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Abstract—Manually labelling new datasets for image classi-
fication remains expensive and time-consuming. A promising
alternative is to utilize the abundance of images on the web
for which search queries or surrounding text offers a natural
source of weak supervision. Unfortunately the label noise in these
datasets has limited their use in practice. Several methods have
been proposed for performing unsupervised label noise cleaning,
the majority of which use outlier detection to identify and remove
mislabeled images. In this paper, we argue that outlier detection is
an inherently unsuitable approach for this task due to major flaws
in the assumptions it makes about the distribution of mislabeled
images. We propose an alternative approach which makes no such
assumptions. Rather than looking for outliers, we observe that
mislabeled images can be identified by the detrimental impact
they have on the performance of an image classifier. We introduce
training-value as an objective measure of the contribution each
training example makes to the validation loss. We then present the
training-value approximation network (Training-ValueNet) which
learns a mapping between each image and its training-value. We
demonstrate that by simply discarding images with a negative
training-value, Training-ValueNet is able to significantly improve
classification performance on a held-out test set, outperforming
the state of the art in outlier detection by a large margin.

I. INTRODUCTION
Large scale datasets such as ImageNet [1] have played a

vital role in recent advances in image classification. Despite
this progress, the manual labelling of large new datasets
often remains prohibitively expensive and time consuming.
A promising alternative is to utilise the abundance of freely
available images on the web for which search engine queries
or surrounding web page text can act as a natural source of
weak supervision (e.g. [2] [3]). Unfortunately, many studies
have shown that the label noise present in these ‘webly-
supervised’ datasets can significantly degrade classification
performance [4] [5] [6]. It is therefore desirable to develop
methods capable of label noise cleaning in absence of full
human supervision.

Existing methods can be categorized according to the
level of human supervision they require. Semi-supervised
approaches (e.g. [7] [8]) require a subset of training examples
to manually labeled in order to learn a model capable of
identify and removing mislabeled images from the dataset.
Whilst these methods relieve some of the burden of manual
labelling, their performance remains intrinsically linked to

Fig. 1: A t-SNE [12] visualization of images from the Aircraft-
7 dataset whose noisy class labels are all ‘propeller plane’.
Each image was manually annotated as either correctly labeled
(blue) or mislabeled (red) and the 50 most outlying images
are marked with an ‘x’. Mislabeled images (examples left) are
generally not outlying whilst true outliers (examples right) are
rarely mislabeled. This demonstrates why outlier detection is
often an unsuitable approach for identifying mislabeled images.

number of manual labels that the user is able to provide.
Alternatively, many outlier detection methods have been
proposed [9] [10] [11] with the clear advantage of requiring
no human supervision. Whilst these methods are shown to be
effective in cases where label noise is artificially generated
via some random process, recent works have raised concerns
about their effectiveness on real-world weakly-supervised
datasets [6]. In this setting, label noise is more typically
caused by some systematic error and as a result, the assumed
equivalence between mislabeled images and outliers is rarely
valid.

This phenomena is illustrated in Fig. 1 which depicts a t-
SNE [12] visualisation of 1000 images from the Aircraft-7
dataset whose noisy class labels are all ‘propeller plane’. These
images were scraped from Flicker by searching for the class
name ‘propeller plane’. We manually annotate each image as
being either correctly labeled (blue in Fig. 1) or mislabeled
(red). Furthermore, we use the mean proximity of each image
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to its K=10 nearest-neighbours in this embedding as a
rudimentary metric for outlier detection and mark the fifty
most outlying images with an ‘x’ in Fig. 1.

Outlier detection methods for label noise cleaning all rely
on the same fundamental assumption that mislabeled images
are outliers, sparsely distributed and visually dissimilar from
both correctly labeled images and other outliers. In practice
however, we have found that this assumption rarely holds true
in the case of weakly-supervised image datasets from the web.
In Fig. 1 for example, we see that mislabeled images form
several dense clusters, which in this case all correspond to
different types of aircraft that were mistakenly included in the
search results for ’propeller plane’. In this example, outlier
detection methods will fail to identify a significant proportion
of mislabeled images because they are simply not outlying.

The second flawed assumption of outlier detection is the
converse of the first. Not only are many mislabeled images
not outlying, true outliers are often not mislabeled. In practice
we have found that many outliers are in fact correctly labeled
yet visually unusual corner cases. In our propeller plane
example, these corner cases account for 35 of the 50 most
outlying examples. Outlier detection methods are unable to
distinguish these valuable corner cases from truly mislabeled
examples and mistakenly removing these images can lead to
a damaging lack of diversity in the training set.

In this paper, we present a new approach for performing
label noise cleaning on weakly-supervised datasets which
serves as a conscious move away from outlier detection.
Rather than searching for outliers, we exploit what we believe
is a more reliable characteristic of mislabeled images. We
observe that training on mislabeled images reliably detriments
the performance of an image classifier whereas correctly
labeled images almost always offer some positive value. As
a result, we are able to drastically reduce the proportion
of mislabeled examples in a dataset by simply identifying
and removing any example which we expect to cause a net
detriment to the final performance of the classifier. We adopt
the term ‘training-value’ (first introduced in [13]) to refer to
our measure of expected impact an individual training example
has on the validation loss during training. We formalise our
definition of training-value in section 3A of the paper. In order
to efficiently estimate the training-values of large numbers
of images, we obtain direct Monte Carlo estimations of
training value for a small subset of training examples and
then generalize this mapping to unseen images via the use of
a training-value approximation network (Training-ValueNet)
which we present in section 3B.

Experimental results on two challenging webly-supervised
datasets demonstrate that by simply discarding all images
with a negative predicted training-value, we are able to
significantly reduce label noise and improve the final
classification performance on a held-out test set. Notably,
we demonstrate that Training-ValueNet achieves a substantial
14.8% (percentage points) lower label noise detection error on

the Clothing 1M dataset [3] compared with with DRAE [11],
the current state of the art in unsupervised outlier detection
for label noise cleaning.

II. RELATED WORK
Unsupervised outlier detection. Outlier detection is the most
widely studied approach for label noise cleaning (see [14] for
a comprehensive survey). Popular neighbour-based methods
such as local outlier factor [15] and probabilistic methods such
as robust kernel density estimation (extension of the classical
Parzen-Rosenblatt KDE) have been implemented in recent
works [11] [10] but are shown to perform poorly when the
proportion of outliers approaches or exceeds 50%. In response
to this, Liu et. al. proposed an unsupervised one-class learning
(UOCL) approach which utilizes a max margin classifier
and is robust to high outlier proportions. More recently
DRAE [11] uses the reconstruction error of an autoencoder to
identify outliers. As the autoencoder passes images through
an intermediate, low-dimensional representation, it is forced
to learn only the statistical regularities of the dataset. In
this way, outliers receive a higher reconstruction error and
can be identified as such. Comparisons on several datasets
place DRAE as the state of the art in this category having
convincingly outperformed UOCL.

Semi-Supervised Label Noise Cleaning. Semi-supervised
approaches require a subset of training examples to be
manually labelled in order to learn a model of label noise (e.g.
label prop [16] and label spread [17]). Yu et. al. introduced
an iterative, human in the loop approach which was used
to construct the large scale LSUN dataset [7] at a fraction
of the cost of full supervision. More recently, CleanNet
[8] learns a relevance score for each image based on its
similarity to a class prototype. Crucially it does so in such
a way that verification labels are only required for a subset
of classes. CleanNet is demonstrated to be effective on
several webly-supervised benchmarks despite only a small
percentage of images being manually labeled. Despite the
impressive efficiency of CleanNet, labeling even a very
small proportion of training examples will remain unfeasible
for datasets that are order of magnitudes larger than ImageNet.

Curriculum Learning for Label Noise. The curriculum
learning (CL) paradigm first introduced by Bengio et. al. [18]
has recently achieved notable success in dealing with label
noise. CL methods do not seek to remove mislabelled images
but instead learn a principled ordering of the training data
to reduce their negative impact. MentorNet [19] guides the
attention of a ‘StudentNet’ classifier (via sample weighting)
based on feedback it receives during training. More recently,
CurriculumNet [20] uses the relative proximity of images in
feature space to construct and then train on three subsets of pro-
gressively noisier training examples. Direct comparisons place
CurriculumNet as the state of the art among CL methods for
label noise. CurriculumNet was also notably the top performing
entry to the Webvision [21] challenge 2017 - a noisy equivalent
of the ILSVRC ImageNet challenge.



Fig. 2: Example images from the ‘propeller plane’ class of
the Aircraft-7 dataset alongside their associated training-values.
Images with a negative training-value are presumed mislabeled
and discarded from the final training set.

III. LABEL NOISE CLEANING WITH
TRAINING-VALUENET

In this section we present our method for performing
label noise cleaning on weakly-supervised datasets for
image classification. In section 3A we define training-value,
our measure of the expected impact that a single training
example has on the performance of an image classifier.
We then introduce the Training-ValueNet in section 3B,
a value function approximation network which enables us
to efficiently estimate the training-values of large numbers
of images. Images which are predicted to have a negative
training-value are presumed to be mislabeled under our
method and are discarded from the final training set.

A. Defining training-value

The training-value of an image is defined with respect to
a specified classification task T with K possible classes.
For this task, we assume access to small manually labelled
validation and test sets XV and XT as well as a training
set of weakly-labelled images XW=

{
(xi, yi), .., (xn, yn)

}
,

where xi is the ith training example with noisy class label
yi∈
{

1, ..,K
}

. Let f(x; θ) be our image classifier with weights
θ and let L be the loss function which we minimize on XW

using some iterative gradient descent algorithm.

We define the training-value V (xi) of image xi∈XW as
the expected immediate improvement in validation loss that is
obtained as a result of training on xi at a randomly selected
time-step t. In practice however, it would be very difficult
to discern the impact that a single training example has on
the loss if training is carried out using batches of multiple
images or with momentum smoothing. In this initial work,
we circumvent this issue in the simplest way possible. We
assert that, for the purposes of defining and later estimating
training-value, training is to be carried out using the vanilla
stochastic gradient descent algorithm, that is, using a batch
size of one and no momentum smoothing or equivalent. We
wish to emphasize however that these constraints are only
enforced when we are obtaining direct estimates of training-
value using Monte Carlo estimation. Once the training-values
of all training examples have been estimated and mislabeled
images removed from the dataset, there are no restrictions on
the final training of the image classifier.

Under these constraints, the immediate change in validation
loss at each time-step t is determined by a combination of the
following three factors:

• The image x(t) which we train on at time t
• The current classifier weights θ(t) at time t
• Stochastic factors such as dropout regularization [22]

Given this, we can express the immediate improvement in
validation loss ∆L(XV ) obtained by training on example
x(t)=xi at time-step t, as an expectation over the updated
network weights θ(t+1) denoted by the random variable θ

′
,

∆L(XV |x(t), θ(t)) = Eθ′
[
L(XV | θ(t))− L(XV | θ

′
)
]

(1)

Finally, we arrive at our definition of the training-value
V (xi) of image xi by taking the expectation of this immediate
change in loss over all all possible values for the current
weights θ(t) which we will denote by the random variable θ,

V (xi|XV ) = E θ

[
∆L(XV |x(t)=xi, θ(t)=θ)

]
(2)

B. Training-ValueNet
Explicit evaluation of Eq.(2) is of course unfeasible for any

reasonable sized problem. We can however obtain an unbiased,
Monte-Carlo (MC) estimation V̄ (xi) for the training-value
of image xi by repeatedly training our image classifier using
standard stochastic gradient descent (i.e. under the constraints
laid out in 3A) and computing the mean improvement in
validation loss that is obtained when we train on xi. If XW is
large however, it would become prohibitively computationally
expensive to obtain reliable estimates for all training examples
in this manner.

It is for precisely this reason that we introduce the training-
value approximation network (Training-ValueNet) which
learns to predict the training-value of a training example
based solely on the extracted convolutional features of that
image. In this way, we can obtain direct MC estimates
of training-value for just a small subset of XW and then
generalize this mapping to all remaining examples in the
training set. This works under the assumption that visually
similar images share consistent label correctness (i.e. they are
both either mislabeled or correctly labeled).

Because the training-value of an image depends entirely on
the correctness of it’s class label, it would not make sense to
use a single training-value network to make predictions across
all classes. In this case the network would have to predict the
value of a training example in the absence any knowledge of
its class label - an impossible task. Instead we train a separate
network for each of the K classes of image. This allows each
network to specialize in approximating the value function for
just one class of image.



We have now formally defined the training-value of an
image and explained the utility of the Training-ValueNet in
allowing us to efficiently estimate the training-values of large
numbers of images. We will now describe precisely how our
method is carried out in four key steps:

Step 1: We first train a baseline convolutional neural network
image classifier on the entire we training set XW . We do this
in order to extract the final convolutional layer ‘bottleneck’
features f c(xi) which act as a fixed image representation
moving forward. Using these bottleneck features during the
subsequent MC estimation phase is drastically more efficient
than training a large CNN from scratch over several repeated
episodes.

Step 2: We obtain MC estimates of training-value for small,
randomly chosen and class balanced subset XW ′⊂XW of nT
images per class. To do this we train a small MLP classifier
using the previously extracted image features as input. We train
for M total episodes of e epochs each, using a batch size of
one and no momentum throughout (as per the constraints laid
out in section 3A). At each time-step during training, we record
the immediate change in validation loss ∆L(t)(XV ) alongside
the image x(t) which was trained on at that time-step. Once all
episodes are complete, unbiased estimates V̄ (xi) are obtained
of all images in our training subset XW ′

by simply averaging
all recorded changes in validation loss which were recorded
for xi,

V̄ (xi) =
1

M ·e

M∑
ep=1

e·nT∑
t=0

{
∆L(t)(XV ) | x(t)=xi

}
(3)

Step 3. Using these MC estimates as training targets, we
train a separate Training-ValueNet for each class C∈{1, ..,K}
in a supervised manner. Each Training-ValueNet is a simple
MLP regression network which takes an image’s convolutional
bottleneck features (f c(xi) (extracted in step 1) as input and
returns a prediction V̂ (xi) for the training-value of xi.

Step 4. Once we have trained the Training-ValueNet for each
class, we use them to predict the training-value of all training
examples in XW . We now have predictions for the training-
values of all examples in our training set XW despite only
training on a small subset of them in the MC estimation phase.

Using these predictions for training-value, we perform label
noise detection by applying a simple threshold δ to the training-
value. In this work we apply a universal threshold of δ=0
across all classes. This is the principled choice considering
that a negative training-value indicates that a training example
is detrimental and thus presumably mislabeled. This means that
for a given training example xi with estimated training-value
V̂ (xi),

Image xi is classified :

{
mislabeled if V̂ (x) < 0

correctly labeled otherwise

IV. EXPERIMENTS
A. Datasets
Clothing 1M [3]: The clothing 1M dataset contains precisely
1M images belonging to 14 categories of clothing item
(e.g. shirt, sweater). Image labels were inferred from the
presence of the class name in the surrounding web page text
and as a result the estimated label accuracy is just 61.54%.
An additional 50K/14K/7K manually labeled images are
included for train/validation/test purposes. Of these additional
images, a subset of 25K/7K/5k also have their original noisy
labels provided. Using these overlapping labels we obtain the
ground-truth correctness of the noisy class labels for these
25K training examples.

Aircraft-7: We use Flickr to build a new webly-supervised
dataset of 75K images spanning seven classes of aircraft
(airliner, glider etc.). Images for each class were obtained by
searching Flickr for the class name and downloading the most
relevant results. The estimated label accuracy for this dataset
is 70% although this varies substantially between classes (see
Table 3 for statistics). We take a random sample of 100 images
from the corresponding ImageNet synset for each class to form
a validation set and a further 100 as a test set. The remaining
ImageNet images from each class were combined to form a
fully-supervised training set for the purposes of comparison
only.

B. Training Parameters
Our method requires a number of parameters to be set

which we detail in this section.

Baseline Model: Our method requires a baseline model from
which to extract bottleneck features and perform final image
classification. To provide a fair comparison with recent works
[8] [23] we fine-tune an ImageNet pre-trained ResNet-50
model [24] on the entire noisy training set. We follow
the fine-tuning procedure outlined in [23]. We extract the
2048-dimensional final layer convolutional features for each
image from this baseline model.

Monte-Carlo Estimation: We obtain MC estimates for the
training-values of a random subset of nT=1000 images per
class. Over the course of M=100 training episodes of e=1
epoch each, we train a MLP classifier with no hidden layers
using the extracted bottleneck features for these images as
input. At each-time step, we record the immediate change
in loss on a subset of nV =100 images per class from the
validation set.

Training-Value Net: We train a separate Training-ValueNet
for each class using the MC estimates of training-value. Each
Training-ValueNet is a MLP regression network with a single
hidden layer of 1024 units. Training is carried out using mini-
batch SGD with a batch size of 32 and 0.9 Nesterov momentum
[25]. We also use dropout [22] after the hidden layer at a rate
of 0.7.



C. Label Noise Detection on Clothing 1M
We evaluate our method on a label noise detection task on

Clothing 1M. For this, we use the set of 25K training examples
for which we have obtained the ground-truth correctness of
their class labels. We carry out our method and classify each
image as mislabeled if its training-value falls below the δ=0
threshold. We compare these predictions with the ground-truth
correctness of the noisy class labels to obtain an average
detection error rate across all classes. In Table 1 we compare
our results with a number of existing semi-supervised and
unsupervised methods as reported in [8]:

• Semi-supervised methods use the ground-truth correct-
ness labels for a subset of the 25K images in order to
train their model for label noise detection. Baselines such
as a 2-layer MLP (used in [7]), kNN, SVM, label prop
[16], and label spread [17] are reported as well as the
state of the art CleanNet [8] itself. Error rate is reported
on a held-out set.

• Unsupervised methods have no access to verification
labels during training. We compare with DRAE [11],
the state of the art in unsupervised outlier detection
which was re-implemented by [8]. We also compare with
the ‘CleanNet unsupervised baseline’ baseline whereby
image features are simply averaged to form the reference
set and query set embedding. Finally we include a naive
baseline which assumes all noisy labels are correct.

In general, our approach to label cleaning would be
considered semi-supervised as we require at least a small,
cleanly labeled validation set. We wish to emphasize however
that unlike all other semi-supervised methods we compare
with in this paper, we make no use of the ground-truth
correctness labels for any training examples. Accordingly,
we have separated our result in Table 1 to avoid this confusion.

Training-ValueNet achieves an error rate of 23.66% which
is a 6.9% improvement on the best unsupervised method, the
CleanNet unsupervised baseline [8] and a substantial 14.8%
better than DRAE [11]. This demonstrates the superiority of
our approach over outlier detection methods when tested on
real world label noise.

Label Noise Detection Results
Method Detection error (%)

Semi-supervised methods:
MLP 16.09
kNN 17.58
SVM 16.75
Label prop [16] 17.81
Label spread [17] 17.71
CleanNet [8] 15.77

Unsupervised methods:
Naive baseline 38.46
DRAE [11] 38.95
CleanNet - unsup. base [8] 30.56
Training-ValueNet 23.66

TABLE I: Label noise detection results on Clothing 1M in
terms of average error across all classes (%).

Image Classification on Clothing 1M
# paper method for noise init. training set accuracy (%)
1 [23] noisy baseline ImageNet 1M 68.94
2 ours noisy baseline ImageNet 1M 68.88
3 [23] clean baseline ImageNet 50K 75.19

Training on noisy 1M only
4 [3] loss correct. ImageNet 1M 69.84
5 [8] CleanNet ImageNet 1M 74.69
6 ours Training-ValueNet #2 1M 72.03

Training on additional clean 50K
7 [3] None #4 50K 80.38
8 [8] None #5 50K 79.90
9 [20] CurriculumNet ImageNet 1M + 50K 81.50
10 ours None #6 50K 78.06

TABLE II: Image classification results on Clothing 1M in
terms of accuracy on test set (%). Results achieved using the
additional 50K cleanly labeled images are segregated to avoid
confusion with weakly-supervised learning.

D. Image Classification on Clothing 1M

In this section we investigate the effectiveness of our
method for improving the classification performance on
Clothing 1M. Our baseline ResNet model trained on the
entire dataset achieves 68.88% accuracy on the test set. We
use the Training-ValueNet(s) from the label noise detection
experiment to obtain training-value predictions for all 1M
noisy training images. We discard images whose predicted
training-value falls below the δ = 0 threshold. This leaves us
with a cleaned set of 767K images. We fine-tune our baseline
model on this cleaned set. Empirically, this yields marginally
better performance than if we restart training with ImageNet
pre-trained weights as well as being far quicker to train.

Table 2 lists the full results for image classification on
clothing 1M. Training-ValueNet improves the accuracy of our
classifier from 68.88% to 72.03% (+3.15%). This is notably
better than [3] (#4) despite their advantage of using clean
labels to estimate confusion between classes. We fall slightly
short of CleanNet at 74.69% (#4), however again we stress
that our results were achieved without the use of any manually
verified training labels. We report on a further set of results
in Table 2 whereby the manually labeled 50K training images
are used for a final round of fine-tuning. This has consistently
lead to substantial improvements in performance. Whilst this
is not in the true spirit of what we are trying to achieve in this
paper (learning without human supervision), we follow suit to
provide a full comparison with others.

E. Image Classification on Aircraft-7

In this final experiment we evaluate the effectiveness of
our method for improving classification performance on the
Aircraft-7 dataset which we built using Flickr. The baseline
model trained on the entire noisy 75K training set achieves a
test accuracy of 82.4%. We proceed to carry out our method,
removing a total 20K images whose predicted training-values
fall below the δ = 0 threshold. The estimated label accuracy
for this cleaned subset is 85.4%, up 15.3% from 70.1% for the
entire dataset (see Table 3 for breakdown by class). We fine-
tune our baseline model on this cleaned training set and observe
a substantial 4.6% improvement in accuracy from 82.4% to
87.0%. This final performance is only slightly short of the



Aircraft-7 Dataset Statistics

Class Name Before Label Cleaning After Label Cleaning
# Images Label acc. (%) # Images Label acc. (%)

Airliner 11.0k 87.3 8.7k 99.1
Fighter Jet 8.9k 88.3 7.1k 88.6
Glider 13.1k 53.5 7.6k 77.9
Helicopter 10.8k 74.6 9.5k 85.7
Prop Plane 11.3k 85.1 10.0k 82.9
Sea Plane 14.9k 55.3 8.2k 79.3
Stealth Bomber 4.6k 46.7 2.1k 78.8
Overall 74.6k 70.1 53.2k 85.4

TABLE III: Statistics for the Aircraft-7 dataset which we built
using Flickr. Estimates for label accuracy were obtained before
and after label noise cleaning by manually annotating a random
sample of 500 images per class as either correctly or incorrectly
labeled.

88.6 % accuracy achieved using the fully-supervised training
set from ImageNet. Full results are listed in Table 4. Through
this experiment we have demonstrated the utility of our method
for building large-scale datasets for image classification. Using
Training-ValueNet, we were able to collect and clean this
dataset in a just matter of hours and have achieved perfor-
mance on par with fully-supervised learning without manually
labeling a single training example.

V. DISCUSSION

A reliable observation in AI research is that general
methods leveraging computation and learning are ultimately
more effective in the long term than those which rely on
human knowledge and heuristic rules. Over the past decade,
human knowledge in the form of image labelling and
annotation has proved invaluable in the fields of computer
vision and beyond. And yet, the associated costs of human
labour make fully-supervised learning both undesirable and
unsustainable moving forward. Weakly-supervised learning
offers a promising alternative but in order to leverage this
source of data, we must first develop methods for cleaning
these datasets without human supervision.

In recent years, outlier detection has become the leading
approach for performing label noise cleaning in this setting.
We have demonstrated however that whilst the assumptions
of outlier detection seem reasonable in theory, they typically
prove overly simplistic and ultimately invalid when dealing
with real world datasets. In this paper we have presented
Training-ValueNet as a direct response to these concerns and as
a first move towards a new class of data driven approaches for
label cleaning. Finally, we wish to emphasize that whilst image
classification has been the focus of this paper, the approach we
have presented can be reasonably be applied to any supervised
learning problem.
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