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Abstract 

 

Synthetic biology is the engineering of life to imbue non-natural functionality. As such, synthetic 

biology has considerable commercial potential, where synthetic metabolic pathways are utilised to 

convert low value substrates into high value products. High temperature biocatalysis offers several 

system-level benefits to synthetic biology, including increased dilution of substrate, increased 

reaction rates and decreased contamination risk. However, the current gamut of tools available for 

the engineering of thermostable proteins are either expensive, unreliable, or poorly understood, 

meaning their adoption into synthetic biology workflows is treacherous. This thesis focuses on the 

development of an accessible tool for the engineering of protein thermostability, based on the 

evolutionary biology tool ancestral sequence reconstruction (ASR). ASR allows researchers to walk 

back in time along the branches of a phylogeny and predict the most likely representation of a 

protein family’s ancestral state. It also has simple input requirements, and its output proteins are 

often observed to be thermostable, making ASR tractable to protein engineering. 

 

Chapter 2 explores the applicability of multiple ASR methods to the engineering of a carboxylic acid 

reductase (CAR) biocatalyst. Despite the family emerging only 500 million years ago, ancestors 

presented considerable improvements in thermostability over their modern counterparts. We 

proceed to thoroughly characterise the ancestral enzymes for their inclusion into the CAR 

biocatalytic toolbox. 

 

Chapter 3 explores why ASR derived proteins may be thermostable despite a mesophilic history. An 

in silico toolbox for tracking models of protein stability over simulated evolutionary time at the 

sequence, protein and population level is built. We provide considerable evidence that the sequence 

alignments of simulated protein families that evolved at marginal stability are saturated with 

stabilising residues. ASR therefore derives sequences from a dataset biased toward stabilisation. 

 

Importantly, while ASR is accessible, it still requires a steep learning curve based on its requirements 

of phylogenetic expertise. In chapter 4, we utilise the evolutionary model produced in chapter 3 to 

develop a highly simplified and accessible ASR protocol. This protocol was then applied to engineer 

CAR enzymes that displayed dramatic increases in thermostability compared to both modern CARs 

and the thermostable AncCARs presented in chapter 2. 
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Preface 

Chapters 3, 4 and 5 of this thesis are reformatted manuscripts that have either been 

submitted to scientific journals, or are prepared for submission to scientific journals. Each of 

these chapters will contain a preface explaining author contributions and the publication 

status of the works. Bibliographies for each manuscript are collated in the bibliography 

chapter. 

Chapter 1 consists an extended introduction, introducing and detailing each manuscript’s 

context in their broader fields. Some repetition between the introduction and the 

introduction and the subsequent chapters may occur as each manuscript is individually 

introduced.  

An additional publication by the thesis author is presented in the appendices (Finnigan et 

al., 2017). The foundational work in this publication preludes chapters 3 and 5, and has 

been included as a complete manuscript in PDF format. A brief description of this work is 

presented as an addendum to chapter 1.  
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1.1 Enzymes in Synthetic biology 

1.1.1 Defining synthetic biology 

1.1.1.1 A clear definition 

Synthetic biology, colloquially SynBio, is a famously difficult to define field (Serrano, 2007). 

In a European Union report from a high-level expert group of scientists, the agreed upon 

definition of synthetic biology reads as “the engineering of biology: the synthesis of 

complex, biologically based (or inspired) systems which display functions that do not exist in 

nature” (Directorate-General for Research European Commission, 2005). In the United 

Kingdom’s 2012 roadmap for synthetic biology, the field was defined as “the design and 

engineering of biologically based parts, novel devices and systems as well as the redesign of 

existing, natural biological systems” (Clarke et al., 2012).   

 

To expand both accepted definitions, synthetic biology distils life to a complex but tangible 

system that takes on inputs, and in response produces outputs. Life as a unit system 

contains a nested set of interacting hierarchical systems that can all be engineered 

(Cardinale and Arkin, 2012). At the base level is an organism’s DNA. DNA encodes proteins, 

which perform cellular functions including metabolic pathways. Metabolic pathways are 

multi-step chemical reactions that provide energy for cell survival and reproduction. In 

higher taxa, cells form multi-cellular structures. Whole organisms can also converge into 

consortia (Endy, 2005, Lee et al., 2012; Cardinale and Arkin, 2012). At its core, synthetic 

biology is the use of engineering frameworks to enact modifications in the basal system 

(DNA) in order to induce non-natural effects at higher systematic levels (Endy, 2003). 

Synthetic biologists aim to identify, standardise and wholly characterise individual genetic 

elements, converting them into modular parts with predictable outputs (Smolke et al., 

2018). Such predictability allows for computational modelling of part interactions. Modelling 

allows for the informed design of genetic circuits, providing mathematical directive for 

engineering decisions (Chandran et al., 2008). Synthetic biology also includes the focusing 

and simplification of biological systems. For example single metabolic pathways can be 

isolated in vitro to generate routes for complex biocatalytic conversions without extraneous 

factors (Shi et al., 2017; Lu, 2017). Furthermore, the definition of synthetic biology can be 
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expanded to include the use of single or multiple biological elements to produce entirely 

novel functionality. For example DNA base-pairing can be utilised to generate complex, 

novel and functional three dimensional structures by DNA origami (Benn et al., 2018; Hong 

et al., 2017).  

 

1.1.1.2 “First wave” synthetic biology 

Synthetic biology sits at the intersection of three broader fields: engineering, biology and 

chemistry. Taking an engineering perspective, synthetic biology is a field for generating 

standardised tools and protocols that enable the bottom-up engineering of life at every 

level to produce defined and predictable outputs (Martin et al., 2009). From a biology 

perspective, tools to probe the plasticity of life provide avenues to understand and test 

natural biological systems at every level (Keller, 2009). From a chemistry perspective, 

synthetic biology is the optimisation over every system level to efficiently generate chemical 

products at high efficiency (Hall et al., 2012; Luo et al., 2013).  

 

Synthetic biology’s origins can be traced back to 1961 (Cameron et al., 2014). Early 

experiments on the lac operon in E. coli showed that environmental inputs lead to defined 

cellular outputs based on the control of gene expression (Jacob and Monod, 1961). This 

work led to the hypothesis that genetics that underpin the functionality of life are 

commensurate to electrical circuitry (Cameron et al., 2014). In its simplest sense, a genetic 

circuit involves a number of genetic elements that interplay to produce a response or 

output that is predictable, consistent and controlled. Consider a simple electrical circuit 

containing a switch, a resistor and a bulb. Direct parallels can be drawn to a genetic circuit 

that contains a promotor, a ribosome binding site and a gene for a fluorescent protein 

(figure 1). Importantly, electrical circuitry is modular and compatible, and each part’s 

function and specification is well documented. Therefore the combination of well 

understood parts allows for the generation of complex networks that have predictable 

outputs.  
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Figure 1 – Genetic circuits are analogous to simple electronic circuits 

Simple electronic circuits used for teaching electronics consist of standard, modular parts with well-

defined and predictable function. Basic synthetic biology aims to construct genetic circuits in the 

same manner, where each part is fully characterised and the output from the pathway can be 

predicted. A promoter and ribosome binding site together act as a switch and a resistor. In the 

context of a resistor, properties of the promoter and ribosome binding site set the rate of 

transcription and translation of the gene (the brightness of the bulb in the circuit).   

 

 

Purnick and Weiss (2009) describe two waves of contemporary synthetic biology. In the first 

wave, the concept of modularity is a central tenet. For simple and accessible development, 

a unified DNA assembly process is utilised to combine functional genetic elements into 

circuits. All new parts are subsequently developed to work with the assembly process, 

providing ease of prototyping. Multiple parts that work together in composite to produce a 

predictable output can together be considered a single part, that is equally combinatorial 

with other parts and modules (Canton et al., 2008; Serrano, 2007). Additionally, early 

guiding principles outlined the importance of clearly defined chassis organisms into which 

engineered biological systems can be integrated. These organisms must be malleable to 

engineering workflows, and present a number of tools that allow for engineering at multiple 

levels. The chassis is the platform into which novel circuitry is integrated, tested and run 

(Adams, 2016). Organism chassis act as both the physical housing for the circuitry, but also 

provide a pool of metabolites and pre-existing circuitry onto which new parts can be 

plugged into. Escherichia coli is an obvious heavy-use example in the synthetic biology lab. 

The organism benefits from a 20 minute doubling time, ease of genetic modification 

through the utilisation of plasmids, and the huge body of research underlying its application 

(Cameron et al., 2014).  
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As genetic parts are encoded in DNA, the first wave synthetic biology grew out of significant 

advancements in the accessibility and affordability of synthetic DNA developed around 20 

years ago. In a keynote speech at the 2018 international Genetically Engineered Machine 

Giant Jamboree, early synthetic biology adopter Professor George Church of Harvard 

University showed a receipt from 1980 for two 10 base pair strands of DNA, priced at 

$13,000 (Church, 2018). The cost of DNA synthesis has since dropped rapidly based on 

advances in synthesis technology (Katz et al., 2018). Considering the cheapest synthesis 

companies on the market at the time of writing, that same DNA costs $1.40 today (Twist 

Bioscience, 2018). Over the same timeframe, similar trends in cost and throughput have 

seen the accessibility of DNA sequencing data dramatically improve (figure 2). large 

databases of DNA sequences are freely available online. At the time of writing, Genbank is in 

its 228th release (Benson et al., 2013). It contains approximately 280 trillion base pairs of 

DNA sequence data from 200 million sequences, all of which is searchable both manually, 

and by sequence similarity with the Basic Local Alignment Software Tool (BLAST; Altschul et 

al., 1990). Therefore, ready access to reading and writing of DNA allows for the accessible 

design and formation of modular genetic parts to specification (Katz et al., 2018).  
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Figure 2 - The current state of DNA reading and DNA writing 

Over the last 20 years, access to reading and writing DNA has significantly improved. Contemporary 

data represents the 2018 market leaders for throughput (Illuminna, 2018; Twist Bioscience 2018; 

Cox and Chen, 2018). Past data is adapted from Smolke et al. (2018).  

 

1.1.1.3 “Second wave” synthetic biology and commercialisation 

Within the first wave, research was largely foundational. Whereas within the second wave 

of synthetic biology research is instead translational – i.e. how can we use synthetic biology 

as a solution to real problems and generate tangible value from the technologies developed 

in the first wave (Amos, 2014; Chubukov et al., 2016; Erb et al., 2017). Purnick and Weiss 

(2009) were the first to identify the inflection point between first and second wave 

synthetic biology. While the shuffling of parts can produce desirable outputs and responses, 

considerable bottlenecks occur when complex systems are moved beyond a proof of 

principal (Kitney and Bradley, 2012; Hodgman and Jewett, 2012; Boehm and Bock, 2019; Liu 

et al., 2018). The second wave of synthetic biology is abstracted from the generation and 

discovery of individual parts, and instead is focused on the optimisation of parts and total 

systems to meet project requirements and specification (Schmidt-Dannert and Lopez-

Gallego, 2016). Therefore, the second wave of synthetic biology also concerns the 

commercialisation of genetic circuitry (Purnick and Weiss, 2009; Amos, 2014). Due to the 

complexity of life, it is currently poorly understood how cells respond and interact with 

1980 1990 2000 2010 2020
100

105

1010

1015

Year

Th
ro

ug
hp

ut
 (b

as
es

 p
er

 r
un

) Reading
Writing Illumina NovaSeq 6000

6000 Gb

Twist Bioscience
~0.2 Gb



 23 

synthetic circuits. For this reason extensive work still ongoing for the design, construction 

and testing of genetic parts (Smolke et al., 2018; Casini et al., 2015). Therefore 

contemporary synthetic biology runs in two parallel strands, one for the development of 

parts, and one for the optimisation of systems. 

 

Development of commercialised synthetic biology has important economic implication 

(Schmidt-Dannert and Lopez-Gallego, 2016; Chubukov et al., 2016). In the United Kingdom’s 

2016 Synthetic Biology Strategic Plan, a roadmap was laid out to grow the field into a £10 

billion market by 2030 (Synthetic Biology Leadership Council, 2016). Refactoring life allows 

for the production of useful, marketable products. As such, synthetic biology can be 

considered a platform onto which new industrial processes can be developed, impacting 

multiple market sectors (Clarke et al., 2012). Non-exhaustively, these include farming for 

the generation of resilient or enhanced crops, enhancing the scope of recycling programs by 

utilising waste products as feedstock, the development of pharmaceuticals including 

antibiotics, drugs and biologics like antibodies, and the development of fine chemicals from 

low cost feed stocks (Synthetic Biology Leadership Council, 2016). At the heart of each of 

these applications, these chemical bioconversions are performed by re-routing an 

organism’s metabolism, or isolating the enzymes driving metabolism of the feedstock in 

vitro. Either way, these practices remove the need for harsh catalysts and multi-step 

purification paradigms (Chubukov et al., 2016).  

 

1.1.2 Enzymes 

1.1.2.1 Basic enzyme principals 

Enzymes are proteins innovated for the catalysis of biologically important chemical 

reactions, and are central to many synthetic biology applications. The first evidence of the 

existence of enzymes came in the early 18th century, when sugar factory scientists Payen 

and Persoz (1833) discovered that germinating barley could turn starch to sugar. Payen 

ground and filtered germinating barley, and extracted a white flocculant material by alcohol 

precipitation. When solubilised, this material was shown to break down the glycosidic bonds 
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in starch, producing solubilised sugar. Diastase was later renamed amylase, the same 

enzyme secreted by salivary glands for the digestion of dietary starch (Armstrong, 1933). 

 

Since diastase, it has been discovered that almost all chemical reactions required for life are 

facilitated by the activity of enzymes. Some have suggested that based on their ubiquity and 

essential role in protein synthesis, aminoacyl-tRNA synthetases were among the very first 

enzymes to have evolved (Woese et al., 2000; Chaliotis et al., 2017). Since, enzymes have 

evolved into six major classes, distinguished by enzyme classification (EC) identifiers (table 

1; McDonald and Tipton, 2014).  

 

Identifier Name Catalysis Examples 

EC1 Oxidoreductase 

Donor-acceptor reaction where a 
donor molecule is oxidised, donating 

hydrogen to an acceptor molecule 
that is reduced. Both donors and 
acceptors can be cofactors (e.g. 

NADP+ or NADPH). 

Dehydrogenase, reductase, 
oxygenase, peroxidase, 
dismutase, luciferase  

EC2 Transferase 

Donor-acceptor reaction where a 
chemical group (i.e. methyl) is 
transferred from a donor to an 

acceptor. Transfer typically occurs 
by exchange with another group 

(smallest unit: Hydrogen). 

Methyltransferase, 
glycosyltransferase, 

transaminase, transketolase, 
acetyltransferase, 

phosphotransferase, riboflavin 
synthase 

EC3 Hydrolase 
Hydrolytic cleavage of chemical 

bonds, most commonly C-O, C-N, C-
C, S-S. 

Amylase, lipase, esterase, 
protease, nucleosidase, 

glycosidase, peptidase, helicase, 
GTPase, ATP synthase 

EC4 Lyase 
Cleavage of chemical bonds without 

hydrolysis or oxidation. Can form 
ring structures. 

Aldolase, dehydratase, 
decarboxylase, adenylyl cyclase, 

tryptophan synthase, 
ferrochelatase 

EC5 Isomerase 

Conversion of a compound from one 
isomer to another by intermolecular 

rearrangement, for example 
stereochemistry inversion.  

Racemase, epimerase, cis-trans 
isomerase, tautomerase, 

cyclase, decyclase, 
cycloisomerase, mutase 

EC6 Ligase 
Joining of two larger molecules with 

hydrolysis of a diphosphate in a 
nucleotide triphosphate. 

DNA ligase, chelatase, 
aminoacyl-tRNA synthetase, 

Acetyl-CoA synthetase, 
thiokinase, ubiquitinase 

Table 1 – EC classification of the six major enzyme subfamilies 
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Enzymes are able to catalyse both unimolecular and multimolecular reactions. For simplicity 

unimolecular reactions will be discussed below (Fersht et al., 2017). Typically, enzymes 

contain a conserved active site that is responsible for the catalysis of substrate to product in 

a highly selective manner. Selectivity is defined by a combination of the residues 

constituting the active site surface, the overall fold and flexibility of the active site, and the 

shape and size of the substrate tunnel if the active site is buried (Kingsley and Lill, 2015; 

Weng et al., 2011). Compatible substrates interact with the active site in a flexible-lock and 

key fashion, where the enzyme’s dynamic structure is stabilised by complementary 

interactions between the active site and the substrate (Koshland, 1958). This same 

interaction also holds the substrate in a conformation that minimises the Gibbs free energy 

of activation (∆𝐺‡) for the reaction (Fersht et al., 2017). ∆𝐺‡ is defined as the difference 

between the Gibbs free energies of the substrate and the transition state. Gibbs free energy 

of a given system is defined as:  

 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 

 

Where ∆𝐻 denotes enthalpy, 𝑇 denotes temperature, and ∆𝑆 denotes entropy (Kuriyan et 

al., 2012). Enzymes are exceptional at minimising the Gibbs free energy of activation, even 

for highly stable molecular structures. For example, aqueous orotic acid spontaneously 

decarboxylates with a half-life of approximately 78 million years. Orotidine decarboxylase 

increases the rate of this same reaction 1017-fold (Fersht, 2017). Orotic acid has such a long 

half-life as release of the covalently bound carboxyl group requires energy. For this to occur, 

a molecule in a favourable ground state becomes an intermediate in an unfavourable 

transition state (figure 3). Enzymes circumvent the energy requirement of such a process by 

creating a favourable electrostatic environment that stabilises the transition state (Warshel 

et al., 2006), by directly reacting with the substrate providing alternative routes to the 

transition state (Nelson and Cox, 2013), or by distorting the substrate structure to 

destabilise the ground state (Benkovic and Schiffer, 2003).  
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Figure 3 - Enzymes significantly lower the ∆G‡ of a reaction 

An energy diagram showing the difference between ∆𝐺‡ in uncatalysed (solid line) and catalysed 

(dashed line) reactions. Reaction shown is the simple conversion of substrate to product. Without a 

catalyst, the energy required for a reaction to access a high energy intermediate represents a barrier 

for the reaction to progress to the product. In this demonstration, an enzyme has significantly 

lowered the energy required to access the transition state. Figure redrawn from Cooper (2000). 

 

1.1.2.2 Enzymes as a tool 

Enzymes have been utilised by humans since before recorded history. Approximately 7,000 

years ago, Neolithic farming communities developed the art of cheesemaking, using rennet 

(chymosin) from the stomach of ruminants to curdle milk (Salque et al., 2013). Recently, 

13,000 year old stone mortars in Raqefet Cave, Israel, were found to show evidence of 

purposeful alcohol fermentation by hunter-gatherer settlers (Liu et al., 2018). However, it 

took until the early 20th century for the first pure enzyme preparations to be achieved, with 

the crystallisation of urease (Sumner, 1926). Commercial preparations of pure enzymes 

came to market in the 1960s, where proteases were added to biological washing powders 
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for improved stain removal (Gurung et al., 2013). In 2014, the enzyme market was valued at 

$4.2 billion, with a compound annual growth rate of 7%. A market value of $6.2 billion is 

projected for 2020 (Singh et al., 2016). Today, purified enzymes are utilised in the 

pharmaceutical, food, agricultural, paper, leather, textile, cosmetic, detergent, chemical, 

waste, biofuel and green polymer industries (Singh et al., 2016; Raveendran et al., 2018; 

Klein-Marcuschamer et al., 2011). Enzymes provide considerable commercial value as they 

provide a safe, low cost, enantioselective route to chemistry that typically generates little to 

no toxic by-product. Additionally, modern access to synthetic DNA and recombinant 

technologies means the synthesis of enzymes can be trivial given the enzyme is easily 

soluble (Smolke et al., 2018). 

 

An important metric when considering the economic viability of an enzyme is the rate at 

which its reaction progresses, and how that rate changes with respect to substrate 

concentration. Michaelis-Menten kinetics describe this relationship (Fersht, 2017), which is 

schematically described as: 

 

𝑬 + 𝑺	
𝑘:
⇌
𝑘<:

	𝑬𝑺	
𝑘=>?
→
	
𝑬 + 𝑷 

 

Where E denotes the enzyme, S denotes the substrate, P denotes the product and k denotes 

a rate constant. Here the enzyme binds reversibly to the substrate to form the enzyme-

substrate complex at rates k1 and k-1 for the forward and reverse processes respectively. 

Subsequently, the enzyme and the product are released at the catalytic rate kcat. From these 

rate constants, the Michaelis-Menten equation describing the rate of a reaction (𝑣) can be 

derived: 

 

𝑣 = 	𝑉D>E
[𝑆]

𝐾I + [𝑆]
 

where: 

 

𝑉D>E = 	𝑘=>?[𝐸]K 
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and: 

𝐾I =	
𝑘<: + 𝑘=>?

𝑘:
 

 

Where 𝐾I denotes the Michaelis constant, and [𝐸]K denotes the concentration of enzyme. 

Importantly, these formulae are only valid under the assumptions that 𝐸𝑆 rapidly reaches 

steady state on reaction initiation, that 𝑆 is far in excess of 𝐸, and 𝑃 is absent on initiation. 

From these formula, it is possible to calculate optimal substrate concentrations for 

maximum reaction rate, and the concentration of enzyme required to achieve economically 

viable processes (Cooper, 2000; Fersht, 2017). 

 

An organism’s metabolism is effectively a cascade of enzymatic reactions that convert an 

input from the environment into energy (primary metabolism) or an ancillary beneficial 

product (secondary metabolism). A key pursuit in synthetic biology is the engineering of an 

organism’s endogenous metabolism to create synthetic metabolic cascades from 

heterologous enzymes that generate useful, market valuable products (Erb et al., 2017; Na 

et al., 2010; Chubukov et al., 2016). Increasing demands for difficult to produce fine 

chemicals, the recent advent of cheaper DNA synthesis and improved molecular biology 

tools have meant complex enzyme cascades are becoming increasingly tractable as a 

solution for optically pure and novel chemical synthesis (Carbonell et al., 2016; Schmidt-

Dannert and Lopez-Gallego, 2016; Keasling, 2012). A notable recent example introduced 

four genes from the Artemisia annua plant into yeast to re-route its native mevalonate 

pathway for the synthesis of atemisinic acid, a precursor to the antimalarial drug artemisinin 

(Paddon and Keasling, 2014). The remarkable stereoselectivity of enzymes allows for the 

generation of homochiral molecules, where heterochirality considerably lowers the 

efficiency and output of traditional chemical synthesis (Martin et al., 2009; Chubukov, 

2016). Additionally, enzymes function in innocuous conditions, ablating the requirement of 

harsh solvents or chemicals, moving toward a “green chemistry” paradigm (Anastas and 

Eghbali, 2010). 

 

In theory, low cost starting products are converted to metabolic intermediates, which then 

pass through the synthetic pathway without by-product build-up, mitigating the need for 
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step-wise purifications that often cause bottlenecks in traditional fine chemical synthesis 

(Martin et al., 2009). Such pathways are optimised over a series of design-build-test cycles 

that maximise output based on pushing each enzyme’s kinetic properties, and refining the 

chassis organism to carry out high volume synthesis (Schmidt-Dannert and Lopez-Gallego, 

2016; Erb et al., 2016). Synthesis of the antimalarial drug precursor artemisinic acid in yeast 

is one of the most successful industrial implementations of a multi-enzyme pathway 

(Keasling, 2012). Amorphadiene synthase converts farnesyl pyrophosphate from the 

mevalonate pathway into amorpha-4,11-diene. A cytochrome P450 monooxygenase from 

Artemisia annua then converts amorpha-4,11-diene into artemisinic acid in a three-step 

process (Ro et al., 2006; Keasling, 2012). Chemicals company Amyris hold the current patent 

for this pathway (EP2565197A1; Seeberger et al., 2013).  

 

1.1.2.3 Enzyme toolboxes 

The dramatically increasing capacity of high throughput DNA sequencing is enabling more 

rapid discovery of new biological parts. “Catalytic toolboxes” have been developed for the 

rapid screening for useful parts for accelerated prototyping (Martin et al., 2009; Winkler, 

2018). Toolboxes are typically curated panels of natural enzymes that perform similar 

reactions on varied but well-characterised substrates at varied rates (O’Reilly and Turner, 

2015). Efforts in expansion of the scope of enzyme toolboxes are seen as an important 

pursuit in lowering the development costs for industrial scale biocatalysis (Keasling, 2012). 

Ideally, future chemical manufacturers will have access to bulk quantity enzymes that can 

be mixed and matched in high throughput. However, such a goal requires the expansion of 

the consortia of enzymes available to synthetic biology (Schmidt-Dannert and Lopez-

Gallego, 2016). Enzymes derived from nature are rarely optimal for utilisation in biocatalytic 

workflows, as they have evolved to function optimally in a specific cellular environment, 

often compliant to a highly specific role. Therefore, a key approach to the expansion of the 

enzyme toolbox is enzyme engineering (Endy, 2005; Schmidt-Dannert and Lopez-Gallego, 

2016). Enzyme engineering involves the modification of the primary protein sequence to 

imbue novel or improved functionality at the tertiary level. Mechanism-guided engineering 

processes can guide enzymes with no, or low activity on a given substrate into highly 
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optimised catalysts that meet industrial requirements (Schmidt-Dannert and Lopez-Gallego, 

2016). 

 

1.1.3 Enzyme engineering 

1.1.3.1 Space and landscapes as a concept 

A common notion encountered when discussing the modification and the nature of enzyme 

sequences is “space” (i.e. Dryden et al., 2008; Povolotskaya and Kondrashov, 2010; Buchholz 

et al., 2018). In the context of an enzyme’s sequence, “space” is a conceptual device 

describing the complete set of states an enzyme can possess. This can be distilled into 

hierarchical categories: 

Global sequence space 

Global sequence space is the sum total of all possible sequences given a particular length of 

amino acids. Global sequence space is highly dimensional, as every amino acid position can 

conform to one of 20 possible states (Buchholz et al., 2018). Very quickly sequence space 

begins to deal in extraordinarily large numbers. For example, the average protein size in E. 

coli is approximately 277 amino acids (Skovgaard et al., 2001). A 277 amino acid protein has 

a global sequence space of 2.16 x 10297 total possible sequences. To provide (rather 

inadequate) comparative scale, recent estimates suggest there are ~5.3 x 1079 atoms in our 

observable universe (Planck collaboration et al., 2015). 

 

Contained within this exceptionally vast sequence space in our arguably average protein 

example is every functional 277 amino acid protein that has ever existed, as well as every 

functional 277 amino acid protein that has never existed. At the time of writing, protein 

sequence database UniProt is on release 2018_10. The total number of proteins on the 

database, as an estimation of the total number of proteins known to science, is a miniscule 

fraction of possible sequence space at 1.3 x 108  sequences (Uniprot, 2018). Over the 4Gya 

life has been evolving, is has been estimated that between 4 x 1021 and 4 x 1043 total protein 

sequences have been explored by life (Dryden et al., 2008) – still an infinitesimally small 

fraction of the possible explorable space in our above example. For these reasons, global 
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sequence space makes for a poor conceptual tool when it comes to the study of enzymes 

and their potential. Instead, it is typical to focus on more detailed descriptions. 

Functional space 

Functional space contains the set of all possible functional sequences within a given global 

sequence space (Povolotskaya and Kondrashov, 2010). This is a difficult number to estimate, 

as we are not able to know the total set of all possible amino acid sequences that fold to 

form a functional molecule. This concept is further confounded by our inability to know the 

complete set of possible functions that proteins are able to perform. However, it is 

understood that the majority of global sequence space is catalytically deficient 

(Povolotskaya and Kondrashov, 2010; Dryden et al., 2008). It is estimated that a randomised 

sequence library of order 1024 variants would be required before one should expect to 

obtain functional biocatalysts (Taylor et al., 2001). In one study, four functional ATP binding 

proteins (ANBPs) were identified from a library of 6 x 1012 random proteins (Keefe and 

Szostak, 2001; Lo Surdo et al., 2004). However, these sequences had no notable catalytic 

activity suggesting that functional catalysts represent a minute fraction of sequence space.  

Functional and structural protein sequence space are related 

Consider a point in sequence space that contains a functional protein. Then consider the 

sequence space around that point. As a functional protein is typically able to tolerate 

sequence variation at points besides essential fixed residues, it can be considered that a 

given protein exists in a densely populated cluster of viable sequence space (Nardo et al., 

2018). Now consider a single, functional protein that folds into a three-dimensional 

structure. A protein’s structural and functional sequence space can be defined as every 

amino acid sequence that can produce an equivalent, viable fold and/or function. In 

evolution, such densely populated regions of sequence space consist of all viable 

homologues of a given protein structure (Shakhnovich et al., 2005). Such sequences derive 

from the same evolutionary origin, whereby a fitness gain to the ancestor fixed a specific 

protein structure in a population, and drift or divergent selective pressures led to the 

diversification of sequence space.  
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Property space 

Protein property space is the set of protein properties that are possible given structural and 

functional space. Properties denote the function defining traits a protein possesses, for 

example stability, flexibility, ion binding capacity, multimerisation potential, substrate range 

and turnover. In nature, a protein’s property space is intrinsically linked to a protein’s 

fitness contribution to a given organism (Boucher et al., 2014). It is possible to envisage 

property space as a fitness landscape, whereby the set of properties defined by the protein 

sequence confers a phenotype (Kondrashov and Kondrashov, 2015). When a protein is 

evolving, its set of properties is optimised to function adequately in its given setting. Fitness 

landscapes are multi-dimensional, as they are defined by the sum of all protein properties. 

However, as a convenient conceptual tool, we shall hone in on a single property, and distil a 

fitness landscape down to a two-dimentional space, where the x-axis denotes the protein 

sequence, and the y-axis denotes the sequence’s fitness contribution to the parent 

organism (figure 4; de Visser and Krug, 2014; Boucher et al., 2015). A fitness landscape 

therefore contains peaks of high fitness and troughs of low fitness. Evolution has traversed 

this landscape to obtain a sequence that confers a fitness adequate for survival given a 

selective pressure (Pál et al., 2006). Pervasive selective pressures then fix sequences and 

structures in the population as their loss would significantly decrease fitness (Tokuriki and 

Tawfik, 2009A). In a given landscape, it is possible for multiple solutions to confer adequate 

fitness. While it is tempting to consider that it is beneficial for a protein to optimise for the 

highest peaks in a given landscape, it must also be considered that evolution is a non-

preparative force that will only naïvely optimise for a given selective pressure (Taverna and 

Goldstein, 2002; Williams et al., 2007). Therefore once a protein reaches a position in a 

fitness landscape that is sufficient for survival, the selective pressure requires no further 

optimisation. When combining all fitness landscapes, a protein can be considered as the 

adequate optimisation over all dimensions in the context of a set of selective pressures. This 

leads to trade-offs within the landscape, where the increase of fitness in one dimension 

decreases fitness in another, which can subsequently be compensated for by additional 

mutations (Brown et al., 2010; Hartl et al., 2014).  
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Figure 4 - A two dimensional protein fitness landscape 

Protein fitness landscapes are multi-dimensional, as many protein properties contribute to host 

organism fitness. For conceptual simplicity, landscapes can be distilled to represent single properties 

(de Visser and Krug, 2014; Boucher et al., 2014). In this instance the fitness landscape fluctuates 

based on the sequence, providing multiple peaks and troughs in a given sequence space. Dashed line 

represents the minimum viable fitness for a given parent organism. Therefore in this representation 

there are more than one route to viable fitness, with all viable sequence space represented by red 

shaded maximas. 

 

1.1.3.2 Engineering is the meaningful traversal of property space 

Throughout a protein’s evolutionary history, its property space has been refined to provide 

specialized functionality that is adequate for survival of its parent organism. This is at odds 

with the requirements of an enzyme in synthetic biology, where maximal output in a non-

natural setting is necessary for success. “Toolboxes” of natural enzymes, for example the set 

of Carboxylic Acid Reductases described by Winkler (2018), represent the library of 

sequence space that nature has developed. Such panels possess a limited activity space 

defined by the natural enzyme consortium (O’Reilly and Turner, 2015). Exploration of 

sequence space around select enzymes in these toolboxes is therefore a commonly adopted 



 34 

solution for elucidating new enzymes with beneficial properties that lead to process 

optimization (Bommarius et al., 2011). 

 

Engineering a protein’s amino acid sequence represents the traversal of sequence space 

toward more beneficial properties (Currin et al., 2015). Conceptually, the fitness landscape 

becomes synthetic, where new dimensions are introduced based on required functionality. 

Additionally, the pressure to achieve optima is much higher, as value in synthetic biology is 

typically derived from the direct output of the synthetic constructs utilised (Nevozhay et al., 

2012). Traditional methods focus on iterative design and rational residue-wise point 

mutations calculated by computational modelling of a protein’s active site (Kaufmann et al., 

2010). However, given the paucity in understanding around structure-function relationships 

in proteins, the method leads to unpredictable and expensive workflows with ill guaranteed 

success (Arnold, 2018). Contemporary technologies allow for the efficient traversal of 

sequence space by the bulk modification of the amino acid sequence (Currin et al., 2015). 

For brevity the most pervasive technology, directed evolution, will be discussed further. 

 

Directed evolution 

Directed evolution aims to model evolutionary processes with a laboratory-scale 

complement of Darwinian survival (Arnold and Volkov, 1999; Bornscheur et al., 2012; 

Arnold; 2018). The methodology hinges on a simple algorithm. An amino acid sequence of 

interest is subject to sequence randomisation through enzymatic or direct synthetic 

methods (Arnold, 2018; Li et al., 2018A; Turner, 2009). Resultant sequence variant libraries 

are then subject to a selection criteria that is directly associated to the fitness landscape in 

the dimension of interest. By scattering sequences across the fitness landscape, and directly 

linking protein performance to survival, only the fittest sequences from the library are 

obtained (Renata et al., 2015). Subsequent narrowing searches emulate an uphill iterative 

walk within the fitness landscape (figure 5; Shivange et al., 2016). This iterative walk allows 

for the traversal of large functional hurdles in property space to be broken up into a series 

of smaller optimisations.  
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Figure 5 - Directed evolution is the iterative uphill walk to optima in functional space 

Here the fitness landscape is represented in three dimensions. Libraries of sequences sample the 

surface of the landscape in proximity to each evolution start point. Beneficial mutations are selected 

allowing a protein to climb toward fitness peaks. Here, two peaks are shown separated by a fitness 

valley. As directed evolution is generally only upward climbing, it is possible for a directed evolution 

experiment to become trapped at local optima, without ever realising global optima. Image adapted 

from Packer and Liu, 2015. Image modified and reproduced with permission. 

 

 

Traditional directed evolution experiments rely on sequence randomisation by error-prone 

PCR, chemical mutagenesis or use of a mutagenic strain (Cirino et al., 2003; Neylon, 2004). 

However, chance dictates that random mutagenesis will rarely be representative of the 

global fitness landscape, and biases caused by PCR or mutagen activity can entirely ablate 

large portions of designed sequence diversity (Li et al., 2018A). More recent methods 

include the semi-rational prediction of enzyme states based on a pre-existing crystal 

structure to produce libraries of highly targeted point mutations (i.e. CASTing or Rosetta; 

Steiner and Schwabb, 2012; Kaufmann et al., 2010). Protein structure is linked to function 

by basing mutagenesis on assumptions about structure-function relationships derived from 
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crystal structures (Lutz et al., 2010; Bornscheur et al., 2012). As a result, semi-rational 

design must also make assumptions about the most important residues involved in the 

relationship between sequence, structure and phenotype (Winkler and Kao, 2014; Lutz, 

2010), and is therefore at risk of missing sites not overtly linked to function that would still 

confer positive changes. This is compounded by the methodology utilised to generate the 

library. In a recent study (Li et al. 2018B), the massive sequencing of a library generated by 

error prone PCR for the engineering of enantioselectivity in limonene epoxide hydrolase 

showed that around 50% of the designed sequence space was not explored by the library. 

However, the direct synthesis of the library using solid-phase DNA synthesis technology led 

to the exploration of 97% of the same library, and the generation of twice the amount of 

beneficial mutants. Regardless of library generation method, optimised sequences are 

typically selected from the population by one of two common methods: selection or 

screening. 

 

In selection pressure based experiments, some evolutionary driving force is applied to the 

protein population to link protein sequence to desired function. This is typically achieved by 

inducing a significant fitness cost to organisms that do not perform a provided function (e.g. 

a toxic product). Selection provides a quantitative measure of the ability of individuals in the 

library to perform a required function, allowing for the selection of the most optimal 

sequences within the population (Turner et al., 2009). Survivors of selection rounds are 

deemed the most “fit” sequences in the landscape, the winner(s) of which can be put 

forward as the starting point for additional rounds of mutagenesis (Packer and Liu, 2015; 

Goldsmith et al., 2012). This method has successfully been employed to evolve large 

biocatalysts toward various optimal properties (e.g. engineering 120 kDa cytochrome P450 

monooxygensases for alkane hydroxylation; Fasan et al., 2007). 

 

On the other hand, high throughput screening aims to observe fitness directly based on 

activity, turnover or survival. Such methods are especially powerful if fitness and phenotype 

cannot be easily linked (Packer and Liu, 2015; Xiao et al., 2015). A high throughput assay is 

required to quantitatively screen the entire sequence population. With the advent of 

microfluidics based screening systems, the volume of screening possible has increased. 

However, the success of a high throughput screen is a direct function of assay sensitivity and 
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high throughput feasibility (Ye et al., 2017; Martínez and Schwaneberg, 2013; Wójick et al., 

2015; Agresti et al., 2009). 

 

Regardless of library generation and screening method, the first tenet of directed evolution 

states “you get what you screen for” (Li et al., 2018B). To efficiently screen for a property, 

the selective pressure or criteria applied must directly optimise the sequence landscape of 

interest. “Parasitic” sequences that are fit under a given selective criteria but do not 

harbour desired traits can be selected when the selection pressure rewards more than one 

possible phenotype (Tizei et al., 2016). Indirect effects can lead to the optimisation of 

unintended properties, which may or may not undermine the overall engineering 

experiment. For example organisms grown under the presence of a toxin to select for more 

efficient toxin remediation machinery could cause indirect selection of variants more able to 

form biofilms or spores that protect against the toxin (Marlière et al., 2011; Tizei et al., 

2016). In the object of efficiently traversing fitness landscapes, considerable care must be 

taken when choosing screening modes to ensure a protein sequence is pushed toward the 

desired outcome, without inducing risks of secondary unpredicted outcomes. 

 

1.1.4 Moving synthetic biology beyond proof of concept 

Compared to a traditional engineering challenge, optimising living systems is markedly more 

difficult and imprecise. Ideally all the features of the system should be synergised to 

maximise product yield in the face of input cost. Critical factors include the choice of chassis 

and its growth environment (Vinay-Lara et al., 2016), the metabolism of the chosen chassis 

(including its stress responses; Lee et al., 2008; Dahl et al., 2013), the enzymes contained 

within the pathway (Bornscheur et al., 2012), the expression and control of the cascade and 

its cofactors (Angelastro et al., 2016), and the reaction process including the reaction vessel 

(Goundry et al., 2017). A bioengineering project can be likened to building a computer by 

constructing each component from the ground up, with only sparse knowledge of how each 

component will interact with the whole system, leaving experimentation (and therefore 

many rounds of failure) as the only means of progression. Implementation of workflows like 

the archetypal design – build – test cycle, which itself can contain many nested, equivalent 

cycles, allow iterative forward engineering of such a process (Agapakis, 2014). 
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Predictably, the end-goal for development of such cascade-based pathways is integration 

into an industrial setting (Schmidt-Dannert and Lopez-Gallego, 2016). For a company, 

success not only requires a functioning enzyme cascade that synthesises a marketable 

product. Rather, the cascade must also be scalable to a market viable production volume 

(Langerack and Hultink, 2006). Historically, the scale-up process incurs high costs for 

development and implementation (Keasling, 2012). These are often caused by 

underestimation of scale-up timeframes, or unforeseen process bottlenecks or 

inefficiencies. Any young company looking to develop industrial enzymatic pathways is 

therefore of high risk to investors (Chubukov et al., 2016; Sanford et al., 2016). The same 

financial burden will also impede enzyme cascade development within larger companies 

attempting to integrate biocatalysis into their current chemical synthesis portfolios. The 

considerable development cost must be offset by an equally large payoff for integration 

(Lechner et al., 2016; Langerack and Hultink, 2006). However, in terms of technology 

readiness levels (a market estimation of technology maturity), an analysis by Cambridge 

Consultants (Ho et al., 2017) shows that several synthetic biology start-up companies are 

“market ready”. Successful examples of enzymatic pathway utilization are readily emerging 

in the bioindustrial market (Paddon and Keasling, 2014; Shetty, 2016). Notable examples 

include Bolt Threads, who sell apparel constructed from synthetic spider silks synthesised in 

yeast (DeFrancesco, 2017); Evolva who use yeast to ferment low value inputs into 

marketable compounds including SteviaÔ, nootkatone and resveratrol (Nyffenegger et al., 

2017); and Hyasynth who generate medicinal cannabinoids within recombinant 

microorganisms (Feeney and Punja, 2017). Notwithstanding, one contemporary challenge 

for synthetic biologists is the reduction of costs when developing enzyme technologies past 

their proof-of-concept, to increase biotechnology’s penetrance into the chemical industry. 
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1.2 Thermostable enzymes for the advancement of industrial synthetic biology  

1.2.1 Defining enzyme stability 

1.2.1.1 Protein folding and stability depend on entropy and enthalpy 

A key determinant of an enzyme’s applicability to a biotechnological process is its stability 

(Chapman et al., 2018). Stability refers to how well the protein retains it fold and function 

over time, or under process specific conditions. An unstable protein will quickly lose 

function, impacting process efficiency. More specifically, stability refers to the energy input 

required to impede a folded protein’s correct function through damage to its structure 

(unfolding; Pace, 1990). Therefore, the stability of an enzyme relates directly to the 

molecule’s ability to maintain its tertiary or quaternary structure. A protein’s tertiary or 

quaternary structure is the sum of van der wall’s forces, hydrophobic interactions, water 

liberation, ionic interactions and disulphide bridges acting upon the protein’s secondary 

structure (Dill, 1990; Pace et al., 1996; Fersht, 2017). Additionally, the layer of water that 

surrounds the protein (its solvation shell) has a stabilising effect (Ebbinghaus et al., 2008). 

Electronegative oxygen atoms in water undergo electrostatic interactions with the positively 

charged surface residues surrounding the protein, “holding” it in conformation (Pal et al., 

2002).  

 

In free energy terms, a protein folds to minimise its Gibbs free energy (∆𝐺) of folding, given 

by: ∆𝐺 =	∆𝐻 − 𝑇∆𝑆. The Gibbs free energy of folding can also be given by: 

 

∆𝐺 =	𝐺MNOPQP − 𝐺RSMNOPQP  

 

Where 𝐺MNOPQP  is the free energy of a folded state, and 𝐺RSMNOPQP  is the free energy of the 

unfolded state (Fang, 2014). For protein folding to be spontaneous, the free energy of the 

folded protein has to be smaller than the free energy of the unfolded protein. A simple view 

of why proteins fold involves the consideration of the first formula. Conformational entropy 

is high in the unfolded state as it has high free range of movement. However, enthalpy also 

increases the closer the protein gets toward primary structure as there are exponentially 

increasing numbers of potential stabilising interactions possible between amino acid side 
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chains (Kuriyan et al., 2012). Therefore, as enthalpy is low in the folded state, ∆𝐺 is negative 

and folding is maintained (Yang et al., 2013). The order of amino acids directly controls 

whether folding collapses the molecule into one that is functional or not (Zwanzig, 1992). 

 

Entropy also drives stabilisation considering the interaction of the protein with its 

surrounding water molecules (Kuriyan et al., 2012). A protein is made up of amino acids 

with hydrophobic or hydrophilic side chains (table 2). Interactions with polar hydrophilic 

residues lead to the bulk ordering of water molecules around the protein forming the 

solvent shell, which has ice-like properties, and a lower entropy than bulk water 

(Ebbinghaus et al., 2007). As the universe tends towards increased entropy, a protein can 

enter favourable states by packing non-polar hydrophobic residues in the centre of the 

protein, which allows for the release of water from around the residues into the 

surrounding system, dramatically increasing disorder (Kuriyan et al., 2012). Mutations in the 

protein core are therefore on average slightly destabilising (Faure and Koonin, 2015). The 

mean change in protein melting temperature for a mutation has been calculated as -5 °C 

(Pucci and Rooman, 2016).  

 

 

Property Amino acids 

Hydrophobic 
Alanine, Isoleucine, Leucine, Methionine, 

Phenylalanine, Proline, Tryptophan, Valine 

Hydrophilic 
Arginine, Asparagine, Aspartate, Cysteine, 
Glutamate, Glutamine, Glycine, Histidine, 

Lysine, Serine, Threonine, Tyrosine 
Table 2 - Classification of amino acids by hydrophobicity 

 

 

It is also important to consider that a protein fluctuates between multiple favourable Gibbs 

free energy states due to the highly dynamic nature of the system. Dynamism stems from 

the sheer volume of possible interactions between residues within the folded protein, and 

the flexible nature of the bonds making up the protein’s primary structure (Jaenicke, 1991). 

To increase a protein’s stability, is therefore necessary to modify one or many of the aspects 
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that lead to its destabilisation. For example, by decreasing enthalpy in the system, the Gibbs 

free energy becomes more negative, and therefore the energy input required to achieve 

destabilisation is increased (Hilser et al., 1996; Dagan et al., 2013). The same net effect can 

be achieved by increasing the free energy of the denatured state (Sugita and Kitao, 1998). 

Mutations in the primary structure of a protein can have an impact on both the folded and 

denatured state (Shortle, 1996). Alternatively, changing how a protein interacts with its bulk 

surroundings, for example increasing its propensity for hydrophobic packing or minimising 

chain fluctuations, will typically have positive effects on overall stability (Jaenicke, 1991). 

 

1.2.1.2 How to denature a protein 

In the context of synthetic biology, protein stability is typically defined as its resistance to 

destabilising agents, especially temperature, solvents, pH, or salt. Temperature causes 

denaturation of proteins in two key steps, reversible and irreversible unfolding. In reversible 

unfolding, a reversibly inactive form of the enzyme forms an equilibrium with its active form 

(Daniel and Danson, 2013; Fersht, 2017). Temperature has a direct impact on the 

equilibrium between the active and inactive state reversible state, where higher 

temperatures push the enzyme toward the inactive reversible state (Peterson et al., 2004; 

Daniel et al., 2010). The conformational landscape sampleable by a protein during its folding 

is vast, and when a protein folds it continuously samples multiple viable states of low Gibbs 

free energy. It can therefore be assumed that the inactive reversible state is caused by 

conformational shifts in the enzyme that with increasing temperature lead to lowered Gibbs 

free energy (Fersht, 2017). As the flexibility of the primary structure is directly dependant on 

the temperature of the system, the entropy of the system will increase as temperature 

increases. The enthalpic change is small however, as the protein structure remains largely 

intact, but is more freely able to sample conformational space. This leads to new 

conformational states that do not form a functional active site at “optimally” low Gibbs free 

energy under high temperatures (Fersht, 2017; Daniel and Danson, 2013). However, this 

conformation must not be distant from functional conformational space, as the protein 

must be able to traverse back to the functional state both at the increased temperature 

(maintaining equilibrium), and as the temperature decreases (regaining function; Daniel et 

al., 2010). As temperatures increase, it is expected that the number of possible non-
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functional states increases (Daniel et al., 2010; Daniel and Danson, 2013) until complete 

denaturation occurs.  

 

Complete denaturation is the global, irreversible loss of structure. As temperature 

increases, there is enough energy in the system to break down the hydrogen bonds both in 

the network of water molecules holding the protein in place, and the hydrogen bonds in the 

core of the protein (Koizumi et al., 2007). Looser confirmations lead to decreased 

hydrophobic packing and increased water penetrance in the centre of the protein (Groot 

and Bakker, 2016). As hydrogen bonds are not able to form at higher temperatures, the 

enthalpy in the system is decreased, and the unfolded state of the protein (closer to primary 

structure) has a considerably lower Gibbs free energy than the same unfolded state at lower 

temperatures.  

 

At standard mesophilic temperatures, it is thought that the folding of the protein towards 

the lowest Gibbs free energy occurs rapidly due to a combination of nucleation into smaller 

macro-structures and hydrophobic collapse (Zwanzig et al., 1992; Duan and Kollman 1998; 

Zhou et al., 2004). At higher temperatures, there are increased numbers of sampleable 

folded states available to the protein. As the system cools, the number of possible states 

diminishes. However, cooling from high flexibility allows the protein to access 

thermodynamically favourable states that are not the native state, that require addition of 

energy to unfold. Therefore, as the protein refolds, it gets stuck on local minima of Gibbs 

free energy with no route to escape, leading to misfolding and loss of function (Strucksberg 

et al., 2007). These same principals can be applied directly to the other synthetic biology-

centric stability factors. Modifications to the pH, solvent and salt concentration in a solution 

modify the sum of zwitterionic states across the protein’s surface. As the charge changes on 

the surface of the protein, the strength of the protein’s interaction with the solvation shell 

also changes (Jungwirth and Cremer, 2014). Addition of solvents also displaces water in the 

solvation shell (Mattos, 2002; Schellman, 2003). A protein’s solvation shell impacts the 

number of states the protein can sample based on how strong the interaction is, and 

increased protein flexibility is consistent with weaker solvation shell interactions (Mattos, 

2002; Timasheff, 2002; Born et al., 2008).  
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Relaxation of the solvation shell induces considerable vulnerability of the protein core to 

destabilisation (Dahanayake and Mitchell-Koch, 2018). Often, specific modules within the 

enzyme structure are separated by loop structures which extend to the surface of the 

protein. Loop structures typically have higher degrees of freedom of movement compared 

to the protein protein’s core. (Papaleo et al., 2016; Dominy et al., 2002). As such, loop 

regions are key determinants on protein stability (Balasco et al., 2013). Based on disruption 

of the solvation shell and the ionisation of the protein surface, destabilising agents kick off a 

destabilisation chain reaction in the protein structure (Fersht, 2017). Increased flexibility 

leads to penetrance of both water and destabilising agent, disrupting the core structure. 

Resultant core relaxation subsequently allows for the penetration of increasingly more 

water and destabilising agent, inducing further unfolding (Nestl and Hauer, 2014; Dominy et 

al., 2002). Additionally, changes to zwitterionic states can lead to electrostatic repulsion 

within the protein, completely changing its folding landscape, increasing the likelihood that 

inactive states are sampled (Dominy et al., 2002). A thermostable protein will often also be 

stable in the presence of destabilizing agents, as the principals underlying destabilization are 

largely equivalent in both instances (Hao and Berry, 2004; Razvi and Scholtz, 2006; 

Arabnejad et al., 2017). Therefore, unless specified, “stability” will be discussed in terms of 

thermostability going forward, and increases or decreases in stability will generally be 

discussed in terms of a protein’s melting temperature.  

 

1.2.2 Most proteins are marginally stable 

Logically, from a fitness perspective it should be beneficial for proteins to be highly stable. 

With stable proteins, the organism’s resistance to fluctuating temperatures increases, and 

overall less resource would be required for protein synthesis as the probability for a given 

protein to be folded is high (Goldstein, 2011). However, in nature the opposite is 

consistently observed. For the majority of organisms, the majority of their proteins are 

marginally stable (Taverna and Goldstein, 2002; Williams et al., 2007; Goldstein, 2011). That 

is, the Gibbs free energy of unfolding is only slightly negative, and small increases in 

temperature lead to the denaturation of proteins (Privalov and Khechinashvili, 1974). 

Considering a protein’s functional space, the native stability of most proteins is far lower 

than its maximum possible stability (Taverna and Goldstein, 2002). The observation that 
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marginal stability is a near-ubiquitous trait amongst proteins therefore suggests that some 

evolutionary pressure favours less stable protein conformations (A phenomenon explored in 

Chapter 3).  

 

Following early observations that proteins are marginally stable (e.g. Privalov and 

Khechinashvali, 1974), initial research considered marginality as an evolved trait (Jaenicke, 

1991; Shoichet, 1995). While an protein has to evolve to be stable, it also has to evolve to be 

functional. Active sites can require the opening of the protein core to allow for penetrance 

of water molecules, which could lead to destabilisation (Shoichet et al., 1995). Furthermore, 

active proteins often require conformational changes to their active site, where the native 

structure of the protein and structure of a protein undergoing catalysis are often 

structurally different (Weng et al., 2011; Todd et al., 2002). Often, promiscuous enzymes 

can take on multiple substrate-dependent conformations (Pabis et al., 2018). There is 

therefore a selective advantage conferred by active site flexibility, resulting in a trade-off 

between activity and stability (Tokuriki et al., 2008). This trade-off manifests as the 

requirement for increased flexibility, leading to increased Gibbs free energy of the system 

due to the balance of entropy, enthalpy and dynamics. It has observed on several 

independent studies that the introduction of activity decreasing mutations in the active site 

of a protein induce increases in a protein’s stability (Tsou et al., 1998;  Závodsky et al., 1998; 

Shoichet et al., 1995; Schreiber, 1994, Daudé et al., 2013; Sharma et al., 2014; Shahid et al., 

2015; Martin et al., 2018). It can be concluded that proteins sacrifice stability to a tolerable 

level (i.e. to ensure that they fold) to allow for increased flexibility, and concordantly 

increased activity or promiscuity. 

 

However, the trade-off phenomenon is not ubiquitous. One of the clearest examples is 

Superfolder GFP, where the protein is both considerably more stable and brighter than wild 

type GFP (Pédelacq et al., 2006; Steiner et al., 2008). Taverna and Goldstein (2002) 

considered the impact of neutral theory on marginality. According to the neutral theory of 

evolution (Kimura, 1968; King and Jukes, 1969; Kimura 1983), a trait is only considered 

adaptive once all other mechanisms can be rejected. Additionally, the theory states that the 

majority of mutations have an effectively neutral impact on fitness, and sequences can 
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therefore drift toward spaces that allow for the generation of properties that do not fulfil an 

obviously adaptive purpose.  

 

Consider then that three constraints define the evolution of a protein: does it sample 

conformational space to fold into a structure with minimal Gibbs free energy quickly; does it 

fold to produce a function; and does it fold to be stable in its environment (Taverna and 

Goldstein, 2002)? The latter is the only selective pressure pushing a protein’s 

thermostability. As a protein evolves, once it’s stability allows it to maintain its tertiary 

structure and function at environmental temperatures, there are no immediate fitness 

benefits imparted to the protein upon further stabilisation (Bershtein et al., 2006; Bloom et 

al., 2005). It therefore cannot be assumed that a selective pressure would exist to drive 

further stabilization. The minimum functional stability of the protein can be considered a 

stability threshold (Bloom et al., 2005; Khersonsky et al., 2018). A protein of a stability that 

fulfils the threshold criteria can thereofre obtain increases in stability by mutational drift. 

However, proteins that drift toward decreased stability are selected against in the 

population, as they cause a fitness cost to the parent organism (loss of function, 

aggregation; Tokuriki and Tawfik, 2009A). It would therefore be reasonable to expect that 

the distribution of protein stabilities would cover a broad temperature range, yet as 

discussed this is not observed (Goldstein, 2011). This implies that there must also be some 

broad destabilising force exerted on evolving proteins. 

 

A neural network trained on the stabilising effects of 1,600 mutation across 90 proteins 

further predicted that for all mutations across 25,000 proteins, the average mutation in a 

protein causes a -5 °C change in protein stability (Pucci and Rooman, 2016). This observation 

is corroborated in work by Tokuriki et al. (2007), where the Gibbs free energy change for 

every possible mutation in 21 globular proteins was calculated using foldX (Schymkowitz et 

al., 2005) to model free energy changes caused by mutations. Across all proteins, the 

distribution of a stabilisation effects was observed to fit to almost identical Gaussian 

distributions that were negatively stabilising on average (DDG is positive for the majority of 

mutations; figure 6). For core mutations, the distribution was broader, and considerably 

more destabilising on average in comparison to surface residues (which fit to a narrow 

distribution that was on average slightly destabilising). A broader scope study using the 
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same foldX algorithm (Faure and Koonin, 2015) modelled the effects of every possible 

amino acid substitution in all proteins in seven organisms including both hyperhermophiles 

and mesophiles. Again the average stability contribution was slightly destabilising, with a 

heavy tail of strongly destabilising mutations. Core-surface destabilisation relationships 

were similar to those previously observed. Additionally, for hyperthermophilic organisms, 

the average destabilisation contributions observed were significantly shifted toward 

destabilisation, suggesting thermophilic proteins approach maximally stabilising states. 

 

 

Figure 6 - Mutations in proteins are on average destabilising 

Tokuriki et al. (2007) modelled the effects on protein stability induced by all possible mutations in 

four protein families and a database of mutations known to effect stabilization (ProTherm database; 

Gromiha et al., 2002). Stabilization effects were observed to exhibit highly similar Gaussian 

distributions, confirmed by comparison with data within the ProtTherm database. It is observed that 

mutations on a protein’s surface (blue curve) are on average neutral with regards to their conferred 

change in Gibbs free energy (a proxy for stability contribution). On the other hand, mutations in a 

protein’s core (red curve) are destabilizing on average. Therefore, mutations in a protein are 

destabilizing on average. Image reproduced with permission. 
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Considering these data, a protein under drift is considerably more likely to accrue 

destabilising mutations over stabilising mutations. Hypothetically, if a protein from a 

hyperthermophile was horizontally transferred and fixed in a mesophilic population, it 

would be expected that the protein would randomly and rapidly drift toward marginality at 

the mesophilic stability threshold. Therefore, drift is an acceptable hypothesis to describe 

marginality in protein populations, and marginality arises in the absence of a selective 

pressure. Providing further evidence that marginality can evolve in the absence of selective 

pressure, Goldstein (2011) modelled the evolution of a single 300 amino acid protein whose 

free energy properties were modelled to the first 300 amino acids of 55 structurally diverse 

proteins. The only selective pressure placed on the protein was the requirement to fold into 

a given structure at a pre-specified temperature. The evolving protein quickly approached 

marginality, giving further weight to the reasoning that marginality is not adaptational.  

 

1.2.3 Nature’s strategies for protein stabilisation 

For a hyperthermophilic organism to survive, their proteins need to be able to survive high 

temperatures. However, hyperstable proteins are constrained in their evolutionary 

plasticity, as the majority of mutations in hyperstable proteins are significantly destabilising 

(Faure and Koonin, 2015). In order for hyperstable proteins to achieve high stability, 

innovations must overcome free energy landscapes that are largely incompatible with high 

temperatures. Hyperstable proteins therefore adopt a number of strategies to ensure 

protein stabilisation. However, there are no universal strategies adopted to generate 

stabilising effects. An in depth coverage of all strategies is presented by Pucci and Rooman 

(2017). Table 3 provides a brief description of strategies observed stabilising thermostable 

proteins. Additionally, the truncation of loops, the formation of hydrogen bonds, 

hydrophobic packing and water release discussed above are all commonly observed in 

thermostable proteins. 
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Innovation Description Mechanism 

Higher number of salt bridges  
(Bosshard et al., 2004) 

Electrostatic interaction between 
oppositely charged residues 

Increase free energy of unfolding by 
increasing unfolded enthalpy 

Higher number of cation-p 
interactions  

(Prajapati et al., 2006) 

Positive charge of Lys/Arg/His 
interacting with electron dense rings 

in Phe/Tyr/Trp 

High bond energy interaction that 
increases at high temperatures. 

Typically occur on surface. Increase 
unfolded enthalpy. 

Higher number of p-p interactions  
(Makwana and Mahalakshmi, 2015) 

Interaction of two electron dense 
rings between Phe/Tyr/Trp 

High bond energy sharing of electrons 
between two stacked aromatic rings. 

Tight packing. Increase unfolded 
enthalpy. Decrease flexibility 

Disulphide bonds within cytoplasm 
(Betz, 1993) 

Covalent Cysteine-Cysteine bonds 
formed by enzymatic intervention 

Only broken by chemical/enzymatic 
means in biological conditions. 
Forced folding. Tight packing. 
Nucleate hydrophobic core. 

Dense interaction network hubs 
(Sammond et al., 2016) 

Focused groups of above interactions 
Cooperative foci of above 

mechanisms with large contribution 
from molecular packing 

Table 3 - Innovations for the stabilisation of proteins in thermophiles 

 

Some of the most thermostable proteins in nature belong to the ubiquitous CutA1 family of 

proteins, which sequester divalent cations conferring resistance to ionic metals (Matsuura 

et al., 2015). Many members of the family show stability of over 100°C, with the most stable 

example to date from the hyperthermophilic archaeon Pyrococcus horikoshii denaturing at 

150 °C (Tanaka et al., 2006; figure 7). Stabilities far above their environmental temperature 

is characteristic for this family – Human CutA1 denatures at around 96 °C. P. horikoshii 

grows optimally at 98 °C. It has been observed that robustness is essential for the protein’s 

function, and is therefore under positive selection for hyperthermostability in all 

environmental conditions (Hirata et al., 2012). Comparisons between crystal structures have 

unveiled a number of possible strategies that confer hyperstability into the family. Firstly, 

the protein forms a tightly compacted trimeric cylindrical structure with dense interaction 

hubs, minimal flexibility, and truncated surface loops leading to structures with both low 

enthalpy and extremely low entropy. (Sato et al., 2010; Buchko et al., 2015; Hirata et al., 

2012). Additionally, the hyperstability of the protein is highly susceptible to changes in 

flexibility caused by single amino acids, suggesting a highly optimized structure. Stability 

differences of over 70 °C between CutA1 variants are attributed to the insertion of a 

glutamine and proline into a beta sheet, causing a structural “kink” in one strand of the 

sheet structure (Hirata et al., 2012; figure 7 red circle). 
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Figure 7 - PDB 1J2V – CutA1 from Pyrococcus horikoshii 

Crystal structure of hyperthermostable CutA1 from P. horikoshii (Tanaka et al., 2004). This variant of 

CutA1 denatures at 150 °C. Its structural rigidity is conferred by its tight cylindrical packing through a 

dense network of interaction hubs in the centre of the trimeric protein. Point mutations in the red 

circle decrease the denaturation temperature by up to 70 °C, showing the central beta sheets are 

key determinants of stability (Hirata et al., 2012). 

 

1.2.4 Stable enzymes in synthetic biology 

1.2.4.1 Scale-up is treacherous 

A key application for the development of synthetic metabolic pathways is penetrance into, 

and subsequent disruption of chemical markets (Le Feuvre and Scrutton, 2018). In theory, 

enzymes offer a highly efficient route to chemical synthesis through enantioselective, high 

purity bioconversions. Novel enzymes therefore allow for the synthesis of second and third 

generation biofuels, materials, and bulk chemicals for food, perfume, textile, and fine 

chemical industries (Bornscheuer et al., 2012; Narancic and O’connor, 2017; Guerriero et al., 

2015; Le Feuvre and Scrutton, 2018). Additionally, enzymatic pathways can be engineered 
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to accept economically and socioeconomically important inputs, including plastics (Narancic 

and O’Connor, 2017; Wierckx et al., 2015), non-food lignocellulosic biomass (Turner et al., 

2007; Hollinshead et al., 2014; You et al., 2013; Guerriero et al., 2015), and the often touted 

“free” resource sunlight (Lips et al., 2018; Baltes and Voytas, 2018; Boehm and Bock, 2019). 

While promising, the second wave of synthetic biology requires proof-of-principal pathways 

to be scaled-up into profitable processes. However, repeatedly, synthetic biology 

encounters problems with the scale-up step (Boehm and Bock, 2019; Liu et al., 2018; Kwok, 

2010).  

 

As an example, reactors in the 100 m3 size range (i.e. fed batch bubble reactor) encounter a 

number of inefficiencies that are not accounted for in initial pathway prototyping 

undertaken at small scales (Moser et al., 2012). At the macro-scale, systems are 

homogenised by constant mixing. However, micro-states form throughout the system from 

fluctuations in temperature, pH, waste accumulation, carbon accessibility and aeration. 

These lead to sub-optimal growth conditions for microorganisms, causing metabolic 

burdens, slowed growth rates, and increased ATP consumption (Hollinshead et al., 2014; 

Hewitt and Nienow, 2007; Wang et al., 2015). Stress responses to such conditions lead to 

inefficiencies caused by early onset starvation responses, reduction in amino acid synthesis, 

lowered exogenous pathway expression, shifted metabolite flux, slowed replication and 

precocious entry into the death phase (Hollinshead et al., 2014). Such responses can also be 

amplified by quorum effects within the poplation (Ye et al., 2016). How a synthetic pathway 

reacts and performs under such conditions is unpredictable until thoroughly tested (Moser 

et al., 2012). Often, a given process will need to undergo significant refinement through 

many iterations at both the pathway and organism levels to enable market viable 

productivity (Park et al., 2008; Jullesson et al., 2015; Sanford et al., 2016). As such, it is 

common for scale-up timescales to be underestimated, leading to complex and high-risk 

investment roadmaps (Sanford et al., 2016).  

 

The synthetic biofuels market is exemplary of scale-up issues. In 2014, biofuel pioneers LS9 

sold for a net loss of $41 million after failing to obtain funding for scale-up of microbial 

biodiesel production. Their buyers, Renewable Energy Group, have inserted the LS9 

developed technology into pathways for the development of fine chemicals (LaMonica, 
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2014). Around the same time, biofuels giant KiOR sold their $215 million plant for $3.7 

million in their 2014 bankruptcy filing, after consistently failing to achieve promised yields 

and capacity (Fehrenbacher, 2015; Sanford et al., 2016). Solazyme, who initially held 

partnerships with the US government to generate biofuels from algae, instead now gains 

commercial value from the sale of synthetic of bio-oils for nutritional products and the 

culinary industry as TerraVia, which recently sold to Corbion following bankruptcy in 2017 

(Lane, 2016; Fehrenbacher, 2016; Corbion, 2017). The history of Amyris tells a similar tale: 

they initially developed systems for the biosynthesis of biofuel precursor farnesene. 

Following the company’s stock price plummeting 95% ($800 ® $40 per share) after taking 

$34 million in losses in 2017, its fermentation plants were sold, shifting the company’s focus 

to the generation of capital from fine chemical products like fragrances (Bomgardner, 2017; 

Amyris, 2018). While fuel industries are highly competitive, these issues are indicative of a 

disconnect between proof-of-concept and commercial application. In many young synthetic 

biology applications, value only exists in theory. Realisation of value requires effective scale-

up to meet market needs and offset high and unpredictable set-up costs. Hence today 

marketable applied synthetic biology workflows typically target specialist market products 

of high value. For synthetic biology to ever penetrate, disrupt and maintain within broader 

markets, technologies that enable efficient biocatalysis at multiple scales are essential. 

 

1.2.4.2 Thermostable workflows could enable scale-up – Lignocellulose case study 

The use of stable enzymes and high temperature bioconversions offer a number of benefits 

over mesophilic systems that could enable more secure and successful scale-up processes 

(Jemli et al., 2014; Eberhardt et al., 2018; Chubukov et al., 2016; Abdel-Banat et al., 2010; 

Bommarius, 2015). High temperature catalysis initiated from lignocellulosic biomass is one 

of the best studied potential applications of thermostable enzymes for the scale-up of 

synthetic biology (Guerriero et al., 2016). 

 

For a synthetic biology application to be market viable, it has to provide a unique solution to 

an existing problem, and has to be market competitive enough to generate profit following 

development (Langerak and Hultink, 2006; Lechner et al., 2016). Lignocellulose is the most 

abundant carbohydrate source in nature, and is the most readily available fully recyclable 
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raw material on earth (Guerriero et al., 2016). Derived from plant cell walls, the cellulose 

component of lignocellulose makes up 40% total plant biomass, offering an low cost waste 

product derived carbon source to drive synthetic bioconversions (Turner et al., 2007). In 

theory, lignocellulose bioconversions could be disruptive in many markets, as they drive 

down the cost of raw materials, allowing for the generation of innovations with consumer 

costs that provide market penetrative, and potentially market expanding pricing (Srinivasan 

et al., 1997). Importantly, for this case, lignocellulose derived glucose (plus processing costs) 

must be cheaper than “off-the-shelf” glucose.  

 

However, glucose is largely inaccessible when packaged into cellulose. Cellulose has a highly 

crystalline structure, packed by van der Waals forces and hydrogen bonds, making it 

recalcitrant to hydrolytic enzyme activity (Cheng et al., 2011; Zhao et al., 2012). Biomass 

utilisation immediately becomes costly due to the need for pre-treatment with high 

temperatures or chemicals (Hendriks and Zeeman, 2009). Even with pre-treatment, long 

depolymerisation and hydrolysis times with large volumes of cellulase and glycoside 

hydrolase enzymes are required for carbon release at useful scales, incurring high 

manufacturing costs (Fenila and Shastri, 2016). Additionally, pre-treatment processes can 

lead to the generation of fermentation inhibitors which need to be titrated out of solution 

(Xia et al., 2013; Long et al., 2018). Therefore, alternative processing strategies are required 

for biomass derived glucose to be commercially viable. Thermophilic enzymes are one 

candidate technology that may offer improved biomass utilisation. 

 

Approximately half the projected costs of biomass conversion are associated with enzymatic 

processing. However, these projections are based on mesophilic systems (Yeoman et al., 

2010; Eberhardt et al., 2018; Klein-Marcuschamer et al., 2011). If high temperature pre-

treatment regimens for depolymerisation are utilised, thermostable enzymatic 

desaccharification can potentially be performed immediately in the same pot without the 

requirement of extensive cooling (Turner et al., 2007; Szijárto et al., 2008; Yeoman et al., 

2010). Such high temperature systems have been reported that reach over 70% conversion 

of cellulosic biomass to respective sugars (Noordam et al., 2018; Long et al., 2018). 

Saccharified product would then be routed into subsequent fermentations. Optimal 

fermentation conditions rely on the thermotolerance of the fermentation strain, or stability 
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of biocatalysts (Yeoman et al., 2010). Large volumes of water are therefore required to 

maintain consistent temperatures of both the fermenter and any additives to avoid heat 

stress when mesophilic fermentation chassis are utilised. High temperature bioconversions 

therefore offer cost-savings through the relaxation of cooling requirements, and the 

recycling of metabolic heat to maintain high process temperatures (Abdel-Banat et al., 

2010; Lin et al., 2014). High temperatures would also decrease the viscosity of plant slurry, 

allowing for less energy expenditure in system homogenisation. Heat-dependant relaxation 

of the cellulose crystal structure combined lowered viscosity would increase enzymatic 

access to substrate, increasing overall process efficiency (Yeoman et al., 2010; Kallionen et 

al., 2014; Chatterjee et al., 2015; Long et al., 2018). 

 

Additionally, the fermentation environment is hyper-rich in carbon-based energy sources, 

meaning microorganisms carried in slurries can lead to contamination of fermentations and 

considerable production bottlenecks. A case study by GE Life Sciences analysed the 

potential economic impact of a contamination event in a 2000L bioreactor that makes a 

“blockbuster” drug (Westman, 2017). It was assumed that it would take one month from 

discovery of contamination to resume bioreactor activity. Costs incurred by scrapping a 

fermentation batch approach $1million from lost raw materials, sanitisation expenditure 

and labour hours. Constant quality assurance is required to ensure a spill over event would 

not contaminate the next batch once the fermenter is turned back on (Survana et al., 2011). 

Depending on where in the drug synthesis and purification process the contamination has 

reached, an additional $3 million expenditure could be incurred due to sanitising of 

purification apparatus, and discarding potentially damaged multi-use consumables. If costs 

were to be considered at a market-level, a ripple of impacts caused by loss of reputation, 

long lead times, loss of market share and litigation may lead to over $1billion in lost revenue 

(Westman, 2017). At large-scales, in any biocatalytic workflow, it is imperative that 

contamination events are avoided. Considering biomass conversions, high temperature 

liquefactions and fermentations ensure that only the intended thermotolerant fermentation 

organisms can survive optimally in the carbon rich environment, especially when 

microorganisms may be carried with the biomass substrate (Yeoman et al., 2010; Viikari et 

al., 2008; Kallioinen et al., 2014; Long et al., 2018). 
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Finally, overall process efficiency is intrinsically liked with enzymatic half-life (specific 

activity). An enzyme’s thermostability and half-life at temperature are typically positively 

correlated, where thermotolerant enzymes survive for longer in solution than their less 

stable homologues at the same temperature (Polizzi et al., 2007; Yeoman et al., 2010). An 

estimated 50% of process costs are related to the utilisation of enzymes. Therefore, 

decreasing the molar quantity of enzyme while attaining equivalent or improved 

processivity is essential for bioprocess commercial viability at larger scales (Long et al., 

2018; Wu and Arnold, 2013; Klein-Marcuschamer et al., 2011). 

 

1.2.4.3 Stable enzymes also enable scale-up by acting as favourable substrates for protein 

engineering 

An important emerging application of thermostable proteins to synthetic biology scale-up is 

their use as a favourable engineering substrate (Bommarius, 2015). It has been highlighted 

that thermostable proteins harbour increased “mutational robustness” when they possess 

stabilities considerably above the stability threshold (Zhou et al., 2008; Tokuriki and Tawfik, 

2009B). This is important when considering the optimisation of proteins for maximum 

efficiency in a commercialised synthetic metabolic pathway. If proteins in the pathway are 

to be engineered, an attractive starting point for engineering would be a protein that 

operates at temperatures far above the native stability of the synthetic system (Khersonsky 

et al., 2018; Pardo et al., 2018). As discussed, the majority of mutations are destabilising 

(Faure and Koonin, 2015): a thermostable protein can therefore sample a greater sequence 

space over the mesophilic counterpart, as fewer mutations are significantly detrimental to 

protein folding.  

 

In nature it is observed that the innovation of new function typically involves trade-offs with 

stability, where functional innovation requires proteins to accumulate simultaneous 

counter-stabilising mutations throughout the structure (Tokuriki et al., 2008). 

Destabilisation of engineered biocatalysts is also often encountered when new or improved 

functions are imparted (Martin et al., 2018). Engineering new function into proteins through 

directed evolution therefore leads to stability induced optimisation plateaus after only a 

small number of mutagenesis rounds (Goldsmith et al., 2017). From a fitness space 
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perspective, minima that exist because of protein destabilisation impede the introduction of 

mutations required for the traversal across property space. These minima are effectively 

flattened in stable enzymes until the protein accrues enough mutations for the engineered 

protein’s stability to approach that of the intended system (Porebski and Buckle, 2016). 

Logically, larger traversals of property space are possible with thermostable proteins due to 

the shifts in property landscapes. The release of pressure caused by the requirement of 

counter-stabilising mutations should also make such traversals possible in fewer mutations.  

 

Bloom et al. (2006) offer an applied example of this phenomena, in the engineering of novel 

substrate binding in the cytochrome P450BM3 monooxygenase. In this comparative study, 

P450BM3 homologues derived from mesophilic and thermophilic parents were subject to 

random mutagenesis, generating equivalent mutation distributions throughout the 

proteins. Activity was then screened on five novel, pharmaceutically relevant substrates. 

Three-fold more mutants with activity on any of these substrates were identified from the 

thermostable parent. Additionally, thermostable mutants with novel binding properties 

were destabilised up to 14 °C, whereas no mutants from the marginally stable protein 

incurred stability losses >3 °C. In the same study, the authors also exemplified benefits of 

high stability in the rational engineering of P450BM3. By including a positively charged 

residue in the active site, binding and catalysis of the negatively charged substrate naproxen 

was achieved. Modification of the active site caused a 7 °C decrease in stability, which 

would not be permissible if the same engineering process was performed from the 

marginally stable homologue (Bloom et al., 2006).  

 

Goldsmith et al. (2017) also showed that the engineering optimisation plateau can be 

overcome by undertaking directed evolution on thermostable proteins. Phosphotriesterase 

was engineered to scavenge and neutralise V-type nerve agents in the body. Previous 

studies from a mesophilic counterpart achieved a plateau of ~500-fold improved activity on 

nerve agents VX and RVX with subsequent rounds of mutagenesis conferring rare and 

minimal improvements (Cherney et al., 2013). Focused introduction of stabilising mutations 

into the evolving library allowed for the release from this plateau. 5000-fold improvements 

in activity on agent VX, and 17000-fold improvement on agent RVX compared to wild type 
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were subsequently attained – providing a viable candidate biopharmaceutical for low-dose 

post-exposure treatment of V-type nerve agents (Goldsmith et al., 2017).  

 

As such, very recent studies have begun to front-load existing enzyme engineering 

frameworks with stabilisation tools, with the aim of simplifying all downstream steps. 

Trudeau et al. (2018) needed to convert an acetyl-CoA synthetase (ACS) into a glycolyl-CoA 

synthetase (GCS) as a step in re-routing proto-respiration to bypass Rubisco for carbon 

conservative conversion of solar energy into biomass. As an initial step in the engineering 

process, the “Protein Repair One Stop Shop” (PROSS; Goldenzweig et al., 2016) stabilisation 

tool was used to increase the stability of ACS by greater than 10 °C. ACS was then subject to 

active site engineering using library-based tools to engineer GCS with a 16-fold shift in 

activity in favour of glycolate. Both the benefits of high temperature systems, and the 

engineering opportunities afforded by thermostable proteins present necessity for 

advanced tools that enable access to stable enzymes for use in synthetic biology workflows 

(Rigoldi et al., 2018). 

 

1.2.5 Obtaining stable enzymes 

1.2.5.1 Stable enzymes from nature 
Thermophiles require thermostable enzymes in order to survive. Thermophiles therefore 

present an essential resource for obtaining enzymes with high stability for the use in 

synthetic biology workflows. Many examples of thermostable protein variants obtained 

from characterised thermophiles exist in the literature. Notable examples include L-

aminoacylases (Toogood et al., 2002; Tanimoto et al., 2008) and g-lactamases (Hickey et al., 

2009), both of which are utilised in the multi-ton biosynthesis of pharmaceutical precursors 

(Littlechild, 2015; Littlechild, 2017). Additional examples of note include the 

amylotransferases, which are essential for starch processing into plant-based products used 

in the food industry (Kaper et al., 2004; Turner et al., 2007), and aldo-keto reductases which 

are used in the synthesis of primary alcohols (Willies et al., 2010).  
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In the advent of increasing sequencing capacities, metagenomes provide an important 

alternative resource for the identification of thermostable proteins (Helm et al., 2018). 

Metagenomics is the study of mixed genetic pools obtained directly from environmental 

samples (Tringe et al., 2005). In metagenomic analyses, everything in a given sample is 

sequenced simultaneously. Predictive algorithms then identify genes of interest in the 

metagenomic sample, either by analyses of homology with existing gene databases (Huson 

et al., 2011), or by predictive methods that integrate computational deep learning with 

training datasets of well annotated genomic samples (Zhang et al., 2017). Homology 

searches of metagenomic samples isolated from high temperature environments (e.g. hot-

springs) have harboured numerous examples of thermostable enzymes that are used 

industrial workflows (Guazzaroni et al., 2015). Examples include esterases from solfataric 

field mud holes in Indonesia (Rhee et al., 2004), epoxide hydrolases from microbial mats 

growing in Russian hotsprings (Ferrandi et al., 2015), xylanases from compost heaps (Verma 

et al., 2013), and cellulases from elephant dung (Ilmberger et al., 2012).  

 

1.2.5.2 Engineering stable enzymes 

While thermophiles offer a rich resource for thermostable enzymes, the discovery of 

enzymes with both thermostability and desirable activity is rare. As discussed, engineering 

new function into thermostable enzymes often leads to decreases in stability. Taking  

natural enzymes with desired function, and engineering them for stability is therefore a 

desirable workaround. However, engineering proteins for thermostability has been 

described as “one of the most challenging problems in protein science” (Suplatov et al., 

2015). A protein’s stability is the product of complex internal and external molecular 

interactions. Observations from random mutations scattered throughout protein families 

has suggested that stabilising mutations occur between one in every 300 to 1,000 random 

mutations screened (Bloom and Glassman, 2009). Such paucity mutations that increase 

stability has led to innovations that overcome low probabilities by screening considerably 

large numbers of mutations across a protein family to find stabilising sets of mutations 

(Arnold, 2018; Kaushik et al., 2016; Ye et al., 2017). Alternative tools identify refined 

libraries of select sites that are predicted to harbour stabilising mutations based upon 
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structural and sequence data (Goldenzweig et al., 2018; Yang et al., 2015). Finally, a newly 

emerging group of methodologies utilise alignments of protein sequences to inform the 

selection of amino acids from wider protein families to introduce stabilising bias throughout 

the protein sequence (Sternke et al., 2018; Gumulya et al., 2018). 

 

Directed evolution for engineering stability 

Directed evolution offers a powerful tool for engineering stability. Success in directed 

evolution hinges on the relationship between the selective pressure applied and the desired 

trait (Arnold, 2018). Fortuitously, engineering stability by directed evolution requires the 

application of an exceptionally simple selective pressure – heat (Eijsink et al., 2005). By 

steadily increasing the temperature of the system, and selecting for functional sequences 

based on activity at a given temperature, rapid refinements to protein stability can be made 

(Cherry and Fidanstef, 2003; Denard et al., 2015).  

 

Directed evolution has successfully been employed to push a number of biocatalysts toward 

thermostability. Early studies quickly identified directed evolution as a method that can 

circumvent the common trade-off between stability and activity, by screening for both 

activity and stability in parallel. For example, Giver et al. (1998) focused on stabilisation of p-

nitrobenzyl esterase, an important catalyst in the synthesis of cephalosporins. In their low-

throughput methodology, single transformants from random mutagenesis were split into 

two screening populations. Parallel screening of mutants for both activity on substrate, and 

activity following heating allowed for the cross-referencing of libraries to identify double-

benefit mutants. Experiments led to the identification of mutants with an approximately 15 

°C increase in stability following incubation, and a 1.3x increase in specific activity at 30 °C. 

In another example, Wu and Arnold (2013) screened three generations of 2,800 colonies of 

a randomly mutated thermostable cellulase for high temperature lignocellulose degradation 

at 75 °C.  While the wild type exhibited a half-life of only two minutes at this temperature, 

seven additional point mutations produced a variant with a half-life of 4.5 hours, and a 10-

fold decreases in saccharification times at 75 °C.  
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It is generally accepted that thermostability increases of 15 °C and above are “outstanding”, 

and methodologies for engineering protein stability should strive for such increases (Wijma 

et al., 2014; Bednar et al., 2015). However, the majority of directed evolution attempts 

become stuck in the 2-14 °C optimisation range (Wijma et al., 2014). Additionally, the 

directed evolution work discussed above exemplify how screening capacity is a limiting 

factor to the discovery of useful properties, where large volumes of sequences are slowly 

screened for enhancements (Packer and Liu, 2015). Therefore alternative “semi-rational” 

methods are being developed for the identification of optimal residues from refined 

libraries that address the numbers issue in traditional directed evolution (Reetz et al., 2008; 

Kaushik et al., 2016). Examples of recent technological advancements in semi-rational 

stability engineering are discussed below. 

 

Hotspot identification by free energy modelling 

One of the first tools available for the selection and identification of specific stability 

enhancing residues within a protein was Rosetta (Rohl et al., 2004; Zangellini et al., 2006; 

Kaufmann et al., 2010). Rosetta is a software suite for the modelling of a protein’s structural 

behaviour under applied conditions (i.e. substrate binding), and for the prediction of 

structural changes following sequence modifications (Richter et al., 2011). Given a protein 

crystal structure, Rosetta is able to sample the conformational space a folded protein can 

inhabit by sampling possible bond angles that do not disturb the proteins overall 3D 

conformation (Kaufmann et al., 2010). While stabilisation is not the package’s core role, the 

Rosetta software suite is able to provide predictions of free energy changes when mutating 

target sites (Magliery, 2015). Energy calculations are based on structural data, models of 

solvation, electrostatic interactions, hydrogen bonding, and van der Waals forces 

(Kaufmann et al., 2010). Mutants are then be scored based on their preference in a given 

condition against the wild type structure (Jia et al., 2015). Additional stability centric 

applications have since emerged, for example FoldX (Schymkowitz et al., 2005), where the 

sole purpose of the algorithm is free energy prediction based on a given crystal structure. 

FoldX provides atomic resolution interaction predictions to produce energetic calculations 

of both native state stability and the stability of subsequent mutants (Christensen and Kepp, 

2012). It is common for FoldX and Rosetta to be utilised in tandem for false-positive 
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identification, where residues that both programs identify are considered true candidates 

for stabilisation improvement. 

 

Stability prediction data from such modelling software are then utilised by third party 

applications to generate libraries of potential sequence mutations for enzyme stabilisation. 

One of the most mature adjunct applications is the identification of “hotspots” within the 

enzyme structure – point mutations that are likely to harbour the greatest stabilising effects 

(Yang and Wang, 2010). Hotspots are based on highly flexible residues that may lead to high 

rates of solvent access to the protein core, as well as residues that are highly mutable 

without damaging function (Bendl et al., 2016). Hotspot identification tools like “Hotspot 

Wizard” and “FireProt” utilise Rosetta and FoldX in the validation of predicted mutants by 

modelling free energy changes, allowing for significant library refinement (Sumbalova et al., 

2018; Bednar et al., 2015; Wijma et al., 2014). Such highly refined libraries (102-104 variants) 

can still provide outstanding increases in protein stabilisation (>15 °C). For example, FireProt 

was validated on the haloalkane dehalogenase DhaA (Bednar et al., 2015). In DhaA, 5,529 

point mutations are viable. Corrected for functional determinants, destabilising positions, 

and false positives, 29 desirable single point mutations were identified based on energy 

calculations or consensus residues at given sites. This was refined to a final library of only 21 

possible sites for the generation of variants based on scores from both FoldX and Rosetta. 

From this library, a number of stabilising mutants were obtained, including a point mutant 

that conferred a 16.3 °C improvement in thermostability. Bednar et al. (2015) then assessed 

combinations of predicted beneficial mutations for additivity, and isolated a DhaA variant 

with eleven mutations that presented a 24.6 °C improvement over wild type. The majority 

of these mutants introduced bulkier hydrophobic residues that improve packing, with a few 

residues predicted to improve rigidity.  

 

FRESCO (the Framework for Rapid Enzyme Stabilisation by Computational libraries) is 

another FoldX and Rosetta driven method for enzyme stabilisation (Wijma et al., 2018; Fürst 

et al., 2018). FRESCO is similar in workflow to FireProt, but also includes an analysis of 

structure for potential sites that could permit disulphide bridges. Additionally the 

refinement of FoldX and Rosetta identified sites involves molecular dynamics to identify 

mutants that lead to an increased flexibility that may counteract potential stabilisation 



 61 

predicted by free energy calculations (Rigoldi et al., 2018). FRESCO also follows the same 

confirm-combine strategy as FireProt. It is predicted that over 10% of the mutants in a 

FRESCO library are stabilising, compared to the 1 in 1,000 conservative estimate for random 

mutagenesis (Wijma et al., 2018; Bloom and Glassman, 2009). Wijma et al. (2014) provided 

the first validation of FRESCO, where a library of 64 limonene hydroxylase mutants yielded a 

final mutant with a 35 °C increase in stability over the wild type. Importantly, FRESCO proves 

robust for the engineering of other traits under the umbrella of stability. Arabnejad et al. 

(2017) utilised the FRESCO framework for the engineering of co-solvent compatibility in a 

halohydrin dehalogenase type C (HhdC). The resultant twelve residue mutant showed no 

decrease in relative activity after five hours incubation in 50% (v/v) methanol, acetonitrile, 

or dimethylformaldehyde. On the other hand, the wild-type enzyme showed negligible 

activity in the three solvents at the same concentration at time zero. Interestingly, the 

enzyme also showed a 28 °C improvement in thermostability, providing further evidence 

that engineering for thermostability is a powerful method to engineer for a swathe of 

stabilising effects. 

 

B-fitting 

B-fitting follows a similar philosophy to FireProt and FRESCO, whereby optimal targets for 

stabilisation are selected based on the protein’s structure. B-fitting instead optimises B-

factors instead of free energy changes (Yu and Huang, 2014). B-factors represent atomic 

displacement observed in crystal structures, and high B-factors signify regions of high 

flexibility in the protein (Parthasarathy and Murthy, 2000). In principal, B-fitting improves 

protein stability by identifying the most flexible regions of the protein and suggesting 

rigidifying mutations in place, solidifying interactions with the protein solvent shell, and 

restricting bulk solvent access to the protein core (Gao et al., 2018; Yu and Huang, 2014; 

Reetz and Carballiera, 2007). In one exceptionally successful example from Reetz et al. 

(2006), B-fitting identified ten highly mobile residues throughout a mesophilic lipase (LipA). 

From these ten sites, eight saturation mutagenesis libraries were generated, which were 

subjected to stepwise selection based on the enzyme’s ability to survive 15 minutes of 

incubation at increasing temperatures. The best mutant identified from this initial 

generation was only 4.3 °C more stable than wild type (50 °C). This hit was then taken 
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forward and subject to iterative saturation mutagenesis at the site that gave the second 

best increase in stability. Continued stepwise mutagenesis was then performed across the 

entire library, whereby stabilising mutations were continually accumulated. Two final eleven 

residue mutants showed no discernible loss in activity after 15 minutes of incubation at 100 

°C, which remains one of the greatest engineered increases in protein stability published to 

date. Furthermore, half-life was improved approximately 490-fold, yet activity was not 

sacrificed. As with HhdC described above, Reetz et al., 2010 showed that the same enzyme 

was also highly stable in the presence of harsh solvents compared to wild-type. Half-lives in 

50% (v/v) acetonitrile, DMSO or dimethylformaldehyde were improved approximately 80-

fold, 22-fold and 19-fold respectively.  

 

1.2.6 Optimising the engineering of stable enzymes for synthetic biology 

1.2.6.1 Stable protein engineering may not solve optimisation bottlenecks 

In the first wave of synthetic biology, modularisation of genetic parts allowed for the 

accelerated prototyping of synthetic systems (Purnick and Weiss, 2009). This creates a 

bottleneck in the scale-up of synthetic biology processes, where treacherous systems 

optimisation finds many promising prototypes become non-viable economically based on 

the unpredictability at the protein and system level (Boehm and Bock, 2019; Liu et al., 

2018). Such unpredictability can be circumvented to some extent by the utilisation of stable 

enzymes, as they allow for efficient traversals of sequence space in protein optimisation, 

while providing process-benefiting properties (Jemli et al., 2014). Therefore, broad access to 

stable enzymes may circumvent some of the bottlenecks preventing the progression of 

synthetic biology applications beyond a prototype (Bommarius, 2015).  

 

It is apparent that none of the widely adopted methods discussed fit with the synthetic 

biology ethos. Access to stable proteins from nature rely on broadly accessible thermophile 

metagenomes (Guazzaroni et al., 2015), which do not exist at the time of writing. 

Considerable expertise and investment in metagenomics are therefore required to extract 

candidate proteins. There is also no guarantee that desired enzymes will exist in a given 

metaproteome, nor is there guarantee that a candidate enzyme will possess stabilities or 
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activities that are “right for the job” (Lehmann et al., 2000). While directed evolution and 

semi-rational based methodologies have been utilised to produce outstandingly stabilised 

protein variants (>15 °C; Giver et al., 1998; Reetz et al., 2006), the methodologies are also 

poorly accessible, and present a range of challenges (Bommarius, 2015). Directed evolution 

is slow, and requires considerable expertise to undertake (Ravikumar et al., 2018). Semi-

rational design, while computer aided, mandates access to protein crystal structures for 

success, which are not always available (Chen et al., 2012). Even when they are, 

considerable expertise on the relationship between protein structure and function are 

required to achieve exceptional increases in stability (i.e. the requirement of checking for 

reasonable mutations by visual inspection (Wijma et al., 2014). Furthermore, all methods 

require considerable time investment to undertake, with an unknowable number of 

revisions required to reach stabilisation (Wedge et al., 2009). It is also not known whether 

exceptional stabilisation is possible with a select family, until optimisation plateaus are 

reached (Goldsmith et al., 2017). The generation of stable enzymes, rather than the 

optimization of systems, produce another confounding factor in the unpredictable roadmap 

to scale-up. 

 

Instead, it may be beneficial to once again apply focus to democratisation. Standard 

methodologies that enable the rapid and open source stabilisation of enzymes may allow 

for the widening of the optimisation bottleneck in synthetic biology. To draw an example 

from DNA technologies, CRISPR is considered to be one of the biggest innovations in the 

genetic engineering field based on its simple requirements, its high success rate and its low 

cost (Cong et al., 2013). These factors have allowed for broad dissemination of the tool, and 

rapid innovation (Doudna and Charpentier, 2014). An equivalent tool for protein 

engineering would be easily accessible and expert-agnostic, allowing a broad user base to 

develop stable enzymes for implementation and testing in synthetic biology frameworks. 

Additionally, to be broadly accessible, the tool should be low cost, requiring both resource 

and time investment to be minimised (Endy, 2005). Finally, the tool should have short 

generation times, where potentially beneficial variants can be identified and tested rapidly 

(Sun et al., 2014). Failure to obtain stable enzymes does not then generate huge process 

set-backs, and the optimisation roadmap can be more confidently predicted.  

 



 64 

1.2.6.1 Alignment-only methods for stability engineering 

Recent research has emerged on the utilisation of alignment-only methodologies to induce 

stabilising bias into sequences. Such methodologies require only multiple sequence 

alignments of proteins as input, and generate thermostable candidate proteins by selecting 

optimal states within variable sites in the alignment using freely available software (Durani 

and Magliery, 2013; Magliery et al., 2015). Interestingly, all other stabilisation methods 

discussed take a bottom-up approach to enzyme engineering, implementing small numbers 

of highly beneficial mutations obtained over iterated screens into a final enzyme. In 

contrast, alignment-only methods are top-down. Large volumes of point mutations are 

scattered throughout the protein’s highly variable sites. Despite the large volumes of 

mutation, the methods are theoretically likely to produce functional sequences as any 

inferred mutation is derived from functional residues already present in the multiple 

sequence alignment (Porebski and Buckle, 2016). However, the underlying mechanisms 

driving stabilisation, and factors defining successful stabilisation with alignment based 

technologies are poorly understood. Nevertheless, as the requirements for such 

methodologies are simply a multiple sequence alignment of homologues and freely 

available software, the barrier to access such methods is extremely low. Alignment based 

methods are therefore excellent candidates for democratised protein stabilisation tools 

(Sternke et al., 2018; Porebski and Buckle, 2016). Aligment-based engineering can be split 

into two fields – consensus sequences and Ancestral Sequence Reconstruction (ASR). 

 

Multiple sequence alignments 

At the heart of alignment-based protein stabilisation are algorithms for generating accurate 

multiple sequence alignments. Such algorithms take lists of homologous sequences as input, 

and positionally align related amino acids between proteins to one another. Homologous 

proteins are typically identified utilising local alignment tools that search databases of 

sequences for hits with localised pairwise similarity to a query sequence (Altschul et al., 

1990). Basic Local Alignment Search Tool (BLAST) is the most commonly utilised software for 

homologue searches (Madden, 2013). Another commonly used tool is Pfam, which uses 

Hidden Markov models for the statistical inference of homology between proteins and their 

subdomains. Within the Pfam database, protein domains are grouped into families based on 
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their homology with domains of defined function (Finn et al., 2014). Multiple sequence 

alignments of homologous sequences provide an understanding of historical relationships 

between sequences, and provide a visual tool for identifying conserved versus non-

conserved sites across a protein structure. These in turn can help identify relationships 

between a protein sequence and its functional and fitness landscapes (Notredame, 2002; 

Phillips et al., 2000).  

 

Most modern alignment software utilises a progressive algorithm (Feng and Doolittle, 1987). 

Here, the most similar pair of sequences are first aligned. Progressively, the second most 

similar are aligned, and third most similar and so on until all sequences are aligned to one 

another. Typically, when computing pairwise alignments sequences are compared based on 

a comparison model (Notredame, 2002). This defines likelihood values for pairwise 

evolutionary relationships between residues, and defines criteria on which to infer a gaps in 

the alignment (denoting insertion-deletion [indel] events; Edgar, 2004; Phillips et al., 2000). 

As searching for globally optimal alignments of sequences becomes exponentially more 

computationally expensive with each new sequences, alignment software utilises a heuristic 

approach that is tuned to give close-to-optimal answers. Typically, the algorithms will 

identify highly similar sets of sequences first, radiating outwards for the placement of more 

dissimilar regions. Pair-wise alignments are based on scoring systems which can be based on 

alignment motifs, amino acid properties, evolutionary history, models of amino acid 

replacement (Notredame, 2002). Logical likelihood scores are computed for each position, 

which in turn influence the alignment of future aligned residues (Notredame, 2002; 

Thompson et al., 1994). Gaps are also penalised, with larger gaps incurring higher penalties, 

as indels become objectively rarer with length as a function of the protein’s total length 

when assuming homology (Vingron and Waterman, 1994).  

 

While these methods are typically computationally non-intensive, it is possible to propagate 

errors throughout the alignment if sequences are misaligned early on in the process 

(Dickson et al., 2010). Therefore, multiple sequence alignments come with a caveat of being 

a “best guess”, and should typically be accompanied by refinement of the alignment by eye 

(Notredame, 2002). Tools also exist for refinement, for example GBlocks (Talavera and 

Castresana, 2007), which is able to identify and remove ambiguously aligned regions from a 
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given alignment. Commonly used open source algorithms for the multiple sequence 

alignment of proteins are described in table 4. It should be noted that benchmarking finds 

the algorithms to have within 2% accuracy to one another, with some algorithms 

performing better or worse depending on the benchmarking dataset. Algorithm choice 

therefore often comes down to personal preference (Le et al., 2017). 

 

Algorithm Method Notes Reference 

Clustal 

Scoring system with weighting, 
integration of substitution 

matrices, and gap penalties based 
on hydrophobicity.  

Highly complex scoring 
algorithm allows for more 

biologically accurate 
alignments  

Thompson et al., 1994 

MAFFT 
Fast Fourier transform for rapid 
homology detection. Simplified 

version of Clustal scoring system. 

CPU-light. Up to 100x faster 
than other methods when large 

numbers of sequences (>60) 
are to be aligned. 

Katoh et al., 2002 

MUSCLE 
K-mer counting for identifying 

homology. Tree-guided scoring. 
Refinement based on sub-trees.  

Most accurate default 
algorithm in some benchmark 

tests. Decrease in accuracy with 
large alignments  (Le et al., 

2017) 

Edgar, 2004 

T-Coffee 

Makes all pairwise alignments first 
using Clustal. Alignments are then 

built based on the library of 
pairwise alignments by library 

extension. 

Most accurate default 
algorithm in some benchmark 

tests (Le et al., 2017). Most 
computationally intensive 

algorithm. 

Notredame et al., 2000 

Table 4 - a non-exhaustive list of freely available, commonly used MSA tools for protein 
sequences 

 

Consensus protein design 

Consensus proteins are derived directly from a multiple sequence alignment. A novel 

protein sequence is constructed from the most common amino acid to exist at each 

alignment position (figure 8). Lehmann et al. (2000) were the first to identify that sequence-

wide sets of consensus sequences can lead to protein stabilisation. The researchers posited 

that every amino acid contributes to stability, and therefore modifying large numbers of 

residues produces an increased chance of obtaining stabilising residues. A consensus 

phytase was derived from an alignment of thirteen sequences that possessed a 15 °C 

increase in stability over its constituents. Addition of six more sequences into the alignment 

generated a consensus sequence with a stability improvement of 22.4 °C. By conducting 

saturation mutagenesis at each site that varied between the two stable consensus proteins, 
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it was observed that not all substitutions are stabilising. However, the sum of all 

substitutions is net-stabilising, where each substitution has small effects (<3 °C) on overall 

protein stability. Such an effect highlights that consensus stabilisation is global, and not 

contingent on the discovery of small numbers of hyper-stabilising mutations like previously 

discussed semi-rational methodologies (Rigoldi et al., 2018). Importantly, the majority of 

amino acid replacements in consensus phytases regions of highly disordered structure, 

where large ranges of sequence space are being rapidly sampled, and secondary structures 

were highly flexible. However, the authors state that it is was not possible to clearly 

characterise the underlying mechanisms of stabilisation (Lehmann et al., 2000). 

 

 

Figure 8 - A consensus sequence generated from an alignment of insulin homologues 

Sequences in the alignment were identified by BLASTp using the human insulin sequence as query 

(Altschul et al., 1990). Sequences were aligned with Clustal Omega (Sievers et al., 2011). Consensus 

sequences were generated within the Geneious v.10 sequence handling software suite based on the 

most common sequence at a given site (Kearse et al., 2012). Black residues denoted X in the 

consensus marks sites where a majority cannot be reached. 

 

 

Consensus protein design has since been utilised for the successful engineering of a number 

of protein families (i.e. Dai et al., 2007; Sullivan et al., 2011; Porebeski et al., 2015; Paatero 

et al., 2016; Okafor et al., 2018 and Sternke et al., 2018). However the true success rate of 

the methodology is difficult to discern as failures are unlikely to be published (Sternke et al., 

2018). In a recent study by Sternke et al. (2018), six consensus proteins were generated 
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from diverse protein families. Four of the six were identified as more stable than their 

constituent sequences, and all were functional, suggesting that consensus methods are 

broadly applicable and generally robust. Potential issues highlighted in the literature centre 

around the ratification of sites where there is ambiguous signal, and the correct “cut-off” 

required to generate optimal answers (Okafor et al., 2018; Porebski and Buckle, 2016; 

Paatero et al., 2016).  

 

Figure 8 represents a consensus of insulin homologues. It can be seen that across the 107 

amino acid alignment, ten sites do not form a consensus, and therefore no true consensus 

sequence can be identified. Typically, to circumvent this issue, residues are inserted as a 

random choice between the most likely sequences (Lehmann et al., 2000), multiple 

consensus sequences are constructed (Sullivan et al., 2011), or through alignments (>1000 

sequences) are constructed so ambiguities are considerably rare (Sternke et al., 2018; 

Porebski et al., 2015). Defining the cut-off for consensus engineering involves the 

identification of specific sites to be input into a known protein sequence based on the 

consensus. By defining a “cut-off” of 50%, only residues where the consensus represents 

over 50% of amino acids at a position are output. It has been observed that restricting 

consensus residues at positions that are more conserved, ignoring those that are highly 

variable, can lead to improved stabilisation and success in producing functional consensus 

proteins (Bershtein et al., 2008; Sullivan et al., 2012; Durani and Magliery et al., 2013). 

However, it is not possible to know the best cut-off for a given alignment until all possible 

cut-offs are performed (Okafor et al., 2018).  

 

Despite extensive successes, with stability improvements ranging from 5.5 °C (Dai et al., 

2007) to 32 °C (Paatero et al., 2016), the consensus protein engineering field does not yet 

fully understand the underlying mechanisms behind stabilisation. In a review of consensus 

sequence engineering, Porebski and Buckle (2016) argue that a consensus residue typically 

has a greater stabilising effect at a given site than a random residue as consensus residues 

represent an ancestral state derived from some thermophilic ancestor. This is reasonable as 

it is thought that ancient life evolved in far warmer environments than those that exist 

today (Gaucher et al., 2008). Unfortunately, falsifying or supporting this hypothesis is 

difficult as direct observation of ancient organisms and their environments is not possible. 



 69 

Additionally, Bershtein et al. (2008) show that stabilising residues compensate for 

destabilising residues when proteins are subjected to multiple rounds of mutation, 

simulating drift. As a result marginally stable proteins tend to conserve stabilising residues 

between closely related families. Consensus sequences may therefore be the amalgamation 

of multiple conserved stabilising residues that were innovated at different points in the 

protein family’s evolution (Porebski and Buckle, 2016). This is contentious as one could also 

expect compensated destabilising residues to be readily amalgamated in global-consensus 

sequences, especially as destabilising mutations are far more common than stabilising 

mutations (Bloom and Glassman, 2009). Therefore, as the accepted underlying stabilisation 

mechanism is not fully understood, and as there is no defined methodology to consistently 

produce functional stabilised consensus proteins, consensus sequences may not be the ideal 

broadly accessible solution for protein stabilisation (Okafor et al., 2018).  

 

Ancestral Sequence Reconstruction 

Ancestral Sequence Reconstruction (ASR) is a tool for generating statistical predictions of a 

protein family’s ancestry based on an alignment of sequences, a phylogenetic tree 

generated from this alignment, and a model of amino acid substitution. ASR will output 

sequences that represent a sequence with the maximum statistical likelihood to have 

evolved into all sequences in the alignment, or a related subpopulation of the alignment. 

ASR studies of diverse protein families have identified emergent properties of ancestral 

proteins, including increased thermal stability and altered substrate specificities (i.e. Okafor 

et al., 2018; Nguyen et al., 2017, Shih et al., 2016, Wilson et al., 2015; Risso et al., 2015). 

Consequently, a series of studies have probed evolutionary history to isolate sites of interest 

to engineer enzymes with novel functionality (i.e. Alcolombri et al., 2011; Conti et al., 2014; 

Gonzalez et al., 2014; Miyazaki et al., 2001; Watanabe and Yamagishi, 2006). Additionally, 

traits that are useful to bio-industry such as thermostability, improved expression, 

broadened or tightened substrate range and structural simplicity are reported in the 

contemporary ASR literature. Therefore, there has been rising interest in the use of ASR 

primarily as an engineering tool (i.e. Babkova et al., 2017; Gumulya et al., 2017; Wilding et 

al., 2017; Gumulya et al., 2018; Risso et al., 2018). As this thesis will focus on the utilisation 

and development of ASR as an engineering tool, an in depth analysis of ASR is presented. 
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1.3 ASR as an efficient tool to engineer protein stability 

1.3.1 Methodologies for ancestral sequence reconstruction 

1.3.1.1 Conception of ancestral sequence reconstruction 

ASR was first described in conjecture by Pauling and Zuckerlandl (1963). In principal, 

homologous sequences contain information about their shared ancestry, and the degree of 

difference between the two sequences represents a measure of time at which two 

homologous sequences separated from one another (Joy et al., 2016). Therefore predictions 

of ancient states can be made based on shared states between modern (extant) sequences. 

Probabilistic models of amino acid change are used to derive the most likely ancestral amino 

acid to have produced the modern state at any site that varies between two homologues 

(Pupko et al., 2000). Pauling and Zuckerlandl were arguably visionary in their perspective, 

laying the groundwork for a field that would not take shape until considerable progress was 

made in both evolutionary biology, computational biology and DNA synthesis some 30 years 

later (Gaucher, 2007). 

 

Pauling and Zuckerlandl’s vision was not put to the test until Stackhouse et al. (1990)  

reconstructed ancestors of pancreatic RNases in ruminants. A parsimonious phylogeny (See 

section 1.3.1.2 for a discussion on phylogenetics) was generated describing the evolution of 

ruminant RNases. This prediction aimed to satisfy Occam’s razor (predictions requiring less 

speculation are less spurious; Steel and Penny, 2000). Parsimony was used to predict 

ancestral residues at two positions, producing an RNase belonging to the ancestor of ox, 

swamp buffalo and river buffalo from the Pliocene era. Modular mutagenesis was used to 

generate the ancestral sequence, which was shown to be functional, and functionally 

equivalent in activity and stability to extant sequences (Stackhouse et al., 1990). Jermann et 

al. (1995) extended this study to the ancestor of artiodactyl RNases, utilising the same 

method to predict ancestral amino acids across 24 sites. Ancestors possessed extant-

equivalent activities. However, an increase in stability (»2 °C) was observed in ancestors 

that occur after the innovation of foregut digestion in true ruminants. Increased stability 

was hypothesised to aid complex digestion of grasses where 20% of dietary nitrogen is 

obtained from digested nucleotides. The two seminal studies by Stackhouse et al. (1990), 
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and Jermann et al. (1995) form the groundwork for modern ancestral sequence 

reconstruction workflows, which can be summarised as: 

 

Collect homologous sequences 

¯ 

Align sequences 

¯ 

Define model of amino acid/DNA substitution 

¯ 

Produce phylogeny of sequences 

¯ 

Predict most likely ancestors of sequences 

¯ 

Generate and test ancestors of sequences 

¯ 

Generate hypotheses about the ancient world based on observed  

properties, and correlations with known ancient trends 

 

1.3.1.2 Underlying principles for contemporary ASR 

Phylogenetics – key principals 

Central to any ancestral reconstruction is the phylogeny, where phylogenetic accuracy and 

reconstruction accuracy are directly related (Vialle et al., 2018). A phylogeny is a graph 

describing the evolutionary relationship between individual DNA or amino acid sequences. 

Phylogenies describe the series of speciation events that were most likely to have produced 

the consortia of sequences provided in the sequence alignment (Wiley and Lieberman, 

2011). These relationships are displayed as the distance between sequences where distance 

can be represented as either real time (calibrated to real data from the fossil record), or as 

the number of substitutions per site (Baum and Smith, 2013). Phylogenies are represented 

as trees, where the leaves of the tree are modern sequences, the branches of the tree 

represent the distance (amount of divergence) between sequences, and nodes represent 
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branching points between sequences (figure 9; Yang and Rannala, 2012). These 

relationships can only be inferred, as evolution is rarely observed due to million-year time 

scales. Exceptions include experimental phylogenies (Randall et al., 2016), and phylogenies 

of extremely rapidly evolving sequences like viruses (Moratorio and Vignuzzi, 2018). Modern 

techniques to infer phylogenetic trees centre around two algorithms: Maximum likelihood 

and Bayesian inference (Lemmon et al., 2009).  

 

 

 

Figure 9 - A hypothetical phylogenetic tree 

Modern sequences are represented by numbered circles. Branches are represented by a length (𝑙) 

that is calculated as a distance from all other sequences in the tree. Nodes (block hollow circles) 

represent the branching point between homologues. The distance between sequence 2 and 3 is 

represented by 𝑙U + 𝑙V. The distance between sequence 2 and sequence 4 is represented by 𝑙U +

𝑙W + 𝑙X + 𝑙Y + 𝑙Z. 

 

 

Both algorithms are classified as character-based methodologies, where all sequences in the 

alignment are considered simultaneously, and possible tree topologies are scored according 

to each individual site in the alignment (Huson and Bryant, 2005). In theory, the best scoring 

tree for all positions is the most accurate representation of the true phylogeny within the 

limitations of the algorithm and the alignment provided (Yang and Rannala, 2012). As the 

number of possible trees increases exponentially with each new branch, tree scores are 
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typically computed by heuristically searching through the global tree space. Heuristic 

searches assume that similar trees will have similar probabilities, therefore small 

rearrangements allow for step-wise optimisation of the tree score (Guindon and Gascuel, 

2003). In order to define a basis for scoring, the algorithm must have some prior knowledge 

of evolutionary patterns. For protein trees (the focus of this thesis) relationships between 

sequences are described by a model of amino acid substitution.  

 

Amino acid substitution models are matrices of likelihood values that define the probability 

of one amino acid changing into another. It has been observed that amino acids do not 

mutate into every other amino acid with equal likelihood, for two reasons (Yang et al., 

2000). Firstly, amino acid substitutions are driven by codon changes, therefore amino acid 

substitutions differing by a single base (e.g. valine to alanine) are more likely than 

substitutions requiring two, or occasionally three base changes (e.g. isoleucine to 

tryptophan). Secondly, substitutions are more likely between amino acids with functional 

and structural similarity, as such changes are less likely to disrupt the function or stability of 

their parent protein (Rodrigue et al., 2010; Le and Gascuel, 2010; Betts and Russel, 2003). A 

number of substitution matrices have been generated in the literature that attempt to 

model the average substitution rates for all proteins (Le and Gascuel, 2008). Modern 

phylogenetics tends to lean on substitution matrices (table 5) derived from observed amino 

acid changes in large databases of protein families (Le and Gascuel, 2010; Yang and Rannala, 

2012).  

 

Model Notes Reference 

JTT 

First of its kind. Computed conditional 
probability of amino acid substitution 
based on mutations observed SWISS-

PROT database in release 15.0 
(approximately 17000 sequences). 

Jones et al., 1992 

WAG 
Computed from 3905 sequences. 

Incorporates phylogenetic  information 
from alignments. Utilises approximate 
maximum likelihood based predictions   

Whelan and Goldman, 2001 

LG 
Computed from approximately 50000 

sequences in 3,912 alignments. 
Incorporated variable rates across sites 

when computing substitution rates.  

Le and Gascuel, 2008 

Table 5 - Commonly used substitution matrices derived from large databases of aligned 
proteins 



 74 

As well as amino acid substitution rates not being uniform, the rate of mutation varies 

between positions across the protein, where some sites mutate far less, or far more than 

average (e.g. active site vs flexible loop; Yang, 1994; Gu et al., 1995). It is typically observed 

that across-site substitution rates can be modelled to a gamma distribution (Yang, 1996). 

Gamma distributions are a two-parameter family of continuous probability distributions 

which are defined by a shape parameter (k) and a scale parameter (q). for the sake of 

computational simplicity, continuous gamma distributions are often distilled to a discrete 

distribution consisting the median values of the distribution’s quartiles or octiles (Golding, 

1983; Yang 1994; Yang 1996). The shape of the gamma distribution is typically estimated 

from the number of changes present across the alignment (Yang, 1996). Furthermore, some 

residues essentially never change, and therefore invariancy is also modelled by attributing 

some sites with a substitution rate of zero (Gu et al., 1995). When defining models of amino 

acid substitution, the assistance of predictive tools is often required as it is not possible to 

know which model best fits a given alignment, and thus has the highest likelihood of 

generating accurate phylogenies. For example, ProtTest (Abascal et al., 2005) utilises an 

Akaike information criterion to estimate the quality of an amino acid substitution model 

given an input alignment. Models can then be ranked allowing the user to make an 

informed decision on model utilisation in a phylogenetic experiment (Darriba et al., 2011). 

 

Maximum likelihood phylogenies 

Maximum likelihood is a statistical methodology designed for the estimation of unknown 

parameters in a model. Therefore, given sets of data, maximum likelihood computes the 

likelihood the data derived from the given constants. Conversely, given fixed data, 

maximum likelihood also computes the likelihood that a constant exists. In phylogenetic 

tree-building, the correct topology of the tree is treated as an unknown constant, and the 

known constants are the alignment and the model of amino acid substitution (Felsenstein. 

1981). Maximum likelihood software will then heuristically search tree space to find the tree 

with the highest likelihood for a given alignment and substitution model (Guindon et al., 

2010). In a similar manner to which directed evolution can be described as a series of uphill 

walks that traverse toward optimal sequence space (figure 5), maximum likelihood 

inference of a phylogeny can be considered a hill-climbing optimization over tree topology 
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space. To minimise computational effort, it is typical to generate small subtrees from the 

global tree, and locally optimise their orientations first (Dhar and Minin, 2015). Then 

additional branches or optimised subtrees can be added, and the orientation optimised. By 

adding branches in different orders, with different starting subtrees, different highly optimal 

tree topologies are searched (Yang and Rannala, 2012). At the same time, given the model 

of amino acid substitution and the alignment, an optimisation of branch lengths is 

performed. Here, branch lengths are modified branch-wise or jointly, to optimise their 

likelihood. This is performed over many passes until significantly small optimisations are 

observed (Felsenstein, 1981; Dhar and Minin, 2015). The final maximum likelihood tree is 

generated as the largest product of site-wise probabilities in the alignment given the tree 

topology, computed when assuming unequal rates of evolution between sites (Felsenstein, 

1981; Yang and Rannala, 2012).  

 

During the heuristic search, the order in which data is considered can lead to alternative 

optimal topologies. It is therefore generally appropriate to provide some score of 

topological confidence at each node on the tree (often called branch supports; Stamatakis 

et al., 2008). The most common method used to compute support values for maximum 

likelihood trees is non-parametric bootstrapping (Dhar and Minin, 2015). Bootstrapping re-

samples optimal trees from the total dataset by generating a new alignment from random 

columns of the true alignment with replacement (Felsenstein, 1995). Trees are then 

optimised from this dataset using the same maximum likelihood approach. Comparisons of 

branching topology between the most optimal subtrees and the consensus tree, and the 

percentage of matching branching topologies are then reported for each node on the tree 

of the true alignment (Dhar and Minin, 2015; Yang and Rannala, 2012; Felsenstein, 1985). In 

theory, as columns in the alignment data are treated independently, an alignment that is 

robustly modelled by the tree should produce consistently similar tree orientations to the 

starting dataset orientation. Bootstrap values above 70% are typically accepted as accurate 

(Hills and Bull, 1993). Alternatively, statistical tests that assess the likelihood of sites given a 

set of bootstrap trees (SH test; Shimohaira and Hasegawa, 1999), or the confidence of 

branch positioning against a null hypothesis of a collapsed 0 length branch in the same 

position (aLRT; Anisimova et al., 2011) can be utilised as a rapid alternative to bootstrapping 

(Guindon et al., 2010). Studies show that statistical tests can be equally robust to 
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bootstrapping, and choice of topology confidence scoring method often depends on the 

algorithm being used and ultimately the researchers preference (Anisimova et al., 2011). 

Commonly utilised algorithms for maximum likelihood tree-building are summarised in table 

6 (Yang and Rannala, 2012). 

 

Algorithm Notes Reference 

PHYLIP 
Maximum likelihood calculation of phylogenies by hill-climbing 
with both local and global rearrangements. Confidence can be 

computed by bootstrapping. 
Felsenstein, 1995 

PAUP 
Hill-climbing that can search all trees by brute force, or search 

partial trees by adding branches or swapping branches. 
Confidence can be computed by bootstrapping.  

Swofford, 2001 

PhyML 
Fast maximum likelihood implementation with simultaneous hill-
climbing optimisation of branch lengths. Rapidly reaches optima. 

Confidence can be computed by bootstrapping, SH test, aLRT test. 
Guindon and Gascuel, 2003 

RAxML 
Rapid and accurate algorithm that can also be parallelised for 

computation of large datasets. Optimises a parsimony tree that is 
pre-predicted by re-insertion of subtrees. Confidence can be 

computed with bootstrapping, rapid bootstrapping and SH test. 

Stamatakis et al., 2005 

Table 6 - Commonly utilised algorithms for inference of maximum likelihood phylogenies 

 

Bayesian phylogenies 

While Maximum Likelihood phylogenies are a powerful and often used tool for phylogenetic 

inference, the calculation of their support values is contrived. Bootstrapping and statistical 

inference do not relate directly to the biological data (Yang and Rannala, 2012). 

Considerable debate on the true meaning of bootstraps has been undertaken in the 

literature, and multiple definitions are acceptable (summarised in Berry and Gascuel, 1996). 

Instead, Bayesian frameworks for inferring phylogenies avoid this issue by providing 

posterior probability values of each node position, calculated directly from the tree and data 

(Huelsenbeck et al., 2001; Mau et al., 1999). The confidence scores provided in Bayesian 

analysis state “the likelihood of the tree is X” and are therefore considerably simpler to 

interpret than maximum likelihood trees (Yang and Rannala, 2012). Due to such benefits, 

and access to a highly parameterisable and accessible algorithm in MrBayes (Huelsenbeck 

and Ronquist, 2001), Bayesian inference is favoured by some researchers.  
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Bayesian inference of a phylogeny relies on Bayes’s theorem (Huelsenbeck et al., 2001): 

 

𝑓(𝐴|𝑋) =
𝑓(𝑋|𝐴)𝑓(𝐴)

𝑧  

 

Where 𝐴 is the unknown parameter (the branch lengths and divergence times of the tree), 

𝑋 is some observed data (the multiple sequence alignment), and 𝑓(𝐴) is the prior 

distribution, or what we know about the unknown parameter before analysing the data (a 

tree topology and substitution model).  𝑓(𝐴|𝑋) is the posterior probability (the  likelihood 

of a parameter given the observed data) and, 𝑓(𝑋|𝐴) is the information that is known about 

A due to the data observed. Finally 𝑧 is the normalising constant that allows us to ensure 

that 𝑓(𝐴|𝑋) is a proper statistical distribution (Nascimento et al., 2017; Huelsenbeck et al., 

2001). An in depth descriptions of the underlying methods applying Bayes theorem to 

phylogenetics is beyond the scope of this thesis; a thorough description of the methodology 

and its application is presented between the works of Huelsenbeck et al. (2001) and 

Nascimento et al. (2017).  

 

In brief terms, it is not possible to generate an exact calculation of the complete posterior 

distribution due to the existence of huge numbers of possible phylogenies for a given 

alignment. Therefore the posterior distribution is sampled using a Markov Chain Monte 

Carlo (MCMC) process that allows for the sampling to approach the most optimal tree 

topology (Nascimento et al., 2017; Huelsenbeck and Ronquist, 2001). MCMC is iterative, 

where a random tree is first defined, and a likelihood is calculated for the given tree. 

Another tree is then defined in nearby tree space (a change in branch lengths or topology), 

and its likelihood is compared to that of the previous generation (Larget and Simon, 1999). If 

the newly calculated likelihood is very close to the previous likelihood, or an improvement 

over the previous likelihood, then the new tree is accepted (Yang and Rannala, 2012). 

Importantly, this process allows for downhill traversals if the penalty in likelihood is small 

enough, accounting for the total tree probability space being rough in nature (many small 

local optima; Larget and Simon, 1999). Additionally the algorithm is “forgetful” where it only 

remembers the last step it took (Nascimento et al., 2017). It is therefore possible to imagine 
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that the most optimal tree topologies will be sampled rapidly, after a rapid traversal 

through probability space (figure 10).  

 

 

 

Figure 10 - A single MCMC simulation approaching convergence in probability space 

A mock-up of traversals of probability space, where a low likelihood is rapidly traversed to a high 

likelihood. While detrimental steps are permitted in the MCMC analysis, they are comparatively 

small compared to possible positive traversals when approaching the improvement plateau 

(convergence). At convergence, likelihood values will fluctuate around the optima. 

 

 

Once the optimum likelihood in tree space is reached (convergence), fluctuations around 

the optimum are maintained at a plateau (Nascimento et al., 2017). If the chain is able to 

efficiently sample the posterior distribution at the plateau (i.e. the local space is not noisy) 

then multiple simultaneous simulations optimising the same tree space should show low 

variance between runs. Multiple simultaneous simulations also allow for more of the tree 

space environment to be sampled per MCMC run (Altekar et al., 2004). Running and 

comparing multiple chains simultaneously is termed a Metropolis Coupled MCMC 

(MCMCMC; Metropolis et al., 1953; Altekar et al., 2004). “Heating” can also be applied to 

one or more of the chains (Marshall, 2010). A heated chain is allowed to step downhill 

further, effectively flattening the probability space. Therefore, peaks and troughs in stability 

space can be traversed more easily, avoiding local optima trapping (Nascimento et al., 

2017). As a rule of thumb, the lower the variance, the more accurate the simulation 

(Marshall, 2010). The simulation is typically run for hundreds of thousands to millions of 
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generations to give the best opportunity to reach convergence (Nascimento et al., 2017). 

Once convergence is reached, an optimal tree topology can be generated from the summary 

of all tree topologies sampled. As it is desirable to only include the most optimal trees in the 

analysis it is typical to apply burn-in, where the initial steps in the chain are removed from 

prior analyses (Marshall, 2010). Posterior probabilities are also computed from the 

summary of probabilities sampled by the Markov Chain (Nascimento et al., 2017; Yang and 

Rannala, 2012).  

 

1.3.1.3 - ASR algorithm principals 

Computational methods for ancestral reconstruction were first implemented on DNA 

sequences by Yang et al. (1995), where an empirical Bayesian approach was applied to 

maximise the likelihood of 𝑝(𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠|𝑐𝑜𝑛𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑒𝑠) (Pupko et al., 2000). Here, the 

most likely sequence at a node on a phylogeny is computed given the set of sequences that 

radiate from that node. Confusingly, this approach can therefore be described as both ML 

and Bayesian. For clarity ML will be used in this thesis. Importantly, Yang et al. (1995) 

distinguished two flavours of ancestral reconstruction (marginal and joint) that can be 

computed in this framework, based on algorithmic approach to inferring ancestral 

sequences. Joint reconstruction attempts to find the set of character states that maximise 

the likelihood over the tree simultaneously. Marginal reconstruction attempts to maximise 

the state at the given node that maximises the likelihood given all other states at all other 

nodes (Pupko et al., 2000).  

 

Marginal reconstructions and joint reconstructions are not equivalent (Ashkenazy et al., 

2012). Consider the tree in figure 11, that displays the probability of character A (a base or 

amino acid) being derived from characters B or C, and so on to contemporary sequences E 

through I. The marginal likelihood algorithm to compute the state of A asks what the most 

likely immediate step along the branches of the tree is to have created A. In this example 

this would be B ® A, with a likelihood of 0.55 (blue arrow). Computing the state of A with 

joint likelihood probes the most likely set of steps to have created A across the entire tree. 

With a joint likelihood of 0.405, I ® C ® A (red arrow) is the most likely global solution in 

figure 11, and therefore the maximum likelihood state of A is different depending on the 
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optimisation heuristics (Pupko et al., 2000). The use of marginal versus joint reconstruction 

depends on the questions being asked in the experiment. If it is desirable to know the 

maximum likelihood sequence at a specific position based on its immediate surroundings, 

then marginal likelihood is most appropriate. However, if the aim is to describe the best set 

of all hypothetical taxa, then joint reconstruction is more appropriate (Joy et al., 2016). For 

the majority of reconstructions, marginal reconstruction is utilised, as computing joint 

reconstructions is computationally intensive for large datasets. Joint reconstruction is 

therefore restricted to optimisation across the tree for the single maximum likelihood 

sequence at each node. On the other hand, marginal reconstruction deals with a sufficiently 

small sequence space to compute the likelihood of all possible states simultaneously, and 

algorithms will typically output a matrix of posterior possibilities for each state (Yang et al., 

1995; Pupko et al., 2000; Merkl and Sterner, 2015). For this reason, marginal reconstruction 

is considered an appropriate estimate of joint reconstruction, and is a widely accepted 

method for reconstructing ancestral sequences (Merkl and Sterner, 2015; Joy et al., 2016).  

 

 

Figure 11 - Marginal and joint likelihood ancestral reconstructions are not equivocal 
Hypothetical phylogeny showing the probabilities that state A is derived from states B through I. 

Marginal likelihood will maximise the likelihood of the state given the immediate next states (blue 

arrows). Joint likelihood will maximise the likelihood of the state given the global set of states (red 

arrows). Therefore it is possible for joint and marginal likelihood to reconstruct different ancestors. 
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1.3.1.4 - Algorithm choice in ASR 

For amino acid sequences, Bayes’s theorem is implemented in a similar fashion to 

phylogenetic reconstruction when optimising 𝑝(𝑎𝑛𝑐𝑒𝑠𝑡𝑜𝑟𝑠|𝑐𝑜𝑛𝑡𝑒𝑚𝑝𝑜𝑟𝑎𝑟𝑖𝑒𝑠) (Pupko et al., 

2000). However, the number of states being optimised is significantly smaller in the 

ancestral reconstruction problem. Both node order and branch length are optimised 

simultaneously in MCMC simulations inferring tree topology. On the other hand, only one of 

a maximum of 20 possible states needs to be optimised at each position in the posterior 

probability of an ancestral reconstruction. Additionally, ancestral sequences are only 

optimised over the states available in the alignment, which rarely represent all 20 possible 

amino acids (Merckl and Sterner, 2015). A simple empirical Bayes algorithm is therefore 

sufficient to compute ancestral states until datasets get considerably large or complex, at 

which point a MCMC algorithm to infer the joint posterior distribution can be employed (i.e. 

>1,000 sequences; Joy et al., 2016; Gumulya et al., 2018). Importantly, to generate a matrix 

of posterior probabilities, Bayes’s theorem requires a prior distribution what is known about 

the sites before analysis. As with phylogenetic reconstruction, priors are typically a multiple 

sequence alignment, a model of amino acid substitution rates, as well as a distribution 

describing rate heterogeneity amongst sites (Merckl and Sterner, 2015; Pupko et al., 2000).  

 

Empirical Bayes assumes that the priors are absolutely accurate. In reality, ASR is an 

estimation over a set of estimations, and therefore truly accurate representations of 

ancestral history are unlikely due to carried error. Drawn conclusions from ASR experiments 

should therefore be cognisant of carried error that may impact the robustness of the 

experiment (Williams et al., 2006; Westesson et al., 2012). Eick et al. (2017) calculate that 

for a sequence with 90% of sites unambiguously predicted, there is a 1.2% chance that the 

rest of the ambiguous sites are accurately computed if all other sites have two possible 

states. Typically conclusions derived from reconstructed sequences therefore require 

comparison with real world calibration data to be considered confident (Gaucher et al., 

2008; Eick et al., 2017).  

 

This thesis will only discuss empirical algorithms. Three commonly used empirical algorithms 

have been developed that build upon the original work on maximum likelihood ratification 

of states by Pupko et al. (2000) and Koshi and Goldstein (1996), summarised in table 7. As 
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the core algorithms are largely similar, algorithm choice comes down to functionality. The 

largest difference between the algorithms is the method of gap placement. Gap placement 

has to be handled as an independent problem, as amino acid substitution matrices do not 

include likelihood values for indel events (Holmes, 2017). There is a paucity of methods to 

derive indel rates in contemporary phylogenetic tools, and none of the empirical ASR 

algorithms apply exact calculations of indel rates (Westesson et al., 2012).  

 

PAML does not provide any tools to handle gaps (Yang et al., 2007), and gaps in the 

alignment are ignored by the algorithm. This is an incorrect assumption if not accounted for. 

Consider an alignment of sequences. One of the sequences has a single insertion that 

occurred very recently in its evolutionary history. This forces a gap to be placed in every 

other sequence in the alignment at this position. In PAML, all other gaps are ignored as they 

are considered as missing data, so only the insertion is considered by the algorithm. Any 

ancestor of this sequence will therefore contain a gap, leading to overestimation of 

ancestral sequence length (Yang, 2005; Yang et al., 2007).  

 

Ancescon handles gap placement by parsimony using supersedence-based placement, 

where gaps are considered before amino acids when encountered at a site. If a site has a 

gap, the branch containing that gap is pruned from the tree. If a node then has no or one 

child, then a gap is placed in the ancestor (Cai et al., 2004). Parsimony based gap placement 

always assumes a gap to be more likely than an amino acid at a position, and also fails to 

account for multiple insertion events at a given position. It can therefore be expected to 

significantly over or underestimate gap placement depending on the alignment (Ashkenazy 

et al., 2012).  

 

FastML applies maximum likelihood to estimate gap placement, where gaps are considered 

as an additional parameter in the marginal likelihood reconstruction (Ashkenazy et al., 

2012). Each site is considered a binary state, where 0 denotes a site containing an amino 

acid, and 1 denotes a site containing a gap. Binary maximum likelihood is then applied to 

the dataset to determine the probability of any ancestral site containing a gap given the 

binary states in its immediate daughter nodes. Indel rates are derived based on a 

framework that estimates rates based on a variant of parsimony that integrates 
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stochasticity into its derivation criteria. However, this method is still contrived as it is not 

based upon true rate data from real datasets.  

 

Algorithm Reconstruction 
methods 

Gap 
reconstruction 

Rate 
heterogeneity Type Reference 

Ancescon Marginal and 
Joint 

Supersedence 
with branch 

trimming 

Alignment guided or 
maximum likelihood 

rate factors 
Online server Cai et al., 2004 

PAML 
(CodeML) 

Marginal and 
Joint 

No 
Customisable or 

estimated gamma, 
uniform. 

Command 
line 

Yang et al., 2007 

FastML Marginal and 
Joint 

Binary maximum 
likelihood 

Estimated gamma, 
uniform 

Online server 
Ashkenazy et al., 

2012 

Table 7 - Empirical ancestral reconstruction algorithms 

1.3.2 Probing patterns in protein evolution with ASR - thermostability 

Ancestral sequence reconstruction allows researchers to walk back along the branches of a 

phylogeny, and generate proteins that represent the most likely sequence to have 

generated all descendent sequences in the provided dataset. Given access to synthetic DNA 

tools, it is possible to resurrect such proteins in the laboratory and infer conclusions about 

the evolution of traits in a protein family’s history based on the ancestral protein’s 

properties. As such, ASR has been utilised to probe a number of philosophical questions 

surrounding the early evolution of enzymes to better understand the diverse functionalities 

exhibited by these molecules today. By conducting ASR on promiscuous enzyme families, 

the adaptive paths defining substrate discrimination, specificity and plasticity have been 

analysed (Voordreckers et al., 2012; Wheeler et al., 2018; Pawlowski et al., 2018; Babkova et 

al., 2017). Additionally, contemporary proteins represent a single adaptive path through 

sequence space based on a given set of pressures. ASR has therefore been utilised to study 

the functional space represented by alternative adaptive paths, giving a small window into 

what protein evolution “could have been” (Starr et al., 2017; Cole et al., 2013). 

Furthermore, at some or many points in the evolution of enzymes, dynamic interactions 

between multiple separately evolving protein surfaces began coevolving to generate 

functional homo and heteromultimeric proteins. ASR has therefore also been utilised to 

probe whether innovation of complexity is a stepwise or one-time event in the evolutionary 

history of a protein family (Lim and Marqusee, 2017, Prinston et al., 2017; Hochberg and 
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Thornton, 2017; Finnigan et al., 2011; Zinn et al., 2015). Finally, there is considerable debate 

over the nature of very early life (>3.5 Gy ago), including the conditions required for life to 

evolve. Inferences about the temperature of ancient life have been made from a large body 

of research studying the stability of ancient proteins (Gaucher et al., 2003; Gaucher et al., 

2008; Akamuna et al., 2013; Butzin et al., 2013; Hart et al., 2014; Okafor et al., 2018; Garcia 

et al., 2017). The wider ancestral reconstruction field has been summarised in the combined 

works of Harms and Thornton (2010), Merkl and Sterner (2015), Joy et al. (2016) and 

Hochberg and Thornton (2017). 

 

A fundamental question asked of protein families by ASR is whether their ancestral traits 

fundamentally differ from those of their contemporary counterparts (Gaucher et al., 2008). 

An important target for study is protein stability. If ancestral protein stabilities are 

fundamentally different to those of today’s proteins, it indicates that the ancestor evolved 

in an environment that is also fundamentally different to the modern environment as 

proteins typically evolve at marginality. The first study of stability in ancestral sequence was 

conducted in the seminal works by Jermann et al. (1995), where the ancestors of artiodactyl 

RNases were found to be more stable in the ancestors of true ruminants.  

 

Miyizaki et al. (2001) were the first to consider the environment inhabited by the Last 

Universal Common Ancestor (LUCA) of life. At the time, there was debate around the LUCA’s 

environment. One school of thought believed the ancient life evolved in temperatures 

similar to those that exist today, based on the instability of many biological compounds 

(Miller and Lazcano, 1995), including the DNA double helix (Galtier et al., 1999). On the 

other hand, the deepest branches derived in ribosome-based species trees were 

represented by both thermophilic archaea and bacteria, leading others to suggest that 

ancient life evolved at high temperatures (Woese, 1987). This hypothesis is supported by 

evidence from meteor impacts 4.5-3.8 Gy ago that heated the ocean to >100 °C, allowing 

only the most thermophilic of organisms to survive around the conception of life 

(approximately 4 Gy ago; Nisbet and Sleep, 2001). Parsimony was used to derive the 

ancestors of the ubiquitous metabolic enzymes 3-isopropylmalate dehydrogenase and 

isocitrate dehydrogenase. Three highly conserved regions between the enzymes were 

reconstructed, and imparted into the natural 3-isopropylmalate dehydrogenase from 
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thermophile Sulfolobus “strain 7” by site directed mutagenesis. It was rationalised that 

stabilising residues are considerably rare in thermophiles, therefore any stabilisation by 

ancestral residues is significant. An increase in stability of approximately 4 °C was observed 

in the ancestor over the wild type, and half-life at 99 °C was doubled. 

  

It was stated by Miyazaki et al. (2001) that their research supported the “hot-start” 

hypothesis of ancient life. However, stability is a trait defined by the whole protein 

structure. Therefore, despite the algorithm identifying a set of stabilised ancestors, the work 

does not conclusively illustrate the net-stabilisation across all ancestral residues. To alleviate 

this issue, Gaucher et al. (2003) applied the modern ASR algorithm (PAML) to the question 

of ancient stability by reconstructing the 3.5 Gyo LUCA of the ubiquitous elongation factor-

thermounstable (EF-Tu) protein family from modern mesophilic lineages. EF-Tu enzymes 

were synthesised in full. Their stabilities were approximately 12 °C higher than their modern 

mesophilic counterparts (43 ® 55 °C), suggesting that the ancestor of modern mesophiles 

was a thermophile. 

 

Further studies have consistently corroborated this finding, demonstrating equivalent 

trends in environmental cooling. Gaucher et al. (2008) again focused on the EF-Tu enzymes. 

This work reconstructed multiple nodes that existed between 3.5-0.5 Gyo to track stability 

when stepping back through epochs. Ancestors were based on highly detailed phylogenies 

derived from species tree data. Ancestral stabilities increased stepwise toward the LUCA, 

which denatured at 73.3 °C (a 30 °C increase over E. coli). Importantly, Gaucher et al. (2008) 

also showed significant correlation between the stabilities observed and the temperature 

predictions of the ancient earth based on ratios of d18O and d30Si isotopes in ocean cherts 

(Robert and Chaussidon, 2006). Peres-Jimenez et al. (2011), and Akanuma et al. (2013) 

independently showed equivalent trends in the thioredoxins and the nucleoside 

diphosphate kinases respectively. In both instances, enzyme stabilities stepped down 

toward mesophily from stabilities »30 °C higher than extant enzymes. From these data, it 

was inferred that environmental temperatures cooled at a rate of approximately 6 °C per 

billion years. Importantly, ancient thioredoxins were also considerably more stable at acidic 

pH, correlating with predictions for the acidity of ancient oceans (Perez-Jimenez et al., 

2011). Equivalent trends derived from nucleoside diphosphate kinase (NDK) ancestors were 
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further corroborated by Garcia et al. (2017), who reconstructed NDKs from eukaryotic and 

prokaryotic phototrophs to incorporate analyses over a range of possible ancestral 

environments beyond the ocean.  

 

1.3.3 ASR as an engineering tool 

ASR consistently produces proteins that display outstanding increases to stability, with 

various examples showing ³30 °C improvements over extant counterparts (Gaucher et al., 

2008; Risso et al., 2013; Perez-Jiminez et al., 2011; Akanuma et al., 2013). ASR could 

therefore offer a powerful yet simple tool for the engineering of protein stability. For 

example, reconstructions of Precambrian β-lactamases by Risso et al. (2013) observed an 

ancestor with a 35 °C increase in stability over its modern descendants (TEM-1). On the 

other hand, studies attempting to engineer TEM-1 by directed evolution have achieved an 

optimization plateau at 20 °C improvement (Hecky and Müller, 2005). 

 

Chen et al. (2010) developed the first ASR driven protein engineering tool: Reconstructed 

Evolutionary Adaptive Paths (REAP). REAP is a semi-rational tool for the engineering of novel 

functional properties into proteins. The method first identifies sites in the protein 

undergoing functional divergence based on data in the phylogeny. ASR is then utilized to 

identify possible variants from the posterior probability of such divergent sites. Small (<100 

variant) libraries are generated consisting multiple ancestral variant amino acids sampled 

from the posterior distribution (Lutz et al., 2010). Such libraries offer a high chance of 

generating viable proteins as such poorly resolved residues often exist at highly variable 

sites in the alignment. Therefore, REAP libraries typically sample sites most resistant to 

deleterious mutation increasing the likelihood of obtaining functional proteins (Cole and 

Gaucher, 2011; Cole et al., 2013). Chen et al., 2010 utilized REAP to construct a library of 93 

Taq polymerase variants containing up to 4 mutations, with the aim of engineering 

polymerase activity on the reversible terminator dNTP-ONH2 for use in DNA sequencing 

(Chen et al., 2013). Of this library, 30 variants possessed activity on the desired target, with 

two variants possessing “exceptional” activity that was suitable for incorporation into DNA 

sequencing protocols (Chen et al., 2010). Many other studies have used evolutionary 

histories in this manner to isolate sites of interest to engineer enzymes with novel 
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functionality (Alcolombri et al., 2011; Conti et al., 2014; Gonzalez et al., 2014; Miyazaki et 

al., 2001; Watanabe and Yamagashi, 2006).  

 

In a somewhat related fashion, ASR was used by Zakas et al. (2015) and Zakas et al. (2017) 

to compliment orthologue scanning of the protein drug coagulation factor VIII used in the 

treatment of haemophilia (Kempton and White, 2009). This study presented the ancestors 

as the direct engineering product, discovering coagulation factor ancestors that displayed 

improved stability, biosynthetic efficiency, activity and expression compared to other 

human factor VIII biologics that are currently available. Blanchet et al. (2017) used the same 

principals to engineer a small set of Mamba venom based protein biologics that displayed 

improved adrenoceptor selectivity, and identified three residues in the protein that 

modulate protein affinity from the libraries of variants generated from the posterior 

probabilities of the reconstruction experiment.  

 

A review by Wijma et al. (2013) suggested that ASR could be utilized as a tool for the direct 

engineering of proteins for stability if the family possesses an ancestor that is considerably 

ancient (it evolved in a high temperature environment). Recent studies have explored this 

application of ASR for bioindustrially important proteins. Whitfield et al. (2015) 

reconstructed the ancestors of periplasmic amino acid binding proteins in the search for a 

robust L-arginine binging protein with high stability and substrate selectivity for use in 

Förster Resonance Energy Transfer (FRET) analyses. FRET experiments require robust sensor 

proteins that maintain their structure throughout the experiment course to avoid noise or 

false positive signals. Thermostable proteins are therefore sought after for such applications 

(Clifton et al., 2017). Natural amino acid binding proteins, including those, identified from 

thermophiles, show poor specificity for L-arginine, with additional binding activity on 

structurally similar amino acids histidine, ornithine and lysine. Whitfield et al. (2015) 

reconstructed two ancient amino acid binding proteins, one representing the ancestor of 

glutamine binding proteins and one representing the ancestor of non-specific arginine 

binding proteins. The ancestor of the family of glutamine binding proteins was an extremely 

thermostable L-arginine specific biosensor, showing a 29 °C increase in stability over its 

descendants. This protein was subsequently utilized for in situ analysis of L-arginine 

concentrations in acute rat hippocampus slices.  
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Babkova et al., 2017 were the first to engineer enzymes with synthetic biology relevance, 

targeting the haloalkane dehalogenases (HLDs). HLDs convert halogenated alkanes into a 

primary alcohol and a halide. A number of by-products from the chemical industry are 

halogenated, meaning HLDs have considerable importance in chemical waste treatment, 

and bioremediation (Dvorak et al., 2014). Additionally, HLDs are important synthetic 

pathway components, able to produce optically pure primary alcohols (Koudelakova et al., 

2013; Prokop et al., 2009). Babkova et al. (2017) reconstructed five HLD ancestors, 

representing ancestral sequences of some of the best studied HLDs. Ancestors displayed 

between an 8 and 24 °C increase in stability over their extant counterparts, and two of the 

ancestors represented the most stable HLDs reconstructed to date.  

 

Gumulya et al., 2018 made an important leap in the utilization of ASR as an engineering 

tool. Previous studies focused on the most ancient of sequences from early life to ensure 

stabilization (Gaucher et al., 2008). Instead, Gumulya et al. (2018) tested how broadly 

applicable ASR engineering is to diverse protein families by reconstructing ancestors of the 

CYP3 family of cytochrome P450 monooxygenases. Importantly, the family was innovated 

by the first vertebrates. There is no evidence that proto-vertebrates existed in conditions 

much different to those observed today. Yet, CYP3 ancestors exhibited a 30 °C increase in 

thermostability over modern sequences. Such a result is particularly significant as directed 

evolution of the same protein family failed to produce exceptional increases in stability, 

with optimization plateauing at improvements of 4 °C (Li et al., 2007). It is hypothesised that 

ancestral CYP3 stability derives from proteins existing in ancient organisms that inhabited 

warmer oceanic conditions, and stability was a trait carried over into the CYP3 ancestor 

(Gumulya et al., 2018).  

 

Importantly, work by Gumulya et al., (2018) shows that ASR may be a broadly functional 

tool for the engineering of thermostable proteins. This work hints that relatively modern 

proteins that only encountered mild environmental temperatures for the majority of their 

history can still harbour exceptionally stabilized protein variants (Risso et al., 2018). 

Additionally, like stabilization from consensus sequences, ASR is able to provide 

considerable increases in stability based on simple input requirements, in the absence of a 
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crystal structure (Wijma et al., 2013). However, consensus engineering is contrived, with no 

guaranteed method for optimal engineering of stable proteins. Ancestral sequence 

reconstruction relies solely on the information held within the extant sequences, and uses 

Bayesian inference to define the maximum likelihood ancestor given an input dataset, 

providing a quantitative ratification of each amino acid site. ASR therefore provides a clearly 

defined methodology for the generation of stable sequences.  

 

1.3.4 How does ASR generate stable sequences? 

While ASR is seeing considerable early success as an engineering tool, it is not fully 

understood how ASR confers improvements to protein stability. Strong evidence exists for 

the stabilization of ancestral proteins that existed in organisms inhabiting oceans heated by 

meteor impacts (Gaucher et al., 2008). However, it can be argued that the rationalization 

for stable ancestral CYP3 cytochrome P450 monooxygenases by Gumulya et al. (2018) is not 

parsimonious given contemporary understanding of marginal stability in protein evolution. 

For their hypothesis to be true, some ancestral thermostable state had to be maintained for 

billions of years before horizontally transferring into the proto-vertebrates. At the time of 

writing, evidence suggests that CYP3 never made such a jump, and instead evolved with 

other vertebrate CYP families from a ‘genesis locus’ in basal vertebrates (Nelson et al., 

2013). Therefore we find current hypotheses on the evolution of stability in CYP3 spurious. 

 

Trudeau et al. (2016) provide an alternative hypothesis for the origin stability in ancestral 

proteins derived from mesophilic histories. Previously, reconstructed mammalian 

paraoxonases, used to generate ancestor libraries for tests of robustness in inferred 

ancestral space, were found to be highly thermostable (Bar-Rogovsky et al., 2015). In line 

with other studies, a 30 °C increase in stability was observed, yet there is no evidence that 

the mammalian LUCA evolved in high temperature environments. This is an important 

finding as it provides further evidence of ASR being a broad spectrum engineering tool. 

Trudeau et al. (2016) hypothesised that stabilization was the result of a “consensus effect”.  

 

A consensus sequence is the average residue at any position, and consensus residues are 

net stabilizing when taken across the entire protein (Sternke et al., 2018; Porebski and 
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Buckle, 2016). Mammalian ancestor paraoxonases showed 80% similarity to the consensus 

of the same alignment, whereas extant proteins were considerably more divergent (50-

70%).  The consensus effect is also shown to exist across ancestral proteins in the literature 

(a detailed review is provided by Trudeau et al., 2016). By this merit, it is possible that the 

propensity of ancestral reconstruction to select for consensus residues biases an ancestral 

protein towards a more stable state. To better understand the consensus effect’s impact on 

ancestral protein reconstruction, Okafor et al. (2018) compared ancestral EF-Tu with 

consensus EF-Tu. Despite differences in sequence, ancestor, extant and consensus proteins 

shared a conserved structure. Consensus sequences were considerably less stable than 

thermostable extant and ancestral sequences, suggesting that the consensus effect is not 

pervasive for all families. Furthermore, as discussed the leading hypothesis for the 

stabilization of consensus sequences relates to the introduction of residues derived from a 

stable ancient sequence (Porebski and Buckle, 2016). It can therefore be argued that the 

stable mammalian paroxonase ancestor instead devalues the leading hypothesis for the 

stabilization of consensus proteins, and the introduction of consensus residues in ancestral 

proteins is simply an expectable trait of the methodology.  

 

Despite ASR potentially being a powerful tool for the generation of empirically derived 

stable proteins, the generation of reliable inputs for the methodology still requires some 

level of expertise, as the probability of obtaining a functional protein is directly related to 

the quality of both the alignment and the phylogeny (Vialle et al., 2018; Joy et al., 2016). It is 

also not yet understood how algorithm choice effects the stabilization of ancestral proteins. 

Additionally, the lack of understanding of the underlying forces driving stabilization leads to 

each reconstruction being a “shot in the dark”, requiring resource commitment without 

confidence that the experiment will produce desirable results. As with consensus sequence 

driven stabilization, the fidelity of engineering by reconstruction is difficult to gauge as 

failed experiments are unlikely to be published (Sternke et al., 2018). Therefore, while ASR 

is a promising enabling tool for the scale-up in synthetic biology, more exploratory research 

is required before it can be considered widely accessible. 
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1.4 Aims and Objectives 

As discussed in section 1.2, open and accessible tools for the engineering of thermostable 

proteins are highly desirable, as stable proteins can relax bottlenecks that exist in the scale-

up of synthetic biology. As discussed in Section 1.3, ASR presents a poorly understood but 

promising engineering tool that consistently produces protein variants with outstanding 

stabilization from simple inputs. This thesis will investigate whether ASR can meet the 

requirements of a democratised protein engineering technology. By performing ASR 

experiments on both physical and in silico datasets, this thesis investigates the tool’s 

simplicity of utilization, expertise requirements, input requirements, and broader potential 

applicability. Additionally, this thesis aims to gain a deeper understanding of the 

mechanisms underlying ASR’s stabilizing properties. An argument that both ASR and 

consensus protein design stabilize proteins through equivalent, largely ubiquitous 

evolutionary forces will be generated from contemporary literature. This hypothesis will 

then be thoroughly investigated through the design and utilization of In silico protein 

evolution modelling tools. A further objective of this thesis is to use newfound evidence of 

ASR’s stabilization mechanism to design an engineering centric protein reconstruction 

technology for highly accessibile protein stability engineering. These aims and objectives will 

be explored over three chapters: 

1.4.1 Chapter 2 

Chapter 2 presents a prepared manuscript undergoing peer review in Nature 

Communications at the time of writing. In this study, we compliment work by Gumulya et 

al., 2018 by further testing the suitability of ASR for the engineering of stability into protein 

families predicted to have evolved in mild environmental conditions throughout their 

evolutionary history. We target the bioindustrially important carboxylic acid reductase (CAR) 

family of enzymes as they have not been identified in thermophilic parent organisms, and 

present a significant engineering challenge (see section 1.5 – Addendum). As discussed in 

section 1.3, there are multiple empirical ASR algorithms available. However, it is not known 

whether each algorithm is a suitable engineering tool. Here, we reconstruct ancestral CARs 

with the three main empirical reconstruction algorithms discussed in section 1.3.1. We also 

aim to devise a simple method for the placement of gaps in PAML derived ancestors by 

transposition from other algorithms. We derive three highly thermostable CAR enzymes, 
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and report a number of industrially relevant enzyme traits, providing a full characterization 

dataset for future use as part of the CAR toolbox. 

1.4.2 Chapter 3 

Chapter 3 presents a manuscript prepared for submission to eLife. In chapter 2, ASR was 

shown to generate thermostable proteins from protein families that are unlikely to have 

ever inhabited high temperature environments in their history. As discussed in section 

1.2.6.1, and section 1.3.4, the current hypotheses describing the underlying mechanisms of 

stabilization in alignment based stability engineering tools are incomplete. Here we aim to 

define, and provide evidence supporting an alternative hypothesis for the stabilization of 

alignment based engineering tools, termed the “survivor bias hypothesis”. As discussed in 

section 1.2.2, most proteins are marginally stable. We hypothesise that this property leads 

to stabilizing biases in the ancestral dataset due to the titration of significantly destabilizing 

residues from the alignment dataset. Using pure Python, we aimed to develop an open 

source tool for the modelling of stability changes in hypothetical protein populations that 

evolve according to the accepted evolutionary processes outlined in section 1.2. 

Importantly, this tool allows for the tracking of stability changes across evolutionary time at 

the residue, protein and population level. We aimed to reconstruct ancestors of simulated 

protein populations that had evolved at marginality. From these populations we show 

evidence of significant stabilization bias in both ancestral sequences, and consensus 

sequences. More importantly, this chapter aimed to provide the first robust, and first 

unifying theory for the forces driving stabilization across all alignment based engineering 

tools.  

1.4.3 Chapter 4 

Chapter 4 presents a prepared manuscript that will be submitted to eLife as a sister study to 

the manuscript presented in chapter 3. Chapter 3 provided a toolbox with which to test 

alignment based engineering tools. As discussed in section 1.1, synthetic biology is enabled 

by broadly accessible tools. Additionally, as discussed in section 1.2.6, while stable proteins 

may allow for the relaxation in scale-up bottlenecks that stymie the progression of synthetic 

biology applications to market, there are no broadly accessible contemporary stability 

engineering tools. Section 1.3 discussed that ASR may be a broadly accessible engineering 
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tool. While chapter 2 showed that ASR could engineer highly thermostable proteins from 

challenging targets, the method still requires some expertise to perform, as phylogenetics is 

a steep learning curve. In this chapter we aim to design the first truly expertise-agnostic, 

broadly accessible stability engineering tool called “simplified ASR”, based on the ASR 

algorithm Ancescon. Ancescon can be run in a phylogeny-free mode, where the only input 

requirement is a multiple sequence alignment. We aimed to use the evolutionary model 

designed in chapter 3 to simulate sASR experiments to enable the design of a set of criteria 

that maximise success with the tool. We then aimed to ratify sASR by reconstructing the 

CARs. sASR was used to generate the most stable CAR biocatalyst reported to date, which 

were then characterised kinetically. 

 

1.5 – Addendum 

Carboxylic acid reductases 

For the majority of this thesis, we focus on the carboxylic acid reductase family of enzymes 

(CARs; E.C. 1.2.1.30). CARs are important enzymes for bioindustry, catalysing the reaction: 

 

Carboxylic acid + ATP + H+ +  NADPH ® Aldehyde + AMP + Pyrophosphate + NADP+ 

 

via a phosphopantethiene intermediate that is covalently bound to a phosphopantethiene 

binding site within the core structure of the enzyme (Winkler, 2018). A full catalytic CAR 

mechanism is presented in chapter 2. CARs have important implications for industrial 

biocatalysis, replacing a complex chemical synthesis protocol with a simple enzymatic 

catalysis (Akhtar et al., 2013). Traditional carbonyl reduction is performed with 

environmentally damaging metal hydride reducing agents. The reduction of carboxylic acids 

is energetically unfavourable, and strong reducing agents are required to reduce the 

carboxylic acid. However such reducing agents will often immediately reduce the aldehyde 

product into the corresponding primary alcohol. An additional oxidation step is therefore 

required to convert the alcohol back into an aldehyde (Gaylord, 1957). Replacing this 

reaction with an enzymatic process is therefore desirable. 
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CARs are promiscuous enzymes with known activity on over 100 aliphatic fatty acid and 

aromatic carboxylic acid substrates (Winkler, 2018). As a result, CARs have been utilized in a 

number of commercial biosynthesis pathways (e.g. Akhtar et al., 2013; Kallio et al., 2014; 

France et al., 2016). However, the main CAR families evolved in actinomycetes around 500 

mya, and to date no CAR has been identified from a thermophile (Lewin et al., 2016; 

Winkler, 2018). Additionally, CARs are large (130 KDa), highly dynamic proteins with only 

partially resolved crystal structures (Gahloth et al., 2017). CARs therefore present a complex 

engineering challenge, and serve as an excellent stress-test for ASR engineering protocols.  

 

As a prelude to the research presented in this thesis, a thorough phylogenetic analysis of 

CARs was performed by the author and published in a study by Finnigan et al. (2017). The 

complete manuscript of this study is presented in the appendices (Chapter 7.3). In this work, 

CARs were identified as members of the ANL protein superfamily, allowing for key catalytic 

residues to be identified based on CAR alignments with sister families of acyl-CoA 

synthetases and non-ribosomal peptide synthases. An exhaustive (at the time of writing) 

dataset of 124 actinomycete CARs was also obtained from homology searches. All extant 

CAR sequences utilized in this thesis are derived from this database.  

 

Finnigan et al. (2017) also lay the groundwork for a CAR activity assay used extensively in 

this thesis, that measures changes in NADPH absorbance at 340 nm. This work thoroughly 

characterized five carboxylic acid reductases in terms of substrate kinetics and stability. A 

CAR from Mycobacterium phlei (MpCAR) was reported as the most stable CAR identified to 

date, which begins losing activity after incubation for 30 minutes at 42 °C, and loses 50% 

activity after incubation at 48 °C. The CAR from Nocardia iowensis (NiCAR), the most widely 

studied CAR in the literature, began losing activity at 38 °C, and lost 50% activity following 

incubation at 42 °C (figure 12). Since, a CAR from Mycobacterium avium has been identifies 

that begins losing activity following incubation at 48 °C, and retains 50% activity at 49 °C 

(Kramer et al., 2018). 
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Figure 12 - The stability of extant CAR enzymes analysed in Finnigan et al. (2017) 

The residual activity of CARs was assessed on 4-methylbenzoic acid following incubation at 

increasing temperatures. Points and error bars represent the average and standard 

deviation of three independent readings. Complete assay details are presented in chapter 2. 
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Chapter 2  

Thermostable carboxylic acid 

reductases generated by ancestral 

sequence reconstruction 
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2.2 Preface 

This chapter consists a reformatted manuscript for an article submitted for review to Nature 

Communications. Comments from peer review were received in early December. However 

we are unable to include the requested changes into the presented manuscript based on 

time constraints.  

 

AncCARs developed in this study spawned the main question explored in Chapter 3 – why 

do ancestral proteins exhibit high stability even when the history of their family is unlikely to 

have encountered high temperature conditions? 

 

AT, NH and MvdG conceived the study. AT wrote the article. All authors edited the article. 

AT conducted sequence handling, phylogenetics, ASR, protein purification and assays, and 

was involved in critical discussion throughout. RC conducted protein purification and assays, 

performed protein structure modelling, contributed to the writing of the article, and was 

involved in critical discussion throughout. WF provided substrates, helped develop the 

reduction assays, and developed purification protocols for CARs.  
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2.3 Abstract 

Carboxylic Acid Reductases (CARs) are biocatalysts of industrial importance. However, the 

properties of this protein family, especially their poor stability, render them sub-optimal for 

use in a bioindustrial pipeline. Due to their size, dynamic structure and reaction complexity, 

traditional protein engineering methods for improving thermostability are not viable in the 

CAR enzymes. Here, we employed ancestral sequence reconstruction (ASR) – a burgeoning 

engineering tool that can identify stabilizing but enzymatically neutral mutations 

throughout a protein. We used a three-algorithm approach to reconstruct functional 

ancestors of the Mycobacterium and Nocardia CAR1 orthologues, representing the largest 

reconstructed proteins to date. Ancestral CARs (AncCARs) were confirmed to be CAR 

enzymes with a preference for aromatic carboxylic acids. Ancestors also showed varied 

tolerances to solvents, pH and in vivo-like salt concentrations. Compared to well-studied 

extant CARs, AncCARs had a Tm up to 34 °C higher, with half-lives up to nine times longer 

than the greatest previously observed. Using ancestral reconstruction we have expanded 

the existing CAR toolbox with three new thermostable CAR enzymes, providing access to the 

high temperature biosynthesis of aldehydes to drive new applications in biocatalysis. 

 

2.4 Introduction 

Many industries are placing increasing emphasis on achieving carbon neutral 

manufacturing. For the chemical industry, the sustainable catalysis of high-value chemicals 

through enzyme cascades (“green chemistry”) is a key opportunity (Nielsen and Moon, 

2013; Kelley et al., 2014). Enzymes generally provide high yields with few side products and 

do so at mild reaction conditions. Enzymes therefore mitigate the production of excessive 

chemical waste and the use of toxic catalysts, while also reducing energy and solvent usage 

(Sheldon, 2016). Nevertheless, enzymes are still poorly represented in the chemical 

synthesis market (Wallace and Balskus, 2014). Enzymes are generally highly evolved 

towards their biological role in vivo, and rarely have properties optimized for a green 

chemistry application. Limited enzyme stability, restricted substrate ranges, substrate flux 

sinks, and low turnover rates are common barriers to success (Finnigan et al., 2012; Packer 

and Liu, 2015; Ye et al., 2017; Ebert and Pelletier, 2017; Kaushik et al., 2016). 
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Carboxylic Acid Reductases (CARs; E.C. 1.2.1.30) are a family of enzymes with increasing 

relevance to green chemistry. They catalyse the reduction of an aliphatic or aromatic acid to 

the respective aldehyde, using ATP and NADPH as cofactors (Finnigan et al., 2017; Winkler, 

2018). This reaction is otherwise challenging to achieve chemically or biochemically. 

Consequently, CARs are being used in biotechnology for the enantiopure biosynthesis of 

intermediates in enzyme cascades. Examples of these include biofuels (Akhtar et al., 2013; 

Kallio et al., 2014), replacement petroleum-based intermediates (Khusnutdinova et al., 

2017), pharmaceutical building blocks (France et al., 2016), cosmetics (Gottardi et al., 2017), 

and flavorings (e.g. vanillin; Hansen et al., 2013). 

 

There are currently four identified CAR subgroups: Subgroup I make up CARs of bacterial 

origin, whilst type II-IV make up CARs discovered in a broad spectrum of fungi 

(Khusnutdinova et al., 2017; Stolterfoht et al., 2017). CAR subgroup I can be further split 

into five families, of which family CAR1 (the focus of this study) is the best characterized. 

CARs consist of three distinct domains: an adenylation (A)/thiolation (T) domain, a 

phosphopantetheine (PPT) binding domain and a reductase (R) domain (supplementary 

figure 1; Gahloth et al., 2017). The prevailing model for carboxylic acid reduction suggests 

the CAR reaction proceeds in four steps. The reaction is initiated in the A/T-domain by a 

nucleophilic attack of the acid on ATP, to form an AMP-acyl ester intermediate. Structural 

determination of CAR fragments indicate that an A/T-subdomain undertakes a 165° rotation 

characteristic to the superfamily to which this domain belongs (CL0378; Gottardi et al., 

2017; Gahloth et al., 2017). Additionally, the PPT-binding domain undertakes a 75° rotation 

relative to the A/T-domain (Gahloth et al., 2017). This dynamic re-orientation of the 

subunits relative to one another presents the AMP-acyl intermediate to the PPT, which 

displaces AMP to form a PPT-acyl thioester intermediate. This intermediate is then passed 

to the reductase domain. Here, the intermediate is reduced by NADPH to release an 

aldehyde product (Current model described in supplementary figure 1). 

 

CAR1 family CARs have demonstrated diverse substrate ranges, with activity against over 

100 carboxylic acids (Winkler, 2018; Stolterfoht et al., 2017), including both aromatic acids 

(Finnigan et al., 2017; Napora-Wijata et al., 2014; Moura et al., 2016), and aliphatic acids 
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(Finnigan et al., 2017). This diverse substrate range and apparent substrate plasticity 

highlights CARs’ broad potential in green chemistry. However, CARs lack some desirable 

properties. It has been highlighted that isolation of CARs with improved thermostability is 

an important goal to improve the carboxylic acid reductase toolbox (Winkler, 2018). Green 

chemistry pipelines benefit from operating at increased temperatures to improve substrate 

solubility and reaction rates while mitigating risks of contamination and costs from cooling 

(Asial et al., 2013; Suplatov et al., 2015; Wijma et al., 2018). Additionally, stable enzymes 

can often be operated longer than their unstable counterparts, improving per-enzyme 

productivity per batch reaction, lowering the cost of the enzyme relative to the product 

(Sheldon, 2016; Asial et al., 2013). Other desirable biocatalytic properties include solvent 

tolerance, broad substrate ranges, and ready evolvability. We previously reported that well 

characterised extant CARs (ExCARs) are barely suitable for reactions above 37 °C. The most 

stable extant CAR (from Mycobacterium avium) loses activity rapidly above 48 °C, and 

retains 50% of activity after incubation for 30 minutes at 49 °C (Kramer et al., 2018). ExCARs 

also show short half-lives at 37 °C and will likely present a huge metabolic burden for 

biofactory strains (Finnigan et al., 2017). Therefore, the current state of the CAR toolbox 

only services batch biocatalysis, which significantly reduces their scale-up potential, 

hampering their use in biotechnology. 

 

Ancestral sequence reconstruction (ASR) is a popular tool to study the evolutionary histories 

of protein families. ASR studies of diverse protein families have identified emergent 

properties of ancestral proteins, including increased thermal stability and altered substrate 

specificities (Nguyen et al., 2017; Shih et al., 2016; Wilson et al., 2015; Risso et al., 2015). 

Consequently, a series of studies have used evolutionary histories to isolate sites of interest 

to engineer enzymes with novel functionality (Alcolombri et al., 2011; Conti et al., 2014; 

Gonzalez et al., 2014; Miyazaki et al., 2001; Watanabe and Yamagishi, 2006). When used as 

an engineering tool, ASR has produced enzymes with improved stability (Whitfield et al., 

2015), substrate ranges (Wilding et al., 2017), or both (Babkova et al., 2017). ASR differs 

from other engineering methods as it generates new sequences based upon probabilistic 

searches of non-conserved functional space, giving each output a high likelihood of being 

functional given an accurate sequence alignment input. Given enough variation in the input 

dataset, resulting ancestors can often vary considerably from extant sequences (<30%). This 
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allows for the discovery of beneficial mutations not accessible by other methods, including 

coordinated sets of mutations. These can modify traits determined by protein-wide 

sequence states, including stability under thermal or other stresses.  

 

Notably, all studies to date focusing on ASR for engineering explore ancestral sequence 

space use a single reconstruction algorithm. Additionally, most available algorithms output 

“posterior probabilities” at each residue, providing a sequence space representing putative 

ancestors around a point in sequence space (Yang, 2007; Ashkenazy et al., 2012). Variation 

within this space is a resource of both sequence and functional diversity (Gaucher et al., 

2008). When sampling through these posterior probabilities, there is no “ruleset” dictating 

the best probability cut-off to efficiently explore space – an issue that has presented in 

other alignment-based engineering methods (e.g. consensus alignment; Porebski and 

Buckle, 2016). To avoid this issue, we instead explored the algorithmic variation within the 

ASR toolbox as a source of sequence and functional diversity by deriving the most likely 

sequence from multiple maximum likelihood-based reconstruction algorithms. Each 

algorithm differs subtly, and therefore will output a different, absolute sampling of ancestral 

sequence space when given the same problem (Yang, 2007; Ashkenazy et al., 2012; Randall 

et al., 2016; Cai et al., 2004).  

 

Here, we demonstrate the use of ASR to identify three ancient actinomycete CAR 

biocatalysts that display a 16-34 °C shift in thermal stability compared to ExCARs. The three 

alternative putative ancestral proteins showed similar substrate ranges, and refined 

substrate preferences to extant CARs. Comparison of the output from different 

reconstruction algorithms showed dramatic variations in tolerance to environmental 

conditions effecting loop-associated traits between the putative ancestral proteins, 

including tolerance to in vivo-like salt concentrations, pH and protic and aprotic solvents. 

This study represents the largest enzyme to have been reconstructed successfully by ASR to 

date, and the first reconstruction of an enzyme with four mechanistic steps. This further 

demonstrates ASR’s potential application to biotechnology and green chemistry. 
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2.5 Results 

2.5.1 Ancestral reconstruction of CARs produces functional enzymes 

We previously reported a dataset of 124 CAR homologs identified from the CAR1 family 

(Finnigan et al., 2017; Chapter 7.3). Of this dataset, 48 sequences representing distinguished 

clades containing a single genus were used to produce a phylogeny broadly covering CAR 

sequence space. An alignment of the 48 CAR sequences was created in MUSCLE. Removal of 

highly divergent regions in the alignment was conducted with the Gblocks algorithm 

(Talavera and Castresana et al., 2007). ProtTest estimated the best fitting model of amino 

acid substitution for this alignment to be WAG with independent sites (+I) and a gamma 

distributed substitution rate (+G; Abascal et al., 2005; Whelan and Goldman, 2001). As only 

CAR1 enzymes had been reported at the point of reconstruction, we aimed to reconstruct 

the ancestors of their best represented genera, from Mycobacterium, Nocardia and 

Streptomyces. To construct the phylogeny, we therefore treated well established sequences 

from Tsukamurella and Segnilliparus (the Tsukamurella clade) as paralogues, providing an 

outgroup to the Mycobacterium, Nocardia and Streptomyces clades. The resulting 

phylogeny was well supported throughout (figure 13A).  

 

Within recent literature, marginal ancestral protein reconstruction has been shown to 

introduce novel functional properties into proteins (Babkova et al., 2017; Akanuma, 2017; 

Wheeler et al., 2016). As ancestral proteins typically trend towards increased stability when 

sampling from more ancient nodes (Gaucher et al., 2008), we reconstructed the most recent 

common ancestor of the Nocardia, Streptomyces and Mycobacterium CARs. To explore 

differences in reconstruction algorithm choice had on the sequence and property space 

sampled in the ancestor, three marginal reconstruction algorithms with optimized likelihood 

scores were used: FastML (Ashkenazy et al., 2012), PAML (Yang, 2007) and Ancescon (Cai et 

al., 2004). This produced four putative ancestral proteins: AncCAR-A (Ancescon); AncCAR-F 

(FastML); and PAML variants with gaps reconstructed by cross-mapping from the other two 

algorithms producing AncCAR-PA and AncCAR-PF, respectively (supplementary figure 2). 

AncCARs possessed 95.1% pairwise identity, and 91% conservation across the four proteins, 

with much of the variation being held in the adenylation domain (figure 13B). Their identity 

to extant CARs (ExCARs) ranges between 55 and 76%. To explore whether algorithmic 
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variation was merely sampling variation from posterior probabilities, an ancestor was 

derived from the PAML output. The most probable residues were substituted with the 

second most probable residues in the posterior probability table, where the second most 

probable residues possessed a probability over 30% (AncCAR-P30). The resulting protein 

shared 93.6% pairwise identity to the algorithm-derived AncCARs. We observed that 

algorithm-derived variation differed considerably from the posterior probability derived 

variation (supplementary figure 3). Compared to the most likely AncCAR-P sequence, only 

16% and 22% of total derived variation was shared between AncCAR-P30 and AncCAR-A, 

and AncCAR-P30 and AncCAR-F respectively (supplementary figure 3B). To give confidence 

that reconstructed ancestral CARs were accurate representations of CAR enzymes, we 

modelled AncCAR structures using homology modelling to crystal structures 5MST, 5MSD, 

5MSP and 5MSO. Comparing all ancestor models to all extant structures, the average root 

mean squared deviation (rmsd) of alpha-carbon atom position is 0.86 ± 0.32 Å between 

ancestral models and extant adenylation domains, and 1.01 ± 0.15 Å between ancestral 

models and extant reductase domains, suggesting a good fit for each model (figure 13C, D; 

supplementary table 1). Comparison of the models to experimental crystal structures shows 

that most of the variation between ancestors occurs in surface loop regions (supplementary 

figure 4). Each AncCAR could be expressed in, and readily purified from E. coli to between 3 

and 7 mg enzyme per litre (supplementary figure 5). The ancestral CAR proteins 

demonstrated some protease sensitivity. However, in comparison to extant CARs, they were 

more resistant to limited proteolysis by common proteases (supplementary figure 6). 
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Figure 13 - Bayesian inference of actinomycete CAR phylogeny and ASR 

A) CAR phylogeny was constructed in MrBayes (Ronquist et al., 2012) under the, WAG+I+G model of 

amino acid substitution (Whelan and Goldman, 2001), with the Tsukamurella clade constrained to 

the outgroup. The tree was configured in FigTree V1.4.3. The scale-bar represents amino acid 

changes per site. Node weights represent the posterior probability of a given node calculated from 

the MCMCMC analysis, with 1 being unequivocal. Red circle represents the target node for ancestral 

reconstruction. B) Identity barcode displaying the pairwise identity over 1,168 amino acid sites 

between the four ancestors. x-axis denotes residues 1-1168 sequentially, y-axis denotes pairwise 

identity at a site. Black bars denote pairwise identity (%) at each site. The final four ancestors are 

conserved at 91% of sites, with 95.1% pairwise identity. Between the ancestors, the greatest 

diversity is maintained in the A/T domain with a pairwise identity of 93%. Both the 

phosphopantetheine binding domain and the reductase domains have a higher conservation, at 

97.5% and 97.3% identity respectively. AncCAR-F and PF are 1,161 aa in length, AncCAR-A and PA 

are 1,153 aa in length. Alignment data between ancestors was obtained in Geneious using MUSCLE 

and modified in Microsoft Excel. Domains are highlighted: i – Adenylation domain; ii – 

phosphopantetheine binding di-domain 1; iii - phosphopantetheine binding di-domain 2; iv – 

reductase domain. C) Model of AncCARs adenylation domain superimposed on extant CAR structure 

5MST. Structures: Yellow – 5MST; Green - AncCAR-A; Blue - AncCAR-PA; Orange – AncCAR-F, Red: 

AncCAR-PF D) Model of AncCARs reductase domain superimposed on ExCAR structure 5MSO. 

Structures: Yellow – 5MSO; Green - AncCAR-A; Blue - AncCAR-PA/PF; Orange – AncCAR-F. IKmages 

were produced with PyMol. 

 

2.5.2 AncCARs have a broad substrate range 

Assays of AncCAR activity were performed in HEPES instead of the canonical CAR buffer 

system Tris, as HEPES is more suited to pH 7.5, and Tris was found to inhibit AncCAR activity 

above 50 mM (supplementary figure 7). AncCARs were screened for activity on 21 aromatic 

and aliphatic fatty carboxylic acids at 5 mM concentrations. No significant activity could be 

detected for AncCAR-F on any of these substrates. This protein was therefore eliminated 

from further kinetic analyses. The other three AncCARs show equivalent substrate ranges to 

one another across all substrates tested. Ten of the 21 substrates, including nine aromatic 

carboxylic acids and one aliphatic carboxylic acid showed a statistically significant NADPH 
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turnover (P £ 0.001) compared to background rate for at least two of the three ancestors 

(supplementary figure 8). A subset of these are shown in figure 14.  

 

Kinetic analysis of AncCAR activity was first conducted on NADPH and ATP in the presence of 

5 mM (E)-3-phenylprop-2-enoic acid (supplementary figure 9). For NADPH, AncCAR KM 

values were similar to those derived from ExCARs. On the other hand, observed KM values 

for ATP were between 10 and 100 times lower than values derived for ExCARs (table 8; 

chapter 7.3; Finnigan et al., 2017). This suggests the AncCARs bind ATP considerably tighter 

than modern CAR proteins. 

 

AncCAR kinetics on substrates showing significant activity from background were then 

tested in saturating NADPH and ATP levels (supplementary figure 10A). The Michaelis 

constant of all AncCARs was typically determined to be approximately 10-fold higher than 

those previously reported for the ExCARs (table 9; supplementary figure 10B; chapter 7.3; 

Finnigan et al., 2017). All AncCARs showed strong activity on canonical substrates: benzoic 

acid and its derivative 4-methylbenzoic acid. AncCARs have a clear preference for substrates 

with electron rich conjugated carboxyl groups, with turnovers being amongst the highest 

across all tested substrates for all ExCARs (table 9; Winkler, 2018). For example, AncCAR-PA 

turnover of 3-phenylpropionic acid is the highest turnover rate observed for any substrate 

across all four carboxylic acid reductase subgroups, 1.5-fold higher than that of any 

substrate reported for the CAR1s (468 min-1; table 9). Finally, whilst AncCARs are active on 

octanoic acid, AncCAR preference for fatty acid substrates is attenuated compared to 

ExCARs, with no activity seen for canonical 3-C and 5-C aliphatics. Octanoic acid was turned 

over by AncCARs at rates comparable to ExCARs (Finnigan et al., 2017). However, each 

AncCAR enzyme showed an approximately 100-fold higher KM (table 9). Octanoic acid also 

displayed substrate inhibition on AncCARs at high concentrations (supplementary figure 10).  
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Figure 14 - AncCARs show activity on canonical CAR substrates 

ATurnover of NADPH by AncCARs was measured with 24 unique carboxylic acids, of which five are 

shown. Bar chart shows activity on canonical acid substrates at 5 mM. Each substrate was tested in 

triplicate, and error bars represent the standard error. Asterisks represent degrees of significance 

from t-test of triplicate verses all controls (* = 0.0001 < P £ 0.001; ** 0.00001 < P £ 0.0001; *** = 

0.000001 < P £ 0.00001; **** = P £ 0.000001). Complete substrate screens are presented in 

supplementary figure 8. 
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Table 8 – AncCAR co-factor kinetics 

Rates of AncCAR activity on ATP and NADPH were determined using a 12 point, 1.7x dilution series 

of substrate, with concentrations starting at 800 mM. Each concentration was investigated in 

triplicate. Data were fitted to the Michaelis-Menten equation. Graphs in supplementary figure 8. 

Extant CAR data was derived from the literature. 
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Table 9 – AncCAR substrate kinetics 

For ancestral CARs, kinetic rates on various aromatic and aliphatic compounds were determined 

using an 8 point, 1.7x dilution series of acid from near saturation in 125 mM HEPES. Each 

concentration was investigated in triplicate. Data were fitted to the Michaelis-Menten equation 

using GraphPad v.7.0. Graphs in supplementary figure 10. Corresponding kinetic values are 

presented in supplementary table 2  MpCAR data was derived from the literature. 
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In AncCAR homology models, we observed that the active site of the ancestors’ adenylation 

domains appear to be slightly disordered compared to the extant structures (figure 15A; 

Stolterfoht et al., 2017). This is most evident when comparing differences in a variable loop 

that stretches into the active site between positions 286-302. The catalytically essential 

His315 is positioned as a rotamer away from the substrate, suggesting this residue has a 

large sampling space within the active site of the AncCARs. In the model of AncCAR-PF 

(figure 15B), this loop region is significantly shortened and is unable to contact the 

substrate. Comparison of inactive AncCAR-F to ancestor models and ExCAR structures 

showed no obvious structural or functional residue changes that explain the loss of activity 

(supplementary figure 11). 

 

 
A                 B 

  

Figure 15 – Homology models suggest slight disordering of AncCAR active sites 

A) The predicted active site structure of the adenylation domain. AncCARs A (green), PA (blue) and 

PF (red) are overlaid onto S. rusogus CAR (PDB ID: 5MST; yellow). By the change in substrate position 

(gray) and placement of the residues around the substrate, it can be seen that the shape of the 

active site varies between ancestors, compared to SrCAR. The residues lining the active site pocket 

of ExCARs (positions 246-250) are poorly resolved. B) In AncCAR-PF, the highly variable loop 

between positions 286-302 of the adenylation domain of AncCAR-PF (red) does not interact with the 

substrate, in contrast to SrCAR (5MST; yellow). Model structures of AncCAR-A, PA, and PF were 

produced in YASARA, and visualized in PyMol.  
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2.5.3 Ancestral CARs show dramatic increases in stability 

Many ancestral proteins have displayed increased resistance to temperature (Whitfield et 

al., 2015; Gaucher et al., 2008; Akanuma, 2017; Hobbs et al., 2012; Butzin et al., 2013; Zakas 

et al., 2015; Trudeau et al., 2016; Okafor et al., 2018). AncCAR-A is the most thermostable 

ancestor, and the most stable CAR protein reported to date, with an A50 of around 70 °C. 

50% activity was retained for AncCAR-PA and AncCAR-PF at 65.1 °C and 65.4 °C respectively. 

Comparatively, MpCAR, one of the most stable ExCARs reported to date (Finnigan et al., 

2017; chapter 7.3), displayed an A50 of around 49 °C (figure 16A). AncCAR half-life at 37 °C in 

50 mM HEPES was monitored by assessing their activity on 5 mM (E)-3-phenylprop-2-enoic 

acid at intervals over a period of 10 days. AncCAR-A showed a short half-life of less than 41 

hours. This was of stark contrast to AncCAR-PA and AncCAR-PF, whose half-lives at 37 °C 

were between 168-216 hours. AncCAR-PA and AncCAR-PF display the longest half-lives 

reported to date in CARs, approximately 27-fold longer than the half-life observed for 

MpCAR (7 hours; figure 16B). Monitoring of AncCAR unfolding in real time with differential 

scanning fluorimetry (Senisterra et al., 2011; Vivoli et al., 2014) also corroborates that 

AncCARs are highly stable. All AncCARs showed the greatest rate of unfolding (Tm) between 

67 and 68 °C (figure 16C).  

 

Importantly, biocatalysts are used for both in vitro and in vivo bioindustrial pipelines. Robust 

biocatalysts are therefore required to function in the highly ionic environments demanded 

by in vivo bioconversions. Ionic solutions can have either stabilizing or destabilizing effects 

on enzymes (Dominy et al., 2002). To better characterize AncCARs for use in the CAR 

toolbox, their thermostability was assessed in a buffer simulating the ionic environment 

inside a Saccharomyces cerevisiae cell (van Eunen et al., 2010). In these potentially 

challenging conditions, MpCAR slightly destabilized, with an A50 of around 47 °C. AncCAR-PA 

was the least thermostable ancestor, with an A50 of 45 °C – a 20 °C decrease over incubation 

in standard in vitro assay conditions. AncCAR-A showed a 16 °C decrease in stability over the 

salt free condition, presenting an A50 of approximately 54 °C, losing activity in a near linear 

fashion from around 40 °C. AncCAR-PF is the only ancestral protein observed to be tolerant 

to an ionic environment at temperature, with an equivalent A50 to the salt free condition at 

65 °C (figure 16D). To confirm it was the presence of salt that was effecting stability in 

AncCARs and MpCAR, we repeated the experiment in the presence 500 mM NaCl. 



 112 

Equivalent destabilizing effects to the in vivo-like conditions were observed (supplementary 

figure 12).  
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C (cont.) 
 

 
D 

 
 

Figure 16 - AncCARs are thermostable enzymes 

A) AncCARs and MpCAR were incubated in 50 mM HEPES at temperatures from 30 °C to 70 °C for 30 

min. Each point represents the rate of NADPH oxidation in 5 mM (E)-3-phenylprop-2-enoic acid at 

temperature relative to the rate of NADPH oxidation in 5 mM (E)-3-phenylprop-2-ionic acid at 30 °C. 

Error bars represent the standard error (all data taken in triplicate). Black dotted horizontal line 

represents 50% activity (A50). Coloured vertical dotted lines represent temperature at which A50 is 

reached. MpCAR retains 50% activity at 48.7 °C. AncCAR-A retains 50% activity at 69.7 °C. Both 

AncCAR-PA and AncCAR-PF show similar stability, with A50 (temperature where 50% of activity 

remains) of 65.1 °C and 65.4 °C respectively. B) To assess half-life at 37 °C, AncCARs and MpCAR 

were incubated at temperature over a period of 10 days. Relative activity versus a zero-time point 

was assessed by activity on 5 mM (E)-3-phenylprop-2-enoic acid. The black dotted horizontal line 

represents 50% activity. Coloured vertical dotted lines represent time taken to reach 50% enzyme 

activity compared to time zero. Error bars represent standard error, in all cases calculated from 

three experimental replicates. C) Differential scanning fluorimetry to assess AncCARs’ critical 

unfolding temperature. Enzymes were incubated in HEPES and analysed between the temperature 
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of 25 °C and 100 °C. Thermal shift curves were drawn from raw DSF data in GraphPad. D) AncCARs 

have environment dependent temperature resistance. AncCARs and MpCAR were incubated in in 

vivo-like ionic concentrations that model the internal environment of a S. cerevisiae (van Eunen et 

al., 2010) cell at temperatures from 30 °C to 70 °C. Data were determined and represented as in 

panel A.  

 

2.5.4 AncCARs vary in their loop-based properties 

Salt-tolerance has been proposed as a “loop-associated” trait, where net surface charge 

effects solvent penetrance (Dominy et al., 2002). Following our observation that much of 

the variation between ancestors is loop based, we further investigated AncCAR’s resistance 

to other proposed loop associated conditions. Solvent tolerance is a common industrially 

relevant loop-associated property desired in biocatalysts. We assessed the AncCARs’ solvent 

tolerance in a range of protic and aprotic solvents at increasing solvent concentrations in 

comparison to MpCAR and NiCAR (supplementary table 3). There is no consistent trend 

observable between all ancestors on all solvents. AncCAR-A is the least solvent tolerant 

enzyme for all solvents besides DMSO and methanol. For all solvents besides acetone, 

AncCAR-PF is the most solvent tolerant, retaining 50% activity in the presence of over 25% 

methanol. Ancestors show the greatest variance to tolerance in methanol, with AncCAR-PF 

showing considerable increases in tolerable concentration of solvent compared to AncCAR-

A (89%) and AncCAR-PA (119% increase). In protic solvents, AncCAR-PF performed similarly 

to the most solvent tolerant extant CAR. In contrast, in aprotic solvents, the AncCARs 

generally showed greater activity than extant CARs. This was particularly so in 10% DMSO 

(v/v), with all ancestral proteins retaining 86-92% activity, compared to 67-74% for the 

extant CARs (figure 17A). A wide pH tolerance for industrially relevant enzymes is another 

highly desirable loop-associated trait. All AncCARs displayed no loss of activity between 6.0 

and 9.0 pH units (figure 17B). AncCAR-A lost activity in alkaline conditions above pH 9.0, 

whereas AncCAR-PF and AncCAR-PA maintained 100% activity up to pH 10.0. All ancestral 

CARs show a decrease in activity below pH 6.0 (pK1 ≈ 5 for all three enzymes). However, this 

feature is shared with extant CARs, with MpCAR showing even greater pH tolerance than 

AncCAR-PF, the most pH tolerant of the AncCARs (50% activity between pH 5.01 and pH 

11.56 for AncCAR-PF, compared to pH 4.3 to 11.8 for MpCAR).  
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Figure 17 - AncCAR tolerance to solvents loop dependent environmental factors 

A) AncCAR and ExCAR activity on 5 mM (E)-3-phenylprop-2-enoic acid was assessed in aprotic and 

protic solvents by solvent titration from 25% (v/v). Graphs represent relative activity of each AncCAR 

and ExCAR at increasing concentrations of solvent compared to 0% solvent. Error bars are standard 

error (three replicates). Data for all solvents can be found in supplementary table 3. B) To assess the 

resistance of AncCARs folding to pH, AncCARs were incubated for 30 minutes in 0.5 pH increments 

between pH 3 and 11, before being assayed for their turnover of NADPH in the presence of 5 mM 

(E)-3-phenylprop-2-enoic acid relative to turnover at pH 7.5 (100%). Data was analysed in GraphPad 

Prism 7.0. pK1 and pK2 values were calculated respectively as: AncCAR-A - 4.96 ± 0.06 and 10.83 ± 

0.06; AncCAR-PA – 5.12 ± 0.05 and 11.11 ± 0.07; AncCAR-PF – 5.011 ± 0.06 and 11.56 ± 0.11; NiCAR – 

4.55 ± 0.09 and 9.70 ± 0.09; MpCAR – 4.3 ± 0.1 and 11.8 ± 0.3. Error bars represented standard 

error, calculated from three experimental replicates. 
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2.6 Discussion 

Protein engineering for the optimization of application specific properties in enzymes is 

integral to the future green chemistry market. Limited understanding about the sequence-

function relationship in biocatalysts presents a significant challenge for synthetic biology. 

This is exemplified by the CARs. Single amino acids that regulate CAR function and selectivity 

are starting to be uncovered, including active site point mutants that modulate substrate 

turnover (Stolterfoht et al., 2017). Nevertheless, at present without significant innovation in 

the protein engineering field the semi-rational engineering of CARs with high-throughput 

approaches would remain prohibitively expensive. Furthermore, CARs with improved 

stability have been highlighted as an important potential addition to the CAR toolbox 

(Winkler, 2018). However, there are no defined rules available to guide the rational 

engineering of thermostability in any enzyme, let alone one as complex and poorly 

understood as CARs (Okafor et al., 2018). 

 

Here, we aimed to sample ancient sequence space using multiple ASR algorithms to 

engineer stability into CARs. CARs present as challenging targets for ASR: they are large 

(>1,100 amino acids), and undertake four catalytic steps including two large scale domain 

reorientations (Finnigan et al., 2017; Gahloth et al., 2017). In the first instance, it is 

therefore surprising that all four reconstructed enzymes could be readily expressed and 

purified in E. coli (supplementary figure 5). It is even more surprising that three of the four 

putative ancestors were functional CAR-like enzymes, showing unambiguous CAR activity 

against a range of standard CAR substrates (figure 14; supplementary figures 9 and 10). 

AncCARs identified were highly conserved (91% identity; figure 13B). Despite such high 

conservation, a broad functional space was identified. Our use of multiple reconstruction 

algorithms also allowed for the sampling of sequence space in an empirical manner. 

Homology modelling suggests that variation between the ancestors is concentrated at 

surface loops, mostly within the A domain (figure 13B; supplementary figure 4B). Loops are 

flexible regions within a protein that can exhibit large degrees of motion, are often tolerant 

to amino acid substitution and are a key determinants of protein stability (Papaleo et al., 

2016; Balasco et al., 2013). We observe that AncCARs vary in their loop-dependent 
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properties, with variation in their tolerance to in vivo like salt concentrations (figure 16D), in 

their activity in protic and aprotic solvents (figure 17A; supplementary table 3), and in their 

tolerance to alkaline conditions (figure 17B). Such conditions modify the sum of zwitterionic 

states across the protein surface, causing repulsive forces within the protein’s loop-regions. 

In turn, increased repulsion of loops expose the hydrophobic core of the protein to bulk 

solvent (Dominy et al., 2002; Nestl and Hauer, 2014; Dill, 1990). As loop regions are resistant 

to the deleterious effects of mutation, they are more likely to vary in the extant dataset, 

allowing ASR-based searches of ancient sequence space to capture this variation at the 

functional level. These results highlight the potential of ASR as an engineering tool even for 

large, complex biomolecules that are otherwise less tractable for protein engineering. 

 

The different ancestral reconstruction algorithms that we used apply subtly different 

gapping regimens. These are likely to partly explain the variation in both loop-based 

properties and reaction rates reported between ancestors. Altering loop lengths can modify 

structural flexibility, with a concomitant impact on stability as discussed above (Balasco et 

al., 2013; Nestl and Hauer, 2014; Dill, 1990). This highlights the importance of gap 

reconstruction in ASR studies. We would encourage other ASR users to attempt 

reconstruction with multiple ASR algorithms when working with alignments that contain 

gaps, to confirm that gap placement is coordinated between methodologies. In cases where 

the sequence identity is sufficiently high to eliminate any ambiguity in gap locations, the use 

of multiple algorithms may be less important. We would also encourage future ASR 

engineering studies to include consideration of gap placement to expand understand of the 

impact this has on obtainable property space. 

 

This study expands on previous work investigating ASR’s use as a protein engineering tool, 

confirming its tractability to the engineering of large, mechanistically complex multi-domain 

proteins. Importantly, all functional CAR ancestors were found to be highly thermostable 

(A50 > 65°C) in simple buffer conditions (figure 16A). AncCAR-A, with around 50% activity 

retained after incubation at 70 °C, shows 21-34 °C greater thermostability than the best 

studied extant CARs (Finnigan et al., 2017; Kramer et al., 2018). However, ancestors showed 

considerable variation in their half-lives, with AncCAR-A losing 50% activity on just over 40 

hours, whereas AncCAR-PA and PF maintained at least 50% activity for over a week (figure 
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16B). As we are not aware of a highly thermostable CAR variant that exists in the CAR 

toolbox, ancient CAR enzymes provide much needed functionality, providing a means to 

convert carboxylic acids into aldehydes within a high temperature biocatalysis. Overall, 

AncCAR-PF presents as an attractive, all-purpose CAR enzyme due to its extraordinarily 

hardy nature, and broad scale resistance to many challenging conditions. It is stable up to 

around 65 ˚C in both in vivo and in vitro conditions, it has a half-life of over a week, it has a 

pH range of 6.5 pH units and it is exhibits the highest tolerance to solvent in all tested cases 

besides acetone. These collective properties are highly desired in CAR enzymes due to the 

poor solubility of their aldehyde products, ensuring efficient coupling to downstream 

bioconversions.  On the other hand, AncCAR-A and AncCAR-PA appear to be excellent 

biocatalysts for the production of cinnamic aldehyde derivatives. AncCAR-PA’s turnover of 

3-phenylpropionic acid is the highest turnover rate observed to date for any CAR from any 

family on any substrate.  

 

Importantly, such enzyme improvements are of broad industrial relevance as they were 

achieved with free software, without the prerequisite of an experimental structure, and 

without having to produce or screen a library of variants. ASR’s delivery of large stability 

increases will therefore offer a cost and time saving opportunity in current protein 

engineering pipelines. We further anticipate that ASR will not replace existing engineering 

pipelines, but instead act as a front-end process. Enzymes with increased stability “smooth” 

the sequence-function landscape. This occurs as stable enzymes can permit the introduction 

of destabilizing mutations without cost to enzyme fitness, thus improving mutational 

robustness and introducing new avenues for property discovery (Suplatov et al., 2015; 

Romero and Arnold, 2009). It therefore follows that ancestral enzymes could be more easily 

engineered for improved or refined activities (Wagner, 2008). Being able to rapidly “strip 

back” enzymes to a more plastic molecule may provide improved avenues for more complex 

protein engineering pipelines. 

 

In terms of experimental design in ASR, our observation of a rich ancestral property space 

informs important considerations. It is commonplace in today’s ancestral reconstruction 

literature, whether focused on engineering or on evolution, that ancestors are constructed 

from nodes in a single lineage or small number of lineages to understand their properties 
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(Zakas et al., 2015; Blanchet et al., 2017; Voordeckers et al., 2012). To our knowledge, only 

benchmarking studies have assessed the difference between algorithms, and have done so 

on a very small number of enzyme targets (Randall et al., 2016; Hanson-Smith et al., 2010). 

However, our work shows that the properties of sequences derived from different 

algorithms differ based on ancestral reconstruction method, yet no algorithm can be argued 

to provide more confident representation of ancestral space. Therefore, in future ASR work, 

comparisons between ancestors made with different algorithms might provide better 

insight into ancestral property space. Additionally, we show that ancestors exhibit vastly 

different stability profiles, dependent on whether the proteins are being assayed within an 

in vitro and in vivo-like environment. To confidently conclude that thermostable proteins 

confer a high stability of ancient life, proteins must be seen to be thermostable in in vivo 

conditions, as the limits of protein stability within the cell environment define the 

environmental limits in which an organism can survive (Karshikoff et al., 2015). To our 

knowledge, all ASR studies that address the temperature environment of early life only test 

their proteins using in vitro conditions (Nguyen et al., 2017; Risso et al., 2015; Gaucher et 

al., 2008; Butzin et al., 2013; Hobbs et al., 2012; Trudeau et al., 2016). We therefore 

encourage caution be taken when drawing conclusions about a protein’s environment 

based on in vitro stability alone, as well as conclusions drawn from one representation of 

ancestral space at a given node.  
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2.7 Conclusion 

ASR offered an attractive solution for engineering CARs, as their complexity makes them 

intractable to conventional protein engineering methods. ASR has a high likelihood of 

obtaining functional sequences, as every extant sequence referenced already contains 

permitted residues at each position. Here, using ASR, we have successfully engineered three 

functional carboxylic acid reductase enzymes with novel properties tractable to 

biotechnology. All three ancestors bring valuable properties to the CAR toolbox, providing 

novel enzymes with stable and robust properties. These properties unlock an entirely new 

array of biochemical capabilities for CAR reactions particularly in the applications of high 

temperature biosynthesis. Additionally, stable AncCARs may prove useful for future enzyme 

engineering studies with this enzyme. We show that ancestral reconstruction with multiple 

algorithms offers an important engineering technology for large and/or poorly understood 

protein families. 

 

2.8 Methods 

Sequence handling 

Unless specified, all algorithms were performed under default settings. Multiple sequence 

alignments were performed in Geneious version 10.0.2 with MUSCLE (Kearse et al., 2012; 

Edgar, 2004). The resulting alignments were modified manually. These were then further 

modified by either: a) manually removing insertions represented by one, or very few leaves; 

and b) the GBlocks algorithm in the Phylogeny.fr program suite (Talavera and Castresana, 

2007; Dereeper et al., 2008), forming two distinct alignment datasets. Best fit models of 

amino acid replacement were identified using ProtTest version 3.4 (Abascal et al., 2005). 

The GBlocks curated alignment was subject to phylogenetic analysis within MrBayes version 

3.2.6 (Ronquist et al., 2012), under the WAG + I + G model of amino acid substitution 

(Whelan and Goldman, 2001). Two parallel runs of 250,000 Metropolis Coupled Markov-

Chain Monte Carlo generations were conducted with an independent gamma calculated for 

all lineages, each with four chains with the heat prior set to 0.02, sampled every 100 
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generations, with a burn-in of 25%, and all sequences bar those from Tsukamuraella and 

Segnilliparus set as the ingroup prior.  

 

Ancestral sequence reconstruction was conducted with FastML (Ashkenazy et al., 2012), 

PAML (Yang, 2007) and Ancescon (Cai et al., 2004) using the manually-curated alignment 

and the MrBayes tree as inputs. Marginal reconstructions conducted in FastML and PAML 

were run with the most optimal model available previously defined by ProtTest. PAML was 

run with eight gamma rate categories with estimated shape parameters for α, κ and ω 

priors. FastML was run with optimization of branch lengths and binary maximum likelihood 

based indel reconstruction. Ancescon requires a polytomous root in the input tree: 

therefore, the MrBayes derived tree had a false polytomy introduced manually in its Newick 

file. Marginal reconstructions in Ancescon were run with ML based rate factors and an 

alignment-based PI vector. Most likely output sequences for each algorithm were aligned in 

Geneious using MUSCLE. Indels derived from either Ancescon or FastML were transposed to 

the PAML sequences, producing four final sequences: AncCAR-A, AncCAR-F, AncCAR-PA and 

AncCAR-PF. All sequences are available as supplementary documents. 

 

Homology modelling of AncCARs 

The ancestral CARs were modelled using YASARA v.17.8.15 (Krieger and Vriend, 2014). The 

models were based on the structures of the A/T domains of CARs from Segniliparus rugosus 

(SrCAR; PDB ID: 5MST) and NiCAR (PDB ID: 5MSD); and the R domains of CARs from 

Mycobacterium marinum (MmCAR; PDB ID: 5MSO) and SrCAR (PDB ID: 5MSP; Gahloth et al., 

2017). The alignments used for the ancestral reconstruction were used to direct the 

modelling. Modelling was performed using the default “hmbuild” algorithm. In each case, 

the preferred model was selected. Images of protein structures were prepared using PyMOL 

v. 2.0 (Schrödinger; DeLano, 2002). Root mean squared values for alpha carbon atom 

position in the modelled structures were calculated in PyMOL by calculating the best 

alignment without transform over 10 cycles. 
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Purification and storage 

Sequences derived from ancestral sequence reconstruction were modified to contain a 

6xHis-tag at the N-terminus. Sequences were codon optimized for E. coli K12, and 

synthesized in two sections. The first sections were synthesized into the pNic28-BSA4 

expression vector (Savitsky et al., 2010) by Twist Bioscience. The second sections were 

synthesized by Twist bioscience into their stock vector. The second sections were ligated 

with the first section and vector by restriction cloning, and sequence verified by Sanger 

sequencing (Source Bioscience). These were co-transformed into BL21(DE3) E. coli alongside 

a pCDF-Duet1 vector containing Bacillus subtillus phosphopantetheine transferase (Finnigan 

et al., 2017). 

 

Expression was carried out in LB media supplemented with 150 μM IPTG at 20 °C overnight. 

Cells were harvested in 20 mM Tris-HCl pH 7.5 with 0.5 M NaCl and 10 mM imidazole and 

lysed by sonication. The lysate was clarified by centrifugation at 24,000 g. AncCARs were 

purified from the soluble fraction by nickel affinity using an ÄKTAXpress (GE Healthcare) 

using a 1 ml His-Trap FF crude column (GE Healthcare), followed by size exclusion with a 

Superdex 200 HiLoad 16/60 gel filtration column (GE Healthcare). The nickel affinity column 

was equilibrated and washed with the cell lysis buffer, and the purified proteins eluted with 

cell lysis buffer supplemented with 250 mM imidazole. The size exclusion column was eluted 

with 0.5 M NaCl in 10 mM HEPES-NaOH pH 7.5. The purified proteins were analyzed by SDS-

PAGE using 4-12% precast gels run in MOPS buffer (Genscript). Protein concentration was 

determined using a Nanodrop N2000c nanospectrophotometer (Thermo). If required 

samples were concentrated to between 0.25 and 0.5 mg/ml using Vivaspin 6 mL columns 

with a molecular weight cut-off of 10 kDa (Generon) and stored in 20% (v/v) glycerol at -20 

°C. Protein was buffer exchanged into reaction buffer using PD10 desalting columns 

(Generon) before enzymatic analysis.  

 

Enzyme assays: standard conditions 

All assays were performed in Grenier flat-bottomed 96 well microtitre plates. Assays were 

modified from those in Finnigan et al. (2017). Unless otherwise specified, samples were 

assayed in triplicate in a 200 μl reaction containing 125 mM HEPES-NaOH (pH 7.5), 1.2 mM 
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ATP, 10 mM MgCl2, 250 μM NADPH, 5 mM substrate and 5 μg enzyme. Working stocks of 

each assay component were dissolved in 50 mM HEPES-NaOH (pH 7.5). Their pH was 

modified to 7.5 to ensure consistent pH across serial dilutions, and volume was made up to 

50 mM final concentration of HEPES with MilliQ water. Where necessary, substrates were 

dissolved in concentrations of DMSO up to 10% (v/v) final reaction in 200 mM HEPES pH 7.5. 

To begin the reaction, 100 μl substrate working stock in assay buffer was added to 100 μl of 

a master mix containing the remaining components. Each assay contained substrate buffer 

solution without substrate in triplicate for blank subtraction of native NADPH degradation 

rates. Enzyme activity was monitored at 30 °C by measuring the absorbance at 340 nm in a 

Tecan Infinite 200Pro plate reader in continuous cycles over the course of 10 minutes with 

10 flashes per-well; or using a ThermoFisher SkanIt Pro plate reader in continuous cycles 

over 10 minutes. Data were processed in Microsoft Excel and Graphpad Prism v7.0. 

Experimental data were fit to the Michaelis-Menten equation following calculation of 

NADPH conversion based on an NADPH standard curve (supplementary figure 13).  

 

Buffer optimization 

HEPES and Tris were prepared to pH 7.5 at 50 mM, 75 mM, 100 mM, 125 mM, 150 mM and 

275 mM. AncCARs were buffer exchanged into each buffer. AncCAR activity was tested 

against (E)-3-phenylprop-2-enoic acid. All reaction components were prepared in 

corresponding buffers. 

 

Analysis of solvent stability 

(E)-3-phenylprop-2-enoic acid dissolved in 50 mM HEPES was prepared in 50% (v/v) neat 

solvent, which was serially diluted in 5 mM (E)-3-phenylprop-2-enoic acid dissolved in 50 

mM HEPES to provide a solvent gradient from 25% to 0% (v/v). 

 

Analysis of substrate specificity 

CAR activity was tested for each enzyme on seventeen aromatic carboxylic acids and four 

aliphatic carboxylic acids. Compounds were prepared to 0.5 M stocks in neat DMSO and 
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diluted to working concentration in assay buffer to a final DMSO concentration of 20%, 

providing a 10% (v/v) DMSO concentration on the standard assay.  

 

pH tolerance 

Buffers ranged from pH 3 to 11 in increments of 0.5, prepared at 30 °C. The buffers consisted 

50 mM Na-citrate, pH 3.0 to 5.0; 50 mM MES, pH 5.5 to 6.5; 50 mM HEPES, pH 7.0 to 8.0; 50 

mM Bicine pH, 8.5 to 9.0; and 50 mM CAPS, pH 9.5 to 11.0. A series of 80 μL buffer solutions 

containing 0.25 μg μl-1 ancestral protein was constructed and incubated at 30 °C for 30 

minutes. Incubated enzymes were assayed as standard on 5 mM (E)-3-phenylprop-2-enoic 

acid. Initial rates were calculated as relative activity against acquired rate values at pH 7.5 

(100 %). The data were fitted to the following equation (Cornish-Bowden, 2013) to determine 

the limits of pH tolerance: 

 

𝑣 = 	
𝑉:KK

ℎ
𝐾:
+ 1 +	𝐾Uℎ

 

 

Where V100 is the maximum rate, K1 and K2 are the proton concentrations where activity drops 

to 50% at low and high pH respectively, and h is the proton concentration.  

 

Thermostability following incubation 

In vitro buffer system consisted standard assay buffer. In vivo-like S. cerevisiae ion buffer 

was based on systems described by van Eunen et al. (2010). Buffer consisted of 50 mM 

K2HPO4, 75 mM C5H9NO4, 85 mM KCl, 10 mM Na2SO4, 2 mM MgCl2, 0.5 mM CaCl2, prepared 

in 50 mM HEPES and pH modified to 7.5 by adding neat KOH (45%, v/v) dropwise. Salt 

confirmation buffer was standard assay buffer supplemented with 500 mM NaCl. 

 

80 μl aliquots of each AncCAR at 0.25 μg μl-1 in each buffer system were incubated for 30 

minutes at temperatures between 30 °C and 49 °C, and 50 °C and 70 °C in a Mastercycler 

nexus thermocycler (Eppendorf) set to gradient mode. The second aliquot in each gradient 

was reserved for 80 μl buffer for a negative control. Enzymes were then cooled to 4 °C in 



 125 

the thermocycler for 5 minutes before being assayed as standard on 5 mM (E)-3-

phenylprop-2-enoic acid. 

 

Differential Scanning Fluorimetery (DSF) 

The cleanest peaks from the size exclusion step of protein purification were buffer 

exchanged into each 50 mM HEPES pH 7.5. DSF running mixture was prepared by diluting 

enzyme to 0.1 μg μl-1 to which 10X SYPRO orange was added (Vivoli et al., 2014). DSF was 

run in sextuplet 20 μl volumes for each condition in a 384-well qPCR plate (Thermo) on a 

Life scientific QuantStudio 6 flex real-time PCR machine set to melt-curve mode, with a 

temperature ramp from 25 °C to 99 °C ramping at 0.17 °C s-1. Data were analyzed using 

Protein Thermal Shift software v. 1.3. 

 

Kinetic analysis of CARs on ATP and NADPH 

Enzyme kinetics were assessed by measuring activity of each enzyme on (E)-3-phenylprop-2-

enoic acid in the presence of varying concentrations of ATP or NADPH. Low concentrations 

of NADPH or ATP caused the reaction to finish quickly meaning concentrations were 

represented by very few kinetic cycles, potentially skewing results. Data was therefore 

trimmed of concentrations showing inhibition or high signal to noise ratio. For both ATP and 

NADPH titrations, a 1.7x dilution series from 8 mM over 12 points was used. Points that 

exhibited substrate inhibition were removed from analyses. Rates were fitted to the 

Michaelis-Menten equation by non-linear least squares regression in GraphPad Prism v. 7. 

 

Kinetic analysis of AncCAR substrate range 

Carboxylic acids were dissolved to near saturation in assay buffer with 20% DMSO. 

Substrates were titrated in 1.7x dilutions over 8 points. Rates were measured continuously 

over 6 minutes in a ThermoFisher MultiSkan GO plate reader in precision mode. Rates were 

fitted to the Michaelis-Menten model by non-linear least squares regression in GraphPad 

Prism v7. 
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2.9 Supplementary Figures 

Supplementary figure 1 

 

Supplementary figure 1 - Current proposed CAR reaction mechanism 

The current model of the reaction mechanism of CARs, based upon partial crystal structures of 

SrCAR, NiCAR and MmCAR (Gahloth et al, 2017): A) ATP and carboxylic acid enter the adenylation 

domain active site leading to the formation of an acyl-AMP intermediate via nucleophilic attack of 

the carboxylate on the α-phosphate of ATP, releasing pyrophosphate. B) The adenylation domain is 

displaced due to rotation at residues L528 (~165°) and A651 (~75°), mediating the migration of the 

phosphopantetheine (PPT) arm (~50 Å; covalently bound to S702) into the adenylation domain 

active site. This movement permits nucleophilic attack by the PPT thiol on the carbonyl of the acyl-

AMP intermediate, forming a thioester intermediate. C) The reductase domain undergoes 
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conformational sampling about S744 and reconciles with the relocated PPT thioester intermediate. 

D) The thioester bond is reduced by NADPH releasing the aldehyde product and NADP+ and 

regenerating the PPT moiety (Crystal structures were rendered in PyMol v. 2.0; PDB IDs: 5MSS, 5MST 

and, 5MSV).   

 
 
 
 
 
 
 
 
 
 
Supplementary figure 2 
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2 PAML_node_50F    100.0%  95.6%      TLFEDLALVRPTELGLVPRVCDMLFQRYQSAVDRRVAAGADRATLEAEAKAELREHVLGGRFLTAMCGSAPLSAEMRAFM      
3 Ancescon_Node_53  98.7%  91.7%      TLFEDIALVRPTELGLVPRVCDMLFQRYQSAVD------ADRETLEAEAKTELREHVLGGRFLTAMCGSAPLSAEMKAFM      
4 PAML_node_50A     98.7%  93.9%      TLFEDLALVRPTELGLVPRVCDMLFQRYQSAVD------ADRATLEAEAKAELREHVLGGRFLTAMCGSAPLSAEMRAFM      

 
                cov    pid   401          .         .         .         .         :         .         .         . 480  

1 FastML_N2        100.0% 100.0%      ESLLDLHLLDGYGSTEAGGVLRDGRIQRPPVIDYKLVDVPELGYFTTDKPHPRGELLVKSETMIPGYYKRPEVTAEVFDE      
2 PAML_node_50F    100.0%  95.6%      ESLLDLHLLDGYGSTEAGSVLRDGRIQRPPVIDYKLVDVPELGYFRTDKPHPRGELLVKSETMIPGYYKRPEVTAEVFDE      
3 Ancescon_Node_53  98.7%  91.7%      ESVLDLHLLDGYGSTEAGSVLRDGKIQRPPVIDYKLVDVPELGYFRTDKPHPRGELLVKSETMIPGYYKRPEVTAEIFDE      
4 PAML_node_50A     98.7%  93.9%      ESLLDLHLLDGYGSTEAGSVLRDGRIQRPPVIDYKLVDVPELGYFRTDKPHPRGELLVKSETMIPGYYKRPEVTAEVFDE      

 
                cov    pid   481          .         5         .         .         .         .         :         . 560  

1 FastML_N2        100.0% 100.0%      DGFYRTGDVMAELGPDRLVYVDRRNNVLKLSQGEFVAVAKLEAVFAGSPLVRQIFVYGNSERSYLLAVVVPTEEALARGD      
2 PAML_node_50F    100.0%  95.6%      DGFYRTGDVMAEIGPDRLVYVDRRNNVLKLSQGEFVAVAKLEAVFAGSPLVRQIFVYGNSERSYLLAVVVPTEDALARPD      
3 Ancescon_Node_53  98.7%  91.7%      DGFYRTGDVMAEIGPDRLVYVDRRNNVLKLSQGEFVAVAKLEAVFAGSPLVRQIFVYGNSERSYLLAVVVPTEDALARPD      
4 PAML_node_50A     98.7%  93.9%      DGFYRTGDVMAEIGPDRLVYVDRRNNVLKLSQGEFVAVAKLEAVFAGSPLVRQIFVYGNSERSYLLAVVVPTEDALARPD      

 
                cov    pid   561          .         .         .         6         .         .         .         . 640 

1 FastML_N2        100.0% 100.0%      PAALKTAIAESLQQIAREAGLQSYEVPRDFIIETEPFTIENGLLSGIGKLLRPKLKERYGERLEQLYAELAEGQADELRA      
2 PAML_node_50F    100.0%  95.6%      PAALKAAIAESLQRIAKEAGLQSYEIPRDFIIETEPFTIENGLLSGIGKLLRPKLKERYGERLEQLYAELAEGQADELRA      
3 Ancescon_Node_53  98.7%  91.7%      PEELKPAISESLQQIAKEAGLQSYEIPRDFIIETEPFTIENGLLSGIGKLLRPKLKERYGERLEQLYAELAEGQADELRA      
4 PAML_node_50A     98.7%  93.9%      PAALKAAIAESLQRIAKEAGLQSYEIPRDFIIETEPFTIENGLLSGIGKLLRPKLKERYGERLEQLYAELAEGQADELRA      

 
                cov    pid   641          :         .         .         .         .         7         .         . 720  

1 FastML_N2        100.0% 100.0%      LREAAADRPVLDTVSRAARALLGAAAADLRPDAHFTDLGGDSLSALSFSNLLRDIFDVEVPVGVIVGPAADLRQLAEYIE      
2 PAML_node_50F    100.0%  95.6%      LREAAADRPVLETVSRAARALLGAAAADLRPDAHFTDLGGDSLSALSFSNLLRDIFDVEVPVGVIVGPANDLRQLAEYIE      
3 Ancescon_Node_53  98.7%  91.7%      LRESAADRPVLETVSRAAKALLGAAAADLRPDAHFTDLGGDSLSALSFSNLLRDIFDVEVPVGVIVGPANNLRQLAEYIE      
4 PAML_node_50A     98.7%  93.9%      LREAAADRPVLETVSRAARALLGAAAADLRPDAHFTDLGGDSLSALSFSNLLRDIFDVEVPVGVIVGPANDLRQLAEYIE      

 
                cov    pid   721          .         .         :         .         .         .         .         8 800  

1 FastML_N2        100.0% 100.0%      AERASGSRRPTFASVHGAGATEIRAADLTLDKFIDAETLAAAPSLPRPTGEPRTVLLTGANGYLGRFLCLEWLQRLAETG      
2 PAML_node_50F    100.0%  95.6%      AERASGSRRPTFASVHGAGATEIRAADLTLDKFIDAETLAAAPSLPRPSGTPRTVLLTGANGYLGRFLCLEWLQRLAETG      
3 Ancescon_Node_53  98.7%  91.7%      AERASGSRRPTFASVHGAGATEIRAADLTLDKFIDAETLAAAPSLPRPSGTPRTVLLTGANGYLGRFLCLEWLQRLDETG      
4 PAML_node_50A     98.7%  93.9%      AERASGSRRPTFASVHGAGATEIRAADLTLDKFIDAETLAAAPSLPRPSGTPRTVLLTGANGYLGRFLCLEWLQRLAETG      

 
                cov    pid   801          .         .         .         .         :         .         .         . 880  

1 FastML_N2        100.0% 100.0%      GKLICLVRGSDAAAARARLEAAFDSGDPELLERFRELAARHLEVVAGDIGEPNLGLDDATWQRLAETVDLIVHPAALVNH      
2 PAML_node_50F    100.0%  95.6%      GKLICLVRGSDAAAARARLEAAFDSGDPELLERFRELAARHLEVIAGDIGEPNLGLDEATWQRLAETVDLIVHPAALVNH      
3 Ancescon_Node_53  98.7%  91.7%      GKLICLVRGSDAEAARARLEEAFDSGDPELLEHFRELAAEHLEVIAGDIGEPNLGLDEATWQRLAETVDLIVHPAALVNH      
4 PAML_node_50A     98.7%  93.9%      GKLICLVRGSDAAAARARLEAAFDSGDPELLERFRELAARHLEVIAGDIGEPNLGLDEATWQRLAETVDLIVHPAALVNH      
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                cov    pid   881          .         9         .         .         .         .         :         . 960  

1 FastML_N2        100.0% 100.0%      VLPYDQLFGPNVVGTAEIIRLALTTRRKPVTYLSTVAVAAQVDPAAFDEDGDIREVSPVRPIDDSYANGYANSKWAGEVL      
2 PAML_node_50F    100.0%  95.6%      VLPYDQLFGPNVVGTAEIIRLALTTRLKPVTYLSTVAVAAQVDPAAFEEDGDIREISPVRPIDDSYANGYGNSKWAGEVL      
3 Ancescon_Node_53  98.7%  91.7%      VLPYDQLFGPNVVGTAEIIRLALTTRLKPVTYLSTVAVAAQVDPAAFEEDGDIREISPVRPIDDSYANGYGNSKWAGEVL      
4 PAML_node_50A     98.7%  93.9%      VLPYDQLFGPNVVGTAEIIRLALTTRLKPVTYLSTVAVAAQVDPAAFEEDGDIREISPVRPIDDSYANGYGNSKWAGEVL      

 
                cov    pid   961          .         .         .         0         .         .         .         . 1040 

1 FastML_N2        100.0% 100.0%      LREAHDLCGLPVAVFRSDMILAHSRYAGQLNVPDMFTRLLLSLLATGIAPKSFYRTDASGNRQRAHYDGLPVDFTAEAIT      
2 PAML_node_50F    100.0%  95.6%      LREAHDLCGLPVAVFRSDMILAHSRYAGQLNVPDMFTRLLLSLLATGIAPKSFYRTDADGNRQRAHYDGLPVDFTAEAIT      
3 Ancescon_Node_53  98.7%  91.7%      LREAHDLCGLPVAVFRSDMILAHSRYAGQLNVPDMFTRLLLSLLATGIAPKSFYQTDADGNRQRAHYDGLPVDFTAEAIT      
4 PAML_node_50A     98.7%  93.9%      LREAHDLCGLPVAVFRSDMILAHSRYAGQLNVPDMFTRLLLSLLATGIAPKSFYRTDADGNRQRAHYDGLPVDFTAEAIT      

 
                cov    pid  1041          :         .         .         .         .         1         .         . 1120 

1 FastML_N2        100.0% 100.0%      TLGAQAREGFRTYDVMNPHDDGISLDEFVDWLIEAGHPIERIDDYDEWFARFETALRALPDKQRQHSVLPLLHAYRRPAP      
2 PAML_node_50F    100.0%  95.6%      TLGAQATEGFRTYDVMNPHDDGISLDEFVDWLIEAGHPIERIDDYDEWFARFETALRALPDKQRQHSVLPLLHAYRRPAP      
3 Ancescon_Node_53  98.7%  91.7%      TLGAQATDGYRTYDVMNPHDDGISLDEFVDWLIEAGHPIERIDDYDEWFARFETALRALPEKQRQHSVLPLLHAYRRPAP      
4 PAML_node_50A     98.7%  93.9%      TLGAQATEGFRTYDVMNPHDDGISLDEFVDWLIEAGHPIERIDDYDEWFARFETALRALPDKQRQHSVLPLLHAYRRPAP      

 
                cov    pid  1121          .         .         :         .       ] 1168 

1 FastML_N2        100.0% 100.0%      PVRGSALPAERFRAAVQEAKIGPDKDIPHLSRELIEKYVADLRLLGLL      
2 PAML_node_50F    100.0%  95.6%      PIRGSALPAERFRAAVQEAKIGPDQDIPHLSPELIEKYVTDLRLLGLL      
3 Ancescon_Node_53  98.7%  91.7%      PIRGSALPAERFRAAVQEAKIGPDKDIPHLSPELIEKYVTDLRLLGLL      
4 PAML_node_50A     98.7%  93.9%      PIRGSALPAERFRAAVQEAKIGPDQDIPHLSPELIEKYVTDLRLLGLL      
 

 
Supplementary figure 2 - Alignment of AncCAR protein sequences 

AncCAR sequences were produced with the Ancescon, PAML and FastML algorithms from the tree in 

figure 13A. The most likely sequence from the posterior probability distribution of the most 

ancestral node were taken as the ancestral state for each algorithm. Sequences were aligned with 

MUSCLE in the Geneious v. 10.0 software suite and visualised using MVIEW v.1.63. 
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Supplementary figure 3 
A 

 
B 
 

 

 
 
 
 
 

Number of residues that vary 
in the dataset compared to 

AncCAR-P 

Number of residues 
varying at a position in 

both algorithms compared 
to AncCAR-P 

% residues with shared 
diversity compared to 
AncCAR-P identified by 

both algorithms 

AncCAR-P30/ AncCAR-A 107 17 15.9 

AncCAR-P30/ AncCAR-F 117 26 22.2 

 

Supplementary figure 3 – Difference between ASR algorithm outputs is not alternative 

sampling of posterior probability tables.   

Analysis of algorithm sampling of ancestral space across the table of posterior probabilities. AncCAR-

P30 was generated by selecting second or third residues with <30% likelihood from the table of 

posterior probabilities output by PAML using a bespoke python script. Sequences were aligned with 

MUSCLE in Geneious v. 10. Sites containing gaps were omitted from the analysis. Variation was 

identified by eye and transposed into Microsoft Excel. A) An identity barcode Comparing residue 

conservation at every position in AncCAR-A, AncCAR-F and AncCAR-P30 when compared to AncCAR-

P. Coloured lines denote a site in AncCAR-F (blue; top row), AncCAR-A (burnt orange; middle row), 

and AncCAR-P30 (yellow; bottom row) with varying amino acid identity to the reference. B) Bar chart 

displaying instances of variation at each residue when comparing AncCAR-P to either AncCAR-A and 

AncCAR-P30, or AncCAR-F and AncCAR-P30. Vertical lines denote the number of residues that vary at 

each position in each comparison dataset (min 0, max 2) compared to AncCAR-P. 
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Supplementary figure 4  
A 

Adenylation     Reductase 

 
B 

Adenylation     Reductase 

 

Supplementary figure 4 - Regions of significant sequence variation between AncCARs and 
5mst/5msp 
A) Sequence alignment between AncCARs and sequences of crystal structures of CAR adenylation 

domain (5mst) and reductase domain (5msp) was made in MUSCLE, within the Geneious software 

suite. Regions of considerable variation (multiple changes within 5 residues) are highlighted on the 

WT crystal structures in red. B) Sequence alignment between AncCARs was made in MUSCLE within 

the Geneious software suite. All regions of variation between enzymes (red) were highlighted on the 

modelled adenylation and reductase domains of AncCAR-A (green). Images were rendered in PyMOL 

v. 2.0. 
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Supplementary figure 5 

 

Supplementary figure 5 - All CAR enzymes are soluble 

4-20% acrylamide SDS-PAGE gel of three fractions from the largest peaks following CAR purification 

by nickel-affinity followed by size exclusion chromatography. All four AncCAR proteins are soluble, 

producing large volumes of protein (all AncCARs are approximately 128 kDa in size). Typically, per 

liter bacterial culture, between 3 and 7 mg enzyme could be extracted. 
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Supplementary figure 6 

 

Supplementary figure 6 - AncCARs are less protease sensitive than ExCARs 

Limited proteolysis was performed on the CAR from N. iowensis, AncCAR-A, AncCAR-PA and AncCAR-

PF. In each case, chymotrypsin (top) or trypsin (lower) was added at 1 µg/mL to a sample of protein 

at 1 mg/mL. The proteins were incubated at 37 °C, samples taken at various points and quenched by 

boiling in SDS-PAGE sample buffer. In both cases, the progression of the proteolysis from the whole 

protein (red arrow) to separate domains (A domain indicated by the teal arrow) proceeds faster for 

NiCAR than AncCARs. With chymotrypsin, whole NiCAR is almost entirely lost by 4 hr, whilst AncCARs 

have considerable amounts intact. With trypsin, all proteins have at least one nick by 1 hr; the A 

domain of NiCAR has also received at least one nick by 4 hr, whilst it is largely intact for the 

AncCARs. These results show that AncCARs are less sensitive to these proteases than NiCAR. 
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Supplementary figure 7 

 

 

Supplementary figure 7 - Tris inhibits AncCAR Enzymes 

Relative activity of AncCAR-A, AncCAR-PA and AncCAR-PF in the presence of (E)-3-phenylprop-2-

enoic acid in increasing concentrations of Tris (dotted line) and HEPES to understand inhibitory 

effects of buffer systems. Data were visualized in Graphpad Prism v. 7. 
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Supplementary figure 8 
 
   A                                             B 

 
           C 

 
     D                          E 
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Supplementary figure 8 - AncCARs have equivalent substrate ranges 

Turnover of NADPH by AncCARs was measured with 24 unique carboxylic acids. Bar charts shows 

activity on canonical acid substrates at 5 mM. A) Benzoic acid its derivatives, B) carboxylic acids with 

a conjugated carboxyl group, C) carboxylic acids with substitutions into the aromatic ring, D) 

carboxylic acids with nitro groups, E) fatty acids. Each substrate was tested in triplicate, and error 

bars represent standard error. Asterisks represent degrees of significance from t-test of triplicate 

verses all controls (* = 0.0001 < P £ 0.001; ** 0.00001 < P £ 0.0001; *** = 0.000001 < P £ 0.00001; 

**** = P £ 0.000001). Data were visualized in Graphpad Prism v.7 
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Supplementary figure 9 
A 

 
B 

 
C 

 
 
Supplementary figure 9 - AncCAR kinetics in ATP and NADPH 

NADPH and ATP kinetics for AncCAR-A (A), AncCAR-PA (B), and AncCAR-PF (C) were obtained from 

NADPH turnover on (E)-3-phenylprop-2-enoic acid. Kinetics were determined using 12 point, 1.7x 

dilution series of substrate in 200 mM HEPES. Each concentration was investigated in triplicate. Data 

were fit to the Michaelis-Menten equation in Graphpad Prism v.7. For NADPH kinetics, values 

obtained for low NADPH concentrations were omitted from the curves as signal dropped below 

background. Additionally, instances where high concentrations of NADPH showed inhibitory effects 

on CAR activity were omitted. Results were time-adjusted in 20 second intervals where required. 

Vmax = kcat. Units for Vmax: µM µM-1 min-1. Units for KM: µM  

- 

- 
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Supplementary figure 10 

A 

AncCAR-A 
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B 

AncCAR-PA 
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C 
AncCAR-PF 
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Supplementary figure 10 - AncCAR carboxylic acid substrate kinetics 

AncCAR kinetics were calculated from NADPH turnover by AncCAR-A (A), AncCAR-PA (B), and 

AncCAR-PF (C) in the presence of the 10 substrates exhibiting significant activity in supplementary 

figure 8. 10 µg enzyme were used to improve resolution of 4-methylbenzoic acid and phenylpropiolic 

acid. Kinetics were determined using an 8 point, 1.7x dilution series of acid from near saturation in 

200 mM HEPES, with concentrations starting at 800 mM. Each concentration was investigated in 

triplicate. Data were fit to the Michaelis-Menten equation in Graphpad Prism v. 7. Vmax = kcat. Units 

for Vmax: µM µM-1 min-1. Units for KM: µM. 
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Supplementary figure 11 

A 
 

 
B 

 
C 
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D 

 
Supplementary figure 11 - AncCAR active site comparisons to 5MST 

Close-up analysis of models of the highly variable loop in the adenylation domain of AncCARs 

compared to 5MST (286-302) show that AncCAR-PF (figure 15B) and AncCAR-F do not form 

potentially stabilizing interactions with the substrate in this region. A) Close-up image of 5MST active 

site. B) Modelled structure of AncCAR-A overlaid onto 5MST C) Modelled structure of AncCAR-PA 

overlaid onto 5MST. D) Modelled structure of AncCAR-F overlaid onto 5MST. Models were rendered 

in PyMOL v. 2.0 
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Supplementary figure 12 
 

 
 

Supplementary figure 12 - AncCAR stability in NaCl 

CARs were incubated at temperatures from 30 °C to 70 °C for 30 min in 10 mM HEPES and 500 mM 

NaCl. Each point represents the rate of NADPH reduction in 5 mM (E)-3-phenylprop-2-enoic acid 

relative to the rate of NADPH reduction in 5 mM (E)-3-phenylprop-2-enoic acid at 30 °C. Each point 

represents a single triplicate, with error bars representing the standard error. 50% activity was lost 

at 45 °C, 49 °C 52 °C and 64 °C for AncCAR-PA, MpCAR, AncCAR-A and AncCAR-PF respectively. Data 

were visualized in Graphpad Prism v.7 
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Supplementary figure 13 

 

Supplementary figure 13 - NADPH standard curve 

An NADPH standard curve was constructed for conversion of raw assay data into substrate turnover. 

The curve was created by titration of NADPH from 1,700 µM in a 1.5x dilution series in standard 

reaction buffer in triplicate. Absorbance of the solution was measured at 340 nm. Error bars are 

occluded by the data points. Data were visualized in Graphpad Prism v.7 
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Supplementary table 1  

 
  Adenylation Reductase 
  5MST 5MSD 5MSP 5MSO 
AncCAR-A 0.987 0.372 0.898 0.944 

AncCAR-PA 1.011 0.444 
1.061 1.115 

AncCAR-PF 1.276 0.872 
AncCAR-F 1.131 0.747 1.21 0.804 

5MST  0.964   

5MSD 0.964    

5MSP    0.701 
5MSO   0.701  

 

t-test A→R p = 0.13 
 
Supplementary table 1 - Root mean squared values of alpha carbon atom displacement in 
AncCAR protein models - showing good fit of data 
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Supplementary table 2 

 

  
Benzoic acid 4-methylbenzoic 

acid 

4-
methoxybenzoic 

acid 

3-
methoxybenzoic 

acid 

3-
phenylpropionic 

acid 

A 

kcat (min-1) 149.1 ± 7.1 398.4 ± 13.9 274.5 ± 5.1 206.5 ± 5.4 327.3 ± 16.9 

KM (mM) 61.2 ± 5.6 6.5 ± 0.4 7.9 ± 0.4 17.3 ± 1.0 33.0 ± 3.4 

kcat/KM    

(min-1 mM-1) 
2.4 ± 0.3  61.3 ± 4.3 34.7 ± 1.9  11.9 ± 0.8 9.9 ± 1.1 

PA 

kcat (min-1) 176.4 ± 7.7 146.6 ± 6.8 269.1 ± 5.1 165 ± 3.1 468.1 ± 36.7 

KM (mM) 81.4 ± 6.2 5.5 ± 0.5 13.4 ± 0.6 20.9 ± 0.9 68.2 ± 8.5 

kcat/KM    

(min-1 mM-1) 
2.2 ± 0.2 26.7 ± 2.7 20.1 ± 1.0 7.9 ± 0.4 6.9 ± 1.0 

PF 

kcat (min-1) 71.8 ± 2.7 61.9 ± 2.8 142 ± 2.7 109.5 ± 2.9 325.6 ± 26.3 

KM (mM) 79.9 ± 5.4 7.0 ± 0.5 12.5 ± 0.6 25.4 ± 1.3 98.7 ± 11.5 

kcat/KM  

(min-1 mM-1) 
0.9 ± 0.1 8.8 ± 0.7 11.4 ± 0.6 4.3 ± 0.2 3.3 ± 0.5 

       

  

(E)-3-
phenylprop-2-

enoic acid 

Phenylpropyonic 
acid 

4-oxo-4-
phenylbutyric 

acid 

2-thiophene 
carboxylic acid 

Octanoic acid 

A 

Kcat (min-1) 203.5 ± 3.8 7.6 ± 1.3 119.4 ± 4.4 60.1 ± 3.6 302.6 ± 19.2 

KM (mM) 0.9 ± 0.06 4.3 ± 2.4 11.3 ± 1.1 40.4 ± 4.8 8.7 ± 1.1 

Kcat/KM    

(min-1 mM-1) 
226.1 ± 15.7 1.8 ± 2.4 10.6 ± 1.1 1.5 ± 0.2 34.8 ± 4.9 

PA 

Kcat (min-1) 396.4 ± 5.6 19.9 ± 3.7 159.8 ± 6.2 72.8 ± 2.1 344.1 ± 27.1 

KM (mM) 4.0 ± 0.1 34.2 ± 10.8 17.0 ± 1.5 53.9 ± 3.1 11.0 ± 1.6 

Kcat/KM    

(min-1 mM-1) 
99.1 ± 2.8 0.6 ± 0.2 9.4 ± 0.9 1.4 ± 0.1 31.3 ± 5.2 

PF 

Kcat (min-1) 193.8 ± 8.0 6.6 ± 1.1 91.3 ± 4.3 26.8 ± 2.5 169.0 ± 13.7 

KM (mM) 3.8 ± 0.3 19.6 ± 6.7 20.6 ± 2.1 60.8 ± 10.7 11.1 ± 1.7 

Kcat/KM    

(min-1 mM-1) 
51.0 ± 4.5 0.34 ± 0.1 4.4 ± 0.5 0.4 ± 0.1 15.2 ± 4.2 

 

Supplementary table 2 - AncCAR kinetics on carboxylic acid substrates 
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Supplementary table 3 
 

  Solvent   A PA PF St. Dev. 

Polar 

aprotic  

Acetone 
A50 14.3 20.4 17.9 3.1 

S10 64.4 76.3 68.8 6.0 

Acetonitrile 
A50 11.8 16.7 20.2 4.2 

S10 57.3 78.3 93.4 18.1 

DMSO 
A50 23.9 23.7 24.3 0.3 

S10 88.9 86.5 92.4 3.0 

Polar 

protic  

Ethanol 
A50 10.0 14.9 17.7 3.9 

S10 50.1 66.5 72.6 11.6 

Isopropanol 
A50 7.3 11.7 11.8 2.6 

S10 36.3 56.8 56.6 11.8 

Methanol 
A50 14.1 11.7 25.6 7.5 

S10 63.3 56.8 78.6 11.2 

 

Supplementary table 3 - AncCAR tolerance to various solvents 

AncCARs activity on 5 mM (E)-3-phenylprop-2-enoic acid was assessed in the presence of aprotic and 

protic solvents by solvent titration from 25% (v/v). Inhibition curves were fit to a second order 

polynomial in GraphPad Prism v7, from which A50 (% solvent at which 50% of activity is lost) and S10 

(%activity at 10% solvent relative to 0% solvent) were calculated. Emboldened text represent data 

for figures 17A and 17B. 
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3.2 Preface 

This chapter consists a reformatted manuscript for an article written for submission to eLife. 

In this chapter, a tool is built in pure python to model changes in stability as protein 

populations evolves. Source code for this model is not provided in this thesis. However, the 

tool is open access, and source code is available at https://github.com/bdevans/PESST. 

 

AT and NH conceived the hypothesis tested in this study. AT wrote the initial algorithm 

underlying the tool developed in this article to test the hypotheses, with input from NH. BDE 

wrote the public release version of the algorithm from which figures in this chapter are 

derived. AT wrote the article. BDE partially wrote methods, and designed the figures output 

from the model. All authors edited the article.  
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3.3 Abstract 

Ancestral sequence reconstruction (ASR) has extensively probed the evolutionary history of 

life. Many ancestral sequences are thermostable, supporting the “hot-start” hypothesis for 

life’s origin. A number of recent studies have observed thermostable ancient proteins that 

evolved in moderate temperatures. Recent research has ascribed these effects to 

“consensus bias”. However, this conflicts with explanations of thermostability in consensus 

sequences. Here, we propose a hypothesis of “survivor bias” as an alternative 

rationalisation for ancestral protein stability in alignment-based methods. We propose four 

tenets that describe how a protein’s pressure to evolve at marginality will titrate 

significantly destabilizing residues from the population. Consequently, when deriving 

ancestral or consensus sequences from surviving sequences evolved under marginality, 

residues are selected from a dataset biased towards neutralizing or stabilizing mutations. 

We thoroughly explore the presence of marginality bias using a highly parameterizable in 

silico model of protein evolution that tracks stability at the population, protein and amino 

acid levels. We show that ancestors and consensus sequences derived from populations 

evolved at marginality throughout their history are significantly biased toward 

thermostability. The mechanisms underlying the stabilization of ancestral and consensus 

proteins have been uncovered, providing caveats for the thorough derivation of conclusions 

from future ASR work.  

 

3.4 Introduction 

Ancestral sequence reconstruction (ASR) allows researchers to trace changing protein 

sequences across evolutionary time (Merkl and Sterner, 2016; Akanuma, 2017). Recently, 

ASR has been used to elucidate details about the evolution of several biochemical traits. 

Activity-centric properties appraised include the evolution of substrate discrimination, 

specificity and plasticity (Wheeler et al., 2018; Pawlowski et al., 2018; Babkova et al., 2017), 

trends in thermodynamic properties early in evolutionary time (Gaucher et al., 2008; Hobbs 

et al., 2012; Akanuma et al., 2013; Butzin et al., 2013; Hart et al., 2014; Risso et al., 2015; 

Akanuma, 2017; Okafor et al., 2018), and the functional space within the alternative 

evolutionary histories of protein families (Starr et al., 2017; Cole et al., 2013). Additionally, 
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analyses have focused on structural characteristics of polypeptides, including the evolution 

of tertiary and quaternary protein structures (Lim and Marqusee, 2017, Prinston et al., 

2017; Hochberg and Thornton, 2017; Finnigan et al., 2011), the evolution of complexity in 

multimeric proteins (Finnigan et al., 2012), and the evolution of viral capsid intermediate 

structures (Gullberg et al., 2010; Zinn et al., 2015). 

 

Thermostability has been a subject of particular focus in ASR studies. ASR experiments that 

probe the most ancient of sequences from protein families conserved across all kingdoms of 

life have consistently produced thermostable molecules (e.g. EF-Tu; Gaucher et al., 2008; 

Butzin et al., 2013; Hart et al., 2014; Okafor et al., 2018). Tracing the evolution of such 

proteins across their lineages has demonstrated a trend from high to low thermal stability 

from ancient life to modern life. These trends correlate well with estimated historical 

terrestrial temperatures (Gaucher et al., 2008). Many studies have concluded that early 

organisms inhabited a warmer Earth (Gaucher et al., 2008; Akamuna et al., 2013; Butzin et 

al., 2013; Hart et al., 2014). This required proteins to fold and function under high 

temperatures. However, recent studies have uncovered thermostable proteins from 

lineages that are unlikely to have encountered high environmental temperatures in their 

evolutionary life history (Gumulya et al., 2018; Trudeau et al., 2016; Chapter 2). This 

suggests that not all thermostable ancestors are derived from the same conditions. 

 

Illustrating this, we recently reconstructed ancient carboxylic acid reductases from the 

Mycobacterium and Nocardia that exhibited up to 35 °C increases in stability over their 

extant counterparts (Chapter 2). The stability of this ancestor does not fit into the trends 

laid out established by other paleotemperature studies (Gaucher et al., 2008; Akamuna et 

al., 2013; Butzin et al., 2013; Hart et al., 2014). There is no prevailing evidence that any 

ancestors of Nocardia and Mycobacterium were thermophiles. Evidence suggests this family 

evolved somewhere in the late Phanerozoic eon (<500 myo), when the earth was warming 

from a colder “snowball earth” state (Lewin et al., 2016; Harland, 1964). Trudeau et al., 

2016 reported a similar pattern with the serum paraoxonases (PON), whose ancestor was 

found to be up to 30 °C more temperature resilient than their modern-day counterparts. 

Ancient PONs also exhibited superior folding properties when expressed in E. coli (Trudeau 

et al., 2016). Furthermore, similar increases in stability were achieved by Gumulya et al., 
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2018 in the reconstruction of CYP3 cytochrome P450 mono-oxygenases. Both PONs and 

CYP3 are post-Cambrian innovations of Mammalia and Vertebrata respectively. There exists 

no evidence that any mammalian or vertebrate ancestor thermoregulated at the 

temperatures suggested by PON and CYP3 ancestor stabilities (Mackness and Mackness, 

2015). 

 

In an effort to explain such stabilizing effects, Gumulya et al., 2018 posited that vertebrate 

ancestors of CYP3 evolved in a warmer ocean environment, whose proteins subsequently 

approached mesophily by drift within recent evolutionary timescales. In contrast, Trudeau 

et al., 2016 hypothesised that the consensus bias exhibited by ancestral PONs drove their 

stabilization. At highly divergent sites, the phylogenetic signal describing the site’s history is 

often lost or obscured. In this case ASR algorithms have a propensity to predict the 

consensus sequence at these sites. ASR algorithms therefore display an inherent bias 

toward the consensus sequence across the protein, present in the PONs. Gumulya et al. 

(2018) do not comment on the bias toward consensus in ancestral CYP3 enzymes. However, 

we found that ancestral CARs also exhibit bias towards the consensus sequence (Chapter 2). 

Consensus sequences are a proven sequence-driven method to engineer stabilizing 

properties into enzyme families, hence the method has a stabilizing effect on ancestral 

proteins (Sternke et al., 2018; Okafor et al., 2018; Durani and Magliery, 2013; Kiss et al., 

2009). Current explanations for the thermostable properties of consensus sequences 

assume that common amino acids at a position contribute to thermodynamic fitness more 

than other possible amino acids at that position (Sternke et al., 2018; Porebski and Buckle, 

2016; Ye et al., 2017). This suggests that the stabilizing effect arises as the consensus 

residues are representative of the sum of stabilizing mutations from some stable ancestor 

(Porebski and Buckle, 2016).  

 

The proposed origins of stability in ancestral proteins apparently evolved from a mesophilic 

ancestor are therefore counterintuitive, incomplete and insufficient for describing the 

underlying forces driving stabilization. It cannot be excluded that recent proteins evolved in 

warmer environments (Gumulya et al., 2018). Nevertheless, this explanation becomes less 

parsimonious than a ASR derived biasing effect with every discovery of a new stable 

ancestor from mesophilic origins. We therefore explored an alternative hypothesis that 
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there exists a “survivor bias” that explains the stabilization of both consensus and ancestral 

sequences in the absence of a stable ancestor. Briefly, the survivor bias hypothesis (Box 1) 

states that natural proteins incur a considerable fitness cost if their maximum folding 

temperature is below that of their immediate environment. As present-day proteins 

typically display marginal stability, significantly destabilizing mutations are selected against, 

and are therefore underrepresented in extant protein datasets. This effect over-represents 

stabilizing residues that are then selected in both consensus and ASR derived sequences 

(described in detail later). 

 

To test the marginality bias hypothesis, we have developed a freely available Python-based 

in silico model of sequence evolution called “PESST” (Protein Evolution Simulations with 

Stability Tracking). PESST evolves a population of protein sequences according to an 

accepted model of amino acid replacement, and tracks the changing stability of these 

sequences defined at the amino acid level. PESST was designed as a sequence evolver that 

follows standard amino acid evolution, generates phylogenies de novo, and focuses on the 

integration of environmental constraints on the evolving population fitness. By observing 

the outcomes of simulated evolution, we identified that simultaneous effects from both the 

destabilizing force of drift and the stabilizing force of a stability threshold are driving bias in 

ASR. Generally, under such bidirectional pressure, the most ancient nodes were more stable 

than contemporary nodes. There is a significant correlation of stability with node age. The 

simulated populations produced consensus proteins that were significantly stabilized. PESST 

provides a toolbox to test evolutionary hypotheses, and provides strong support that 

marginality bias underlies protein stabilization in sequence alignment-driven protein 

engineering tools. Furthermore, these data suggest that ASR is a powerful engineering tool 

for the biasing of sequences towards stability irrespective of a protein’s evolutionary 

history.  
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3.5 Hypotheses – tenets of survivor bias 

Four tenets (Box 1) provide the theoretical basis for the survivor bias hypothesis. Tenets 1 

and 2 are derived from the literature, and Tenets 3 and 4 are proposed as a logical 

conclusion of these. 

 

 

3.5.1  Tenet 1: A mutation’s contribution to protein stability is derived from a normal 

distribution with a negative mean 

In this instance, protein stability is defined as the temperature at which a protein unfolds to 

lose its native function. For any given protein, its sequence space contains considerably 

more amino acids that confer a negative change to stability than amino acids that confer a 

positive change (Taverna and Goldstein, 2002). Surface residues generally show a tight, 

effectively neutral distribution; whilst core residues show a wide, generally Gaussian 

distribution with a strictly negative mean (Tokuriki et al., 2007; Faure and Koonin, 2015). 

The mean change to stability for all mutations is approximately -5 °C (Pucci and Rooman, 

2016). 

3.5.2  Tenet 2: The majority of proteins are marginally stable  

For most globular proteins, the native thermodynamic state exists close to a threshold 

between a folded and unfolded state (Goldstein, 2011; Bershtein et al., 2006; Williams et 

al., 2007) that tracks environmental temperatures. Substantially more stable proteins are 

possible. However, due to the “neutral ratchet”, protein thermal stability tends towards a 

stability threshold around its environmental temperature, at which there is a selective 

Box 1: Tenets of the Survivor Bias Hypothesis 

Tenet 1: A mutation’s contribution to protein stability is derived from a normal distribution with a 
negative (destabilizing) mean. 

Tenet 2: The majority of proteins are marginally stable. 

Tenet 3: Contemporary proteins contain fewer significantly destabilizing amino acids than the 
global distribution of possible mutations. 

Tenet 4: The sequence space from which ancestral proteins are derived is positively biased for 
stabilizing mutations. 
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pressure to maintain “marginality” (Williams et al., 2007; Harms and Thornton, 2013; 

Khersonsky et al., 2018). Following Tenet 1, the majority of attempted mutations are 

destabilizing (Goldstein et al., 2011), and sequences with increased thermodynamic stability 

become less common with increasing stability (Taverna and Goldstein, 2002; Williams et al., 

2006). In a simplified model, protein functionality is directly linked to an organism fitness. 

Once marginality is reached, accruing additional destabilizing mutations incurs a 

considerable fitness cost as the protein fails to fold at ambient temperature (Bershtein et 

al., 2006; Tokuriki and Tawfik, 2009A). Tenet 2 dictates that the majority of proteins exist 

around marginal stability due to the counteracting forces of mutations on average reducing 

stability, and selective pressure to maintain folding at ambient temperature. Proteins that 

do not maintain marginality are more likely to be lost from a population.  

3.5.3  Tenet 3: Contemporary proteins contain fewer significantly destabilizing amino 

acids 

From Tenets 1 and 2, it follows that to maintain stability at a marginal threshold of folded 

and unfolded states, contemporary proteins cannot accept significantly destabilizing amino 

acids due to their immediate and extensive fitness cost (Bloom et al., 2006). Therefore, 

destabilizing amino acids only become fixed in the population by provision of beneficial 

function (e.g. serine proteases; Hedstrom, 2002; Kramer et al., 2014). Due to the effects 

explained in Tenets 1 and 2, such destabilizing effects will be mitigated by incorporation of 

stabilizing mutations elsewhere in the sequence. The maintenance of marginality (Tenet 2) 

will deliver a selective pressure against destabilizing residues at non-catalytic sites. 

Destabilizing residues will be under-populated datasets evolving at marginality. 

3.5.4  Tenet 4: Ancestors sample from a stabilizing mutation space, despite a 

destabilizing global mutational landscape 

Tenet 3 dictates that the sequence landscape of extant proteins will under-populate 

significantly destabilizing residues despite being derived from a densely destabilizing 

sequence space (Tenet 1). Conversely, extant sequence space will have a greater population 

of neutral or stabilizing residues than would be expected by chance, allowing proteins to 

survive at a marginal stability (Tenet 2). Both ASR and consensus protein design critically 

depend upon the sampling space provided within alignments of extant proteins. As a result, 
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despite the overall sequence space being dense with potentially destabilizing mutations, the 

sequence space sampled by the algorithms significantly over-samples stabilizing and neutral 

residues. It follows that the generation of stable ancestral and consensus proteins can occur 

even when no stable ancestor is predicted to have existed (i.e. Chapter 2; Gumulya et al., 

2018; Lewin et al., 2016). 

 

3.6 Methods  

Model description 

PESST (Algorithm 1) simulates a fixed population of 𝑁 proteins, (Φ), evolving over 𝐺 

generations. Each protein, 𝜂, is of fixed length, 𝑅, with a defined proportion of invariant 

sites, 𝑝sSt>us>S? . Each protein has an associated thermal stability (denoted 𝑇), defined as: 

	𝑇 = 	∑ ∆u,>w
x
uy: , where ∆u,> is the change in thermal stability conferred by amino acid 𝑎 at 

location 𝑟 (supplementary figure 14). The global set of ∆u,> stability changes are randomly 

drawn from a Gaussian distribution of defined mean, variance and optionally skew, 

~𝒩(𝜇, 𝜎U, 𝑠𝑘𝑒𝑤), in accordance with Tenet 1. As it is understood that for the majority of 

proteins stability contributions are approximately additive, and a key requirement of PESST 

is simplification; epistasis was not modelled (Bloom et al., 2005). 

 

During the course of simulated evolution, the population bifurcates every 𝑔� generations 

into independent subpopulations (branches) which undergo sequence replacement in 

populo (supplementary figure 15). The bifurcation interval is defined as 𝑔� =

� �
⌊ON��(�<Sw����)<ON��(V)�:⌋

� such that there are always 3, 4 or 5 proteins left in each branch at 

the end of the simulation.  

 

Proteins evolve according to a simple uniform clock, with a fixed probability of mutation 

(𝑝D) for each amino acid in every generation. Mutation follows the LG model of amino acid 

substitution (Le and Gascuel 2008; supplementary figure 18), with transition probabilities 

defined by the matrix L, where 𝐿>,>�  is the probability that amino acid 𝑎 transitions to amino 

acid 𝑎′, with 𝑎 ≠ 𝑎�. Mutation rates vary across sites in the protein (defined by the vector 
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𝐦), and are drawn from a gamma distribution, Γ(𝜅, 𝜃) with four rate-categories 

(supplementary figure 15).  

 

During evolution, PESST continually tracks changes in stability at the amino acid (∆u,>), 

protein (𝑇) and population (𝑇��) levels. Proteins falling below the stability threshold (𝑇 < Ω) 

and those randomly selected according to 𝑝PQ>?�  within each generation are killed and 

randomly replaced in populo by a stable protein.  

 

The model has a set of default parameters (table 10), which are varied throughout the work 

presented in order to explore their impact upon the survivor bias hypothesis. From the 

tracked stabilities, PESST automatically produces animated figures in addition to statistical 

analyses and fasta files for ancestral reconstruction. The model is summarised in figure 18 

and described in detail in supplementary methods 1. Additional symbols can be found in 

supplementary table 4. The code is open source and freely available for download*. 

 

 

Figure 18 - PESST evolutionary algorithm pseudocode 

                                                             
* https://github.com/bdevans/PESST 
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Table 10 - Default parameters in PESST 

 

Statistical tests 

Equality comparisons of ∆u,> distributions in the evolving dataset and the global stability 

matrix D were performed by the Kolmogorov-Smirnov test, computed by PESST. Equality 

meta-analyses were manually computed with Fisher’s combined probability analysis (1 −

ΧU�U where ΧU�U = 	−2∑ ln(𝑝s)�
sy:  with 2𝑘 degrees of freedom where 𝑘 is the number of p-

values from the 2-sided Kolmogorov-Smirnov tests in the meta-analysis; Winkler et al., 

2016). Analyses of the difference between the populations of ancestral and extant stabilities 

in each simulation were performed with both the Mann-Whitney U test and Welch’s t-test 

in Graphpad PRISM v7, as we cannot assume whether the distributions are normal or non-

normal in every case.  Analyses of correlations between node age and stability were 

computed all replicate simulations in a given condition with Spearman’s method in 

Graphpad PRISM v7.  Trees used for the analyses were cladograms output from CodeML, 

where age was defined as the number of nodes preceding a node of interest until the root is 

reached. Stabilities were the averaged the normalized stability of ancestors in the longest 

subtrees containing at least three representative nodes of a given maximum subtree length. 

Equality comparisons between the stabilities of ancestors or consensus sequences of 
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separate simulation conditions were performed with the Mann-Whitney U test in Graphpad 

PRISM v7. 

 

Ancestral Sequence Reconstruction 

Fasta files were imported into the Geneious sequence analysis suite (ver. 10; Kearse et al., 

2012). Phylogenies were produced with PhyML (Guindon et al., 2010) under standard 

settings with the LG+I+G model of amino acid substitution with estimated rates (Le and 

Gascuel, 2008). SH-like branch supports were computed for phylogenies. Resulting 

phylogenies were manually rooted on the root sub-population defined by PESST. Marginal 

reconstruction of ancestors within the dataset was performed with CodeML of the PAML 

software suite (Yang, 2007). Reconstructions of these data were performed under standard 

settings implementing the LG model of amino acid substitution with an estimation of 

gamma and of invariant sites (Le and Gascuel, 2008). Both reconstructed sequences and 

PAML generated cladograms were extracted from PAML outputs. Reconstructed sequence’s 

stability values were calculated with PESST.extras.stability. PESST.extras.stability cross 

references a user defined stability matrix with a FASTA formatted list of sequences of equal 

length. Output stabilities were analysed manually.  

 

Consensus sequences 

Consensus sequences of FASTA formatted alignments were generated with 

PESST.extras.consensus. This is a low powered consensus sequence builder that generates 

up to 3 consensus sequences from a user input alignment by outputting the most common 

amino acid at every site. For alignments with ambiguous sites (multiple amino acids are 

equally common), the algorithm outputs up to 3 sequences built from the second and if 

present, third equally likely amino acids. Consensus sequence stability was calculated with 

PESST.extras.stability as before. Output stabilities were analysed manually. 
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3.7 Results and discussion 

3.7.1 Stability can be tracked as the protein evolves within PESST. 

We firstly validated that our model (PESST v1.0) faithfully reconstitutes and tracks the 

expected population behaviour over time. We firstly established that, in the absence of any 

selective pressure, the mean stability of a population of sequences will neutrally evolve to 

the equilibration (𝜖) of the stability space. 𝜖 should approximate 𝜇𝑅 as a sequence’s stability 

is the sum of its constituent amino acid stability contributions (which follow Tenet 1 above). 

We performed three sets of simulations, where sequences evolved from a “high”, 

“medium” and “low” starting stability with respect to 𝜖 (figure 19; seeds in supplementary 

table 5).  We simulated five repeats of each scenario (supplementary files). For both of the 

simulations initiated at 𝑇K
�s�� and 𝑇KON¢ starting stabilities, the mean stability of the 

population converged on the expected value of 𝜖 (-200) within the 5,000 simulated 

generations. The simulations initiated at 𝑇KDQP   had a mean stability that fluctuated around 

𝜖.  

 
 
 
 
 
 
  
A 

 

T 
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Figure 19 - Mean stability of the population simulated in PESST tends toward ϵ during 
evolution 
Representative stability traces for PESST simulations of 5,000 generations where 𝜇 = −2 and 𝛿 =

0.002, showing that the stability of PESST simulated protein populations approaches the predicted 

value of 𝜖 ≈ −200 for the given settings. Simulations were initialised at 𝑇K
�s��  (A), 𝑇K§�UK (B), or 

𝑇KON¢  (C). In each graph, each coloured line represents the stability of one of 52 clones in the dataset, 

which are each tracked independently and simultaneously by PESST. The green horizontal dashed 

line represents the predicted value of 𝝐. The tight dashed black bold line represents the average 𝑇 of 

the population. 

 

T 

T 
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To confirm whether variation was being captured within PESST, we tracked changes to the 

distribution of ∆u,> values in the evolving dataset (figure 20; supplementary figure 18). As 

the simulation reaches equilibrium, it is expected that the distribution of ∆u,> values in the 

population (∆�) will approximate the initially defined matrix of stability change values (∆). 

We observed in all simulations that the mean population stability change ∆�� rapidly 

approaches the mean of the global stability matrix, ∆© (figure 21; supplementary files). After 

5,000 generations the evolving ∆� distribution and the global distribution of possible ∆u,> 

values converge with significance regardless of the initial population starting stability 

(supplementary figure 19; p = 0.48, 0.09 and 0.79 for 𝑇K
�s��,  𝑇KON¢ and 𝑇KDQP  respectively†). 

These results provide confidence that the evolution of sequences within PESST occurs 

according to pre-defined rules, and so produces predictable evolutionary outputs upon 

implementation of the first tenet of the survivor bias hypothesis. 

 

 

 

                                                             
† p-values from Kolmogorov-Smirnov tests ranged from 0.001 to 0.88 

DT 

T 
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Figure 20 - Mean stability change of the evolving dataset tends toward the mean of the 

initial matrix (∆) from which the protein is defined 

PESST allow users to compare ∆u,>	values within the global stability matrix (∆), to the ∆u,>	values in 

an evolving dataset (Δ�) generated from the given matrix with no fitness threshold. Data represents 

the evolutionary simulation of figure 19A. Equivalent representations for figures 19B and 19C are 

shown in supplementary figure 18. Figures representing the five simulations for each starting 

parameter are available in supplementary files. Animations of simulations from generation 0-5000 in 

each case are also available in the supplementary files. Figures are representative simulations 

comparing ∆ to Δ� at generation 0 and at generation 5000. In each figure, boxes show: Top-Left: 

mean 𝑇	of each clone in the dataset at generation. Top-right: progression of mean 𝑇	until a given 

generation. Bottom-left: the distribution of every ∆u,>	value represented in every clone (Δ�). 

Bottom-centre: the global distribution of ∆u,>	values showing every possible ∆u,> value at every 

position in the protein (∆). Bottom-left: Histograms of the ∆u,> distributions produced by both 

matrices. In the top boxes, orange dotted lines represent the value of 𝜖 derived from ∆©. In the 

bottom boxes, the dashed coloured lines represent the distribution averages (∆��	and ∆©). At 

generation 5000, both distributions and their means have converged. 

DT 
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3.7.2 A stability threshold biases the distribution of ∆𝒓,𝒂	values in the evolving dataset 

Tenet 2 of the marginality bias hypothesis proposes that protein stabilities ratchet toward a 

stability threshold (Ω) below which the protein cannot fold, causing a fitness cost to the 

parent organism (Williams et al., 2007; Harms and Thornton, 2013; Khersonsky et al., 2018). 

We implemented this within PESST by imposing an Ω of 0. We then simulated evolution of 

sequences starting with either moderate (𝑇KDQP) or high (𝑇K
�s��) starting fitness (figure 21; 

supplementary figure 20; supplementary table 6; supplementary files; 𝑇KDQP  is defined as 

Ω + 5 < 	𝑇 < 	Ω + 25). In these simulations, the population was observed to evolve as 

before for between 250 and 500 generations. Once the first proteins violate the stability 

threshold and are eliminated from the population, the mean stability (𝑇��) tends toward an 

equilibrium. The population mean stability equilibrium is maintained slightly above Ω due to 

a bidirectional pressure: neutral evolution following the destabilizing nature of ∆ causes 𝑇�� 

to tend lower towards 𝜖, whilst the stability threshold Ω imposes a stabilizing pressure 

tending towards ~Ω + 5. These observations confirmed that PESST successfully simulated 

the population behaviour expected, following the previously reported observations of 

protein evolution that underpin the survivor bias hypothesis (Faure and Koonin, 2015; Pucci 

and Rooman, 2016; Goldstein, 2011; Tokuriki and Tawfik, 2009A). 
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Figure 21 - Imposition of a stability threshold leads to equilibration of mean protein 
stability, and positive-bias in the population’s ∆r,a  distribution 
 

Data represents the simulation of 5,000 generations with an imposed Ω of 0. Sequences with a 𝑇 

that falls below Ω are immediately removed from the population and replaced in populo. Five 

simulations were initiated at 𝑇K
�s��	with 𝜇 = −2 for the global stability distribution. All figures 

representing five simulations under these parameters are available in supplementary files. 

Animations of simulations from generation 0-5000 are also available for all cases in the 

supplementary files. Figures representing equivalent simulations initiated at 𝑇KDQP  are available in 

supplementary figure 25 and supplementary files. Representative simulation comparing ∆ to Δ� at 

generation 0 and generation 5,000. Boxes represent the same datatypes as figure 20. In top boxes, 

the red horizontal line represents Ω. Average stability across the population is maintained at 

equilibrium at ~Ω+ 5. At generation 5,000, ∆��	does not converge to ∆© (P << 0.0005)‡. High 

∆u,>	values are significantly overrepresented, and low ∆u,>	values significantly underrepresented 

(supplementary figures 23 and 24).  

 

 

We propose (Tenets 3 and 4) that under conditions of marginal stability, the competing 

pressures on protein stability cause an overrepresentation of high ∆u,>	amino acids, and an 

underrepresentation of low ∆u,>	amino acids within the evolving population. Our 

simulations with a stability threshold show positive-shifting of the distribution of evolving 

∆u,> values (Δ�) away from ∆ (figure 21). These effects are observed when equilibrium is 

realised (figure 21; supplementary files). Across all of our simulations we observed that 

many of the most destabilizing residues are titrated out of the population, likely due to their 

large stability penalty when introduced (supplementary figure 21; supplementary files). It 

would be expected that such penalties would often push a sequence below Ω, causing such 

residues to be readily removed from the evolving dataset, as observed in analyses of factors 

underlying marginal stability in proteins (Tokuriki et al., 2007; Goldstein et al., 2011). Heat 

maps of ∆u,> values from simulations evolved in the presence of a stability threshold over-

represent stabilizing ∆u,>	values compared to ∆u,> values from simulations without a 

threshold (supplementary figure 22; supplementary files). This disconnect between ∆¬ and 

∆ was highly, and globally, significant (p << 0.0001 for simulations initiated at both 𝑇K
�s�� 

                                                             
‡ p-values from Kolmogorov-Smirnov tests ranged from 3.58 x 10-128 to 2.73 x 10-218 
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and 𝑇KDQP). Therefore, whilst the evolving protein population is destabilized on average, we 

observe that the stability threshold limits the evolutionary space that the protein can 

sample. These results are in line with work by Goldstein, 2011, who also showed that a 

protein evolving at marginality in the absence of a fitness benefit for maintaining 

marginality is more likely to fix rare stabilizing residues than common destabilizing residues. 

Additionally, the same shift in the distribution of stability contributions compared to the 

global distribution of possible stability contributions was observed for all mutations in 

existing proteins by Tokuriki et al., 2007. This work provides further evidence that for a 

protein evolving under the opposing evolutionary pressures that define marginality, positive 

biases are induced in the distribution of ∆u,> values sampled by the protein population even 

once it has reached equilibrium. 

 
 

3.7.3 Marginality causes overestimation of stability in ancestral sequences 

We propose (Tenet 4) that the positive biases in the distribution of ∆u,> values sampled by a 

population will cause reconstruction of ancestral proteins to bias towards stability. To test 

this, we reconstructed “ancestors” of PESST simulated evolution using the commonly used 

CodeML reconstruction algorithm in PAML (Yang, 2007). If there is no induced bias in the 

ancestors (null hypothesis), ancestors are expected to share an equivalent stability space as 

the evolutionary history of the evolved dataset. To test this, we simulated evolution with a 

stability threshold Ω = 0 imposed, where ∆© is negative (where neutral evolution is 

destabilising, and a bias effect is expected), 0 (neutral evolution is non-destabilising; no bias 

effect expected) and 1 (neutral evolution is stabilising; no bias expected) in quintuplet 

(supplementary table 7). Simulations were run under standard parameters for 2,000 

generations initiated at 𝑇KDQP  starting fitness, defined by Ω + 5 < 	𝑇 < 	Ω + 25,  

 

Throughout their evolutionary history simulations where global stability distributions had a 

negative mean (i.e. ∆© = −1, −2) converged to an equilibrium slightly above Ω 

(supplementary files) as was previously observed. In these instances, the distribution of Δ� 

in the evolving dataset did not converge on ∆ (the global stability matrix). The evolving 

∆u,>	distributions are equivalent when 𝜇 = −1 and 𝜇 = −2 (supplementary figure 23; 

supplementary files). When evolution was simulated with 𝜇 = 0, equilibrium was not well 
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maintained. As ∆��≈ Ω, the selective pressures exerted by both ∆ and Ω are weak. The 

broad stability spaces explored by simulations with 𝜇 = 0 is reflective of the release in 

selective pressure (supplementary figure 24A). This effect was even more pronounced in 

simulations where 𝜇 = 1, where destabilizing selective pressures are released 

(supplementary figure 24B). Importantly, such large varieties in evolutionary history can be 

created in PESST by the change of a single parameter, allowing us to mitigate extraneous 

factors when analysing the effects of these histories on ancestral stability.  

 

Resultant alignments at generation 2,000 had between 30 and 50% pairwise sequence 

identity. Phylogenies generated from each alignment of sequences at generation 2,000 

(Guindon et al., 2010) were generally well supported for the majority of nodes 

(supplementary figure 25; supplementary files). We then reconstructed ancestors of the 

derived phylogenies (Yang et al., 2007). “Ancestor” stabilities were calculated against from 

their derivative global ∆u,> matrices using PESST. To measure the impact of the bi-

directional selective pressure, we analysed the global stability space that is represented by 

each evolved dataset. Global stability space can be defined as the combined normalized 

stabilities of both ancestor and extant (generation 2,000) populations in a given tree. Our 

null hypothesis states that proteins that have evolved at marginality throughout their 

history should produce a global stability space that is equally proportioned between the 

ancestral and extant sequences. As sampled stability space has been consistently 

maintained throughout the simulation ancestors should not show derivation in stability 

space from the extant sequences. However, for simulations that maintained marginality, the 

average proportion of normalized stability space represented by extant:ancestor sequences 

was unevenly distributed 28:72 and 34:66 for global stability matrices satisfying 𝜇 = −2 and 

𝜇 = −1 respectively. In contrast, simulations that escape marginality showed almost evenly 

distributed average normalized stability spaces, with average ratios of 47:53 and 52:48 for 

extant:ancestor sequences with global stability matrices satisfying 𝜇 = 0 and 𝜇 = 1 

respectively (figure 22A). These data are in support of previous simulations of protein 

evolution by Williams et al., 2006, who found that maximum likelihood based 

reconstructions of simulated datasets based on evolving lattice proteins are considerably 

overestimated. Overestimation of stability in our reconstructed simulations suggest that the 

combined pressures imposed from both the destabilizing ∆© and a stability threshold on 
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evolving proteins is sufficient to positively bias the stabilities represented by predicted 

ancestors. 

 

To further understand how this bias manifests in the global stability space, we compared 

the distributions of stabilities attained in the extant and ancestral sequence populations on 

a simulation-by-simulation basis. Disparity between stabilities sampled by extant and 

ancestral proteins is consistently observed when a stability threshold is imposed and 𝜇 is 

negative (figure 22B). The range of stabilities sampled by the ancestors are between 1.8 and 

5.1 times wider than the ranges sampled in the extant sequences. All simulations showed a 

significant difference between the ancestral and extant stability distributions (p < 0.05; 

figure 22B; supplementary table 8). Distributions of ancestral stabilities show high density at 

low values, with a long tail of high stabilities (figure 22B). The majority of the most stable 

ancestors represented stabilities higher than any stability value sampled by their derivative 

population throughout their evolutionary history (supplementary figure 26; supplementary 

files). In contrast, these patterns are not observed for simulations where the global stability 

matrix satisfies 𝜇 = 0 and 𝜇 = 1, as the selection bias is considerably reduced or non-

existent. In these cases, ancestral stabilities are not apparently overestimated (figure 22B), 

and the ranges of stabilities sampled in the extant and ancestor populations are equivalent 

(p > 0.05 for eight of ten, and ten of ten simulations in the statistical tests used). These data 

are intuitive when considering the nature of the positive-biased ∆u,> distribution in the 

evolving population. Simply because ASR can only act on present-day data to generate 

hypotheses about ancient sequence space. In a single protein, ∆u,> values combine to 

produce marginal stability. However, when calculating across all proteins, marginality 

increases the likelihood that ASR selects neutral or stabilizing residues. These data lead us to 

reject our null hypothesis, as the maintenance of marginality causes the stability space 

across a given phylogeny to become positively biased towards the reconstructed sequences.  

 

Many past ASR studies have shown that sequences trend toward increased stability as they 

are reconstructed from more ancient nodes (Gaucher et al., 2008, Hobbs et al., 2012; 

Akanuma et al., 2013; Butzin et al., 2013; Hart et al., 2014; Risso et al., 2015; Okafor et al., 

2018). To understand whether these properties can manifest in simulated datasets, we 

analysed correlations between space-normalized ancestor stability versus node distance 
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from the root of the tree (figure 22C). Significant (p < 0.001), strong negative correlations 

were observed for simulations under opposing pressure from the stability threshold and the 

global stability distribution (r = -0.94 and -0.88 for global stability matrices satisfying 𝜇 = −2 

and 𝜇 = −1 respectively). When the global stability matrix satisfied 𝜇 = −2, the linear 

regression gradient (𝑟 = −0.19) was almost twice that where global stability matrix 

satisfied 𝜇 = 	−1 (𝑟 = −0.099), counterintuitively suggesting a stronger stabilizing force is 

exhibited under stronger destabilizing pressures. This was further evidenced when 

comparing the fold-difference in stability ranges attained between extant versus ancestral 

sequences in both simulation scenarios (𝜇 = −2: 3.71x; 𝜇	 = −1: 2.47x; figure 22B). On the 

other hand, simulations where the global stability matrix satisfies 𝜇 = 0 a slight, significant 

negative correlation (r = -0.39; p = 0.015) was observed, whereas when 𝜇 = 1 showed a 

slight, significant positive correlation (r = 0.33; p = 0.041). Therefore it is evident that 

evolution under marginality is a sufficient pressure in the protein’s evolutionary history to 

produce ancestral reconstructions that significantly increase in stability with age. This raises 

the possibility that in some cases, the thermostability of ancient proteins is not indicative of 

their environmental temperature, but instead of marginality bias. We therefore urge 

caution when drawing such conclusions from ASR studies.  

 

To better illustrate the need for caution, we also performed reconstructions of simulations 

where the global stability distribution satisfied 𝜇 = −2, but begin their evolution at high 

stability (supplementary figure 27). Correlations in ancestor stability over time were 

calculated as before. A significant negative correlation was observed (r = -0.94, p < 0.001; 

figure 22D) that was statistically indistinguishable from correlations observed for the same 

stability distribution Δ� evolving continually at marginality (Zobs = 0). However, when 

comparing the five highest stability ancestors for each simulation in both datasets, it can be 

seen that initiation of simulations from high stability leads to the reconstruction of proteins 

with significantly higher stabilities (U = 88§; p < 0.0001; figure 22E). Therefore, ASR is still 

able to reconstruct accurate models of a protein’s evolutionary history. However, 

confidently distinguishing whether trends of increasing stability are caused by survivor bias 

or a true evolutionary history requires additional evidence about the evolutionary history of 

                                                             
§ UMax = 625. UMax is defined as n1n2 
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the protein in question (i.e. correlation with evidence from isotope data in Gaucher et al., 

2008, Garcia et al., 2017 and Akanuma, 2017). Others have suggested that only tracking 

single proteins is an unreliable way to infer conclusions of the ancient biosphere (Hart et al., 

2014). Methods and guidelines for performing such reconstruction experiments with apt 

rigor are outlined in Kacar et al., 2017.  
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Figure 22 - Survivor bias drives increasing stability in ancestral proteins 

Unless stated, figures represent analyses of stability space across ancestral and extant sequences, 

following reconstructions of quintuplet simulations with global stability distribution 𝜇	values of  -2, -

1, 0 and 1 under a stability threshold, initiated at 𝑇KDQP  and allowed to evolve for 2,000 generations. 

Asterisks represent the degrees of significance (**** = p < 0.0001; *** = p < 0.001; ** = p < 0.01; * = 

p < 0.05) A) Histogram showing that global stability space is biased toward nodes when the global 

stability distribution has a negative mean (exerting pressure). Tree stability space for each run was 
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normalized, and proportioned between node and leaf stability. Average proportion values were 

taken of 5 runs. Error bars represent standard error of the mean. B) Columnar scatter plots 

comparing the distribution of leaf stabilities (Red) to node stabilities (Blue), showing that when the 

mean of the global stability matrix is negative, node stabilities are overestimated. Comparisons of 

the distributions were undertaken on a run-by-run bases with both Welch’s t-test (significance 

shown by black asterisks) and Mann-Whitney U test (significance shown by red asterisks). Black 

horizontal bars represent the mean and range of the datasets. C) Scatter plots of normalized stability 

with respect to distance from the root of the tree, showing that a global stability distribution with 

negative 𝜇 leads to more ancient nodes having increased stability. Node distance from the root was 

calculated from cladograms output from PAML as the number of nodes preceding the node of 

interest. Node stabilities were normalised to 1. Spearman’s correlation and goodness of fit were 

calculated independently for each dataset. D) Scatter plot analysed as above for a simulation of 

protein evolution with a global stability matrix satisfying 𝜇 = −2, initiated with 𝑇KDQP . E) Grouped 

min-max scatter of the five highest 𝑇 values from the five simulations of both scenarios where the 

global stability matrix satisfies 𝜇 = −2, comparing the difference in stabilization when sequences 

evolve from a starting point of high stability (red points), or evolve at marginality their entire history 

(grey points). Mann Whitney U test was used to calculate whether the populations were significantly 

dissimilar. 

 

3.7.4 Marginality causes overestimation of stability in consensus sequences 

Importantly, consensus proteins present another alignment-based tool for the engineering 

of protein stability (Okafor et al., 2018; Durani and Magliery, 2013; Kiss et al., 2009). 

However, the driving forces behind stabilization are poorly understood. As discussed, 

marginality bias titrates out destabilizing residues, populating the global extant protein 

population with stabilizing or neutral residues. As consensus proteins are effectively 

averages of extant sequence space, it is expected that marginality induces biases in 

consensus sequences towards increased stabilities. To test this hypothesis, we used PESST 

to generate consensus sequences of generation 2,000 of each simulation used for the 

previous analysis (figure 23). Again, the pressure to maintain marginality was a sufficient 

force to generate consensus sequences with considerably higher stability than the stabilities 

sampled across the population’s evolution. When marginality could be escaped, consensus 

sequences were comparatively stable to the extant sequences. Interestingly, when we 
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simulated a strong destabilising neutral drift (global stability matrix satisfies 𝜇 = −2) 

starting from a highly stable sequence, the simulation produced consensus sequences with 

markedly high stabilities. The stability space sampled by these consensus sequences was 

significantly higher than the space sampled by the counterpart simulation that maintained 

marginality throughout its history (U = 0**; p < 0.0001; supplementary figure 28). These data 

support the hypothesis that consensus sequences are stabilized by introduction of ancestral 

residues, albeit in an evolutionary history dependent manner (Porebski and Buckle, 2016; Ye 

et al., 2017).  

 

 

 

Figure 23 - Survivor bias drives the stabilization of consensus sequences 

Grouped min-max scatter plots representing the stability of consensus sequences derived from 

generation 2000 of the protein simulations described in figure 22. From each simulation scenario, a 

combined dataset of consensus sequences from each simulation replicate is compared to a 

combined dataset of extant sequences from each simulation replicate.  
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Overall, these data suggest that survivor bias is an inherent property of sequences derived 

from a multiple sequence alignment. Therefore, we posit that stabilization bias will be a 

common property of sequences derived from such datasets. This can be expected as the 

overrepresentation of stabilizing residues is predicted to be a trait shared across all 

marginally evolving protein families (Tokuriki et al., 2007). Stabilizing residues are 

considerably more rare than destabilizing residues when randomly mutation real proteins 

(Bloom and Glassman, 2009). Selecting residues from alignment datasets presents a method 

to “game” these probabilities by offering a biased selection space. In accordance, a recent 

study engineering sequences with the consensus method found that stabilization was 

typical, with 75% of families tested exhibiting higher stability than any modern counterpart 

(Sternke et al., 2018). As the stabilization of consensus sequences and ancestral sequences 

are both driven by survivor bias, ASR-based stabilization should also be robust for a broad 

range of protein families, as reconstructions of the CAR, PON and CYP3 protein families 

already evidence (Thomas et al., 2018; Trudeau et al., 2016; Gumulya et al., 2018). While 

this may add a layer of complexity to future ASR studies probing relationships between 

evolutionary history and stability in ancient proteins, it provides further evidence that ASR 

should have considerable and consistent utility in protein engineering fields (Wilding et al., 

2017; Clifton et al., 2017; Zakas et al., 2016; Gumulya et al., 2018). These results add 

credence to alignment based stability engineering methods, as until now the underlying 

mechanisms behind alignment-based stabilization were poorly understood (Sternke et al., 

2018; Gumulya et al., 2018; Trudeau et al., 2016).  

 

3.8 Conclusion and perspective 

Here we have developed the survivor bias hypothesis, describing the origin of stability in 

ancestral proteins derived from protein families with a mesostable evolutionary history. We 

hypothesised that a bi-directional pressure exists on the majority of evolving protein 

populations. A constant destabilizing pressure is exhibited as the majority of potential 

mutations across the protein will lower its stability. This is counteracted by a constant 

stabilizing pressure caused by a stability threshold, whereby if the protein’s denaturation 

temperature falls below its typical ambient temperature, a significant fitness cost is imposed 

onto its parent organism. We further hypothesised that exertion of opposing forces from a 
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stability threshold and destabilizing mutations leads to an overrepresentation of stabilizing 

residues in the evolving dataset. As most proteins exist at marginality due to the 

bidirectional selective pressure, significantly destabilizing residues can rarely be permitted 

as they are highly likely to force the protein below the stability threshold. Therefore, any 

method that derives protein sequences from alignment data will overestimate stability 

values with respect to their evolutionary history as the modern population is saturated with 

stabilizing and neutral residues. To test this hypothesis, we built a simple, highly 

parameterizable model of protein evolution that follows pre-established evolutionary 

models, allows us to track simulated protein stability across evolution, and provides the 

ability to exert both selective pressures described.  

 

The data presented in this study provide strong evidence for the existence of a “marginality 

bias” that can explain the thermostability of ancestral proteins derived from extant 

sequences. We developed a novel algorithm, PESST, to simulate evolution whilst tracking 

protein stability. This allowed us to postulate that when proteins evolve under a bi-

directional selective pressure, reconstructed ancestral proteins have overestimated 

stability. Additionally, our simulations show that this marginality bias produces strong, 

significant correlations between stability and age, showing that the older a node is, the 

higher the reconstructed 𝑇. Furthermore, we find that consensus sequences are also 

stabilized by these same forces. These observations provide an explanation for why 

reconstructions of real data without a high temperature evolutionary history still produce 

thermostable ancestors (Trudeau et al., 2016; Chapter 2). The data presented in this study 

therefore provide a broader understanding about the mechanics underlying stabilization in 

the burgeoning, but still young protein engineering tool of ASR. We provide evidence that 

ASR is a ubiquitous engineering tool, enabling the engineering of thermostability regardless 

of a protein’s evolutionary history.  
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3.9 Supplementary methods 

A detailed description of the PESST algorithm 

Initiating a starting sequence 

• Additional symbols can be found in supplementary table 4 

• A protein (𝜂sSs?s>O ) of user definable length 𝑅 is formed, containing a start 

methionine followed by randomly generated amino acids. 

• Each position (𝑟) can contain one of 20 amino acids (𝑎). From a user definable 

normal distribution 𝒩 of mean 𝜇 and shape 𝜎U, the model randomly generates a 2D 

matrix ∆, where ∆u,> describes a ∆𝑇 value of a given amino acid at a given position. 

The stability (𝑇) of	𝜂 is given by ∑ ∆u,>w
x
uy:  (supplementary figure 14). 

• In nature, sites become fixed in a population if they are essential for function despite 

possible detrimental ∆𝑇 values. Therefore, to account for this behaviour, the model 

defines invariant sites to a proportion of the amino acids in the protein (𝑝sSt>us>S? )  

• The user sets a stability threshold (Ω), where Ω satisfies −∞ < 	Ω < 	𝑇sSs?s>O .  

• Natural sequences exhibit rate variation across sites. Rate variation can be modelled 

to a gamma distribution (Γ) with four independent rate categories (Yang et al., 

1994). 

• Independent rate categories are generated each run by taking the median value of 

four quartiles of 10,000 samples from a gamma distribution of a user defined shape 

(𝜅) and scale. Typically a scale of  :
¯
 is used. Each variant position is randomly 

assigned to one of four rate categories, defining a matrix of site-wise mutation 

probabilities 𝐦 (where 𝑚u~	Γ(κ, θ); 	∑ 𝑚u
x
uy: = 1), which remains constant 

throughout the simulation (supplementary figure 15). 

• The user sets one of three possible initial T values (low, medium [bounded range], 

high) that modifies 𝑃 into the sequence that will be used for evolution	(𝑄).  

o 𝑇KON¢	and	𝑇K
�s�� are treated in the following manner: every site where 

residues are not fixed is swapped for another amino acid chosen randomly 

from a pool of the three largest or smallest values of ∆u,>.  
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o 𝑇KDQP  requires the user to input a 𝑇 range where 𝑇DsS > 	Ω and 𝑇DsS and 

𝑇D>E are between the minimum and maximum bounds of ∑ ∆u,>w
x
uy: . The 

model then modifies non-fixed residues until the first protein sequence is 

discovered that satisfies a value in the range by hill-climbing. 

 

Evolving a sequence 

• Once a starting sequence 𝜂 of length 𝑅, with site-wise mutation probability 𝐦, and a 

global fitness of 𝑇D>E ≥ 𝑇 > 	Ω has been generated by the model, the sequence is 

cloned to generate a starting population (Φ) of a user-defined size (𝑁). 

• The population evolves according to a uniform clock over a user-defined number of 

generations (𝐺). At every generation, each amino acid undergoes mutation with a 

constant probability 𝑝D, where 𝑝D ∙ 𝑅 ∙ 𝑁 defines the total number of mutations per 

generation.  𝑝D ∙ 𝑅 ∙ 𝑁 sites are selected to mutate at rates according to 𝐦. A site 

with amino acid 𝑎 transition to a new amino acid 𝑎′ based on the Le and Gascuel 

(LG) amino acid replacement matrix (𝑳; Le and Gascuel, 2008) that is modified so 

𝑎 ≠ 𝑎′ (supplementary figure 16). 

• A protein’s fitness is considered binary (𝑓𝑖𝑡|𝑢𝑛𝑓𝑖𝑡). Proteins are considered unfit 

when 𝑇 < 	Ω. Before each generation, the model checks for unfit sequences in Φ. If 

this is satisfied, 𝜂RSMs?	is deleted and replaced with another sequence in the 

population that satisfies 𝑇 > 	Ω.  

• Evolution is simulated with population isolation to mimic bifurcations. In this 

instance, the model divides the global population into even sub-populations ΦuNN?¸ 

and Φ¹u>S=�Q¸ where Φ¹u>S=�Q¸ split at a bifurcation interval 𝑔� where 𝑔� =

� �
⌊ON��(�<Sw����)<ON��(V)�:⌋

� (supplementary figure 17). Isolation events occur at equal 

time-points such that every final population at the end of the run contains 3, 4 or 5 

individuals. When an individual in a sub-population dies, it can then only be replaced 

in populo, generating independent lineages. An edge case in this factor required a 

feature in the model that diverges significantly from nature. If every sequence in a 

subpopulation of Φ satisfies 𝑇 < 	Ω the entire subpopulation goes extinct. 
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Therefore, the simulation reverts to the prior generation to re-attempt mutating 

sequences to avoid complete branch extinction. 

• If the user desires, evolution can be run assuming death happens naturally in the 

population, aside from being outcompeted due to fitness. At every generation, each 

member of Φ has a user defined probability of dying (𝑝PQ>?�). As before, dead 

individuals are immediately replaced by other individuals in populo. This allows for 

evolution that occurs without replacement caused by fitness to produce a phylogeny 

that is not a star-phylogeny. 

 

Outputs 

The model is able to track and output a variety of useful data about the population’s 

evolution: 

• At a user defined generation rate, the model can output FASTA files describing the 

sequences of Φ. 

• A scatter plot describing the change in 𝑇 of every sequence in Φ over time. 

• At a user defined generation rate, the model will output data, graphs and animations 

describing every ∆u,> of each amino acid within Φ at a given generation compared to 

∆u,> values stored in ∆.  

• At a user defined generation rate, the model will output data on the distribution of 

∆𝑇 values within Φ (Δ�), including the Anderson-Darling, Skewness-Kurtosis all, and 

2-sided Kolmogrov-Smirnoff statistical tests for normality of the data. 
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3.10 Supplementary figures 

Supplementary figure 14 

 
 

∆ u
,>
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Supplementary figure 14 - Representative D matrix generated in PESST simulations 

Heat map of a representative D matrix generated from a Gaussian distribution at the initiation of a 

PESST simulation. Each possible amino acid at each position of the protein is assigned a ∆u,> value. 

The matrix remains consistent for the entire simulation, and can be used to back-calculate the 

stabilities of protein sequences derived from the representative simulation. Given matrix is derived 

from a Gaussian distribution of 𝜇 =	−2 and 𝜎 =	2.5.  

 
 
 
 
 
Supplementary figure 15 

 

Supplementary figure 15 - Implementation scheme of bifurcations in PESST 

Scheme representing how bifurcations are implemented in PESST. Bifurcating the population 

“geographically separates” the data into subpopulations, meaning as the protein population evolves, 

Each sub-population can only replicate in populo. This is intended to be a rough mimic for natural 

bifurcating data. At even generation intervals, the population will bifurcate completely once. The 

amount of bifurcations is dependent on the population size. Bifurcations occur until all final sub-

population sizes are 3, 4 or 5. Additionally a root sub-population is isolated from the data at 

generation 0. Implementation of bifurcation into PESST allows for increased phylogenetic signal 

within simulations, and the generation of clear well supported phylogenies. 
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Supplementary figure 16 
A 
 

 
 
 
B 
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Supplementary figure 16 - Transition rates at each site derived from a modified LG model 

implemented into PESST 

The LG model is a matrix of substitution likelihoods used to compute the likelihood and nature of 

mutations along a phylogenetic branch. Diagonals in the matrix describe the rate at which an amino 

acid does not change. By modelling evolution to a uniform clock, and dictating that a set number of 
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amino acid conversions must happen at each generation, the diagonal rates in the original LG model 

become moot. A) The LG matrix with, diagonal values set to 0 and the remaining values normalised 

to 1 providing a means to calculate the substitution likelihoods when an amino acid change is forced. 

B) The distribution of substitutions that occur according to the model from 1,000 generations of 

mutation at each possible amino acid state, suggesting the LG model is implemented as expected. 
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Supplementary figure 17 
 

 

Supplementary figure 17 - Four independent rate categories defined by the median values 

of four quartiles from 10,000 samples of the gamma distribution 

Gamma distribution sampling implemented into PESST. Across a protein, mutation rates are found 

to fit a gamma distribution, which can be simplified for computational purposes without cost to 

accuracy by assigning residues a mutation rate from one of four independent gamma rate 

categories. Rate categories are calculated as the median value of quartiles from 10,000 random 

samples of a gamma distribution. 
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Supplementary figure 18 
A 

 
B 

 
Supplementary 18 - Summary data for runs presented in figure 1B and C 

Data represents the evolutionary simulation of figures 19B and 19C, where runs were initiated at at 𝑇KON¢  (A), 

𝑇N§�UK (B). Figures are representative simulations showing comparison of the ∆u,>	states defined by the 

∆	matrix, to the ∆u,>	state of individual sites at generation 0 and at generation 5000. Data for all simulations is 

in supplementary files.  In each figure, boxes show: Top-Left: mean stability of each clone in the dataset at 

generation. Top-right: progression of mean stability until a given generation. Bottom-left: the distribution of 

every ∆u,>	value represented in every clone. Bottom-centre: the global distribution of ∆u,>	values showing 

every possible ∆u,>  value at every position in the protein. Bottom-left:  Overlay of the ∆u,>  distributions 

produced by both matrices. In the top boxes, orange dotted lines represent the value of 𝜖 derived from the 

global ∆u,>	matrix. In the bottom boxes, the dashed coloured lines represent the distribution average. At 

generation 5000, both ∆u,>  distributions and their means have converged. Note: a bug in PESST V1.0 leads to a 

zoomed in rendering of the stability trace based on issues with coding “catch-all” white-space buffering. 

T T 

T T 

DT DT 

DT DT 
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Supplementary figure 19 

A      B 

 
   C 

 
Supplementary figure 19 - During simulated evolution, the distribution of ∆r,a values in 

evolving data approaches the distribution of ∆r,a values in the stability matrix 

Data represents comparison of the distribution of evolving ∆u,> values with the distribution of ∆u,> 

values defined by the global stability matrix. Figures are representative the state at generation 5000 

from simulations initiated at 𝑇K
�s��  (A), 𝑇N§�UK (B), or 𝑇KON¢   (C). The mean and shape of the evolving 

distribution (Blue), approximates the mean and shape of the stability matrix (Green). Data for all 

other simulations with such parameters are in supplementary files. 
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Supplementary figure 20 
A 

 
B 
 

 
Supplementary figure 20 - Simulations with imposed Ω reach equilibrium slightly above Ω 
Representative stability traces for PESST simulations of 5000 generations where ∆u,>	= −2, 𝑝D =

0.002, and Ω = 0, showing that the stability of PESST simulated protein populations reach and 

maintain an equilibrium that approximates a value slightly above Ω. Simulations were initialised at 

𝑇�s��  (A), or 𝑇º�»;º�U» (B). In each graph, coloured lines represent the stability of one of 52 clones 

in the dataset, which are each tracked independently and simultaneously by PESST. The solid red line 

represents W. The tight dashed black bold line represents the average stability of the population. 

Data for all other simulations under such parameters are in supplementary files. 

 

T 

T 
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Supplementary figure 21 

A          B 

 
Supplementary figure 21 - During simulated evolution where Ω > ϵ, the distribution of ∆r,a 

values in evolving data is positively biased compared to the distribution of ∆r,a values in 

the global stability matrix D 

Data is a representative comparison of the distribution of evolving ∆u,> values with the distribution 

of ∆u,> values defined by the global stability matrix. Figures are representative the state at 

generation 0 (A), and generation 5000 (B) from simulations initiated at 𝑇�s��  with a ∆u,>	= −2, 

𝑝D = 0.002, and Ω = 0. The mean of the evolving distribution (Blue), is positively biased compared 

to the mean of the stability matrix (Green), showing that ∆u,> values providing high stability 

increases to an evolving dataset are overrepresented with respect to their derivative matrix, 

whereas ∆u,> values providing stability decreases are underrepresented. Figure generated using the 

MatPlotLib library in Python. Data for all other simulations with such parameters are in 

supplementary files. 
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Supplementary figure 22 
W = -∞ 

 
W = 0 

 
Supplementary figure 22 - Comparing heat maps of ∆r,a values in simulations that have no 

Ω imposed to simulations with imposed Ω clearly show the positive shifted bias toward 

stability under Ω 

Heat map is representative comparison of the effects of Ω on the distribution of evolving ∆u,> values 

from simulations initiated at 𝑇K
�s��  with ∆u,>= −2, 𝑝D = 0.002 at generation 5000. Populations that 

have evolved under a selective pressure imposed by Ω have considerably more stabilizing residues 

than populations released from the selective pressure imposed by Ω (where Ω = −∞). Stabilizing 

residues are therefore overrepresented in populations evolving under marginality. Data for all other 

simulations with such parameters are in supplementary files. 
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Supplementary figure 23 
    
             ∆u,>	 = -2      ∆u,>	 = -1 

 
Supplementary figure 23 - Distribution of ∆r,a values in evolving data does not converge 

with ∆r,a values in global stability matrix D when evolved at marginality 

Data is a representative comparison of the effects differing global ∆u,> matrix means (green) have on 

the positive bias in the distribution of evolving ∆u,> values (blue) from simulations initiated at 

𝑇K
º�»;º�U» , where 𝑝D = 0.002, and Ω = 0. In both instances, the mean of the evolving distribution 

(Blue), is positively biased compared to the mean of the stability matrix (Green), showing that  ∆u,> 

values providing high stability increases to an evolving dataset are overrepresented with respect to 

their derivative matrix, whereas ∆u,> values providing stability decreases are underrepresented. 

However, where	∆u,>	= −2, this bias is more extreme compared to where	∆u,>= −1, with a positive 

shifting of the ∆u,> distribution in the evolving dataset. Figures were generated using the MatPlotLib 

library in Python. Data for all other simulations with such parameters are in supplementary files. 
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Supplementary figure 24 
A) 

 
B) 

 
Supplementary figure 24 - Simulations where global stability matrix ∆𝒓,𝒂= 0 and ∆𝒓,𝒂= 1 are 

able to explore a wide stability space due to release of selective pressure 

Representative stability traces for PESST simulations of 2000 generations initiated at 

𝑇K
º�»;º�U»,where 𝑝D = 0.002, and Ω = 0, showing that the stability of PESST simulated protein 

populations where ∆u,>	= 0 (A) and  ∆u,>= 1 (B) are released from the bidirectional selective 

pressure as 𝜖 > Ω.  The population is able to broadly sample stability space in these instances. In 

each graph, coloured lines represent the stability of one of 52 clones in the dataset, which are each 

tracked independently and simultaneously by PESST. The solid red line represents Ω. The tight 

dashed black bold line represents the average stability of the population. Figures generated using 

the MatPlotLib library for Python. Data for all other simulations under such parameters are in 

supplementary files. 

 
 
 

T 

T 
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Supplementary figure 25 
∆u,>	 = -2 

 
 

∆u,>	= -1 
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∆u,>	 = 0 

 
 

∆u,>	= 1 

 
Supplementary figure 25 - Representative phylogenies generated from PESST simulations 

used for figures 22 and 23 

Alignments generated by PESST simulations initiated at 𝑇K
º�»;º�U», where 𝑝D = 0.002, Ω = 0, and 

∆u,>	= −2,−1, 0 and 1 were exported into Geneious ver. 10 (Kearse et al., 2012). Phylogenies of 

simulated evolution were generated with PhyML (Guindon et al., 2010). Data presented is 

representative of single simulations under the given conditions. Data for all simulations is available 

in supplementary files. Phylogenies were modified in FigTree. Node values represent SH-like support 

values calculated in PhyML. Scale represents mutations per site. 
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Supplementary figure 26 
A 

∆u,>	= -2 
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B 
∆u,>	 = 0 

 
 

 
Supplementary figure 26 - Representative simulations showing that reconstructed 

ancestors explore a higher stability space than that of their evolutionary history when a 

bidirectional selective pressure is present 

Data representative of ancestral sequences generated from PESST simulations of 2000 generations 

initiated at 𝑇K
º�»;º�U», where 𝑝D = 0.002, Ω = 0, and ∆u,>	= −2, (A) or ∆u,>	= 0 (B). Top left: 

Stability trace from the representative simulation. Top right: Stability of the 10 most stable ancestral 

nodes derived from a given simulation calculated with CodeML in PAML (Yang, 2007). Bottom: 

Cladogram output by PAML visualised in FigTree. Node labels represent the ancestor sequence 

identifier produced by PAML. Ancestral reconstruction of simulations evolved at marginality caused 

by a bidirectional selective pressure leads proteins with stabilities that are higher than any stability 

sampled by the evolving population. This effect does not occur when the bidirectional selective 

pressure is released. 
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Supplementary figure 27 

∆u,>	 = -2, Start T = “high” 

 
Supplementary figure 27 - Phylogeny for simulation that evolves from high stability to a 

threshold 

Alignments generated by PESST simulations initiated at 𝑇K
�s�� ,where 𝑝D = 0.002, Ω = 0, and ∆u,>	=

−2 were exported into Geneious ver. 10 (Kearse et al., 2012). Phylogeny of simulated evolution was 

generated with PhyML (Guindon et al., 2010). Data presented is representative of a single simulation 

under the given conditions. Data for all simulations is available in supplementary files. Phylogeny 

was modified in FigTree. Node values represent SH-like support values calculated in PhyML. Scale 

represents mutations per site. 
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Supplementary figure 28 

 
Supplementary figure 28 - Consensus sequences from simulations initiated at 𝑻𝟎

𝒉𝒊𝒈𝒉 are 

significantly more stable than those from 𝑻𝟎
𝛀�𝟓;𝛀�𝟐𝟓 

Grouped min-max scatter of the stabilities of consensus values derived from the five simulations of 

both scenarios where ∆u,>	= −2, comparing the difference in stabilization when sequences evolve 

from a starting point of high stability (red points), or evolve at marginality their entire history (grey 

points). Mann Whitney U test was used to calculate whether the populations were significantly 

dissimilar (p < 0.05). Asterisks represent the degrees of significance (**** = p < 0.00005; *** = p < 

0.0005; ** = p < 0.005; * = p < 0.05). 
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Supplementary table 4 
 

 
 

Supplementary table 4 - Additional parameters handled by PESST 
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Supplementary table 5 
 

Starting parameter Simulation Seed 

𝑇�s�� 

1 1066467549 
2 4067081442 
3 3988311094 
4 2564259790 
5 1378044692 

𝑇ON¢ 

1 2996085632 
2 4193085486 
3 1919944244 
4 3809257325 
5 3123945229 

𝑇§±UK 

1 1570260454 
2 657585481 
3 2411380004 
4 1411240584 
5 2496233140 

 

Supplementary table 5 - Seeds for the simulations used for figures 19 and 20 

PESST implements a random number generator to define various parameters so each simulation is a 

unique evolutionary scenario. To ensure that PESST simulations are replicable, the random number 

generator can be seeded. The seeds used for the simulations that make up the results in figures 19 

and 20 are presented. 
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Supplementary table 6 
 

Starting parameter Simulation Seed 

𝑇�s��; 	Ω = 0  

1 1137221125 
2 3538885643 
3 1741741204 
4 2846674525 
5 3126636696 

𝑇º�»;º�U»; 	Ω = 0  

1 1773503249 
2 3170351635 
3 4209518524 
4 162434345 
5 3890946287 

 

Supplementary table 6 - Seeds for the simulations used for figure 21 

 
 
 
 

Supplementary table 7 
 

Starting parameter Simulation Seed 

∆u,>	= 	−2 

1 1585917709 
2 4027632114 
3 526607129 
4 1222718357 
5 2606164749 

∆u,>	= 	−1 

1 2887861297 
2 3274037544 
3 2779731581 
4 743133157 
5 3977220919 

∆u,>	= 	0 

1 110209255 
2 4157235131 
3 1982327043 
4 1989687036 
5 1168569330 

∆u,>	= 	1 

1 3813657984 
2 785464822 
3 2631411974 
4 4151143046 
5 2049625170 

∆u,>	= 	−2; 	
𝑇�s�� 

1 2229567065 
2 2510842188 
3 2535624228 
4 1401832132 
5 2624859900 

 

Supplementary table 7 - Seeds for figures 22 and 23 
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Supplementary table 8 
 

∆𝒓,𝒂 -2 -1 0 1 

Test 
Mann- 

Whitney U 
(U, p) 

Welch’s t-
test (t, p) 

Mann-
Whitney U 

(U, p) 
Welch’s t-
test (t, p) 

Mann-
Whitney U 

(p) 
Welch’s t-

test (p) 
Mann-

Whitney U 
(p) 

Welch’s t-
test (p) 

 

Simulation 1 879, 
0.0029 

3.67, 
0.0005 

950, 
0.0126 

2.99, 
0.0039 

1145, 
0.2329 

0.98, 
0.3285 

1133, 
0.2045 

1.13, 
0.2596 

 

Simulation 2 888, 
0.0036 

3.82, 
0.0004 

962, 
0.0158 

3.82, 
0.0003 

1133, 
0.2033 

1.11, 
0.2664 

1200, 
0.4065 

0.61, 
0.5454 

 

Simulation 3 837, 
0.0011 

3.89, 
0.0003 

911, 
0.0059 

3.31, 
0.0015 

1155, 
0.2612 

0.96, 
0.3419 

1203, 
0.4197 

0.49, 
0.4865 

 

Simulation 4 789, 
0.0003 

4.16, 
0.0001 

855, 
0.0017 

3.38, 
0.0013 

1179, 
0.3328 

1.06, 
0.2907 

1138, 
0.2153 

1.68, 
0.0973 

 

Simulation 5 948, 
0.0121 

2.94, 
0.0044 

740, 
<0.0001 

4.25, 
<0.0001 

1056, 
0.0751 

2.18, 
0.0319 

1075, 
0.0976 

2.01, 
0.0471 

 

Supplementary table 8 - Simulation p-values in figure 22 

Table represents statistics and confidence values (p-values) obtained with the Mann-Whitney U 

test†† or Welch’s t-test when comparing the similarity of the distribution of comparing the stability 

values of proteins generation 2000 to PAML calculated ancestors of the simulation. PESST 

simulations were initiated at 𝑇K
º�»;º�U»,where 𝑝D = 0.002, Ω = 0, and ∆u,>	= −2,−1, 0 and 1. 

Distributions of stability values that are not significantly different (p > 0.05) are coloured red. 
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Chapter 4  

Simplified ancestral sequence 

reconstruction – an accessible tool for 

engineering protein stability. 
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4.2 Preface 

The following chapter consists a reformatted manuscript for an article written for 

submission to eLife. This article will be submitted simultaneously with the manuscript in 

chapter 4, as it shows direct application of PESST.  In this chapter, we design and undertake 

a simplified version of ASR developed to be a broadly accessible engineering tool. We use 

PESST to directly inform decisions in the design process. PESST generates large volumes of 

data, therefore not all of the data generated to inform this study is included. However, This 

data can be accessed in the supplementary files on the flash drive attached to this thesis, 

and from Nicholas Harmer on request.  

 

AT and NH conceived the study. AT wrote the manuscript, with input from NH. All authors 

edited the manuscript. BDE wrote the version of PESST with which the data in this chapter is 

derived. AT performed the simulations of protein evolution and wet lab experiments with 

input from NH.   

 

4.3 Abstract 

Ancestral Sequence Reconstruction (ASR) promises simple, low cost engineering of protein 

stability. However, ASR still has barriers for access that limit its use amongst scientific 

communities, largely the requirement of expertise in phylogenetics. Recent studies have 

used models of protein engineering to uncover the underlying forces driving stabilization in 

ASR experiments. Here, we utilize these models to develop a highly-simplified ASR (sASR) 

methodology based on the Ancescon algorithm that allows for the rapid engineering of 

stable protein sequences in ancestral space without the need for an input phylogeny. Using 
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models simulating protein evolution, we developed criteria for sampling sequences from 

Ancescon reconstructions based on Ancescon-derived phylogenetic outputs. Ancescon 

produced dramatically stabilized nodes scattered throughout output trees. We 

subsequently developed criteria for predicting stable nodes from the consortium, and 

validated sASR by reconstructing variants of the dynamically complex carboxylic acid 

reductase (CAR) enzyme. Two sequences from CAR’s ancestral space were obtained, both of 

which could be expressed, and were functional and thermostable. One of the two enzymes 

represented the most thermostable CAR observed to date, with a Tm of 74 °C, an up to 9 °C 

increase over previously reconstructed thermostable CAR ancestors. This work provides a 

straightforward method for constructing proteins with novel properties, allowing non-

experts to access thermostable proteins through a truly democratized engineering tool. 

 

 

 

 

 

 

 

 

We’re now thirty years into biotechnology. Are we ever going to get to the point 

where it’s not an exclusive technology, it’s not a technology that requires experts? 

-Drew Endy (Edge, 2008)  
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4.4 Introduction 

There is a strong community desire, especially in biocatalysis and biotechnology, to have 

access to protein variants with increased stability (Rigoldi et al., 2018; Elleuche et al., 2014). 

Stable enzymes provide several advantages for the biotechnologist’s toolbox. They reduce 

the risk of biocontamination in energy-rich fermentation environments (Akram et al., 2018). 

Reactions with stable enzymes can have increased rates over their mesophilic counterparts 

in accordance with the Arrhenius equation (Lin and Xu, 2013). Additionally, high 

temperature reaction conditions allow for improved substrate and product solubility, and 

maintain reactivity in the challenging environments imposed by increased solute 

concentrations impose (Elleuche et al., 2014; Tavanti et al., 2017). Furthermore, stable 

proteins typically possess increased lifetime productivity per enzyme (Akram et al., 2018). 

For biopharmaceuticals, longer in corpus half-lives facilitate optimization of viable and 

effective dose-response relationships (Zakas et al., 2015; Zakas et al., 2017).  

 

Engineering proteins for stability is an imprecise process that has been described as “one of 

the most challenging problems in protein science” (Suplatov et al., 2015). Contemporary 

tools available for engineering protein stability include high throughput directed evolution, 

focused in silico design, and machine learning based design (Arnold, 2018; Fürst et al., 2018; 

Wijma et al., 2018; Rigoldi et al., 2018; Bendl et al., 2016). Such technologies are a long way 

from the vision of democratized biotechnology, requiring considerable expertise, high 

expenditure and/or access to high throughput screening tools to achieve success. Even 

when stabilization is achieved, results are still often unsatisfactory, with increases of only a 

few degrees achieved (Rigoldi et al., 2018; Yu et al., 2017).  

 

Existing methods to engineer stability strive against the bidirectional selective pressure that 

forced natural proteins toward marginal stability (Suplatov et al., 2015; Chapter 3). There 

are currently no generic rules to guide the rational engineering of stability. Attempts to 

define applicable global first principles of protein stability based on natural thermostable 

enzymes have also failed (Okafor et al., 2018; Rigoldi et al., 2018). As a result, each stability 

engineering attempt is resource intensive, without a guarantee of success. Clearly there is a 

strong community requirement for accessible, democratized technologies that make the 



 209 

engineering of enzymes routine (Hughes and Ellington, 2017; Tachioka et al., 2016). 

Democratized protein engineering tools would require only a modest laboratory set up and 

investment to deliver proteins with desirable properties. Such enabling technologies should 

have wide accessibility to facilitate broad-scale and open innovation (Endy, 2005; Jefferson 

et al., 2014; Frow, 2015; Frow, 2017).  

 

In recent years, a body of research has emerged exploring ancestral protein reconstruction, 

a “bias”-based protein engineering method, for imparting beneficial stabilizing properties 

into proteins (Gumulya et al., 2018; Okafor et al., 2018; Durani and Magliery, 2013; Kiss et 

al., 2009; Chapter 2; Chapter 3). ASR is a computational tool designed to predict a protein 

family’s evolutionary history (Hochberg and Thornton, 2017; Akanuma, 2017). The core 

prerequisites are a multiple sequence alignment, a phylogeny of this alignment, and a 

model of amino acid substitution. Ancestral sequences are calculated for each node of the 

phylogenetic tree using a Bayesian approach that maximises the likelihood of the sequence 

of each node across sequence space based on a model of amino acid substitution and the 

given alignment (Yang, 2007; Joy et al., 2016). These predictions provide considerable 

insight into how a protein’s form, function and specificity might have evolved (Siddiq et al., 

2017; Hochberg and Thornton, 2017).  

 

Importantly, ASR studies consistently report that ancient enzymes exhibit thermostability, a 

trait often hypothesised to derive directly from the protein’s evolutionary history (Akanuma, 

2017). This thermostable-biasing property has been successfully co-opted as an engineering 

tool. Numerous studies have been published in over recent years showing increases in the 

stability of commercially important enzymes (table 11). Recently, we reported that ASR is a 

diverse engineering tool, enabling the shotgun-like engineering of large, highly complex 

proteins towards stable properties and novel substrate ranges (Chapter 2). This work also 

corroborated research on EF-Tu proteins by Okafor et al. (2018), showing ASR is suitable for 

engineering multi-domain enzymes with high dynamic complexity. To our knowledge this is 

one of few low-cost engineering options available for such enzymes. We showcased this 

method by resurrecting an early ancestor of the bacterial CAR1 subfamily of carboxylic acid 

reductases (CARs; E.C. 1.2.1.30; Chapter 2; Stolterfoht et al., 2017). CARs are large (>1,200 

amino acid) and complex (three domain, three reaction) enzymes, and so provide a 
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challenging test for ASR. Ancestral CARs showed an up to 34 °C increase in Tm compared to 

extant enzymes, with up to quintupled half-lives at bioindustrially relevant temperatures 

compared to extant CARs (Finnigan et al., 2017). Other industrially useful, and novel CAR 

properties were also reported in the property-rich ancestral space of the CARs, including 

solvent, pH, and salt tolerance, as well as improved substrate turnovers. 

  *Half-life at 37 °C compared to extant half-life calculated at 30 °C 

Table 11 - Stability increases in commercially important proteins engineered by ASR, and 
their potential utilization in current bioindustrial workflows 

 

Protein Industrial importance 
ASR 

method 
Reported 

stabilization 
Reference 

Arginine binding 
protein 

Biosensor used in FRET 
experiments PAML Tm increased 30 °C in in 

vitro conditions 
Whitfield et al., 

2015 

Carboxylic acid 
reductase 

Conversion of over 100 
carboxylic acid compounds 
to aldehydes. Production of 
pharmaceutical, flavour and 

scent compounds 

Ancescon, 
FastML, PAML 

Tm increased 16-34 °C in in 
vitro conditions; 5-29 °C in 
model in vivo conditions. 

Half-life doubled*. pH 
range of 5 to 10. 

Chapter 2 

Coagulation factor 
VIII 

Blood clotting protein drug 
for haemophilia PAML Half-life doubled Zakas et al., 

2017 

Haloalkane 
dehalogenase 

Cleavage of carbon-halogen 
bond in halogenated 

aliphatic hydrocarbons. 
Pollutant remediation and 
hydrocarbon biosynthesis 

PAML 
(Lazarus) 

Tm increased 8-24 °C in in 
vitro conditions 

Babkova et al., 
2017 

ω-Transaminase 

Transamination of various 
ω-amino acids and α,ω-
diamines. Production of  

nylon-12 

FastML Tm increased 10 °C in in 
vitro conditions. 

Wilding et al., 
2017 

Cytochrome P450 
monooxygenase 

(CYP3) 

Regio and stereoselective 
oxidations of C-H bonds by 

reductive scission of 
molecular oxygen. Wide 
application in molecular 

functionalization. 

FastML 
~20-30 °C increase in T50 

after 60 minute 
incubation. 

Gumulya et al., 
2018 

Class II ketol-acid 
reductoisomerase 

Oxidoreductase acting on 
CH-OH donor groups. 

Synthesis of amino acids. 

Unpublished 
Bayesian 
Network 

15-17 °C increase in Tm in 
in vitro conditions. 

Gumulya et al., 
2018 
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To better understand the stabilizing effects of ASR, we recently developed a stochastic, 

constrainable model of sequence evolution called Protein Evolution Simulations with 

Stability Tracking (PESST; Chapter 3). Using this model, we presented strong evidence for 

the existence of “marginality bias” driving stabilization in ASR. Bi-directional selective 

pressure is imposed on a protein as most amino acid choices at each position are 

destabilizing, yet the protein must be stable at the organism’s operating temperature 

(Taverna and Goldstein, 2002; Tokuriki et al., 2008; Goldstein, 2011). These pressures 

significantly titrate destabilizing residues from the evolving population, over-representing 

stabilizing residues. These effects cause the overestimation of ancestral thermostability 

even if the protein’s evolutionary history has never innovated such traits (Chapter 3). PESST 

also offers a tool with which to discover and test alternative methods to introduce biasing 

effects into a protein. This makes ASR a powerful protein engineering tool, especially as it 

requires far fewer resources than directed evolution or sequence guided mutagenesis. 

Nevertheless, it has a steep learning curve, and requires considerable time investment 

(Vialle et al., 2018; Gumulya and Gillam, 2016).  

 

Here, we developed a simplified and accessible method for obtaining thermostable proteins 

from ancestral space. We based this method on Ancescon, an algorithm in the ASR suite 

with simple input requirements, requiring only a multiple sequence alignment to generate 

ancestral sequences (Cai et al., 2004). Using PESST, we generated ten independent in silico 

phylogenies, and probed the stabilizing potential of the minimal Ancescon algorithm 

(hereafter dubbed simplified ASR [sASR]). 100% of sASR reconstructions engendered 

stabilized ancestors from simulations; however stable nodes were found scattered 

throughout each phylogeny. Using correlative analyses of stable ancestor positions within 

the Ancescon output trees, we derived rules for predicting which nodes in a phylogeny are 

likely to harbor stabilized proteins. To validate this strategy, we conducted sASR on a 

dataset of 42 CAR enzymes. Targeting the two most likely nodes to produce a stable 

ancestor generated two CAR-like enzymes with Tm values of approximately 57 °C and 74 °C 

in both in vitro and in vivo-analogue conditions. These enzymes show increases in stability 

between 10-40 °C in comparison to well-studied extant enzymes. Our results show that 

sASR can produce stable enzymes from a simple sequence alignment input.  This work 

provides a new, accessible engineering option in the protein engineer’s toolbox. 
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4.5 Results 

4.5.1 Ancescon produces ancestors with high stability in simulations 

We previously showed that the predominantly-used ASR algorithm PAML will overestimate 

ancestor stability when a family evolves at marginality (Chapter 3). To assess whether sASR 

could be used for the engineering of protein thermostability when a protein family’s 

evolutionary history had not explored stable sequences we simulated ten independent 

evolutionary histories with identical starting parameters with PESST (supplementary table 

9). Simulations featured bifurcating populations of 52 proteins each with 100 amino acids, 

evolved under a constant bidirectional selective pressure (Stability traces of each simulation 

in supplementary figure 29). To simplify downstream analysis, PESST pruned leaves 

(sequences of the final generation) from each output alignment to a single sequence per 

bifurcative population, reducing the number of sequences per analysis from 52 to 17 in all 

simulations. Pruned alignments from the final generation in each simulation were then used 

to generate ancestral sequences using Ancescon (Zimmerman et al., 2018). The stability of 

all ancestor nodes for each simulation was then calculated in PESST. Across all simulations, 

the most stable ancestors were between 1.4-fold and 2.1-fold more stable than the most 

stable state achieved by any corresponding clone throughout its evolutionary history (figure 

24A, supplementary figure 30). If there was no biasing effect, nodes and leaves would 

sample an equivalent sequence space, and share an even representation of normalized 

global stability space. However, the division of normalized global stability space between 

the nodes and leaves of each simulation was significantly unevenly 84:16 between 

nodes:leaves respectively (binomial probability p < 0.0001; figure 24B). Ancescon therefore 

introduces considerable stabilizing bias into node sequences when deriving sequences from 

a population evolved under marginality. 
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Figure 24 - Ancescon introduces stability bias in PESST simulations of protein evolution 

A) Reconstructions of PESST simulations generate sequences with stability values higher than any 

value sampled by the population. Upper: trace showing the changing stability of each protein in the 

population over time. Each colored line represents the stability of a single protein as it evolves. Grey 

tight dashed line represents the average stability of all proteins in the population. Red line 

represents the stability threshold. Figure was rendered with MatPlotLib in Python. Lower: The 

calculated stability of nodes reconstructed from the population with Ancescon, with the 

corresponding ASCII tree output by Ancescon produced by the weighbour method (Bruno et al., 

2000). B) The ratio of global stability space across the tree is largely shifted in favour of the nodes. 

Node stability in every simulation, was calculated by PESST. The global stability of all sequences in 

each simulation were normalized to 1. The ratio of space derived from each population were then 

reported. Data was analysed and visualized in Graphpad Prism v7. 

 

4.5.2 High weighted node balance is a strong indicator of stability in simulations 

For sASR to be a successful and accessible protein engineering tool, it is important that 

stable nodes can be consistently predicted within the output tree to minimize protein 

screening. The weighted neighbor-joining tree-building algorithm employed by Ancescon 

(Weighbour; Cai et al., 2004; Bruno et al., 2000) is an arguably poor measure of phylogeny, 

considering neither node age nor accuracy. We therefore assessed the distribution of highly 

stable nodes across each weighbour tree in the Ancescon output. Each ancestor’s stability 

value was normalized to the most stable sequence in the population. A non-significant 

negative correlation (r = -0.05; p = 0.94) was observed when comparing stability and age, 
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suggesting that stable sequences are slightly more common toward the base of the tree 

(figure 25A). However, no simulation produced the most stable ancestor at the base of the 

tree, and only two of the ten simulations produced basal ancestors in the upper quartile of 

stabilities obtained.  

 

Therefore, we sought improved strategies for stable node selection. As leaves are generally 

marginally stable, and posterior node probability is calculated from its set of leaves in 

Ancescon (Cai et al., 2004), we hypothesized that single leaves could have a destabilizing 

effect on immediate parent nodes. We observed that nodes with only multi-leaved subtrees 

have significantly higher average stability than nodes with at least one single leaved subtree 

for seven out of the ten simulations (figure 25B; Welch’s t-test; p < 0.05). For all simulations, 

the average stability of nodes that parent multi-leaf subtrees was above the 50th percentile. 

Comparatively, nodes with single leaf subtrees presented significantly fewer (10%) nodes 

with stabilities in the 50th percentile (binomial probability p < 0.0001). This strongly suggests 

that single leaves have a destabilizing effect on parent nodes in this approach. While 

selecting multi-leaf nodes may be a favorable strategy for most trees, it must be noted that 

across all simulations only 58% of nodes with multi-leaved subtrees still produced 

sequences with stabilities above the 75th percentile. Therefore, the synthesis of numerous 

candidate nodes would be required to ensure the desired stability is captured. 

 

We then considered whether node stability could be predicted by a node’s “weighted 

balance”. Weighted balance describes how evenly leaves are distributed around the node. 

We hypothesized that the weight of the leaves around a node would impact its stability (i.e. 

more leaves provide more sequences from which to select stabilizing ancestral residues 

from; see methods for formula). We observed a strong significant correlation between 

weighted balance and node stability (figure 25C; r = 0.42; p > 0.0001). Additionally, when 

the two nodes with the highest weighted balance were selected for each simulation, 

nineteen of the twenty-one nodes had stabilities above the 75th percentile of all nodes; and 

at least one node per simulation was above the 75th percentile. These nodes were all more 

stable than any stability sampled throughout the simulation’s histories. Given these data, 

weighted node balance provides a significantly strong predictive tool to identify highly 

stable proteins from Ancescon derived phylogenies (binomial probability: p < 0.0001). 
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Figure 25 - Node weighted balance is an accurate predictor of high ancestor stability 

Node stabilities in simulated phylogenies reconstructed by Ancescon were calculated by PESST, 

analysed in Microsoft excel and Graphpad PRISM 7, and visualized in Graphpad PRISM 7. Stabilities 

were normalized to the most stable sequence in the population. A) Node stability is negatively 

correlated with its distance from the base of the tree. Node stabilities were normalized to the most 

stable node in the population. Correlation was calculated with Spearman’s r. Red line represents the 

linear regression of all data points B) Box and whisker plots showing that in the majority of cases, 

nodes that parent at least one single leaf are less stable than nodes parenting only multi-leaf 

subtrees. Significant difference between populations was calculated on a per-run basis using Welch’s 

t-test (p<0.05). Red dashed line represents 50th percentile cut-off. C) A high weighted balance is a 

good predictor of high stability. Red points represent the node with the highest weighted balance in 

each run. Blue points represent the nodes with the second highest weighted balance in each run. 

Grey dashed line represents the linear regression of all data points. Correlation was calculated 

according to Spearman’s r.  
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4.5.3 sASR produces functional CAR enzymes 

In order to validate whether sASR sampling of ancestral space is a valid engineering tool, we 

targeted the challenging CAR family of enzymes for stabilization. 42 actinomyete CAR1 

sequences were semi-randomly collected, ensuring that they broadly represent both 

Mycobacterium and Nocardia CAR clades. We included canonical outgroup sequences from 

our previously reported dataset of Actinomycete CAR enzymes (Finnigan et al., 2017). We 

aligned these sequences and performed sASR with Ancescon (Zimmerman et al., 2018).  The 

phylogeny produced in Ancescon by the weighbour method provides no support values or 

branch lengths for nodes (figure 26; supplementary figure 31. Within the phylogeny, node 

43 and node 50 possessed the greatest weighted balance (figure 26; 28.5 and 11.5 

respectively). These nodes were selected for synthesis (hereafter AspCAR-A43 and AspCAR-

A50 respectively; supplementary figure 32).  AspCAR-A50 was not resolved with a start 

methionine so was trimmed of five N-terminal residues to a methionine shared with the 

start of AspCAR43. AspCAR-A43 and AspCAR-A50 share 78% sequence identity with one 

another; and 60% and 59% average pairwise identity respectively with the extant CAR 

dataset from which they were derived. AspCARs were expressed recombinantly in E. coli. 

Both AspCARs were soluble, showing low to moderate expression under previously 

described CAR expression conditions (Chapter 2), obtaining approximately 2 to 5 mg of 

enzyme per liter of culture (supplementary figure 33). AspCAR-A50 appears to be sensitive 

to proteases, generating a number of degradation products, which could affect expression. 
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Figure 26 - Tree output from Ancescon built with the weighbour method 

Ancescon (Cai et al., 2004) constructs a phylogeny from the user inputted multiple sequence 

alignment with the weighted neighbor joining (weighbour; Bruno et al., 2000) method when no 

phylogeny prior is defined by the user. This tree was hand-drawn in Newick format from the 

information provided in the Ancescon output file (supplementary figure 31), and visualized and 

manipulated in FigTree v1.4.3 and Gravit.io. Nodes that were taken forward for further experiments, 

and their weighted balance scores are highlighted. 
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AspCAR activity was assayed by measuring NADPH absorbance at 340 nm in the presence of 

ATP and one of 20 carboxylic acids (seventeen aromatic and three fatty acids; figure 27). 

AspCAR-A43 showed a preference for benzoic acid derivative substrates, whereas AspCAR-

A50 showed activity on a broad range of substrates. AspCAR-A50, unlike most extant and 

ancestral CARs, was able to reduce aromatics with an electron withdrawing 3-nitro group 

(Winkler, 2018). Kinetic analysis of AspCARs was performed on benzoic acid and its 

derivatives (figure 27). Both enzymes showed similar substrate turnovers. AspA50 showed 

between 5 and 10-fold higher substrate affinity, and between 10 and 20-fold improved 

catalytic efficiency than AspCAR-A43.  For AspCAR-A50 compared to AspCAR-A43, catalytic 

efficiency on NADPH and ATP is again higher (table 12), supplementary figure 34; KM for ATP 

was 218 ± 13 µM and 102 ± 8 µM for AspCAR-A43 and AspCAR-A50 respectively; and KM for 

NADPH was 115 ± 5 µM and 64 ± 4 µM respectively). These data show that AspCARs had 

lower turnover rates compared to previously derived ancestral carboxylic acid reductase 

enzymes (Chapter 2), but generally had better substrate efficiency. Low turnover rates are 

likely indicative of the enzyme’s non-natural nature. Furthermore, AspCAR-A50 had 

considerably improved catalytic efficiencies over AspCAR-A43 for the majority of substrates, 

with upwards of a 50-fold improvement on 3-methoxybenzoic acid. 
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Figure 27 - AspCARs are CAR enzymes with activity on canonical substrates 

AspCAR activity was tested on 20 canonical CAR substrates. i) Carboxylic acids that are derivatives of 

benzene; ii) Carboxylic acids with aromatic ring structures other than benzene; iii) Carboxylic acids 

with the carboxyl group conjugated from the aromatic ring; iv) Carboxylic acids with electron 

withdrawing nitro groups; v) fatty acids. Kobs was calculated for 10 g enzyme in the presence of 5 mM 

substrate. Error bars represent the standard error. 

 

Substrate  kcat  (min-1) KM  (mM) kcat/KM  
(min-1 mM-1) 

Benzoic acid 
AspA43 63.7 ± 1.4 11.6 ± 0.7 5.5 ± 0.5 
AspA50 84 ± 1 1.1 ± 0.1 76 ± 8 

4-methylbenzoic acid 
AspA43 28.2 ± 0.9 3.9 ± 0.2 7.2 ± 0.6 
AspA50 53 ± 2 0.37 ± 0.03 143 ± 17 

4-methoxybenzoic acid 
AspA43 52.0 ± 1.1 3.7 ± 0.3 14.1 ± 1.4 
AspA50 38 ± 1 0.26 ± 0.03 146 ± 17 

3-methoxybenzoic acid 
AspA43 72.3 ± 1.2 6.7 ± 0.4 10.8 ± 0.8 
AspA50 41 ± 1 0.17 ± 0.02 241 ± 28.2 

ATP 
AspA43 74.6 ± 1.8 0.218 ± 0.013 342 ± 29 
AspA50 162 ± 4 0.064 ± 0.004 2,530 ± 220 

NADPH 
AspA43 75.2 ± 1.3 0.115 ± 0.005 654 ± 39 
AspA50 164 ± 3 0.10 ± 0.01 1,640 ± 200 

 

Table 12 - AspCAR kinetics 

AspCAR kinetics were calculated for benzoic acid derivatives, ATP and NADPH. All kinetics were 

performed with 1.7x titrations for three experimental replicates. Data were fit to the Michaelis-

Menten equation in GraphPad PRISM v. 7. Errors shown as standard errors. Saturation curves are 

shown in supplementary figure 34. 
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4.5.4 AspCARs are thermostable CAR variants 

AspCAR thermostability was assessed by incubating AspCARs at incremental temperatures 

from 30 °C to 80 °C for 30 minutes, before testing their activity as before on 4-

methoxybenzoic acid. We have previously shown that the salt concentration of the 

incubation buffer can considerably effect the point at which ancient CAR enzymes lose 50% 

of their activity (𝐴»K; Chapter 2). Therefore, we assayed 𝐴»K for both AspCARs in both HEPES 

and a buffer modelling in vivo-like S. cerevisiae ionic concentrations (ivSc buffer; van Eunen 

et al., 2010; Chapter 2). Both AspCAR-A43 and AspCAR-A50 showed increased 

thermostability compared to extant CARs, and were resistant to salt at in vivo-like 

concentrations (figure 28A). AspCAR-A43 showed 𝐴»K values of 58 °C and 58.9 °C in HEPES 

and ivSc respectively. The 𝐴»K of AspCAR-A50 was 71.1 °C and 70 °C in HEPES and ivSc 

respectively. We then used differential scanning fluorimetry to corroborate these stability 

data and calculate enzyme Tm values. Tm values of 57.1 °C and 73.7 °C were obtained for 

AspCAR-A43 and AspCAR-A50 respectively, closely reflecting the results from the enzyme 

assays (figure 28B). AspCAR-A50 represents an approximately 25 °C increase in stability over 

the most thermostable natural carboxylic acid reductase observed today. Moreover, 

AspCAR-A50 represents up to a 7 °C increase in Tm, and a 9 °C increase in 𝐴»K over 

previously reconstructed ancestral CARs (Chapter 2) and represents the most thermostable 

CAR variant discovered to date. 
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Figure 28 - AspCARs are highly thermostable enzymes 

The thermostability of AspCAR enzymes. A) The temperature at which AspCARs lose 50% activity 

(A50; grey broken horizontal line) following incubation for 30 minutes at increasing temperatures 

from 30 to 80 °C measured by reduction of 20 mM 4-methoxybenzoic acid and 10 mM benzoic acid 

for AspA43 (red lines; circular points) and AspA50 (blue lines; triangular points) respectively. Activity 

is displayed as the rate of NADPH reduction in the reaction, relative to the rate of NADPH reduction 

following incubation at 30 °C. Both AspCAR stabilities were tested in HEPES (light lines) and ivSc 

buffer (dark lines). Error bars represent the standard error. B) Differential scanning fluorimetry to 

assess AspCAR critical unfolding temperature (Vivoli et al., 2014). Enzyme was incubated under 

temperature ramping from 25 °C to 100 °C in the presence of SYPRO orange. Critical unfolding was 

defined as point at which the highest rate of change in fluorescence. Critical unfolding points were 

calculated in Protein Thermal Shift software v1.3. Images were created using GraphPad v7. 
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4.6 Discussion 

This study was inspired by the need to provide highly accessible protein engineering tools 

for synthetic biology. Protein engineering is an essential technology for the long-term 

success of synthetic biology. It permits systems to escape the constraints upon function 

introduced by evolution (Lin and Xu, 2013; Currin et al., 2015), a key challenge for enabling 

synthetic biology (Endy, 2005). “Point and click” tools that introduce beneficial properties 

into proteins without limited costs in time, expertise, and infrastructure offer expedient 

access to proteins with a wide variety of improved properties. Here, we present a simplified 

version of ASR that offers such a democratized protein engineering tool. As ASR is a purely 

phylogenetic method, there is no requirement to undertake involved methods (e.g. protein 

structure analysis or high throughput screening; Gumulya and Gillam, 2017). ASR derived 

sequence variants can be derived using entirely open source software, and requires only a 

multiple sequence alignment as prior knowledge. Additionally, our simplified ASR requires 

no prior expertise in phylogenetics to undertake. While other automated ASR tools exist (i.e. 

PhyloBot; Hanson-Smith and Johnson, 2016), sASR is the first simplified tool that is 

engineering centric.  

 

With its alignment only mode, Ancescon (Cai et al., 2004) is able to generate a crude 

phylogeny using the weighted neighbor joining method. By reconstructing simulated 

alignments (supplementary figure 29), we observed that nodes considerably biased toward 

thermostability despite their evolutionary histories being mesophilic (figure 24). In previous 

analyses of stability bias in ASR, a positive correlation was observed between node age and 

its stability, suggesting that more ancient sequences undergo increased stabilizing bias 

(Chapter 3). On the contrary, sASR produced stability spaces that were only weakly 

correlated with node age, with stabilized sequences being scattered throughout the 

phylogenies (figure 25A).  

 

Selecting nodes based on their weighted balance was an effective solution to the node 

selection problem. In every simulation, At least one of the nodes with two highest weighted 

balances exhibited stabilities in the upper quartile (figure 25C). Weighted balance proves an 

efficient method to search the tree-space for nodes that simultaneously optimizes for both 
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evenly distributed leaf density and high leaf weight. We hypothesise that survivor bias, 

causing stabilising residues to be overrepresented in population (Bloom et al., 2006; 

Chapter 3), leads to an increased stabilizing bias acting on nodes that parent multiple leaves 

(e.g. node 50 in figure 26). Selecting residues in ancestral space from a heavily weighted 

node leads to an increased opportunity to select stabilizing residues. We also observe 

significant destabilization of nodes daughtering subtrees represented by a solitary leaf. 

Therefore, it can be hypothesised that single leaves dilute the biasing effect. In marginal 

reconstruction, the sequence of the corresponding node and the solitary leaf are priors for 

calculating the immediate ancestral node. Leaf instability may therefore have a significant 

effect on immediate parent node stability (Bar-Rogovski et al., 2015; Pupko, 2000; Koshi and 

Goldstein, 1996). Therefore, we suggest that nodes with a high weighted balance have the 

optimal probability of selecting (biased) stabilizing residues as they sample an space evenly 

throughout the marginal reconstruction. 

 

We tested the hypothesis that selecting high weighted balance nodes from sASR makes for a 

simplified enzyme engineering tool by engineering CAR enzymes (Winkler, 2018. We 

collected and subsequently aligned homologues to broadly represent the family (Finnigan et 

al., 2017). We cannot determine from this work whether randomly selected sequences 

would also produce a similar stabilizing effect. From the alignment-only reconstruction, two 

functional CAR enzymes were obtained from ancestral space that are between 8-38 °C more 

stable than the best studied extant CARs (Finnigan et al., 2017; Kramer et al., 2018). 

Surprisingly, AspCAR-A50 is also up to 9 °C more stable than true CAR ancestors (Chapter 2; 

figure 28). The enzymes that are reconstructed here did not achieve as high turnovers of 

their most optimal substrates at standard assay temperatures, compared to both extant 

proteins and ASR reconstructed CAR ancestors. It may be the case that poor activities are 

driven by the lack of alignment refinement or the nature of the reconstruction by sASR.   

 

Despite being based on ASR, sASR is a distinct methodology as it is unlikely to accurately 

factor in evolutionary history as the reconstruction uses a phylogeny derived by weighted 

neighbor joining in Ancescon (Cai et al., 2004). It should therefore be expected that 

Ancescon generates “ancestors” that are not reflective of real-world protein ancestry, but 

instead the ancestry of the inaccurate tree space. While the sequences can be considered 
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ancestral, they are derived from potential points in ancestral space. Indeed, the positioning 

of deeper nodes in the weighbour phylogeny of CARs is a poor match with the previously 

reported well-supported phylogeny of CAR enzymes (Finnigan et al., 2017). Nevertheless, as 

the method selects optimal residues from the sequence consortium, it is still likely to over-

represent stabilizing residues in the reconstructed sequence regardless of the phylogeny. If 

the quality of the alignment is sufficient to produce an optimal opportunity for the 

generation of functional proteins from their consensus (i.e. functional domains are 

conserved), it is likely that sASR will induce a stabilizing effect. sASR therefore offers a novel 

method for the engineering of thermostability exploiting the bias towards stability, 

alongside ASR and consensus sequences. An sASR reconstruction can be performed in a 

matter of hours, meaning that the experimental design process is not a bottleneck in 

protein engineering using sASR. Combined with current generation DNA synthesis 

technologies that provide ready-cloned sequences, high volumes of engineering 

experiments can be performed with sASR in a short space of time, without a large overhead. 

The low risk and low cost make it an ideal ”proof-of-principal” testbed for optimization, and 

opens enzyme engineering to a wider community. 

 

We envisage that sASR will complement other protein engineering tools. In this case it is not 

necessary for the sASR derived protein to have high activity, as protein stability is the 

premium property. Conceptually, protein engineering can be considered as a penalty matrix 

where penalties (or rewards) for mutation at a given position are influenced by all relevant 

protein properties. Any engineering process aims to optimize over this penalty matrix. A 

mutation desirable for one property that imposes penalties in another dimension of the 

matrix may be unfavorable overall (Romero and Arnold, 2009). For mesophilic proteins, 

stability penalties are accentuated: a stability decrease may render the protein unable to 

fold into a functional molecule at a given temperature (Huang et al., 2016). In contrast, 

stable enzymes have their functional landscape smoothed, so penalties across the property 

matrix become dampened during subsequent engineering (Wagner, 2008; Tavanti et al., 

2017). Consequently, the de novo protein design community has aimed to obtain stable 

scaffolds as a starting point onto which to impart novel functionalities (Bozkurt et al., 2018; 

Huang et al., 2016). This effort is translatable to any protein engineering pursuit, using well-

described protein engineering methods (Gumulya and Gillam, 2017; Romero and Arnold, 
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2009). We therefore see great potential for sASR as an initial protein engineering step, 

providing a stable scaffold for other, more involved screening-based technologies to more 

effectively optimize proteins across their property matrices.  

 

4.7 Conclusion 

In this study, we have developed and validated a novel protein engineering tool based on a 

simplified ASR workflow. The only required input for sASR is a multiple sequence alignment, 

which is then used by Ancescon to produce an estimation of ancestral sequence space 

based on a simple phylogeny produced by the algorithm. Our approach can be performed 

using free software in a short space of time. Using PESST, we show that sASR provides a high 

chance of obtaining thermostable sequences if the two nodes with the highest weighted 

balance are synthesised. We validated this strategy, and sASR by reconstructing two highly 

thermostable CAR enzymes. The sASR method has low requirements of cost, prior 

knowledge and expertise, and provides rapid access to protein stabilization to a broad 

community of would-be protein engineers. 

 

4.8 Methods 

PESST priors 

Ten PESST V1.0 (Chapter 3) simulations were run under identical priors, evolving 52 proteins 

of 100 amino acids for 2,000 generations. Amino acid stability contributions (∆u,> values) 

were modelled to a Gaussian distribution defined by 𝒩(−1.5, 2.5), under a stability 

threshold of 0. Simulations were initiated at a value between Ω + 5 ≥ 𝑇KDQP 	≥ 	Ω + 25 to 

ensure the average stability of the simulated dataset sustained marginality throughout 

evolution. All other settings were set to default.  

Sequence handling 

Alignments output from the model were input into Ancescon on the MPI bioinformatics tool 

for ancestral reconstruction (https://toolkit.tuebingen.mpg.de/; Cai et al., 2004; 

Zimmerman et al., 2018). Output ancestral sequences were manually converted to FASTA 



 227 

format. Ancestral sequence stability was calculated with the “stability calculator” module 

within PESST. Analyses of fitness were performed in Microsoft Excel and Graphpad PRISM 

v7. 

Calculation of weighted balance 

A node’s weighted balance 𝑵𝒘.𝒃𝒂𝒍 is calculated as: 𝑵𝒘.𝒃𝒂𝒍 =
𝒂
𝒃
	×	 (𝒂 + 𝒃) (figure 29) 

 

Figure 29 - Calculating weighted balance 

Weighted node balance of the node of interest 
(red circle) is calculated with the displayed 
formula where a = the amount of leaves in the 
smallest subtree immediately daughtered by 
the node of interest (blue square), and b = the 
amount of leaves in the largest subtree 
immediately daughtered by the node of 
interest (orange square). Therefore, in this 

instance 𝑵𝒘.𝒃𝒂𝒍	= ( »
:»

) * 20 = 6.67. 

 

 

Polytomies represent a branch of length 0 connecting subtrees (Coddington and Schraff, 

1995). Polytomous subtrees that clustered to one side of a root branch were treated as a 

single subtree for the sake of the calculation.  

Sequence handling of CARs 

42 CAR sequences were semi-randomly selected from the dataset of CARs previously 

curated in Finnigan et al., 2017. CARs were aligned with MUSCLE in the phylogeny.fr online 

phylogenetics tool (http://www.phylogeny.fr/; Edgar, 2004; Dereeper et al., 2008). Aligned 

sequences were input into the Ancescon algorithm as described before. Ancestors were 

confirmed to contain essential catalytic residues (Finnigan et al., 2017) by eye following 

sequence alignment in the Geneious v10 phylogenetics suite (Kearse et al., 2012). 

Molecular biology 

AspCARs A43 and A50 were codon optimized for expression in E. coli K12 using an internal 

codon optimization script. AspCAR-A43 was purchased as two gBlocks (IDT) adhering to the 

Biobricks standard, sharing an internal XmaI restriction site. Both parts were cloned into 
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pNIC28-Bsa4 (Savitsky et al., 2010) expression vector by one-pot restriction cloning. Plasmid 

was digested with XbaI and HindIII. Part-1 was digested with XbaI and XmaI. Part-2 was 

digested with XmaI and HindIII. Successful cloning was screened through removal of the 

SacB counter-selectable marker by growth on kanamycin-agar plates in the presence of 5% 

v/v sucrose. The final AspCAR-A43 sequence was confirmed by Sanger sequencing (Source 

Bioscience). AspCAR-A50 was synthesized as a complete cloned construct in pNIC28-Bsa4 by 

Dundee Cell Products (supplementary files). 

 

Plasmids were co-transformed into E. coli BL21(DE3) alongside a pCDF-Duet1 vector 

containing B. subtillus phosphopantetheine transferase (Finnigan et al., 2017). AspCAR 

expression was induced under 150 μM IPTG at log phase, and cells were grown overnight at 

20 °C. Cells were harvested, resuspended in 20 mM Tris-HCl, 0.5 M NaCl, 20 mM imidazole 

pH 8.0 and lysed by sonication. Purification was performed using an ÄKTAxpress automated 

chromatography system (GE Healthcare). Nickel affinity chromatography was performed 

using a 1 mL HisTrap crude column (GE Healthcare), eluting with a step gradient to 

resuspension buffer supplemented with 250 mM imidazole. This was followed by size 

exclusion chromatography using a Superdex 200 16/600 preparative column (GE 

Healthcare), eluting isocratically with 10 mM Hepes pH 7.0, 0.5 M NaCl. Chromatography 

peaks were analyzed by SDS-PAGE with ExpressPAGE pre-cast gels (Genscript). Peaks 

containing AspCAR protein were concentrated with Amicon Ultra 50,000 mwco centrifugal 

filters, and where necessary stored in 20% glycerol at -20 °C.  Before assays, ancestral 

proteins were buffer exchanged into appropriate buffer with P10 desalting columns 

(Generon).  

 

Enzymatic assay 

The standard enzymatic assay for AspCAR activity was modified from Finnigan et al., 2017. 

Unless otherwise specified, protein was assayed in triplicate in 200 μl reactions containing 

125 mM HEPES-NaOH (pH 7.5), 1.2 mM ATP, 10 mM MgCl2, 500 μM NADPH, 5 mM 

substrate and 10 μg enzyme. Working stocks of each assay component were dissolved in 50 

mM HEPES-NaOH (pH 7.5). Substrates were dissolved in 200 mM HEPES-NaOH (pH 7.5). 

Where necessary substrates were dissolved in 20% (v/v) DMSO. 
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Assays were performed in flat-bottomed 96 well microtiter plates (Greiner). 100 μl volumes 

each of reaction mix and dissolved substrate were incubated at 30 °C for 5 minutes before 

being combined to start the reaction. Enzyme activity was measured at 30 °C by absorbance 

at 340 nm in a Tecan Infinite 200Pro plate reader in continuous cycles over the course of 10 

minutes with 10 flashes per-well. Data were processed using the standard curve presented 

in Thomas et al., 2018 in Microsoft Excel and GraphPad PRISM v7.0.2. 

 

Substrate range 

Both AspCAR substrate ranges were tested using the standard assay on 20 carboxylic acid 

substrates, including three fatty acids, and seventeen aromatic carboxylic acids. Compounds 

were prepared to 0.5 M stocks in DMSO and diluted to working concentration in assay 

buffer. 

 

Kinetics analysis of AspCARs 

Kinetic analyses of AspCAR activity on ATP and NADPH were performed in the presence of 

20 mM 4-methoxybenzoic acid for AspCAR43, and 10 mM benzoic acid for AspCAR50. 

NADPH and ATP were titrated in a 1.7x dilution series over 12 points. Points were omitted at 

low concentrations where signal was obscured by background noise. Kinetic analyses of 

AspCAR activity on benzoic acid derivatives were performed in at least 5x saturating 

concentrations of ATP and NADPH. Substrates were titrated in 1.7x dilutions over 8 points in 

assay buffer. All rates were fitted to the Michaelis-Menten equation by in GraphPad Prism 

v7.0.2.  

 

Analysis of thermal tolerance in AspCARs. 

Stability analyses were performed in both in vitro conditions (assay buffer) and in vivo 

conditions (Buffer modelling in vivo-like S. cerevisiae ionic concentrations (FSC); described in 

Thomas et al., 2018). 80 μl aliquots of each AspCAR at 0.5 μg μl-1 were incubated in each 

buffer system for 30 minutes at temperatures between 30 °C and 85 °C in an Mastercycler 

nexus thermocycler (Eppendorf) set to gradient mode. The second and penultimate aliquot 

in each gradient segment was reserved for 80 μl buffer for a negative control. Enzymes were 

then cooled to 4 °C in the thermocycler for 5 minutes before being assayed as standard for 
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their activity. AspCAR43 activity was assessed in the presence of 20 mM 4-methoxybenzoic 

acid. AspCAR50 activity was assessed in the presence of 10 mM benzoic acid. 

 

For differential scanning fluorimetry, enzyme was diluted to 0.25 μg ml-1 in standard assay 

buffer, and 10X SYPRO orange (Invitrogen). DSF on both enzymes was run in triplicate 20 µl 

volumes with a triplicate no enzyme control in a 384 qPCR plate (Thermo) on a QuantStudio 

6 flex real-time PCR machine (Life Technologies) set to melt curve mode, with a 

temperature ramp from 25 °C to 99 °C at a rate of 0.17 °C s-1. Data were analyzed using 

Protein thermal shift software (Life Technologies) v 1.3. 
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4.9 Supplementary figures 

Supplementary figure 29 

Simulation 2          Simulation 3 

 
Simulation 4          Simulation 5 

 
Simulation 6          Simulation 7 
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Simulation 8          Simulation 9 

 
Simulation 10 

 

Supplementary figure 29 - PESST simulations used in analysis of Ancescon reconstructions 

Set of stability traces of simulations 2-10 (simulation 1: figure 24A) showing the changing stability of 

independent simulations of evolving protein populations over time. Each coloured line represents 

the stability of a single protein as its population evolves. Grey tight dashed line represents the 

average stability of all proteins in the population. Red line represents the stability threshold. Figure 

was rendered with MatPlotLib in Python. Seeds for simulations are in supplementary table 9. 
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Supplementary figure 30 
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Supplementary figure 30 - Nodes predicted by sASR are considerably biased toward 

stability. High stability nodes can be predicted with node balance 

Graphs represent the stability space of ten PESST simulations across their reconstructed Weighbour 

phylogenies calculated by Ancescon, presented in-picture. Reconstructed node stability is based on 

node sequences predicted by Ancescon, back-calculated in PESST (Chapter 3). Circled nodes on each 

phylogeny represent the nodes with the highest (red) and second highest (blue) weighted balance 

(figure 25C). Data was analysed in Microsoft Excel and visualised in GraphPad PRISM ver. 7. 
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Supplementary figure 31 
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Supplementary figure 31 - Raw tree output from Ancescon 

Ancescon ASCII tree from the Raw ancescon output, produced with the Weighbour method (Bruno 

et al., 2000). Node labels correspond to the predicted ancestral sequences. 
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Supplementary figure 32 

 
>AspCAR-A50 
MSTDTREERLARRIAELFATDEQFRAARPDPAVSEAVSQPGLRLAQIIATVMEGYADRPALGQRAVELVTDAATGRTTARLLPRFETITYGEL
WSRVGAIAAAWQHDPENPVRAGDFVATLGFTSVDYTVVDLACTRLGAVSVPLQASAPVAQLTPILAETEPRVLAASAEHLDAAVECVLAGPSP
RRLVVFDYHPEVDDHREALEAARERLAEAGSPVTVETLDEVIARGRALPAAPLYTPDDDDDPLALLIYTSGSTGTPKGAMYTERLVARMWLRA
SKLASGSQVPSINLNFMPMSHVMGRASLYGTLARGGTAYFAAKSDMSTLFEDIALVRPTELAFVPRVCDMLFQRYQSEVDRRMAAGADRETAE
AEVKAELRENLLGGRFLSAMCGSAPLSAEMKAFMESCLDLHLVDGYGSTEAGMVLVDGQIQRPPVIDYKLVDVPELGYFSTDKPHPRGELLVK
TETMIPGYYKRPEVTAEVFDADGFYRTGDIVAELEPDHLVYVDRRNNVLKLSQGEFVTVAKLEAVFANSPLVRQIFVYGNSERSYLLAVVVPT
EEALAAAGGDTEELKAAIAESLQQIAKDAGLQSYEIPRDFLIETEPFTIENGLLSGIGKLLRPKLKERYGERLEQLYAELAEGQADELRALRR
AAADRPVLETVTRAAAALLGVAAADVSPDAHFTDLGGDSLSALSFSNLLQEIFGVEVPVGVIVSPANDLRGIAEYIEAERESGSKRPTFASVH
GAGATEIRAADLTLDKFIDAETLAAAPSLPAATATPRTVLLTGANGYLGRFLALEWLERLDKTGGKLICIVRGKDAAAARRRLDEAFDSGDPE
LLARYRELAERHLEVLAGDIGEPNLGLDEATWQRLAETVDLIVHPAALVNHVLPYSQLFGPNVVGTAEIIRLAITTKIKPVTYLSTVAVAAQV
DPAVFTEDGDIREISPVRAIDDSYANGYGNSKWAGEVLLREAHDLCGLPVAVFRSDMILAHSRYAGQLNVPDMFTRLILSLLATGIAPKSFYQ
ADADGNRQRAHYDGLPVDFTAEAITTLGAQVAEGFETYDVMNPHDDGISLDEFVDWLIEAGHPIERIDDYAEWFTRFETALRALPEKQRQHSV
LPLLHAYRHPQPPVRGSVLPTKRFRAAVQEAKIGPDGDIPHLSRELIEKYVSDLKLLGLLSSG 

 
>AspCAR-A43 
MSTDTREERLERRIADLYATDPQFAAARPDPAITAAVSQPGLRLPEIIQTVLEGYADRPALGQRAVEFVTDPATGRTTAQLLPRFETITYREL
WDRVGALANAWSNDAVRPGDRVCILGFTSVDYTTIDMALIRLGAVSVPLQTSAPVTQLRPIVAETEPTVIASSVDHLADAVELVLSGHAPARL
VVFDYHPEVDDHREALEAARARLAEAGTAVTVETLAEVIARGRSLPAAAPAPTPDDSDPLALLIYTSGSTGAPKGAMYPESKVANMWRRASKA
WFGPAAPSITLNFMPMSHVMGRGILYGTLANGGTAYFAARSDLSTLLEDLALVRPTQLNFVPRIWDMLFQEYQSEVDRRLADGADRAAAEAEV
LAELRQNLLGGRFVSAMTGSAPISPEMKAWVESLLDMHLVDGYGSTEAGMVLVDGQVQRPPVIDYKLVDVPELGYFSTDRPHPRGELLVKTEN
MFPGYYKRPEVTAEVFDEDGYYRTGDIVAEVGPDQLVYVDRRNNVLKLSQGEFVTVSKLEAVFGNSPLVRQIYVYGNSARPYLLAVVVPTEEA
LARHDVEELKPAISESLQEVAKAAGLQSYEIPRDFIIETTPFTLENGLLTGIRKLARPKLKEHYGERLEQLYTELAEGQADELRELRRSGADA
PVLETVSRAAGALLGAAASDLQPDAHFTDLGGDSLSALTFGNLLHEIFDVDVPVGVIVSPANDLQAIADYIEAQRQGSKRPTFASVHGRDATE
VHAGDLTLDKFIDAATLAAAPSLPGPSSEVRTVLLTGATGFLGRYLALEWLERMDLVGGKVICLVRAKSDAEARARLDATFDSGDPKLLAHYR
ELAADHLEVIAGDKGEADLGLDRQTWQRLADTVDLIVDPAALVNHVLPYSELFGPNALGTAELIRIALTTKIKPYTYVSTIGVGDQIEPGKFT
EDADIRQISATRKIDDSYANGYGNSKWAGEVLLREAHDLCGLPVAVFRCDMILADTTYAGQLNLPDMFTRMMLSLVATGIAPKSFYELDADGN
RQRAHYDGLPVEFIAEAISTLGAQVAEDEGFETYHVMNPYDDGIGLDEFVDWLIEAGYPIQRIDDYGEWLQRFETALRALPDRQRQASLLPLL
HNYQQPEKPIRGSMAPTDRFRAAVQEAKIGPDKDIPHVSPEIIVKYITDLQLLGLLDAKR 

 

Supplementary figure 32 - AspCAR sequences reconstructed with Ancescon 

Based on weighted balance calculations, two AspCAR sequences were isolated from the phylogeny 

presented in figure 26 – AspA43 and AspA50. Amino acid sequences of both AspCAR enzymes that 

were synthesised are presented.  
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Supplementary figure 33 

 

Supplementary figure 33 - SDS-PAGE gels of AspCAR-A43 and AspCAR-A50 

AspCAR-A43 and AspCAR-A50 were purified by nickel affinity chromatography with subsequent size 

exclusion chromatography. AspCAR-A sizes were analysed by SDS-PAGE on 4-20% precast gels 

against Spectra BR ladder. The expected size of both AspCAR enzymes is approximately 129 kDa. 

Bands corresponding to AspCAR-A enzymes are highlighted.  
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Supplementary figure 34 

AspA43 
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AspA50 

            

 

            
 

             

Supplementary figure 34 - Saturation curves for AspCAR kinetics 

AspCAR kinetics were calculated for benzoic acid derivatives, ATP and NADPH. All kinetics were 

performed with 1.7x titrations for three experimental replicates. Some values for low concentrations 

of ATP and NADPH were omitted as their signal dropped below background noise. Data were fitted 

to the Michaelis-Menten equation in GraphPad PRISM v7. Error bars represent standard error. Vmax = 

kcat. Units for Vmax: µM µM-1 min-1. Units for KM: µM  
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Supplementary table 9 

 
Simulation 1 2 3 4 5 6 7 8 9 10 

Seed 1110687841 3230332449 1979310082 1497264872 3966016719 2976148564 4060848892 4130607136 1869182156 2864906632 

 

Supplementary table 9 – Seeds for PESST simulations 

PESST simulations rely on random number generators to ensure every simulation is a unique 

evolutionary scenario. Seeding allows for runs to be replicable and repeatable. Seeds generated for 

the 10 PESST simulations utilized in this study are presented. 
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5.1 ASR’s place as an engineering tool 

As discussed in the introduction, synthetic biology suffers bottlenecks based on treacherous 

paths to scale-up (Boehm and Bock, 2019). A large part of the scale-up issue comes from the 

difficulty in optimizing life as a system (Bommarius, 2015). It was discussed how the 

optimization of life for commercial use is a multi-faceted engineering challenge (Cardinale 

and Arkin, 2012). Dramatic improvements to the reading and writing of DNA has led to 

broad access to the tools needed for the rapid prototyping of pathways and strains (Smolke 

et al., 2018). However, tools to optimize the proteins encoded by DNA are considerably 

lacking, being both slow and costly – somewhat mirroring synthetic DNA in the 80s 

(Bommarius, 2015). In protein engineering experiments, it is seen that engineering and 

optimizing proteins from a stable initiation point allows for the “flattening” of minima in the 

fitness landscape of a protein, and enables access to broader functional space (Porebski and 

Buckle, 2016; Bloom et al., 2006; Goldsmith et al., 2017). Additionally, it is argued that the 

utilization of high temperature biotransformations will allow for several functional 

optimizations to the synthetic system, including better substrate dilution, increased reaction 

rates, resistance to adverse conditions, avoidance of contamination, and maximization of 

yield-per-enzyme based on extended half-lives (Long et al., 2018; Noordam et al., 2018; 

Yeoman et al., 2010; Gumulya et al., 2018). Stable proteins may therefore become a 

cornerstone of future synthetic biology processes. However, the requirement of stable 

proteins merely shifts the bottleneck as the generation of stable proteins is still an 

engineering challenge. 

 

In light of these challenges, this thesis explored the possibility of generating thermostable 

proteins at minimal expense, by designing methods to rapidly generate stable enzymes for 

the cost of their encoded synthetic DNA. According to accounting organization Deloitte, 

democratization of a technology involves its simplification, allowing users with diverse 

backgrounds to access the innovation with equal capabilities following a manageable 

learning curve (Schatsky et al., 2018). Thus, democratization pushes technologies toward 

wide dissemination and ultimately leads to the acceleration of innovation (Frow, 2015). A 

democratized tool for the engineering of protein stability should to fulfil a number of 

requirements: it should generate small numbers of candidate sequences, it should be expert 
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agnostic, it should be easily accessible, the majority of use-cases should produce stable 

proteins, and each experiment should have a rapid turnaround (Endy et al., 2005; Sun et al., 

2014). As discussed in the introduction, the use of the evolutionary biology tool ASR has the 

potential to fulfil these requirements. 

 

On the conception of this PhD in 2014, the potential utilization of ASR as a direct and 

simplified protein engineering tool had only been discussed as a possibility in the literature 

(Wijma, 2013). At the time of writing this thesis, there is now a small but growing interest in 

the utilization of the tool, with a number of successful engineering attempts reported 

(Whitfield et al., 2015; Babkova et al., 2017; Gumulya et al., 2018; Wilding et al., 2017; 

Blanchet et al., 2017; Zakas et al., 2017). ASR is attractive, as it relies on free to access 

computational tools, and the input requirements are simply an alignment of homologous 

sequences and a phylogeny (Gumulya and Gillam 2017). Importantly, with the publication of 

works by Gumulya et al. (2018) and Trudeau et al. (2016), it has recently become apparent 

that ASR’s stabilizing effect is not bespoke to the most ancient of proteins that inhabited 

higher temperature environments, as previously thought (Wijma, 2013). Here, stable 

proteins were generated from families with mesophilic ancestry. 

 

5.2 Protein stabilization with ASR 

In chapter 2 and chapter 4, we explored the use of ASR for the stabilization of carboxylic 

acid reductases (CARs). CARs are an important test case for ASR engineering, as their high 

dynamism, large structure, and multi-step reaction confer multiple points-of-failure to the 

engineering experiment. For ASR, CARs are also significant as they are only estimated to 

have emerged around 500 myo, from other members of the ANL superfamily (Finnigan et 

al., 2017). and therefore it is most likely that they evolved in relatively mild ambient 

conditions. Despite such challenges, five of the six constructed ancestors were functional, 

and all of the functional sequences were more stable than the most stable modern protein 

(M. avium: 49°C). Of the functional sequences, four of the five attained increases in stability 

that are considered exceptional in the field (>15 °C). Therefore, this thesis presents strong 

evidence that ancestral reconstruction is a powerful tool for the engineering of protein 

stability without the need for rational or iterative workflows.  
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Gumulya et al., 2018, hypothesised that the stability observed in the CYP3 cytochrome P450 

monooxygenase ancestors was a result of the enzyme family evolving from a warmer ocean 

inhabiting ancestor. This hypothesis is also applicable to the CARs, yet without the ability to 

directly observe the LUCA of Mycobacterium and Nocardia, we cannot know whether it 

inhabited warmer environments. However, as more protein families with a mesophilic 

history are discovered to produce stable ancestors, the parsimony of the stable ancestor 

hypothesis decreases, and it becomes more evident that stabilization is an inherent feature 

of ASR. If so, it may be necessary to re-evaluate existing literature that draws hypotheses 

about the nature of ancient life from the stability of ancestral proteins. This is especially 

true when the observations are not backed up with real world data (i.e. Butzin et al., 2013).  

 

Chapter 3 provides evidence that survivor bias is the driving force behind protein 

stabilization in ancestral proteins derived from a mesophilic history. Survivor bias provides 

evidence for the broad spectrum nature of stabilization by ASR. It is understood that unless 

a selective pressure mandates significant stabilization of a protein family for its function (for 

example CutA1; Tanaka et al., 2006), then the protein will evolve at marginality. As is shown 

by PESST simulations, the maintenance of marginality causes a disconnect between the 

distribution of stability contribution of mutations in the evolving dataset and the 

distribution of possible stability contributions in global sequence space. This disconnect 

causes ancestral sequence reconstruction (and consensus sequences) to sample from a net-

stabilizing dataset, leading to the overestimation of stability. It can therefore be 

hypothesised any proteins that has evolved at marginality will exhibit overrepresented 

stabilizing mutations at a familial level.  

 

By extension, the majority of protein families should generate a stabilized ancestor, as 

either a truly stable ancestor or an ancestor with biased stability will be derived from an ASR 

experiment if performed adequately. ASR engineering should therefore work for any 

dataset that allows for the bias to be incorporated into the ancestor. This prospect raises 

the question of whether other proteins in the reconstruction literature are also 

thermostable despite their stability not being reported (i.e. Finnigan et al., 2011; Randall et 

al., 2016; Shih et al., 2016; Risso et al., 2015). To better understand the requirements for 
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successful ASR engineering, it will be important to ask how many sequences should consist 

an alignment, how diverse the alignment should be, and how far back in time should 

sequences be resurrected? Gumulya et al., 2018 present an ancestor of a 1,244 member 

dataset of KARI sequences reconstructed with a proprietary Bayesian reconstruction 

algorithm, showing stabilization of 15 °C compared to E. coli and O. sativa KARI. 

Comparatively, AspCAR-A50 generated from sASR is the most thermostable CAR variant 

observed to date, with an improvement of 25 °C over the most stable extant protein, and a 

stabilization of up to 38 °C compared to well-studied homologues. Yet it was generated 

from a dataset of 18 sequences, suggesting the number of sequences required to observe 

stabilization is relatively small. Even though it may be the case that the requirements for the 

most optimal ASR engineering experiment are unique to each protein family, the 

requirements for successful engineering appear to be surprisingly simple.  

 

A fascinating future experiment to explore the question of reliability would involve the 

translation of the PESST model to the lab bench, where ASR would probe the stability of the 

ancestors of extensive experimental phylogenies generated by directed evolution under 

marginality (Randall et al., 2016). The derivation of a stable ancestor in place of a known 

mesophilic ancestor of a real dataset would provide considerable evidence for both the 

survivor bias hypothesis and the use of ASR as a broad spectrum protein engineering tool. 

Additionally, subjecting multiple protein families to ASR based engineering efforts will be 

important, as a portfolio of evidence highlighting both success and failure should provide 

considerable insight into the tool’s reliability. Such a study has recently been performed on 

consensus sequences, where 75% of sequences generated were shown to be more stable 

than their constituents (Sternke et al., 2018). By generating consensus sequences of PESST 

simulations evolving at marginality in chapter 3, we observed that marginality also drives 

the stabilization of consensus sequences. As consensus and ancestral sequence stability is 

driven by the same underlying force, it can therefore be expected that at least equal success 

rates are possible with ASR. 

 

It is important to reiterate that ASR is not necessarily the panacea of stability engineering, 

nor is it intended to be. For example, a key drawback that is observed in this thesis is loss of 

total turnover rate compared to extant counterparts under standard conditions following 
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the engineering process (somewhat in line with the trade-off hypothesis). This is especially 

the case with the most robust of proteins generated in this thesis by thorough ASR (AncCAR-

PF), and both proteins generated with sASR. A similar observation is reported in Wilding et 

al. (2017), where decreased activity on the majority of substrates was observed in ancestral 

w-transaminases. On the other hand, Gumulya et al., 2018 and Babkova et al., 2016 report 

improved activities of ancestral enzymes on a number of substrates, and AncCAR-A and 

AncCAR-PA presented in this theses represent the highest observed turnover of cinammic 

acid derivatives. Notwithstanding, considering the aim of an ASR engineering experiment is 

the engineering of stability, it should be expected that derived enzymes display improved 

activity when reactions are performed at high temperatures compared their extant 

mesostable counterparts. 

 

5.3 Accessible protein engineering with ASR 

Considering technological adoption, Moore (2014) describes “a vast chasm” between early 

adopters and the early majority users of technology, where poor accessibility and lack of 

proven reliability halt wide adoption. In chapter 4 we aimed to develop a tool that 

potentially enables stability engineering and subsequently protein engineering to bridge this 

chasm in synthetic biology. While ASR is powerful in its own right, its maximum accessibility 

is stymied by the apparent need to generate accurate alignments and phylogenies to 

generate stable sequences (Vialle et al., 2018). sASR solves this key accessibility issue by 

utilizing Ancescon, a reconstruction algorithm that generates its own rate matrix for amino 

acid substitution, and can be run without a phylogeny. While the proteins that are 

generated by sASR are unlikely to bare semblance to the true ancestor, we have shown that 

sASR generates both functional and thermostable protein variants.  

 

In aid of accessibility, a set of simple criteria are defined that allow users to select valuable 

sequences from the generated phylogeny based on the weighted balance of nodes. Using 

PESST simulations, we identified that the generation of just two ancestral sequences from 

the Ancescon tree can reliably generate exceptionally thermostable proteins. 

Comparatively, the typical generation of hundreds of sequences over numerous iterations 

was required to identify outstandingly stable variants with semi-rational protein engineering 
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approaches, as discussed in the introduction. Even compared to the ASR workflow discussed 

in the introduction, the workflow for the engineering of stable proteins is now considerably 

reduced with sASR, to: 

 

Collect homologous sequences 

¯ 

Align sequences 

¯ 

Predict most likely ancestors of sequences 

¯ 

Generate and test ancestors of sequences 

 

Such a workflow is therefore only inhibited by the speed and cost of DNA synthesis, and the 

lack of significant data supporting its continued successful application. As with ASR, sASR 

will benefit significantly from a comparative study that targets numerous enzyme families 

for the engineering of stability.  

 

Additionally, in the introduction, the importance of accessible stability engineering to 

general protein engineering workflows was outlined. Synthetic biology is already beginning 

to see the front-loading of engineering experiments with stable enzymes (Trudeau et al., 

2018; Goldsmith et al., 2017). Gumulya et al., 2018 presented the first example of an ASR 

product being used for the starting point of subsequent protein engineering. Thermostable 

ancestral CYP3 was subject to further directed evolution based on ambiguous sites in the 

posterior probability of the reconstruction. Approximately 20% of the 1023 mutants 

screened were more stable than the initiation point, and the library showed functional 

diversity throughout. Further experiments assessing the value of sASR should therefore 

focus on the front-loading of synthetic biology workflows with thermostable proteins from 

sASR. Furthermore, the Ancescon output does provide a table of posterior probability, 

allowing for the ASR output to guide library design required for subsequent engineering 

experiments, again lowering the barrier to access functional diversity in synthetic biology. 
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5.4 Developments in the modelling of protein evolution 

In chapter 3 we produced PESST, a highly parameterizable evolution modelling toolbox that 

allows for the testing of hypotheses around thresholds in protein evolution. With PESST we 

were able to provide considerable evidence that stabilization doesn’t always derive from 

the protein’s ancestral history or a consensus effect as was previously predicted, and 

instead stabilization is driven by survivor bias. Conception and evidence for survivor bias 

provides considerable validity to the broad spectrum applicability of protein engineering. As 

PESST is designed for the testing of the outcomes of various evolutionary hypotheses, the 

application of PESST to the development of sASR was simple, as the standard set of 

parameters are easily modifiable to fit another stability-centric experiment.  

 

Importantly, in the design of PESST, we opted to not define stability based on real world 

data on Gibbs free energy contributions, and instead chose to model these data through a 

matrix of stability contributions that can be modelled to a gaussian distribution. As a result, 

we are able to generate an adequate model of real Gibbs free energy data (Tokuriki et al., 

2007; Faure and Koonin, 2015), but are also able to adapt the distribution describing 

stability effects as we please. Conceptually, this distribution, can be abstracted from 

stability, and be described to model “trait contribution”, where in theory any trait described 

by a gaussian distribution across sites can be modelled. A key future direction of PESST will 

be the development of the tool to allow for multi-variate analyses, including the constraint 

of multiple traits in tandem. This will include the definition of multiple thresholds, multiple 

contribution matrices, and the provision of tools for the manual definition of various trait 

distribution shapes. Finally, every amino acid is considered independently within PESST. In 

nature, protein properties can manifest from the co-evolution of sites (Sandler et al., 2014; 

Bloom et al., 2005). Therefore, addition of the ability to model co-operativity will 

dramatically increase the functionality and applicability of PESST to a broad spectrum of 

evolutionary queries. 

 

5.5 Conclusions 

Considering the immediate requirement of thermostable proteins for improved synthetic 

biology workflows, and the unattractive state of protein engineering based on its inherent 
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complexity, the need for accessible engineering tools is only set to increase in the future. 

ASR and sASR represent the first generation of tools that may be able to cross the chasm 

toward broadly accessible protein engineering tools. Therefore, the democratization of 

protein engineering is set to provide smoother roadmaps to market for synthetic biology 

technologies, and allow more researchers to develop synthetic biology applications beyond 

a proof of concept. Such alignment based engineering tools could enable the engineering of 

a broad spectrum of proteins for stabilization, based on their bias driven functionality, and 

their ability to engineer large, complex enzymes that lack a complete crystal structure like 

the CARs. Additionally, as ASR and sASR are driven by the evolution of proteins, tools to 

model protein evolution like PESST will allow for the improved development of such tools 

going forward. This thesis therefore provides the groundwork for broad adoption of 

ancestral reconstruction as an engineering tool. 
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