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Abstract 

Background 
Health economic evaluations frequently include projections for lifetime costs and health 

effects using modelling frameworks such as Markov modelling or discrete event 

simulation (DES). Markov models typically cannot represent events whose risk is 

determined by the length of time spent in state (sojourn time) without the use of tunnel 

states. DES is very flexible, but introduces Monte Carlo variation which can significantly 

limit the complexity of model analyses. 

Methods 
We present a new methodological framework for health economic modelling which is 

based on, and extends, the concept of moment-generating functions (MGFs) for time-to-

event random variables. When future costs and health effects are discounted, MGFs can 

be used to very efficiently calculate the total discounted life years spent in a series of 

health states. Competing risks are incorporated into the method. This method can also 

be used to calculate discounted costs and health effects when these payoffs are constant 

per unit time, one-off or exponential with regard to time. MGFs are extended to 

additionally support costs and health effects which are polynomial with regard to time 

(as in a commonly used model of population norms for EQ-5D utility). 

Worked example 
A worked example is used to demonstrate application of the new method in practice, 

and to compare it to Markov modelling and DES. Results are compared in terms of 

convergence and accuracy, and computation times are compared. R code and an Excel 

workbook are provided. 

Conclusions 
The MGF method can be applied to health economic evaluations in the place of Markov 

modelling or DES and has certain advantages over both. 
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Introduction 

Mathematical models are frequently used in health economic evaluations to extrapolate 

beyond observed data for estimates of lifetime costs and effects.1 The observed data 

may come from experimental trials, as well as from observational sources, such as 

registries.2 Often the effects of interventions are measured in life years or quality-

adjusted life years (QALYs), as particularly the latter allows for comparisons of cost-

effectiveness across different interventions, populations and diseases.3 

As spending and health effects usually do not happen simultaneously, there is a need to 

consider the time-preferences for costs and effects. It is near universal practice to use a 

constant rate of discounting4 (e.g., 3.5% for evaluations following the National Institute 

for Health and Care Excellence [NICE] reference case5). 

A very common approach in modelling is to represent the health status of any given 

individual using one of a finite set of mutually exclusive health states.6 The individual 

may transition between these states as aspects of their health status or care provision 

change. Such models are termed state transition models. For example, in a model of 

treatments for renal failure, there may be separate health states for patients with a 

kidney transplant, patients receiving haemodialysis, patients receiving peritoneal 

dialysis, and patients who have died. Health states are associated with 

probabilities/rates/time-to-event distributions of transitions to other health states, as 

well as payoffs (typically costs and health state utility values). The most common 

implementations of state transition models are Markov models (cohort simulation and 

microsimulation) and Discrete Event Simulation (DES). Another modelling method, 

partitioned survival analysis, resembles Markov cohort simulation but transitions are 

not modelled, rather the state membership over time is explicitly modelled according to 

a set of survival curves.7 

The cohort-based methods are generally very computationally tractable but lack 

flexibility, while the simulation-based methods are highly flexible but introduce Monte 

Carlo variation. Monte Carlo variation can be minimised by producing large numbers of 

simulations, but this can be computationally costly, and even when minimised Monte 

Carlo variation can represent a challenge for model verification. 
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Probabilistic sensitivity analysis (PSA) is frequently used to estimate the joint impact of 

uncertainty across all parameters, and requires an extra “loop” of calculations to 

explore the joint parameter space.8 Traditional partial expected value of perfect 

information (pEVPI) analyses require an additional loop, which means a three-level 

loop in the case of a patient-level simulation model, and model calibration exercises 

require repeated evaluation of expected outputs from a model, creating a similar 

computational challenge (many numerical methods for optimisation require estimates 

of the partial derivative of the function with respect to the parameter space, which 

cannot be accurately estimated in the presence of random noise). While some advances 

have been made to avoid the additional loop for pEVPI,9 it remains true that in general 

an analyst would prefer to obtain model outputs for a given set of input parameters 

which is unaffected by Monte Carlo variation. 

This paper sets out a method which can be used to compute expected life years, lifetime 

costs and QALYs when there is discounting. The method uses and extends MGFs. By 

virtue of considering state transition models where the times to transition are modelled 

(as opposed to probabilities or rates), and utilising MGFs, the method shares many 

principles with statistical flowgraph modelling,10 which explicitly describes processes in 

terms of branch probabilities (like a decision tree or Markov model) and MGFs for 

waiting time distributions. The method in this paper does not rely on statistical 

flowgraph modelling techniques, but instead is optimised to consider cumulative 

discounted costs and outcomes, as these are of interest in health economic applications. 

The substantial advantage of the method described in this paper over Markov cohort 

simulation is the ability to model transitions, costs and QALY weights which are 

dependent on the length of time spent in a particular state (i.e., it overcomes the Markov 

memoryless property). Individual patient simulation methods (e.g., Markov 

microsimulation and DES) are not restricted by the Markov memoryless property but 

they introduce Monte Carlo variation, with the challenges outlined above. The method 

set out in this paper achieves greater flexibility over Markov cohort simulation while 

still producing deterministic results.  
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Methods 

This section begins with a description of MGFs and a simple motivating example for why 

MGFs arise naturally when considering discounted outcomes in models. An introduction 

to statistical flowgraph models is provided next, followed by a description of how the 

methods applied in the motivating example can be extended to consider not just 

discounted life years, but discounted costs and QALYs when the rates at which these are 

accrued vary according to state, time within state and time since the model origin. We 

next consider alternative competing risk formulations besides the one assumed in 

statistical flowgraph modelling. The section concludes with notes on calculating MGFs in 

practice and an overall summary of the method. 

MGFs 
The MGF, 𝑀𝑋(𝑡), of a random variable, 𝑋, is defined as: 

𝑀𝑋(𝑡) ≝ 𝔼𝑋[𝑒
𝑡𝑋] (1) 

For example, the MGF of an exponentially distributed random variable, 𝑋 ∼ 𝐸𝑥𝑝(𝜆) is 

𝜆 (𝜆 − 𝑡)⁄  as shown below: 

𝑀𝑋(𝑡) = 𝔼𝑋[𝑒
𝑡𝑋] 

= ∫ 𝑓𝑋(𝑥)𝑒
𝑡𝑥𝑑𝑥

∞

0

 

= ∫ 𝜆𝑒−𝜆𝑥𝑒𝑡𝑥𝑑𝑥
∞

0

 

=
𝜆

𝜆 − 𝑡
∫ (𝜆 − 𝑡)𝑒−(𝜆−𝑡)𝑥𝑑𝑥
∞

0

 

=
𝜆

𝜆 − 𝑡
 (2) 

The final step of this derivation can be derived through usual means or by recognising 

that the integrand is the probability density function for an exponential random 

variable with rate 𝜆 − 𝑡, and so the integral across all its domain must equal 1. 

Discounting 
As noted in the introduction it is near universal practice to use a constant rate of 

discounting. This is often presented as an annual discount rate, such that the discounted 

value of a cost 𝐶 incurred 𝑋 years in the future is: 
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𝐶𝑑 =
𝐶

(1 + 𝑟𝑎)𝑋
 (3) 

Where 𝑟𝑎 is the annual discount rate, e.g., 0.035 for a discount rate of 3.5% per year. 

It is more mathematically convenient to use continuous discounting formula which is 

equivalent: 

𝐶𝑑 = 𝐶𝑒
−𝑟𝑋 (4) 

Where 𝑟 is the continuous discount rate. These discount rates are readily calculated 

from each other: 

𝐶𝑑 =
𝐶

(1 + 𝑟𝑎)𝑋
= 𝐶𝑒−𝑟𝑋 

(1 + 𝑟𝑎)
−𝑋 = 𝑒−𝑟𝑋 

(1 + 𝑟𝑎)
−𝑋 = (𝑒𝑟)−𝑋 

1 + 𝑟𝑎 = 𝑒
𝑟 

ln(1 + 𝑟𝑎) = 𝑟 (5) 

Throughout this paper we use the continuous discounting formula. 

Note that if 𝑋, the time at which the cost is incurred, is a random variable, we can take 

the expectation of the discounted cost and then express it in terms of the MGF of 𝑋: 

𝔼𝑋[𝐶𝑑] = 𝐶𝔼𝑋[𝑒
−𝑟𝑋] = 𝐶𝑀𝑋(−𝑟) (6) 

This is indeed the fundamental observation underpinning the method outlined in this 

paper: that quantities in a health economic evaluation with discounting can be 

expressed in terms of MGFs. 

Motivating example 

Part 1 

Consider a very simple two-state model in which patients are either alive or dead, and 

the hazard rate of death is a constant (λ), i.e., the time-to-event (TTE) distribution for 

death is an exponential distribution. If we let 𝑋 denote the time to death then 𝑓𝑋(𝑥) and 

𝐹𝑋(𝑥) are the probability density and cumulative distribution functions respectively: 

𝑓𝑋(𝑥) = 𝜆𝑒
−𝜆𝑥 (7) 

𝐹𝑋(𝑥) = 1 − 𝑒
−𝜆𝑥 (8) 

The life years lived (for a particular value of 𝑋) is simply: 
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𝐿𝑌 = ∫ 𝑑𝑥
𝑋

0

= 𝑋 (9) 

I.e., life years lived is a random variable (or a function of a random variable). Given this, 

life expectancy is: 

𝔼𝑋[𝐿𝑌] = 𝔼𝑋[𝑋] 

= ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

0

 

= ∫ 𝜆𝑥𝑒−𝜆𝑥𝑑𝑥
∞

0

 

= [−𝑥𝑒−𝜆𝑥]
0

∞

⏟      
=0

+ 𝜆−1∫ 𝜆𝑒−𝜆𝑥𝑑𝑥
∞

0⏟        
=1

 

= 𝜆−1 

(10) 

Now consider discounted life years lived using the continuous discounting function 

given in Equation (4): 

𝐿𝑌𝑑 = ∫ 𝑒−𝑟𝑥𝑑𝑥
𝑋

0

=
1

𝑟
(1 − 𝑒−𝑟𝑋) (11) 

This is also a (function of a) random variable, and its expectation can be obtained: 

𝔼𝑋[𝐿𝑌𝑑] = 𝔼𝑋 [
1

𝑟
(1 − 𝑒−𝑟𝑋)] =

1

𝑟
(1 − 𝔼𝑋[𝑒

−𝑟𝑋]) (12) 

The quantity 𝔼𝑋[𝑒
−𝑟𝑋] is equal to the MGF of 𝑋, 𝑀𝑋(𝑡) ≝ 𝔼𝑋[𝑒

𝑡𝑋], evaluated at 𝑡 = −𝑟. 

For the exponential distribution the MGF was shown above to be 

𝑀𝑋(𝑡) =
𝜆

𝜆 − 𝑡
 (13) 

So we can substitute this into Equation (12): 

𝔼𝑋[𝐿𝑌𝑑] =
1

𝑟
(1 − 𝑀𝑋(−𝑟))

=
1

𝑟
(1 −

𝜆

𝜆 + 𝑟
)

=
1

𝑟
(
𝜆 + 𝑟 − 𝜆

𝜆 + 𝑟
)

=
1

𝜆 + 𝑟
.

 

(14) 
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Note that we have not considered any transition probabilities (as in a discrete-time 

Markov model) or rates (as in a continuous-time Markov model), but only time-to-event 

variables (as in a discrete event simulation). 

Part 2 

Now we consider a slightly more complex model in which there are three states: 

healthy, diseased and dead. We assume that transitions are possible between healthy 

and diseased, and between diseased and dead (i.e., we do not include recovery from 

disease or death from other causes). Let 𝑋1 denote the TTE variable for transitioning 

from healthy to diseased, and let 𝑋2 denote the TTE variable for transitioning from 

diseased to dead. Assume 𝑋1 and 𝑋2 are independent. Life years lived is then 𝑋1 + 𝑋2. 

Life expectancy is calculated simply as: 

𝔼[𝐿𝑌] = 𝔼𝑋1,𝑋2 [∫ 𝑑𝑥
𝑋1+𝑋2

0

]

= 𝔼𝑋1,𝑋2[𝑋1 + 𝑋2]

= 𝔼𝑋1[𝑋1] + 𝔼𝑋2[𝑋2].

 

(15) 

Discounted life years are calculated as: 

𝐿𝑌𝑑 = ∫ 𝑒−𝑟𝑥𝑑𝑥
𝑋1+𝑋2

0

=
1

𝑟
(1 − 𝑒−𝑟(𝑋1+𝑋2)) (16) 

And discounted life expectancy is: 

𝔼[𝐿𝑌𝑑] = 𝔼𝑋1,𝑋2 [
1

𝑟
(1 − 𝑒−𝑟(𝑋1+𝑋2))]

= 𝔼𝑋1,𝑋2 [
1

𝑟
(1 − 𝑒−𝑟𝑋1𝑒−𝑟𝑋2)]

=
1

𝑟
(1 − 𝔼𝑋1,𝑋2[𝑒

−𝑟𝑋1𝑒−𝑟𝑋2])

=
1

𝑟
(1 − 𝔼𝑋1[𝑒

−𝑟𝑋1]𝔼𝑋2[𝑒
−𝑟𝑋2])

=
1

𝑟
(1 − 𝑀𝑋1(−𝑟)𝑀𝑋2(−𝑟)) .

 

(17) 

This illustrates a key property of MGFs, that the MGF of the sum of two independent 

random variables is the product of their MGFs. It also illustrates that it is only necessary 

to evaluate the MGFs at single points. 

In Appendix 1 we demonstrate that the method applied above, with exponential TTE 

distributions, gives identical results to an equivalent Markov cohort simulation (in the 
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limit as the cycle length tends to zero) and to direct calculation of the state occupancy 

equations. 

Exponential TTE distributions are easy to work with in most contexts, but the MGF 

method described in this manuscript can be applied with any distribution with a finite 

MGF at the necessary points. 

Statistical flowgraph models 
Statistical flowgraph models10 are a type of state transition model which can be 

understood in a similar manner to discrete-time Markov models, in that from any state 

there is a probability of transitioning to another state, or remaining in the current state. 

The key point of divergence from Markov models is that the time steps are not of fixed 

length, but are random time-to-event variables. 

Although developed independently of statistical flowgraph models, there are 

similarities between the method proposed in this paper and statistical flowgraph 

models, so it is instructive to introduce them as an area for potential cross-fertilisation 

and to highlight differences for readers who may already be familiar with them. 

Statistical flowgraph models have seen use in engineering applications, and have also 

been applied to health, but have not seen notable use in health economic modelling. 

Their focus is typically on deriving an overall MGF for a waiting time distribution of 

interest (e.g., survival distribution) and then “inverting” this into a probability density 

function.10 Note that this is different from the approach described in this paper in which 

the MGF itself is evaluated and used within expressions to derive discounted outcomes. 

Statistical flowgraph models are stochastic multistate models represented by directed 

graphs in which nodes represent states and edges represent transitions between those 

states (i.e., events). Each edge has a transmittance, which is the product of a transition 

probability and an MGF. The transition probability represents the probability that a 

modelled item (e.g., an individual) will transition along that edge (i.e., experience the 

given event) as opposed to any alternative edge from the current node. The MGF 

describes the time-to-event variable for how long the item waits in the state before 

transitioning along the edge, conditional on the item transitioning along that edge. 

Fig. 1 presents an example statistical flowgraph model with three states labelled 1, 2 

and 3. These could respectively represent healthy, diseased and dead in a health 
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economic model where it is possible to recover from disease and to die while healthy or 

diseased. The transmittance labels are such that 𝑝𝑖𝑗 is the transition probability of 

transitioning from state 𝑖 to state 𝑗 and 𝑀𝑖𝑗(𝑡) is the MGF for the waiting time in state 𝑖 

prior to transition to state 𝑗. 

 

Figure 1: Example statistical flowgraph model 

In such an example we are likely interested to know the distribution of time spent prior 

to reaching state 3, given an item starts in state 1 (or 2). There are manual reduction 

procedures for solving a statistical flowgraph model (determining the MGF for a waiting 

time of interest), as well as a procedure based on linear algebra, Mason’s rule.11 

If we are interested in finding the MGF for the waiting time distribution from state 1 to 

state 3, we will eventually identify that 

ℳ(𝑡) =
𝑝13𝑀13(𝑡) + 𝑝12𝑝23𝑀12(𝑡)𝑀23(𝑡)

1 − 𝑝12𝑝21𝑀12(𝑡)𝑀21(𝑡)
. (18) 

At this stage, an analyst would typically use numerical methods to invert the MGF into a 

PDF for the waiting time distribution, however, if we are interested in the expected 

discounted life years from state 1 to state 3, we can simply employ the approach we 

have used before: 

𝔼[𝐿𝑌𝑑] =
1

𝑟
(1 −ℳ(−𝑟))

=
1

𝑟
(1 −

𝑝13𝑀13(−𝑟) + 𝑝12𝑝23𝑀12(−𝑟)𝑀23(−𝑟)

1 − 𝑝12𝑝21𝑀12(−𝑟)𝑀21(−𝑟)
) .

 

(19) 

Where ℳ(⋅) is the MGF for the solved flowgraph model. 

Beyond discounted life years 
In many health economic evaluations we are interested to know the (incremental) 

discounted costs and quality-adjusted life years (QALYs) associated with an 

intervention. Costs and QALYs (or other “payoffs” of interest) are typically not accrued 
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at a constant rate but vary according to the health state of an individual, how long the 

individual has been in a health state and how old the individual is. 

Consider a simple model of renal failure as shown in Fig. 2. Individuals start the model 

with end-stage renal failure and in receipt of dialysis, which has significant ongoing 

costs and poor quality of life. Some individuals receive a transplant, which has a 

significant upfront cost and some ongoing costs, a better quality of life than dialysis and 

better life expectancy. Let 𝑐1 and 𝑢1 denote the cost rate and QALY weight in dialysis, let 

𝑐12 denote the cost of transplantation, 𝑐2 and 𝑢2 the cost rate and QALY weight for 

transplanted patients. For now assume no cost of death and that cost rates and QALY 

weights are constant within each state. 

 

Figure 2: Simple renal failure model 

Since there are no cycles it is easy to deduce that there are two paths to death: Dialysis 

→ Transplant → Death (with probability 𝑝12) and Dialysis → Death (with probability 

𝑝13 = 1 − 𝑝12). 

If the patient dies without transplantation, they live for 𝑋13 years accruing costs at a 

rate of 𝑐1 and QALYs at a rate of 𝑢1. Their discounted costs and QALYs can be written as 

a function of 𝑋13: 

Costs = ∫ 𝑐1𝑒
−𝑟𝑥𝑑𝑥

𝑋13

0

=
𝑐1
𝑟
(1 − 𝑒−𝑟𝑋13) (20) 

QALYs = ∫ 𝑢1𝑒
−𝑟𝑥𝑑𝑥

𝑋13

0

=
𝑢1
𝑟
(1 − 𝑒−𝑟𝑋13) (21) 

The expectation of these is taken by replacing 𝑒−𝑟𝑋13 with 𝔼𝑋13[𝑒
−𝑟𝑋13] = 𝑀𝑋13(−𝑟). 

If instead the patient is transplanted, they live on dialysis for 𝑋12 years and then with a 

transplant for 𝑋23 years. The cost of their transplantation is incurred at time 𝑋12 and is 
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therefore expected to be discounted by 𝔼𝑋12[𝑒
−𝑟𝑋12] = 𝑀𝑋12(−𝑟). The discounted costs 

and QALYs accrued post-transplantation are: 

Costs = ∫ 𝑐2𝑒
−𝑟𝑥𝑑𝑥

𝑋12+𝑋23

𝑋12

 

=
𝑐2
𝑟
(𝑒−𝑟𝑋12 − 𝑒−𝑟(𝑋12+𝑋23)) 

(22) 

QALYs = ∫ 𝑢2𝑒
−𝑟𝑥𝑑𝑥

𝑋12+𝑋23

𝑋12

 

=
𝑢2
𝑟
(𝑒−𝑟𝑋12 − 𝑒−𝑟(𝑋12+𝑋23)) 

(23) 

Once again, the expectation is taken by replacing 𝑒−𝑟𝑋12 with 𝔼𝑋12[𝑒
−𝑟𝑋12] = 𝑀𝑋12(−𝑟) 

and also replacing 𝑒−𝑟(𝑋12+𝑋23) with 𝔼𝑋12,𝑋23[𝑒
−𝑟(𝑋12+𝑋23)] = 𝑀𝑋12(−𝑟)𝑀𝑋23(−𝑟). 

In total therefore, we have the following lifetime expected discounted costs and QALYs: 

𝔼[Costs] = 𝑝12 [
𝑐1
𝑟
(1 − 𝑀𝑋12(−𝑟)) + 𝑐12𝑀𝑋12(−𝑟)

+
𝑐2
𝑟
(𝑀𝑋12(−𝑟) (1 − 𝑀𝑋23(−𝑟)))]

+ (1 − 𝑝12) [
𝑐1
𝑟
(1 − 𝑀𝑋13(−𝑟))] (24) 

𝔼[QALYs] = 𝑝12 [
𝑢1
𝑟
(1 − 𝑀𝑋12(−𝑟))

+
𝑢2
𝑟
(𝑀𝑋12(−𝑟) (1 − 𝑀𝑋23(−𝑟)))]

+ (1 − 𝑝12) [
𝑢1
𝑟
(1 − 𝑀𝑋13(−𝑟))] (25) 

In addition to one-off payoffs (e.g., the cost of transplantation above) and constant per-

state payoffs (e.g., the QALY weight in dialysis above), we can quite easily incorporate 

payoff functions which include exponential functions of time. 

For example, if the QALY weight following surgery is initially low but soon improves to a 

higher baseline, we may use a utility function 𝑢(𝑥) = 𝑢ℎ − (𝑢ℎ − 𝑢𝑙)𝑒
−𝑎𝑥, where 𝑢𝑙  and 

𝑢ℎ are the low and high QALY weights and 𝑎 is a parameter that determines how quickly 

QALY weights recover. In this example 𝑥 would represent time since surgery (i.e., time 

in a post-surgery state), so expected discounted QALYs could be (assuming we are 

considering QALYs accrued in a state entered at time 𝑋12 and exited at time 𝑋12 + 𝑋23): 
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𝔼[QALYs] = 𝔼 [∫ 𝑢(𝑥 − 𝑋12)𝑒
−𝑟𝑥𝑑𝑥

𝑋12+𝑋23

𝑋12

]

= 𝔼 [∫ (𝑢ℎ − (𝑢ℎ − 𝑢𝑙)𝑒
−𝑎(𝑥−𝑋12))𝑒−𝑟𝑥𝑑𝑥

𝑋12+𝑋23

𝑋12

]

= 𝔼 [∫ 𝑢ℎ𝑒
−𝑟𝑥 − (𝑢ℎ − 𝑢𝑙)𝑒

−𝑎(𝑥−𝑋12)−𝑟𝑥𝑑𝑥
𝑋12+𝑋23

𝑋12

]

= 𝔼 [∫ 𝑢ℎ𝑒
−𝑟𝑥 − (𝑢ℎ − 𝑢𝑙)𝑒

𝑎𝑋12𝑒−(𝑎+𝑟)𝑥𝑑𝑥
𝑋12+𝑋23

𝑋12

]

= 𝔼 [𝑢ℎ∫ 𝑒−𝑟𝑥𝑑𝑥
𝑋12+𝑋23

𝑋12

− (𝑢ℎ − 𝑢𝑙)𝑒
𝑎𝑋12∫ 𝑒−(𝑎+𝑟)𝑥𝑑𝑥

𝑋12+𝑋23

𝑋12

]

= 𝔼 [𝑢ℎ∫ 𝑒−𝑟𝑥𝑑𝑥
𝑋12+𝑋23

𝑋12

]

−𝔼 [(𝑢ℎ − 𝑢𝑙)𝑒
𝑎𝑋12∫ 𝑒−(𝑎+𝑟)𝑥𝑑𝑥

𝑋12+𝑋23

𝑋12

]

= 𝔼 [
𝑢ℎ(𝑒

−𝑟𝑋12 − 𝑒−𝑟(𝑋12+𝑋23))

𝑟
]

−𝔼 [
(𝑢ℎ − 𝑢𝑙)𝑒

𝑎𝑋12(𝑒−(𝑎+𝑟)𝑋12 − 𝑒−(𝑎+𝑟)(𝑋12+𝑋23))

𝑎 + 𝑟
]

= 𝔼 [
𝑢ℎ(𝑒

−𝑟𝑋12 − 𝑒−𝑟(𝑋12+𝑋23))

𝑟
]

−𝔼 [
(𝑢ℎ − 𝑢𝑙)(𝑒

−𝑟𝑋12 − 𝑒−𝑟(𝑋12+𝑋23)−𝑎𝑋23)

𝑎 + 𝑟
]

=
𝑢ℎ (𝑀𝑋12(−𝑟) (1 − 𝑀𝑋23(−𝑟)))

𝑟

−
(𝑢ℎ − 𝑢𝑙) (𝑀𝑋12(−𝑟) (1 − 𝑀𝑋23(−𝑟 − 𝑎)))

𝑎 + 𝑟

 

(26) 

Extended moment-generating functions and polynomial payoffs  

We may also want to incorporate polynomial functions for payoffs. A common example 

would be to have baseline QALY weights be a polynomial function of age, e.g., the 

quadratic model for population norms of EQ-5D utility described by Ara and Brazier.12 

Attempting to employ the method described so far in the case of polynomial payoffs, 

after repeated application of integration by parts, results in terms which are the product 

of a power and exponential function of a random variable, i.e., 𝑋𝑗𝑒−𝑟𝑋. The expectation 

of this is not 𝔼[𝑋𝑗]𝔼[𝑒−𝑟𝑋], since these two components are not independent. Instead, 

we newly define the extended moment-generating function (EMGF) as: 
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𝑀𝑋
𝑛(𝑡) ≔ 𝔼[𝑋𝑛𝑒𝑡𝑋] (27) 

And derive the following property of the EMGF: 

If 𝑆 = ∑ 𝑎𝑖𝑋𝑖𝑖  is a linear combination of independent random variables, and 𝑛 is a non-

negative integer, then: 

𝑀𝑆
𝑛(𝑡) = 𝔼 [(∑𝑎𝑖𝑋𝑖

𝑖

)

𝑛

𝑒𝑡 ∑ 𝑎𝑖𝑋𝑖𝑖 ]

= ∑
𝑛!

𝑘1! 𝑘2!⋯𝑘𝑚!
𝑎𝑖
𝑘𝑖𝑀𝑋𝑖

𝑘𝑖(𝑎𝑖𝑡)

𝑘1+𝑘2+⋯+𝑘𝑚=𝑛

 

(28) 

This summation is conducted over all possible combinations of non-negative integer 𝑘𝑖  

where they sum to 𝑛. 

This means the EMGF for a linear combination of independent random variables can be 

written as a linear combination of their EMGFs. 

Consider an example where health state utility value declines linearly once in a state: 

𝑄𝑑 = ∫ (𝑎 − 𝑏(𝑥 − 𝑋1))𝑒
−𝑟𝑥𝑑𝑥

𝑋1+𝑋2

𝑋1

=
𝑒−𝑟𝑋1

𝑟2
(𝑏𝑟𝑋2𝑒

−𝑟𝑋2 + (𝑎𝑟 − 𝑏)(1 − 𝑒−𝑟𝑋2))

 

(29) 

𝔼[𝑄𝑑] =
𝑀𝑋1(−𝑟)

𝑟2
(𝑏𝑟𝑀𝑋2

1 (−𝑟) + (𝑎𝑟 − 𝑏) (1 − 𝑀𝑋2(−𝑟))) (30) 

By combining constant, one-off, exponential and polynomial payoffs we can define 

models with significant flexibility that would not be possible in traditional Markov 

cohort simulations. 

Flowgraph cycles 
In the previous example (Fig. 2) there were no cycles (‘cycles’ is used here in the graph 

theoretical sense, i.e., paths in the flowgraph which return to a previously visited state, 

in contrast to time cycles as used in discrete Markov models). We might consider this 

unrealistic and want to include failure of a kidney graft, after which patients return to 

dialysis. To incorporate this we could add another edge to our model with a 

transmittance of 𝑝21 ⋅ 𝑀21(𝑡). The transmittance for the edge denoting death with a 

kidney transplant would change to 𝑝23 ⋅ 𝑀23
′ (𝑡) (we use 𝑀23

′ (𝑡) since the conditional 

time-to-event distribution may change after introducing a new competing risk). Patients 
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can now in theory cycle infinitely many times between dialysis and a kidney transplant 

before dying, but in practice a geometric limit applies. In Appendix 2 we go through the 

necessary steps to produce a formula for the discounted life years lived in dialysis. 

There is no reason why similar steps cannot be taken to calculate other discounted 

payoffs. 

We note, however, that the mathematics are quite involved, and that it is likely that little 

is gained from having a model with a cycle versus a model where there are a finite 

number of retransplantations allowed (indeed this could be made more realistic than 

the model with cycles since the probability of obtaining a second or third transplant is 

likely different to the probability of obtaining an initial transplant). 

Cycles should only be incorporated into a model where it is realistic to believe patients 

could cycle many times and that the parameters governing the transitions would not 

change with the number of cycles completed. 

Alternative competing risk formulations 
So far we have considered the competing risk formulation used in statistical flowgraph 

modelling, which has also been described as the pattern mixture approach to competing 

risks.13 In this formulation we use transition probabilities to determine which event 

takes place (i.e., a categorical distribution) and then a TTE distribution is defined (by its 

MGF) for the waiting time prior to that event. Alternative competing risk formulations 

have been used in data modelling and in simulations. 

A simple (though not as flexible) alternative is to model event times as latent 

independent event times, and the earliest of these is the event which takes place (with 

the corresponding event time). This is a very typical approach in discrete event 

simulations.14 These event times can be sampled according to shared covariates to 

account for population heterogeneity. For example, in a renal failure model we could 

model time to death on dialysis and time to transplantation as dependent on age 

(younger patients are sometimes prioritised for transplants but also have a higher life 

expectancy on dialysis). This approach is particularly desirable when producing a health 

economic model from aggregate data from multiple data sources. The approach is 

readily incorporated into the framework described in this paper since it is not 

computationally difficult to convert this competing risks formulation into the pattern 

mixture formulation. Further details are provided in Appendix 3. 
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Other notable frameworks are the Fine and Gray method of competing risk subhazard 

distributions15 and the vertical modelling approach.16 These have not yet been 

incorporated into the framework described in this paper. 

Methods for evaluating MGFs 
Some probability distributions used in economic modelling have MGFs with closed 

forms. We have already seen the MGF of the exponential distribution and in Appendix 4 

we derive the MGFs and extended MGFs of the exponential, gamma, degenerate and 

continuous uniform distributions. Other parametric survival distributions frequently 

used in health economic evaluations (e.g., Weibull, log-normal, generalised gamma) do 

not have finite closed form MGFs. 

Evaluating the MGF of a distribution at a particular value involves performing a single 1-

dimensional integration with one improper limit (the lower limit is 0 because time-to-

event distributions are non-negative, the upper limit is infinite because a lifetime 

horizon is assumed), which is not challenging for modern statistical programs which 

can automatically perform appropriate transformations and apply Gaussian quadrature 

techniques (e.g., the integrate function in R). Spreadsheet software typically does not 

include such functionality, but the transformations and Gaussian quadrature can 

nevertheless be readily implemented provided the nodes and weights for Gaussian 

quadrature (constants) are calculated in a suitable package. For simplicity, the 

transformation 𝑥 = (1 + 𝑢) (1 − 𝑢)⁄  maps the interval [0,∞) onto (−1,1), which is 

suitable for Gauss–Legendre quadrature (see Appendix 5). 

We can also calculate the MGF for non-parametric TTE distributions, specifically 

Kaplan–Meier curves (see Appendix 4). This can be very useful when observed survival 

is not well fitted by a parametric survival function. 

Summary of the MGF method 
We now briefly summarise the procedure for conducting a model-based health 

economic evaluation using MGFs, the MGF method. 

Step 1: Conceptualise  model in terms of health states and events  

Following suitable methodology (e.g., Roberts et al.17), identify health states and any 

events which need to be represented. Events typically lead to transitions between 

health states. 
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Step 2: Identify suitable waiting time distributions  

Depending on data availability, waiting time distributions for events should preferably 

be identified using the pattern-mixture formulation as used in statistical flowgraph 

models. Failing this, independent TTE distributions should be identified for the events 

in the model. 

Step 3: Identify suitable payoff functions  

Costs and QALYs are accumulated in the model either at a constant rate (for each state), 

as one-off (e.g., surgery cost), or with rates which are expressed in polynomial or 

exponential terms with regards to time (waiting time in the state or time since the start 

of the model). Linear combinations are also allowable. Suitable payoff functions should 

be identified, bearing in mind that polynomial functions will require calculations of 

EMGFs. 

Step 4: Develop expressions for total discounted payoffs  

Expressions for total discounted payoffs are developed in terms of (extended) MGFs.  

Take each payoff in each state one at a time. Let 𝑆 be the sum of the time-to-event 

variables for the events which resulted in reaching the current state and let 𝑋⋆ be the 

time-to-event variable for the event which results in exiting the current state. Let 𝑥 

denote the time since the start of the model. The (undiscounted) payoff function 

identified in Step 3 is now written as 𝑓(𝑥, 𝑆), noting that time in the current state is 𝑥 −

𝑆. To discount it, multiply by 𝑒−𝑟𝑥. The discounted payoff accrued in the state is then 

found by algebraically integrating this discounted payoff function from 𝑆 to 𝑆 + 𝑋⋆. This 

produces the accrued payoff as a function of the random variables 𝑆 and 𝑋⋆. The 

expectation is then taken, relying on 𝔼[𝑒−𝑟𝑆] = 𝑀𝑆(−𝑟), which will be the products of 

the MGFs for the random TTE variables which sum to 𝑆 (assuming these are 

independent) and similar expressions based on the extended MGF. 

Total discounted payoffs are obtained by combining all such expressions, weighted 

according to the probabilities of those payoffs being accrued. 

Step 5: Evaluate numerically  

(Extended) MGFs with closed forms should be evaluated algebraically and numerical 

integration techniques should be used for MGFs without closed forms to produce 

numerical estimates of total discounted payoffs. 
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Example application 

We present a worked example of the application of the MGF method (in particular Steps 

4 and 5 described above), with comparison to evaluation using a Markov cohort 

simulation (with tunnel states), Markov microsimulation and DES. We include code 

listings in Appendix 6 for all four methods in R version 3.5,18 making use of the heemod 

package for the Markov modelling.19 Furthermore fully working code has been 

uploaded to GitHub for the MGF and DES methods 

(https://www.github.com/tristansnowsill/mgf-example/). We additionally provide an 

Excel 2013 (Microsoft Corporation; Redmond, WA) implementation of the MGF method 

utilising Gauss-Legendre quadrature throughout.20 

The example model includes two health states (stable disease and progressive disease) 

and the death state (Fig. 3). The sojourn-dependent time-to-event distributions are 𝑋1 

(representing disease progression), 𝑋2 (death from stable disease) and 𝑋3 (post-

progression survival). These are modelled by Weibull, Gompertz and log-normal 

distributions respectively. Note that in this model these TTE distributions are assumed 

to be independent of each other and we do not specify branch probabilities as would be 

typical in a statistical flowgraph model. 

 

Figure 3: Model diagram 

The model includes one-off costs for progression and for death, and constant cost rates 

in the stable disease and progressive disease states. It also includes age-dependent 

baseline utility using a quadratic formula and constant utility multipliers for stable and 

progressive disease. 

It should be noted that there is only one aspect of this model which cannot be 

represented faithfully in a Markov cohort simulation without tunnel states, which is the 

Stable disease Progressive disease 

Death 

X1 

X2 X3 

https://www.github.com/tristansnowsill/mgf-example/
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log-normal distribution for survival in the progressive disease state, so this is in no way 

a pathological example. 

Methods 

MGF method 

In the model there are two different paths which individuals can take. They either suffer 

from disease progression and then death, or they die without disease progression. We 

let 𝑝 denote the probability of the first path being taken. 

With probability 𝑝 the following costs are incurred: 

 𝐶𝐼: A steady cost accrued prior to progression (between 𝑥 = 0 and 𝑥 = 𝑋1) 

 𝐶𝐼𝐼: A one-off cost at time of progression (at 𝑥 = 𝑋1) 

 𝐶𝐼𝐼𝐼: A steady cost accrued following progression (between 𝑥 = 𝑋1 and 𝑥 = 𝑋1 +

𝑋3) 

 𝐶𝐼𝑉: A one-off cost at time of death (at 𝑥 = 𝑋1 + 𝑋3) 

Also with probability 𝑝 the following QALYs are accrued: 

 𝐵𝐼: QALYs accrued prior to progression (between 𝑥 = 0 and 𝑥 = 𝑋1) 

 𝐵𝐼𝐼: QALYs accrued following progression (between 𝑥 = 𝑋1 and 𝑥 = 𝑋1 + 𝑋3) 

With probability (1 − 𝑝) the following costs are incurred: 

 𝐶𝑉: A steady cost accrued prior to death (between 𝑥 = 0 and 𝑥 = 𝑋2) 

 𝐶𝑉𝐼: A one-off cost at time of death (at 𝑥 = 𝑋2) 

Also with probability (1 − 𝑝) the following QALYs are accrued: 

 𝐵𝐼𝐼𝐼: QALYs accrued prior to death (between 𝑥 = 0 and 𝑥 = 𝑋2) 

We consider the costs first: 

𝐶𝐼 = ∫ 𝑐𝑠𝑡𝑎𝑏𝑙𝑒𝑒
−𝑟𝑥𝑑𝑥

𝑋1

0

=
𝑐𝑠𝑡𝑎𝑏𝑙𝑒
𝑟

(1 − 𝑒−𝑟𝑋1) (31) 

𝐶𝐼𝐼 = 𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑒
−𝑟𝑋1  (32) 
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𝐶𝐼𝐼𝐼 = ∫ 𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑒
−𝑟𝑥𝑑𝑥

𝑋1+𝑋3

𝑋1

=
𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒

𝑟
(𝑒−𝑟𝑋1 − 𝑒−𝑟(𝑋1+𝑋3))

 

(33) 

𝐶𝐼𝑉 = 𝑐𝑑𝑒𝑎𝑡ℎ𝑒
−𝑟(𝑋1+𝑋3) (34) 

𝐶𝑉 = ∫ 𝑐𝑠𝑡𝑎𝑏𝑙𝑒𝑒
−𝑟𝑥𝑑𝑥

𝑋2

0

=
𝑐𝑠𝑡𝑎𝑏𝑙𝑒
𝑟

(1 − 𝑒−𝑟𝑋2) (35) 

𝐶𝑉𝐼 = 𝑐𝑑𝑒𝑎𝑡ℎ𝑒
−𝑟𝑋2 (36) 

Where 𝑐𝑠𝑡𝑎𝑏𝑙𝑒 and 𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 are the cost rates in the stable and progressive disease 

states, 𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is the one-off cost associated with disease progression and 𝑐𝑑𝑒𝑎𝑡ℎ is 

the one-off cost associated with death. 

Next we consider the QALYs, where baseline age-dependent utility is given by 𝑢(𝑥) =

𝑢0 + 𝑢1𝑥 + 𝑢2𝑥
2 and utility is scaled by 𝑣𝑠𝑡𝑎𝑏𝑙𝑒 in the stable disease state and 

𝑣𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 in the progressive disease state. 

First we solve a “helper” integral: 

𝑈(𝐴, 𝐵) = ∫ 𝑢(𝑥)𝑒−𝑟𝑥𝑑𝑥
𝐵

𝐴

= ∫ (𝑢0 + 𝑢1𝑥 + 𝑢2𝑥
2)𝑒−𝑟𝑥𝑑𝑥

𝐵

𝐴

=
𝑒−𝑟𝐴

𝑟3
((𝑢0 + 𝑢1𝐴 + 𝑢2𝐴

2)𝑟2 + (𝑢1 + 2𝑢2𝐴)𝑟 + (2𝑢2))

−
𝑒−𝑟𝐵

𝑟3
((𝑢0 + 𝑢1𝐵 + 𝑢2𝐵

2)𝑟2 + (𝑢1 + 2𝑢2𝐵)𝑟 + (2𝑢2))

 (37) 

Now: 

𝐵𝐼 = ∫ 𝑣𝑠𝑡𝑎𝑏𝑙𝑒𝑢(𝑥)𝑒
−𝑟𝑥𝑑𝑥

𝑋1

0

= 𝑣𝑠𝑡𝑎𝑏𝑙𝑒𝑈(0, 𝑋1) (38) 

𝐵𝐼𝐼 = ∫ 𝑣𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑢(𝑥)𝑒
−𝑟𝑥𝑑𝑥

𝑋1+𝑋3

𝑋1

= 𝑣𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑈(𝑋1, 𝑋1 + 𝑋3)

 (39) 

𝐵𝐼𝐼𝐼 = ∫ 𝑣𝑠𝑡𝑎𝑏𝑙𝑒𝑢(𝑥)𝑒
−𝑟𝑥𝑑𝑥

𝑋2

0

= 𝑣𝑠𝑡𝑎𝑏𝑙𝑒𝑈(0, 𝑋2) 
(40) 
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Before we take the expected values of these quantities using MGFs we need to realise 

that there has been some abuse of notation: we have used 𝑋1 and 𝑋2 in our equations 

above where in fact these should be ( 𝑋1 ∣∣ 𝑋1 < 𝑋2 ) and ( 𝑋2 ∣∣ 𝑋2 < 𝑋1 ) since 

progression and death without progression are competing events. Following the 

methods in Appendix 4 we find: 

𝑝 = 𝔼[𝟏𝑋1<𝑋2]

= ∬ 𝟏𝑥1<𝑥2𝑓𝑋1(𝑥1)𝑓𝑋2(𝑥2)𝑑𝑥2𝑑𝑥1
𝑋1,𝑋2

= ∫ 𝑓𝑋1(𝑥1) (1 − 𝐹𝑋2(𝑥1)) 𝑑𝑥1

∞

0

 

(41) 

𝑓(𝑋1∣∣𝑋1 < 𝑋2 )
(𝑥) ∝ 𝑓𝑋1(𝑥) (1 − 𝐹𝑋2(𝑥))

=
1

𝑝
𝑓𝑋1(𝑥) (1 − 𝐹𝑋2(𝑥))

 

(42) 

𝑓(𝑋2∣∣𝑋2 < 𝑋1 )
(𝑥) ∝ 𝑓𝑋2(𝑥) (1 − 𝐹𝑋1(𝑥))

=
1

1 − 𝑝
𝑓𝑋2(𝑥) (1 − 𝐹𝑋1(𝑥))

 

(43) 

We produce a table of extended MGFs evaluated at 𝑡 = −𝑟 for 𝑛 = 0,1,2, as shown in 

Table 1. The bottom row is formed from the rows above following Equation (28). 

We now have all the pieces we need to derive total expected discounted costs and 

QALYs: 

𝔼[Discounted costs] = 𝑝𝔼[𝐶𝐼 + 𝐶𝐼𝐼 + 𝐶𝐼𝐼𝐼 + 𝐶𝐼𝑉]

+(1 − 𝑝)𝔼[𝐶𝑉 + 𝐶𝑉𝐼]
 (44) 

𝔼[Discounted QALYs] = 𝑝𝔼[𝐵𝐼 + 𝐵𝐼𝐼] + (1 − 𝑝)𝔼[𝐵𝐼𝐼𝐼] (45) 

By linearity of expectation we can consider 𝔼[𝐶𝐼], 𝔼[𝐶𝐼𝐼], … and 𝔼[𝐵𝐼], … separately. For 

example: 

𝔼[𝐶𝐼𝐼𝐼] = 𝔼 [
𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒

𝑟
(𝑒−𝑟𝑋1 − 𝑒−𝑟(𝑋1+𝑋3))]

=
𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒

𝑟
(𝔼[𝑒−𝑟𝑋1] − 𝔼[𝑒−𝑟(𝑋1+𝑋3)])

=
𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒

𝑟
(𝑚1

(0) −𝑚1
(0)𝑚3

(0))

 

(46) 

𝔼[𝐵𝐼𝐼] = 𝔼[𝑣𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑈(𝑋1, 𝑋1 + 𝑋3)] (47) 
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= 𝑣𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝔼[
𝑒−𝑟𝑋1

𝑟3
((𝑢0 + 𝑢1𝑋1 + 𝑢2𝑋1

2)𝑟2 + (𝑢1 + 2𝑢2𝑋1)𝑟 + (2𝑢2))

−
𝑒−𝑟(𝑋1+𝑋3)

𝑟3
((𝑢0 + 𝑢1(𝑋1 + 𝑋3) + 𝑢2(𝑋1 + 𝑋3)

2)𝑟2

+ (𝑢1 + 2𝑢2(𝑋1 + 𝑋3))𝑟 + (2𝑢2))] 

=
𝑣𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒

𝑟3
[((𝑢0𝑚1

(0) + 𝑢1𝑚1
(1) + 𝑢2𝑚1

(2))𝑟2 + (𝑢1𝑚1
(0) + 2𝑢2𝑚1

(1))𝑟

+ (2𝑢2𝑚1
(0)))

− ((𝑢0𝑚1
(0)𝑚3

(0) + 𝑢1(𝑚1
(0)𝑚3

(1) +𝑚1
(1)𝑚3

(0))

+ 𝑢2(𝑚1
(0)𝑚3

(2) + 2𝑚1
(1)𝑚3

(1) +𝑚1
(2)𝑚3

(0))) 𝑟2

+ (𝑢1𝑚1
(0)𝑚3

(0) + 2𝑢2(𝑚1
(0)𝑚3

(1) +𝑚1
(1)𝑚3

(0))) 𝑟

+ (2𝑢2𝑚1
(0)𝑚3

(0)))] 

 

Markov cohort simulation  

For comparison, a discrete time Markov model was constructed using the heemod 

package in R with the use of tunnel states. 

Sojourn-dependent transition probabilities were estimated by calculating the 

cumulative hazards for competing risks at the start and end of the cycle, and converting 

these into transition probabilities assuming constant competing hazard rates within 

each cycle. This is more accurate than, e.g., applying transition probabilities estimated 

from hazard rates at the start, midpoint or end of each cycle. 

The implementation of tunnel states in heemod means that the transition probabilities in 

the end state of the tunnel are based on the maximum sojourn time covered by the 

tunnel states, i.e., there is no attempt to fit the final transition probability to the 

behaviour of the survival curve beyond the tunnel duration. 

Cycle lengths of 1 to 12 months were explored as well as maximum sojourn cycle 

memory of 1 (no tunnel states), 2 (one tunnel state), 4 (three tunnel states, etc.), 8, 16 
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and 32. The life table method of estimating state membership between cycles was 

used.21 

Markov microsimulation  

Also for comparison, a discrete time Markov microsimulation was built in R using the 

vectorisation approach described by Krijkamp et al.22 Sojourn-dependent transition 

probabilities were calculated as for the Markov cohort simulation. A cycle length of 

three months was used. Costs and QALYs were calculated assuming that transitions 

occur at the end of each cycle. No half cycle correction was applied. 

DES 

As a final comparator, a DES model was constructed using efficient vectorised 

operations. Variance reduction was included by using common samples of 𝑋2 and 𝑋3 

across the control and treatment arms. 

Results 
The MGF method gave consistent results with the discrete event simulation (see Table 

2 and Fig. 4). It was very efficient, requiring only 17 1-dimensional numerical integrals 

to be evaluated through Gaussian quadrature. 

 

(a) 
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(b) 

Figure 4: Simulation ((a) DES and (b) Markov microsimulation) results 

Key: Points are individual simulation samples, the solid line is the cumulative mean 

incremental net monetary benefit, the shaded ribbon is the cumulative 95% confidence 

interval based on 1-sample t statistic, the dashed line is the mean incremental net 

monetary benefit as calculated by the MGF method 

Even with 100,000 simulations and reasonable variance reduction measures, the 

discrete event simulation still produced a somewhat imprecise estimate of economic 

value. 

The Markov cohort simulation approach was able to reach a fair approximation of the 

true results when a large number of tunnel states were used and a short cycle length 

was employed (see Table 2 and Fig. 5), but the approximation was poor when a longer 

cycle length was used and/or no/few tunnel states were employed. There is a trade-off 

that as the cycle length is reduced, more tunnel states are required to represent the 

same portion of the survival curve. 
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Figure 5: Comparison of Markov models with different cycle lengths and numbers 
of tunnel states 

Execution time 

Execution time was measured using the microbenchmark package, with one hundred 

replications on a laptop running R v3.5.1 (R Foundation for Statistical Computing) using 

RStudio v1.2 (RStudio, Inc.). The laptop was running Windows 7 (Microsoft 

Corporation) with an Intel Core i7 processor running at 2.6 GHz and with 16 GB RAM. 

As shown in Table 3, the MGF method is faster than the other methods, even being 

comparable to DES with a low number of simulations (1,000). With 1,000 simulations, 

DES retained a Monte Carlo standard error of 12.7% of incremental net monetary 

benefit. 
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Discussion 

We have presented the moment generating function (MGF) method, a new method for 

calculating lifetime discounted costs and outcomes for health economic models, which 

is distinct from Markov modelling and discrete event simulation and which has 

advantages over both paradigms (see Table 4 and Appendix 7 for a detailed 

comparison). It can represent sojourn-dependent transition times and payoffs in a very 

computationally tractable manner, in contrast to Markov modelling. It provides 

precision with fast convergence and no Monte Carlo variation, in contrast to discrete 

event simulation. The ability to provide precise answers quickly also makes the MGF 

method well suited to analyses which are challenging when using discrete event 

simulation, such as value of information analyses and model calibration. In terms of 

how it fits in with an analyst’s “workflow” the closest analogy is a Markov cohort 

simulation – there is no need to produce multiple iterations to obtain an answer for a 

single set of parameters, but when conducting sensitivity analyses (including 

probabilistic sensitivity analysis) it is necessary to re-run the model using the different 

sets of parameters. 

The MGF method can be readily implemented in specialist statistical packages such as R 

and Stata, as well as in widely available spreadsheet software such as Excel (without the 

use of VBA code). There is no reason to think it could not also be incorporated into 

specialist modelling software such as TreeAge. Future work may include procedural 

generation of code for the MGF framework based on a description of the underlying 

model. 

The MGF method has a noteworthy limitation, which it is hoped will be addressed in the 

future. It is not currently possible to include transitions based on wall time (except in 

the trivial case where wall time is equal to sojourn time, i.e., for an initial state with no 

possibility of return), or for risks to compete from different starting times. These 

limitations make it challenging to include, for example, general mortality within a 

model. In certain situations it is, however, more important to capture sojourn time-

dependent transitions, such as in advanced cancers. 

The method also assumes independence of the time-to-event random variables in the 

specification. This does not mean, though, that the risks of different events must be 

treated as independent, as explained in Appendix 8, because conditional independence 
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can be leveraged in this regard. For example, the risk of a patient with a haematological 

cancer receiving a stem cell transplant and the risk of the same patient dying from other 

causes are related according to the age and frailty of the patient, but may be 

independent across patients conditional on their age and frailty. 

In addition to future work to address the issues described above, we will also attempt to 

develop methods for incorporating flexible spline TTE distributions23 and alternative 

competing risk specifications.15, 16 
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Tables 

Table 1: Table of extended MGFs in the example model 

𝑺 𝑴𝑺
𝒏(−𝒓) 

 𝒏 = 𝟎 𝒏 = 𝟏 𝒏 = 𝟐 

( 𝑋1 ∣∣ 𝑋1 < 𝑋2 ) 𝑚1
(0) 𝑚1

(1) 𝑚1
(2) 

( 𝑋2 ∣∣ 𝑋2 < 𝑋1 ) 𝑚2
(0) 𝑚2

(1) 𝑚2
(2) 

𝑋3 𝑚3
(0) 𝑚3

(1) 𝑚3
(2) 

( 𝑋1 + 𝑋3 ∣∣ 𝑋1 < 𝑋2 ) 𝑚1
(0)𝑚3

(0) 

(𝑚1
(0)𝑚3

(1)

+𝑚1
(1)𝑚3

(0)) 

(𝑚1
(0)𝑚3

(2)

+ 2𝑚1
(1)𝑚3

(1)

+𝑚1
(2)𝑚3

(0)) 
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Table 2. Worked example results 

Arm QALYs Costs Net monetary benefit 

 Absolute Incremental Absolute Incremental Absolute Incremental 

MGF method 

Control 1.678  £8437  £25,119  
Treatment 1.871 0.194 £8529 £92 £28,898 £3779 
Discrete event simulation (100,000 simulations) [Mean (95% CI)] 

Control 1.676 
(1.670, 1.683) 

 £8432 
(£8419, £8444) 

 £25,090 
(£24,969, £25,211) 

 

Treatment 1.870 
(1.863, 1.877) 

0.194 
(0.189, 0.199) 

£8531 
(£8518, £8544) 

£99 
(£89, £109) 

£28,872 
(£28,743, £29,000) 

£3782 
(£3684, £3880) 

Markov cohort simulation (1-month cycle length, up to 31 tunnel states) 

Control 1.667  £8414  £24,921  
Treatment 1.862 0.195 £8509 £95 £28,733 £3811 
Markov cohort simulation (1-year cycle length, no tunnel states) 

Control 1.883  £8729  £28,927  
Treatment 2.061 0.179 £8794 £65 £32,434 £3506 
Markov microsimulation (1-month cycle length, 100,000 simulations) [Mean (95% CI)] 

Control 1.732 
(1.726, 1.739) 

 £8458 
(£8446, £8470) 

 £26,184 
(£26,064, £26,304) 

 

Treatment 1.921 
(1.914, 1.928) 

0.189 
(0.185, 0.192) 

£8562 
(£8549, £8575) 

£103 
(£96, £110) 

£29,857 
(£29,729, £29,985) 

£3673 
(£3608, £3738) 
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Table 3. Execution times for different methods 

Method Method parameters Time per iteration (ms) [Mean (SD), Median (IQR)] 

MGF   11.0 (29.2), 6.59 (6.25–7.75) 

Markov cohort[a] Cycles 800 166 (39.5), 152 (147–171) 

Tunnel states 0 

Markov cohort[a] Cycles 2,400 775 (119), 731 (692–832) 

Tunnel states 23 

Markov microsimulation[a] Simulations 1,000 326 (70.6), 304 (290–335) 

Markov microsimulation[a] Simulations 100,000 26,124 (2513), 25,829 (24,361–27,373) 

DES Simulations 1,000 5.86 (12.3), 4.13 (3.96–4.69) 

DES Simulations 100,000 234 (34.1), 223 (215–238) 

Notes: [a] Excludes all preparation prior to the run_model command (Markov cohort model) and the function factory step (Markov 

microsimulation) 
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Table 4. Capabilities of different methods 

Method MGF Markov cohort 

without tunnel 

states 

Markov cohort 

with tunnel 

states 

Markov 

micro-

simulation 

DES 

Sojourn time-dependent transitions 

Transitions between states can depend on the length of time in the 
current state. Can use non-exponential time-to-event distributions. 

Yes No Partial Yes Yes 

Wall time-dependent transitions 

Transitions between states can depend on the length of time since 
the model start. Typical example is age-related other cause 
mortality. 

No Yes Yes Yes Yes 

Kaplan–Meier survival 

Directly use Kaplan–Meier survival curves, without fitting a 
parametric model or piecewise exponential model. Particularly 
valuable when parametric models give a poor fit. 

Yes Partial Partial Partial Yes 

Sojourn time-dependent payoffs 

Payoffs depend on the time in the current state, e.g., costs are 
initially high within a state but then diminish. 

Partial No Partial Yes Yes 

Wall time-dependent payoffs 

Payoffs depend on the time since the model start, e.g., health state 
utility values decline with age. 

Partial Yes Yes Yes Yes 

Monte Carlo variation No No No Yes Yes 
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There is random error introduced into results, which must either 
be minimised with a large number of simulations, or accounted for 
within statistical analyses. 

Convergence behaviour 

The global truncation error as a function of n, which is the number 
of quadrature nodes for the MGF method, the cycle length for the 
Markov cohort simulations, and the number of simulations for the 
microsimulation methods. 

See 

appendix 

𝒪(𝑛−1) 𝒪 (𝑛
−1

2⁄ ) 𝒪 (𝑛
−1

2⁄ ) 𝒪 (𝑛
−1

2⁄ ) 

Notes: See Appendix 6 for further details. 
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Appendix 1: Demonstration of equivalence of MGF method, 

Markov cohort simulation and state occupancy equations in a 

simple example 

Background 
This appendix gives further details supporting the demonstration of the equivalence of 

different methods in a simple model. 

We have a conceptual state transition model with three states, with transitions only 

from the first to the second state (at rate 𝜆1), and the second state to the third state (at 

rate 𝜆2). 

Markov cohort simulation 
An equivalent Markov model, where the cycle length is 𝛿𝑥, is as follows: 

𝐲𝑛+1 = (
𝑒−𝜆1𝛿𝑥 1 − 𝑒−𝜆1𝛿𝑥 0
0 𝑒−𝜆2𝛿𝑥 1 − 𝑒−𝜆2𝛿𝑥

0 0 1

)

𝑇

𝐲𝑛 

𝐲0 = (
1
0
0
) 

Based on the recurrence relation we then find: 

𝐲𝑛 = ((
𝑒−𝜆1𝛿𝑥 1 − 𝑒−𝜆1𝛿𝑥 0
0 𝑒−𝜆2𝛿𝑥 1 − 𝑒−𝜆2𝛿𝑥

0 0 1

)

𝑇

)

𝑛

𝐲0 

Using eigendecomposition we find that 

(
𝑒−𝜆1𝛿𝑥 1 − 𝑒−𝜆1𝛿𝑥 0
0 𝑒−𝜆2𝛿𝑥 1 − 𝑒−𝜆2𝛿𝑥

0 0 1

)

𝑇

= 𝑉Λ𝑉−1

=

(

 
 

1 0 0
1 − 𝑒−𝜆1𝛿𝑥

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
1 0

𝑒−𝜆2𝛿𝑥 − 1

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
−1 1)

 
 
(
𝑒−𝜆1𝛿𝑥 0 0
0 𝑒−𝜆2𝛿𝑥 0
0 0 1

)(

1 0 0
𝑒−𝜆1𝛿𝑥 − 1

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
1 0

1 1 1

) 

Meaning that 
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𝐲𝑛 =

(

 
 

1 0 0
1 − 𝑒−𝜆1𝛿𝑥

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
1 0

𝑒−𝜆2𝛿𝑥 − 1

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
−1 1)

 
 
(
𝑒−𝑛𝜆1𝛿𝑥 0 0
0 𝑒−𝑛𝜆2𝛿𝑥 0
0 0 1

)(

1 0 0
𝑒−𝜆1𝛿𝑥 − 1

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
1 0

1 1 1

)𝐲0 

=

(

 
 
 

𝑒−𝑛𝜆1𝛿𝑥

(1 − 𝑒−𝜆1𝛿𝑥)(𝑒−𝑛𝜆1𝛿𝑥 − 𝑒−𝑛𝜆2𝛿𝑥)

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥

𝑒−𝑛𝜆2𝛿𝑥(1 − 𝑒−𝜆1𝑥) − 𝑒−𝑛𝜆1𝛿𝑥(1 − 𝑒−𝜆2𝛿𝑥)

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
+ 1)

 
 
 

 

Discounted QALYs are calculated as a sum of the Markov occupancies across all cycles 

weighted by the health state utility value and the discounting function. Let 𝑢Unaffected be 

the health state utility value for the healthy state and 𝑢Affected be the health state utility 

value in the diseased state. As we are working analytically we assume an infinite 

number of cycles: 

𝑄𝐴𝐿𝑌𝑑 = 𝑢Unaffected∑𝑦𝑛1𝑒
−𝑟𝑛𝛿𝑥𝛿𝑥

∞

𝑛=0

+ 𝑢Affected∑𝑦𝑛2𝑒
−𝑟𝑛𝛿𝑥𝛿𝑥

∞

𝑛=0

 

Where 𝑦𝑛1 and 𝑦𝑛2 are the first and second components of 𝐲𝑛 (i.e., the state membership 

for the healthy and diseased states in cycle 𝑛). 

Let us consider the first component of this: 

∑𝑒−𝑟𝑛𝛿𝑥𝑢Unaffected𝑒
−𝑛𝜆1𝛿𝑥𝛿𝑥

∞

𝑛=0

= ∑𝑒−𝑛𝛿𝑥(𝑟+𝜆1)𝑢Unaffected𝛿𝑥

∞

𝑛=0

 

= 𝑢Unaffected𝛿𝑥(1 + 𝑒
−𝛿𝑥(𝑟+𝜆1) + 𝑒−2𝛿𝑥(𝑟+𝜆1) + 𝑒−3𝛿𝑥(𝑟+𝜆1)

+⋯) 

= 𝑢Unaffected𝛿𝑥∑(𝑒−𝛿𝑥(𝑟+𝜆1))
𝑛

∞

𝑛=0

 

This is a geometric series, and since ∑ 𝑥𝑛∞
𝑛=0 = (1 − 𝑥)−1, we obtain 

𝑢Unaffected𝛿𝑥

1 − 𝑒−𝛿𝑥(𝑟+𝜆1)
 

We now take the limit as 𝛿𝑥 → 0 using L’Hôpital’s rule 
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lim
𝛿𝑥→0

𝑢Unaffected𝛿𝑥

1 − 𝑒−𝛿𝑥(𝑟+𝜆1)
= lim
𝛿𝑥→0

𝑑
𝑑𝛿𝑥

(𝑢Unaffected𝛿𝑥)

𝑑
𝑑𝛿𝑥

(1 − 𝑒−𝛿𝑥(𝑟+𝜆1))
 

= lim
𝛿𝑥→0

𝑢Unaffected
(𝑟 + 𝜆1)𝑒−𝛿𝑥

(𝑟+𝜆1)
 

=
𝑢Unaffected
𝑟 + 𝜆1

 

This is exactly the component of discounted QALYs in the unaffected state as produced 

using the MGF method. 

For the second component, we proceed exactly as for the first component: 

𝑢Affected∑𝑦𝑛2𝑒
−𝑟𝑛𝛿𝑥𝛿𝑥

∞

𝑛=0

=
𝑢Affected(1 − 𝑒

−𝜆1𝛿𝑥)𝛿𝑥

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
∑(𝑒−𝑛𝜆1𝛿𝑥 − 𝑒−𝑛𝜆2𝛿𝑥)𝑒−𝑟𝑛𝛿𝑥
∞

𝑛=0

 

=
𝑢Affected(1 − 𝑒

−𝜆1𝛿𝑥)𝛿𝑥

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
∑(𝑒−𝑛𝛿𝑥(𝜆1+𝑟) − 𝑒−𝑛𝛿𝑥(𝜆2+𝑟))

∞

𝑛=0

 

=
𝑢Affected(1 − 𝑒

−𝜆1𝛿𝑥)𝛿𝑥

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
(∑(𝑒−𝛿𝑥(𝜆1+𝑟))

𝑛
∞

𝑛=0

−∑(𝑒−𝛿𝑥(𝜆2+𝑟))
𝑛

∞

𝑛=0

) 

=
𝑢Affected(1 − 𝑒

−𝜆1𝛿𝑥)𝛿𝑥

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
(

1

1 − 𝑒−𝛿𝑥(𝜆1+𝑟)
−

1

1 − 𝑒−𝛿𝑥(𝜆2+𝑟)
) 

=
𝑢Affected(1 − 𝑒

−𝜆1𝛿𝑥)𝛿𝑥(𝑒−𝛿𝑥(𝜆1+𝑟) − 𝑒−𝛿𝑥(𝜆2+𝑟))

(𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥)(1 − 𝑒−𝛿𝑥(𝜆1+𝑟))(1 − 𝑒−𝛿𝑥(𝜆2+𝑟))
 

=
𝑢Affected(1 − 𝑒

−𝜆1𝛿𝑥)𝛿𝑥𝑒−𝛿𝑥𝑟

(1 − 𝑒−𝛿𝑥(𝜆1+𝑟))(1 − 𝑒−𝛿𝑥(𝜆2+𝑟))
 

=
𝑢Affected(1 − 𝑒

−𝜆1𝛿𝑥)𝛿𝑥

(𝑒𝛿𝑥𝑟 − 𝑒−𝛿𝑥𝜆1)(𝑒𝛿𝑥𝑟 − 𝑒−𝛿𝑥𝜆2)
 

Taking the limit as 𝛿𝑥 → 0: 

𝑢Affected lim
𝛿𝑥→0

(1 − 𝑒−𝜆1𝛿𝑥)𝛿𝑥

(𝑒𝛿𝑥𝑟 − 𝑒−𝛿𝑥𝜆1)(𝑒𝛿𝑥𝑟 − 𝑒−𝛿𝑥𝜆2)
= 𝑢Affected

𝜆1
(𝑟 + 𝜆1)(𝑟 + 𝜆2)

 

Which again exactly matches the results from the MGF method. 
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State occupancy equations 
It can also be demonstrated that the same result is obtained if equations for the state 

occupancy over time are identified analytically. Let 𝐲(𝑥) = [𝑦1(𝑥) 𝑦2(𝑥) 𝑦3(𝑥)]
𝑇 

denote the probability that an individual is in each of the three states at a given time 𝑥. 

𝑦1(𝑥) = Pr(𝑋1 > 𝑥) 

= 1 − 𝐹𝑋1(𝑥) 

= 𝑒−𝜆1𝑥 

𝑦2(𝑥) = Pr(𝑋1 < 𝑥 < 𝑋1 + 𝑋2) 

= ∫ 𝑓𝑋1(𝑥1) (1 − 𝐹𝑋2(𝑥 − 𝑥1)) 𝑑𝑥1

𝑥

0

 

= ∫ 𝜆1𝑒
−𝜆1𝑥1𝑒−𝜆2(𝑥−𝑥1)𝑑𝑥1

𝑥

0

 

=
𝜆1

𝜆1 − 𝜆2
𝑒−𝜆2𝑥(1 − 𝑒−𝑥(𝜆1−𝜆2)) 

𝑦3(𝑥) = Pr(𝑥 > 𝑋1 + 𝑋2) 

= ∫ 𝑓𝑋1(𝑥1)𝐹𝑋2(𝑥 − 𝑥1)𝑑𝑥1

𝑥

0

 

= ∫ 𝜆1𝑒
−𝜆1𝑥1(1 − 𝑒−𝜆2(𝑥−𝑥1))𝑑𝑥1

𝑥

0

 

= 1 − 𝑒−𝜆1𝑥 +
𝜆1

𝜆1 − 𝜆2
(𝑒−𝜆1𝑥 − 𝑒−𝜆2𝑥) 

The lifetime discounted QALYs in the unaffected state are therefore: 

∫ 𝑦1(𝑥)𝑢Unaffected𝑒
−𝑟𝑥𝑑𝑥

∞

0

= 𝑢Unaffected∫ 𝑒−(𝜆1+𝑟)𝑥𝑑𝑥
∞

0

=
𝑢Unaffected
𝜆1 + 𝑟

 

And in the affected state: 

∫ 𝑦2(𝑥)𝑢Affected𝑒
−𝑟𝑥𝑑𝑥

∞

0

= 𝑢Affected∫
𝜆1

𝜆1 − 𝜆2
𝑒−𝜆2𝑥(1 − 𝑒−𝑥(𝜆1−𝜆2))𝑒−𝑟𝑥𝑑𝑥

∞

0

= 𝑢Affected
𝜆1

𝜆1 − 𝜆2
(∫ 𝑒−𝜆2𝑥𝑒−𝑟𝑥𝑑𝑥

∞

0

−∫ 𝑒−𝜆2𝑥(𝑒−𝑥(𝜆1−𝜆2))𝑒−𝑟𝑥𝑑𝑥
∞

0

)

= 𝑢Affected
𝜆1

𝜆1 − 𝜆2
(

1

𝑟 + 𝜆2
−

1

𝑟 + 𝜆1
) = 𝑢Affected

𝜆1
𝜆1 − 𝜆2

(
𝑟 + 𝜆1 − (𝑟 + 𝜆2)

(𝑟 + 𝜆2)(𝑟 + 𝜆1)
)

= 𝑢Affected
𝜆1

(𝑟 + 𝜆2)(𝑟 + 𝜆1)
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These both agree exactly with the results of the MGF method. 
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Appendix 2: Example of including cycles in the MGF method 

In this appendix we expand on an example given within the main paper to incorporate a 

cycle. 

The figure for the model is given below (contrast with Fig. 2 which does not include the 

possibility of returning from the Transplant state to the Dialysis state). It uses the 

statistical flowgraph model / pattern mixture approach to define competing risks. 

 

To account for the fact that there could be any number of transplantations, we introduce 

an additional subscript for the TTE variables corresponding to transplantation and graft 

failure. 𝑋12𝑘 is the waiting time in dialysis before undergoing the 𝑘th transplantation and 

𝑋21𝑘 is the time with a transplant prior to graft failure and returning to dialysis. There is 

no need to introduce additional subscripts for 𝑋13 and 𝑋23 since Dead is an absorbing 

state. 

We introduce two new random variables for convenience: 𝐾 denotes the number of 

transplants a patient receives in their lifetime, and 𝐷 is 1 if they die with a transplant or 

0 if they die while on dialysis (note that if 𝐷 = 1 then 𝐾 ≥ 1). 

In this example we focus on calculating the discounted life years lived on dialysis. The 

same methodology can be employed to calculate other discounted payoffs. 

The expected discounted life years lived on dialysis is factorised across the different 

combinations of 𝐾 and 𝐷: 
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𝔼 [𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

] = ∑∑Pr(𝐾 = 𝑘,𝐷 = 𝑑) 𝔼 [ 𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

∣∣ 𝐾 = 𝑘, 𝐷 = 𝑑 ]

1

𝑑=0

∞

𝑘=0

 

By simple consideration of the branch probabilities, we find: 

Pr(𝐾 = 𝑘, 𝐷 = 0) = 𝑝12
𝑘 𝑝21

𝑘 𝑝13 

Pr(𝐾 = 𝑘, 𝐷 = 1) = 𝑝12
𝑘 𝑝21

𝑘−1𝑝23,  𝑘 ≥ 1 

We then develop formulae for the discounted life years lived in dialysis according to the 

values of 𝐾 and 𝐷: 

𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

∣ (𝐾 = 𝑘, 𝐷 = 0)

= (∑ ∫ 𝑒−𝑟𝑥𝑑𝑥
[∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1 ]+𝑋12(𝑚+1)

∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1

𝑘−1

𝑚=0

) + ∫ 𝑒−𝑟𝑥𝑑𝑥
[∑ 𝑋12𝑛+𝑋21𝑛
𝑘
𝑛=1 ]+𝑋13

∑ 𝑋12𝑛+𝑋21𝑛
𝑘
𝑛=1

 

𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

∣ (𝐾 = 𝑘, 𝐷 = 1) = ∑ ∫ 𝑒−𝑟𝑥𝑑𝑥
[∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1 ]+𝑋12(𝑚+1)

∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1

𝑘−1

𝑚=0

 

For the “special case” of 𝐾 = 0 (implies 𝐷 = 0): 

𝔼 [𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

∣ (𝐾 = 0, 𝐷 = 0)] = 𝔼 [∫ 𝑒−𝑟𝑥𝑑𝑥
𝑋13

0

] = 𝔼 [
1

𝑟
(1 − 𝑒−𝑟𝑋13)]

=
1

𝑟
(1 −𝑀𝑋13(−𝑟)) 

And for the “general case” of 𝐾 ≥ 1, we note that a simplification is possible since one 

summation occurs whether 𝐷 equals 0 or 1: 

𝔼 [𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

∣ (𝐾 = 𝑘)]

= 𝔼 [∑ ∫ 𝑒−𝑟𝑥𝑑𝑥
[∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1 ]+𝑋12(𝑚+1)

∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1

𝑘−1

𝑚=0

]

+ Pr(𝐷 = 0 ∣ 𝐾 = 𝑘 )𝔼 [∫ 𝑒−𝑟𝑥𝑑𝑥
[∑ 𝑋12𝑛+𝑋21𝑛
𝑘
𝑛=1 ]+𝑋13

∑ 𝑋12𝑛+𝑋21𝑛
𝑘
𝑛=1

] 

We first consider the summation from 𝑚 = 0 to 𝑘 − 1, noting crucially that all 𝑋12𝑛 and 

𝑋21𝑛 are independent of each other and have identical MGFs equal to 𝑀𝑋12(⋅) and 

𝑀𝑋21(⋅) respectively: 
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𝔼 [∑ ∫ 𝑒−𝑟𝑥𝑑𝑥
[∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1 ]+𝑋12(𝑚+1)

∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1

𝑘−1

𝑚=0

]

=
1

𝑟
𝔼 [∑ 𝑒−𝑟(∑ 𝑋12𝑛+𝑋21𝑛

𝑚
𝑛=1 ) − 𝑒−𝑟([∑ 𝑋12𝑛+𝑋21𝑛

𝑚
𝑛=1 ]+𝑋12(𝑚+1))

𝑘−1

𝑚=0

]

=
1

𝑟
𝔼 [∑ 𝑒−𝑟(∑ 𝑋12𝑛+𝑋21𝑛

𝑚
𝑛=1 )(1 − 𝑒−𝑟𝑋12(𝑚+1))

𝑘−1

𝑚=0

]

=
1

𝑟
𝔼 [∑(1 − 𝑒−𝑟𝑋12(𝑚+1))∏𝑒−𝑟𝑋12𝑛𝑒−𝑟𝑋21𝑛

𝑚

𝑛=1

𝑘−1

𝑚=0

]

=
1

𝑟
(∑ (1 −𝑀𝑋12(−𝑟))∏𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)

𝑚

𝑛=1

𝑘−1

𝑚=0

)

=
1 −𝑀𝑋12(−𝑟)

𝑟
∑ (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))

𝑚
𝑘−1

𝑚=0

 

And now the second component of the formula: 

𝔼 [∫ 𝑒−𝑟𝑥𝑑𝑥
[∑ 𝑋12𝑛+𝑋21𝑛
𝑘
𝑛=1 ]+𝑋13

∑ 𝑋12𝑛+𝑋21𝑛
𝑘
𝑛=1

] =
1

𝑟
𝔼 [𝑒−𝑟(∑ 𝑋12𝑛+𝑋21𝑛

𝑘
𝑛=1 ) − 𝑒−𝑟([∑ 𝑋12𝑛+𝑋21𝑛

𝑘
𝑛=1 ]+𝑋13)]

=
1

𝑟
𝔼 [𝑒−𝑟(∑ 𝑋12𝑛+𝑋21𝑛

𝑘
𝑛=1 )(1 − 𝑒−𝑟𝑋13)]

=
1

𝑟
𝔼 [(1 − 𝑒−𝑟𝑋13)∏𝑒−𝑟𝑋12𝑛𝑒−𝑟𝑋21𝑛

𝑘

𝑛=1

]

=
1

𝑟
𝔼 [(1 − 𝑀𝑋13(−𝑟))∏𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)

𝑘

𝑛=1

]

=
1 −𝑀𝑋13(−𝑟)

𝑟
(𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))

𝑘

 

Bringing together the special and the general case we now have: 
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𝔼 [𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

]

= Pr(𝐾 = 0, 𝐷 = 0) 𝔼 [ 𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

∣∣ 𝐾 = 0, 𝐷 = 0 ]

+∑Pr(𝐾 = 𝑘)𝔼 [ 𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

∣∣ 𝐾 = 𝑘 ]

∞

𝑘=1

=
𝑝13
𝑟
(1 − 𝑀𝑋13(−𝑟))

+∑(𝑝12
𝑘 𝑝21

𝑘−1(𝑝21𝑝13 + 𝑝23) (
1 −𝑀𝑋12(−𝑟)

𝑟
∑ (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))

𝑚
𝑘−1

𝑚=0

∞

𝑘=1

+
𝑝21𝑝13

(𝑝21𝑝13 + 𝑝23)

1 − 𝑀𝑋13(−𝑟)

𝑟
(𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))

𝑘

))

=
𝑝13
𝑟
(1 − 𝑀𝑋13(−𝑟))

+
1

𝑟
((𝑝21𝑝13 + 𝑝23) (1

− 𝑀𝑋12(−𝑟))∑(𝑝12
𝑘 𝑝21

𝑘−1 ∑ (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))
𝑚

𝑘−1

𝑚=0

)

∞

𝑘=1

+ 𝑝21𝑝13 (1 −𝑀𝑋13(−𝑟))∑𝑝12
𝑘 𝑝21

𝑘−1 (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))
𝑘

∞

𝑘=1

) 

We then use the following equation to simplify (assumes 𝑝, 𝑏 < 1): 

∑𝑎𝑝𝑘 (∑ 𝑏𝑚
𝑘−1

𝑚=0

)

∞

𝑘=1

=
𝑎𝑝

(1 − 𝑝)(1 − 𝑏𝑝)
 

∑(𝑝12
𝑘 𝑝21

𝑘−1 ∑ (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))
𝑚

𝑘−1

𝑚=0

)

∞

𝑘=1

=
𝑎𝑝

(1 − 𝑝)(1 − 𝑏𝑝)
 

Where 

𝑎 = 𝑝21
−1 

𝑝 = 𝑝12𝑝21 

𝑏 = 𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟) 

Therefore 
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∑(𝑝12
𝑘 𝑝21

𝑘−1 ∑ (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))
𝑚

𝑘−1

𝑚=0

)

∞

𝑘=1

=
𝑝12

(1 − 𝑝12𝑝21) (1 − 𝑝12𝑝21𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))
 

And the more recognisable infinite series: 

∑𝑎𝑟𝑗
∞

𝑗=0

=
𝑎

1 − 𝑟
 

To simplify 

∑𝑝12
𝑘 𝑝21

𝑘−1 (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))
𝑘

∞

𝑘=1

 

By setting 

𝑗 = 𝑘 − 1 

𝑎 = 𝑝12𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟) 

𝑟 = 𝑝12𝑝21𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟) 

Such that 

∑𝑝12
𝑘 𝑝21

𝑘−1 (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))
𝑘

∞

𝑘=1

=
𝑝12𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)

1 − 𝑝12𝑝21𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)
 

So finally we have: 

𝔼 [𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

] 

=
1

𝑟
(𝑝13 (1 − 𝑀𝑋13(−𝑟)) +

𝑝12(𝑝21𝑝13 + 𝑝23) (1 − 𝑀𝑋12(−𝑟))

(1 − 𝑝12𝑝21) (1 − 𝑝12𝑝21𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))

+
𝑝12𝑝21𝑝13 (1 − 𝑀𝑋13(−𝑟))𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)

1 − 𝑝12𝑝21𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)
) 
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Appendix 3: Independent time-to-event distributions approach to 

competing risks 

In this approach it is assumed that there are multiple competing risks, represented by 

time-to-event random variables 𝑋1, 𝑋2, …, and it is further assumed that these are 

independent. All but the earliest of these time-to-event variables are latent (not 

observed). Such a description of competing events often arises from evidence synthesis, 

where different sources provide time-to-event distributions. 

The method for solving such problems involves mapping from this formulation to the 

pattern-mixture approach described above, i.e., to estimate the categorical distribution 

for which event occurs first, and for each of the possible events to derive the conditional 

distribution (and more importantly, its EMGF), given that it was the earliest event. 

In summary (assuming there are only two competing risks), we need to calculate: 

𝑝 = Pr(𝐷 = 1) = Pr(𝑋1 < 𝑋2) 

𝔼[𝑋1 ∣∣ 𝑋1 < 𝑋2 ] 

𝑀𝑋1∣𝑋1<𝑋2(𝑡) = 𝔼[ 𝑒
𝑡𝑋1 ∣∣ 𝑋1 < 𝑋2 ] 

𝑀𝑋1∣𝑋1<𝑋2
𝑗 (𝑡) = 𝔼[𝑋1

𝑗
𝑒𝑡𝑋1 ∣∣ 𝑋1 < 𝑋2 ] 

These will require integrals involving conditional probability distributions such as 

𝑓𝑋1∣𝑋1<𝑋2(𝑥), which can be estimated either by multiplying the probability density 

function of 𝑋1 by the survivor function of 𝑋2 or by multiplying the probability density 

function of 𝑋2 by the cumulative distribution function of 𝑋1: 

𝑓𝑋1∣𝑋1<𝑋2(𝑥) =
𝑓𝑋1(𝑥) (1 − 𝐹𝑋2(𝑥))

∫ 𝑓𝑋2(𝑥)𝐹𝑋1(𝑥)𝑑𝑥
∞

0

=
𝑓𝑋1(𝑥) (1 − 𝐹𝑋2(𝑥))

∫ 𝑓𝑋1(𝑥) (1 − 𝐹𝑋2(𝑥)) 𝑑𝑥
∞

0

 

We then use the law of the unconscious statistician for all necessary calculations: 

𝔼[ 𝑔(𝑋1) ∣∣ 𝑋1 < 𝑋2 ] =
∫ 𝑔(𝑥)𝑓𝑋1(𝑥) (1 − 𝐹𝑋2(𝑥))𝑑𝑥
∞

0

∫ 𝑓𝑋2(𝑥)𝐹𝑋1(𝑥)𝑑𝑥
∞

0

 

Where 𝑔(𝑥) is any function of interest, e.g., 𝑔(𝑥) = 𝑒−𝑟𝑥 to calculate 𝑀𝑋1∣𝑋1<𝑋2(−𝑟). 
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Analytical results 
If 𝑋1 and 𝑋2 are independent exponentially distributed random variables, with rate 

parameters 𝜆1 and 𝜆2 respectively, then the conditional distributions for each variable 

(conditional on it being the earlier time-to-event) are exponential, with rate parameters 

both equal to (𝜆1 + 𝜆2), and the probability that 𝑋1 is the earlier event is: 

𝔼[𝟏𝑋1<𝑋2] =
𝜆1

𝜆1 + 𝜆2
 

Similar results are obtained if 𝑋1 and 𝑋2 are Weibull with common shape parameter, 𝑘, 

but different scale parameters 𝜆1 and 𝜆2. In this case the conditional distributions are 

both Weibull with equal scale and shape parameters. The scale parameter is 

𝜆12 =
𝜆1𝜆2

(𝜆1
𝑘 + 𝜆2

𝑘)
1
𝑘

 

And the shape parameter is 𝑘. The probability that 𝑋1 is the earlier event is 

𝔼[𝟏𝑋1<𝑋2] =
𝜆2
𝑘

𝜆1
𝑘 + 𝜆2

𝑘 

General case 
In most cases it is unlikely that the conditional distributions will match known 

distributions with MGFs. In this case numerical integration is recommended. 

Note that when there are more than two competing risks the complexity is not greatly 

increased: 

𝑝𝑖 = 𝔼 [𝟏𝑋𝑖=min
𝑗
𝑋𝑗
] = ∫ 𝑓𝑋𝑖(𝑥)∏(1 − 𝐹𝑋𝑗(𝑥))

𝑗≠𝑖

𝑑𝑥
∞

0

 

𝑓𝑋𝑖∣𝑋𝑖=min
𝑗
𝑋𝑗
(𝑥) =

1

𝑝𝑖
𝑓𝑋𝑖(𝑥)∏(1 − 𝐹𝑋𝑗(𝑥))

𝑗≠𝑖

 

Only 1-dimensional integrals need to be calculated, which can be efficiently estimated 

numerically. 

When Kaplan–Meier estimators are involved, at least one of the time-to-event 

distributions is discrete, such that integrals involving 𝑓(𝑥) are not appropriate, but 

summation or Riemann–Stieltjes integrals must be used. 
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Appendix 4: Derivations of MGFs and EMGFs for certain time-to-

event distributions 

In this appendix we provide analytical (E)MGFs with derivations for a number of time-

to-event distributions which may be encountered in health economic modelling. The 

distributions are: 

 Exponential distribution – The hazard of the event is constant over time; 

 Gamma distribution – The hazard function is either concave and increasing over 

time or convex and decreasing over time; 

 Degenerate distribution – The event always happens after a particular length of 

time; 

 Uniform distribution – The event is equally likely to occur at any time during a 

given window; 

 Kaplan–Meier estimator – Empirical survival data (including censored 

observations) is used to estimate the survivor function. 

Many of the derivations use the Gamma function (a generalisation of the factorial 

function beyond the natural/counting numbers), which has no closed form but is 

available in statistical packages and spreadsheet software: 

Γ(𝑧) = ∫ 𝑥𝑧−1𝑒−𝑧𝑑𝑥
∞

0

 

Exponential random variable 

MGF 
𝑋 ∼ 𝐸𝑥𝑝(𝜆)

𝑓𝑋(𝑥) = 𝜆𝑒
−𝜆𝑥

𝑀𝑋(𝑡) = 𝔼[𝑒
𝑡𝑋]

= ∫ 𝑒𝑡𝑥𝜆𝑒−𝜆𝑥𝑑𝑥
∞

0

= ∫ 𝜆𝑒−(𝜆−𝑡)𝑥𝑑𝑥
∞

0

= [−
𝜆

𝜆 − 𝑡
𝑒−(𝜆−𝑡)𝑥]

0

∞

=
𝜆

𝜆 − 𝑡
,  𝑡 < 𝜆
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EMGF 

𝑀𝑋
𝑛(𝑡) = 𝔼[𝑋𝑛𝑒𝑡𝑋]

= ∫ 𝑥𝑛𝑒𝑡𝑥𝜆𝑒−𝜆𝑥𝑑𝑥
∞

0

= 𝜆∫ 𝑥𝑛𝑒−(𝜆−𝑡)𝑥𝑑𝑥
∞

0

=
𝜆

(𝜆 − 𝑡)𝑛
∫ ((𝜆 − 𝑡)𝑥)

𝑛
𝑒−(𝜆−𝑡)𝑥𝑑𝑥

∞

0

 

Let 𝑛 = 𝑧 − 1 and let 𝑢 = (𝜆 − 𝑡)𝑥 (𝑡 < 𝜆): 

𝑀𝑋
𝑛(𝑡) =

𝜆

(𝜆 − 𝑡)𝑧−1
∫

𝑢𝑧−1𝑒−𝑢𝑑𝑢

𝜆 − 𝑡

∞

0

=
𝜆

(𝜆 − 𝑡)𝑧
∫ 𝑢𝑧−1𝑒−𝑢𝑑𝑢
∞

0

=
𝜆

(𝜆 − 𝑡)𝑧
Γ(𝑧)

=
𝜆(𝑧 − 1)!

(𝜆 − 𝑡)𝑧

=
𝜆𝑛!

(𝜆 − 𝑡)𝑛+1

 

Gamma random variable 

MGF 

𝑋 ∼ Γ(𝛼, 𝛽)

𝑓𝑋(𝑥) =
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥

𝑀𝑋(𝑡) = 𝔼[𝑒
𝑡𝑋]

= ∫ 𝑒𝑡𝑥
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥𝑑𝑥

∞

0

=
𝛽𝛼

Γ(𝛼)
∫ 𝑥𝛼−1𝑒−(𝛽−𝑡)𝑥𝑑𝑥
∞

0⏟            
𝑢=(𝛽−𝑡)𝑥, 𝑡<𝛽

=
𝛽𝛼

Γ(𝛼)(𝛽 − 𝑡)𝛼
∫ 𝑢𝛼−1𝑒−𝑢𝑑𝑢
∞

0

=
𝛽𝛼

Γ(𝛼)(𝛽 − 𝑡)𝛼
Γ(𝛼)

=
𝛽𝛼

(𝛽 − 𝑡)𝛼

= (
𝛽

𝛽 − 𝑡
)
𝛼

= (1 −
𝑡

𝛽
)
−𝛼
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EMGF 

𝑀𝑋
𝑛(𝑡) = 𝔼[𝑋𝑛𝑒𝑡𝑋]

= ∫
𝑥𝑛𝑒𝑡𝑥𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥𝑑𝑥

∞

0

=
𝛽𝛼

Γ(𝛼)
∫ 𝑥𝑛+𝛼−1𝑒−(𝛽−𝑡)𝑥𝑑𝑥
∞

0

=
Γ(𝑛 + 𝛼)𝛽𝛼

Γ(𝛼)(𝛽 − 𝑡)𝑛+𝛼

=
Γ(𝑛 + 𝛼)

Γ(𝛼)(𝛽 − 𝑡)𝑛
(1 −

𝑡

𝛽
)
−𝛼

 

Again, assuming 𝑡 < 𝛽. 

Degenerate distribution 
This distribution has all its probability mass concentrated on a single point, 𝑎. Its 

expected value is 𝑎 and as a constant random variable, 𝔼[𝑔(𝑋)] = 𝑔(𝔼[𝑋]) for any 

function 𝑔(⋅). 

MGF 

𝑋 ∼ 𝛿(𝑎)

𝑀𝑋(𝑡) = 𝔼[𝑒
𝑡𝑋]

= 𝑒𝑡𝑎
 

EMGF 

𝑀𝑋
𝑛(𝑡) = 𝔼[𝑋𝑛𝑒𝑡𝑋] = 𝑎𝑛𝑒𝑡𝑎 

Uniform distribution 

MGF 

𝑋 ∼ 𝑈(𝑎, 𝑏)

𝑓𝑋(𝑥) = {
(𝑏 − 𝑎)−1,  𝑎 ≤ 𝑥 ≤ 𝑏

0,  otherwise

𝑀𝑋(𝑡) = 𝔼[𝑒
𝑡𝑋]

= ∫
𝑒𝑡𝑥

𝑏 − 𝑎
𝑑𝑥

𝑏

𝑎

= [
𝑒𝑡𝑥

𝑡(𝑏 − 𝑎)
]
𝑎

𝑏

=
𝑒𝑡𝑏 − 𝑒𝑡𝑎

𝑡(𝑏 − 𝑎)
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EMGF 

𝑀𝑋
𝑛(𝑡) = 𝔼[𝑋𝑛𝑒𝑡𝑋]

= ∫
𝑥𝑛𝑒𝑡𝑥

𝑏 − 𝑎
𝑑𝑥

𝑏

𝑎

= ∫
𝑥𝑛𝑒𝑡𝑥

𝑏 − 𝑎
𝑑𝑥

𝑏

0

−∫
𝑥𝑛𝑒𝑡𝑥

𝑏 − 𝑎
𝑑𝑥

𝑎

0

 

Let 𝑛 = 𝑧 − 1 and 𝑢 = −𝑡𝑥 and assume 𝑡 < 0: 

∫
𝑥𝑛𝑒𝑡𝑥

𝑏 − 𝑎
𝑑𝑥

𝑏

0

−∫
𝑥𝑛𝑒𝑡𝑥

𝑏 − 𝑎
𝑑𝑥

𝑎

0

=
𝛾(𝑧,−𝑡𝑏) − 𝛾(𝑧, −𝑡𝑎)

(−𝑡)𝑧(𝑏 − 𝑎)
 

Where 𝛾(𝑧, 𝛼) = ∫ 𝑥𝑧−1𝑒−𝑥𝑑𝑥
𝛼

0
 (the lower incomplete gamma function). 

Kaplan–Meier estimator 
Given a Kaplan–Meier curve (where 𝑑𝑖 and 𝑛𝑖  are the number of individuals 

dying/failing at time 𝑥𝑖  and the number at risk just prior to time 𝑥𝑖): 

𝑆(𝑥) = ∏ (1 −
𝑑𝑖
𝑛𝑖
)

𝑖:𝑥𝑖<𝑥

 

The EMGF when 𝑆(𝑥) = 0 for some 𝑥 is: 

𝑀𝑋
𝑛(𝑡) = ∫ 𝑥𝑛𝑒𝑡𝑥𝑑𝐹(𝑥)

∞

0

= −∫ 𝑥𝑛𝑒𝑡𝑥𝑑𝑆(𝑥)
∞

0

=∑𝑥𝑖
𝑛𝑒𝑡𝑥𝑖(𝑆(𝑥𝑖−1) − 𝑆(𝑥𝑖))

𝑖

 

Where we set 𝑆(𝑥0) = 1. Note that ∫ 𝑔(𝑥)𝑑𝐹(𝑥)
𝑏

𝑎
 is the Riemann–Stieltjes integral of 

𝑔(𝑥) with respect to 𝐹(𝑥). 

This means that to calculate the (E)MGF for a Kaplan–Meier distribution we can 

calculate components of the (E)MGF alongside our calculation of the survival function, 

and eventually sum these. 

If the Kaplan–Meier estimator is not a proper distribution function (i.e., survival does 

not tend to zero as time tends towards infinity), we can still obtain a relevant EMGF. 

First, suppose that at 𝑥𝑖 = ∞ the survival curve drops to 0, meaning that we add a term 

lim
𝑥𝑖→∞

𝑥𝑖
𝑛𝑒𝑡𝑥𝑖(𝑆(𝑥𝑖−1) − 𝑆(𝑥𝑖)) = 0 (if 𝑡 < 0), i.e., there is no adjustment needed if we 

assume that a proportion never transitions, although this is unlikely to ever be a 
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realistic assumption. Alternatively we can extend the estimator with a parametric 

model and calculate a composite EMGF. If we define the parametric extension from a 

change point 𝑥⋆: 

𝑀𝑋
𝑛(𝑡) = ∑ 𝑥𝑖

𝑛𝑒𝑡𝑥𝑖(𝑆(𝑥𝑖−1) − 𝑆(𝑥𝑖))

𝑖:𝑥𝑖≤𝑥
⋆

+𝑆(𝑥⋆)∫ 𝑥𝑛𝑒𝑡𝑥𝑓(𝑥 − 𝑥⋆)𝑑𝑥
∞

𝑥⋆
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Appendix 5: Recommendations for numerical integration 

Many of the distributions frequently encountered in health economic modelling do not 

have a closed form, or convergent series representations, and so it is necessary to 

employ numerical integration techniques (or to make structural changes to the model 

so that the distribution can be approximated by an exponential, Erlang, Coxian or phase-

type distribution, as described by van Rosmalen et al.24). Well-established numerical 

methods can be employed, in particular Gaussian quadrature methods. 

Gauss–Laguerre quadrature with a simple substitution of 𝑢 = 𝑟𝑥 gives: 

𝑀𝑋(−𝑟) = ∫ 𝑒−𝑟𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

0

= ∫
1

𝑟
𝑒−𝑢𝑓𝑋(𝑢 𝑟⁄ )𝑑𝑢

∞

0

≈
1

𝑟
∑𝑤𝑖𝑓𝑋(𝑢𝑖 𝑟⁄ )

𝑛

𝑖=1

 

Where 𝑢𝑖  and 𝑤𝑖 are the nodes and weights for 𝑛-node Gaussian quadrature. 

However, when 𝑟 is small this leads to evaluation of 𝑓𝑋 at large values (where it is 

typically close to zero), and ultimately very poor numerical performance. 

Gauss–Laguerre quadrature can still be appropriate if instead the exponential term is 

extracted: 

𝑀𝑋(−𝑟) = ∫ 𝑒−𝑟𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

0

= ∫ 𝑒−𝑥𝑒(1−𝑟)𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

0

≈∑𝑤𝑖𝑒
(1−𝑟)𝑥𝑖𝑓𝑋(𝑥𝑖)

𝑛

𝑖=1

 

Gauss–Legendre quadrature can also be used with two different approaches. The first 

uses the substitution 𝑥 = (1 + 𝑢) (1 − 𝑢)⁄ : 

𝑀𝑋(−𝑟) = ∫ 𝑒−𝑟𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

0

= ∫ 𝑒−𝑟(
1+𝑢
1−𝑢

)𝑓𝑋 (
1 + 𝑢

1 − 𝑢
)

2

(1 − 𝑢)2
𝑑𝑢

1

−1

≈ 2∑𝑤𝑖(1 − 𝑢𝑖)
−2𝑒

−𝑟(
1+𝑢𝑖
1−𝑢𝑖

)
𝑓𝑋 (

1 + 𝑢𝑖
1 − 𝑢𝑖

)

𝑛

𝑖=1

 

The second approach is based on the quantile function and the substitution 𝑢 = 2𝑝 − 1: 

𝑀𝑋(−𝑟) = ∫ 𝑒−𝑟𝑄𝑋(𝑝)𝑑𝑝
1

0

=
1

2
∫ 𝑒−𝑟𝑄𝑋(

𝑢+1
2
)𝑑𝑢

1

−1

≈
1

2
∑𝑤𝑖𝑒

−𝑟𝑄𝑋(
𝑢𝑖+1
2
)

𝑛

𝑖=1

 

 

(48) 
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Of all the approaches, Equation (48) appears to have the most desirable numerical 

qualities, since it avoids excessive exploration of very low density areas. However, the 

quantile function may not be readily available for all distributions in all settings. 

In some cases it may be advantageous to split an integral in the following manner: 

∫ 𝑓(𝑥)𝑑𝑥
∞

0

= ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

+∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎

 

=
𝑎

2
∫ 𝑓 (

𝑎

2
(𝑢 + 1))𝑑𝑢

1

−1

+ 2∫ 𝑓 (𝑎 +
1 + 𝑢

1 − 𝑢
)

𝑑𝑢

(1 − 𝑢)2

1

−1

 

≈
𝑎

2
∑𝑤𝑖𝑓(𝑎(𝑢𝑖 + 1) 2⁄ )

𝑛

𝑖=1

+ 2∑
𝑤𝑖

(1 − 𝑢𝑖)2
𝑓 (𝑎 +

1 + 𝑢𝑖
1 − 𝑢𝑖

)

𝑛

𝑖=1

 

Where 𝑎 is selected such that [0, 𝑎) covers the majority of the behaviour of 𝑓(𝑥), and 

may be informed by properties of the underlying random variables (e.g., 𝑎 = 𝔼[𝑋] +

2√Var[𝑋]). 

Gaussian quadrature schemes have the advantage that they can be readily implemented 

in spreadsheet software, since the weights and quadrature points can be hard-coded 

(provided a constant number of nodes is used). 

Users are recommended to check that satisfactory convergence has been achieved, 

noting that errors will accumulate with arithmetic operations, and that convergence 

may depend on the values of parameters (e.g., in a probabilistic sensitivity analysis). 
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Appendix 6: R code listings for example 

MGF method 

# Load necessary libraries 

library(tidyverse) 

library(flexsurv) 

 

# [... Define parameters ...] 

 

# Probability density and cumulative distribution functions 

f_X1_treatment <- function(x) dweibull(x, scale = lambda_treatment, shape = 

k1) 

F_X1_treatment <- function(x) pweibull(x, scale = lambda_treatment, shape = 

k1) 

f_X1_control <- function(x) dweibull(x, scale = lambda_control, shape = k1) 

F_X1_control <- function(x) pweibull(x, scale = lambda_control, shape = k1) 

f_X2 <- function(x) dgompertz(x, rate = b2, shape = a2) 

F_X2 <- function(x) pgompertz(x, rate = b2, shape = a2) 

 

#' Convenience function for calculating discounted QALYs accrued between A and 

B 

#' 

#' @param mgf_a_0 M_A^(0)(-r) 

#' @param mgf_a_1 M_A^(1)(-r) 

#' @param mgf_a_2 M_A^(2)(-r) 

#' @param mgf_b_0 M_B^(0)(-r) 

#' @param mgf_b_1 M_B^(1)(-r) 

#' @param mgf_b_2 M_B^(2)(-r) 

MGF_qaly <- function(mgf_a_0, mgf_a_1, mgf_a_2, mgf_b_0, mgf_b_1, mgf_b_2) { 

  (( 

    (u0*mgf_a_0 + u1*mgf_a_1 + u2*mgf_a_2)*r^2 + 

    (u1*mgf_a_0 + 2*u2*mgf_a_1)*r + 

    (2*u2*mgf_a_0) 

   ) - ( 

    (u0*mgf_b_0 + u1*mgf_b_1 + u2*mgf_b_2)*r^2 + 

    (u1*mgf_b_0 + 2*u2*mgf_b_1)*r + 

    (2*u2*mgf_b_0) 

  ))/r^3 

} 

 

# Calculate probability X1 < X2 given receive treatment 

p_treatment <- integrate( 

  function(x) { f_X2(x)*F_X1_treatment(x) }, 

  lower = 0, 

  upper = Inf, 

  rel.tol = 1e-8 

)$value 
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# Calculate probability X1 < X2 given receive control 

p_control <- integrate( 

  function(x) { f_X2(x)*F_X1_control(x) }, 

  lower = 0, 

  upper = Inf, 

  rel.tol = 1e-8 

)$value 

 

# Calculate EMGFs for all variables with j = 0, 1, 2 

GM_X1_treatment <- map_dbl( 

  0:2, 

  ~ integrate( 

    function(x) { x^(.)*exp(-r*x) * f_X1_treatment(x) * (1-F_X2(x)) / 

p_treatment }, 

    lower = 0, 

    upper = Inf, 

    rel.tol = 1e-8 

  )$value 

) 

GM_X1_control <- map_dbl( 

  0:2, 

  ~ integrate( 

    function(x) { x^(.)*exp(-r*x) * f_X1_control(x) * (1-F_X2(x)) / p_control 

}, 

    lower = 0, 

    upper = Inf, 

    rel.tol = 1e-8 

  )$value 

) 

GM_X2_treatment <- map_dbl( 

  0:2, 

  ~ integrate( 

    function(x) { x^(.)*exp(-r*x) * f_X2(x) * (1-F_X1_treatment(x)) / (1-

p_treatment) }, 

    lower = 0, 

    upper = Inf, 

    rel.tol = 1e-8 

  )$value 

) 

GM_X2_control <- map_dbl( 

  0:2, 

  ~ integrate( 

    function(x) { x^(.)*exp(-r*x) * f_X2(x) * (1-F_X1_control(x)) / (1-

p_control) }, 

    lower = 0, 

    upper = Inf, 

    rel.tol = 1e-8 

  )$value 
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) 

GM_X3 <- map_dbl( 

  0:2, 

  ~ integrate( 

    function(x) { x^(.)*exp(-r*x) * dlnorm(x, meanlog = mu3, sdlog = sigma3) 

}, 

    lower = 0, 

    upper = Inf, 

    rel.tol = 1e-8 

  )$value 

) 

 

# Combine EMGFs to calculate costs and QALYs 

MGF <- data.frame( 

  arm = factor(c("Treatment", "Control")), 

  cost_stable = c( 

    c_treatment / r * (1 - p_treatment*GM_X1_treatment[1] - (1-

p_treatment)*GM_X2_treatment[1]), 

    c_control / r * (1 - p_control*GM_X1_control[1] - (1-

p_control)*GM_X2_control[1]) 

  ), 

  cost_progression = c(p_treatment, p_control) * c_progression * 

    c(GM_X1_treatment[1], GM_X1_control[1]), 

  cost_death = c_death * c( 

    p_treatment * GM_X1_treatment[1] * GM_X3[1] + (1-p_treatment) * 

GM_X2_treatment[1], 

    p_control * GM_X1_control[1] * GM_X3[1] + (1-p_control) * GM_X2_control[1] 

  ), 

  cost_progressive = c(p_treatment, p_control) * c_pd / r * 

    c(GM_X1_treatment[1], GM_X1_control[1]) * (1 - GM_X3[1]), 

  QALY_stable = v_sd*c( 

    p_treatment*MGF_qaly(1, 0, 0, GM_X1_treatment[1], GM_X1_treatment[2], 

GM_X1_treatment[3]) + 

      (1-p_treatment)*MGF_qaly(1, 0, 0, GM_X2_treatment[1], 

GM_X2_treatment[2], GM_X2_treatment[3]), 

    p_control*MGF_qaly(1, 0, 0, GM_X1_control[1], GM_X1_control[2], 

GM_X1_control[3]) + 

      (1-p_control)*MGF_qaly(1, 0, 0, GM_X2_control[1], GM_X2_control[2], 

GM_X2_control[3]) 

  ), 

  QALY_progressive = v_pd * c(p_treatment, p_control) * c( 

    MGF_qaly( 

      GM_X1_treatment[1], GM_X1_treatment[2], GM_X1_treatment[3], 

      GM_X1_treatment[1]*GM_X3[1], 

      GM_X1_treatment[2]*GM_X3[1] + GM_X1_treatment[1]*GM_X3[2], 

      GM_X1_treatment[3]*GM_X3[1] + 2*GM_X1_treatment[2]*GM_X3[2] + 

GM_X1_treatment[1]*GM_X3[3] 

    ), 
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    MGF_qaly( 

      GM_X1_control[1], GM_X1_control[2], GM_X1_control[3], 

      GM_X1_control[1]*GM_X3[1], 

      GM_X1_control[2]*GM_X3[1] + GM_X1_control[1]*GM_X3[2], 

      GM_X1_control[3]*GM_X3[1] + 2*GM_X1_control[2]*GM_X3[2] + 

GM_X1_control[1]*GM_X3[3] 

    ) 

  ) 

) %>% transmute( 

  arm = arm, 

  cost = cost_stable + cost_progression + cost_death + cost_progressive, 

  QALY = QALY_stable + QALY_progressive, 

  NMB = QALY * threshold - cost 

) 

 

Discrete event simulation 

# Load necessary libraries 

library(dplyr) 

library(flexsurv) 

 

# [... Define parameters ...] 

 

# Convenience function to calculate discounted QALYs 

qaly <- function(a, b) { 

  (exp(-r*a)*((a^2*u2+a*u1+u0)*r^2 + (2*a*u2+u1)*r + 2*u2)-exp(-

r*b)*((b^2*u2+b*u1+u0)*r^2 + (2*b*u2+u1)*r + 2*u2))/r^3 

} 

 

DES <- data.frame( 

  # Generate TTE random variables 

 

  iter = seq(1, n_DES), 

  X1.treatment = rweibull(n = n_DES, scale = lambda_treatment, shape = k1), 

  X1.control = rweibull(n = n_DES, scale = lambda_control, shape = k1), 

  X2 = rgompertz(n = n_DES, rate = b2, shape = a2), 

  X3 = rlnorm(n = n_DES, meanlog = mu3, sdlog = sigma3) 

) %>% mutate( 

  # Calculate path through model 

  progressed.treatment = (X1.treatment < X2), 

  progressed.control = (X1.control < X2), 

 

  # Calculate time in Stable state 

  LY_stable.treatment = pmin(X1.treatment, X2), 

  LY_stable.control = pmin(X1.control, X2), 

 

  # Calculate total time 

  LY.treatment = if_else(progressed.treatment, X1.treatment + X3, X2), 



 61 

  LY.control = if_else(progressed.control, X1.control + X3, X2), 

 

  # Calculate QALYs 

  QALY_stable.treatment = v_sd * qaly(0, LY_stable.treatment), 

  QALY_stable.control = v_sd * qaly(0, LY_stable.control), 

  QALY_progressive.treatment = if_else(progressed.treatment, v_pd * 

qaly(X1.treatment, X1.treatment+X3), 0), 

  QALY_progressive.control = if_else(progressed.control, v_pd * 

qaly(X1.control, X1.control+X3), 0), 

  QALY.treatment = QALY_stable.treatment + QALY_progressive.treatment, 

  QALY.control = QALY_stable.control + QALY_progressive.control, 

 

  # Calculate cost components 

  cost_stable.treatment = c_treatment / r * (1 - exp(-r * 

LY_stable.treatment)), 

  cost_stable.control = c_control / r * (1 - exp(-r * LY_stable.control)), 

  cost_progression.treatment = if_else(progressed.treatment, 

c_progression*exp(-r*X1.treatment), 0), 

  cost_progression.control = if_else(progressed.control, c_progression*exp(-

r*X1.control), 0), 

  cost_death.treatment = c_death * exp(-r*LY.treatment), 

  cost_death.control = c_death * exp(-r*LY.control), 

  cost_progressive.treatment = if_else(progressed.treatment, c_pd / r * (exp(-

r*X1.treatment) - exp(-r*(X1.treatment+X3))), 0), 

  cost_progressive.control = if_else(progressed.control, c_pd / r * (exp(-

r*X1.control) - exp(-r*(X1.control+X3))), 0), 

 

  # Calculate total costs 

  cost.treatment = cost_stable.treatment + cost_progression.treatment + 

cost_death.treatment + cost_progressive.treatment, 

  cost.control = cost_stable.control + cost_progression.control + 

cost_death.control + cost_progressive.control 

) 

 

Markov cohort simulation 

# Load necessary libraries 

library(heemod) 

library(tidyverse) 

 

# Function to prepare Markov model for given cycle length and tunnel 

# state limit 

prep_MM <- function(.cycle_length, .state_time_limit) { 

  lst( 

    cycle_length = .cycle_length, 

    state_time_limit = .state_time_limit, 

     

    par_mod = define_parameters( 
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      # Model parameters 

      dr_annual = 0.035, 

      cycle_length = .cycle_length, 

      dr = rescale_discount_rate(dr_annual, 1, cycle_length), 

      model_years = (model_time - 1) * cycle_length, 

      u0 = 0.95, 

      u1_abs = 0.002, 

      u1 = -u1_abs, 

      u2_abs = 0.0005, 

      u2 = -u2_abs, 

      v_sd = 0.9, 

      v_pd = 0.6, 

      c_treatment = 480, 

      c_control = 200, 

      c_progression = 3000, 

      c_death = 5000, 

      c_pd = 1000, 

      lambda_control = 1.5, 

      hr_treatment = 0.56, 

      k1 = 2, 

      lambda_treatment = lambda_control * hr_treatment ^ (-1 / k1), 

      a2 = 0.4, 

      b2 = 0.1, 

      mu3 = 0, 

      sigma3 = 1, 

 

      # Cumulative hazard of progression 

      CumHaz_progress_control_now = ((markov_cycle - 1) * cycle_length / 

lambda_control) ^ 

        k1, 

      CumHaz_progress_control_next = (markov_cycle * cycle_length / 

lambda_control) ^ 

        k1, 

      CumHaz_progress_control_incr = CumHaz_progress_control_next - 

CumHaz_progress_control_now, 

      CumHaz_progress_treatment_now = ((markov_cycle - 1) * cycle_length / 

lambda_treatment) ^ 

        k1, 

      CumHaz_progress_treatment_next = (markov_cycle * cycle_length / 

lambda_treatment) ^ 

        k1, 

      CumHaz_progress_treatment_incr = CumHaz_progress_treatment_next - 

CumHaz_progress_treatment_now, 

 

      # Cumulative hazard of death 

      CumHaz_death_stable_now = b2 / a2 * (exp(a2 * (markov_cycle - 1) * 

cycle_length) - 1), 
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      CumHaz_death_stable_next = b2 / a2 * (exp(a2 * markov_cycle * 

cycle_length) - 1), 

      CumHaz_death_stable_incr = CumHaz_death_stable_next - 

CumHaz_death_stable_now, 

      CumHaz_sum_control = CumHaz_progress_control_incr + 

CumHaz_death_stable_incr, 

      CumHaz_sum_treatment = CumHaz_progress_treatment_incr + 

CumHaz_death_stable_incr, 

 

      # Transition probabilities 

      p_remain_stable_control = exp(-CumHaz_sum_control), 

      p_remain_stable_treatment = exp(-CumHaz_sum_treatment), 

      p_progress_control = if_else( 

        CumHaz_sum_control > 0, 

        CumHaz_progress_control_incr / CumHaz_sum_control * 

          (1 - exp(-CumHaz_sum_control)), 

        0 

      ), 

      p_progress_treatment = if_else( 

        CumHaz_sum_treatment > 0, 

        CumHaz_progress_treatment_incr / CumHaz_sum_treatment * 

          (1 - exp(-CumHaz_sum_treatment)), 

        0 

      ), 

      p_death_stable_control = if_else( 

        CumHaz_sum_control > 0, 

        CumHaz_death_stable_incr / CumHaz_sum_control * 

          (1 - exp(-CumHaz_sum_control)), 

        0 

      ), 

      p_death_stable_treatment = if_else( 

        CumHaz_sum_treatment > 0, 

        CumHaz_death_stable_incr / CumHaz_sum_treatment * 

          (1 - exp(-CumHaz_sum_treatment)), 

        0 

      ), 

      p_death_progressive = define_survival( 

        distribution = "lnorm", 

         

        meanlog = mu3, 

        sdlog = sigma3 

      ) %>% compute_surv(time = state_time, cycle_length = cycle_length) 

    ), 

     

    # Transition matrix in control arm 

    mat_control = define_transition( 

      state_names = c("stable", "progressive", "death"), 
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      p_remain_stable_control, p_progress_control, p_death_stable_control, 

      0, C, p_death_progressive, 

      0, 0, 1 

    ), 

     

    # Transition matrix in treatment arm 

    mat_treatment = define_transition( 

      state_names = c("stable", "progressive", "death"), 

       

      p_remain_stable_treatment, p_progress_treatment, 

p_death_stable_treatment, 

      0, C, p_death_progressive, 

      0, 0, 1 

    ), 

     

    # Stable state payoffs 

    state_stable = define_state( 

      cost_undisc = cycle_length * dispatch_strategy(control = c_control, 

                                                     treatment = c_treatment), 

      QALY_undisc = cycle_length * v_sd * 

        (u0 + u1 * model_years + u2 * model_years ^ 2), 

      cost = discount(cost_undisc, r = dr), 

      QALY = discount(QALY_undisc, r = dr) 

    ), 

     

    # Progressive state payoffs 

    state_progressive = define_state( 

      cost_undisc = cycle_length * c_pd + if_else(state_time == 1, 

c_progression, 0), 

      QALY_undisc = cycle_length * v_pd * 

        (u0 + u1 * model_years + u2 * model_years ^ 2), 

      cost = discount(cost_undisc, r = dr), 

      QALY = discount(QALY_undisc, r = dr) 

    ), 

     

    # Death state payoffs 

    state_death = define_state( 

      cost_undisc = if_else(state_time == 1, c_death, 0), 

      QALY_undisc = 0, 

      cost = discount(cost_undisc, r = dr), 

      QALY = discount(QALY_undisc, r = dr) 

    ), 

     

    # Description of control arm 

    strat_control = define_strategy( 

      transition = mat_control, 

       

      stable = state_stable, 
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      progressive = state_progressive, 

      death = state_death 

    ), 

     

    # Description of treatment arm 

    strat_treatment = define_strategy( 

      transition = mat_treatment, 

       

      stable = state_stable, 

      progressive = state_progressive, 

      death = state_death 

    ), 

     

    # Model characteristics 

    time_horizon = 20, 

    cycles = ceiling(time_horizon / .cycle_length) 

  ) 

} 

 

# Function to run a Markov model which has been prepared 

do_MM <- function(prep) { 

  res_mod <- run_model( 

    parameters = prep$par_mod, 

     

    control = prep$strat_control, 

    treatment = prep$strat_treatment, 

     

    init = c(1, 0, 0), 

     

    cycles = prep$cycles, 

     

    cost = cost, 

    effect = QALY, 

     

    state_time_limit = c( 

      progressive = min(prep$state_time_limit, prep$cycles), 

      death = 1 

    ), 

     

    method = "life-table" 

  ) 

   

  res_mod_summary <- summary(res_mod, threshold = 20000) 

   

  return( 

    res_mod_summary$res_values %>% 

      select(arm = .strategy_names, cost, QALY) %>% 

      mutate(NMB = QALY*20000 - cost)) 
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} 

 

prep <- prep_MM(1/12, 24) 

results <- do_MM(prep) 

 

Markov microsimulation 

# Load necessary libraries 

library(tidyverse) 

library(flexsurv) 

 

# [... Define parameters ...] 

 

# Multinomial sampling [Krijkamp et al. 2018] 

samplev <- function(probs, m) { 

  d <- dim(probs) 

  n <- d[1] 

  k <- d[2] 

  lev <- dimnames(probs)[[2]] 

  if (!length(lev)) 

    lev <- 1:k 

  ran <- matrix(lev[1], ncol = m, nrow = n) 

  U <- t(probs) 

  for (i in 2:k) { 

    U[i, ] <- U[i, ] + U[i - 1, ] 

  } 

  if (any((U[k, ] - 1) > 1e-05)) 

    stop("error in multinom: probabilities do not sum to 1") 

   

  for (j in 1:m) { 

    un <- rep(runif(n), rep(k, n)) 

    ran[, j] <- lev[1 + colSums(un > U)] 

  } 

  ran 

} 

 

# Function to run the microsimulation [adapted from Krijkamp et al. 2018] 

# Modifications: 

# - Remove function arguments and rely on bindings being provided in 

# environment (certain variables/functions were already treated this 

# way) 

# - Call Probs with 'dur' to allow sojourn time-dependent transition 

# probabilities 

# - Call Costs with 'dur' to allow sojourn time-dependent costs 

# - Call Effs with 't' to allow wall time-dependent utility 

# - Calculate 'dur' as time in current state (not time in any disease 

# state) 

MicroSim <- function(TR.out = TRUE, TS.out = TRUE, Trt = FALSE, seed = 1) { 
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  # TR.out:  should the output include a Microsimulation trace? (default is 

TRUE) 

  # TS.out:  should the output include a matrix of transitions between states? 

(default is TRUE) 

  # Trt:     are the n.i individuals receiving treatment? (scalar with a 

Boolean value, default is FALSE) 

  # seed:    starting seed number for random number generator (default is 1) 

   

  # Calculate the cost and QALY discount rates 

  v.dwc <- 1 / (1 + d.c) ^ (0:n.t) 

  v.dwe <- 1 / (1 + d.e) ^ (0:n.t) 

   

  # Create the matrix capturing the state name/costs/health outcomes for all 

individuals at each time point 

  m.M <- m.C <- m.E <- matrix( 

    nrow = n.i, 

    ncol = n.t + 1, 

    dimnames = list(paste("ind", 1:n.i, sep = " "), 

                    paste("cycle", 0:n.t, sep = " ")) 

  ) 

   

  # Initial health state 

  m.M[, 1] <- v.M_1 

   

  # Set the seed for every individual for the random number generator 

  set.seed(seed) 

   

  # create the dur variable that stores the number of cycles the individual 

has occupied the current state 

  # all individuals spend one cycle in the starting state 

  dur <- rep(1, n.i) 

   

  # estimate costs and QALYs per individual for the initial health state 

  m.C[, 1] <- Costs(m.M[, 1], dur, Trt) 

  m.E[, 1] <- Effs (m.M[, 1], 0, Trt) 

   

  for (t in 1:n.t) { 

    # calculate the transition probabilities at cycle t 

    m.p <- Probs(m.M[, t], dur, Trt) 

     

    # sample the next health state and store that state in matrix m.M 

    m.M[, t + 1] <- samplev(prob = m.p, m = 1) 

     

    # Increment dur if stayed in the same state, or set to 1 if moved state 

    remained <- m.M[, t + 1] == m.M[, t] 

    dur[remained] <- dur[remained] + 1 

    dur[!remained] <- 1 
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    # estimate costs and QALYs per individual during cycle t + 1 conditional 

on treatment 

    m.C[, t + 1] <- Costs(m.M[, t + 1], dur, Trt) 

    m.E[, t + 1] <- Effs(m.M[, t + 1], t, Trt) 

     

    # display the progress of the simulation 

    cat('\r', paste(round(t / n.t * 100), "% done", sep = " ")) 

     

  } 

   

  # total (discounted) cost and QALYs per individual 

  tc <- m.C %*% v.dwc 

  te <- m.E %*% v.dwe 

   

  # average (discounted) cost and QALYs 

  tc_hat <- mean(tc) 

  te_hat <- mean(te) 

   

  if (TS.out == TRUE) { 

    # create a matrix of transitions across states 

    TS <- paste(m.M, cbind(m.M[, -1], NA), sep = "->") 

    TS <- matrix(TS, nrow = n.i) 

     

    # name the rows and columns 

    rownames(TS) <- paste("Ind",   1:n.i, sep = " ") 

    colnames(TS) <- paste("Cycle", 0:n.t, sep = " ") 

  } else { 

    TS <- NULL 

  } 

   

  if (TR.out == TRUE) { 

    TR <- t(apply(m.M, 2, function(x) 

      table(factor( 

        x, levels = v.n, ordered = TRUE 

      )))) 

    # create a distribution trace 

    TR <- TR / n.i 

     

    # name the rows and columns 

    rownames(TR) <- paste("Cycle", 0:n.t, sep = " ") 

    colnames(TR) <- v.n 

  } else { 

    TR <- NULL 

  } 

  results <- list( 

    m.M = m.M, 

    m.C = m.C, 

    m.E = m.E, 
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    tc = tc, 

    te = te, 

    tc_hat = tc_hat, 

    te_hat = te_hat, 

    TS = TS, 

    TR = TR 

  ) 

  return(results)  # return the results 

   

} 

 

# Function to calculate transition probabilities for all individuals 

Probs <- function(M_it, dur, Trt) { 

  # M_it:   health state occupied by individual i at cycle t (character 

variable) 

  # dur:    the duration spent in the current state 

  # Trt:    whether patient is receiving Treatment (as opposed to Control) 

   

  # create vector of state transition probabilities 

  m.p.it <- matrix(NA, n.s, n.i) 

  # assign names to the vector 

  rownames(m.p.it) <- v.n 

   

  # Calculate delta cumulative hazards 

  # Stable to Progressive 

  H.SP <- 

    pweibull( 

      q = (dur[M_it == "Stable"]-1)*cl, 

      scale = Trt*lambda_treatment + (1-Trt)*lambda_control, 

      shape = k1, 

      lower.tail = FALSE, 

      log.p = TRUE) - 

    pweibull( 

      q = dur[M_it == "Stable"]*cl, 

      scale = Trt*lambda_treatment + (1-Trt)*lambda_control, 

      shape = k1, 

      lower.tail = FALSE, 

      log.p = TRUE) 

  # Stable to Dead 

  H.SD <- 

    pgompertz( 

      q = (dur[M_it == "Stable"]-1)*cl, 

      shape = a2, 

      rate = b2, 

      lower.tail = FALSE, 

      log.p = TRUE) - 

    pgompertz( 

      q = dur[M_it == "Stable"]*cl, 
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      shape = a2, 

      rate = b2, 

      lower.tail = FALSE, 

      log.p = TRUE) 

  # Progressive to Dead 

  H.PD <- 

    plnorm( 

      q = (dur[M_it == "Progressive"]-1)*cl, 

      meanlog = mu3, 

      sdlog = sigma3, 

      lower.tail = FALSE, 

      log.p = TRUE) - 

    plnorm( 

      q = dur[M_it == "Progressive"]*cl, 

      meanlog = mu3, 

      sdlog = sigma3, 

      lower.tail = FALSE, 

      log.p = TRUE) 

   

  # Probabilities leaving Stable 

  H.S <- H.SP + H.SD 

  p.SS <- exp(-H.S) 

  p.SP <- H.SP/H.S * (1 - exp(-H.S)) 

  p.SD <- H.SD/H.S * (1 - exp(-H.S)) 

   

  # Probabilities leaving progressive 

  p.PP <- exp(-H.PD) 

  p.PD <- 1 - exp(-H.PD) 

 

  # update the v.p with the appropriate probabilities 

  m.p.it[, M_it == "Stable"]  <- rbind(p.SS, p.SP, p.SD) 

  m.p.it[, M_it == "Progressive"] <- rbind(0, p.PP, p.PD) 

  m.p.it[, M_it == "Dead"]  <- c(0, 0, 1) 

  ifelse(colSums(m.p.it) == 1, 

         return(t(m.p.it)), 

         print("Probabilities do not sum to 1")) # return the transition 

probabilities or produce an error 

} 

 

# Function to calculate costs across all individuals 

Costs <- function(M_it, dur, Trt = FALSE) { 

  # M_it: health state occupied by individual i at cycle t (character 

variable) 

  # dur:    the duration spent in the current state 

  # Trt:  is the individual being treated? (default is FALSE) 

   

  c.it <- rep(0, length(M_it)) 

  if (any(M_it == "Stable")) 
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    c.it[M_it == "Stable"] <- cl * (Trt*c_treatment + (1-Trt)*c_control) 

  if (any(M_it == "Progressive")) 

    c.it[M_it == "Progressive"] <- c_progression * (dur[M_it == "Progressive"] 

== 1) + cl * c_pd 

  if (any(M_it == "Dead")) 

    c.it[M_it == "Dead"]  <- c_death * (dur[M_it == "Dead"] == 1) 

   

  return(c.it) 

} 

 

# Function to calculate QALYs across all individuals 

Effs <- function(M_it, t, Trt = FALSE) { 

  # M_it: health state occupied by individual i at cycle t (character 

variable) 

  # t:    the current cycle 

  # Trt:  is the individual treated? (default is FALSE) 

   

  u.baseline <- u0 + u1 * ((t + 0.5) * cl) + u2 * ((t + 0.5) * cl) ** 2 

   

  u.it <- rep(0, length(M_it)) 

  u.it[M_it == "Stable"]  <- u.baseline * v_sd 

  u.it[M_it == "Progressive"] <- u.baseline * v_pd 

  u.it[M_it == "Dead"]  <- 0 

   

  # calculate the QALYs during cycle t 

  QALYs <- u.it * cl 

  return(QALYs) 

} 

 

# Function factory 

# Returns a function with all necessary parameters in a suitable 

# environment 

prep_MarkovMicrosim <- function(params, n_microsim, cycle_length) { 

  e <- new.env(parent = globalenv()) 

   

  e$n.i <- n_microsim 

  e$n.t <- floor(20 / cycle_length) 

  e$cl <- cycle_length 

  e$v.n <- c("Stable", "Progressive", "Dead") 

  e$n.s <- length(e$v.n) 

  e$v.M_1 <- rep("Stable", e$n.i) 

  e$d.c <- e$d.e <- (1 + params$dr) ** cycle_length - 1 

  e$v.Trt <- c("Control", "Treatment") 

   

  # Copy over parameters 

  e <- list2env(params, e) 

   

  l_MicroSim <- MicroSim 
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  e$Probs <- Probs 

  e$Costs <- Costs 

  e$Effs  <- Effs 

   

  environment(l_MicroSim) <- e 

  environment(e$Probs)    <- e 

  environment(e$Costs)    <- e 

  environment(e$Effs)     <- e 

   

  return(l_MicroSim) 

} 

 

# Perform the microsimulation given a function from the function 

# factory and combine results for control and treatment arms 

do_MarkovMicrosim <- function(microsim) { 

  control   <- microsim(TR.out = FALSE, TS.out = FALSE, Trt = FALSE, seed = 1) 

  treatment <- microsim(TR.out = FALSE, TS.out = FALSE, Trt = TRUE,  seed = 1) 

  return( 

    bind_rows( 

      tibble(arm = "Control", costs = as.vector(control$tc), QALYs = 

as.vector(control$te)), 

      tibble(arm = "Treatment", costs = as.vector(treatment$tc), QALYs = 

as.vector(treatment$te)) 

    ) 

  ) 

} 

 

results <- do_MarkovMicrosim(prep_MarkovMicrosim(meanParams, 100000, 1/12)) 
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Appendix 7: Detailed description of capabilities of different 

methods 

Sojourn time-dependent transitions 
Transitions between states can depend on the length of time in the current state 

(excluding case when individuals start in a given state and cannot return to it). Can use 

non-exponential time-to-event distributions. 

MGF method 

Fully supported. Any distribution for which ∫ 𝑥𝑗𝑒−𝑟𝑥𝑑𝑥
∞

0
 is finite and amenable to 

analytic or numerical evaluation can be incorporated into the method. 

Markov cohort without tunnel states  

Not supported. There is no memory component in these models, so transition 

probabilities cannot depend on the length of time in the current state. 

Markov cohort with tunnel states  

Partially supported. Tunnel states provide a memory component allowing transition 

probabilities to vary, but the extent to which transitions can depend on sojourn time is 

limited by the number of tunnel states. 

Markov microsimulation  

Fully supported. Within a Markov microsimulation a full memory can be represented 

in the state and transition probabilities can be calculated accordingly. 

Discrete event simulation  

Fully supported. Fundamental property of the method. 

Wall time-dependent transitions 
Transitions between states can depend on the length of time since the model start 

(excluding case when individuals start in a given state and cannot return to it). Typical 

example is age-related other cause mortality. 

MGF method 

Not supported (at present). This capability has not yet been incorporated into the 

method. 

Markov cohort with/without tunnel states  

Fully supported. Transition probabilities are updated for each cycle. Tunnel states are 

not required. 
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Markov microsimulation  

Fully supported. Transition probabilities are updated for each cycle. 

Discrete event simulation  

Fully supported. Transitions can be modelled by events whose time origin is the model 

start. Also, new events can be sampled conditionally on the current time elapsed (or any 

other aspect of an individual’s history). 

Kaplan–Meier survival 
Directly use Kaplan–Meier survival curves, without fitting a parametric model or 

piecewise exponential model. Particularly valuable when parametric models give a poor 

fit. 

MGF method 

Fully supported. Described in the section Methods for evaluating MGFs. 

Markov cohort with/without tunnel states and Markov microsimulation  

Partially supported. The use of the time cycle means that Kaplan–Meier survival 

curves can only be represented up to a certain fidelity. 

Discrete event simulation  

Fully supported. Given a Kaplan–Meier curve, its inverse (the quantile function) can be 

obtained, and a uniform random variable between 0 and 1 can be sampled in order to 

sample a random time-to-event in accordance with the Kaplan–Meier curve. 

Sojourn time-dependent payoffs 
Payoffs depend on the time in the current state, e.g., costs are initially high within a state 

but then diminish. 

MGF method 

Partially supported. The method supports one-off payoffs, polynomial payoffs and 

exponential payoffs (and any linear combination of these). It does not currently support, 

e.g., piecewise constant payoffs. 

Markov cohort without tunnel states  

Not supported. Without tunnel states there is no memory of how long an individual has 

been in a state. 

Markov cohort with tunnel states  

Partially supported. Dependency is limited by the number of tunnel states. 

Markov microsimulation  

Fully supported. 
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Discrete event simulation  

Fully supported. 

Wall time-dependent payoffs 
Payoffs depend on the time since the model start, e.g., health state utility values decline 

with age. 

MGF method 

Partially supported. The method supports one-off payoffs, polynomial payoffs and 

exponential payoffs (and any linear combination of these). It does not currently support, 

e.g., piecewise constant payoffs. 

Markov cohort with/without tunnel states  

Fully supported. 

Markov microsimulation  

Fully supported. 

Discrete event simulation  

Fully supported. 

Monte Carlo variation 
There is random error introduced into results, which must either be minimised with a 

large number of simulations, or accounted for within statistical analyses. 

MGF method 

No (unless a Monte Carlo algorithm is used for numerical integration, although this is 

unlikely to be necessary as deterministic numerical integration algorithms are well 

suited to one-dimensional integrals). 

Markov cohort with/without tunnel states  

No. 

Markov microsimulation  

Yes. 

Discrete event simulation  

Yes. 

Convergence behaviour 
The global truncation error as a function of 𝑛, which is the number of quadrature nodes 

for the MGF method, the cycle length for the Markov cohort simulations, and the 

number of simulations for the microsimulation methods. In general one would prefer an 

algorithm with exponential convergence, i.e., 𝒪(𝑐−𝑛) for some 𝑐 > 1 to an algorithm 
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with polynomial convergence 𝒪(𝑛−𝑏) for some 𝑏. One would also prefer an algorithm 

with error 𝒪(𝑛−𝑏) to an algorithm with error 𝒪(𝑛−𝑎) if 𝑏 > 𝑎. 

MGF method 

Behaviour depends on the integrands. If numerical integration is not required then 

there is no error from the method (except for rounding errors). If all numerical 

integration is conducted on [−1,1] and all functions are analytic in this domain, 

exponential convergence will be obtained,25 i.e., 𝒪(𝑐−𝑛) for some 𝑐 > 1; otherwise, if a 

function is not analytic (e.g., Weibull with shape parameter 𝛾 < 1) it is challenging to 

derive a general error bound, since the 2nth derivative of the function must be 

obtained26, 27 

Markov cohort without tunnel states  

𝒪(𝑛−1) 

The global truncation error is 𝒪(𝑛−1) since it is 𝒪(ℎ) (where ℎ is the step size) and ℎ ∝

𝑛−1. 

Markov cohort with tunnel states  

𝒪 (𝑛−
1
2) 

As for a Markov cohort without tunnel states the global truncation error is 𝒪(ℎ) 

however to halve the step size it is necessary to double the number of cycles and double 

the number of tunnel states, i.e., ℎ ∝ 𝑛−
1

2. 

Markov microsimulat ion 

𝒪 (𝑛−
1
2) 

There are two sources of error in a Markov microsimulation. First is the error inherent 

in a Markov model without tunnel states (tunnel states are not needed in a Markov 

microsimulation), and additionally there is Monte Carlo error. Monte Carlo error is the 

greater of these and is 𝒪(𝑛−1 2⁄ ). 

Discrete event simulation  

𝒪 (𝑛−
1
2) 

Discrete event simulation only includes Monte Carlo error, which is the same as for 

Markov microsimulation. 
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Appendix 8: Assumption of independence of random variables 

It is assumed in the method outlined in this paper that the time-to-event random 

variables in a model are independent. This is important because even though 

𝔼𝑋,𝑌[𝑋 + 𝑌] = 𝔼𝑋[𝑋] + 𝔼𝑌[𝑌] it is not generally true that 𝑀𝑋+𝑌(𝑡) = 𝑀𝑋(𝑡)𝑀𝑌(𝑡) – it is 

only true if 𝑋 and 𝑌 are independent. 

There are two types of dependence we are likely to consider incorporating into a model: 

 𝑋 and 𝑌 represent competing events in a single state (e.g., 𝑋 represents time to 

receiving a kidney transplant and 𝑌 represents death on dialysis) but one (the 

greater) is always a latent variable since the random variable taking the lesser 

value represents the event which takes place while the competing event does not 

take place; 

 𝑋 and 𝑌 represent events which can occur sequentially (e.g., 𝑋 represents time to 

receiving a kidney transplant and 𝑌 represents time to graft failure). 

The first thing we note is that if 𝑋 and 𝑌 are conditionally independent given another 

random variable, 𝑍, then we are able to proceed as before and take the expectation over 

𝑍. 

For example, consider: 

 𝑋 is the time to receiving a kidney transplant; 

 𝑌 is the time to graft failure; 

 𝑍 is a measure of immunological risk (which makes it harder to obtain a kidney 

transplant and increases the risk of graft failure). 

We would partition the population according to values of 𝑍, evaluate the model 

substituting the conditional distributions for 𝑋 and 𝑌 given 𝑍 and treating them as 

independent, then take a weighted average of the results according to the probabilities 

of the different values of  𝑍. 
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Z, immunological 

risk 

Pr(Z) Costs (£) QALYs 

Low 30% 60,000 20.0 

Moderate 50% 80,000 14.0 

High 20% 120,000 10.0 

Weighted average  82,000 15.0 

 

If 𝑋 and 𝑌 represent competing events then it does not necessarily make sense to talk 

about them being dependent, since only one is ever observed so it is not possible to 

deduce their joint probability distribution. What can be deduced though is the joint 

probability distribution of 𝐷 (a categorical random variable denoting which event takes 

place) and 𝑇 (the time-to-event variable for the event which takes place). The pattern-

mixture approach (as used in statistical flowgraph modelling) represents this joint 

distribution by modelling Pr(𝐷) and 𝑓( 𝑇 ∣ 𝐷 ), since 𝑓(𝐷, 𝑇) = 𝑓( 𝑇 ∣ 𝐷 ) Pr(𝐷). There is 

no restriction that this should be equivalent to an alternative formulation with 𝑋 and 𝑌 

as independent random variables and setting 𝐷 = argmin{𝑋, 𝑌} and 𝑇 = min{𝑋, 𝑌}. 

For example, suppose that 𝑋 and 𝑌 represent the competing events of receiving a kidney 

transplant and dying on dialysis. Suppose that there is some negative correlation in the 

latent time-to-event variables, such that an individual with a short time to kidney 

transplantation would tend to have (in the absence of the transplantation) lived for a 

long time on dialysis and vice versa, as shown in the figure below. 
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This can be represented in the pattern-mixture approach by calculating the proportion 

of patients with each outcome and then the appropriate distribution for the time spent 

on dialysis (prior to transplantation or death) is estimated separately for each outcome, 

as shown in the figure below. 
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In summary, we conclude that the restriction that TTE variables in the model be 

independent is not a significant restriction as conditional independence can be 

exploited, by conditioning on some covariate (like immunological risk in the example 

above) or on the branch taken in the model (e.g., death on dialysis versus kidney 

transplant in the next example). 


