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ABSTRACT

We hypothesize that the convective atmospheric boundary layer is marginally stable when the damping

effects of turbulence are taken into account. If the effects of turbulence are modeled as an eddy viscosity and

diffusivity, then an idealized analysis based on the hypothesis predicts a well-known scaling for themagnitude

of the eddy viscosity and diffusivity. It also predicts that the marginally stable modes should have vertical and

horizontal scales comparable to the boundary layer depth. A more quantitative numerical linear stability

analysis is presented for a realistic convective boundary layer potential temperature profile and is found to

support the hypothesis.

1. Introduction

Large-eddy simulations (LESs) of the dry convective

boundary layer, with homogeneous bottom boundary

conditions and in the absence ofmeanwind, are found to

be dominated by plumes and thermals whose horizontal

and vertical scales are comparable to the boundary layer

depth z* (e.g., Schmidt and Schumann 1989). These

length scales seem to require some explanation, given

that when the equations of inviscid fluid dynamics are

linearized about a convectively unstable basic state, the

largest growth rates are found for the smallest horizontal

scales [e.g., Emanuel (1994), chapter 3, in the limit of

large Rayleigh number].

Observations of convective boundary layers in the

real world also often show structures with horizontal and

vertical scales comparable to z* (e.g., Tennekes and

Lumley 1972; Garratt 1992). Structures withmuch larger

horizontal scale (aspect ratios up to 20 or 30) such as

rolls and open and closed cells, are also observed, es-

pecially in cloudy boundary layers over the ocean (e.g.,

Atkinson and Zhang 1996) though there remain many

open questions related to the roles of shear, moisture,

radiation, and inhomogeneous boundary conditions, for

example, in determining these structures.

Experiments and simulations of Rayleigh–Bénard con-

vection, the classic prototypical convection problem, at

high Rayleigh numbers also show the emergence of

‘‘superstructures’’ with horizontal scale around 6–7

times the domain depth (e.g., Pandey et al. 2018;

Stevens et al. 2018). Again, there are open questions,

for example, regarding the role of a finite Rayleigh num-

ber, in our understanding of these superstructures. Also,

there are some key difference between Rayleigh–Bénard
convection and the convective boundary layer. First,

Rayleigh–Bénard convection has symmetrical lower and

upper boundary conditions and a mean heat flux that is

independent of height, whereas the convective boundary

layer is capped by an inversion layer where the heat flux

goes to zero. Second, in the convective boundary layer the

turbulent length scale adjacent to the lower boundary is

assumed to be determined by a roughness length z0, rather

than molecular viscosity and diffusivity, and hence the

Rayleigh number does not enter the problem.

In this note we leave aside many of these complexities

of real-world convection and of Rayleigh–Bénard con-

vection and focus on the dry convective boundary layer

with homogeneous bottom boundary conditions and in

the absence of mean wind. Although this idealized case

may only be exactly realizable in LES or direct numer-

ical simulation, we believe the ideas put forward may

still have some real-world relevance.

Under steady forcing of the convective boundary

layer with homogeneous boundary conditions, the time

scale for the evolution of the horizontal mean state and

the statistics of the turbulence is much longer than the

individual eddy turnover time. In other words, a turbulent

quasi equilibrium is established. This quasi equilibrium is

maintained by a robust negative feedback: stronger tur-

bulence will quickly lead to a stronger turbulent cascadeCorresponding author: John Thuburn, j.thuburn@exeter.ac.uk
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and dissipation of turbulent kinetic energy, and vice versa

for weaker turbulence.

In this quasi equilibrium, eddies of any given scale

will extract energy from (or perhaps lose energy to)

the stratification of the mean state, and, in general, will

both transfer energy to and receive energy from eddies

of other scales through nonlinear turbulent interac-

tions. Let us conceptually separate these latter two and

refer to them as the turbulent forcing effect and the

turbulent damping effect, respectively. At any given

scale, the interaction with the mean state and the

turbulent forcing and damping effects must balance,

to a good approximation.

Now consider the behavior of eddies of some given

scale. If we neglect the turbulent forcing effect at that

scale, then those eddies must be damped, or at least not

grow, as a result of interaction with the mean state and

turbulent damping. If the turbulent damping effect

could be taken into account in a linear stability anal-

ysis, then we must find that, in contrast to the purely

inviscid linear case, all modes are either damped or

marginally stable.

In this note we discuss the hypothesis that there is a

single scale at which such linear modes are marginally

stable. The marginal stability hypothesis is interesting

for several reasons. With a plausible assumption about

the form of the turbulent damping, it leads to the pre-

diction that the horizontal and vertical scale of the

marginal modes should be comparable to z*. It also

predicts a well-known scaling for the strength of the

damping effect. Moreover, it implies that eddies on the

scale of the marginal mode are maintained by a bal-

ance between instability of the mean state and turbu-

lent damping, with negligible turbulent forcing from

eddies of other scales; thus, it has implications for the

direction of spectral energy transfer by turbulence at

different scales.

Similar marginal stability ideas have been applied in

other contexts. The idea that deep convection acts to

quickly restore a moist convectively unstable atmo-

spheric profile to neutrality through much of the tro-

posphere is well known (e.g., Emanuel et al. 1994), and

this ‘‘convective adjustment’’ idea is the basis for some

parameterizations of convection in weather and climate

models (e.g., Betts and Miller 1986; Emanuel 1994). An

analogous idea has been proposed for baroclinic insta-

bility (Stone 1978; Lindzen and Farrell 1980). However,

it is not so straightforward to determine whether the

mean atmospheric state is close to baroclinic marginal

stability. Moreover, the time scale for the baroclinic

adjustment process is comparable to the time scales of

the processes, such as radiation, that force the mean

state toward instability (Barry et al. 2000). This has

motivated some authors to propose that the atmosphere

undergoes a ‘‘weak baroclinic adjustment’’ in which a

nonlinear turbulent equilibrium is reached even though

the mean state is unstable to linear modes (Vallis 1988;

Stone and Branscombe 1992). Our hypothesis for the

convective boundary layer might be considered a vari-

ation on this weak adjustment idea. An attractive fea-

ture, though, is that the damping effect of the nonlinear

turbulence can be modeled and taken into account in a

quantitative linear stability analysis.

In discussing marginal stability it is important to note

that we are concerned with perturbations to a state of

fully developed turbulence, not to a state of rest. In

section 2 we write down the equations governing such

perturbations. To make progress, it is proposed that the

turbulent damping effect can be modeled by an eddy

viscosity and diffusivity.

In section 3 we consider an idealized situation with

uniformunstable stratification and uniformeddy viscosity

and diffusivity with a turbulent Prandtl number 5 1.

These assumptions are crude and unrealistic and are

made for mathematical convenience in order to confirm

the general plausibility of the hypothesis. Nevertheless,

similar analyses have proved useful in diagnosing the

onset of resolved boundary layer convection in numerical

models (Piotrowski et al. 2009; Ching et al. 2014). With

these assumptions, the marginal stability hypothesis pre-

dicts that the strength of the eddy viscosity should scale

like z*w*, where w* is a convective velocity scale, in

agreement with well-known convective boundary layer

scaling theory (e.g., Holtslag 1998). It also predicts that

the vertical and horizontal scales of the marginal mode

should be comparable to z*.

In section 4 we perform a direct check on the marginal

stability hypothesis by carrying out a numerical linear

stability analysis for a realistic convective boundary

layer potential temperature profile taken from a large-

eddy simulation, and using a typical convective bound-

ary layer eddy viscosity profile. The results are found to

be consistent with the marginal stability hypothesis.

2. Linearized equations

Assume that the evolving turbulent state of a con-

vective boundary layer satisfies the nonlinear Boussinesq

equations:

›u

›t
1=P2 bẑ52u � =u , (1)

›b

›t
1wN2

0 52u � =b , (2)

= � u5 0. (3)
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Here ẑ is the vertical unit vector, u is the velocity vector,

P is the modified pressure, b 5 g(u 2 u0)/u00 is the

buoyancy, and N2
0 5 (g/u00)›u0/›z is the background

buoyancy frequency squared, where g is the gravita-

tional acceleration, u00 is a constant reference poten-

tial temperature, and u0(z) is a background potential

temperature profile. A perturbed state given by u1 u0,
P 1 P0, and b 1 b0 will obey analogous equations.

Subtracting the perturbed equations from the original

equations gives the following equations for the evo-

lution of the perturbations:

›u0

›t
1=P0 2 b0ẑ52= � (uu0 1 u0u1 u0u0) , (4)

›b0

›t
1w0N2 52u0 � =(b2 b)2 u � =b0 2 u0 � =b0

52= � [u0(b2b)1 ub0 1u0b0] , (5)

= � u0 5 0 : (6)

Here b is the horizontal mean buoyancy.We have added

w0›b/›z to both sides of (5) and definedN2 5N2
0 1 ›b/›z

so that the left-hand sides of (4)–(6) represent the linear

interaction of the perturbation with the horizontal mean

state, and we have assumed u5 0. The right-hand sides

represent the nonlinear interaction of the perturbation

with the turbulence field. These nonlinear interactions

are complicated and, in general, will both transfer en-

ergy to the perturbations and extract energy from them,

that is, both force them and damp them.

We propose to model the damping effect of turbu-

lence on the perturbations in terms of an eddy viscosity

and diffusivity, and thus write

›u0

›t
1=P0 2 b0ẑ5= � fK[=u0 1 (=u0)T]g1 S

u
, (7)

›b0

›t
1w0N2 5= � (K=b0)1 S

b
. (8)

Here the Su and Sb terms represent the turbulent

forcing effect.

Modeling the damping effect as an eddy viscosity and

diffusivity is plausible for two reasons. First, the effects

of eddies on the mean state of the convective boundary

layer, that is, the horizontal mean of the right-hand sides

of (1) and (2), can be modeled quite successfully by a

combination of a (local) eddy viscosity and diffusivity

together with a countergradient contribution (e.g.,

Holtslag and Boville 1993) or a mass-flux contribution

(e.g., Siebesma et al. 2007) to capture nonlocal and

upgradient transport. Here, since we are interested in

the effects of turbulence on the eddies themselves, that

is, the right-hand sides of (4) and (5), rather than the

mean state, we retain only the eddy viscosity and dif-

fusivity contribution. Second, for three-dimensional

turbulence, an eddy viscosity and diffusivity is con-

sidered to be a reasonable model of the effects of

subgrid-scale eddies on resolved scales, and is widely

used in LES.

For the idealized analysis in section 3, we will take K

to be uniform. For the numerical linear stability analysis

of section 4, we will assume that a typicalK profile of the

form and amplitude widely used in modeling the effect

of eddies on the mean state of the convective boundary

layer is also appropriate to model the turbulent damping

of the eddies themselves.

3. Idealized analysis

Some progress can bemade analytically by assuming a

constant unstable mean stratification N2 , 0 and con-

stant K. We also neglect Su and Sb for now; we shall

return to them in section 4. Dropping the primes for

clarity, (7), (8), and (6) then become

›u

›t
1=P2 bẑ5K=2u , (9)

›b

›t
1wN2 5K=2b , (10)

= � u5 0 : (11)

With these assumptions, (9)–(11) are formally equiv-

alent to the governing equations for Rayleigh–Bénard
convection with a Prandtl number of unity, (e.g.,

Emanuel 1994, chapter 3) and much of the following is

implicit in the discussion of that problem. For sim-

plicity we assume an infinite horizontal domain and

free-slip boundaries at z 5 0, z*.

The symmetries of the constant-coefficient equa-

tions, (9)–(11), imply that they have eigenmode solu-

tions proportional to exp[i(k � x2 vt)] (or the real part

of a constant multiple thereof, in order to satisfy the

boundary conditions), where k is the wavevector and

v is the (complex) frequency. It is enough to consider

the two-dimensional x–z vertical slice case, since we

are free to orient the horizontal axes so that the y com-

ponent of the velocity and of the wavevector vanish. The

linearized equations are then

(Kjkj2 2 iv)u1 ikP5 0, (12)

(Kjkj2 2 iv)w1 imP2 b5 0, (13)

(Kjkj2 2 iv)b1wN2 5 0, (14)

ku1mw5 0, (15)
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where (u,w)5 u and (k,m)5 k. Eliminating u,w, b, and

P then leads to

v56

�
k2N2

k2 1m2

�1/2

1 iK(k2 1m2) . (16)

Recalling that N2 , 0, this gives a growth rate

r52Im(v)56

�
k2(2N2)

k2 1m2

�1/2
2K(k2 1m2) . (17)

Here the first term (with a 1 sign) represents the ten-

dency for modes to grow due to the unstable stratifica-

tion. It is small for small k because such modes are

inefficient at extracting energy from the unstable strat-

ification, and it saturates at around jNj for k*m. The

second term represents the damping due to viscosity and

diffusivity. It increases inmagnitude as k andm increase.

Now consider the fastest growing (or slowest decay-

ing) mode. For a given k, the growth rate (17) increases

asm decreases. However, the vertical scale of growing

modes will be limited by the domain depth, so we set

m 5 p/z*. For this m, the value of k that gives the

maximum r is determined by setting ›r/›k 5 0, giving

(k2 1m2)3/2 5
m2jNj
2kK

. (18)

Our hypothesis is that the maximum growth rate is

close to zero, in which case (17) implies

kjNj’K(k2 1m2)3/2 . (19)

Substituting from (18) then gives

k2 ’
1

2
m2 ’

1

2

p2

z2
*
. (20)

Thus, the horizontal scale of the fastest growing mode is

comparable to its vertical scale.

Substituting these values of k and m in (19) gives

K’ cz2*jNj , (21)

where c 5 2/(33/2p2) is a dimensionless constant.1 Now,

the vertical velocity scaling for the convective boundary

layer is usually expressed in terms of the surface po-

tential temperature flux Q* (Deardorff 1970):

w3

*5 gz*Q*/u00 . (22)

Writing the potential temperature flux in terms of the

eddy diffusivity gives

Q*’2K
›u

0

›z
’2KN2u

00
/g . (23)

So, eliminating Q* between (22) and (23) allows the

vertical velocity scale to be expressed in terms of jNj:

w3

*’ z*KjN2j . (24)

Finally, eliminating jNj between (21) and (24) gives

K’ c2/3z*w*. (25)

This scaling of K agrees with that predicted by more

conventional convective boundary layer scaling theory

(e.g., Holtslag 1998).

For a realistic convective boundary layer N2 varies

strongly with height and (23) will no longer hold locally.

Nevertheless (21), (24), and (25) should still be expected

to hold for some suitable average values of K and N2, as

sampled by the structure of the marginally stable mode,

and would also be expected on dimensional grounds.

4. Numerical linear stability analysis

The above idealized analysis suggests that the mar-

ginal stability hypothesis is plausible. However, since

there are only a few dimensional parameters in this

problem, other plausible arguments could lead to the

same predicted scalings. Moreover, in a realistic con-

vective boundary layer the stratification is not uniform;

2›u0/›z peaks strongly near the surface. Therefore,

smaller-scale modes confined near the surface will

experience a stronger unstable mean stratification than

larger-scale modes. There is thus a competition be-

tween the preferential growth of small scales due to the

instability and the preferential damping of small scales

by the eddy viscosity and diffusivity, and it is not

obvious a priori which one should dominate. To ad-

dress these points a more quantitative analysis is car-

ried out for a realistic potential temperature profile.

The potential temperature profile used is shown in

Fig. 1. It is taken from an LES of a dry convective

boundary layer solving the nonlinear Boussinesq equa-

tions and using a Smagorinsky turbulence closure. The

case is similar to that of Sullivan and Patton (2011).

Starting from an idealized, well-mixed initial potential

temperature profile in the convective boundary layer,

capped by a strong inversion above 1000m and with

an imposed weak background geostrophic velocity of

1 In the present notation the Rayleigh number is given by

Ra 5 jN2jz4*/K2, and the constant c is equal to one upon the square

root of the critical Rayleigh number for Rayleigh–Bénard con-

vection with free-slip boundaries (Emanuel 1994, section 3.1).
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1ms21, the boundary layer is forced by a constant sur-

face potential temperature flux Q*5 0:24Kms21. The

horizontal domain is 9.6 km 3 9.6 km with doubly peri-

odic boundary conditions, discretized on a grid with

horizontal spacingDx5 25m. In the vertical it has a rigid

lid at 2000m with grid spacing Dz 5 10m. The simula-

tion was spun up for 3.5 h, corresponding to about 25t*
(see Sullivan and Patton 2011) where t*5 z*/w* is the

eddy turnover time. The potential temperature profile

was then diagnosed as a horizontal mean and a 0.5-h

(’4t*) time average. (This averaging time should be

sufficient for a first-order quantity such as potential

temperature, and increasing the averaging period did not

produce any significant differences in the mean potential

temperature profile.) For this profile z*’ 1180m, giv-

ing w*’ 2:1m s21.

To test the marginal stability hypothesis a numerical

linear stability analysis was carried out. The Boussinesq

equations, (7), (8), and (6), were used, with b deter-

mined by the potential temperature profile shown in

Fig. 1. The disturbances were assumed proportional to

exp(ikx) so that horizontal derivatives could be evalu-

ated exactly. The linear equations were discretized in

the vertical on a uniform grid of resolution Dz 5 10m

with a Lorenz grid placement of u, as in the LES model.

Seeking solutions proportional to exp(2ivt) then leads

to a vertical one-dimensional eigenvalue problem for v,

which was solved numerically.

The numerical stability analysis was carried out for a

range of values of k, corresponding to horizontal scales

ranging from a fraction of z* to several times z*. For

each value of k, the linear mode with the fastest growth

rate was found; for the case with zero eddy viscosity and

diffusivity, that growth rate is plotted with the circular

symbols in Fig. 2. It is seen that the growth rate increases

almost linearly with horizontal wavenumber k. Thus,

the modes with shortest horizontal scale do indeed

grow fastest, consistent with the statement made in

the first paragraph of section 1. However, in contrast to

the predictions of the idealized analysis (section 3), the

growth rate does not asymptotically approach a con-

stant value for k*p/z*. In the present case with non-

uniform stratification, as k increases the fastest growing

modes become increasingly confined near the lower

boundary (see Fig. 3 below) where they experience

more strongly unstable stratification.

The analysis was then repeated with the inclusion of

eddy viscosity and diffusivity in the u,w, and u equations

to represent the damping effects of the turbulence. The

eddy viscosity and diffusivity were assumed isotropic,

with vertical profile given by Holtslag (1998):

K5 z*w*
~k

"�
u*
w*

�3

1 39~kẑ

#1/3

ẑ(12 ẑ)2 , (26)

where u* is the friction velocity, ~k5 0:4 is von Kármán’s
constant, and ẑ5 z/z* is the height normalized by the

boundary layer depth. Here the friction velocity is very

small, (u*’ 0:08w*; Sullivan and Patton 2011), so it has

negligible effect on the results. The full momentum and

local angular momentum conserving form of the eddy

viscosity term= �s is used, withs5K[=u1 (=u)T], and

with no-slip boundary conditions at the bottom and top

boundaries.

In the viscous case, selecting the linear mode with the

fastest growth rate (or slowest decay rate) no longer

picks out the boundary layer modes of interest because

these are generally damped, whereas gravity modes

confined to the region above the boundary layer (as well

as the Lorenz grid computational mode; Holdaway et al.

2012) have growth rates close to zero. Therefore, in-

stead, for each k, we identify the mode with the largest

rate of buoyant production of kinetic energy. In the in-

viscid case this mode of maximum kinetic energy pro-

duction is also the fastest growing mode. In the viscous

case the mode of maximum kinetic energy production is

generally similar in structure to that in the inviscid case

(except when kz* is small) but is neutral or damped.

The triangular symbols in Fig. 2 show the growth rates

of the mode of maximum kinetic energy production for

each k in the viscous case. All of the modes are now

either neutral or damped. There is a maximum growth

rate close to zero for modes with k’p/z*. For these

modes, the turbulent damping effect almost completely

FIG. 1. Background potential temperature profile for the numerical

linear stability calculations.
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cancels the growth due to the unstable stratification,

consistent with the marginal stability hypothesis, despite

the simple form of the eddy viscosity and diffusivity used

to model the turbulent damping effect.

Modes with k’ 0 also have growth rate close to zero.

The idealized analysis, on the other hand, predicts a fi-

nite damping rate as k / 0 with finite m [(17)].

Examination of the mode structures shows that the

small-k viscous modes in Fig. 2 are dominated by large

amplitude above the boundary layer where K is negli-

gible and have only small amplitude in the boundary

layer itself; thus both the unstable stratification near the

surface and the viscous damping have only a small effect

on these modes.

Modes with large k are strongly damped. For large k

the viscous damping effect overwhelms the instability

due to stratification, as it does in the idealized analysis.

To sustain a turbulent quasi equilibrium, those modes

that are damped in the linear analysis must be main-

tained by turbulent forcing by eddies of other sca-

les—the Su and Sb terms in (7) and (8).

Figure 3 shows the vertical structure ofw for themode

of maximum kinetic energy production for kz*/p5 1, 2,

and 3 in the inviscid and viscous cases. The results con-

firm that as the horizontal scale shrinks the vertical scale

also shrinks, so that the mode feels, on average, a more

strongly unstable stratification. The viscous modes are

slightly deeper and less skewed toward the bottom

boundary than their inviscid counterparts. For kz*/p’ 1

the mode of maximum kinetic energy production fills

the depth of the boundary layer, especially in the

viscous case.

We have repeated this calculation for a number of

other potential temperature profiles corresponding to

different boundary layer depths and different surface

potential temperature fluxes. In all cases similar results

were found, consistent with a k5p/z* mode being close

to marginal stability. Across these cases themaximumK

varied by over 50%, thus providing some confirmation

of the scalings predicted by the hypothesis, albeit over a

fairly limited parameter range.

5. Summary and discussion

We hypothesize that the dry convective atmospheric

boundary layer is marginally stable when the damping

effects of turbulence are taken into account, and that the

preferential damping of small scales by the turbulence

means that the marginally stable mode has horizontal

and vertical scale comparable to the boundary layer

depth. If these damping effects are modeled by an eddy

viscosity and diffusivity, then an idealized analysis pre-

dicts that themagnitude of the eddy viscosity follows the

well-known scaling K ; z*w*, and supports the idea

that the marginal mode has length scale;z*. A detailed

linear stability analysis for a realistic background po-

tential temperature profile also supports the hypothesis.

Note that the hypothesis only predicts the magnitude

of the eddy viscosity, not the details of its vertical profile.

Further physical assumptions would be needed to pre-

dict the profile.

The hypothesis assumes an equilibrium between the

growth of boundary layer eddies due to instability and

their forcing and damping by turbulence. Such an

equilibrium might not hold if there is a rapid change in

forcing or if the boundary layer moves over surfaces

with different properties. In the absence of viscosity

the growth time scale of the kz*/p 5 1 mode is a little

over 500 s, very close to z*/w* (Fig. 2). This suggests

that the equilibration time scale is also of this order.

Such an equilibration time scale is mentioned by

Kaimal et al. (1976), Schmidt and Schumann (1989),

and is consistent with simple dimensional arguments

and also with the initial behavior in numerical turbulent

decay experiments (e.g., Nieuwstadt and Brost 1986).

The marginal stability hypothesis can be expected to

hold on time scales longer than this turbulent equili-

bration time scale.

In LES results the horizontal wavenumber of the

spectral peak in w and in vertical potential tempera-

ture flux is observed to decrease with height in the

lowest part of the boundary layer below the mixed

FIG. 2. Growth rate vs normalized horizontal wavenumber ig-

noring eddy viscosity and diffusivity (circles) and allowing for eddy

viscosity and diffusivity (triangles). For each horizontal wave-

number, a linear stability analysis is carried out and the mode that

has the strongest buoyant production of kinetic energy is selected.

The dashed vertical line indicates a horizontal wavenumber k 5
p/z*, where z* is the boundary layer depth.
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layer (e.g., Kaimal et al. 1976). Some authors have

interpreted this as indicating that the large thermals

in the boundary layer grow through a merging of

smaller-scale plumes as they rise from the surface

(Mellado et al. 2016). Others, however, argue that

small-scale potential temperature perturbations be-

low the mixed layer are quickly dissipated and there is

no sign of merger (Schmidt and Schumann 1989). The

results shown in Fig. 3 may be relevant to this de-

pendence of the spectral peak on height. Also, the

results shown in Fig. 2 support the idea that the

largest-scale eddies in the dry convective boundary

layer grow primarily by extracting energy from the

unstable background potential temperature profile

rather than by an upscale energy cascade.

In this note we have focused on the case of very weak

background horizontal wind, for which u* ’ 0 and the

effects of background shear on the boundary layer

turbulence may be neglected. It seems plausible that,

even in the presence of a significant background hor-

izontal wind, a nonlinear turbulent equilibrium could

be achieved in which instability of the mean flow

provides the energy source for the turbulence and

turbulent dissipation mechanisms provide the sink. In

that case a similar marginal stability hypothesis might

hold, though we have not investigated this.

This note highlights a robust dynamical negative

feedback controlling the strength and the length

scales of the turbulence in the convective boundary

layer. One of the main motivations for our interest in

this problem is its possible relevance to moist cumu-

lus convection. First, cumulus updrafts for shallow

convection have been observed to originate in the

boundary layer (LeMone and Pennell 1976), so the

length scales of cumulus clouds, at least near cloud

base, are expected to be related to the boundary layer

eddy length scales. Second, it is possible that similar

arguments or extensions of them might be applicable

to the turbulent behavior in moist cumulus convec-

tion above the boundary layer. For example, there is

currently a great deal of uncertainty over turbulent

entrainment and detrainment rates for cumulus con-

vection and how to represent them in weather and

climate models (de Rooy et al. 2013), and model be-

havior can be very sensitive to how they are repre-

sented (e.g., Romps 2016, and references therein). Any

robust constraints on the possible behavior would be

very useful.
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