff is given by

Heff = Hex + Hz + Hms + Hani (2.103)

where Hex, Hz, Hms, Hani are the exchange, Zeeman, magnetostatic and magnetocrys-

talline anisotropy energy contributions.

Equation 2.102 describes an undamped precessional motion about the effective

field with no dissipation of the energy. This is not a realistic description of ferromag-

netic materials, and so a phenomenological damping term was introduced by Landau

and Lifshitz [29]

∂M

∂t
= −|γL|M×Heff − λM× (M×Heff) (2.104)

where λ is the phenomenological damping parameter. According to this equation,

the speed of precession increases as the damping term increases, which is physically

incorrect. As a result, Gilbert introduced another equation, known as the Landau-

Lifshitz-Gilbert equation, which can account for large damping in ferromagnetic ma-

terials.

2.5.1.1 Damping

As discussed in the previous section, equation 2.102 describes a continuous precession

of the magnetisation about the effective field at a constant angle and frequency.

However, energy dissipation is present in realistic ferromagnetic materials, resulting in

a decay of the precessing magnetisation towards the direction of the effective field. The

minimum energy condition is reached when the time variation of the magnetisation

vanishes. The principle damping term originates from spin-orbit coupling and can be

derived from first-principles by non-relativistic expansion of the Dirac equation [34].

Gilbert introduced a phenomenological dissipation term which is proportional to
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the time derivative of the magnetisation, given by

− α

γ0Ms

∂M

∂t
(2.105)

where Ms is the saturation magnetisation and α is a dimensionless damping constant

arising from the sources of dissipation in the system, e.g. Eddy currents. For ferro-

magnetic materials, the exact value of α varies with experimental conditions, but is

typically of the order of ≈ 10−2. When the Gilbert damping term is added to the

effective field the result is the Landau-Lifshitz-Gilbert equation,

∂M

∂t
= −γ0(M×Heff)− α

Ms

(
M× ∂M

∂t

)
(2.106)

which describes the time evolution of the dynamic magnetisation including both the

precessional and damping term. This equation can be transformed to the Landau-

Lifshitz form by applying the cross product of M to obtain

M× ∂M

∂t
= − γ0M× (M×Heff)− αMs

∂M

∂t
(2.107)

Inserting equation (2.107) into (2.106) leads to

∂M

∂t
= −γLM×Heff −

α′

Ms

M× (M×Heff ) (2.108)

where the gyromagnetic ratio is γL = γ0/(1+α2) and damping constant α′ = γ0α/(1+

α2). The Landau-Lifshitz and Landau-Lifshitz-Gilbert equations are only equivalent

in the limit of small damping, when the value of the damping constant α is low and

the denominator (1 + α2) becomes ≈ 1.
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2.5.1.2 Conservation of magnetisation

It follows from the previous section that the magnitude of the magnetisation vector

must be conserved as it evolves in time. When the effective field is not explicitly

time-dependent, this can be seen by directly evaluating the time derivative of the

squared magnetisation

∂

dt
|M|2 =

∂

dt
(M ·M) = 2M · ∂M

∂t
(2.109)

and substituting equation (2.108) into (2.109) to give

∂

∂t
|M2| = 2M ·

(
− γLM×Heff −

α′

Ms

M× (M×Heff)

)
= 0 (2.110)

Therefore, for a ferromagnetic body made of the same material the absolute value of

the magnetisation is constant everywhere. Conservation of the magnitude of the mag-

netisation vector is a necessary condition for any numerical computation to produce

physically meaningful results. However, this condition is often not satisfied due to

the accumulation of numerical error when solving the non-linear LLG equation. As a

result, micromagnetic solvers must actively preserve the vector through one of several

numerical schemes, such as renormalisation (magpar), self-correcting LLG (nmag)

and the 4th order Runge-Kutta method (OOMMF).

2.5.1.3 Energy decay

A second important criterion is that the total energy of the system decays in time.

To verify that this is the case, it is convenient to re-write the normalised Landau-

Lifshitz-Gilbert equation in the following form

∂M

∂t
= −M×

(
Heff − α

∂M

∂t

)
(2.111)
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Multiplying both sides of this equation by Heff − α
∂M

∂t
leads to the result

∂M

∂t
·
(

Heff − α
∂M

∂t

)
= 0 (2.112)

The expression which relates the time derivative of the free energy E to the effective

field is given by [29]

dE

dt
=

∫
V

(
δE

δM
· ∂M

∂t
+

δE

δHeff

· ∂Heff

∂t

)
dV (2.113)

which can also be written

dE

dt
=

∫
V

(
−Heff ·

∂M

∂t
−M · ∂Heff

∂t

)
dV (2.114)

By integrating equation (2.112) over the volume and using the above expression for

the free energy, we obtain

dE

dt
= −α

∫
V

∣∣∣∣∂M

∂t

∣∣∣∣2dV (2.115)

This equation implies that dE/dt ≤ 0. The rate of energy loss is proportional to the

damping constant and the energy is conserved when the damping constant α is set

to 0. For the purpose of steady-state numerical calculations, it is a common prac-

tise to increase the damping constant to speed up converge towards the equilibrium

configuration.

2.5.2 Uniform resonance

The atomic moments of a ferromagnetic material will tend to precess coherently

about the equilibrium configuration due to the presence of strong exchange forces.

The frequency of the uniform mode of magnetisation precession can be calculated

from Kittel’s formula, accounting for the various contributions to the effective field.

For an ideally saturated ellipsoid the internal magnetic fields are uniform and the
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calculation of the ferromagnetic resonance is straightforward. Assuming the presence

of a static magnetic field that is sufficiently large to remove the domain structure,

then the effective field of a uniformly magnetized ellipsoid can be written as

Heff = H0 −NM +Hk (2.116)

where H0 is the external static field applied along an axis defined here as the z-axis,

NM is the demagnetising field and Hk is the anisotropy field. The expression for the

resonance frequency is the same for a uniaxial or cubic magnetocrystalline anisotropy.

When M and H are parallel, the magnetisation M can be written as [35]

dM1(t)

dt
= −γ[Ms ×H1(t) +M1(t)×H +MsM1y(t)(Ny −Nz)i

−MsM1x(t)(Nx −Nz)j +M1 ×Hk]

where we have the expression N · M1(t) = NxM1x(t)i + NyM1y(t)j + NzM1z(t)k,

when second-order quantities and damping are neglected. When the easy and hard

axis coincide with the reference axis, the expression for the components can then be

written [35]

iωM1x(t)

γ
= −M1y[H +Ms(Ny +NKy −Nz −NKz)] +MsH1y (2.117)

iωM1y(t)

γ
= −M1x[H +Ms(Nx +NKx −Nz −NKz)] +MsH1x (2.118)

and

M1z = 0 (2.119)

A non-trivial solution exists provided that the determinant of the coefficients vanishes

∣∣∣∣∣∣∣
iωr
γ

−Hr +Ms(Ny +NKy −Nz −NKz)

Hr +Ms(Nx +NKx −Nz −NKz)
iωr
γ

∣∣∣∣∣∣∣ = 0.
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Solving this leads to Kittel’s equation for the ferromagnetic resonance frequency,

ωr = −γ
√(

Hr + (Ny +Nky −Nz −Nkz)Ms

)
×
(
Hr + (Nx +Nkx −Nz −Nkz)Ms

)
= −γHr

where ωr is the resonance frequency and Hr is the corresponding resonance field.

For a ferromagnetic sphere, the demagnetising and anisotropy fields are given by

Nx = Ny = Nz = 1/3 and the anisotropy field is NKx = NKy = 0, NKz =
2K1

Ms

. The

frequency for the ferromagnetic resonance of a ferromagnetic sphere is then given by

ω = −γ
(
Hr +

2K1

Ms

)
(2.120)

The components of the magnetisation can be calculated by solving the equations

(2.117)-(2.118) for Mx and My, leading to

M1x =
γ2Ms(H + (Ny +NKy −Nz −NKz)Ms)

ω2
r − ω2

H1x −
iωγMs

ω2
r − ω2

H1y, (2.121)

M1y =
iωγMs

ω2
r − ω2

H1x +
γ2Ms(H + (Nx +NKx −Nz −NKz)Ms)

ω2
r − ω2

(2.122)

The magnetic susceptibility M1 = χeH1 can then be written,

M1 = χeH1 (2.123)

and

χe =


χ11 χ12 0

χ21 χ22 0

0 0 0

 (2.124)
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for which the elements of the tensor susceptibility are given by

χ11 =
γ2Ms(H + (Ny +NKy −Nz −NKz)Ms)

ω2
r − ω2

, (2.125)

χ22 =
γ2Ms(H + (Nx +NKx −Nz −NKz)Ms)

ω2
r − ω2

, (2.126)

χ12 = −χ21 =
iωγMs

ω2
r − ω2

, (2.127)

The tensor χr is known as the extrinsic susceptibility, as it relates the precessing mag-

netisation to the externally applied ac field. When the high-frequency susceptibility

is expressed in terms of the alternating field inside the sample, it is known as the

intrinsic susceptibility χi, given by

χi = χe(1 +N · χi) (2.128)

When damping is included the elements of the susceptibility tensor are complex,

giving rise to power loss. In this case, the tensor susceptibility for a spherical sample

can be written

χ11 = χ22 =
γMs(γH + iωα)

(ωr + iωα)2 − ω2
(2.129)

χ21 = −χ21 =
iωγMs

(ωr + iωα)2 − ω2
(2.130)

when assuming a uniform excitation field and negligible magnetocrystalline anisotropy.

2.5.3 Magnetostatic resonance

In the previous section it was assumed that the atomic dipoles precess in phase.

However, it is possible to excite other precessional modes by applying a non-uniform

excitation field, or by using a sample with a non-ellipsoidal shape. Such non-uniform

resonance modes were succinctly described by Walker for a spherical sample, and

first observed experimentally in 1956. In Walker’s derivation, the spherical samples
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are assumed to be sufficiently large such that the exchange contribution is negligible,

and the wavelength is comparable to the dimensions of the sample. Moreover, since

there is little propagation of the wave it is sufficient to use a magnetostatic form of

Maxwell’s equations. Hence, these non-uniform modes are known as the magnetostatic

modes. A characteristic feature of the magnetostatic modes is that that they are size-

independent, so long as the increase in exchange energy with decreasing particle size

is small compared to the classical dipole-dipole interaction.

Consider an ellipsoid of revolution with negligible magnetocrystalline anisotropy

when an external DC field is applied along the polar axis. It follows from the equations

(2.5.2) and (2.5.2) that the dynamic magnetisation components are given by

M1x = χ11H1x + χ12H1y (2.131)

M1y = χ21H1x + χ22H1y, (2.132)

where χ12 = −χ21 and χ11 = −χ22, given that Nx = Dy. It is sufficient to use the

magnetostatic form of Maxwell’s equations when the propagation is negligible, which

gives

∇×H1 = 0 (2.133)

and

∇ ·B1 = ∇ · (H1 + 4πM1) = 0. (2.134)

When defining a scalar potential ϕ such that H1 = −∇ϕ equations (2.131) - (2.132)

become

−M1x = χ11
∂ϕ

∂x
+ χ12

∂ϕ

∂y
(2.135)

and

−M1y = χ21
∂ϕ

∂x
+ χ22

∂ϕ

∂y
(2.136)
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From Maxwell’s equations we have

∇2ϕ− 4π∇ ·M1 = 0. (2.137)

By eliminating M1 it can be shown that ϕ satisfies the differential equation

(1 + 4πχ11)

(
∂2ϕ

∂x2
+
∂2ϕ

∂y2

)
+
∂2ϕ

∂z2
= 0. (2.138)

inside the ellipsoid and the Laplace equation

∇2ϕ = 0 (2.139)

outside the ellipsoid. The result is an eigenvalue problem where the solutions for ϕ

depend on associated Legendre polynomials Pm
n and eimφ, where φ is the azimuthal

angle. Here n and m indicate the periodicity in the dynamic magnetisation with

respect to the angle φ. The coordinate r specifies the root of a characteristic equation

that results in the resonance frequency. The magnetostatic modes can be situated

either above or below the uniform precession line, and are useful for determining the

intrinsic magnetic parameters of a sample, such as the g-value, the magnetocrystalline

anisotropy constant and the saturation magnetisation.

2.5.4 Exchange resonance

The magnetic properties of fine particles can differ greatly from bulk ferromagnets or

ferrites. The source of this difference is the fact that in fine particles exchange and

surface effects are not negligible, in comparison with their bulk counterparts. The

resonant properties of ferromagnetic nanoparticles was studied by Aharoni accounting

for exchange and surface contributions [36, 37]. Assuming the presence of a large DC

field applied along the z direction and small perturbation of Mx and My, the dynamic
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equation can be solved as a linearized set of equations

(
C

Ms

∇2 −Hz

)
Mx −

(
iω

γ0

)
My =

∂Vin
∂x

(2.140)

and (
C

Ms

∇2 −Hz

)
My +

(
iω

γ0

)
Mx =

∂Vin
∂y

(2.141)

where M is a unit vector parallel to the magnetisation, C = 2A is the exchange

constant, Ms is the saturation magnetisation, γ0 is the gyromagnetic ratio, Hz is

the effective field and Vin is the potential due to the Mx and My components of the

magnetisation. Following Aharoni’s solution, the components of the magnetisation

are expressed in the cylindrical co-ordinates ρ, φ, z and the spatial dependence of the

derivatives is expressed in spherical coordinates r, θ, φ, namely

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ
− 1

r2 sin2 θ
− MsHz

C

)
mφ

+
iMsω

γ0C
mρ = 0

and

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ
− 1

r2 sin2 θ
− MsHz

C

)
mφ

−iMsω

γ0C
mρ =

Ms

C

(
sin θ

∂

∂r
+

cos θ

r

∂

∂θ

)
Vin

The equations for the potential inside and outside the sphere are given by

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ

)
Vin = 4πMs

(
1

r sin θ
+

cos θ

r

∂

∂θ
+ sin θ

∂

∂r

)
mρ if r ≤ R

(
∂2

∂r2
+

2

r

∂

∂r
+

1

r2

∂2

∂θ2
+

cos θ

r2 sin θ

∂

∂θ

)
Vout if r ≥ R
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where R is the radius of the sphere. The boundary conditions on the surface of the

sphere are given by

∂mρ

∂r
=
∂mφ

∂r
= 0 (2.142)

Vin = Vout (2.143)

∂Vin
∂r
− ∂Vout

∂r
= 4πMsmρ sin θ (2.144)

For sufficiently small ferromagnetic nanoparticles, the exchange energy is much larger

than the magnetostatic energy. Therefore, in the exchange approximation the mag-

netostatic energy term can be neglected altogether by setting Vin = Vout = 0. In this

exchange-dominated regime the expression for the resonance frequency is given by

the equation

± ω
γ0

=
Cµ2

kn

R2
2Ms

+H0 +
2K1

Ms

(2.145)

subject to the boundary condition

(
djn(µknr/R)

dr

)
r=R

= 0 (2.146)

where ω is the frequency, R2 is the outer radius, H0 is the saturation field, Ms is

the saturation magnetisation, γ0 is the gyromagnetic ratio, µ are the eigenvalues of

equations (2.149) and (2.150), K1 is the magnetocrystalline anisotropy constant and

jn is the spherical Bessel function of the first kind. The exchange resonance approxi-

mation closely resembles the curling nucleation mode because the demagnetising field

vanishes when an ellipsoid nucleates by a vortex configuration. A characteristic fea-

ture of the exchange modes is that they are size-dependent as can be seen by the

1/R2
2 dependence in equation (2.145). In the case of magnetite, the exchange energy

dominates over the magnetostatic energy for a radius R2 below ≈ 20 nm [38]. How-

ever, calculations presented by Arias et al. [39] showed that the frequency remains

proportional to 1/R2
2 to rather good approximation for larger particle sizes.
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2.6 Summary

In summary, the background concepts of magnetism which are relevant for this thesis

have been introduced. The subject of the chapter converged towards the non-uniform

magnetisation ground states and dynamics of ferromagnetic particles in the microm-

eter, sub-micrometer and nanometer size ranges, which are the central focus of this

thesis. In the next chapter the numerical methods used to investigate the precessional

magnetisation dynamics of these materials will be discussed.
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Chapter 3

Methodology

This section introduces the methodology of numerical micromagnetics which is the

basis of the simulations carried out in this thesis. Micromagnetics is a semi-classical

continuum approximation of ferromagnetism which considers length-scales that are

small enough to accurately resolve magnetic domain walls, but large enough that the

atomic structure of the material can be neglected. Micromagnetics can be used to cal-

culate the equilibrium state of magnetic materials by minimizing Brown’s equations

subject to the appropriate boundary conditions and energy terms. Alternatively,

dynamical behaviour can be calculated by solving the time-dependent equation of

magnetisation motion. In this chapter, the numerical implementation of the Landau-

Lifshitz-Gilbert equation of magnetisation motion and the associated effective field

terms will be discussed. Finally, a generalised electromagnetic-micromagnetic ap-

proach which incorporates the complete solution of Maxwell’s equation is presented.
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3.1 Numerical micromagnetics

For the purpose of numerical implementation, the discretized form of the Landau-

Lifshitz-Gilbert equation can be written

∂Mijk

∂t
= γijk(Mijk ×Heff

ijk ) +
αijk
M s

ijk

(
Mijk ×

∂Mijk

∂t

)
(3.1)

where ijk is the finite difference notation representing the location of each cell in a

regular mesh grid. To integrate the LLG equation, the first order derivative in (3.1) is

replaced with its finite difference equivalent and the time domain becomes discretised.

In solvers such as OOMMF and Mumax3, the LLG equation can be integrated using

the classical Runge-Kutta method where the value of the magnetisation Mijk is given

by

Mijk(tn+1) = Mijk(tn) +
1

6
(k1 + 2k2 + 2k3 + k4)

k1 = f(tn,Mijk(tn))∇t

k2 = f(tn +
1

2
∇t,Mijk(tn +

1

2
k1))∇t

k3 = f(tn +
1

2
∇t,Mijk(tn) +

1

2
k2)∇t

k4 = f(tn +∇t,Mijk(tn) + k3)∇t

At each time-step ∇t the numerical error is evaluated. The solver is allowed to

proceed to the next time-step if the computed error in each cell is smaller than a

predefined threshold value. If the error exceeds this value, then the calculation is

repeated using a smaller time-step. In this way the magnitude of the magnetisation
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vector is conserved and the absolute value of the numerical error is kept small. For

the magnetostatic calculations carried out in this thesis, the discretized equation of

magnetisation motion (3.1) is solved using the following torque fields and boundary

conditions:

Applied Field

An internal, user-defined field inside the magnetic medium and can be static or tran-

sient, uniform or non-uniform. It is used in this thesis to specify the static and

dynamic pulse fields in the magnetic material.

Demagnetising Field

In Chapters 5 − 7 of this thesis the conventional demagnetising field described in

section 2.2.2.1 is used to calculate the long-range magnetic fields inside and outside

the ferromagnetic material. In Chapter 8 the long-range fields due to currents and

magnetic sources are generated from the full solution of Maxwell’s equations includ-

ing demagnetising fields, Eddy current fields and scattering fields.

Exchange Field

A numerical implementation of the exchange interaction must use a discretized form

of either (2.55) or (2.56) which requires evaluating both the integral and the enclosed

derivatives, with special treatment at the boundary of the magnetic material. The

Laplace operator in the expression of the exchange energy can be replaced with its

finite difference equivalent,

Eex = −Vh
∑
jk

wyjw
z
k

∑
ii′

Aijkw
x
i dii′Mijk ·Mi′jk (3.2)
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where we have considered one term in (2.56), dii′ is a discretized form of the operator

∂2/∂x2 and w are the weights. The second derivative in equation (2.56) is commonly

approximated by the expression

f ′′(xi) =
1

h2
(fi−1 − 2fi + fi+1) +O(h2) (3.3)

where the index i corresponds to the x-axis. The cell at location i has two nearest-

neighbours at the locations i − 1 and i + 1. The sum can be expanded into three-

dimensions by including the terms ∂2/∂y2 and ∂2/∂z2 which leads to 6 nearest neigh-

bours for any particular cell, provided that it is not positioned at a boundary. Hence,

this numerical implementation is known as the six nearest neighbour method.

Anisotropy Field

For numerical computations involving Permalloy the material is assumed to have a

negligible uniaxial magnetocrystalline anisotropy in comparison to the shape anisotropy

and applied fields. In the case where the uniaxial magnetocrystalline anisotropy is

considered, the torque field is given by:

Hk =
−2Ku

µ0M2
s

(M · u)u (3.4)

where Ku is the anisotropy constant, and u is a unit vector parallel to the anisotropy

axis. For iron which has a cubic structure the following cubic anisotropy energy

density Ecubic is used

Ecubic = K1(α2β2 + β2γ2 + γ2α2) +K2α
2β2γ2 (3.5)

where the constants K1 and K2 are the cubic anisotropy constants described in sec-

tion 2.2.2.
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Boundary Conditions

The most commonly utilized boundary condition in micromagnetic solvers is writ-

ten

∂M

∂n
= 0 (3.6)

where n is normal to the surface. Inclusion of surface anisotropy leads to a modified

boundary condition

∂M

∂n
+

2Ks

C
= 0 (3.7)

where Ks is the surface anisotropy constant and C is the exchange constant. There

are several possible contributions to the surface anisotropy energy which can become

very important when the surface-to-volume ratio is large, as is the case with spher-

ical nanoparticles. In this thesis, numerical computations are performed with the

Neumann boundary condition ∂M/∂n = 0, i.e. neglecting surface anisotropy. The

problem of surface anisotropy is treated analytically in Chapter 4.

3.2 Maxwell-Landau-Lifshitz-Gilbert formulation

Conventional micromagnetic solvers employ a magnetostatic form of Maxwell’s equa-

tions. As a result, they are not suitable for studying electromagnetic interaction with

lossy magnetic material. In this section, the Landau-Lifshitz-Gilbert (LLG) equa-

tion is coupled to the complete solution of Maxwell’s equations in order to study

the interaction between electromagnetic waves from current and charge sources with

non-linear magnetic material. This is of particular importance in the simulation of de-

vices containing conductive magnetic and dielectric materials operating at microwave

frequencies.
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3.2.1 Coupled equations

The system of equations for the non-linear Landau-Lifshitz-Gilbert equation and

Maxwell’s equations can be written [40, 41]


ε0
∂E

∂t
−∇×H + σE = 0

µ0
∂H

∂t
+∇× E = −µ0Ms

∂M

∂t
∂M

∂t
= |γ|HT (m)×M + αM× ∂M

∂t
,

(3.8)

where H is the magnetic field, E is the electric field, σ is the electrical conductivity and

ε0 and µ0 are the vacuum electric permittivity and magnetic permeability, respectively.

The magnetic coupling is given by the equation


B = µ0(H + M) inside

B = µH outside

(3.9)

The proof of magnetisation conservation in the LLG equation is unchanged from the

previous section. The conditions for which the magnetisation M and the field H

of the coupled system (3.8) are divergence free has been the focus of considerable

mathematical analysis. The existence of weak solutions for the coupled Maxwell-

Landau-Lifshitz-Gilbert (MLLG) formulation has been rigorously proven under the

following constraints [41]

∇ · (H0 + M0) = 0 =⇒ ∇ · (H + M) = 0,∀t ≥ 0, (3.10)

and

∇ · E0 = 0 =⇒ ∇ · E = 0,∀t ≥ 0, (3.11)
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where E0,H0 and M0 are the initial conditions. Thus, any solution of the coupled

equations is divergence-free for all time, provided that the initial input data is diver-

gence free.

3.2.2 Electromagnetic energy

It can be shown that the electromagnetic energy of this coupled system of equations

decays in time [42]. Starting from Maxwell’s equations and multiplying across by E

and H leads to the expression

E · (∇×H)−H · (∇× E) = ε0E ·
∂E

∂t
+ µ0H ·

∂H

∂t
+ µ0H ·

∂M

∂t
(3.12)

By integrating over the volume and applying Green’s formula, we have

∫
V

∇ · (E×H)dx =

∫
V

(
ε0E ·

∂E

∂t
+ µ0H ·

∂H

∂t

)
dx+ µ0

∫
V

H · ∂M

∂t
dx = 0 (3.13)

By adding Heff to H equation (3.13) can be re-written as

d

dt

[
ε0
2
||E||2 +

µ0

2
||H||2

]
−µ0

∫
Heff(M) · ∂M

∂t
dx = −µ0

∫
HT (H, M) · ∂M

∂t
dx (3.14)

where HT (H,M) has been introduced for convenience. In (3.14) the term involving

the effective field can be expressed as

µ0

∫
V

Heff (M) · ∂M

∂t
dx = − d

dt

(
Ea(M)

)
(3.15)

where Ea is the energy due to the effective field. Taking the vector product of the

LLG equation with respect to ∂M/∂t,

∂M

∂t
× ∂M

∂t
= 0 = |γ|

(
HT (H,M) · ∂M

∂t

)
M− α

|M

∣∣∣∣∂M

∂t

∣∣∣∣2M. (3.16)
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Rearranging equation (3.16) leads to the expression

HT (H,M) · ∂M

∂t
= − α

|γ|
1

|M|

∣∣∣∣∂M

∂t

∣∣∣∣2 (3.17)

Combining (3.16) and (3.17) with (3.14) leads to the time decay of the electromagnetic

energy

d

dt

[
ε0
2
||E||2 +

µ0

2
||H||2 + Ea(M)

]
= −µ0

α

|γ|

∫
1

|M|

∣∣∣∣∂M

∂t

∣∣∣∣2dx (3.18)

Equation (3.18) elucidates why the ferromagnetic material is absorbing, because the

electromagnetic energy decay is determined by the damping constant α of the mag-

netic material. Moreover, as a consequence of this energy decay, the time derivatives

of (E,H,M) must vanish at equilibrium,

∂E

∂t
=
∂H

∂t
=
∂M

∂t
= 0 (3.19)

Thus, the coupled system (3.8) reduces to the magnetostatic field described previously


∇×H + σE = 0,

∇× E = 0,

HT (M) ×M = 0.

(3.20)

This formulation allows the inclusion of anisotropy and exchange effects, while the

electromagnetic fields due to magnetic and/or electric charges and currents are eval-

uated through the solution of Maxwell’s equations. Hence, this approach allows for

the steady-state and dynamic simulation of complete magnetic based devices with

dielectric and conductive layers. In the above formulation, it is important to note

that the fields at equilibrium are independent of both the damping constant α and

conductivity σ. As a result, they can be increased in order to accelerate convergence

of the magnetisation towards the steady-state solution.
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3.3 Numerical implementation

3.3.1 Finite-difference time-domain (FDTD) method

3.3.2 Maxwell’s equations

This thesis focuses on the transverse-magnetic mode with respect to the z dimension

(TMz) for simplicity. Nevertheless, the work presented here is applicable to the

transverse-electric (TEz) and full three-dimensional Maxwell’s equations. In the TMz

mode, Maxwell’s curl equations reduce to:

∂Bx

∂t
= −∂Ez

∂y
(3.21)

∂By

∂t
= −∂Ez

∂x
(3.22)

ε
∂Ez
∂t

=
∂Hy

∂x
− ∂Hx

∂y
− σEz (3.23)

The detailed implementation of Maxwell’s equations and the LLG equation within

the FDTD method can be found elsewhere [43], and only fundamental and relevant

parts will be repeated and expanded here for completeness. Figure 3.1 shows the

basic unit cell (or the Yee cell) in the FDTD method in the TMz mode. In this

arrangement, each E field component in the centre of the cell is evaluated from the

curl of the four surrounding magnetic field components, while each H field component

is evaluated using the curl of the two neighbouring E components. The electric and

magnetic fields are not co-located in space and displaced from each other by half a

cell length. This field arrangement naturally enforces the electromagnetic boundary

conditions of Maxwell’s equations at the interfaces of different materials [44]. The

convention used here to represent the discretised field component f in two dimensions

is f |ni,j = f(iδx, jδy, nδdt) where the subscripts i and j are integers representing spatial
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Figure 3.1: Two-dimensional unit cell in the FDTD TMz grid.

grid locations in the x and y direction respectively, and the superscript n is an integer

representing the increment of the time step δt. For simplicity and since the geometry

of the objects modelled in this work exhibits symmetry, square cells are used in this

work where δx = δy. Second-order accurate central differences are used here; for

example, the spatial discretisation of (3.21) around time step n yields:

∂Bx

∂t
|ni+1/2,j ≈ −

(
Ez|ni+1/2,j+1/2 − Ez|ni+1/2,j+1/2

δx

)
(3.24)

Time integration is achieved using a second-order accurate leapfrog algorithm where

the magnetic flux density B is evaluated at time step n, which is then used to evaluate

the electric field E at time step n + 1/2, and so forth. Applying this discretisation

scheme and evaluating the time average of the electric field from:

Ez|n+1/2 =
Ez|n + Ez|n+1

2
(3.25)
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Figure 3.2: Efficient implementation of the magnetisation vector within the FDTD
grid.

yields the explicit, discretised update equations for the TMz field components of

equations:

∂Bx

∂t
|n+1/2
i+1/2,j = Bx|n−1/2

i+1/2,j −
∆t

∆x
[Ez|ni+1/2.j+1/2 − Ez|ni+1/2,j−1/2] (3.26)

∂By

∂t
|n+1/2
i+1/2,j = By|n−1/2

i+1/2,j +
∆t

∆x
[Ez|ni+1/2.j+1/2 − Ez|ni−1/2,j+1/2] (3.27)

Ez|n+1
i+1/2,j+1/2 =

(
1 + σ∆t/(2ε)

1− σ∆t/(2ε)
Ez|ni+1/2,j+1/2+

∆t

∆x(1 + σ∆t/(2ε)
×

 Hy|n+1/2
i+1,j+1/2 −Hy|n+1/2

i,j+1/2

−Hx|n+1/2
i+1,j+1/2 −Hx|n+1/2

i+1/2,j


(3.28)

where σ and ε are located in space at the same point as their respective field compo-

nents and are therefore spatially varient. The magnetic field H in (3.28) is computed

from (3.26) and (3.27) using the constitutive relation:

Hn+1/2 =


Bn+1/2

µ0

−Mn+1/2 inside magnetic material

Bn+1/2

µ0µr
outside magnetic material

where µr is the relative permeability. The constitutive relation requires M to be
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located at the same location in space as H and B (which are displaced by half-cell

lengths in the FDTD grid). This requirement is in contradiction with the localised

nature of the LLG equation where the magnetisation and field components need to

be evaluated at the same location in space. If M is positioned at the same location

in space as H and B then four-point spatial interpolations would be necessary to

determine the M components at each of the half-cell displaced neighbouring field

locations in the Yee cell [45, 46, 47]. This procedure is less accurate and makes

the numerical implementation of magnetic boundary conditions more complex as the

boundary of the magnetic material is not well defined.

A more efficient and simpler approach was developed by Aziz [43] where the

magnetisation vector M is positioned at the corners of the Yee cell as indicated

in Figure 3.2. For example, to determine the value of Mx at the same location as Hx

or Bx(i+ 1/2, j), the following two-point interpolation is used:

Mx|n+1/2
i+1/2,j =

Mx|n+1/2
i,j +Mx|n+1/2

i,j

2
. (3.29)

Similar interpolations can be carried out to evaluate the remaining magnetisation

components at the same location as the magnetic field components for the FDTD

update equations. Placing the magnetisation vectors at the corners of the FDTD

cells, moreover, allows the same simple two point interpolations to be used in TEz

and three-dimensional FDTD grids.

3.3.3 Numerical integration of the LLG equation and FDTD-

LLG iterative algorithm

The time derivatives in the LLG equation at time step n may be approximated using

central differences yielding:

Mn+1/2 −Mn−1/2

∆t
= −|γ|

(
Mn×Hn

effM
n)
)

+
α

Ms

(
Mn×Mn+1/2 −Mn−1/2

∆t

)
(3.30)

70



Rewriting the time derivative term on the right-hand-side as:

Mn+1/2 −Mn−1/2

∆t
=

Mn+1/2 + Mn+1/2 − 2Mn−1/2

∆t
(3.31)

and expressing the magnetisation at time step n using the average:

Mn =
Mn+1/2 + Mn−1/2

2
(3.32)

yields a second-order accurate update equation for the magnetisation at time step n:

Mn = Mn+1/2 −Mn ×
(
|γ|∆t

2
Hn
eff (M

n) +
α

Ms

Mn−1/2

)
(3.33)

where the effective field Heff is defined as in previous sections of this thesis.

Equation (3.33) cannot be solved explicitly since the evaluation of the effective

field requires Mn on the right-hand-side which is not available. The non-linear system

of Maxwell and LLG equations therefore cannot be solved using an explicit scheme

(unless anisotropy and exchange fields are ignored). An explicit numerical scheme

based on extrapolation has been proposed in [48], however this scheme was found to

be inherently unstable for small damping and is therefore not appropriate for dynamic

and steady-state simulations. An implicit and stable iterative algorithm was proposed

by Aziz [43] by combining the efficient grid implementation of the Maxwell-LLG

equations and the implicit LLG solution in [42] and [49]. This FDTD-LLG numerical

scheme proceeds as follows:

1) Evaluation of Bn+1/2 from Maxwell’s equations (3.26) an (3.27) using the previ-

ous computed values of the electric field En and magnetic flux density Bn−1/2. Then

the magnetic flux density at time step n can be computed from the time average:

Bn =
Bn+1/2 + Bn−1/2

2
(3.34)

71



2) Evaluation of Bn at the grid locations of M (i.e. cell corners) using interpo-

lations. For example, Bx is determined at the cell corner where Mx is located using

the two-point spatial interpolation:

Bx|ni,j =
Bx|ni+1/2,j + Bx|ni−1/2,j

2
(3.35)

Similar interpolation is performed to determine By|ni,j.

3) Iterative solution of the discretised LLG equation, re-written here in terms of

the iteration number r:

[Mn]r = Mn−1/2 − [Mn]r ×
(
|γ|∆t

2
Hn
eff ([M

n]r−1 +
α

Ms

Mn−1/2

)
(3.36)

with initial values Mn = Mn−1 and Heff = Hn−1
eff .

Begin iteration r:

i) Solve equation (3.33) explicitly for [Mn]r, using previous values Heff ([M
n]r−1)

and Mn−1/2 as constants, at the grid corners using [42]:

Mn =
Mn−1/2 + (a ·Mn−1/2a− a×Mn−1/2)

1 + |a|2
(3.37)

where

a = −
(
|γ|∆t

2
Heff ([M

n]r−1) +
α

Ms

Mn−1/2

)
(3.38)

ii) Update the exchange boundary conditions (in the absence of surface anisotropy) at

the magnetic material interfaces using second-order central difference. For example,

on the left hand boundary of the TMz grid in Figure 3.2, the magnetic boundary

condition can be approximated by:

∂M

∂x
|i,j ≈

M|i+1,j −M|i−1,j

2∆x
= 0 (3.39)
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This yields the boundary condition:

M|i+1,j = M|i−1,j (3.40)

which is used for the finite-difference approximation of the exchange fields.

iii) Evaluate the exchange field using second-order accurate, central finite-difference

approximations:

Hex|i,j =
2A

µ0M2
s∆x2

(
M|i+1,j + M|i−1,j + M|i,j+1 + M|i,j−1 − 4M|i,j

)
(3.41)

where the last term on the right-hand-side of due to the spatially invarient magnetisa-

tion in the z-direction in the two-dimensional TMz mode. The magnetisation points

located in free space on one side of the boundary are substituted using the exchange

boundary condition.

iv) Update the effective field Hn
eff ([M

n]r) using the computed values of Mn for

the next iteration. The internal, Maxwell’s field is computed using:

Hn([Mn]r) = Bn/µ0 − [Mn]r (3.42)

End iterations.

4) Evaluation of Mn+1/2 using extrapolation: Mn+1/2 = 2Mn −Mn−1/2

5) Evaluation of Mn+1/2 at the locations of the Bn+1/2 using two-point spatial

interpolations, as described earlier, and then calculations of the magnetic field from:

6) Finally, evaluation of the electric field En+1.

The iteration number r in the above algorithm was controlled to satisfy the conver-

gence criterion that |M̄r|/|M̄r−1|−1 ≤ Γ where the overbars indicate spatial averages

over the magnetic material, and Γ is a small number representing the tolerance of

the numerical solution of the magnetisation and is set equal to 1× 10−6 in this work.

This convergence criterion was satisfied using 2 − 6 iterations; values of Γ less than
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1×10−6 made negligible difference to the results. This scheme was found to be stable

and limited only by the Courant stability limit of the FDTD method discussed next.

3.3.4 Numerical stability

The spatial increment ∆x in the FDTD grid is normally chosen to sufficiently sample

the shortest wavelength expected in the simulation (determined by the bandwidth

of the source), and/or to accurately model the smallest dimension and/or physical

and electromagnetic feature in the simulated materials (such as skin depth, exchange

length or domain wall width in a magnetic material).

The numerical stability of the FDTD leapfrog time marching scheme is then well

understood and imposes the following restriction on the time step size, known as the

Courant limit, for stable time integration of Maxwell’s equations [7,20]:

∆t ≤ ∆x

c
√
dim

(3.43)

where c is the speed of light in vacuum, and dim is the dimensionality of the system

and is equal to 2 for the TMz mode considered here. The Courant stability criterion

is normally more stringent to provide a small time step to ensure stability of the

LLG solver and therefore of the complete FDTD-LLG iterative solver. Nevertheless

it is useful to understand the correlation between the time step size necessary for the

stability of the LLG equation finite-difference discretisation and the micromagnetic

parameters of the material.

The stability analysis of the discretised LLG equation is complicated by the de-

pendence on the sample shape, size and excited resonance modes in the material.

Therefore simplified analysis are carried out here that consider mainly the exchange

fields responsible for generating the high-frequency modes in the material, and there-

fore providing insight into the smallest time step needed for the stable numerical

integration of the LLG equation. For this exercise, a semi-infinite (in the x and y
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Figure 3.3: Magnetic thin-film geometry used in the numerical stability analysis of
the Landau-Lifshitz equation.

directions) thin-film geometry with thickness d as shown in Figure 3.3 is considered

for simplicity and to include dimensional parameters. A saturating, uniform static

magnetic field Ha is applied normal to the surface of the film parallel to the z-axis

as shown in 3.3, producing small pertubations in the magnetisation in the x and y

directions with non-uniform spatial magnetic variations along the z-axis only. In this

case, the Landau-Lifshitz equation without damping (where the focus here is on the

undamped frequency modes) can be written as:

∂M

∂t
= γM×

(
Hzz +

2A

µ0M2
s

∂2M

∂z2

)
(3.44)

where M = Mxx+Myy+Msz with the small magnetisation perturbationsMx andMy,

and Hz is the effective field in the z-direction including the sum of the applied static

field and demagnetising field normal to film plane. To proceed with the complex

frequency analysis of the numerical stability of the Landau-Lifshitz equation, the

following complex solutions of the magnetisation are assumed:

Mx = mx0e
j(ωt−kz) (3.45)

My = my0e
j(ωt−kz) (3.46)
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where ω is the complex angular frequency and k is the wavenumber along the thickness

of the film. Substitution of the solutions (3.45)-(3.46) in Figure (3.44) and application

of the exchange (unpinned) boundary condition ∂M/∂z = 0 in the absence of surface

anisotropy yields the eigenvalues [35] kd = pπ where p = 0, 2, 4, 6, ... with the first

mode (p = 0) representing the fundamental or ferromagnetic resonance mode in the

absence of exchange interactions.

Discretising (3.44) using second-order central differences and substituting (3.45)-

(3.46) yields the two coupled equations:

j sin(ω∆t)mx0 = γ∆tmy0

[
Hz −

4A

µ0Ms∆2

(
− 1 + cos(k∆)

)]
(3.47)

j sin(ω∆t)my0 = −γ∆tmx0

[
Hz −

4A

µ0Ms∆2

(
− 1 + cos(k∆)

)]
(3.48)

where ∆t is the time increment and ∆ is the space increment in the finite-difference

approximation. The coupled equations can be solved for the complex frequency and

yield:

ω =
1

∆t
sin−1 Γ (3.49)

where:

Γ = γ∆t

∣∣∣∣Hz −
2L2

xMs

∆2
(−1 + cos(k∆)

∣∣∣∣ (3.50)

and Lx =
√

2A/µ0M2
s is the exchange length. The complex frequency solutions

for the magnetisation in (3.45)-(3.46) indicate that ω needs to be real with zero

imaginary part for a stable (bounded) time evolution. This requires that 0 ≤ Γ ≤ 1

which imposes the sampling time criterion for stability:

∆t ≤ 1

γ

∣∣∣∣Hz −
2L2

xMs

∆2
(−1 + cos(k∆)

∣∣∣∣ (3.51)

where the eigenvalues kd = pπ and p is an even integer. In the absence of exchange
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interactions (A = 0) or at the fundamental mode p = 0, the sampling time is correctly

determined by the ferromagnetic (precession) resonance frequency ω0 = γHz.

To compare the relative magnitudes of the time steps for stability in the FDTD

and LL equations, the ratio of the Courant limit and (3.51) is evaluated at the same

spatial increment of ∆ = Lx, and assuming that the magnetic material thickness is

an integer multiple of the exchange length (i.e. d = nLx). This ratio can be written

as:

∆tFDTD
∆tLL

≤ Lx

c
√
dim

γ|Hz − 2Ms

(
− 1 + cos(pπ/n)

)
| (3.52)

Here, it can be seen that the ratio is well-below 1, indicating that the FDTD scheme

is the primary limiting factor in determining the speed of the numerical algorithm.
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Chapter 4

Exchange resonance in

multilayered spherical particles

4.1 Introduction

There has been great interest in how surface anisotropy will alter the fundamental

magnetic properties of nanostructures, which may emerge due to embedding mag-

netic particles in nonmagnetic matrices [50, 51], crystallographic arrangement on the

surface [52], expansion and contraction of the lattice structure [53], among numerous

other physical and chemical effects [54, 55]. As a consequence, surface magnetism of

nanoparticles has been the subject of rigorous experimental [56, 57, 58] and theoreti-

cal [59, 60, 61] investigation. For example, surface anisotropy may be responsible for

the high perpendicular magnetic anisotropy observed experimentally in thin epitaxial

films of hcp cobalt [62, 63] and other multilayered ferromagnetic materials [64, 65].

When the surface anisotropy constant Ks is negative and of sufficiently large absolute

value, the magnetisation vector can be orientated perpendicular to the film surface

despite the presence of large demagnetizing fields, a phenomenon which is potentially

useful for perpendicular magnetic recording.

Surface anisotropy may also play an important role in the size-dependent prop-
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erties of ferromagnetic nanospheres. As discussed in the introduction, the dynamic

permeability measurements of these spherical particles exhibit several narrow reso-

nance bands which have been attributed to exchange resonance modes. These modes

have been a source of great research interest due to their negligible eddy current loss

[66] and have been adopted in the analysis of a wide range of material composites

[67, 68, 69, 70, 71] in order to extract the magnetic parameters and estimate the

surface contributions to the resonance frequency. The formula for exchange reso-

nance modes was first derived by neglecting the magnetostatic contribution to the

resonance, resulting in resonance frequencies which possess a 1/R2
2 dependence on

the particle size, where R2 is the outer radius of the sphere. This approximation

is justified for sufficiently small particles when the exchange energy dominates over

the magnetostatic energy, in contrast to the magnetostatic approximation in large

particles, for which the exchange term is neglected.

Recently, the microwave properties of core-shell and magnetically hollow particles

have been the subject of considerable interest [71, 72, 73, 74, 75] and the size depen-

dent permeability of hollow nickel [76] and carbonyl iron [77] particles has been mea-

sured. A core-shell or multilayered particle offers tuneable electromagnetic properties,

lighter weight and a wide frequency bandwidth at the cost of increased sensitivity of

the ferromagnetic shell to surface imperfections.

Here, the exchange resonance theory is generalized within a rigorous micromag-

netic framework in order to study the effect of surface anisotropy and a multilayered

structure on the resonance frequency. This can provide detailed understanding into

the high-frequency dynamics and improve accuracy when fitting measured permeabil-

ity spectra to theoretical resonance curves.

79



4.2 Surface anisotropy

Néel proposed a phenomenological model of the magnetic surface anisotropy [78]

to account for the breaking of crystallographic symmetry at the particle surface.

Macroscopic expressions for the surface anisotropy energy density were later suggested

by Brown [35] and Aharoni [79]. Here, we consider a uniaxial anisotropy density ws

of the form

ws = Ks(1−M2
z ) (4.1)

whereMz is the z-component of the magnetisation. If the magnetisation M is assumed

to be parallel to z before nucleation, the micromagnetic boundary conditions of (4.1)

are given by the equations

∂Mx

∂n
+

2Ks

C
Mx = 0 (4.2)

∂My

∂n
+

2Ks

C
My = 0 (4.3)

where C is the exchange constant, Ks is the anisotropy constant and n is normal to

the surface, which for a spherical particle is given by the spherical coordinate r. The

linearised differential equations for the exchange modes are given by [80]

(
∇2 − MsHz

C

)
My +

Ms

γ0C

∂Mx

∂t
= 0 (4.4)

(
∇2 − MsHz

C

)
Mx −

Ms

γ0C

∂My

∂t
= 0 (4.5)

where Ms is the saturation magnetisation and C is the exchange constant. Assuming

that a sufficiently large DC field is present to saturate the particle, then the expression

Hz is given, for the case of a solid sphere, by

Hz = H0 +
2K1

Ms

(4.6)
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where H0 is the external DC field applied parallel to an anisotropy easy axis, K1

is the anisotropy constant for either uniaxial or cubic volume anisotropy, γ0 is the

gyromagnetic ratio, t is time. The boundary conditions for each surface, in the

presence of surface anisotropy, are given by

(
∂Mx

∂r
− 2Ks1

C
Mx

)
r=R1

= 0 (4.7)

(
∂My

∂r
− 2Ks1

C
My

)
r=R1

= 0 (4.8)

(
∂Mx

∂r
+

2Ks2

C
Mx

)
r=R2

= 0 (4.9)

(
∂My

∂r
+

2Ks2

C
My

)
r=R2

= 0 (4.10)

Here, two surface anisotropy constants Ks1 and Ks2 are introduced, corresponding

to the inner and outer boundaries, respectively. The general solution for the mag-

netisation components can be obtained by separation of the variables in terms of the

spherical coordinates r, θ and φ, given by

Mx = eiωteisθP s
n(cos θ)

(
A1jn

(µr
R2

)
+ A2yn

(µr
R2

))
(4.11)

My = eiωteisθP s
n(cos θ)

(
B1jn

(µr
R2

)
+B2yn

(µr
R2

))
(4.12)

where A, B, ω and µ are real constants, s and n ≥ s are integers and P s
n is the

Legendre function. Substituting equations (4.11) and (4.12) into equations (4.4) and

(4.5) gives,

(
µ2

R2
2

+
MsHz

C

)
Aj +

iωMs

γ0C
Bj =

iωMs

γ0C
Aj −

(
µ2

R2
2

+
MsHz

C

)
Bj = 0 (4.13)
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for j = 1 and 2. The determinant of the coefficients of Aj and Bj must be zero if

(4.13) has a common, nonzero solution. Equating the determinants to zero gives,

(
MsHz/C + µ2/R2

2)2 = (ωMs/γoC)2 (4.14)

The resonance frequencies ω are then given by,

ω = ±γ0

(
Cµ2/R2

2Ms +Hz) (4.15)

Now, it is only necessary to fulfil the boundary conditions. At first there are four

equations to solve, however the problem can be simplified by noting that the substi-

tution of (4.14) into (4.13) gives,

iB1 ± A1 = 0 and iB2 ± A2 = 0 (4.16)

The terms to be substituted into the boundary conditions can be calculated from the

expressions (4.2) and (4.3), namely

∂Mx

∂r
± 2Ks

C
Mx = eiωteisθP s

n(cos θ)

(
µ

R2

A1
∂jn(µr/R2)

∂(µr/R2)
+

µ

R2

A2
∂yn(µr/R2)

∂(µr/R2)

±2Ks

C
A1jn

(
µr

R2

)
± 2Ks

C
A2yn

(
µr

R2

))

and

∂My

∂r
± 2Ks

C
My = eiωteisθP s

n(cos θ)

(
µ

R2

B1
∂jn(µr/R2)

∂(µr/R2)
+

µ

R2

B2
∂yn(µr/R2)

∂(µr/R2)

±2Ks

C
B1jn

(
µr

R2

)
± 2Ks

C
B2yn

(
µr

R2

))
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Substituting the above two equations into (4.7-4.10) and using the relations (4.16) to

substitute for B1 and B2, it is readily seen that to fulfil all boundary conditions, it is

necessary and sufficient to fulfil only

eiωteisθP s
n(cos θ)

(
µ

R2

A1
∂jn(γ)

∂γ
+

µ

R2

A2
∂yn(γ)

∂γ

−2Ks1

C
A1jn(γ)− 2Ks1

C
A2yn(γ)

)
γ=
µR1

R2

= eiωteisθP s
n(cos θ)

(
µ

R2

A1
∂jn(µ)

∂µ
+

µ

R2

A2
∂yn(µ)

∂µ

+
2Ks2

C
A1jn(µ) +

2Ks2

C
A2yn(µ)

)

where we have defined γ = µR1/R2. By cancelling the eiωteisθP s
n(cos θ) term and

equating A1 and A2, these expressions can be re-written as

A1

(
µ

R2

∂jn(γ)

∂γ
− 2Ks1

C
jn(γ)

)
γ=µR1/R2

+ A2

(
µ

R2

∂jn(γ)

∂γ
− 2Ks1

C
jn(γ)

)
γ=µR1/R2

= A1

(
µ

R2

∂jn(µ)

∂µ
+

2Ks2

C
jn(µ)

)
+ A2

(
µ

R2

∂jn(µ)

∂µ
+

2Ks2

C
jn(µ)

)
= 0

Such a pair of equations has non-zero solution for A1 and A2 provided the determinant

of their coefficients vanishes, leaving

(
µ

R2

∂jn(µ)

∂µ
+

2Ks2

C
jn(µ)

)(
µ

R2

∂yn(γ)

∂γ
− 2Ks1

C
yn(γ)

)
γ=µR1/R2

−

(
µ

R2

∂yn(µ)

∂µ
+

2Ks2

C
yn(µ)

)(
µ

R2

∂jn(γ)

∂γ
− 2Ks1

C
jn(γ)

)
γ=µR1/R2

= 0.
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Figure 4.1: (a) µ1,2 plotted against the ratio R1/R2 for the condition Ks2 = −4 ×
10−4 J m−2 with (i) Ks1 = −4 × 10−4 J m−2 , (ii) Ks1 = 0 J m−2 and (iii) Ks1 =
4 × 10−4 J m−2 and Ks2 = 4 × 10−4 J m−2 with (iv) Ks1 = −4 × 10−4 J m−2 , (v)
Ks1 = 0 J m−2 and (vi) Ks1 = 4 × 10−4 J m−2 (b) µkn plotted against the ratio
R1/R2 for Ks2 = 0, Ks1 = 4 × 10−4J m−2 . In all cases the dashed line represents
Ks2 = Ks1 = 0.
Reproduced from [81].

The eigenvalues µkn can be calculated from the transcendental equation above for

different values of the outer radius R2 and ratio R1/R2. For the case that Ks1 = Ks2 ,

when no surface anisotropy is present at either boundary, the expression reduces to

(
∂jn(µ)

∂µ

)(
∂yn(γ)

∂γ

)
γ=µR1/R2

−

(
∂yn(µ)

∂µ

)(
∂jn(γ)

∂γ

)
γ=µR1/R2

= 0 (4.17)

which is the expression for the eigenvalues of the exchange resonance modes in a

hollow ferromagnetic sphere when surface anisotropy is not present. It is readily seen

that equation (4.17) introduces a dependence of the eigenvalues on the outer radius

R2, in addition to the ratio R1/R2.
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4.3 Shell thickness

Here, we consider the case of iron particles with exchange constant
1

2
C = 2.1× 10−11

J/m and R2 = 50 nm. In thin films, absolute values of Ks have been found in the

range Ks = 0.6 − 4.5 × 10−4 J/m2 for FePt films [82] and Ks = 1.7 − 9.6 × 10−4

J/m2 for different interfaces of iron at room temperature [83]. In this work, the

surface anisotropy constants were chosen within the range of reported values for iron

Ks = 2−4×10−4 J/m2. The dependence of µ1,2 on shell thickness is shown in Figure

4.1(a) for different values of Ks. In the absence of surface anisotropy, the eigenvalues

k = 1, n = 1, 2, 3 decrease with increasing R1/R2 (see Figures 4.1(a),(b)). This

behaviour is modified for non-zero Ks, such that the eigenvalues can either increase

or decrease with increasing R1/R2. In Figure 4.1(a), the mode rapidly tends to 0

with decreasing shell thickness when Ks is opposing the resonance. The situation is

different for k = 2 eigenvalues (see Figure 4.1(b)). Here, surface anisotropy plays a less

significant role in determining the dependence of the eigenvalues on shell thickness,

because the eigenvalue equation (4.17) overwhelms the surface contribution even for

large values of Ks .

In Figure 4.1(b), several of the eigenvalues µkn are plotted as a function of the

ratio R1/R2 . The first eigenvalue µ1,0 is degenerate with the ferromagnetic resonance

unless surface anisotropy is present. This eigenvalue is independent of the shell thick-

ness for Ks = 0 but has an approximately linear dependence on R1/R2 in the range

R1/R2 = 0 − 0.6 (see Figure 4.1(b)). In addition to shifting the frequency, surface

anisotropy can deviate the magnetisation away from a homogenous single domain

distribution. In Figure 4.1(b), the first n = 0 mode can be expected to gradually

separate from the ferromagnetic resonance as the deviation from the single domain

becomes more pronounced with decreasing shell thickness.
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Figure 4.2: (a) µ1,n plotted against 1/R2
2 for Ks2 = 4 × 10−4 J m−2, Ks1 = 0 and

R1/R2 = 0.8 , where ω0 = γ0Cµ1,n/R
2
2Ms , (b) µ1,0 plotted against 1/R2

2 for Ks2 =
4 × 10−4 J m−2, Ks1 = 0 and different values of R1/R2 , (c) µ1,0 plotted against R2

for R1/R2 = 0.85 , Ks2 = 4× 10−4 J m−2 and varying values of Ks1 (i) 0 J m−2 , (ii)
−2× 10−4 J m−2 and (iii) −4× 10−4 J m−2 and (d) the eigenvalue µ1,0 plotted against
the outer radius R2 for R1/R2 = 0.85 , Ks2 = 4 × 10−4 J m−2 and varying values of
Ks1 (i) 0 J m−2 , (ii) 2× 10−4 J m−2 and (iii) 4× 10−4 J m−2.
Reproduced from [81].
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4.4 Size dependence

The eigenvalues µ have no dependence on R2 when surface anisotropy is absent. A

dependence on R2 is introduced when the constants Ks2 and Ks1 are non-zero, such

that the resonance frequencies are no longer strictly proportional to 1/R2
2 . The devi-

ation from the 1/R2
2 size dependence is shown in (see Figure 4.2(a),(b)) when surface

anisotropy is present only at the outer boundary, which could correspond to the case

when a coating is applied on the outer surface. In this situation, the dependence of

the eigenvalues on R2 decreases with decreasing particle size. Although the shift in

the eigenvalues is decreasing with decreasing R2, the shift in the frequency is greatly

increasing due to the 1/R2
2 denominator in the expression for the frequency. However,

the competition between different forms of surface anisotropy at each boundary can

lead to more complex effects. In Figure 4.2(c), the surface anisotropy has a small

impact on the eigenvalue µ1,0 for R2 = 115 nm (µ1,0 ∼ 0) , but the dependence on

R2 becomes more pronounced with decreasing particle size. This is in contrast to the

solid sphere for which the dependence of the eigenvalues on R2 always decreases with

decreasing particle size.

In Figure 4.2(b), the size dependence of the lowest exchange mode is shown for

different values of the shell thickness. The size dependence of µ1,0 is close to that of the

solid sphere for R1/R2 = 0.5 in Figure 4.2(b), but shows large deviation from the solid

sphere for R1/R2 = 0.85 . In Figure 4.2, the size dependence of this mode becomes

pronounced as the shell thickness is decreased (see Figure 4.2(b)), particularly when

supported by surface contributions at the inner boundary (see Figure 4.2(d)). As a

result, the µ1,0 mode can potentially reach high frequencies in spherical shells due to

the possibility of tuning the thickness.
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Figure 4.3: Simplified schematic of a core-shell particle.

4.5 Multilayered particles

The dynamical properties of ferromagnetic multilayers have been a source of interest

for both fundamental research and for application in microwave devices. For exam-

ple, multilayered spherical particles comprised of alternating concentric layers of iron

and iron-carbide exhibit large permeability in the RF band, and are very sensitive

to the microstructure of the multilayer [84]. In terms of device applications, having

a multilayer instead of a single layer offers more degrees of freedom for controlling

the instrinic electromagnetic properties. In order to understand the role of a multi-

layered structure on the resonance properties, here the exchange resonance theory is

generalised to a core-shell particle.

Consider a homogeneous ferromagnetic sphere which occupies the region 0 ≤ r ≤

R1 and outer shell which occupies R1 ≤ r ≤ R2. The solution which satisfies the

differential equations and is regular at r = 0 is

Mθ = A1In(µr/R1), for 0 ≤ r ≤ R1, (4.18)

Mθ = A2In(µr/R1) + A3Kn(µr/R1), for R1 ≤ r ≤ R2, (4.19)

where In and Kn are the modified spherical Bessel functions of the first and second
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kind, respectively. Substituting the expressions for Mθ into the linearised differential

equations (4.4)-(4.5) leads to the usual expression for the frequency, namely;

ω = γ0

(
Cµi
MsR2

1

+Hz

)
(4.20)

It is convenient to express the eigenvalues µi in terms of the frequency,

µ1 = S1(ω −Hz)
1/2 for 0 ≤ r ≤ R1, (4.21)

µ2 = S2(ω −Hz)
1/2 for R1 ≤ r ≤ R2, (4.22)

where µ1 and µ2 are the eigenvalues corresponding to the solid sphere and outer shell,

respectively and Si = R1(Ms/C)1/2. The solution must be continuous on the interface

r = R1, leading to

A1In(µ1) = A2In(µ2) + A3Kn(µ2) (4.23)

The derivative ∂Mθ/∂r must also be continuous at the interface r = R1, hence

µ1A1
In(µ1)

∂µ1

= µ2A2
In(µ2)

∂µ2

+ µ2A3
Kn(µ2)

∂µ2

(4.24)

Finally, at the outer boundary we have the standard boundary condition ∂M/∂n = 0.

Other assumptions are possible, such as the presence of surface anisotropy, however

here this factor is neglected to avoid introducing too many variables. Then,

µ2A2
In(µ2r/R1)

∂x
+ µ2A3

Kn(µ2r/R1)

∂x
= 0 (4.25)

where x = µ2r/R1. Non-trivial solutions satisfying these equations exist if the deter-
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Figure 4.4: The frequency of the first 6 exchange modes plotted against the ratio
R1/R2 for a core-shell particle of cobalt (core) and iron (shell) with R2 = 27.5 nm.
The cobalt core and iron shell have outer radius R1 and R2, respectively. R2 is kept
fixed while R1 is increased, i.e. the cobalt core grows. The material parameters for
iron were Ms = 1.7× 106 A/m, C = 2.1× 10−11 J/m and for cobalt Ms = 1.4× 106

A/m, C = 3× 10−11 J/m. The crystal structure was neglected for simplicity.
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minant of the coefficients Ai vanish; hence,

∣∣∣∣∣∣∣∣∣
In(µ1) In(µ2) Kn(µ2)

µ1In(µ1)/∂µ1 µ2In(µ2)/∂µ2 µ2Kn(µ2)/∂µ2

0 ∂In(µ2r/R1)/∂x ∂Kn(µ2r/R1)/∂x

∣∣∣∣∣∣∣∣∣ = 0.

The exchange resonance frequency for each mode can be calculated by evaluating the

determinant for any given n.

The spin wave spectrum for the first 6 modes is shown in Figure 4.4 for a cobalt-

iron core-shell particle. The frequency of the spin wave modes for pure cobalt appear

at higher frequencies than iron in accordance with the exchange resonance formula.

As a result, an increase in frequency is observed for all modes in Figure 4.4 with

increasing cobalt content. The eigenvalues µ1,3 and µ2,1 have very close values for a

homogeneous solid sphere of any material property (see Figure 4.1(b)). As a result,

they overlap in Figure 4.4 when the core-shell particle is comprised of either solid iron

or cobalt. However, these modes separate when the particle is inhomogeneous with

this separation becoming most pronounced for an inner cobalt radius of approximately

11 nm.

4.6 Summary

The eigenvalues of the exchange resonance modes were derived for the case of the

spherical shell when assuming that surface anisotropy is present at both the inner

and outer boundaries. The presence of surface anisotropy was found to play an im-

portant role in the dynamical properties of saturated nanoshells, and resulted in a

range of different behaviours for lower-order (k = 1) eigenvalues. Relatively small val-

ues of Ks can rapidly drive these eigenvalues towards 0 with decreasing shell thickness,

suggesting that surface anisotropy is an important factor to consider in the design of

high-frequency microwave devices utilizing spherical shells. For higher-order modes
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(k = 2), surface anisotropy was found to play a more marginal role in determining the

variation of the eigenvalues. The presence of surface anisotropy introduced a depen-

dence of the first n = 0 mode on shell thickness, which led to a gradual increase in the

eigenvalue with increasing R1/R2. For this mode, similar size-dependent behaviour

to the solid sphere was observed up to a thickness of R1/R2 ∼ 0.5 when surface

anisotropy was present only on the outer boundary. However, substantial deviation

from the size dependence of the solid sphere was observed as the shell thickness was

decreased further. In addition to surface anisotropy, a generalised dynamical theory

was presented for a core-shell nanoparticle and the spin-wave spectrum for an iron-

cobalt multilayer was computed. The multilayer structure was found to remove the

mixing between the eigenvalues µ1,3 and µ3,1 which closely overlap for a homogeneous

sphere of any material property.
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Chapter 5

Dynamic susceptibility of

concentric rings

5.1 Introduction

Precise control of the magnetic susceptibility in the high-frequency range is necessary

for microwave devices which require precise tunability of the resonance frequency of

the uniform gyromagnetic mode [85]. Many studies have focused on the dynamic be-

haviour of nanometer size magnetic elements of varying shape [12, 86, 87, 88, 89]. The

geometry of the magnetic element can significantly impact the dynamics and the hys-

teretic behaviour, and a variety of geometries have been investigated with the aim of

developing the fastest and most reproducible switching mechanisms. Miniaturization

of nanomagnets is of additional importance when designing novel magneto-electronic

devices, such as logic or data storage mechanisms that utilise magnetic vortices. In

addition to the geometry, the effect of magnetostatic interactions between rings when

placed in close proximity, such as adjacent [90], concentric [91], or vertically stacked

multilayers [92], can also significantly modify the hysteretic properties and lead to

considerable changes in their dynamics.

In sufficiently thin magnetic disks a vortex appears as the ground state, where
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the in-plane component of the vortex state is characterized by a clockwise or counter-

clockwise magnetisation chirality. The polarity of the vortex is determined by an

out-of-plane component of magnetisation at the central core of the vortex with two

possible orientations p = ±1 which can be controlled by an external magnetic field

aligned perpendicular to the disk plane. If a central hole is introduced into the disk,

thus making it a nanoring, a core is no longer formed, which leads to an increase in the

stability of the vortex at even smaller scales [93]. Recently, concentric ring structures

have been proposed as multi-bit storage devices for MRAM technology where the

vortex chirality (clockwise and counter-clockwise) of each ring can represent 0 or

1 in binary format [94]. Concentric rings have also been considered as contacts in

spin injection devices for semiconductors which can utilise the properties of magnetic

nanorings, such as low stray fields and high stability [95].

For a single thin-ring structure at remanence, a stable bidomain state called the

onion state is observed with head-to-head and tail-to-tail domain walls [96]. When a

magnetic field is applied parallel to the plane of the ring, one of the domain walls de-

pins and moves toward the other domain until the onion state is annihilated and forms

a vortex domain structure. As the magnetic field that is applied parallel to the plane of

the ring is increased, the vortex state annihilates and forms an onion state of opposite

polarity. A sudden drop in the hysteresis loop represents a cascade in magnetisation

as the onion state is destroyed and converted to a vortex domain structure, reducing

the overall magnetisation of the system. Onion-vortex and vortex-to-reversed-onion

transitions correspond to irreversible jumps in the ferromagnetic resonance (FMR)

spectra of thin ferromagnetic rings. In a concentric ring configuration, the magneto-

static interactions between the rings determine the alignment of the head-to-head and

tail-to-tail domain walls. For a sufficiently large saturation field, all the head-to-head

domain walls are aligned in one half of the structure, while the tail-to-tail domains

are aligned in the other half. When the external saturation field is decreased, the

domain walls of each ring propagate in either clockwise or anticlockwise directions in
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order to minimise the overall energy of the system. The annihilation of the clockwise

and anticlockwise propagating domain walls then results in the formation of vortex

domains of opposite chirality in each ring.

Here, we investigate the dynamic behaviour of concentric nanorings to explore

the susceptibility spectrum as a function of geometric parameters of the system. The

ferromagnetic resonance of the coupled ring structure is analysed and compared for

different values of ring separation and their width. The micromagnetic investigation is

carried out with the recently developed graphics processing unit (GPU) based solver

MuMax3.

5.2 Hysteresis

In this work standard values of permalloy were chosen where the saturation mag-

netisation is given by Ms = 8.6 × 105 A/m, exchange constant A = 1.3 × 1011 J/m,

damping factor α = 0.01, and negligible anisotropy with constant K1 = 0. The

cell-size was chosen to be x = y = 4 nm which is less than the exchange length of

permalloy. The cell-size in the z-direction was chosen to be 20 nm as the rings are too

thin compared to the other dimensions in the ring structure to support a significant

out-of-plane magnetisation component. The effect of magnetostatic coupling on the

static behaviour of concentric rings was investigated for an inner ring with an outer

diameter of 500 nm, a width of 100 nm, and a thickness of 20 nm with varying outer

ring parameters. The rings were initially saturated with an external biasing field

applied in the y-direction. The magnetisation My was recorded as the field was swept

in the region of Hy = −1000 Oe and Hy = 1000 Oe in steps of 10 Oe. The hysteresis

curves for the inner and outer rings of a concentric system are shown individually in

Figure 5.1(a). Here, the average normalised magnetisation My = Ms for the entire

concentric system, which includes both the inner and outer rings, is represented as the

dashed black line. As the field is decreased in strength, switching occurs at larger field
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Figure 5.1: (a) Hysteresis loop for the outer ring (green), inner ring (red), and total
concentric system (black). The outer ring has an outer diameter of 1000 nm, a width
of 200 nm, and a thickness of 20 nm. The inner ring has an outer diameter of 500 nm,
a width of 100 nm, and a thickness of 20 nm. (b) Hysteresis loop for a ring of an outer
diameter of 500 nm, a width of nm, 100 and a thickness of 20 nm interacting with
an outer ring with a width of 100 nm and a thickness of 20 nm for ring separations
of 50 nm (green), 25 nm (blue), and 12.5 nm (red). The dashed black line represents
a single ring with an outer diameter of 500 nm, a width of 100 nm, and a thickness
of 20 nm for which no magnetostatic coupling is present.
Reproduced from [97].

strengths for the inner ring due to the smaller width and increased shape anisotropy

when compared with the outer ring. The point “a” in Figure 5.1 (a) corresponds to

a mixed onion-vortex state where each of the inner and outer rings possesses vortex

and onion domain states, respectively.

This is in contrast to single nanorings for which the onion state exists as a meta-

stable domain structure and onion-vortex transitions require a non-zero external bi-

asing field. As the external field is reversed, the outer ring undergoes a transition

from the onion to vortex domain (see point “b” in Figure 5.1 (b)). In addition, small

drops and jumps in the hysteresis loop of the inner ring are found to occur at the

point of magnetisation switching for the outer ring [see, for example, point “c” in

Figure 5.1 (a)] due to the long-range magnetostatic interactions between rings. The

effect of different ring separations on the hysteretic behavior is shown in Figure 5.1

(b). Here, the vortex-to-onion transitions can be seen to vary as a function of the

ring separation. A decrease in the separation between each ring results in a decrease
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Figure 5.2: (a) Real and (b) imaginary components of the susceptibility for an inner
ring with an outer diameter of 500 nm, a width of 100 nm, and a thickness of 20 nm
interacting with an outer ring with an inner diameter of 800 nm and a thickness of
20 nm. The inner ring is kept fixed while the width of the outer ring is varied in the
region of 100 nm−250 nm. (c) The frequency of the ferromagnetic resonance of the
outer ring with an inner diameter of 800 nm and a thickness of 20 nm plotted against
the width. (d) The amplitude of the imaginary component of the susceptibility for
the inner ring with an outer diameter of 500 nm, a width of 100 nm, and a thickness
of 20 nm plotted against the width of the outer ring. The dashed line represents the
amplitude of the susceptibility corresponding to the ferromagnetic resonance of the
inner ring when no magnetostatic coupling is present.
Reproduced from [97].
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in the threshold field strength required to induce switching of the domains.

5.3 Ring width

The impact of magnetostatic coupling on the high-frequency dynamic susceptibility

of concentric rings was investigated as a function of the ring width. The concentric

rings were relaxed into vortex domains of opposite chirality for an inner ring with

an outer diameter of 500 nm, a width of 100 nm, and a thickness of 20 nm that was

interacting with an outer ring with an inner diameter of 800 nm, a thickness of 20

nm, and the width varied in the region of 100 nm−250 nm. The stable state of the

total system was excited with a Gaussian pulse of strength Hy = 5 Oe. The system

was excited by applying a Gaussian pulse of width ≈ 5 ps in the y-direction and the

evolution of the y-component of the magnetisation M(t) was recorded with respect

to time. A weak pulse was chosen (Hext = 5 Oe) to ensure excitation occurs within

the linear region of the system. The average susceptibility χ(ω) was determined from

the ratio of the Fourier transform of the y-component of the average magnetisation

M(t) and Fourier transform of the applied field,

χ(ω) =
M(ω)

H(ω)
(5.1)

Here M(ω) and H(ω) are the Fourier transform of the average magnetisation and

applied field, respectively. The spatial susceptibility was calculated from the Fourier

transform of the magnetisation along the direction of excitation for every cell in the

simulation grid.

The influence of varying the outer ring width on the dynamic susceptibility of the

inner ring is shown in Figure 5.2(a) and Figure 5.2(b). The width of the outer ring is

varied in the range of 100 nm−250 nm, while all geometric parameters of the inner

ring are kept fixed. Two modes are pronounced in the susceptibility spectrum for the

inner ring: a lower frequency mode corresponding to the uniform resonance of the
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outer ring which stems from magnetostatic interactions between the concentric rings

and the second at 11.5 GHz corresponding to the uniform resonance of the inner ring.

This can be confirmed analytically by approximating each arm of the inner/outer

ring by an elliptic cylinder saturated in the x direction, in which case the uniform

resonance frequency can be readily shown to be [35]

ωr = γMs

√
NyNz (5.2)

where Ny = T/(W + T ) and Nz = W/(W + T ) are the demagnetising factors of the

ring arms with width W and thickness T . Substituting the dimensions of the inner

ring yields a resonance frequency of 11.3 GHz, in agreement with micromagnetic

simulations.

Increasing the width of the outer ring leads to a decrease in the frequency of

the uniform resonance of the outer ring (see Figure 5.2(c)), which in turn leads to a

decrease in frequency for the corresponding mode in the susceptibility spectrum of

the inner ring (see Figure 5.2(b) and Figure 5.2(c)). The frequency of the uniform

resonance mode of the inner ring at 11.5 GHz remains largely unchanged with varying

outer ring widths at this separation. However, a large variation in the maximum

amplitude of the susceptibility can be observed with varying outer ring widths (see

Figure 5.2(d)). For an outer ring width of 100 nm, where the eigenfrequencies of

each individual ring are similar, there is enhancement of the amplitude of oscillation

corresponding to the uniform resonance of the inner ring (see Figure 5.2(d)). When

the system is perturbed by pulse excitation, the demagnetising field acts to align the

magnetisation anti-parallel in each adjacent ring, resulting in frequency beating and

modulation (see 5.5).
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Figure 5.3: (a) Real and (b) imaginary components of the susceptibility for an inner
ring with an outer diameter of 500 nm, a width of 100 nm, and a thickness of 20 nm
interacting with an outer ring with a width of 100 nm, a thickness of 20 nm, and a
ring separation in the range of 50-600 nm. (c) The frequency of the ferromagnetic
resonance of the inner ring with an outer diameter of 500 nm, a width of 100 nm,
and a thickness of 20 nm plotted against the ring separation. (d) The amplitude
of the imaginary component of the susceptibility corresponding to the ferromagnetic
resonance for the inner ring plotted against the ring separation.
Reproduced from [97].

5.4 Ring separation

The width of the outer ring is kept fixed at 100 nm to investigate the effect of ring

separation for a pair of concentric rings. A thickness of 20 nm is chosen again for each

ring, and the separation is varied in the region of 10 − 600 nm, while all geometric

parameters of the inner ring are kept fixed. The initial magnetisation state and

dynamic susceptibility were calculated as in the previous section. The amplitude

of oscillation corresponding to the uniform resonance of the inner ring is found to

depend in a complex way on the ring separation. The imaginary component of the
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Figure 5.4: normalised spatial Fourier transform of the y-component of the mag-
netisation following pulse excitation for concentric rings with a width of 100 nm,
a thickness of 20 nm, and ring separations of (a) 300 nm, (b) 100 nm, (c) 50 nm,
and (d) 12.5 nm. The outer diameter and thickness of the inner ring are kept fixed
at 500 nm and 20 nm, respectively. The frequencies shown in (a)-(d) represent the
ferromagnetic resonance frequency of the inner ring for each ring separation.
Reproduced from [97].
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Figure 5.5: (a) The y-component of the magnetisation following pulse excitation for
a single ring with an outer diameter of 500 nm, a width of 100 nm, and a thickness of
20 nm. (b) The y-component of the magnetisation following pulse excitation for an
inner ring with an outer diameter of 500 nm, a width of 100 nm, and a thickness of
20 nm coupled with an outer ring. The outer ring has an outer diameter of 1000 nm,
a width of 150 nm, and a thickness of 20 nm. The magnetisation response My(t) of
the inner (black) and outer (orange) ring is shown in the inset in (b).
Reproduced from [97].

susceptibility increases in amplitude with reducing separation from 400 nm to 100

nm, reaching a local maximum amplitude at 200 nm, before decreasing and reaching

a local minimum at 50 nm (see Figures 5.3(a), 5.3(b), and 5.3(d)). For separations

smaller than 50 nm, the susceptibility again increases, reaching a maximum value

at 12.5 nm (see Figure 5.3(d)). The shift in the frequency of the uniform resonance

mode of the inner ring is found to decrease with increasing ring separation (see Figure

5.3(c)). The frequency of the ferromagnetic resonance mode tends towards the dashed

black line (representing a single nanoring) with increasing separation in Figures 5.3(a)

and 5.3(b), as the magnetostatic interaction between the concentric rings becomes

vanishingly small.

The normalised spatial distribution of the ferromagnetic resonance for the in-

ner concentric ring is shown in Figure 5.4 for varying ring separations. Here, the

Fourier transform of the y-component of the magnetisation is calculated following

pulse excitation for every cell in the simulation grid. The amplitude of the dynamic

susceptibility is found to depend in a complex way on the variation of the spatial
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localization of the uniform mode. In Figure 5.4, the frequencies shown in (a)−(d)

correspond to the frequency of the ferromagnetic resonance mode of the inner ring,

which shifts downwards in frequency with decreasing ring separation. Spatially inho-

mogeneous resonance modes emerge in the outer ring at these frequencies, resulting

from the longrange stray fields which decay across the width of the outer ring.

5.5 Summary

The high-frequency dynamic susceptibility of concentric permalloy nanorings with

vortex domain structures with a thickness of 20 nm, a width in the range of 100

nm−250 nm, and a separation in the range of 10 nm−600 nm was investigated by

micromagnetic simulations. The frequency of oscillation was found to be significantly

impacted by the magnetostatic interaction between concentric nanorings and could

be modulated by a variation in the ring separation and width. The variation in

amplitude of the real and imaginary components of the dynamic susceptibility was

found to correspond to a variation in the spatial distribution of the ferromagnetic

resonance mode. An increase in the amplitude of the dynamic susceptibility at the

ferromagnetic resonance frequency was observed for concentric nanorings with similar

eigenfrequencies and dimensions.
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Chapter 6

Role of domain structure in

microwave absorption

6.1 Introduction

The microwave properties of ferromagnetic spheres have been the focus of rigorous

theoretical and experimental study. Walker developed the theory of magnetostatic

modes in ellipsoidal samples for which spheres are a special limiting case [98]. The

magnetostatic approximation agreed quantitatively with the early generation of fer-

romagnetic resonance (FMR) experiments, which were carried out on spheres whose

radii were macroscopic, and for which the exchange contribution was negligible. How-

ever, the microwave response of very small ferromagnetic nanospheres can be influ-

enced by the exchange interaction when their radii lie in the range of the exchange

length [27] Lex =
√

(2A/µ0M2
s ) where A is the exchange constant and Ms is the

saturation magnetisation. A broad range of microwave composites contain spherical

particles in this size range. Thus, it became necessary to extend the previous theo-

ries of magnetostatic modes in ferromagnetic spheres to include exchange and dipolar

interactions [39, 99, 100].

Ferromagnetic hollow spheres exhibit a number of well-defined magnetisation con-
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figurations such as the single-domain, two-domain, four-domain and vortex-curling

domain [28], where the single and vortex domains are predicted to exist as ground

states below a critical radius. As discussed in previous sections, the magnetic vortex

appears as a ground state due to competition between short-range exchange inter-

actions and long-range dipolar interactions. In addition to the vortex and single

domain, an additional intermediary state was proposed and confirmed as a ground

state, where the direction of the magnetisation deviates away from the single domain

distribution at each local point [101]. This domain structure is a three-dimensional

analogue of the well-known onion state found in ring elements [102]. However, a

detailed knowledge of the relationships between particle shape and size distribution,

morphology, and the resulting physical properties of nano-sized magnetic structures is

still lacking. In particular, the microwave response of the vortex domain is important

for size ranges in which it is predicted to exist as the ground state (above 2R ≈ 40

nm) for monodisperse particles.

The majority of studies of magnetic vortex dynamics have focused on thin struc-

tures. In relatively thick magnetic structures (≈ 80 nm) the magnetisation can

vary non-uniformly across the thickness of the element, resulting in complex three-

dimensional dynamics such as non-uniform domain and spin-wave excitations [103,

25]. These fully three-dimensional dynamics are not well described by traditional an-

alytic treatment and require micromagnetic simulations to resolve accurately. Mag-

netic vortex dynamics have been studied intensively in planar structures, with only

recent studies of low frequency vortex dynamics in nanospheres [104, 105]. In this

chapter, numerical micromagnetic simulations are used to investigate the dyamical

properties of hollow spherical shells with single/onion and vortex domain structures

in the linear regime.

105



6.2 Onion domain

For high permeability microwave applications it is necessary to use materials which

possess a large saturation magnetisation such as cobalt, iron or their alloys. In this

section standard values of iron were chosen where Ms = 1.7 × 106 A/m, α = 0.01,

exchange constant
1

2
C = 2.1×10−11 J/m and cubic anisotropy constant K1 = 4.7×104

J/m3. The system was excited by applying a Gaussian pulse of width ≈ 5 ps in the

y-direction and the evolution of the y-component of the magnetisation M(t) was

recorded with respect to time. A weak pulse was chosen (Hext = 5 Oe) to ensure

excitation occurs within the linear region of the system. The average susceptibility

χ(ω) was determined from the ratio of the Fourier transform of the y-component of

the average magnetisation M(t) and Fourier transform of the applied field

χ(ω) =
M(ω)

H(ω)
(6.1)

Here M(ω) and H(ω) are the Fourier transform of the average magnetisation and

applied field, respectively. The spatial susceptibility was calculated from the Fourier

transform of the magnetisation along the direction of excitation for every cell in the

simulation grid.

The higher order modes will be explained using the exchange resonance theory dis-

cussed in the previous sections. Assuming that a sufficiently large DC field is present

to saturate the particle, then the expression for the exchange resonance frequency is

given by

ω = γ0

(
Cµkn
MsR2

2

+Hz

)
(6.2)

where C = 2A is the exchange constant, R2 is the outer radius, Ms is the saturation

magnetisation, µkn are the eigenvalues and Hz is the potential due to the z component

of the magnetisation. The expression for Hz is given, for the case of a solid sphere,
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Figure 6.1: Magnetisation configuration for the onion domain structure in a spherical
shell of outer diameter 55 nm and ratio R1/R2 = 0.8 when the external DC field
is applied along the z axis. Colorbar represents the normalised z component of the
magnetisation.

by

Hz = H0 +
2K1

Ms

(6.3)

where H0 is the external DC field applied parallel to an anisotropy easy axis and K1

is the anisotropy constant for either uniaxial or cubic volume anisotropy. For the

spherical shell the eigenvalue equation, in the absence of surface anisotropy, is given

by [81] (
∂jn(µ)

∂µ

)(
∂yn(x)

∂x

)
x=µr/R2

−

(
∂yn(µ)

∂µ

)(
∂jn(x)

∂x

)
x=µr/R2

= 0

(6.4)

where jn and yn are spherical Bessel functions of the first and second kind, respec-

tively.

The shell particles were saturated by applying a 0.8 T biasing field along the z-

axis and pulsing the system in the orthogonal y-direction. The stable magnetisation
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configuration is shown in Figure 6.1. An ideal single domain state is forbidden in

spherical shells even when a large DC field is applied [27]. As a result, an onion-like

magnetisation is present as the stationary configuration (see Figure 6.1). Figure 6.2

shows the spatial Fourier modes and dynamic susceptibility of the hollow sphere when

saturated with a 0.8 T field applied in the z-direction. The lowest frequency mode

f1 in Figure 6.2(c) is the ferromagnetic resonance, which corresponds to the largest

amplitude in the imaginary component of the numerically calculated susceptibility.

The frequency of this mode is simply given by the second term Hz in equation (6.2).

Substituting the values for the saturating field and magnetocrystalline anisotropy

gives a frequency of 23.97 GHz in agreement with the numerically simulated value of

24 GHz for the ferromagnetic resonance of the solid sphere. Above the ferromagnetic

resonance, several non-evenly spaced resonance modes can be observed in Figure

6.2(c) all of which exhibit a 1/R2
2 dependence on the outer radius consistent with the

exchange resonance equation.

The frequency of the ferromagnetic resonance is independent of the particle size

for the solid sphere (see Figure 6.3(b), black line), but shows a size dependence for

the shell which becomes increasingly pronounced as the thickness is decreased (see

Figure 6.3(b), dashed lines). This size dependence of the ferromagnetic resonance

emerges as the magnetisation gradually deviates away from the single domain state

with increasing R1/R2, forming an “onion-like” domain in shells due to the strong

demagnetising field. Here, the contribution of the demagnetising field to the resonance

frequency becomes important. The ferromagnetic resonance of the shell tends towards

the ferromagnetic resonance of the solid sphere, as the onion state field distribution

tends towards that of the single domain with decreasing particle size.

The lowest order exchange mode requires special attention. It is the second so-

lution of µ = 0 with the same frequency as the ferromagnetic resonance. This mode

should be independent of R1/R2 according to the eigenvalue equation, but shows a

gradual increase in frequency with decreasing shell thickness. The degeneracy of this
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Figure 6.2: (a) Normalised spatial Fourier transform of the y-component of the dy-
namic magnetisation for a hollow iron sphere with R2 = 27.5 nm and R1/R2 = 0.3
in the presence of a 0.8 T biasing field applied in the z-direction. The frequencies
correspond to (i) 23.1 GHz, (ii) 25.6 GHz, (iii) 63 GHz and (iv) 110 GHz in the xz-
plane. (b) Three-dimensional surface plot of the normalised spatial Fourier transform
for the xy cross-section at 110 GHz, corresponding to Fig. 1(a), (iv). (c) Real and
imaginary components of the average dynamic susceptibility corresponding to the y-
component of the dynamic magnetisation for a hollow sphere with R2 = 27.5 nm and
R1/R2 = 0.4 in the presence of a 0.8 T biasing field applied in the z-direction. Inset
shows enlargement of the data for the average susceptibility at higher frequencies
taken at the cross-section in the xz-plane. f1 and f2 correspond to the modes (i) and
(ii) in panel (a).
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Figure 6.3: (a) The frequency of the numerically simulated resonance modes above
the ferromagnetic resonance in Fig. 1(c) plotted against 1/R2

2 for R1/R2 = 0.5. (b)
The size dependence of the ferromagnetic resonance for the solid sphere (black line)
and the spherical shell with different values of the shell thickness (dashed lines). (c)
The imaginary component of the numerically simulated susceptibility plotted against
the ratio R1/R2. (d) The numerically simulated modes shown in Fig. 1(c) (symbols)
plotted alongside the exchange modes calculated from equation (6.2) (lines) with
varying shell thickness. The squares and triangles correspond to the numerically
calculated modes µ1,1 and µ1,3, respectively.
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mode with the ferromagnetic resonance can be broken when the boundary conditions

are modified to include other effects, such as surface anisotropy [81]. Under this con-

dition, the eigenvalue is no longer equal to zero and it should start to exhibit a 1/R2
2

dependence on the particle radius (this dependence can be observed for the lowest

mode in Figure 6.3(a)).

Several of the modes above the ferromagnetic resonance do not show a strong de-

pendence on the inner radius R1. This behaviour is in agreement with the k = 1, n ≥ 1

eigenvalues which are broadly independent of the shell thickness, but undergo a

marginal decrease in frequency for larger values of R1/R2. However, in the numerical

simulations the modes show a marginal increase in frequency with increasing R1/R2,

before under-going a small decrease in frequency or stagnating. This suggests that

the k = 1, n ≥ 1 eigenvalues are also sensitive to the spatial variations of the mag-

netisation, and that this effect is in competition with the eigenvalue equation which

acts to decrease the frequency.

The resonance modes found at higher frequencies exhibit a different kind of be-

haviour. These modes are roughly independent of the inner radius for R1/R2 =

0.1− 0.3 but increase rapidly for R1/R2 > 0.4, and reach frequencies above 100 GHz

for R1/R2 = 0.7. This is in good agreement with the analytical theory where the

higher-order eigenvalues k = 2 vary only slightly for R1/R2 = 0.1− 0.3, but increase

rapidly for larger R1/R2. The fit of the theoretical model to the numerical simulations

is shown in Figure 6.3(d).

6.3 Vortex domain

To explore ground state dynamics relaxation simulations were performed in the ab-

sence of an external DC field. The simulations consistently converged to the stable

vortex domain configuration shown in Figure 6.4(a). The corresponding dynamic

magnetic susceptibility is shown in Figure 6.4(b) for shells relaxed into the vortex
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Figure 6.4: Vortex domain structure for spherical shell particles with parallel and anti-
parallel orientation of the vortex singularities. (b, top) The imaginary component of
the susceptibility (color) for a spherical shell of outer radius 100 nm and varying shell
thickness. The white dashed line corresponds to the plot of the susceptibility (b,
bottom). (c) normalised spatial Fourier transform corresponding to the y-component
of the magnetisation for a shell of outer radius 100 nm and ratio R1/R2 = 0.3. The
modes (i)-(iv) correspond to f1 − f4 in (b, bottom), respectively.

domain. The frequency f1 in Figure 6.4(b) (bottom) corresponds to the uniform

mode. The higher frequency modes f2, f3 and f4 Figure 6.4, which have comparable

magnitude to the fundamental mode, are higher-order flexural resonances [9]. These

modes resemble standing modes across the vortex core line. In Figure 6.4(c), the

spatial Fourier transform of the resonance flexural modes of the vortex domain are

shown for different frequencies. Here, the higher-order flexural modes are pronounced

across the entire 10− 25 GHz frequency band.

The influence of varying the shell thickness on the dynamic susceptibility is shown

in the upper-part of Figure 6.4(b). The lowest frequency mode is the n = 0(f1)

mode, for which the frequency does not vary significantly as a function of the shell

thickness. This mode possesses the largest amplitude in the susceptibility spectrum

for R1/R2 ≥ 0.4. However, in contrast to the saturated solid sphere for which the

ferromagnetic resonance has the largest amplitude for any particle size, the n = 0

flexural mode is not necessarily the most intense mode for solid spheres. In circular
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Figure 6.5: The frequency of the resonance modes plotted againstR2 for a solid sphere.
The colorbar represents the amplitude of the imaginary component of the dynamic
susceptibility (b) The first three modes above the fundamental mode plotted against
1/R2

2.

dots, the n = 1(f2) mode increases in amplitude with increasing thickness, and can

obtain amplitudes greater than the n = 0 mode for sufficiently thick elements [9].

A similar scenario can be observed in Figure 6.4(b) as the n = 1 mode increases in

amplitude with decreasing shell thickness, surpassing the amplitude of the n = 0 mode

for R1/R2 < 0.4. This fact provides explanation of the measured permeability spectra

of monodisperse nanospheres, where the lowest frequency mode can be significantly

smaller than the higher-order absorption modes [19, 3].

The size dependence of the resonance modes is shown in Figure 6.5. The fre-

quency of the higher-order modes depends strongly on the radius, whereas the lowest

frequency mode is weakly dependent on the particle size. The size dependence is

complicated by anti-crossing of the modes at different particle sizes R2. The modes

which closely approximate the 1/R2
2 dependence also show deviations from this trend

with decreasing particle size. An analytical expression for the vortex flexural modes

can be derived from the Thiele form of the Landau-Lifshitz-Gilbert equation without
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damping [9]. The eigenfrequencies ωn along the thickness of the vortex core for the

case of a planar film are given by

ωn(L)

ωM
≈ π

8

(
Le
L

)2(
ln

(
R

Rc

)
+

5

4

)
n2 (6.5)

where L is the thickness, Le =
√

2A/Ms, ωM = µ0γ4πMs, R is the radius, n =

0, 1, 2... and Rc(L) ≈ 0.68Le(L/Le)
1/3. It can be seen from this equation that the

flexural modes depend on both the thickness as 1/L2 and the outer radius, with the

dependence on the radius being logarithmically weak. For the case of a spherical

particle with the thickness taken across the vortex core line, this can lead to more

complex size dependences as decreasing the radius would amount to varying L and

R simultaneously.

The particles become single domain for R2 ≈ 20 nm in the numerical simula-

tions, at which point the higher-order modes are destroyed and one pronounced peak

corresponding to the ferromagnetic resonance of the saturated particle remains. The

frequency of the ferromagnetic resonance is commonly used to estimate intrinsic mag-

netic parameters, such as the magnetocrystalline anisotropy constant [3] and particle

sphericity [106]. In Figure 6.5, the frequency of the uniform mode in the vortex state

is in the range of hundreds of MHz, whereas the ferromagnetic resonance of the sat-

urated particle has a higher frequency of 1.5 GHz in the absence of an external DC

field. Only the latter mode is well-described by Kittel’s equation for the ferromag-

netic resonance, which depends primarily on the magnetocrystalline anisotropy in the

absence of an external DC field [107]. Experimental studies of mono-disperse parti-

cles have found that the multi-resonance behavior vanishes for a critical size below

50 nm [20]. For this particle size, only a single peak was observed in the permeability

spectrum corresponding to the ferromagnetic resonance, which was shifted upwards

in frequency when compared to the larger particles. The susceptibility of the higher-

order modes is larger than the fundamental mode when the radius is in the range
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Figure 6.6: Resonances in the nano- and sub-micrometer regimes; Real and imaginary
components of the susceptibility corresponding to the y-component of the magnetisa-
tion for (a) hollow sphere with 2R2 = 750 nm, R1/R2 = 0.3 and parallel orientation
of the singularities, (b) solid sphere with 2R2 = 60 nm.

50−100 nm. However, the uniform mode steadily grows with decreasing particle size

and becomes the largest mode for the smaller particles. In the numerical simulations,

the fundamental mode of the solid sphere dominates over the higher-order modes

when the radius reaches R2 ≈ 30 nm. However, it can dominant at significantly

larger particle sizes for thin shells. As the particle size is increased into the sub-

micrometer regime, the amplitude of the resonances is decreased and the bandwidth

is wider. However, pronounced resonance modes remain in the 15-25 GHz region for

sub-micrometer sized particles, with a negative real component of the susceptibility.

These high-frequency modes are persistent at frequencies of 15-25 GHz as the particle

size is increased further, because the exchange interaction is not dominant in this size

range. Observations of resonance modes in this frequency range were recently found

for carbonyl iron particles [108].
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Figure 6.7: Static magnetisation configuration for a cylindrical nanotube of outer
radius R2 = 250 nm, ratio R1/R2 = 0.3 and length L = 500 nm. Colorbar represents
the normalised z-component of the magnetisation.

6.4 Chiral domain

For thick and soft magnetic nanotubes, the equilibrium magnetisation configuration

exhibits two vortices at the end domains with antiparallel chirality [109]. During mag-

netisation reversal, these two non-uniform vortex configurations grow in size leading

to the gradual annihilation of the uniformly magnetized central region, and the for-

mation of either transverse or vortex-like domain walls inside the nanotube. Such

reversal modes are a consequence of the curved surface and do not exist in “unrolled”

nanotubes, i.e. magnetic strips. The existence of opposite chirality vortices at the

end domains of nanotubes during magnetisation reversal has been confirmed experi-

mentally [110, 111]. This chiral effect can be understood by examining the exchange

energy density for an arbitrary magnetic shell. When the magnetostatic energy is

approximated by a suitable easy-tangential anisotropy, Gaididei et al. [14] showed
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that the magnetic energy can be divided into three components (i) the “standard”

exchange interaction; (ii) an effective anisotropy and (iii) an effective DMI-like inter-

action [3]. The first term (i) is minimized when the magnetisation is homogenous,

whereas the effective DMI term (iii) favours the formation of inhomogeneous mag-

netisation configurations. The stabilization of the opposite chirality vortices in Figure

6.7 results from the competition between the three terms (i)-(iii).

For a curved surface parametrized by the coordinates (q1, q2), the magnetisation

can be written in the form [112]

m = n̂ cos Θ + q̂1 sin Θ cos Φ + q̂2 sin Θ sin Φ (6.6)

where Θ = Θ(q1, q2) and Φ = Φ(q1, q2) represent the angles of the magnetisation in a

curvilinear background and n̂ = q̂1× q̂2. The exchange energy density for an arbitrary

curved magnetic shell can then be written

Eex
A

=

(
sin Θ(∇Φ− Ω)− cos Θ

∂Γ(Φ)

∂Φ

)2

+
(
∇Θ− Γ(Φ)

)2
(6.7)

where A is the exchange stiffness constant, Γ(Φ) is a matrix depending on the Gauss

and mean curvatures of the nanomagnet and Ω is a modified spin connection. If the

magnetic field is pointing along the z-axis with parametrization (n̂ = ẑ, q̂1 = ρ̂, q̂2 =

φ̂), the modified spin connection is given by

Ω(θ) = −φ̂/ρ (6.8)

and, as a result, a chiral effect must take place according to this parametrization.

Here, the chiral interaction produces the opposite chirality vortices shown in Figure

6.7 when the DC-field is applied along the z-direction during the hysteresis cycle.

Multi-domain structures have been found to play an important role in broaden-

ing microwave absorption in composite materials [113] and may be an interesting
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Figure 6.8: Dynamic susceptibility of the y component of the magnetisation where
R2 = 250 nm, R1/R2 = 0.3 and L = 500.

way to enhance the permeability at microwave frequencies. In this way the magnetic

properties of the material can be treated as the free parameter, when the geometric

parameters are limited by technological constraints. To study their role in microwave

absorption, micromagnetic simulations of FeCo nanotubes supporting chiral mag-

netisation textures were carried out for the values α = 0.01, Ms = 1.9 × 106 A/m,

A = 1.7× 10−11 J/m and negligible magnetocrystalline anisotropy [114].

The complex dynamic susceptibility spectra of a cylindrical shell with outer radius

R2 = 250 nm and length L = 500 nm supporting a chiral domain state is reported

in Figure 6.7. The resonance spectra can be broadly categorized into three frequency

bands (i) a low frequency region spanning approximately 10 − 20 GHz, (ii) a mid-

frequency region spanning 25− 35 GHz and (iii) a high-frequency peak located at 45

GHz. A notable feature of the observed spectra is that the resonances are smeared

out across a very wide frequency band, which is a particularly desirable characteristic

for devices requiring broadband resonators [2].

The full three-dimensional maps of the spatial susceptibility are represented in

Figure 6.9 as isosurfaces. For the purpose of visualising the mode symmetry, the
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Figure 6.9: Isosurface of the normalised Fourier transform of M = Mx + My where
R2 = 250 nm, R1/R2 = 0.3 and L = 500 nm. The frequencies correspond to Figure
6.8(a) and are given by (i) 7.7 GHz, (ii), 13.7 GHz (iii) 14.7 GHz, (iv) 28.1 GHz (v),
32.2 GHz and (vi) 45 GHz
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normalised Fourier transform of both the x and y magnetisation components are

considered, i.e. M = Mx+My. The spatial distribution of the dynamic susceptibility

inside the nanotube exhibits three strongly non-uniform behaviours corresponding

to the three spectral regions observed in Figure 6.8. In the low frequency region

represented by Figure 6.9(a)-(c) the magnetisation spirals around the internal neck

of the cylinder with increasing complexity as the frequency increases. In the mid

spectral region shown in Figure 6.9(d)-(e), the resonances are localised at both the

inner and outer surface, with the largest excitation occurring close to the particle

surface. Finally, the highest frequency mode in Figure 6.9(f) is localised within the

central domain region shown in Figure 6.7 with negligible contribution from the upper

and lower end domains. A possible route to maximise volume efficiency and increase

the susceptibility response of the particle is to minimize the upper and lower end

domains, and maximise the central domain region shown in Figure 6.7.

6.5 Summary

The dynamic susceptibility of ferromagnetic spherical shells was investigated as a

function of shell size and thickness. The frequency of the higher order modes for

saturated nanoshells was found to scale as 1/R2
2 in agreement with the exchange

approximation. Moreover, it was found that the zeroth exchange mode is not de-

generate with the ferromagnetic resonance for a shell, even in the absence of surface

anisotropy. Nanoparticles with vortex domain structure and radius R2 ≤ 100 nm

exhibited a number of narrow, intensive resonance bands ranging in frequency from

several hundred megahertz to tens of gigahertz. The amplitude and frequency of these

modes showed a strong dependence on shell thickness and size, making ferromagnetic

nanoshells promising candidates for use as tuneable microwave absorbers. When the

radius was increased to several hundred nanometers, the particles exhibited broad

resonance peaks with significantly reduced susceptibility when compared to smaller
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nanoparticles. In all cases, the dynamic magnetic response of the vortex domain was

primarily due to small regions concentrated at the particle surfaces, such that only a

small percentage of the particle volume contributes significantly to the susceptibility.

Finally, chiral magnetisation configurations in cylindrical nanotubes were found to

exhibit a broad and strongly non-uniform susceptibility spectra in the absence of an

external bias field, with frequencies extending beyond that of the spherical vortex

domain.
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Chapter 7

Three-dimensional domain wall

dynamics in permalloy films

7.1 Introduction

The magnetic properties of thin-film elements have been the subject of intense re-

search interest in recent years. In addition to their potential applications in high-

density magnetic storage [115] and magnetic vortex generation [116, 117, 118], these

magnetic elements are model systems for studying the fundamental spin dynamics in

patterned geometries with well-defined static magnetisation configurations [119, 120,

121, 122]. It has been shown that the ground state configuration of ferromagnetic

nano-objects depends on the intrinsic material parameters such as the saturation

magnetisation and exchange constant, in addition to the geometrical parameters of

the element [112, 123, 124, 125]. The interplay between the geometry and intrinsic

magnetic parameters leads to a wide range of magnetic states, such as those described

previously in Chapter 6. In terms of their dynamic properties, it has been shown that

the vortex state supports a translational gyrotropic mode in thin films [116, 118], in

addition to higher-order spin wave modes at gigahertz frequencies [126, 127]. The

low-frequency translation mode acts as a coherent oscillator and has attracted con-
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siderable attention for microwave applications [128, 129, 130]

The main purpose of this chapter is to investigate numerically the static and dy-

namic properties of relatively thick (≈ 80 nm) square elements in the presence of

non-uniform field excitations, and to compare with experimental results. This chap-

ter also serves as a precursor to Chapter 8 where the skin effect and non-uniformity

of the excitation field is incorporated rigorously through solution of Maxwell’s equa-

tions. The details of the experimental technique are beyond the scope of this thesis

and can be found in the relevant publication [25]. Here, it is shown by means of

numerical micromagnetic simulation that the domain walls support a perpendicular

out-of-plane component that can switch dynamically in response to specific pulse pa-

rameters. This is achieved by the formation of bullet-like excitations which propagate

along the domain walls towards the corners of the square element. The numerical sim-

ulations further reveal that four singularities are present at the corners of the square

element, resulting from the three-dimensional character of the static magnetisation

configuration. The polarity of these singularities can be switched in response to spe-

cific magnetic pulse parameters. In the final section of this chapter, the role of an

external bias field on the static behaviour is investigated.

7.2 Static magnetisation

In these simulations standard parameters for permalloy (saturation magnetisation

Ms = 8 × 105 A/m, exchange constant A = 1 × 10−11 J /m and Gilbert damping

= 0.008) were chosen with cell-size x = 2000/512 nm, y = 2000/512 nm, z = 83/16

nm and negligible magnetocrystalline anisotropy. Vortex precession was induced by

a step pulse with maximum amplitude(s) of 7.7 mT and 10 mT and rise-time ≈ 1

ns. The field profile decays as 1/(r0 + r) through the thickness of the square element

with r0 = 40 nm representing the half thickness of the antenna. The dot product

of the vector magnetisation was calculated with respect to the x-ray vector and the
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magnetisation was averaged across the thickness at the corresponding angle.

To provide a realistic comparison with the experimental results, the projection of

the magnetisation at 45◦ (135◦) degrees was calculated from the dot product of the

magnetisation with respect to the x-ray vector. The intensity is at a maximum when

the magnetisation vector points at a 45◦ (135◦) degree angle to the x-ray, leading to

the greatest intensity slightly above (or below) the vortex core. Figure 7.1 shows the

simulated magnetisation contrast for different layers of the sample. The vortex spin

arrangement varies continuously from negative values (red color) to positive ones (blue

color) about the vortex axis. Non-uniformity can be observed across the thickness of

the element with different spiral structures present at the top and bottom layers. This

type of domain deformation was previously reported in thick circular dots [8, 131].

It results from the dipole-dipole interaction and the reduction of surface magnetic

charges at the end domains. The vortex core radius also varies with the film thickness,

with the smallest radius observed at the top and bottom layers of the sample. The

simulated magnetic contrast is shown in Figure 7.1 (a) and Figure 7.1 (b) when the

magnetisation is averaged linearly across the thickness and when the averaging is

performed at 45◦. When the averaging is performed linearly the middle region is

predominant in the simulated x-ray projection (see Figure 7.1). When the averaging

is performed at 45◦ a projection of core deformation is present in the simulated image.

The precise angle of inclination, either 45◦ or 135◦, determines whether the top or

bottom layers become dominant in the simulated projection.

7.3 Core gyration

In Figure 7.2, the core gyration motion is shown when the sample was excited by

a step pulse of rise-time ≈ 1 ns, which provides sufficient bandwidth for excitation

of the vortex core. In the numerical simulations, Gaussian smoothing was applied

to the excitation pulse to reflect the realistic capacity of the pulse generator and
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Figure 7.1: Simulated normalised magnetic contrast with averaging out the thickness
in (a) perpendicular orientation and (b) over 45◦ direction. (c) Reconstructed experi-
mental image obtained for the same delay time. (d) Vertical intensity profiles through
the centre of the core for all three images a, b and c. Positive values correspond to
magnetisation vector parallel to the x-ray wave vector. (e) Simulated images of the
magnetic contrast for different layers within the structure. From left to right, the
images represent the bottom 1st, middle 8th and top 16th layer of a 16-cell thick
simulation grid (cell size is 3.9 × 3.9 × 5 nm3). Colour coding: Positive (Red) and
negative (Blue) normalised magnetic contrast.
Reproduced from [25].
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Figure 7.2: Close-up of the reconstructed magnetic contrast around the core taken at
different values of the delay time dt for (a) 90◦ and (b) for 45◦ (3.7 V pulse) angle-of-
incidence. The lines trace the vortex core position. (c) The vertical displacement of
the vortex core at different delay times. The purple line shows vertical displacement
extracted from micromagnetic simulations. The simulated magnetic pulse profile is
shown by the green line. The point at 238 ns delay gives the vertical position of
the core after being fully damped. The pulse length for this particular point was
increased to 500 ns to allow verifying the vertical position of the core in this case.
(d) The position of the vortex core in the xy plane at various delay times imaged in
perpendicular orientation.
Reproduced from [25].
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transmission lines, which leads to an overall reduction of the core gyration radius. A

non-uniform field was also chosen which decays across the thickness of the element

according to the relation B = B0r/(r0 + r), where B0 = 7.7 mT is the field at the

antenna surface and r0 represents the half-thickness of the antenna. This non-uniform

field gradient is similar to the skin effect described in Chapter 3.

In the initial stages of the gyration, the vortex core is displaced vertically (along

the y-axis) and begins to precess about a new equilibrium position. The degree of the

displacement is determined by the maximum amplitude A0 of the applied step pulse.

At the new equilibrium position this displacement is equal to that induced by an

external DC field of amplitude A0. It can be seen from Figure 7.2 that close agreement

is achieved between numerical and experimental results (gyration frequency ≈ 4.5 ns)

when using a standard value of the damping constant for permalloy α = 0.008.

In Figure 7.3 the angle of imaging is orientated at 90◦ to the in-plane sample. In

the numerical simulations this means that only the z-component of the magnetisation

is present in the simulated projection and the magnetisation is averaged linearly across

the thickness of the element. The simulated and experimental projection is shown for

different time intervals during the cyclic gyration of the vortex core. In addition to the

central core, four domain wall lines are visible in both the simulated and experimental

images. These domain walls are present throughout the dynamic precession of the

core, indicating that they are a result of the static magnetisation configuration. In

the numerical simulations, before the pulse is applied, the static magnetisation shows

four domain walls with small out-of-plane magnetisation components which possess

the same polarisation as the vortex core. When the step-pulse is applied, the polarity

of the domain walls are switched gradually as bullet-like excitations propagate from

the core towards the corners of the element. The precise pulse threshold required

to switch the corner singularities and domain wall polarity is sensitive to the field

gradient, Gaussian smoothing and rise-time of the pulse excitation.

When comparing the simulated and numerical projection of the out-of-plane mag-
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Figure 7.3: (a) Experimental and (b) simulated magnetic contrast of the domain
structure imaged in perpendicular orientation at different delay times (from top to
bottom): 0.0, 1.5, 2.0, 3.5 and 6.0 ns. The frames represent different stages of the
pulse rise and gyration. The domain walls at the left-hand side in each image are
predominantly ‘black’ (magnetised downwards), whereas those at the right-hand side
are always ‘white’ (magnetised upwards). Yellow arrows have been inserted to point
to the equilibrium position of the core.
Reproduced from [25].
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Figure 7.4: (a) Perpendicular component of the magnetisation at different delay times
t0 = 0.3, 1.3, 1.8 and 2.3 ns. (b) 3D depiction of the out-of-plane magnetic component
at 1.4 ns delay. A localised wave ‘bullet’ is formed at the edge of the positively
polarised part of the domain wall and propagates within the wall towards the corner.
(c) Intensity scans within the domain wall for different delay times demonstrating
the profile of the ‘bullet’ as it approaches the singularity at the corner. (d) The
simulated structure of the domain walls for different layers throughout the thickness
of the element. The wave ‘bullet’ structure is more pronounced in the middle layers.
Reproduced from [25].
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netisation component, it is readily seen that the intensity of the corner singularities

appear more intense in the numerical simulations. A plausible explanation is litho-

graphic imperfections in the experimental sample, resulting in more rounded edges

and broadening of the corner singularities. Figure 7.4(d) also shows that these domain

wall features vary as a function of the thickness in a similar manner to the vortex core,

with the effect being suppressed towards the top and bottom of the square element.

According to numerical simulations, the direction of propagation of the bullets also

depends strongly on the field gradient. The bullets propagate either along the left or

right domain wall lines depending on whether the amplitude of the field is larger at

the top or bottom layers of the element. When the field is uniform the bullets are

reflected off the corner boundaries (see supplementary information in reference [25]).

7.4 External bias field

In this section the role of an external bias field on the static and dynamic behaviour

of thick elements (≈ 80 nm) is examined. The square elements were relaxed into their

ground state configurations and a 30 Oe bias field was applied in the xz-plane. For the

thinner elements, the domain region in the direction of the DC field increases and the

vortex core gradually moves up towards the boundary of the element. The core is then

annihilated and the vortex state switches to a saturated domain configuration. This

behaviour is well-understood and has been documented extensively in the literature

[132, 133, 134]. For the thicker elements, several distinct features emerge as the

amplitude of the static field is increased. First, at a field value of magnitude ≈ 20

mT the needle-like core region is stretched across a wider area, forming an extended

boundary between the upper and lower Landau domains (see Figure 7.5). Pronounced

out-of-plane components are also present across the domain wall lines with different

polarities in the upper and lower sections of the element. In Figure 7.5(a), the

out-of-plane (z-component) of the magnetisation is shown for two 2µm squares with
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Figure 7.5: (a) Perpendicular component of the magnetisation for a square element
of thickness 20 (left) and 80 nm (right) taken at the cross-section. (b) 3D depiction of
the out-of-plane magnetisation component at the static equilibrium position. (c) The
simulated structure of the domain walls for different layers throughout the thickness
of the element. The out-of-plane components are more pronounced in the middle
layers.
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Figure 7.6: Simulated projection for the static magnetisation configuration when the
x-ray vector is at an angle of 45◦ to the in-plane sample and the magnetisation is
averaged across the thickness at the corresponding angle.

thickness 20 nm and 80 nm, respectively. For the 20 nm sample, only a small out-of-

plane component is present corresponding to the vortex core. For the 80 nm sample,

significant out-of-plane components can be found across the four domain walls, in

addition to an extended domain wall-like region which has replaced the vortex core.

These domain features also vary in a pronounced manner across the thickness of

the element (see Figure 7.5(c)). For the bottom layer, the out-of-plane component

reaches its maximum intensity towards the left-most extreme of the extended Landau

structure, whereas the top layer has a maximum intensity towards the right-most

side. Towards the middle layers the out-of-plane component has similar magnitude

across the entire central line. In Figure 7.6 the simulated projection is shown for an

x-ray vector of 45◦ when the magnetisation is averaged across the thickness at the

corresponding angle. Here, it can be seen that the middle layers are the dominant

layers in the projection of the domain structure, with two lines (a peak and dip)

clearly visible across the extended Landau structure.
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7.5 Summary

In this chapter, the eigenfrequency of the uniform gyrotropic mode was investigated

by means of micromagnetic simulation and compared with experimental results. Ex-

cellent agreement was found when using standard values of permalloy with damping

constant α = 0.008. It was shown that the 3D character of the domain and core

structure have a direct influence on the domain walls. The out-of-plane component

of the domain walls can change polarity following excitation of the vortex core by

application of a magnetic pulse. The change in polarisation is achieved by the gener-

ation of “bullet-like” excitations, which propagate along the domain wall line towards

the corner of the element. The propagating bullet can then flip the polarity of the

corner-singularity or reflect off the boundary depending on the specific field gradient

and amplitude specified in the numerical simulation. The presence of a static DC

field was found to play an important role in the static properties of thick (≈ 80 nm)

elements. For a DC field value of magnitude ≈ 20 mT the needle-like core region

is stretched across a wider area, forming an extended boundary between the upper

and lower Landau domains. Pronounced out-of-plane components were also present

across the domain wall lines.
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Chapter 8

Wave propagation in metallic

structures

8.1 Introduction

There are two main and different approaches for modelling the interaction of magnetic

and electromagnetic fields with magnetic materials and the reciprocal reaction of

the magnetic material. The first approach focuses on the magnetic energies of the

magnetic material, or micromagnetics, to evaluate the magnetisation distribution in

response to external, pre-defined magnetic fields from solution of the dynamic Landau-

Lifshitz-Gilbert equation (for example [35]). The magnetostatic fields internal and

external to the material are then computed from the corresponding volume and surface

magnetic charges. The transient Maxwell’s equations are not solved in this case, and

the consequences of conductive and dielectric material properties and surrounding

layers, and of induced currents and charges on perturbing the applied and internal

fields and consequently the material magnetisation are not considered. In the other

approach, and more traditionally, a macroscopic (compared to the exchange and

domain wall dimensions in micromagnetics) scalar or tensor permeability model is

used to describe the linear or nonlinear behaviour of the magnetic material as part
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of Maxwell’s equations and their static and harmonic variants. The B-H or M-H

hysteretic characteristics of the material used in the permeability formulation are

modelled using analytical mathematical expressions based on linearised and static

micromagnetic solutions or from fitting to experimental data [135].

For transient and harmonic electromagnetic simulations, a frequency-dependent,

complex tensor permeability is defined within Maxwell’s equations. The origins of

this frequency dependent permeability is from linearised solutions of the dynamic

Landau-Lifshitz-Gilbert (LLG) equation (damped or undamped), that describe small

precessional perturbations of the magnetic moments around an averaged magnetisa-

tion direction. The resonance frequency or frequencies in this linearised description

may be estimated from theoretical analysis of the effective internal and external fields,

or supplied by complex permeability measurements. Thus this frequency dependent

permeability provides only a description of the rotation of the magnetic moments

due to small perturbing fields, and does not take into account local shape and mag-

netocrystalline anisotropies, nor exchange and surface energies responsible for the

domain nucleation and spin-wave phenomena. As a result, the frequency dependent

permeability approach often employed in electromagnetic simulations can not produce

or model the spatial distribution of the magnetisation in magnetic materials and their

reaction on the magnetic fields generated within and external to the magnetic material

in response to impinging electromagnetic fields.

The finite-difference time-domain (FDTD) method, which is the focus of the the-

oretical analysis in this chapter, through its structure and implementation provides

a flexible framework for the simulation of a wide range of electromagnetic phenom-

ena, providing almost infinite bandwidth due to its time domain nature. Thus it

offers a natural platform for dynamic and steady-state modelling of the interaction

between electromagnetic waves with non-linear magnetic materials. Previous work

incorporating the LLG equation within the FDTD method was limited to small signal

approximations of the LLG equation [136], which did not include magnetocrystalline
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anisotropy and exchange coupling, and used explicit time marching schemes that

were either inappropriate or unstable for small damping [45, 137]. To account for the

staggered nature of the FDTD grid, cumbersome and less accurate four-point spatial

interpolations were used to collocate the magnetisation with the fields in each cell of

the grid. The complete form of the LLG equation was included in a stable FDTD

implementation in that accounts for anisotropy and exchange energies [42], but used

a numerically dispersive unstaggered FDTD grid for the implementation which is not

appropriate for studying dynamic wave interaction with magnetic material.

An efficient and stable implementation was developed by Aziz [43] that integrated

the complete form of the LLG equation, including the anisotropy and exchange cou-

pling fields, within the FDTD method. This implementation included the develop-

ment of a new and efficient discretisation scheme locating the magnetisation vectors

at the corners of the FDTD cell allowing simple two-point interpolations for the eval-

uation of the magnetisation at the staggered locations of the magnetic fields without

any numerical dispersion. Moreover, the proposed implicit time marching/integration

algorithm is stable and accounts for the correct implementation of magnetic boundary

conditions and therefore provides consistency between the LLG and FDTD schemes.

This stable algorithm was implemented in the literature to study the broadband

ferromagnetic resonance of thin-film magnetic nanostructures closely contacting non-

magnetic metallic layers in microstrip line structures [138], and as part of an Im-

proved Concurrent Electromagnetic Particle-In-Cell (ICEPIC) code for High Power

Microwave (HPM) devices for modelling the interaction of electromagnetic waves with

ferrites [139].

Here, the FDTD-LLG method is extended to include plane-wave propagation

through semi-infinite permalloy prisms with square cross-sectional areas of sides 250−

1000 nm. This is to investigate the dynamic magnetisation and permeability through

the magnetic structures, and corresponding wave transmission and reflection illustrate

the importance of the need to include the full micromagnetic details of the magnetic

136



material in the simulation. Wave propagation and dynamic permeability simulations

are presented before closing this chapter in the summary section.

8.2 Plane wave excitation

In this section numerical simulations of conducting semi-infinite permalloy prisms are

carried out to illustrate the effects of finite conductivity and electromagnetic wave

propagation on the magnetic behaviour. The ferromagnetic sample has saturation

magnetisation Ms = 800 kA/m, exchange constant A = 1 × 10−11 J/m, electrical

conductivity σ = 3.7×10−6(Ωm)−1, relative permittivity εr = 7 and negligible uniaxial

magnetocrystalline anisotropy (Ku = 0 J/m3). The damping coefficient was set to

α = 0.01. The surrounding magnetic region has the relative permeability of free

space, i.e. µr = 1.

A DC field was applied in the positive z-direction of magnitude 200 Oe, in a direc-

tion parallel to the initial magnetisation. The initial condition for the magnetisation

was set to Mx = My = 0 and Mz = Ms which is a stable configuration at the begin-

ning of the simulation. The strong shape anisotropy of the infinite pillar forces the

magnetisation to align along the pillar axis, which is defined here as the z-axis. The

magnetic precession will then occur primarily in the x-y plane and the z-component

of the magnetisation can be expressed as

Mz = Ms +m(t) (8.1)

where Ms is the saturation magnetisation and m(t) is a small perturbation of the

magnetisation in the time-domain. As a result the magnetisation remains stable and

divergence free for all time, which ensures that Maxwell’s equation is satisfied

∇ · (H + M) = 0 (8.2)
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Here, it should be emphasised that Maxwell’s equation (8.2) is not imposed directly

as in the case of micromagnetics, but it is satisfied for small excitations about suitably

chosen input data.

The permalloy sample was excited with an electromagnetic plane wave of the form

Ez(t) = Ez(0)e−t
2/τ2 (8.3)

where Ez(t) is the time-domain profile of the electric field, Ez(0) is the maximum

amplitude of the pulse field, t is the simulation time and τ is given by

τ =
1√

2πfdt
(8.4)

where f is the frequency of the plane wave and dt is the time-step. Here, the frequency

was chosen to be f = 50 GHz which provides sufficient bandwidth for the range of

frequencies under investigation. The time-step is determined in this case from the

equation dt = dx/2c, where dx is the cell-size which is set in the nanometer range

5 − 50 nm depending on the pillar size under consideration. This is far below the

wavelength of the propagating plane wave which is of the order of millimetres. In

each case the simulation was run for 3 ns to allow for the transient fields to die out.

The plane wave is introduced at the lower interface of the TFSF boundary and

removed at the top surface of the TFSF boundary. The one-dimensional plane wave

was terminated using a second-order, one-direction wave equation analytical absorb-

ing boundary condition, to sufficiently reduce the reflections from the auxillary plane-

wave equation at time steps less than the Courant limit employed in the TMz cal-

culations in this work. The simulation space, including the TFSF boundary, were

terminated using a 10 cell perfectly matched layer (PML) to absorb outgoing waves

and minimise reflections, implemented using Berenger’s split-field formulation [140]

with a third-order polynomial grading for the magnetic conductivity and 10−8 reflec-

tion error.
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Figure 8.1: Temporal profile of the magnetisation at (a) 0.04 ns, (b) 0.06 ns, (c) 0.08 ns
and (d) 0.1 ns for a semi-infinite permalloy prism of length 250 nm following excitation
by an electromagnetic wave for conducting (top) and non-conducting (bottom) cases.
Arrows represent the x-y component of the normalised magnetisation vector. The
colorbar corresponds to the normalised x-component of the magnetisation.
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Figure 8.2: FFT of the x-component of the magnetisation following microwave exci-
tation for a semi-infinite pillar of length 750 nm.

8.3 Magnetisation dynamics

In Figure 8.1, the temporal profile of the magnetisation in the x-y plane following

excitation by the plane wave is shown at different instances of time for both conducting

and non-conducting pillars. For the conducting pillar (σ = 3.7 × 10−6(Ωm)−1) the

excitation of the magnetisation is largest at the edges of the pillar and smallest towards

the center, where almost no excitation of the magnetic material occurs. The precessing

magnetisation exhibits a curling configuration which resembles the circumferential

mode in ferromagnetic wires subject to microwave excitation [141]. This mode is

strongly excited by the component of the electric field parallel to the long axis of the

pillar. Moreover, the average coupling of the circumferential mode with a uniform

microwave magnetic field is zero due its axial symmetry. As a consequence, the

curling/circumferential mode is not excited in the numerical simulations for the case

σ = 0 because this amounts to a uniform excitation of the magnetic material.

The uniform and non-uniform precession modes in the FDTD-LLG calculations

were investigated by calculating the Fast Fourier Transform (FFT) of the magnetisa-

tion for the edge and bulk of the pillar. The spectrum for the two cases are shown in

Figure 8.2. For the FFT evaluated from the average magnetisation only a single mode

is observed at a frequency of 20.6 GHz. For the FFT evaluated at the boundary, an
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additional mode is observed at a lower frequency of 14 GHz. It is readily seen from

Figure 8.1 that the mode at 20.6 GHz is the ferromagnetic resonance of an axially

magnetised pillar due to its uniform character for the case σ = 0. This mode is excited

by the magnetic component of the microwave field. When the radius of a long wire

is much larger than the skin depth, the surface impedances of all modes are equal to

the surface impedance of a planar halfspace [141]. The excitation then occurs about

small regions at the outer surface which behave like the ferromagnetic resonance of a

thin film. In this situation, the resonance fields of all modes are identical and equal

to Kittel’s resonance formula for a planar plate

ωr = γ
√
Heff (Heff +Ms) (8.5)

where Heff is the effective field and Ms is the saturation magnetisation. The reso-

nance frequency of the circumferential mode in wires can be well-described by this

resonance equation. Using the same values H0 = 200 Oe and Ms = 8 × 105 A/m

the frequency of this mode is 13.7 GHz, which is reasonably close to the simulated

frequency of 14 GHz for the edge mode. The simulated frequency for the ferro-

magnetic resonance can be compared with theoretical calculations by evaluating the

magnetometric demagnetising factor Dz of a homogeneous and uniform square prism

magnetised along the pillar axis [142], defined here as the z-axis. The magnetometric

demagnetising factor Dz in this case is given by

πDz =

(
p− 1

p

)
ln

(√
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Figure 8.3: Spatial Fourier transform of the x-component of the magnetisation at 14
GHz for a semi-infinite prism of length 750 nm.

where p = d/x is the ratio of the long axis to the side length. This equation is subject

to the constraint

Dx +Dy +Dz = 1 (8.6)

where Dx and Dy are the magnetometric demagnetising factors along the x and y

directions. In the limit of an infinite prism p→∞ the magnetometric demagnetising

factor along the z-axis tends to zero Dz → 0. From equation (8.6) the other two

magnetometric demagnetising factors are Dx = Dy = 1/2. The result is similar to

the infinite circular cylinder. When the length of the prism is smaller than the skin

depth, the resonance frequency is then to fair approximation given by the standard

Kittel formula

ω = γ
(
H0 +

Ms

2

)
(8.7)

where ω is the frequency, H0 is the DC field and Ms is the saturation magnetisa-

tion. For the values H0 = 200 Oe and Ms = 8 × 105 A/m the frequency is 19.7

GHz which again is reasonably close to the simulated value of 20.6 GHz. A degree of

error invariably enters into the numerical computation due to the mesh resolution of

the magnetic material, which is only 202 cells in this case. To investigate the spatial
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Figure 8.4: Reflection loss in dB plotted against frequency for semi-infinite pillars
with sizes in the range 250− 1000 nm.

distribution of the edge mode in the prism, the spatial Fast Fourier Transform (FFT)

was evaluated. This is achieved by calculating the Fourier transform of the magneti-

sation for every cell populated with magnetic material. The spatial distribution of the

edge mode is shown in Figure 8.3 where it is clearly localised at the boundaries. The

excitation of this mode is weakest towards the center, resulting in the spiral pattern

shown in Figure 8.1 (top). As mentioned previously, this effect stems from the partial

penetration of the microwave into the material.

8.4 Reflection loss

To understand the role that these modes play in microwave absorption the reflection

loss was calculated for pillar sizes in the range 250 − 1000 nm. In Figure 8.4 it can

be seen that the circumferential (curling) mode at 14 GHz is the dominant mode for

all sizes. This can be understood by examining the FFT plot in Figure 8.2 where the

magnetic response of the curling mode is larger than the ferromagnetic resonance at

the boundary of the pillar. Given that the microwave decays in amplitude towards

the center of the conducting material, it is reasonable to expect that the magnetic
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response at the boundary plays a larger role than the bulk. This effect can also explain

why the flexural modes in spherical shells are well-excited in coaxial line experiments,

given that they are localised close to the particle surface.

The additional peaks above the ferromagnetic resonance for the smallest samples

can be attributed to non-uniform spin-wave modes. These modes were not found

to contribute significantly to microwave absorption for the particular case of the

TMz mode studied here. However, this is largely due to the choice of the Neumann

boundary condition ∂M/∂n = 0 in the numerical simulations, resulting in unpinned

surface spins at the air/metal interface. The spin-wave intensity can be substantially

increased when a strong surface anisotropy is present. When the microwave field

penetrates to the pillar axis it has been suggested that the curling magnetisation

configuration can also increase the exchange energy [141], resulting in further shifts

of the resonance fields.

8.5 Summary

In this chapter a hybrid electromagnetic and micromagnetic method was proposed

based on the finite-difference time-domain (FDTD) Maxwell’s equation framework.

The novel FDTD-LLG algorithm was extended to model electromagnetic wave in-

teraction with metallic magnetic nano-structures. The proposed numerical technique

allows for the inclusion of exchange and anisotropy without imposing any simplifi-

cation of the magnetic material, such as linearisation of the Landau-Lifshitz-Gilbert

equation. The model was used to simulate the microwave response of semi-infinite

metallic permalloy prisms in the size range 250 − 1000 nm. It was found that mi-

crowave absorption results primarily from an edge mode localised close to the pillar

surface. The spatial distribution and frequency of this mode was investigated and

showed good agreement with a simplified analytical model. The results highlight

the importance of the combined electromagnetic-micromagnetic numerical approach
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to account for the full micromagnetic details within Maxwell’s equations. With re-

spect to finite materials, the assumption of infinite length is a good approximation

whenever the magnetic surface charges at the ends of the pillar are negligibly small.

Therefore, similar effects to those described here are expected for any finite prism of

sufficient length.
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Chapter 9

Summary and future work

9.1 Summary

In this thesis, the dynamical properties of ferromagnetic particles in the micrometer,

sub-micrometer and nanometer size ranges were studied using a combination of ana-

lytical and numerical methods. This was to provide understanding of the resonance

mechanisms in fine particle composites which are responsible for measured perme-

ability spectra, and to enhance their magnetic response towards higher frequencies.

We discovered the primary mechanism of microwave absorption in spherical parti-

cles and developed tools for simulation and analysis, including electro-micromagnetic

software which couples the Landau-Lifshitz-Gilbert equaton to the complete solution

of Maxwell’s equations. Chapters 4 to 8 of this thesis provide the contribution to

knowledge and advancement in the field and their main outcomes are outlined below.

In Chapter 4, the dynamical properties of saturated spherical shells was investi-

gated analytically in the exchange-dominated regime. It was found that the presence

of surface anisotropy plays an important role in the size dependent dynamical prop-

erties of spherical shells. Similar size dependant behaviour to the solid sphere was

found for lower-order eigenvalues in the presence of surface anisotropy up to a thick-

ness of R1/R2 ≈ 0.5 after which large deviations began to occur, where R1 and R2 are
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the inner and outer radii, respectively. Moreover, the presence of surface anisotropy

was found to introduce a dependence of the zeroth mode on shell thickness, remov-

ing the degeneracy with the ferromagnetic resonance and leading to a pronounced

size dependence of this mode for thin shells. In the final section of this chapter, the

influence of a multilayered structure on the dynamical behaviour was investigated.

The presence of a thin exchange-coupled outer shell was found to greatly shift the

frequency of the exchange modes. This shift can be towards either higher or lower

frequencies depending on the instrinic material parameters of the outer concentric

shell.

In Chapter 5, the high-frequency dynamic behaviour of concentric permalloy

nanorings supporting vortex domain structures was investigated by micromagnetic

simulations. The long-range magnetostatic interactions were calculated and the im-

pact on the ferromagnetic resonance was studied as a function of the geometric pa-

rameters of the system. The dynamic susceptibility was found to be significantly

impacted by the presence of the long-range interaction between each ring. The cou-

pling between neighbouring elements allowed for modulation of the frequency and

amplitude of the resonances. The spatial localization of the uniform mode was also

found to vary as a function of ring separation, corresponding to large variation in the

amplitude of the real and imaginary components of the dynamic susceptibility.

In Chapter 6, the dynamic susceptibility of ferromagnetic spherical shells was in-

vestigated. The frequency of the higher order modes in saturated nanoshells were

found to scale as 1/R2
2 in agreement with analytical calculations. A dependence on

shell thickness was observed for the zeroth exchange mode even in the absence of

surface anisotropy, which was attributed to the emergence of the 3D onion state in

shells. Micromagnetic simulations of ground state structures revealed that a fam-

ily of higher-order flexural modes can be excited in spherical shells which have been

relaxed into the vortex state. In nanoshells these resonances appeared as narrow,

intensive resonance bands localized primarily at the particle surface. For larger parti-
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cles broader resonance bands were observed in the magnetic susceptibility, in addition

to high-frequency resonances across the 15− 25 GHz frequency band.

In Chapter 7, the dynamical properties of relatively thick (≈ 80 nm) permal-

loy elements supporting a vortex domain structure were investigated with numerical

micromagnetic simulations, and compared with experiment. It was found that the

static magnetisation configuration supports domain walls with perpendicular out-

of-plane components which are three-dimensional in character. The polarity of the

out-of-plane magnetisation can be switched dynamically in response to a magnetic

pulse excitation. This is achieved by the formation of bullet-like excitations which

propagate along the domain walls towards the corners of the element. Moreover, the

presence of an external DC field was found to play an important role in the static

properties of the permalloy elements.

In Chapter 8, a hybrid electromagnetic and micromagnetic method was proposed

based on the finite-difference time-domain (FDTD) Maxwell’s equation framework

which can model electromagnetic wave interaction with metallic magnetic nano-

structures. This numerical scheme offered efficiency and stability for solving the

complex system of the combined Landau-Liftshitz-Gilbert (LLG) and Maxwell’s equa-

tions. Numerical simulations were performed on semi-infinite permalloy prisms for

sizes in the range 250−1000 nm. The conductive properties of the prism were found to

significantly impact the spatial distribution of the ferromagnetic resonance. Moreover,

the partial penetration of the microwave into the material allowed for an additional

edge mode to be excited, which played the dominant role in microwave absorption.

The results indicate the importance of the combined electromagnetic-micromagnetic

numerical approach to account for Eddy current screening and damping inside the

magnetic material.
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9.2 Future work

This thesis provided new found understanding into the topological, micromagnetic

and electromagnetic properties of magnetic particles and their high-frequency be-

haviour. In particular, this research illustrates the rich parameter space available

from the interplay between these intrinsic parameters to design and engineer magnetic

particles or metastructures and composities supporting high-frequency permeabilities.

Building on this understanding, future work can focus on the resonance properties

of magnetic particles with other geometrical features and domain configurations, such

as novel curvature-induced DMI features. This research also focused on studying the

dynamic response of spherical particles excited by small magnetic and electromagnetic

fields to maintain operation in the linear regime of the dynamic response. Future work

can consider the impact of increasing the magnitude and polarisation of the excitation

field and nonlinear phenomena on the dynamic magnetic response.

The theoretical work and understanding of single particle behaviour developed

here can be used to extend effective medium theories to predict the resonant proper-

ties of ensembles of particles with different packing fractions and dispersion of their

magnetic and geometrical parameters. This would provide closer correlation between

theoretical and experimental permeability spectra, and enable a quick route to deter-

mine the impact of varying composite parameters on the effective permeability.

The FDTD-LLG code can be extended to include multi-scale meshing in addition

to graphical processing unit capabilities to improve computational load for large scale

simulations of multi-particle arrays of novel magnetic particles supporting complex

domain configurations. Development of a graphical user interface can further enable

users to create and mesh geometries and materials in a user-friendly fashion.

The work in this thesis provides fundamental grounding to the extensions outlined

above and to enable the design and engineering of high-frequency, high permeability

composites for a wide range of applications in telecommunications, microwave devices

and systems and spintronics.
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