
 1

Provisional title: A new method for model-based health economic evaluation utilising

and extending moment-generating functions

Provisional running head: Moment-generating functions for decision models

Author and corresponding author: Snowsill, Tristan PhD [orcid.org/0000-0001-

7406-2819]

Affiliation: Health Economics Group, University of Exeter, Exeter UK

Address: Room 1.11, South Cloisters, St Luke’s Campus, Heavitree Road, Exeter EX1

2LU, United Kingdom

This method was presented at the Health Economists’ Study Group meeting in Bristol,

June 20-22, 2018. The current manuscript is substantially redrafted from the previously

presented manuscript following comments from colleagues and peer review.

Neither the author nor the department/institution received funding for this work. There

are no potential conflicts of interest.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/219598784?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://orcid.org/0000-0001-7406-2819
https://orcid.org/0000-0001-7406-2819

 2

Abstract

Background
Health economic evaluations frequently include projections for lifetime costs and health

effects using modelling frameworks such as Markov modelling or discrete event

simulation (DES). Markov models typically cannot represent events whose risk is

determined by the length of time spent in state (sojourn time) without the use of tunnel

states. DES is very flexible, but introduces Monte Carlo variation which can significantly

limit the complexity of model analyses.

Methods
We present a new methodological framework for health economic modelling which is

based on, and extends, the concept of moment-generating functions (MGFs) for time-to-

event random variables. When future costs and health effects are discounted, MGFs can

be used to very efficiently calculate the total discounted life years spent in a series of

health states. Competing risks are incorporated into the method. This method can also

be used to calculate discounted costs and health effects when these payoffs are constant

per unit time, one-off or exponential with regard to time. MGFs are extended to

additionally support costs and health effects which are polynomial with regard to time

(as in a commonly used model of population norms for EQ-5D utility).

Worked example
A worked example is used to demonstrate application of the new method in practice,

and to compare it to Markov modelling and DES. Results are compared in terms of

convergence and accuracy, and computation times are compared. R code and an Excel

workbook are provided.

Conclusions
The MGF method can be applied to health economic evaluations in the place of Markov

modelling or DES and has certain advantages over both.

 3

Introduction

Mathematical models are frequently used in health economic evaluations to extrapolate

beyond observed data for estimates of lifetime costs and effects.1 The observed data

may come from experimental trials, as well as from observational sources, such as

registries.2 Often the effects of interventions are measured in life years or quality-

adjusted life years (QALYs), as particularly the latter allows for comparisons of cost-

effectiveness across different interventions, populations and diseases.3

As spending and health effects usually do not happen simultaneously, there is a need to

consider the time-preferences for costs and effects. It is near universal practice to use a

constant rate of discounting4 (e.g., 3.5% for evaluations following the National Institute

for Health and Care Excellence [NICE] reference case5).

A very common approach in modelling is to represent the health status of any given

individual using one of a finite set of mutually exclusive health states.6 The individual

may transition between these states as aspects of their health status or care provision

change. Such models are termed state transition models. For example, in a model of

treatments for renal failure, there may be separate health states for patients with a

kidney transplant, patients receiving haemodialysis, patients receiving peritoneal

dialysis, and patients who have died. Health states are associated with

probabilities/rates/time-to-event distributions of transitions to other health states, as

well as payoffs (typically costs and health state utility values). The most common

implementations of state transition models are Markov models (cohort simulation and

microsimulation) and Discrete Event Simulation (DES). Another modelling method,

partitioned survival analysis, resembles Markov cohort simulation but transitions are

not modelled, rather the state membership over time is explicitly modelled according to

a set of survival curves.7

The cohort-based methods are generally very computationally tractable but lack

flexibility, while the simulation-based methods are highly flexible but introduce Monte

Carlo variation. Monte Carlo variation can be minimised by producing large numbers of

simulations, but this can be computationally costly, and even when minimised Monte

Carlo variation can represent a challenge for model verification.

 4

Probabilistic sensitivity analysis (PSA) is frequently used to estimate the joint impact of

uncertainty across all parameters, and requires an extra “loop” of calculations to

explore the joint parameter space.8 Traditional partial expected value of perfect

information (pEVPI) analyses require an additional loop, which means a three-level

loop in the case of a patient-level simulation model, and model calibration exercises

require repeated evaluation of expected outputs from a model, creating a similar

computational challenge (many numerical methods for optimisation require estimates

of the partial derivative of the function with respect to the parameter space, which

cannot be accurately estimated in the presence of random noise). While some advances

have been made to avoid the additional loop for pEVPI,9 it remains true that in general

an analyst would prefer to obtain model outputs for a given set of input parameters

which is unaffected by Monte Carlo variation.

This paper sets out a method which can be used to compute expected life years, lifetime

costs and QALYs when there is discounting. The method uses and extends MGFs. By

virtue of considering state transition models where the times to transition are modelled

(as opposed to probabilities or rates), and utilising MGFs, the method shares many

principles with statistical flowgraph modelling,10 which explicitly describes processes in

terms of branch probabilities (like a decision tree or Markov model) and MGFs for

waiting time distributions. The method in this paper does not rely on statistical

flowgraph modelling techniques, but instead is optimised to consider cumulative

discounted costs and outcomes, as these are of interest in health economic applications.

The substantial advantage of the method described in this paper over Markov cohort

simulation is the ability to model transitions, costs and QALY weights which are

dependent on the length of time spent in a particular state (i.e., it overcomes the Markov

memoryless property). Individual patient simulation methods (e.g., Markov

microsimulation and DES) are not restricted by the Markov memoryless property but

they introduce Monte Carlo variation, with the challenges outlined above. The method

set out in this paper achieves greater flexibility over Markov cohort simulation while

still producing deterministic results.

 5

Methods

This section begins with a description of MGFs and a simple motivating example for why

MGFs arise naturally when considering discounted outcomes in models. An introduction

to statistical flowgraph models is provided next, followed by a description of how the

methods applied in the motivating example can be extended to consider not just

discounted life years, but discounted costs and QALYs when the rates at which these are

accrued vary according to state, time within state and time since the model origin. We

next consider alternative competing risk formulations besides the one assumed in

statistical flowgraph modelling. The section concludes with notes on calculating MGFs in

practice and an overall summary of the method.

MGFs
The MGF, 𝑀𝑋(𝑡), of a random variable, 𝑋, is defined as:

𝑀𝑋(𝑡) ≝ 𝔼𝑋[𝑒
𝑡𝑋] (1)

For example, the MGF of an exponentially distributed random variable, 𝑋 ∼ 𝐸𝑥𝑝(𝜆) is

𝜆 (𝜆 − 𝑡)⁄ as shown below:

𝑀𝑋(𝑡) = 𝔼𝑋[𝑒
𝑡𝑋]

= ∫ 𝑓𝑋(𝑥)𝑒
𝑡𝑥𝑑𝑥

∞

0

= ∫ 𝜆𝑒−𝜆𝑥𝑒𝑡𝑥𝑑𝑥
∞

0

=
𝜆

𝜆 − 𝑡
∫ (𝜆 − 𝑡)𝑒−(𝜆−𝑡)𝑥𝑑𝑥
∞

0

=
𝜆

𝜆 − 𝑡
 (2)

The final step of this derivation can be derived through usual means or by recognising

that the integrand is the probability density function for an exponential random

variable with rate 𝜆 − 𝑡, and so the integral across all its domain must equal 1.

Discounting
As noted in the introduction it is near universal practice to use a constant rate of

discounting. This is often presented as an annual discount rate, such that the discounted

value of a cost 𝐶 incurred 𝑋 years in the future is:

 6

𝐶𝑑 =
𝐶

(1 + 𝑟𝑎)𝑋
 (3)

Where 𝑟𝑎 is the annual discount rate, e.g., 0.035 for a discount rate of 3.5% per year.

It is more mathematically convenient to use continuous discounting formula which is

equivalent:

𝐶𝑑 = 𝐶𝑒
−𝑟𝑋 (4)

Where 𝑟 is the continuous discount rate. These discount rates are readily calculated

from each other:

𝐶𝑑 =
𝐶

(1 + 𝑟𝑎)𝑋
= 𝐶𝑒−𝑟𝑋

(1 + 𝑟𝑎)
−𝑋 = 𝑒−𝑟𝑋

(1 + 𝑟𝑎)
−𝑋 = (𝑒𝑟)−𝑋

1 + 𝑟𝑎 = 𝑒
𝑟

ln(1 + 𝑟𝑎) = 𝑟 (5)

Throughout this paper we use the continuous discounting formula.

Note that if 𝑋, the time at which the cost is incurred, is a random variable, we can take

the expectation of the discounted cost and then express it in terms of the MGF of 𝑋:

𝔼𝑋[𝐶𝑑] = 𝐶𝔼𝑋[𝑒
−𝑟𝑋] = 𝐶𝑀𝑋(−𝑟) (6)

This is indeed the fundamental observation underpinning the method outlined in this

paper: that quantities in a health economic evaluation with discounting can be

expressed in terms of MGFs.

Motivating example

Part 1

Consider a very simple two-state model in which patients are either alive or dead, and

the hazard rate of death is a constant (λ), i.e., the time-to-event (TTE) distribution for

death is an exponential distribution. If we let 𝑋 denote the time to death then 𝑓𝑋(𝑥) and

𝐹𝑋(𝑥) are the probability density and cumulative distribution functions respectively:

𝑓𝑋(𝑥) = 𝜆𝑒
−𝜆𝑥 (7)

𝐹𝑋(𝑥) = 1 − 𝑒
−𝜆𝑥 (8)

The life years lived (for a particular value of 𝑋) is simply:

 7

𝐿𝑌 = ∫ 𝑑𝑥
𝑋

0

= 𝑋 (9)

I.e., life years lived is a random variable (or a function of a random variable). Given this,

life expectancy is:

𝔼𝑋[𝐿𝑌] = 𝔼𝑋[𝑋]

= ∫ 𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

0

= ∫ 𝜆𝑥𝑒−𝜆𝑥𝑑𝑥
∞

0

= [−𝑥𝑒−𝜆𝑥]
0

∞

⏟
=0

+ 𝜆−1∫ 𝜆𝑒−𝜆𝑥𝑑𝑥
∞

0⏟
=1

= 𝜆−1

(10)

Now consider discounted life years lived using the continuous discounting function

given in Equation (4):

𝐿𝑌𝑑 = ∫ 𝑒−𝑟𝑥𝑑𝑥
𝑋

0

=
1

𝑟
(1 − 𝑒−𝑟𝑋) (11)

This is also a (function of a) random variable, and its expectation can be obtained:

𝔼𝑋[𝐿𝑌𝑑] = 𝔼𝑋 [
1

𝑟
(1 − 𝑒−𝑟𝑋)] =

1

𝑟
(1 − 𝔼𝑋[𝑒

−𝑟𝑋]) (12)

The quantity 𝔼𝑋[𝑒
−𝑟𝑋] is equal to the MGF of 𝑋, 𝑀𝑋(𝑡) ≝ 𝔼𝑋[𝑒

𝑡𝑋], evaluated at 𝑡 = −𝑟.

For the exponential distribution the MGF was shown above to be

𝑀𝑋(𝑡) =
𝜆

𝜆 − 𝑡
 (13)

So we can substitute this into Equation (12):

𝔼𝑋[𝐿𝑌𝑑] =
1

𝑟
(1 − 𝑀𝑋(−𝑟))

=
1

𝑟
(1 −

𝜆

𝜆 + 𝑟
)

=
1

𝑟
(
𝜆 + 𝑟 − 𝜆

𝜆 + 𝑟
)

=
1

𝜆 + 𝑟
.

(14)

 8

Note that we have not considered any transition probabilities (as in a discrete-time

Markov model) or rates (as in a continuous-time Markov model), but only time-to-event

variables (as in a discrete event simulation).

Part 2

Now we consider a slightly more complex model in which there are three states:

healthy, diseased and dead. We assume that transitions are possible between healthy

and diseased, and between diseased and dead (i.e., we do not include recovery from

disease or death from other causes). Let 𝑋1 denote the TTE variable for transitioning

from healthy to diseased, and let 𝑋2 denote the TTE variable for transitioning from

diseased to dead. Assume 𝑋1 and 𝑋2 are independent. Life years lived is then 𝑋1 + 𝑋2.

Life expectancy is calculated simply as:

𝔼[𝐿𝑌] = 𝔼𝑋1,𝑋2 [∫ 𝑑𝑥
𝑋1+𝑋2

0

]

= 𝔼𝑋1,𝑋2[𝑋1 + 𝑋2]

= 𝔼𝑋1[𝑋1] + 𝔼𝑋2[𝑋2].

(15)

Discounted life years are calculated as:

𝐿𝑌𝑑 = ∫ 𝑒−𝑟𝑥𝑑𝑥
𝑋1+𝑋2

0

=
1

𝑟
(1 − 𝑒−𝑟(𝑋1+𝑋2)) (16)

And discounted life expectancy is:

𝔼[𝐿𝑌𝑑] = 𝔼𝑋1,𝑋2 [
1

𝑟
(1 − 𝑒−𝑟(𝑋1+𝑋2))]

= 𝔼𝑋1,𝑋2 [
1

𝑟
(1 − 𝑒−𝑟𝑋1𝑒−𝑟𝑋2)]

=
1

𝑟
(1 − 𝔼𝑋1,𝑋2[𝑒

−𝑟𝑋1𝑒−𝑟𝑋2])

=
1

𝑟
(1 − 𝔼𝑋1[𝑒

−𝑟𝑋1]𝔼𝑋2[𝑒
−𝑟𝑋2])

=
1

𝑟
(1 − 𝑀𝑋1(−𝑟)𝑀𝑋2(−𝑟)) .

(17)

This illustrates a key property of MGFs, that the MGF of the sum of two independent

random variables is the product of their MGFs. It also illustrates that it is only necessary

to evaluate the MGFs at single points.

In Appendix 1 we demonstrate that the method applied above, with exponential TTE

distributions, gives identical results to an equivalent Markov cohort simulation (in the

 9

limit as the cycle length tends to zero) and to direct calculation of the state occupancy

equations.

Exponential TTE distributions are easy to work with in most contexts, but the MGF

method described in this manuscript can be applied with any distribution with a finite

MGF at the necessary points.

Statistical flowgraph models
Statistical flowgraph models10 are a type of state transition model which can be

understood in a similar manner to discrete-time Markov models, in that from any state

there is a probability of transitioning to another state, or remaining in the current state.

The key point of divergence from Markov models is that the time steps are not of fixed

length, but are random time-to-event variables.

Although developed independently of statistical flowgraph models, there are

similarities between the method proposed in this paper and statistical flowgraph

models, so it is instructive to introduce them as an area for potential cross-fertilisation

and to highlight differences for readers who may already be familiar with them.

Statistical flowgraph models have seen use in engineering applications, and have also

been applied to health, but have not seen notable use in health economic modelling.

Their focus is typically on deriving an overall MGF for a waiting time distribution of

interest (e.g., survival distribution) and then “inverting” this into a probability density

function.10 Note that this is different from the approach described in this paper in which

the MGF itself is evaluated and used within expressions to derive discounted outcomes.

Statistical flowgraph models are stochastic multistate models represented by directed

graphs in which nodes represent states and edges represent transitions between those

states (i.e., events). Each edge has a transmittance, which is the product of a transition

probability and an MGF. The transition probability represents the probability that a

modelled item (e.g., an individual) will transition along that edge (i.e., experience the

given event) as opposed to any alternative edge from the current node. The MGF

describes the time-to-event variable for how long the item waits in the state before

transitioning along the edge, conditional on the item transitioning along that edge.

Fig. 1 presents an example statistical flowgraph model with three states labelled 1, 2

and 3. These could respectively represent healthy, diseased and dead in a health

 10

economic model where it is possible to recover from disease and to die while healthy or

diseased. The transmittance labels are such that 𝑝𝑖𝑗 is the transition probability of

transitioning from state 𝑖 to state 𝑗 and 𝑀𝑖𝑗(𝑡) is the MGF for the waiting time in state 𝑖

prior to transition to state 𝑗.

Figure 1: Example statistical flowgraph model

In such an example we are likely interested to know the distribution of time spent prior

to reaching state 3, given an item starts in state 1 (or 2). There are manual reduction

procedures for solving a statistical flowgraph model (determining the MGF for a waiting

time of interest), as well as a procedure based on linear algebra, Mason’s rule.11

If we are interested in finding the MGF for the waiting time distribution from state 1 to

state 3, we will eventually identify that

ℳ(𝑡) =
𝑝13𝑀13(𝑡) + 𝑝12𝑝23𝑀12(𝑡)𝑀23(𝑡)

1 − 𝑝12𝑝21𝑀12(𝑡)𝑀21(𝑡)
. (18)

At this stage, an analyst would typically use numerical methods to invert the MGF into a

PDF for the waiting time distribution, however, if we are interested in the expected

discounted life years from state 1 to state 3, we can simply employ the approach we

have used before:

𝔼[𝐿𝑌𝑑] =
1

𝑟
(1 −ℳ(−𝑟))

=
1

𝑟
(1 −

𝑝13𝑀13(−𝑟) + 𝑝12𝑝23𝑀12(−𝑟)𝑀23(−𝑟)

1 − 𝑝12𝑝21𝑀12(−𝑟)𝑀21(−𝑟)
) .

(19)

Where ℳ(⋅) is the MGF for the solved flowgraph model.

Beyond discounted life years
In many health economic evaluations we are interested to know the (incremental)

discounted costs and quality-adjusted life years (QALYs) associated with an

intervention. Costs and QALYs (or other “payoffs” of interest) are typically not accrued

 11

at a constant rate but vary according to the health state of an individual, how long the

individual has been in a health state and how old the individual is.

Consider a simple model of renal failure as shown in Fig. 2. Individuals start the model

with end-stage renal failure and in receipt of dialysis, which has significant ongoing

costs and poor quality of life. Some individuals receive a transplant, which has a

significant upfront cost and some ongoing costs, a better quality of life than dialysis and

better life expectancy. Let 𝑐1 and 𝑢1 denote the cost rate and QALY weight in dialysis, let

𝑐12 denote the cost of transplantation, 𝑐2 and 𝑢2 the cost rate and QALY weight for

transplanted patients. For now assume no cost of death and that cost rates and QALY

weights are constant within each state.

Figure 2: Simple renal failure model

Since there are no cycles it is easy to deduce that there are two paths to death: Dialysis

→ Transplant → Death (with probability 𝑝12) and Dialysis → Death (with probability

𝑝13 = 1 − 𝑝12).

If the patient dies without transplantation, they live for 𝑋13 years accruing costs at a

rate of 𝑐1 and QALYs at a rate of 𝑢1. Their discounted costs and QALYs can be written as

a function of 𝑋13:

Costs = ∫ 𝑐1𝑒
−𝑟𝑥𝑑𝑥

𝑋13

0

=
𝑐1
𝑟
(1 − 𝑒−𝑟𝑋13) (20)

QALYs = ∫ 𝑢1𝑒
−𝑟𝑥𝑑𝑥

𝑋13

0

=
𝑢1
𝑟
(1 − 𝑒−𝑟𝑋13) (21)

The expectation of these is taken by replacing 𝑒−𝑟𝑋13 with 𝔼𝑋13[𝑒
−𝑟𝑋13] = 𝑀𝑋13(−𝑟).

If instead the patient is transplanted, they live on dialysis for 𝑋12 years and then with a

transplant for 𝑋23 years. The cost of their transplantation is incurred at time 𝑋12 and is

 12

therefore expected to be discounted by 𝔼𝑋12[𝑒
−𝑟𝑋12] = 𝑀𝑋12(−𝑟). The discounted costs

and QALYs accrued post-transplantation are:

Costs = ∫ 𝑐2𝑒
−𝑟𝑥𝑑𝑥

𝑋12+𝑋23

𝑋12

=
𝑐2
𝑟
(𝑒−𝑟𝑋12 − 𝑒−𝑟(𝑋12+𝑋23))

(22)

QALYs = ∫ 𝑢2𝑒
−𝑟𝑥𝑑𝑥

𝑋12+𝑋23

𝑋12

=
𝑢2
𝑟
(𝑒−𝑟𝑋12 − 𝑒−𝑟(𝑋12+𝑋23))

(23)

Once again, the expectation is taken by replacing 𝑒−𝑟𝑋12 with 𝔼𝑋12[𝑒
−𝑟𝑋12] = 𝑀𝑋12(−𝑟)

and also replacing 𝑒−𝑟(𝑋12+𝑋23) with 𝔼𝑋12,𝑋23[𝑒
−𝑟(𝑋12+𝑋23)] = 𝑀𝑋12(−𝑟)𝑀𝑋23(−𝑟).

In total therefore, we have the following lifetime expected discounted costs and QALYs:

𝔼[Costs] = 𝑝12 [
𝑐1
𝑟
(1 − 𝑀𝑋12(−𝑟)) + 𝑐12𝑀𝑋12(−𝑟)

+
𝑐2
𝑟
(𝑀𝑋12(−𝑟) (1 − 𝑀𝑋23(−𝑟)))]

+ (1 − 𝑝12) [
𝑐1
𝑟
(1 − 𝑀𝑋13(−𝑟))] (24)

𝔼[QALYs] = 𝑝12 [
𝑢1
𝑟
(1 − 𝑀𝑋12(−𝑟))

+
𝑢2
𝑟
(𝑀𝑋12(−𝑟) (1 − 𝑀𝑋23(−𝑟)))]

+ (1 − 𝑝12) [
𝑢1
𝑟
(1 − 𝑀𝑋13(−𝑟))] (25)

In addition to one-off payoffs (e.g., the cost of transplantation above) and constant per-

state payoffs (e.g., the QALY weight in dialysis above), we can quite easily incorporate

payoff functions which include exponential functions of time.

For example, if the QALY weight following surgery is initially low but soon improves to a

higher baseline, we may use a utility function 𝑢(𝑥) = 𝑢ℎ − (𝑢ℎ − 𝑢𝑙)𝑒
−𝑎𝑥, where 𝑢𝑙 and

𝑢ℎ are the low and high QALY weights and 𝑎 is a parameter that determines how quickly

QALY weights recover. In this example 𝑥 would represent time since surgery (i.e., time

in a post-surgery state), so expected discounted QALYs could be (assuming we are

considering QALYs accrued in a state entered at time 𝑋12 and exited at time 𝑋12 + 𝑋23):

 13

𝔼[QALYs] = 𝔼 [∫ 𝑢(𝑥 − 𝑋12)𝑒
−𝑟𝑥𝑑𝑥

𝑋12+𝑋23

𝑋12

]

= 𝔼 [∫ (𝑢ℎ − (𝑢ℎ − 𝑢𝑙)𝑒
−𝑎(𝑥−𝑋12))𝑒−𝑟𝑥𝑑𝑥

𝑋12+𝑋23

𝑋12

]

= 𝔼 [∫ 𝑢ℎ𝑒
−𝑟𝑥 − (𝑢ℎ − 𝑢𝑙)𝑒

−𝑎(𝑥−𝑋12)−𝑟𝑥𝑑𝑥
𝑋12+𝑋23

𝑋12

]

= 𝔼 [∫ 𝑢ℎ𝑒
−𝑟𝑥 − (𝑢ℎ − 𝑢𝑙)𝑒

𝑎𝑋12𝑒−(𝑎+𝑟)𝑥𝑑𝑥
𝑋12+𝑋23

𝑋12

]

= 𝔼 [𝑢ℎ∫ 𝑒−𝑟𝑥𝑑𝑥
𝑋12+𝑋23

𝑋12

− (𝑢ℎ − 𝑢𝑙)𝑒
𝑎𝑋12∫ 𝑒−(𝑎+𝑟)𝑥𝑑𝑥

𝑋12+𝑋23

𝑋12

]

= 𝔼 [𝑢ℎ∫ 𝑒−𝑟𝑥𝑑𝑥
𝑋12+𝑋23

𝑋12

]

−𝔼 [(𝑢ℎ − 𝑢𝑙)𝑒
𝑎𝑋12∫ 𝑒−(𝑎+𝑟)𝑥𝑑𝑥

𝑋12+𝑋23

𝑋12

]

= 𝔼 [
𝑢ℎ(𝑒

−𝑟𝑋12 − 𝑒−𝑟(𝑋12+𝑋23))

𝑟
]

−𝔼 [
(𝑢ℎ − 𝑢𝑙)𝑒

𝑎𝑋12(𝑒−(𝑎+𝑟)𝑋12 − 𝑒−(𝑎+𝑟)(𝑋12+𝑋23))

𝑎 + 𝑟
]

= 𝔼 [
𝑢ℎ(𝑒

−𝑟𝑋12 − 𝑒−𝑟(𝑋12+𝑋23))

𝑟
]

−𝔼 [
(𝑢ℎ − 𝑢𝑙)(𝑒

−𝑟𝑋12 − 𝑒−𝑟(𝑋12+𝑋23)−𝑎𝑋23)

𝑎 + 𝑟
]

=
𝑢ℎ (𝑀𝑋12(−𝑟) (1 − 𝑀𝑋23(−𝑟)))

𝑟

−
(𝑢ℎ − 𝑢𝑙) (𝑀𝑋12(−𝑟) (1 − 𝑀𝑋23(−𝑟 − 𝑎)))

𝑎 + 𝑟

(26)

Extended moment-generating functions and polynomial payoffs

We may also want to incorporate polynomial functions for payoffs. A common example

would be to have baseline QALY weights be a polynomial function of age, e.g., the

quadratic model for population norms of EQ-5D utility described by Ara and Brazier.12

Attempting to employ the method described so far in the case of polynomial payoffs,

after repeated application of integration by parts, results in terms which are the product

of a power and exponential function of a random variable, i.e., 𝑋𝑗𝑒−𝑟𝑋. The expectation

of this is not 𝔼[𝑋𝑗]𝔼[𝑒−𝑟𝑋], since these two components are not independent. Instead,

we newly define the extended moment-generating function (EMGF) as:

 14

𝑀𝑋
𝑛(𝑡) ≔ 𝔼[𝑋𝑛𝑒𝑡𝑋] (27)

And derive the following property of the EMGF:

If 𝑆 = ∑ 𝑎𝑖𝑋𝑖𝑖 is a linear combination of independent random variables, and 𝑛 is a non-

negative integer, then:

𝑀𝑆
𝑛(𝑡) = 𝔼 [(∑𝑎𝑖𝑋𝑖

𝑖

)

𝑛

𝑒𝑡 ∑ 𝑎𝑖𝑋𝑖𝑖]

= ∑
𝑛!

𝑘1! 𝑘2!⋯𝑘𝑚!
𝑎𝑖
𝑘𝑖𝑀𝑋𝑖

𝑘𝑖(𝑎𝑖𝑡)

𝑘1+𝑘2+⋯+𝑘𝑚=𝑛

(28)

This summation is conducted over all possible combinations of non-negative integer 𝑘𝑖

where they sum to 𝑛.

This means the EMGF for a linear combination of independent random variables can be

written as a linear combination of their EMGFs.

Consider an example where health state utility value declines linearly once in a state:

𝑄𝑑 = ∫ (𝑎 − 𝑏(𝑥 − 𝑋1))𝑒
−𝑟𝑥𝑑𝑥

𝑋1+𝑋2

𝑋1

=
𝑒−𝑟𝑋1

𝑟2
(𝑏𝑟𝑋2𝑒

−𝑟𝑋2 + (𝑎𝑟 − 𝑏)(1 − 𝑒−𝑟𝑋2))

(29)

𝔼[𝑄𝑑] =
𝑀𝑋1(−𝑟)

𝑟2
(𝑏𝑟𝑀𝑋2

1 (−𝑟) + (𝑎𝑟 − 𝑏) (1 − 𝑀𝑋2(−𝑟))) (30)

By combining constant, one-off, exponential and polynomial payoffs we can define

models with significant flexibility that would not be possible in traditional Markov

cohort simulations.

Flowgraph cycles
In the previous example (Fig. 2) there were no cycles (‘cycles’ is used here in the graph

theoretical sense, i.e., paths in the flowgraph which return to a previously visited state,

in contrast to time cycles as used in discrete Markov models). We might consider this

unrealistic and want to include failure of a kidney graft, after which patients return to

dialysis. To incorporate this we could add another edge to our model with a

transmittance of 𝑝21 ⋅ 𝑀21(𝑡). The transmittance for the edge denoting death with a

kidney transplant would change to 𝑝23 ⋅ 𝑀23
′ (𝑡) (we use 𝑀23

′ (𝑡) since the conditional

time-to-event distribution may change after introducing a new competing risk). Patients

 15

can now in theory cycle infinitely many times between dialysis and a kidney transplant

before dying, but in practice a geometric limit applies. In Appendix 2 we go through the

necessary steps to produce a formula for the discounted life years lived in dialysis.

There is no reason why similar steps cannot be taken to calculate other discounted

payoffs.

We note, however, that the mathematics are quite involved, and that it is likely that little

is gained from having a model with a cycle versus a model where there are a finite

number of retransplantations allowed (indeed this could be made more realistic than

the model with cycles since the probability of obtaining a second or third transplant is

likely different to the probability of obtaining an initial transplant).

Cycles should only be incorporated into a model where it is realistic to believe patients

could cycle many times and that the parameters governing the transitions would not

change with the number of cycles completed.

Alternative competing risk formulations
So far we have considered the competing risk formulation used in statistical flowgraph

modelling, which has also been described as the pattern mixture approach to competing

risks.13 In this formulation we use transition probabilities to determine which event

takes place (i.e., a categorical distribution) and then a TTE distribution is defined (by its

MGF) for the waiting time prior to that event. Alternative competing risk formulations

have been used in data modelling and in simulations.

A simple (though not as flexible) alternative is to model event times as latent

independent event times, and the earliest of these is the event which takes place (with

the corresponding event time). This is a very typical approach in discrete event

simulations.14 These event times can be sampled according to shared covariates to

account for population heterogeneity. For example, in a renal failure model we could

model time to death on dialysis and time to transplantation as dependent on age

(younger patients are sometimes prioritised for transplants but also have a higher life

expectancy on dialysis). This approach is particularly desirable when producing a health

economic model from aggregate data from multiple data sources. The approach is

readily incorporated into the framework described in this paper since it is not

computationally difficult to convert this competing risks formulation into the pattern

mixture formulation. Further details are provided in Appendix 3.

 16

Other notable frameworks are the Fine and Gray method of competing risk subhazard

distributions15 and the vertical modelling approach.16 These have not yet been

incorporated into the framework described in this paper.

Methods for evaluating MGFs
Some probability distributions used in economic modelling have MGFs with closed

forms. We have already seen the MGF of the exponential distribution and in Appendix 4

we derive the MGFs and extended MGFs of the exponential, gamma, degenerate and

continuous uniform distributions. Other parametric survival distributions frequently

used in health economic evaluations (e.g., Weibull, log-normal, generalised gamma) do

not have finite closed form MGFs.

Evaluating the MGF of a distribution at a particular value involves performing a single 1-

dimensional integration with one improper limit (the lower limit is 0 because time-to-

event distributions are non-negative, the upper limit is infinite because a lifetime

horizon is assumed), which is not challenging for modern statistical programs which

can automatically perform appropriate transformations and apply Gaussian quadrature

techniques (e.g., the integrate function in R). Spreadsheet software typically does not

include such functionality, but the transformations and Gaussian quadrature can

nevertheless be readily implemented provided the nodes and weights for Gaussian

quadrature (constants) are calculated in a suitable package. For simplicity, the

transformation 𝑥 = (1 + 𝑢) (1 − 𝑢)⁄ maps the interval [0,∞) onto (−1,1), which is

suitable for Gauss–Legendre quadrature (see Appendix 5).

We can also calculate the MGF for non-parametric TTE distributions, specifically

Kaplan–Meier curves (see Appendix 4). This can be very useful when observed survival

is not well fitted by a parametric survival function.

Summary of the MGF method
We now briefly summarise the procedure for conducting a model-based health

economic evaluation using MGFs, the MGF method.

Step 1: Conceptualise model in terms of health states and events

Following suitable methodology (e.g., Roberts et al.17), identify health states and any

events which need to be represented. Events typically lead to transitions between

health states.

 17

Step 2: Identify suitable waiting time distributions

Depending on data availability, waiting time distributions for events should preferably

be identified using the pattern-mixture formulation as used in statistical flowgraph

models. Failing this, independent TTE distributions should be identified for the events

in the model.

Step 3: Identify suitable payoff functions

Costs and QALYs are accumulated in the model either at a constant rate (for each state),

as one-off (e.g., surgery cost), or with rates which are expressed in polynomial or

exponential terms with regards to time (waiting time in the state or time since the start

of the model). Linear combinations are also allowable. Suitable payoff functions should

be identified, bearing in mind that polynomial functions will require calculations of

EMGFs.

Step 4: Develop expressions for total discounted payoffs

Expressions for total discounted payoffs are developed in terms of (extended) MGFs.

Take each payoff in each state one at a time. Let 𝑆 be the sum of the time-to-event

variables for the events which resulted in reaching the current state and let 𝑋⋆ be the

time-to-event variable for the event which results in exiting the current state. Let 𝑥

denote the time since the start of the model. The (undiscounted) payoff function

identified in Step 3 is now written as 𝑓(𝑥, 𝑆), noting that time in the current state is 𝑥 −

𝑆. To discount it, multiply by 𝑒−𝑟𝑥. The discounted payoff accrued in the state is then

found by algebraically integrating this discounted payoff function from 𝑆 to 𝑆 + 𝑋⋆. This

produces the accrued payoff as a function of the random variables 𝑆 and 𝑋⋆. The

expectation is then taken, relying on 𝔼[𝑒−𝑟𝑆] = 𝑀𝑆(−𝑟), which will be the products of

the MGFs for the random TTE variables which sum to 𝑆 (assuming these are

independent) and similar expressions based on the extended MGF.

Total discounted payoffs are obtained by combining all such expressions, weighted

according to the probabilities of those payoffs being accrued.

Step 5: Evaluate numerically

(Extended) MGFs with closed forms should be evaluated algebraically and numerical

integration techniques should be used for MGFs without closed forms to produce

numerical estimates of total discounted payoffs.

 18

 19

Example application

We present a worked example of the application of the MGF method (in particular Steps

4 and 5 described above), with comparison to evaluation using a Markov cohort

simulation (with tunnel states), Markov microsimulation and DES. We include code

listings in Appendix 6 for all four methods in R version 3.5,18 making use of the heemod

package for the Markov modelling.19 Furthermore fully working code has been

uploaded to GitHub for the MGF and DES methods

(https://www.github.com/tristansnowsill/mgf-example/). We additionally provide an

Excel 2013 (Microsoft Corporation; Redmond, WA) implementation of the MGF method

utilising Gauss-Legendre quadrature throughout.20

The example model includes two health states (stable disease and progressive disease)

and the death state (Fig. 3). The sojourn-dependent time-to-event distributions are 𝑋1

(representing disease progression), 𝑋2 (death from stable disease) and 𝑋3 (post-

progression survival). These are modelled by Weibull, Gompertz and log-normal

distributions respectively. Note that in this model these TTE distributions are assumed

to be independent of each other and we do not specify branch probabilities as would be

typical in a statistical flowgraph model.

Figure 3: Model diagram

The model includes one-off costs for progression and for death, and constant cost rates

in the stable disease and progressive disease states. It also includes age-dependent

baseline utility using a quadratic formula and constant utility multipliers for stable and

progressive disease.

It should be noted that there is only one aspect of this model which cannot be

represented faithfully in a Markov cohort simulation without tunnel states, which is the

Stable disease Progressive disease

Death

X1

X2 X3

https://www.github.com/tristansnowsill/mgf-example/

 20

log-normal distribution for survival in the progressive disease state, so this is in no way

a pathological example.

Methods

MGF method

In the model there are two different paths which individuals can take. They either suffer

from disease progression and then death, or they die without disease progression. We

let 𝑝 denote the probability of the first path being taken.

With probability 𝑝 the following costs are incurred:

 𝐶𝐼: A steady cost accrued prior to progression (between 𝑥 = 0 and 𝑥 = 𝑋1)

 𝐶𝐼𝐼: A one-off cost at time of progression (at 𝑥 = 𝑋1)

 𝐶𝐼𝐼𝐼: A steady cost accrued following progression (between 𝑥 = 𝑋1 and 𝑥 = 𝑋1 +

𝑋3)

 𝐶𝐼𝑉: A one-off cost at time of death (at 𝑥 = 𝑋1 + 𝑋3)

Also with probability 𝑝 the following QALYs are accrued:

 𝐵𝐼: QALYs accrued prior to progression (between 𝑥 = 0 and 𝑥 = 𝑋1)

 𝐵𝐼𝐼: QALYs accrued following progression (between 𝑥 = 𝑋1 and 𝑥 = 𝑋1 + 𝑋3)

With probability (1 − 𝑝) the following costs are incurred:

 𝐶𝑉: A steady cost accrued prior to death (between 𝑥 = 0 and 𝑥 = 𝑋2)

 𝐶𝑉𝐼: A one-off cost at time of death (at 𝑥 = 𝑋2)

Also with probability (1 − 𝑝) the following QALYs are accrued:

 𝐵𝐼𝐼𝐼: QALYs accrued prior to death (between 𝑥 = 0 and 𝑥 = 𝑋2)

We consider the costs first:

𝐶𝐼 = ∫ 𝑐𝑠𝑡𝑎𝑏𝑙𝑒𝑒
−𝑟𝑥𝑑𝑥

𝑋1

0

=
𝑐𝑠𝑡𝑎𝑏𝑙𝑒
𝑟

(1 − 𝑒−𝑟𝑋1) (31)

𝐶𝐼𝐼 = 𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛𝑒
−𝑟𝑋1 (32)

 21

𝐶𝐼𝐼𝐼 = ∫ 𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑒
−𝑟𝑥𝑑𝑥

𝑋1+𝑋3

𝑋1

=
𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒

𝑟
(𝑒−𝑟𝑋1 − 𝑒−𝑟(𝑋1+𝑋3))

(33)

𝐶𝐼𝑉 = 𝑐𝑑𝑒𝑎𝑡ℎ𝑒
−𝑟(𝑋1+𝑋3) (34)

𝐶𝑉 = ∫ 𝑐𝑠𝑡𝑎𝑏𝑙𝑒𝑒
−𝑟𝑥𝑑𝑥

𝑋2

0

=
𝑐𝑠𝑡𝑎𝑏𝑙𝑒
𝑟

(1 − 𝑒−𝑟𝑋2) (35)

𝐶𝑉𝐼 = 𝑐𝑑𝑒𝑎𝑡ℎ𝑒
−𝑟𝑋2 (36)

Where 𝑐𝑠𝑡𝑎𝑏𝑙𝑒 and 𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 are the cost rates in the stable and progressive disease

states, 𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 is the one-off cost associated with disease progression and 𝑐𝑑𝑒𝑎𝑡ℎ is

the one-off cost associated with death.

Next we consider the QALYs, where baseline age-dependent utility is given by 𝑢(𝑥) =

𝑢0 + 𝑢1𝑥 + 𝑢2𝑥
2 and utility is scaled by 𝑣𝑠𝑡𝑎𝑏𝑙𝑒 in the stable disease state and

𝑣𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒 in the progressive disease state.

First we solve a “helper” integral:

𝑈(𝐴, 𝐵) = ∫ 𝑢(𝑥)𝑒−𝑟𝑥𝑑𝑥
𝐵

𝐴

= ∫ (𝑢0 + 𝑢1𝑥 + 𝑢2𝑥
2)𝑒−𝑟𝑥𝑑𝑥

𝐵

𝐴

=
𝑒−𝑟𝐴

𝑟3
((𝑢0 + 𝑢1𝐴 + 𝑢2𝐴

2)𝑟2 + (𝑢1 + 2𝑢2𝐴)𝑟 + (2𝑢2))

−
𝑒−𝑟𝐵

𝑟3
((𝑢0 + 𝑢1𝐵 + 𝑢2𝐵

2)𝑟2 + (𝑢1 + 2𝑢2𝐵)𝑟 + (2𝑢2))

 (37)

Now:

𝐵𝐼 = ∫ 𝑣𝑠𝑡𝑎𝑏𝑙𝑒𝑢(𝑥)𝑒
−𝑟𝑥𝑑𝑥

𝑋1

0

= 𝑣𝑠𝑡𝑎𝑏𝑙𝑒𝑈(0, 𝑋1) (38)

𝐵𝐼𝐼 = ∫ 𝑣𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑢(𝑥)𝑒
−𝑟𝑥𝑑𝑥

𝑋1+𝑋3

𝑋1

= 𝑣𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑈(𝑋1, 𝑋1 + 𝑋3)

 (39)

𝐵𝐼𝐼𝐼 = ∫ 𝑣𝑠𝑡𝑎𝑏𝑙𝑒𝑢(𝑥)𝑒
−𝑟𝑥𝑑𝑥

𝑋2

0

= 𝑣𝑠𝑡𝑎𝑏𝑙𝑒𝑈(0, 𝑋2)
(40)

 22

Before we take the expected values of these quantities using MGFs we need to realise

that there has been some abuse of notation: we have used 𝑋1 and 𝑋2 in our equations

above where in fact these should be (𝑋1 ∣∣ 𝑋1 < 𝑋2) and (𝑋2 ∣∣ 𝑋2 < 𝑋1) since

progression and death without progression are competing events. Following the

methods in Appendix 4 we find:

𝑝 = 𝔼[𝟏𝑋1<𝑋2]

= ∬ 𝟏𝑥1<𝑥2𝑓𝑋1(𝑥1)𝑓𝑋2(𝑥2)𝑑𝑥2𝑑𝑥1
𝑋1,𝑋2

= ∫ 𝑓𝑋1(𝑥1) (1 − 𝐹𝑋2(𝑥1)) 𝑑𝑥1

∞

0

(41)

𝑓(𝑋1∣∣𝑋1 < 𝑋2)
(𝑥) ∝ 𝑓𝑋1(𝑥) (1 − 𝐹𝑋2(𝑥))

=
1

𝑝
𝑓𝑋1(𝑥) (1 − 𝐹𝑋2(𝑥))

(42)

𝑓(𝑋2∣∣𝑋2 < 𝑋1)
(𝑥) ∝ 𝑓𝑋2(𝑥) (1 − 𝐹𝑋1(𝑥))

=
1

1 − 𝑝
𝑓𝑋2(𝑥) (1 − 𝐹𝑋1(𝑥))

(43)

We produce a table of extended MGFs evaluated at 𝑡 = −𝑟 for 𝑛 = 0,1,2, as shown in

Table 1. The bottom row is formed from the rows above following Equation (28).

We now have all the pieces we need to derive total expected discounted costs and

QALYs:

𝔼[Discounted costs] = 𝑝𝔼[𝐶𝐼 + 𝐶𝐼𝐼 + 𝐶𝐼𝐼𝐼 + 𝐶𝐼𝑉]

+(1 − 𝑝)𝔼[𝐶𝑉 + 𝐶𝑉𝐼]
 (44)

𝔼[Discounted QALYs] = 𝑝𝔼[𝐵𝐼 + 𝐵𝐼𝐼] + (1 − 𝑝)𝔼[𝐵𝐼𝐼𝐼] (45)

By linearity of expectation we can consider 𝔼[𝐶𝐼], 𝔼[𝐶𝐼𝐼], … and 𝔼[𝐵𝐼], … separately. For

example:

𝔼[𝐶𝐼𝐼𝐼] = 𝔼 [
𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒

𝑟
(𝑒−𝑟𝑋1 − 𝑒−𝑟(𝑋1+𝑋3))]

=
𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒

𝑟
(𝔼[𝑒−𝑟𝑋1] − 𝔼[𝑒−𝑟(𝑋1+𝑋3)])

=
𝑐𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒

𝑟
(𝑚1

(0) −𝑚1
(0)𝑚3

(0))

(46)

𝔼[𝐵𝐼𝐼] = 𝔼[𝑣𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝑈(𝑋1, 𝑋1 + 𝑋3)] (47)

 23

= 𝑣𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒𝔼[
𝑒−𝑟𝑋1

𝑟3
((𝑢0 + 𝑢1𝑋1 + 𝑢2𝑋1

2)𝑟2 + (𝑢1 + 2𝑢2𝑋1)𝑟 + (2𝑢2))

−
𝑒−𝑟(𝑋1+𝑋3)

𝑟3
((𝑢0 + 𝑢1(𝑋1 + 𝑋3) + 𝑢2(𝑋1 + 𝑋3)

2)𝑟2

+ (𝑢1 + 2𝑢2(𝑋1 + 𝑋3))𝑟 + (2𝑢2))]

=
𝑣𝑝𝑟𝑜𝑔𝑟𝑒𝑠𝑠𝑖𝑣𝑒

𝑟3
[((𝑢0𝑚1

(0) + 𝑢1𝑚1
(1) + 𝑢2𝑚1

(2))𝑟2 + (𝑢1𝑚1
(0) + 2𝑢2𝑚1

(1))𝑟

+ (2𝑢2𝑚1
(0)))

− ((𝑢0𝑚1
(0)𝑚3

(0) + 𝑢1(𝑚1
(0)𝑚3

(1) +𝑚1
(1)𝑚3

(0))

+ 𝑢2(𝑚1
(0)𝑚3

(2) + 2𝑚1
(1)𝑚3

(1) +𝑚1
(2)𝑚3

(0))) 𝑟2

+ (𝑢1𝑚1
(0)𝑚3

(0) + 2𝑢2(𝑚1
(0)𝑚3

(1) +𝑚1
(1)𝑚3

(0))) 𝑟

+ (2𝑢2𝑚1
(0)𝑚3

(0)))]

Markov cohort simulation

For comparison, a discrete time Markov model was constructed using the heemod

package in R with the use of tunnel states.

Sojourn-dependent transition probabilities were estimated by calculating the

cumulative hazards for competing risks at the start and end of the cycle, and converting

these into transition probabilities assuming constant competing hazard rates within

each cycle. This is more accurate than, e.g., applying transition probabilities estimated

from hazard rates at the start, midpoint or end of each cycle.

The implementation of tunnel states in heemod means that the transition probabilities in

the end state of the tunnel are based on the maximum sojourn time covered by the

tunnel states, i.e., there is no attempt to fit the final transition probability to the

behaviour of the survival curve beyond the tunnel duration.

Cycle lengths of 1 to 12 months were explored as well as maximum sojourn cycle

memory of 1 (no tunnel states), 2 (one tunnel state), 4 (three tunnel states, etc.), 8, 16

 24

and 32. The life table method of estimating state membership between cycles was

used.21

Markov microsimulation

Also for comparison, a discrete time Markov microsimulation was built in R using the

vectorisation approach described by Krijkamp et al.22 Sojourn-dependent transition

probabilities were calculated as for the Markov cohort simulation. A cycle length of

three months was used. Costs and QALYs were calculated assuming that transitions

occur at the end of each cycle. No half cycle correction was applied.

DES

As a final comparator, a DES model was constructed using efficient vectorised

operations. Variance reduction was included by using common samples of 𝑋2 and 𝑋3

across the control and treatment arms.

Results
The MGF method gave consistent results with the discrete event simulation (see Table

2 and Fig. 4). It was very efficient, requiring only 17 1-dimensional numerical integrals

to be evaluated through Gaussian quadrature.

(a)

 25

(b)

Figure 4: Simulation ((a) DES and (b) Markov microsimulation) results

Key: Points are individual simulation samples, the solid line is the cumulative mean

incremental net monetary benefit, the shaded ribbon is the cumulative 95% confidence

interval based on 1-sample t statistic, the dashed line is the mean incremental net

monetary benefit as calculated by the MGF method

Even with 100,000 simulations and reasonable variance reduction measures, the

discrete event simulation still produced a somewhat imprecise estimate of economic

value.

The Markov cohort simulation approach was able to reach a fair approximation of the

true results when a large number of tunnel states were used and a short cycle length

was employed (see Table 2 and Fig. 5), but the approximation was poor when a longer

cycle length was used and/or no/few tunnel states were employed. There is a trade-off

that as the cycle length is reduced, more tunnel states are required to represent the

same portion of the survival curve.

 26

Figure 5: Comparison of Markov models with different cycle lengths and numbers
of tunnel states

Execution time

Execution time was measured using the microbenchmark package, with one hundred

replications on a laptop running R v3.5.1 (R Foundation for Statistical Computing) using

RStudio v1.2 (RStudio, Inc.). The laptop was running Windows 7 (Microsoft

Corporation) with an Intel Core i7 processor running at 2.6 GHz and with 16 GB RAM.

As shown in Table 3, the MGF method is faster than the other methods, even being

comparable to DES with a low number of simulations (1,000). With 1,000 simulations,

DES retained a Monte Carlo standard error of 12.7% of incremental net monetary

benefit.

 27

Discussion

We have presented the moment generating function (MGF) method, a new method for

calculating lifetime discounted costs and outcomes for health economic models, which

is distinct from Markov modelling and discrete event simulation and which has

advantages over both paradigms (see Table 4 and Appendix 7 for a detailed

comparison). It can represent sojourn-dependent transition times and payoffs in a very

computationally tractable manner, in contrast to Markov modelling. It provides

precision with fast convergence and no Monte Carlo variation, in contrast to discrete

event simulation. The ability to provide precise answers quickly also makes the MGF

method well suited to analyses which are challenging when using discrete event

simulation, such as value of information analyses and model calibration. In terms of

how it fits in with an analyst’s “workflow” the closest analogy is a Markov cohort

simulation – there is no need to produce multiple iterations to obtain an answer for a

single set of parameters, but when conducting sensitivity analyses (including

probabilistic sensitivity analysis) it is necessary to re-run the model using the different

sets of parameters.

The MGF method can be readily implemented in specialist statistical packages such as R

and Stata, as well as in widely available spreadsheet software such as Excel (without the

use of VBA code). There is no reason to think it could not also be incorporated into

specialist modelling software such as TreeAge. Future work may include procedural

generation of code for the MGF framework based on a description of the underlying

model.

The MGF method has a noteworthy limitation, which it is hoped will be addressed in the

future. It is not currently possible to include transitions based on wall time (except in

the trivial case where wall time is equal to sojourn time, i.e., for an initial state with no

possibility of return), or for risks to compete from different starting times. These

limitations make it challenging to include, for example, general mortality within a

model. In certain situations it is, however, more important to capture sojourn time-

dependent transitions, such as in advanced cancers.

The method also assumes independence of the time-to-event random variables in the

specification. This does not mean, though, that the risks of different events must be

treated as independent, as explained in Appendix 8, because conditional independence

 28

can be leveraged in this regard. For example, the risk of a patient with a haematological

cancer receiving a stem cell transplant and the risk of the same patient dying from other

causes are related according to the age and frailty of the patient, but may be

independent across patients conditional on their age and frailty.

In addition to future work to address the issues described above, we will also attempt to

develop methods for incorporating flexible spline TTE distributions23 and alternative

competing risk specifications.15, 16

 29

Acknowledgements

I wish to thank Antonieta Medina-Lara and Anne Spencer for their comments on this

manuscript and an earlier manuscript. I thank Mark W Pennington for his comments on

this manuscript and for discussing the earlier manuscript at the Health Economists’

Study Group in Bristol, June 2018, and Nicky Welton for chairing that session and

providing helpful comments, and all the attendees who contributed to the discussion. I

also thank the anonymous peer reviewers for their incredibly helpful suggestions for

redrafting the manuscript and pointing me towards statistical flowgraph model

research.

Declaration of conflicting interests
The author declares that there is no conflict of interest.

 30

References

1. Caro JJ, Briggs AH, Siebert U, Kuntz KM, ISPOR-SMDM Modeling Good Research

Practices Task Force. Modeling good research practices--overview: a report of the

ISPOR-SMDM Modeling Good Research Practices Task Force-1. Med Decis Making.

2012;32(5):667-77. doi: 10.1177/0272989X12454577

2. Cooper N, Sutton A, Ades A, Paisley S, Jones D. Use of evidence in economic

decision models: Practical issues and methodological challenges. Health Econ.

2007;16(12):1277-86. doi: 10.1002/hec.1297

3. Drummond MF, Sculpher MJ, Torrance GW, O'Brien B, Stoddart GL. Methods for

the economic evaluation of health care programmes. Oxford: Oxford University Press;

2005.

4. Weinstein MC, Siegel JE, Gold MR, Kamlet MS, Russell LB. Recommendations of

the panel on cost-effectiveness in health and medicine. JAMA. 1996;276(15):1253-8.

5. National Institute for Health and Care Excellence. The reference case. 2013. In:

Guide to the methods of technology appraisal 2013 [Internet]. London: NICE. Available

from: https://www.nice.org.uk/process/pmg9/chapter/the-reference-case.

6. Siebert U, Alagoz O, Bayoumi AM, Jahn B, Owens DK, Cohen DJ, et al. State-

transition modeling: a report of the ISPOR-SMDM Modeling Good Research Practices

Task Force-3. Med Decis Making. 2012;32(5):690-700. doi:

10.1177/0272989X12455463

7. Woods B, Sideris E, Palmer S, Latimer N, Soares M. NICE DSU Technical Support

Document 19. Partitioned survival analysis for decision modelling in health care: a

critical review 2017. Available from: http://www.nicedsu.org.uk/.

8. Briggs AH. Handling uncertainty in cost-effectiveness models.

PharmacoEconomics. 2000;17(5):479-500.

9. Strong M, Oakley JE, Brennan A. Estimating multiparameter partial expected

value of perfect information from a probabilistic sensitivity analysis sample: a

nonparametric regression approach. Med Decis Making. 2014;34(3):311-26. doi:

10.1177/0272989X13505910

10. Huzurbazar AV. Flowgraph models for multistate time-to-event data. New Jersey:

John Wiley & Sons; 2005.

https://www.nice.org.uk/process/pmg9/chapter/the-reference-case
http://www.nicedsu.org.uk/

 31

11. Ren Y. The methodology of flowgraph models: a thesis submitted for the degree

of Doctor of Philosophy. London: London School of Economics and Political Science;

2011.

12. Ara R, Brazier JE. Populating an economic model with health state utility values:

moving toward better practice. Value Health. 2010;13(5):509-18. doi: 10.1111/j.1524-

4733.2010.00700.x

13. Larson MG, Dinse GE. A Mixture Model for the Regression Analysis of Competing

Risks Data. Journal of the Royal Statistical Society Series C (Applied Statistics).

1985;34(3):201-11. doi: 10.2307/2347464

14. Karnon J, Stahl J, Brennan A, Caro JJ, Mar J, Moller J. Modeling using discrete event

simulation: a report of the ISPOR-SMDM Modeling Good Research Practices Task Force-

4. Med Decis Making. 2012;32(5):701-11. doi: 10.1177/0272989X12455462

15. Fine JP, Gray RJ. A Proportional Hazards Model for the Subdistribution of a

Competing Risk. Journal of the American Statistical Association. 1999;94(446):496-509.

doi: 10.1080/01621459.1999.10474144

16. Nicolaie MA, van Houwelingen HC, Putter H. Vertical modeling: A pattern mixture

approach for competing risks modeling. Statistics in Medicine. 2010;29(11):1190-205.

doi: 10.1002/sim.3844

17. Roberts M, Russell LB, Paltiel AD, Chambers M, McEwan P, Krahn M, et al.

Conceptualizing a model: a report of the ISPOR-SMDM Modeling Good Research

Practices Task Force-2. Med Decis Making. 2012;32(5):678-89. doi:

10.1177/0272989X12454941

18. R Core Team. R: A language and environment for statistical computing Vienna,

Austria: R Foundation for Statistical Computing; 2017. Available from: https://www.R-

project.org/.

19. Filipović-Pierucci A, Zarca K, Durand-Zaleski I. Markov Models for Health

Economic Evaluation: The R Package heemod. ArXiv e-prints. 2017;1702.03252.

20. Snowsill T. A new method for model-based health economic evaluation utilising

and extending moment-generating functions: Example model. Open Research Exeter.

2019. doi: 10.24378/exe.643

21. Barendregt JJ. The half-cycle correction: banish rather than explain it. Med Decis

Making. 2009;29(4):500-2. doi: 10.1177/0272989X09340585

https://www.r-project.org/
https://www.r-project.org/

 32

22. Krijkamp EM, Alarid-Escudero F, Enns EA, Jalal HJ, Hunink MGM, Pechlivanoglou

P. Microsimulation Modeling for Health Decision Sciences Using R: A Tutorial. Med Decis

Making. 2018;38(3):400-22. doi: 10.1177/0272989X18754513

23. Royston P, Parmar MK. Flexible parametric proportional-hazards and

proportional-odds models for censored survival data, with application to prognostic

modelling and estimation of treatment effects. Stat Med. 2002;21(15):2175-97. doi:

10.1002/sim.1203

24. van Rosmalen J, Toy M, O’Mahony JF. A Mathematical Approach for Evaluating

Markov Models in Continuous Time without Discrete-Event Simulation. Medical

Decision Making. 2013;33(6):767-79. doi: 10.1177/0272989x13487947

25. Davis P, Rabinowizt P. Methods of numerical integration. New York: Academic

Press; 1975.

26. DeVore R, Scott L. Error-bounds for Gaussian quadrature and weighted-L1

polynomial approximation. SIAM J Numer Anal. 1984;21(2):400-12.

27. Stoer J, Bulirsch R. Introduction to numerical analysis. 3rd ed. New York:

Springer-Verlag; 2002.

 33

Tables

Table 1: Table of extended MGFs in the example model

𝑺 𝑴𝑺
𝒏(−𝒓)

 𝒏 = 𝟎 𝒏 = 𝟏 𝒏 = 𝟐

(𝑋1 ∣∣ 𝑋1 < 𝑋2) 𝑚1
(0) 𝑚1

(1) 𝑚1
(2)

(𝑋2 ∣∣ 𝑋2 < 𝑋1) 𝑚2
(0) 𝑚2

(1) 𝑚2
(2)

𝑋3 𝑚3
(0) 𝑚3

(1) 𝑚3
(2)

(𝑋1 + 𝑋3 ∣∣ 𝑋1 < 𝑋2) 𝑚1
(0)𝑚3

(0)

(𝑚1
(0)𝑚3

(1)

+𝑚1
(1)𝑚3

(0))

(𝑚1
(0)𝑚3

(2)

+ 2𝑚1
(1)𝑚3

(1)

+𝑚1
(2)𝑚3

(0))

 34

Table 2. Worked example results

Arm QALYs Costs Net monetary benefit

 Absolute Incremental Absolute Incremental Absolute Incremental

MGF method

Control 1.678 £8437 £25,119
Treatment 1.871 0.194 £8529 £92 £28,898 £3779
Discrete event simulation (100,000 simulations) [Mean (95% CI)]

Control 1.676
(1.670, 1.683)

 £8432
(£8419, £8444)

 £25,090
(£24,969, £25,211)

Treatment 1.870
(1.863, 1.877)

0.194
(0.189, 0.199)

£8531
(£8518, £8544)

£99
(£89, £109)

£28,872
(£28,743, £29,000)

£3782
(£3684, £3880)

Markov cohort simulation (1-month cycle length, up to 31 tunnel states)

Control 1.667 £8414 £24,921
Treatment 1.862 0.195 £8509 £95 £28,733 £3811
Markov cohort simulation (1-year cycle length, no tunnel states)

Control 1.883 £8729 £28,927
Treatment 2.061 0.179 £8794 £65 £32,434 £3506
Markov microsimulation (1-month cycle length, 100,000 simulations) [Mean (95% CI)]

Control 1.732
(1.726, 1.739)

 £8458
(£8446, £8470)

 £26,184
(£26,064, £26,304)

Treatment 1.921
(1.914, 1.928)

0.189
(0.185, 0.192)

£8562
(£8549, £8575)

£103
(£96, £110)

£29,857
(£29,729, £29,985)

£3673
(£3608, £3738)

 35

Table 3. Execution times for different methods

Method Method parameters Time per iteration (ms) [Mean (SD), Median (IQR)]

MGF 11.0 (29.2), 6.59 (6.25–7.75)

Markov cohort[a] Cycles 800 166 (39.5), 152 (147–171)

Tunnel states 0

Markov cohort[a] Cycles 2,400 775 (119), 731 (692–832)

Tunnel states 23

Markov microsimulation[a] Simulations 1,000 326 (70.6), 304 (290–335)

Markov microsimulation[a] Simulations 100,000 26,124 (2513), 25,829 (24,361–27,373)

DES Simulations 1,000 5.86 (12.3), 4.13 (3.96–4.69)

DES Simulations 100,000 234 (34.1), 223 (215–238)

Notes: [a] Excludes all preparation prior to the run_model command (Markov cohort model) and the function factory step (Markov

microsimulation)

 36

Table 4. Capabilities of different methods

Method MGF Markov cohort

without tunnel

states

Markov cohort

with tunnel

states

Markov

micro-

simulation

DES

Sojourn time-dependent transitions

Transitions between states can depend on the length of time in the
current state. Can use non-exponential time-to-event distributions.

Yes No Partial Yes Yes

Wall time-dependent transitions

Transitions between states can depend on the length of time since
the model start. Typical example is age-related other cause
mortality.

No Yes Yes Yes Yes

Kaplan–Meier survival

Directly use Kaplan–Meier survival curves, without fitting a
parametric model or piecewise exponential model. Particularly
valuable when parametric models give a poor fit.

Yes Partial Partial Partial Yes

Sojourn time-dependent payoffs

Payoffs depend on the time in the current state, e.g., costs are
initially high within a state but then diminish.

Partial No Partial Yes Yes

Wall time-dependent payoffs

Payoffs depend on the time since the model start, e.g., health state
utility values decline with age.

Partial Yes Yes Yes Yes

Monte Carlo variation No No No Yes Yes

 37

There is random error introduced into results, which must either
be minimised with a large number of simulations, or accounted for
within statistical analyses.

Convergence behaviour

The global truncation error as a function of n, which is the number
of quadrature nodes for the MGF method, the cycle length for the
Markov cohort simulations, and the number of simulations for the
microsimulation methods.

See

appendix

𝒪(𝑛−1) 𝒪 (𝑛
−1

2⁄) 𝒪 (𝑛
−1

2⁄) 𝒪 (𝑛
−1

2⁄)

Notes: See Appendix 6 for further details.

 38

Appendix 1: Demonstration of equivalence of MGF method,

Markov cohort simulation and state occupancy equations in a

simple example

Background
This appendix gives further details supporting the demonstration of the equivalence of

different methods in a simple model.

We have a conceptual state transition model with three states, with transitions only

from the first to the second state (at rate 𝜆1), and the second state to the third state (at

rate 𝜆2).

Markov cohort simulation
An equivalent Markov model, where the cycle length is 𝛿𝑥, is as follows:

𝐲𝑛+1 = (
𝑒−𝜆1𝛿𝑥 1 − 𝑒−𝜆1𝛿𝑥 0
0 𝑒−𝜆2𝛿𝑥 1 − 𝑒−𝜆2𝛿𝑥

0 0 1

)

𝑇

𝐲𝑛

𝐲0 = (
1
0
0
)

Based on the recurrence relation we then find:

𝐲𝑛 = ((
𝑒−𝜆1𝛿𝑥 1 − 𝑒−𝜆1𝛿𝑥 0
0 𝑒−𝜆2𝛿𝑥 1 − 𝑒−𝜆2𝛿𝑥

0 0 1

)

𝑇

)

𝑛

𝐲0

Using eigendecomposition we find that

(
𝑒−𝜆1𝛿𝑥 1 − 𝑒−𝜆1𝛿𝑥 0
0 𝑒−𝜆2𝛿𝑥 1 − 𝑒−𝜆2𝛿𝑥

0 0 1

)

𝑇

= 𝑉Λ𝑉−1

=

(

1 0 0
1 − 𝑒−𝜆1𝛿𝑥

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
1 0

𝑒−𝜆2𝛿𝑥 − 1

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
−1 1)

(
𝑒−𝜆1𝛿𝑥 0 0
0 𝑒−𝜆2𝛿𝑥 0
0 0 1

)(

1 0 0
𝑒−𝜆1𝛿𝑥 − 1

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
1 0

1 1 1

)

Meaning that

 39

𝐲𝑛 =

(

1 0 0
1 − 𝑒−𝜆1𝛿𝑥

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
1 0

𝑒−𝜆2𝛿𝑥 − 1

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
−1 1)

(
𝑒−𝑛𝜆1𝛿𝑥 0 0
0 𝑒−𝑛𝜆2𝛿𝑥 0
0 0 1

)(

1 0 0
𝑒−𝜆1𝛿𝑥 − 1

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
1 0

1 1 1

)𝐲0

=

(

𝑒−𝑛𝜆1𝛿𝑥

(1 − 𝑒−𝜆1𝛿𝑥)(𝑒−𝑛𝜆1𝛿𝑥 − 𝑒−𝑛𝜆2𝛿𝑥)

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥

𝑒−𝑛𝜆2𝛿𝑥(1 − 𝑒−𝜆1𝑥) − 𝑒−𝑛𝜆1𝛿𝑥(1 − 𝑒−𝜆2𝛿𝑥)

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
+ 1)

Discounted QALYs are calculated as a sum of the Markov occupancies across all cycles

weighted by the health state utility value and the discounting function. Let 𝑢Unaffected be

the health state utility value for the healthy state and 𝑢Affected be the health state utility

value in the diseased state. As we are working analytically we assume an infinite

number of cycles:

𝑄𝐴𝐿𝑌𝑑 = 𝑢Unaffected∑𝑦𝑛1𝑒
−𝑟𝑛𝛿𝑥𝛿𝑥

∞

𝑛=0

+ 𝑢Affected∑𝑦𝑛2𝑒
−𝑟𝑛𝛿𝑥𝛿𝑥

∞

𝑛=0

Where 𝑦𝑛1 and 𝑦𝑛2 are the first and second components of 𝐲𝑛 (i.e., the state membership

for the healthy and diseased states in cycle 𝑛).

Let us consider the first component of this:

∑𝑒−𝑟𝑛𝛿𝑥𝑢Unaffected𝑒
−𝑛𝜆1𝛿𝑥𝛿𝑥

∞

𝑛=0

= ∑𝑒−𝑛𝛿𝑥(𝑟+𝜆1)𝑢Unaffected𝛿𝑥

∞

𝑛=0

= 𝑢Unaffected𝛿𝑥(1 + 𝑒
−𝛿𝑥(𝑟+𝜆1) + 𝑒−2𝛿𝑥(𝑟+𝜆1) + 𝑒−3𝛿𝑥(𝑟+𝜆1)

+⋯)

= 𝑢Unaffected𝛿𝑥∑(𝑒−𝛿𝑥(𝑟+𝜆1))
𝑛

∞

𝑛=0

This is a geometric series, and since ∑ 𝑥𝑛∞
𝑛=0 = (1 − 𝑥)−1, we obtain

𝑢Unaffected𝛿𝑥

1 − 𝑒−𝛿𝑥(𝑟+𝜆1)

We now take the limit as 𝛿𝑥 → 0 using L’Hôpital’s rule

 40

lim
𝛿𝑥→0

𝑢Unaffected𝛿𝑥

1 − 𝑒−𝛿𝑥(𝑟+𝜆1)
= lim
𝛿𝑥→0

𝑑
𝑑𝛿𝑥

(𝑢Unaffected𝛿𝑥)

𝑑
𝑑𝛿𝑥

(1 − 𝑒−𝛿𝑥(𝑟+𝜆1))

= lim
𝛿𝑥→0

𝑢Unaffected
(𝑟 + 𝜆1)𝑒−𝛿𝑥

(𝑟+𝜆1)

=
𝑢Unaffected
𝑟 + 𝜆1

This is exactly the component of discounted QALYs in the unaffected state as produced

using the MGF method.

For the second component, we proceed exactly as for the first component:

𝑢Affected∑𝑦𝑛2𝑒
−𝑟𝑛𝛿𝑥𝛿𝑥

∞

𝑛=0

=
𝑢Affected(1 − 𝑒

−𝜆1𝛿𝑥)𝛿𝑥

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
∑(𝑒−𝑛𝜆1𝛿𝑥 − 𝑒−𝑛𝜆2𝛿𝑥)𝑒−𝑟𝑛𝛿𝑥
∞

𝑛=0

=
𝑢Affected(1 − 𝑒

−𝜆1𝛿𝑥)𝛿𝑥

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
∑(𝑒−𝑛𝛿𝑥(𝜆1+𝑟) − 𝑒−𝑛𝛿𝑥(𝜆2+𝑟))

∞

𝑛=0

=
𝑢Affected(1 − 𝑒

−𝜆1𝛿𝑥)𝛿𝑥

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
(∑(𝑒−𝛿𝑥(𝜆1+𝑟))

𝑛
∞

𝑛=0

−∑(𝑒−𝛿𝑥(𝜆2+𝑟))
𝑛

∞

𝑛=0

)

=
𝑢Affected(1 − 𝑒

−𝜆1𝛿𝑥)𝛿𝑥

𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥
(

1

1 − 𝑒−𝛿𝑥(𝜆1+𝑟)
−

1

1 − 𝑒−𝛿𝑥(𝜆2+𝑟)
)

=
𝑢Affected(1 − 𝑒

−𝜆1𝛿𝑥)𝛿𝑥(𝑒−𝛿𝑥(𝜆1+𝑟) − 𝑒−𝛿𝑥(𝜆2+𝑟))

(𝑒−𝜆1𝛿𝑥 − 𝑒−𝜆2𝛿𝑥)(1 − 𝑒−𝛿𝑥(𝜆1+𝑟))(1 − 𝑒−𝛿𝑥(𝜆2+𝑟))

=
𝑢Affected(1 − 𝑒

−𝜆1𝛿𝑥)𝛿𝑥𝑒−𝛿𝑥𝑟

(1 − 𝑒−𝛿𝑥(𝜆1+𝑟))(1 − 𝑒−𝛿𝑥(𝜆2+𝑟))

=
𝑢Affected(1 − 𝑒

−𝜆1𝛿𝑥)𝛿𝑥

(𝑒𝛿𝑥𝑟 − 𝑒−𝛿𝑥𝜆1)(𝑒𝛿𝑥𝑟 − 𝑒−𝛿𝑥𝜆2)

Taking the limit as 𝛿𝑥 → 0:

𝑢Affected lim
𝛿𝑥→0

(1 − 𝑒−𝜆1𝛿𝑥)𝛿𝑥

(𝑒𝛿𝑥𝑟 − 𝑒−𝛿𝑥𝜆1)(𝑒𝛿𝑥𝑟 − 𝑒−𝛿𝑥𝜆2)
= 𝑢Affected

𝜆1
(𝑟 + 𝜆1)(𝑟 + 𝜆2)

Which again exactly matches the results from the MGF method.

 41

State occupancy equations
It can also be demonstrated that the same result is obtained if equations for the state

occupancy over time are identified analytically. Let 𝐲(𝑥) = [𝑦1(𝑥) 𝑦2(𝑥) 𝑦3(𝑥)]
𝑇

denote the probability that an individual is in each of the three states at a given time 𝑥.

𝑦1(𝑥) = Pr(𝑋1 > 𝑥)

= 1 − 𝐹𝑋1(𝑥)

= 𝑒−𝜆1𝑥

𝑦2(𝑥) = Pr(𝑋1 < 𝑥 < 𝑋1 + 𝑋2)

= ∫ 𝑓𝑋1(𝑥1) (1 − 𝐹𝑋2(𝑥 − 𝑥1)) 𝑑𝑥1

𝑥

0

= ∫ 𝜆1𝑒
−𝜆1𝑥1𝑒−𝜆2(𝑥−𝑥1)𝑑𝑥1

𝑥

0

=
𝜆1

𝜆1 − 𝜆2
𝑒−𝜆2𝑥(1 − 𝑒−𝑥(𝜆1−𝜆2))

𝑦3(𝑥) = Pr(𝑥 > 𝑋1 + 𝑋2)

= ∫ 𝑓𝑋1(𝑥1)𝐹𝑋2(𝑥 − 𝑥1)𝑑𝑥1

𝑥

0

= ∫ 𝜆1𝑒
−𝜆1𝑥1(1 − 𝑒−𝜆2(𝑥−𝑥1))𝑑𝑥1

𝑥

0

= 1 − 𝑒−𝜆1𝑥 +
𝜆1

𝜆1 − 𝜆2
(𝑒−𝜆1𝑥 − 𝑒−𝜆2𝑥)

The lifetime discounted QALYs in the unaffected state are therefore:

∫ 𝑦1(𝑥)𝑢Unaffected𝑒
−𝑟𝑥𝑑𝑥

∞

0

= 𝑢Unaffected∫ 𝑒−(𝜆1+𝑟)𝑥𝑑𝑥
∞

0

=
𝑢Unaffected
𝜆1 + 𝑟

And in the affected state:

∫ 𝑦2(𝑥)𝑢Affected𝑒
−𝑟𝑥𝑑𝑥

∞

0

= 𝑢Affected∫
𝜆1

𝜆1 − 𝜆2
𝑒−𝜆2𝑥(1 − 𝑒−𝑥(𝜆1−𝜆2))𝑒−𝑟𝑥𝑑𝑥

∞

0

= 𝑢Affected
𝜆1

𝜆1 − 𝜆2
(∫ 𝑒−𝜆2𝑥𝑒−𝑟𝑥𝑑𝑥

∞

0

−∫ 𝑒−𝜆2𝑥(𝑒−𝑥(𝜆1−𝜆2))𝑒−𝑟𝑥𝑑𝑥
∞

0

)

= 𝑢Affected
𝜆1

𝜆1 − 𝜆2
(

1

𝑟 + 𝜆2
−

1

𝑟 + 𝜆1
) = 𝑢Affected

𝜆1
𝜆1 − 𝜆2

(
𝑟 + 𝜆1 − (𝑟 + 𝜆2)

(𝑟 + 𝜆2)(𝑟 + 𝜆1)
)

= 𝑢Affected
𝜆1

(𝑟 + 𝜆2)(𝑟 + 𝜆1)

 42

These both agree exactly with the results of the MGF method.

 43

Appendix 2: Example of including cycles in the MGF method

In this appendix we expand on an example given within the main paper to incorporate a

cycle.

The figure for the model is given below (contrast with Fig. 2 which does not include the

possibility of returning from the Transplant state to the Dialysis state). It uses the

statistical flowgraph model / pattern mixture approach to define competing risks.

To account for the fact that there could be any number of transplantations, we introduce

an additional subscript for the TTE variables corresponding to transplantation and graft

failure. 𝑋12𝑘 is the waiting time in dialysis before undergoing the 𝑘th transplantation and

𝑋21𝑘 is the time with a transplant prior to graft failure and returning to dialysis. There is

no need to introduce additional subscripts for 𝑋13 and 𝑋23 since Dead is an absorbing

state.

We introduce two new random variables for convenience: 𝐾 denotes the number of

transplants a patient receives in their lifetime, and 𝐷 is 1 if they die with a transplant or

0 if they die while on dialysis (note that if 𝐷 = 1 then 𝐾 ≥ 1).

In this example we focus on calculating the discounted life years lived on dialysis. The

same methodology can be employed to calculate other discounted payoffs.

The expected discounted life years lived on dialysis is factorised across the different

combinations of 𝐾 and 𝐷:

 44

𝔼 [𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

] = ∑∑Pr(𝐾 = 𝑘,𝐷 = 𝑑) 𝔼 [𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

∣∣ 𝐾 = 𝑘, 𝐷 = 𝑑]

1

𝑑=0

∞

𝑘=0

By simple consideration of the branch probabilities, we find:

Pr(𝐾 = 𝑘, 𝐷 = 0) = 𝑝12
𝑘 𝑝21

𝑘 𝑝13

Pr(𝐾 = 𝑘, 𝐷 = 1) = 𝑝12
𝑘 𝑝21

𝑘−1𝑝23, 𝑘 ≥ 1

We then develop formulae for the discounted life years lived in dialysis according to the

values of 𝐾 and 𝐷:

𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

∣ (𝐾 = 𝑘, 𝐷 = 0)

= (∑ ∫ 𝑒−𝑟𝑥𝑑𝑥
[∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1]+𝑋12(𝑚+1)

∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1

𝑘−1

𝑚=0

) + ∫ 𝑒−𝑟𝑥𝑑𝑥
[∑ 𝑋12𝑛+𝑋21𝑛
𝑘
𝑛=1]+𝑋13

∑ 𝑋12𝑛+𝑋21𝑛
𝑘
𝑛=1

𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

∣ (𝐾 = 𝑘, 𝐷 = 1) = ∑ ∫ 𝑒−𝑟𝑥𝑑𝑥
[∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1]+𝑋12(𝑚+1)

∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1

𝑘−1

𝑚=0

For the “special case” of 𝐾 = 0 (implies 𝐷 = 0):

𝔼 [𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

∣ (𝐾 = 0, 𝐷 = 0)] = 𝔼 [∫ 𝑒−𝑟𝑥𝑑𝑥
𝑋13

0

] = 𝔼 [
1

𝑟
(1 − 𝑒−𝑟𝑋13)]

=
1

𝑟
(1 −𝑀𝑋13(−𝑟))

And for the “general case” of 𝐾 ≥ 1, we note that a simplification is possible since one

summation occurs whether 𝐷 equals 0 or 1:

𝔼 [𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

∣ (𝐾 = 𝑘)]

= 𝔼 [∑ ∫ 𝑒−𝑟𝑥𝑑𝑥
[∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1]+𝑋12(𝑚+1)

∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1

𝑘−1

𝑚=0

]

+ Pr(𝐷 = 0 ∣ 𝐾 = 𝑘)𝔼 [∫ 𝑒−𝑟𝑥𝑑𝑥
[∑ 𝑋12𝑛+𝑋21𝑛
𝑘
𝑛=1]+𝑋13

∑ 𝑋12𝑛+𝑋21𝑛
𝑘
𝑛=1

]

We first consider the summation from 𝑚 = 0 to 𝑘 − 1, noting crucially that all 𝑋12𝑛 and

𝑋21𝑛 are independent of each other and have identical MGFs equal to 𝑀𝑋12(⋅) and

𝑀𝑋21(⋅) respectively:

 45

𝔼 [∑ ∫ 𝑒−𝑟𝑥𝑑𝑥
[∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1]+𝑋12(𝑚+1)

∑ 𝑋12𝑛+𝑋21𝑛
𝑚
𝑛=1

𝑘−1

𝑚=0

]

=
1

𝑟
𝔼 [∑ 𝑒−𝑟(∑ 𝑋12𝑛+𝑋21𝑛

𝑚
𝑛=1) − 𝑒−𝑟([∑ 𝑋12𝑛+𝑋21𝑛

𝑚
𝑛=1]+𝑋12(𝑚+1))

𝑘−1

𝑚=0

]

=
1

𝑟
𝔼 [∑ 𝑒−𝑟(∑ 𝑋12𝑛+𝑋21𝑛

𝑚
𝑛=1)(1 − 𝑒−𝑟𝑋12(𝑚+1))

𝑘−1

𝑚=0

]

=
1

𝑟
𝔼 [∑(1 − 𝑒−𝑟𝑋12(𝑚+1))∏𝑒−𝑟𝑋12𝑛𝑒−𝑟𝑋21𝑛

𝑚

𝑛=1

𝑘−1

𝑚=0

]

=
1

𝑟
(∑ (1 −𝑀𝑋12(−𝑟))∏𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)

𝑚

𝑛=1

𝑘−1

𝑚=0

)

=
1 −𝑀𝑋12(−𝑟)

𝑟
∑ (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))

𝑚
𝑘−1

𝑚=0

And now the second component of the formula:

𝔼 [∫ 𝑒−𝑟𝑥𝑑𝑥
[∑ 𝑋12𝑛+𝑋21𝑛
𝑘
𝑛=1]+𝑋13

∑ 𝑋12𝑛+𝑋21𝑛
𝑘
𝑛=1

] =
1

𝑟
𝔼 [𝑒−𝑟(∑ 𝑋12𝑛+𝑋21𝑛

𝑘
𝑛=1) − 𝑒−𝑟([∑ 𝑋12𝑛+𝑋21𝑛

𝑘
𝑛=1]+𝑋13)]

=
1

𝑟
𝔼 [𝑒−𝑟(∑ 𝑋12𝑛+𝑋21𝑛

𝑘
𝑛=1)(1 − 𝑒−𝑟𝑋13)]

=
1

𝑟
𝔼 [(1 − 𝑒−𝑟𝑋13)∏𝑒−𝑟𝑋12𝑛𝑒−𝑟𝑋21𝑛

𝑘

𝑛=1

]

=
1

𝑟
𝔼 [(1 − 𝑀𝑋13(−𝑟))∏𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)

𝑘

𝑛=1

]

=
1 −𝑀𝑋13(−𝑟)

𝑟
(𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))

𝑘

Bringing together the special and the general case we now have:

 46

𝔼 [𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

]

= Pr(𝐾 = 0, 𝐷 = 0) 𝔼 [𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

∣∣ 𝐾 = 0, 𝐷 = 0]

+∑Pr(𝐾 = 𝑘)𝔼 [𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

∣∣ 𝐾 = 𝑘]

∞

𝑘=1

=
𝑝13
𝑟
(1 − 𝑀𝑋13(−𝑟))

+∑(𝑝12
𝑘 𝑝21

𝑘−1(𝑝21𝑝13 + 𝑝23) (
1 −𝑀𝑋12(−𝑟)

𝑟
∑ (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))

𝑚
𝑘−1

𝑚=0

∞

𝑘=1

+
𝑝21𝑝13

(𝑝21𝑝13 + 𝑝23)

1 − 𝑀𝑋13(−𝑟)

𝑟
(𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))

𝑘

))

=
𝑝13
𝑟
(1 − 𝑀𝑋13(−𝑟))

+
1

𝑟
((𝑝21𝑝13 + 𝑝23) (1

− 𝑀𝑋12(−𝑟))∑(𝑝12
𝑘 𝑝21

𝑘−1 ∑ (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))
𝑚

𝑘−1

𝑚=0

)

∞

𝑘=1

+ 𝑝21𝑝13 (1 −𝑀𝑋13(−𝑟))∑𝑝12
𝑘 𝑝21

𝑘−1 (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))
𝑘

∞

𝑘=1

)

We then use the following equation to simplify (assumes 𝑝, 𝑏 < 1):

∑𝑎𝑝𝑘 (∑ 𝑏𝑚
𝑘−1

𝑚=0

)

∞

𝑘=1

=
𝑎𝑝

(1 − 𝑝)(1 − 𝑏𝑝)

∑(𝑝12
𝑘 𝑝21

𝑘−1 ∑ (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))
𝑚

𝑘−1

𝑚=0

)

∞

𝑘=1

=
𝑎𝑝

(1 − 𝑝)(1 − 𝑏𝑝)

Where

𝑎 = 𝑝21
−1

𝑝 = 𝑝12𝑝21

𝑏 = 𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)

Therefore

 47

∑(𝑝12
𝑘 𝑝21

𝑘−1 ∑ (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))
𝑚

𝑘−1

𝑚=0

)

∞

𝑘=1

=
𝑝12

(1 − 𝑝12𝑝21) (1 − 𝑝12𝑝21𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))

And the more recognisable infinite series:

∑𝑎𝑟𝑗
∞

𝑗=0

=
𝑎

1 − 𝑟

To simplify

∑𝑝12
𝑘 𝑝21

𝑘−1 (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))
𝑘

∞

𝑘=1

By setting

𝑗 = 𝑘 − 1

𝑎 = 𝑝12𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)

𝑟 = 𝑝12𝑝21𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)

Such that

∑𝑝12
𝑘 𝑝21

𝑘−1 (𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))
𝑘

∞

𝑘=1

=
𝑝12𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)

1 − 𝑝12𝑝21𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)

So finally we have:

𝔼 [𝐿𝑌𝑑
(𝐷𝑖𝑎𝑙𝑦𝑠𝑖𝑠)

]

=
1

𝑟
(𝑝13 (1 − 𝑀𝑋13(−𝑟)) +

𝑝12(𝑝21𝑝13 + 𝑝23) (1 − 𝑀𝑋12(−𝑟))

(1 − 𝑝12𝑝21) (1 − 𝑝12𝑝21𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟))

+
𝑝12𝑝21𝑝13 (1 − 𝑀𝑋13(−𝑟))𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)

1 − 𝑝12𝑝21𝑀𝑋12(−𝑟)𝑀𝑋21(−𝑟)
)

 48

Appendix 3: Independent time-to-event distributions approach to

competing risks

In this approach it is assumed that there are multiple competing risks, represented by

time-to-event random variables 𝑋1, 𝑋2, …, and it is further assumed that these are

independent. All but the earliest of these time-to-event variables are latent (not

observed). Such a description of competing events often arises from evidence synthesis,

where different sources provide time-to-event distributions.

The method for solving such problems involves mapping from this formulation to the

pattern-mixture approach described above, i.e., to estimate the categorical distribution

for which event occurs first, and for each of the possible events to derive the conditional

distribution (and more importantly, its EMGF), given that it was the earliest event.

In summary (assuming there are only two competing risks), we need to calculate:

𝑝 = Pr(𝐷 = 1) = Pr(𝑋1 < 𝑋2)

𝔼[𝑋1 ∣∣ 𝑋1 < 𝑋2]

𝑀𝑋1∣𝑋1<𝑋2(𝑡) = 𝔼[𝑒
𝑡𝑋1 ∣∣ 𝑋1 < 𝑋2]

𝑀𝑋1∣𝑋1<𝑋2
𝑗 (𝑡) = 𝔼[𝑋1

𝑗
𝑒𝑡𝑋1 ∣∣ 𝑋1 < 𝑋2]

These will require integrals involving conditional probability distributions such as

𝑓𝑋1∣𝑋1<𝑋2(𝑥), which can be estimated either by multiplying the probability density

function of 𝑋1 by the survivor function of 𝑋2 or by multiplying the probability density

function of 𝑋2 by the cumulative distribution function of 𝑋1:

𝑓𝑋1∣𝑋1<𝑋2(𝑥) =
𝑓𝑋1(𝑥) (1 − 𝐹𝑋2(𝑥))

∫ 𝑓𝑋2(𝑥)𝐹𝑋1(𝑥)𝑑𝑥
∞

0

=
𝑓𝑋1(𝑥) (1 − 𝐹𝑋2(𝑥))

∫ 𝑓𝑋1(𝑥) (1 − 𝐹𝑋2(𝑥)) 𝑑𝑥
∞

0

We then use the law of the unconscious statistician for all necessary calculations:

𝔼[𝑔(𝑋1) ∣∣ 𝑋1 < 𝑋2] =
∫ 𝑔(𝑥)𝑓𝑋1(𝑥) (1 − 𝐹𝑋2(𝑥))𝑑𝑥
∞

0

∫ 𝑓𝑋2(𝑥)𝐹𝑋1(𝑥)𝑑𝑥
∞

0

Where 𝑔(𝑥) is any function of interest, e.g., 𝑔(𝑥) = 𝑒−𝑟𝑥 to calculate 𝑀𝑋1∣𝑋1<𝑋2(−𝑟).

 49

Analytical results
If 𝑋1 and 𝑋2 are independent exponentially distributed random variables, with rate

parameters 𝜆1 and 𝜆2 respectively, then the conditional distributions for each variable

(conditional on it being the earlier time-to-event) are exponential, with rate parameters

both equal to (𝜆1 + 𝜆2), and the probability that 𝑋1 is the earlier event is:

𝔼[𝟏𝑋1<𝑋2] =
𝜆1

𝜆1 + 𝜆2

Similar results are obtained if 𝑋1 and 𝑋2 are Weibull with common shape parameter, 𝑘,

but different scale parameters 𝜆1 and 𝜆2. In this case the conditional distributions are

both Weibull with equal scale and shape parameters. The scale parameter is

𝜆12 =
𝜆1𝜆2

(𝜆1
𝑘 + 𝜆2

𝑘)
1
𝑘

And the shape parameter is 𝑘. The probability that 𝑋1 is the earlier event is

𝔼[𝟏𝑋1<𝑋2] =
𝜆2
𝑘

𝜆1
𝑘 + 𝜆2

𝑘

General case
In most cases it is unlikely that the conditional distributions will match known

distributions with MGFs. In this case numerical integration is recommended.

Note that when there are more than two competing risks the complexity is not greatly

increased:

𝑝𝑖 = 𝔼 [𝟏𝑋𝑖=min
𝑗
𝑋𝑗
] = ∫ 𝑓𝑋𝑖(𝑥)∏(1 − 𝐹𝑋𝑗(𝑥))

𝑗≠𝑖

𝑑𝑥
∞

0

𝑓𝑋𝑖∣𝑋𝑖=min
𝑗
𝑋𝑗
(𝑥) =

1

𝑝𝑖
𝑓𝑋𝑖(𝑥)∏(1 − 𝐹𝑋𝑗(𝑥))

𝑗≠𝑖

Only 1-dimensional integrals need to be calculated, which can be efficiently estimated

numerically.

When Kaplan–Meier estimators are involved, at least one of the time-to-event

distributions is discrete, such that integrals involving 𝑓(𝑥) are not appropriate, but

summation or Riemann–Stieltjes integrals must be used.

 50

Appendix 4: Derivations of MGFs and EMGFs for certain time-to-

event distributions

In this appendix we provide analytical (E)MGFs with derivations for a number of time-

to-event distributions which may be encountered in health economic modelling. The

distributions are:

 Exponential distribution – The hazard of the event is constant over time;

 Gamma distribution – The hazard function is either concave and increasing over

time or convex and decreasing over time;

 Degenerate distribution – The event always happens after a particular length of

time;

 Uniform distribution – The event is equally likely to occur at any time during a

given window;

 Kaplan–Meier estimator – Empirical survival data (including censored

observations) is used to estimate the survivor function.

Many of the derivations use the Gamma function (a generalisation of the factorial

function beyond the natural/counting numbers), which has no closed form but is

available in statistical packages and spreadsheet software:

Γ(𝑧) = ∫ 𝑥𝑧−1𝑒−𝑧𝑑𝑥
∞

0

Exponential random variable

MGF
𝑋 ∼ 𝐸𝑥𝑝(𝜆)

𝑓𝑋(𝑥) = 𝜆𝑒
−𝜆𝑥

𝑀𝑋(𝑡) = 𝔼[𝑒
𝑡𝑋]

= ∫ 𝑒𝑡𝑥𝜆𝑒−𝜆𝑥𝑑𝑥
∞

0

= ∫ 𝜆𝑒−(𝜆−𝑡)𝑥𝑑𝑥
∞

0

= [−
𝜆

𝜆 − 𝑡
𝑒−(𝜆−𝑡)𝑥]

0

∞

=
𝜆

𝜆 − 𝑡
, 𝑡 < 𝜆

 51

EMGF

𝑀𝑋
𝑛(𝑡) = 𝔼[𝑋𝑛𝑒𝑡𝑋]

= ∫ 𝑥𝑛𝑒𝑡𝑥𝜆𝑒−𝜆𝑥𝑑𝑥
∞

0

= 𝜆∫ 𝑥𝑛𝑒−(𝜆−𝑡)𝑥𝑑𝑥
∞

0

=
𝜆

(𝜆 − 𝑡)𝑛
∫ ((𝜆 − 𝑡)𝑥)

𝑛
𝑒−(𝜆−𝑡)𝑥𝑑𝑥

∞

0

Let 𝑛 = 𝑧 − 1 and let 𝑢 = (𝜆 − 𝑡)𝑥 (𝑡 < 𝜆):

𝑀𝑋
𝑛(𝑡) =

𝜆

(𝜆 − 𝑡)𝑧−1
∫

𝑢𝑧−1𝑒−𝑢𝑑𝑢

𝜆 − 𝑡

∞

0

=
𝜆

(𝜆 − 𝑡)𝑧
∫ 𝑢𝑧−1𝑒−𝑢𝑑𝑢
∞

0

=
𝜆

(𝜆 − 𝑡)𝑧
Γ(𝑧)

=
𝜆(𝑧 − 1)!

(𝜆 − 𝑡)𝑧

=
𝜆𝑛!

(𝜆 − 𝑡)𝑛+1

Gamma random variable

MGF

𝑋 ∼ Γ(𝛼, 𝛽)

𝑓𝑋(𝑥) =
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥

𝑀𝑋(𝑡) = 𝔼[𝑒
𝑡𝑋]

= ∫ 𝑒𝑡𝑥
𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥𝑑𝑥

∞

0

=
𝛽𝛼

Γ(𝛼)
∫ 𝑥𝛼−1𝑒−(𝛽−𝑡)𝑥𝑑𝑥
∞

0⏟
𝑢=(𝛽−𝑡)𝑥, 𝑡<𝛽

=
𝛽𝛼

Γ(𝛼)(𝛽 − 𝑡)𝛼
∫ 𝑢𝛼−1𝑒−𝑢𝑑𝑢
∞

0

=
𝛽𝛼

Γ(𝛼)(𝛽 − 𝑡)𝛼
Γ(𝛼)

=
𝛽𝛼

(𝛽 − 𝑡)𝛼

= (
𝛽

𝛽 − 𝑡
)
𝛼

= (1 −
𝑡

𝛽
)
−𝛼

 52

EMGF

𝑀𝑋
𝑛(𝑡) = 𝔼[𝑋𝑛𝑒𝑡𝑋]

= ∫
𝑥𝑛𝑒𝑡𝑥𝛽𝛼

Γ(𝛼)
𝑥𝛼−1𝑒−𝛽𝑥𝑑𝑥

∞

0

=
𝛽𝛼

Γ(𝛼)
∫ 𝑥𝑛+𝛼−1𝑒−(𝛽−𝑡)𝑥𝑑𝑥
∞

0

=
Γ(𝑛 + 𝛼)𝛽𝛼

Γ(𝛼)(𝛽 − 𝑡)𝑛+𝛼

=
Γ(𝑛 + 𝛼)

Γ(𝛼)(𝛽 − 𝑡)𝑛
(1 −

𝑡

𝛽
)
−𝛼

Again, assuming 𝑡 < 𝛽.

Degenerate distribution
This distribution has all its probability mass concentrated on a single point, 𝑎. Its

expected value is 𝑎 and as a constant random variable, 𝔼[𝑔(𝑋)] = 𝑔(𝔼[𝑋]) for any

function 𝑔(⋅).

MGF

𝑋 ∼ 𝛿(𝑎)

𝑀𝑋(𝑡) = 𝔼[𝑒
𝑡𝑋]

= 𝑒𝑡𝑎

EMGF

𝑀𝑋
𝑛(𝑡) = 𝔼[𝑋𝑛𝑒𝑡𝑋] = 𝑎𝑛𝑒𝑡𝑎

Uniform distribution

MGF

𝑋 ∼ 𝑈(𝑎, 𝑏)

𝑓𝑋(𝑥) = {
(𝑏 − 𝑎)−1, 𝑎 ≤ 𝑥 ≤ 𝑏

0, otherwise

𝑀𝑋(𝑡) = 𝔼[𝑒
𝑡𝑋]

= ∫
𝑒𝑡𝑥

𝑏 − 𝑎
𝑑𝑥

𝑏

𝑎

= [
𝑒𝑡𝑥

𝑡(𝑏 − 𝑎)
]
𝑎

𝑏

=
𝑒𝑡𝑏 − 𝑒𝑡𝑎

𝑡(𝑏 − 𝑎)

 53

EMGF

𝑀𝑋
𝑛(𝑡) = 𝔼[𝑋𝑛𝑒𝑡𝑋]

= ∫
𝑥𝑛𝑒𝑡𝑥

𝑏 − 𝑎
𝑑𝑥

𝑏

𝑎

= ∫
𝑥𝑛𝑒𝑡𝑥

𝑏 − 𝑎
𝑑𝑥

𝑏

0

−∫
𝑥𝑛𝑒𝑡𝑥

𝑏 − 𝑎
𝑑𝑥

𝑎

0

Let 𝑛 = 𝑧 − 1 and 𝑢 = −𝑡𝑥 and assume 𝑡 < 0:

∫
𝑥𝑛𝑒𝑡𝑥

𝑏 − 𝑎
𝑑𝑥

𝑏

0

−∫
𝑥𝑛𝑒𝑡𝑥

𝑏 − 𝑎
𝑑𝑥

𝑎

0

=
𝛾(𝑧,−𝑡𝑏) − 𝛾(𝑧, −𝑡𝑎)

(−𝑡)𝑧(𝑏 − 𝑎)

Where 𝛾(𝑧, 𝛼) = ∫ 𝑥𝑧−1𝑒−𝑥𝑑𝑥
𝛼

0
 (the lower incomplete gamma function).

Kaplan–Meier estimator
Given a Kaplan–Meier curve (where 𝑑𝑖 and 𝑛𝑖 are the number of individuals

dying/failing at time 𝑥𝑖 and the number at risk just prior to time 𝑥𝑖):

𝑆(𝑥) = ∏ (1 −
𝑑𝑖
𝑛𝑖
)

𝑖:𝑥𝑖<𝑥

The EMGF when 𝑆(𝑥) = 0 for some 𝑥 is:

𝑀𝑋
𝑛(𝑡) = ∫ 𝑥𝑛𝑒𝑡𝑥𝑑𝐹(𝑥)

∞

0

= −∫ 𝑥𝑛𝑒𝑡𝑥𝑑𝑆(𝑥)
∞

0

=∑𝑥𝑖
𝑛𝑒𝑡𝑥𝑖(𝑆(𝑥𝑖−1) − 𝑆(𝑥𝑖))

𝑖

Where we set 𝑆(𝑥0) = 1. Note that ∫ 𝑔(𝑥)𝑑𝐹(𝑥)
𝑏

𝑎
 is the Riemann–Stieltjes integral of

𝑔(𝑥) with respect to 𝐹(𝑥).

This means that to calculate the (E)MGF for a Kaplan–Meier distribution we can

calculate components of the (E)MGF alongside our calculation of the survival function,

and eventually sum these.

If the Kaplan–Meier estimator is not a proper distribution function (i.e., survival does

not tend to zero as time tends towards infinity), we can still obtain a relevant EMGF.

First, suppose that at 𝑥𝑖 = ∞ the survival curve drops to 0, meaning that we add a term

lim
𝑥𝑖→∞

𝑥𝑖
𝑛𝑒𝑡𝑥𝑖(𝑆(𝑥𝑖−1) − 𝑆(𝑥𝑖)) = 0 (if 𝑡 < 0), i.e., there is no adjustment needed if we

assume that a proportion never transitions, although this is unlikely to ever be a

 54

realistic assumption. Alternatively we can extend the estimator with a parametric

model and calculate a composite EMGF. If we define the parametric extension from a

change point 𝑥⋆:

𝑀𝑋
𝑛(𝑡) = ∑ 𝑥𝑖

𝑛𝑒𝑡𝑥𝑖(𝑆(𝑥𝑖−1) − 𝑆(𝑥𝑖))

𝑖:𝑥𝑖≤𝑥
⋆

+𝑆(𝑥⋆)∫ 𝑥𝑛𝑒𝑡𝑥𝑓(𝑥 − 𝑥⋆)𝑑𝑥
∞

𝑥⋆

 55

Appendix 5: Recommendations for numerical integration

Many of the distributions frequently encountered in health economic modelling do not

have a closed form, or convergent series representations, and so it is necessary to

employ numerical integration techniques (or to make structural changes to the model

so that the distribution can be approximated by an exponential, Erlang, Coxian or phase-

type distribution, as described by van Rosmalen et al.24). Well-established numerical

methods can be employed, in particular Gaussian quadrature methods.

Gauss–Laguerre quadrature with a simple substitution of 𝑢 = 𝑟𝑥 gives:

𝑀𝑋(−𝑟) = ∫ 𝑒−𝑟𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

0

= ∫
1

𝑟
𝑒−𝑢𝑓𝑋(𝑢 𝑟⁄)𝑑𝑢

∞

0

≈
1

𝑟
∑𝑤𝑖𝑓𝑋(𝑢𝑖 𝑟⁄)

𝑛

𝑖=1

Where 𝑢𝑖 and 𝑤𝑖 are the nodes and weights for 𝑛-node Gaussian quadrature.

However, when 𝑟 is small this leads to evaluation of 𝑓𝑋 at large values (where it is

typically close to zero), and ultimately very poor numerical performance.

Gauss–Laguerre quadrature can still be appropriate if instead the exponential term is

extracted:

𝑀𝑋(−𝑟) = ∫ 𝑒−𝑟𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

0

= ∫ 𝑒−𝑥𝑒(1−𝑟)𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

0

≈∑𝑤𝑖𝑒
(1−𝑟)𝑥𝑖𝑓𝑋(𝑥𝑖)

𝑛

𝑖=1

Gauss–Legendre quadrature can also be used with two different approaches. The first

uses the substitution 𝑥 = (1 + 𝑢) (1 − 𝑢)⁄ :

𝑀𝑋(−𝑟) = ∫ 𝑒−𝑟𝑥𝑓𝑋(𝑥)𝑑𝑥
∞

0

= ∫ 𝑒−𝑟(
1+𝑢
1−𝑢

)𝑓𝑋 (
1 + 𝑢

1 − 𝑢
)

2

(1 − 𝑢)2
𝑑𝑢

1

−1

≈ 2∑𝑤𝑖(1 − 𝑢𝑖)
−2𝑒

−𝑟(
1+𝑢𝑖
1−𝑢𝑖

)
𝑓𝑋 (

1 + 𝑢𝑖
1 − 𝑢𝑖

)

𝑛

𝑖=1

The second approach is based on the quantile function and the substitution 𝑢 = 2𝑝 − 1:

𝑀𝑋(−𝑟) = ∫ 𝑒−𝑟𝑄𝑋(𝑝)𝑑𝑝
1

0

=
1

2
∫ 𝑒−𝑟𝑄𝑋(

𝑢+1
2
)𝑑𝑢

1

−1

≈
1

2
∑𝑤𝑖𝑒

−𝑟𝑄𝑋(
𝑢𝑖+1
2
)

𝑛

𝑖=1

(48)

 56

Of all the approaches, Equation (48) appears to have the most desirable numerical

qualities, since it avoids excessive exploration of very low density areas. However, the

quantile function may not be readily available for all distributions in all settings.

In some cases it may be advantageous to split an integral in the following manner:

∫ 𝑓(𝑥)𝑑𝑥
∞

0

= ∫ 𝑓(𝑥)𝑑𝑥
𝑎

0

+∫ 𝑓(𝑥)𝑑𝑥
∞

𝑎

=
𝑎

2
∫ 𝑓 (

𝑎

2
(𝑢 + 1))𝑑𝑢

1

−1

+ 2∫ 𝑓 (𝑎 +
1 + 𝑢

1 − 𝑢
)

𝑑𝑢

(1 − 𝑢)2

1

−1

≈
𝑎

2
∑𝑤𝑖𝑓(𝑎(𝑢𝑖 + 1) 2⁄)

𝑛

𝑖=1

+ 2∑
𝑤𝑖

(1 − 𝑢𝑖)2
𝑓 (𝑎 +

1 + 𝑢𝑖
1 − 𝑢𝑖

)

𝑛

𝑖=1

Where 𝑎 is selected such that [0, 𝑎) covers the majority of the behaviour of 𝑓(𝑥), and

may be informed by properties of the underlying random variables (e.g., 𝑎 = 𝔼[𝑋] +

2√Var[𝑋]).

Gaussian quadrature schemes have the advantage that they can be readily implemented

in spreadsheet software, since the weights and quadrature points can be hard-coded

(provided a constant number of nodes is used).

Users are recommended to check that satisfactory convergence has been achieved,

noting that errors will accumulate with arithmetic operations, and that convergence

may depend on the values of parameters (e.g., in a probabilistic sensitivity analysis).

 57

Appendix 6: R code listings for example

MGF method

Load necessary libraries

library(tidyverse)

library(flexsurv)

[... Define parameters ...]

Probability density and cumulative distribution functions

f_X1_treatment <- function(x) dweibull(x, scale = lambda_treatment, shape =

k1)

F_X1_treatment <- function(x) pweibull(x, scale = lambda_treatment, shape =

k1)

f_X1_control <- function(x) dweibull(x, scale = lambda_control, shape = k1)

F_X1_control <- function(x) pweibull(x, scale = lambda_control, shape = k1)

f_X2 <- function(x) dgompertz(x, rate = b2, shape = a2)

F_X2 <- function(x) pgompertz(x, rate = b2, shape = a2)

#' Convenience function for calculating discounted QALYs accrued between A and

B

#'

#' @param mgf_a_0 M_A^(0)(-r)

#' @param mgf_a_1 M_A^(1)(-r)

#' @param mgf_a_2 M_A^(2)(-r)

#' @param mgf_b_0 M_B^(0)(-r)

#' @param mgf_b_1 M_B^(1)(-r)

#' @param mgf_b_2 M_B^(2)(-r)

MGF_qaly <- function(mgf_a_0, mgf_a_1, mgf_a_2, mgf_b_0, mgf_b_1, mgf_b_2) {

 ((

 (u0*mgf_a_0 + u1*mgf_a_1 + u2*mgf_a_2)*r^2 +

 (u1*mgf_a_0 + 2*u2*mgf_a_1)*r +

 (2*u2*mgf_a_0)

) - (

 (u0*mgf_b_0 + u1*mgf_b_1 + u2*mgf_b_2)*r^2 +

 (u1*mgf_b_0 + 2*u2*mgf_b_1)*r +

 (2*u2*mgf_b_0)

))/r^3

}

Calculate probability X1 < X2 given receive treatment

p_treatment <- integrate(

 function(x) { f_X2(x)*F_X1_treatment(x) },

 lower = 0,

 upper = Inf,

 rel.tol = 1e-8

)$value

 58

Calculate probability X1 < X2 given receive control

p_control <- integrate(

 function(x) { f_X2(x)*F_X1_control(x) },

 lower = 0,

 upper = Inf,

 rel.tol = 1e-8

)$value

Calculate EMGFs for all variables with j = 0, 1, 2

GM_X1_treatment <- map_dbl(

 0:2,

 ~ integrate(

 function(x) { x^(.)*exp(-r*x) * f_X1_treatment(x) * (1-F_X2(x)) /

p_treatment },

 lower = 0,

 upper = Inf,

 rel.tol = 1e-8

)$value

)

GM_X1_control <- map_dbl(

 0:2,

 ~ integrate(

 function(x) { x^(.)*exp(-r*x) * f_X1_control(x) * (1-F_X2(x)) / p_control

},

 lower = 0,

 upper = Inf,

 rel.tol = 1e-8

)$value

)

GM_X2_treatment <- map_dbl(

 0:2,

 ~ integrate(

 function(x) { x^(.)*exp(-r*x) * f_X2(x) * (1-F_X1_treatment(x)) / (1-

p_treatment) },

 lower = 0,

 upper = Inf,

 rel.tol = 1e-8

)$value

)

GM_X2_control <- map_dbl(

 0:2,

 ~ integrate(

 function(x) { x^(.)*exp(-r*x) * f_X2(x) * (1-F_X1_control(x)) / (1-

p_control) },

 lower = 0,

 upper = Inf,

 rel.tol = 1e-8

)$value

 59

)

GM_X3 <- map_dbl(

 0:2,

 ~ integrate(

 function(x) { x^(.)*exp(-r*x) * dlnorm(x, meanlog = mu3, sdlog = sigma3)

},

 lower = 0,

 upper = Inf,

 rel.tol = 1e-8

)$value

)

Combine EMGFs to calculate costs and QALYs

MGF <- data.frame(

 arm = factor(c("Treatment", "Control")),

 cost_stable = c(

 c_treatment / r * (1 - p_treatment*GM_X1_treatment[1] - (1-

p_treatment)*GM_X2_treatment[1]),

 c_control / r * (1 - p_control*GM_X1_control[1] - (1-

p_control)*GM_X2_control[1])

),

 cost_progression = c(p_treatment, p_control) * c_progression *

 c(GM_X1_treatment[1], GM_X1_control[1]),

 cost_death = c_death * c(

 p_treatment * GM_X1_treatment[1] * GM_X3[1] + (1-p_treatment) *

GM_X2_treatment[1],

 p_control * GM_X1_control[1] * GM_X3[1] + (1-p_control) * GM_X2_control[1]

),

 cost_progressive = c(p_treatment, p_control) * c_pd / r *

 c(GM_X1_treatment[1], GM_X1_control[1]) * (1 - GM_X3[1]),

 QALY_stable = v_sd*c(

 p_treatment*MGF_qaly(1, 0, 0, GM_X1_treatment[1], GM_X1_treatment[2],

GM_X1_treatment[3]) +

 (1-p_treatment)*MGF_qaly(1, 0, 0, GM_X2_treatment[1],

GM_X2_treatment[2], GM_X2_treatment[3]),

 p_control*MGF_qaly(1, 0, 0, GM_X1_control[1], GM_X1_control[2],

GM_X1_control[3]) +

 (1-p_control)*MGF_qaly(1, 0, 0, GM_X2_control[1], GM_X2_control[2],

GM_X2_control[3])

),

 QALY_progressive = v_pd * c(p_treatment, p_control) * c(

 MGF_qaly(

 GM_X1_treatment[1], GM_X1_treatment[2], GM_X1_treatment[3],

 GM_X1_treatment[1]*GM_X3[1],

 GM_X1_treatment[2]*GM_X3[1] + GM_X1_treatment[1]*GM_X3[2],

 GM_X1_treatment[3]*GM_X3[1] + 2*GM_X1_treatment[2]*GM_X3[2] +

GM_X1_treatment[1]*GM_X3[3]

),

 60

 MGF_qaly(

 GM_X1_control[1], GM_X1_control[2], GM_X1_control[3],

 GM_X1_control[1]*GM_X3[1],

 GM_X1_control[2]*GM_X3[1] + GM_X1_control[1]*GM_X3[2],

 GM_X1_control[3]*GM_X3[1] + 2*GM_X1_control[2]*GM_X3[2] +

GM_X1_control[1]*GM_X3[3]

)

)

) %>% transmute(

 arm = arm,

 cost = cost_stable + cost_progression + cost_death + cost_progressive,

 QALY = QALY_stable + QALY_progressive,

 NMB = QALY * threshold - cost

)

Discrete event simulation

Load necessary libraries

library(dplyr)

library(flexsurv)

[... Define parameters ...]

Convenience function to calculate discounted QALYs

qaly <- function(a, b) {

 (exp(-r*a)*((a^2*u2+a*u1+u0)*r^2 + (2*a*u2+u1)*r + 2*u2)-exp(-

r*b)*((b^2*u2+b*u1+u0)*r^2 + (2*b*u2+u1)*r + 2*u2))/r^3

}

DES <- data.frame(

 # Generate TTE random variables

 iter = seq(1, n_DES),

 X1.treatment = rweibull(n = n_DES, scale = lambda_treatment, shape = k1),

 X1.control = rweibull(n = n_DES, scale = lambda_control, shape = k1),

 X2 = rgompertz(n = n_DES, rate = b2, shape = a2),

 X3 = rlnorm(n = n_DES, meanlog = mu3, sdlog = sigma3)

) %>% mutate(

 # Calculate path through model

 progressed.treatment = (X1.treatment < X2),

 progressed.control = (X1.control < X2),

 # Calculate time in Stable state

 LY_stable.treatment = pmin(X1.treatment, X2),

 LY_stable.control = pmin(X1.control, X2),

 # Calculate total time

 LY.treatment = if_else(progressed.treatment, X1.treatment + X3, X2),

 61

 LY.control = if_else(progressed.control, X1.control + X3, X2),

 # Calculate QALYs

 QALY_stable.treatment = v_sd * qaly(0, LY_stable.treatment),

 QALY_stable.control = v_sd * qaly(0, LY_stable.control),

 QALY_progressive.treatment = if_else(progressed.treatment, v_pd *

qaly(X1.treatment, X1.treatment+X3), 0),

 QALY_progressive.control = if_else(progressed.control, v_pd *

qaly(X1.control, X1.control+X3), 0),

 QALY.treatment = QALY_stable.treatment + QALY_progressive.treatment,

 QALY.control = QALY_stable.control + QALY_progressive.control,

 # Calculate cost components

 cost_stable.treatment = c_treatment / r * (1 - exp(-r *

LY_stable.treatment)),

 cost_stable.control = c_control / r * (1 - exp(-r * LY_stable.control)),

 cost_progression.treatment = if_else(progressed.treatment,

c_progression*exp(-r*X1.treatment), 0),

 cost_progression.control = if_else(progressed.control, c_progression*exp(-

r*X1.control), 0),

 cost_death.treatment = c_death * exp(-r*LY.treatment),

 cost_death.control = c_death * exp(-r*LY.control),

 cost_progressive.treatment = if_else(progressed.treatment, c_pd / r * (exp(-

r*X1.treatment) - exp(-r*(X1.treatment+X3))), 0),

 cost_progressive.control = if_else(progressed.control, c_pd / r * (exp(-

r*X1.control) - exp(-r*(X1.control+X3))), 0),

 # Calculate total costs

 cost.treatment = cost_stable.treatment + cost_progression.treatment +

cost_death.treatment + cost_progressive.treatment,

 cost.control = cost_stable.control + cost_progression.control +

cost_death.control + cost_progressive.control

)

Markov cohort simulation

Load necessary libraries

library(heemod)

library(tidyverse)

Function to prepare Markov model for given cycle length and tunnel

state limit

prep_MM <- function(.cycle_length, .state_time_limit) {

 lst(

 cycle_length = .cycle_length,

 state_time_limit = .state_time_limit,

 par_mod = define_parameters(

 62

 # Model parameters

 dr_annual = 0.035,

 cycle_length = .cycle_length,

 dr = rescale_discount_rate(dr_annual, 1, cycle_length),

 model_years = (model_time - 1) * cycle_length,

 u0 = 0.95,

 u1_abs = 0.002,

 u1 = -u1_abs,

 u2_abs = 0.0005,

 u2 = -u2_abs,

 v_sd = 0.9,

 v_pd = 0.6,

 c_treatment = 480,

 c_control = 200,

 c_progression = 3000,

 c_death = 5000,

 c_pd = 1000,

 lambda_control = 1.5,

 hr_treatment = 0.56,

 k1 = 2,

 lambda_treatment = lambda_control * hr_treatment ^ (-1 / k1),

 a2 = 0.4,

 b2 = 0.1,

 mu3 = 0,

 sigma3 = 1,

 # Cumulative hazard of progression

 CumHaz_progress_control_now = ((markov_cycle - 1) * cycle_length /

lambda_control) ^

 k1,

 CumHaz_progress_control_next = (markov_cycle * cycle_length /

lambda_control) ^

 k1,

 CumHaz_progress_control_incr = CumHaz_progress_control_next -

CumHaz_progress_control_now,

 CumHaz_progress_treatment_now = ((markov_cycle - 1) * cycle_length /

lambda_treatment) ^

 k1,

 CumHaz_progress_treatment_next = (markov_cycle * cycle_length /

lambda_treatment) ^

 k1,

 CumHaz_progress_treatment_incr = CumHaz_progress_treatment_next -

CumHaz_progress_treatment_now,

 # Cumulative hazard of death

 CumHaz_death_stable_now = b2 / a2 * (exp(a2 * (markov_cycle - 1) *

cycle_length) - 1),

 63

 CumHaz_death_stable_next = b2 / a2 * (exp(a2 * markov_cycle *

cycle_length) - 1),

 CumHaz_death_stable_incr = CumHaz_death_stable_next -

CumHaz_death_stable_now,

 CumHaz_sum_control = CumHaz_progress_control_incr +

CumHaz_death_stable_incr,

 CumHaz_sum_treatment = CumHaz_progress_treatment_incr +

CumHaz_death_stable_incr,

 # Transition probabilities

 p_remain_stable_control = exp(-CumHaz_sum_control),

 p_remain_stable_treatment = exp(-CumHaz_sum_treatment),

 p_progress_control = if_else(

 CumHaz_sum_control > 0,

 CumHaz_progress_control_incr / CumHaz_sum_control *

 (1 - exp(-CumHaz_sum_control)),

 0

),

 p_progress_treatment = if_else(

 CumHaz_sum_treatment > 0,

 CumHaz_progress_treatment_incr / CumHaz_sum_treatment *

 (1 - exp(-CumHaz_sum_treatment)),

 0

),

 p_death_stable_control = if_else(

 CumHaz_sum_control > 0,

 CumHaz_death_stable_incr / CumHaz_sum_control *

 (1 - exp(-CumHaz_sum_control)),

 0

),

 p_death_stable_treatment = if_else(

 CumHaz_sum_treatment > 0,

 CumHaz_death_stable_incr / CumHaz_sum_treatment *

 (1 - exp(-CumHaz_sum_treatment)),

 0

),

 p_death_progressive = define_survival(

 distribution = "lnorm",

 meanlog = mu3,

 sdlog = sigma3

) %>% compute_surv(time = state_time, cycle_length = cycle_length)

),

 # Transition matrix in control arm

 mat_control = define_transition(

 state_names = c("stable", "progressive", "death"),

 64

 p_remain_stable_control, p_progress_control, p_death_stable_control,

 0, C, p_death_progressive,

 0, 0, 1

),

 # Transition matrix in treatment arm

 mat_treatment = define_transition(

 state_names = c("stable", "progressive", "death"),

 p_remain_stable_treatment, p_progress_treatment,

p_death_stable_treatment,

 0, C, p_death_progressive,

 0, 0, 1

),

 # Stable state payoffs

 state_stable = define_state(

 cost_undisc = cycle_length * dispatch_strategy(control = c_control,

 treatment = c_treatment),

 QALY_undisc = cycle_length * v_sd *

 (u0 + u1 * model_years + u2 * model_years ^ 2),

 cost = discount(cost_undisc, r = dr),

 QALY = discount(QALY_undisc, r = dr)

),

 # Progressive state payoffs

 state_progressive = define_state(

 cost_undisc = cycle_length * c_pd + if_else(state_time == 1,

c_progression, 0),

 QALY_undisc = cycle_length * v_pd *

 (u0 + u1 * model_years + u2 * model_years ^ 2),

 cost = discount(cost_undisc, r = dr),

 QALY = discount(QALY_undisc, r = dr)

),

 # Death state payoffs

 state_death = define_state(

 cost_undisc = if_else(state_time == 1, c_death, 0),

 QALY_undisc = 0,

 cost = discount(cost_undisc, r = dr),

 QALY = discount(QALY_undisc, r = dr)

),

 # Description of control arm

 strat_control = define_strategy(

 transition = mat_control,

 stable = state_stable,

 65

 progressive = state_progressive,

 death = state_death

),

 # Description of treatment arm

 strat_treatment = define_strategy(

 transition = mat_treatment,

 stable = state_stable,

 progressive = state_progressive,

 death = state_death

),

 # Model characteristics

 time_horizon = 20,

 cycles = ceiling(time_horizon / .cycle_length)

)

}

Function to run a Markov model which has been prepared

do_MM <- function(prep) {

 res_mod <- run_model(

 parameters = prep$par_mod,

 control = prep$strat_control,

 treatment = prep$strat_treatment,

 init = c(1, 0, 0),

 cycles = prep$cycles,

 cost = cost,

 effect = QALY,

 state_time_limit = c(

 progressive = min(prep$state_time_limit, prep$cycles),

 death = 1

),

 method = "life-table"

)

 res_mod_summary <- summary(res_mod, threshold = 20000)

 return(

 res_mod_summary$res_values %>%

 select(arm = .strategy_names, cost, QALY) %>%

 mutate(NMB = QALY*20000 - cost))

 66

}

prep <- prep_MM(1/12, 24)

results <- do_MM(prep)

Markov microsimulation

Load necessary libraries

library(tidyverse)

library(flexsurv)

[... Define parameters ...]

Multinomial sampling [Krijkamp et al. 2018]

samplev <- function(probs, m) {

 d <- dim(probs)

 n <- d[1]

 k <- d[2]

 lev <- dimnames(probs)[[2]]

 if (!length(lev))

 lev <- 1:k

 ran <- matrix(lev[1], ncol = m, nrow = n)

 U <- t(probs)

 for (i in 2:k) {

 U[i,] <- U[i,] + U[i - 1,]

 }

 if (any((U[k,] - 1) > 1e-05))

 stop("error in multinom: probabilities do not sum to 1")

 for (j in 1:m) {

 un <- rep(runif(n), rep(k, n))

 ran[, j] <- lev[1 + colSums(un > U)]

 }

 ran

}

Function to run the microsimulation [adapted from Krijkamp et al. 2018]

Modifications:

- Remove function arguments and rely on bindings being provided in

environment (certain variables/functions were already treated this

way)

- Call Probs with 'dur' to allow sojourn time-dependent transition

probabilities

- Call Costs with 'dur' to allow sojourn time-dependent costs

- Call Effs with 't' to allow wall time-dependent utility

- Calculate 'dur' as time in current state (not time in any disease

state)

MicroSim <- function(TR.out = TRUE, TS.out = TRUE, Trt = FALSE, seed = 1) {

 67

 # TR.out: should the output include a Microsimulation trace? (default is

TRUE)

 # TS.out: should the output include a matrix of transitions between states?

(default is TRUE)

 # Trt: are the n.i individuals receiving treatment? (scalar with a

Boolean value, default is FALSE)

 # seed: starting seed number for random number generator (default is 1)

 # Calculate the cost and QALY discount rates

 v.dwc <- 1 / (1 + d.c) ^ (0:n.t)

 v.dwe <- 1 / (1 + d.e) ^ (0:n.t)

 # Create the matrix capturing the state name/costs/health outcomes for all

individuals at each time point

 m.M <- m.C <- m.E <- matrix(

 nrow = n.i,

 ncol = n.t + 1,

 dimnames = list(paste("ind", 1:n.i, sep = " "),

 paste("cycle", 0:n.t, sep = " "))

)

 # Initial health state

 m.M[, 1] <- v.M_1

 # Set the seed for every individual for the random number generator

 set.seed(seed)

 # create the dur variable that stores the number of cycles the individual

has occupied the current state

 # all individuals spend one cycle in the starting state

 dur <- rep(1, n.i)

 # estimate costs and QALYs per individual for the initial health state

 m.C[, 1] <- Costs(m.M[, 1], dur, Trt)

 m.E[, 1] <- Effs (m.M[, 1], 0, Trt)

 for (t in 1:n.t) {

 # calculate the transition probabilities at cycle t

 m.p <- Probs(m.M[, t], dur, Trt)

 # sample the next health state and store that state in matrix m.M

 m.M[, t + 1] <- samplev(prob = m.p, m = 1)

 # Increment dur if stayed in the same state, or set to 1 if moved state

 remained <- m.M[, t + 1] == m.M[, t]

 dur[remained] <- dur[remained] + 1

 dur[!remained] <- 1

 68

 # estimate costs and QALYs per individual during cycle t + 1 conditional

on treatment

 m.C[, t + 1] <- Costs(m.M[, t + 1], dur, Trt)

 m.E[, t + 1] <- Effs(m.M[, t + 1], t, Trt)

 # display the progress of the simulation

 cat('\r', paste(round(t / n.t * 100), "% done", sep = " "))

 }

 # total (discounted) cost and QALYs per individual

 tc <- m.C %*% v.dwc

 te <- m.E %*% v.dwe

 # average (discounted) cost and QALYs

 tc_hat <- mean(tc)

 te_hat <- mean(te)

 if (TS.out == TRUE) {

 # create a matrix of transitions across states

 TS <- paste(m.M, cbind(m.M[, -1], NA), sep = "->")

 TS <- matrix(TS, nrow = n.i)

 # name the rows and columns

 rownames(TS) <- paste("Ind", 1:n.i, sep = " ")

 colnames(TS) <- paste("Cycle", 0:n.t, sep = " ")

 } else {

 TS <- NULL

 }

 if (TR.out == TRUE) {

 TR <- t(apply(m.M, 2, function(x)

 table(factor(

 x, levels = v.n, ordered = TRUE

))))

 # create a distribution trace

 TR <- TR / n.i

 # name the rows and columns

 rownames(TR) <- paste("Cycle", 0:n.t, sep = " ")

 colnames(TR) <- v.n

 } else {

 TR <- NULL

 }

 results <- list(

 m.M = m.M,

 m.C = m.C,

 m.E = m.E,

 69

 tc = tc,

 te = te,

 tc_hat = tc_hat,

 te_hat = te_hat,

 TS = TS,

 TR = TR

)

 return(results) # return the results

}

Function to calculate transition probabilities for all individuals

Probs <- function(M_it, dur, Trt) {

 # M_it: health state occupied by individual i at cycle t (character

variable)

 # dur: the duration spent in the current state

 # Trt: whether patient is receiving Treatment (as opposed to Control)

 # create vector of state transition probabilities

 m.p.it <- matrix(NA, n.s, n.i)

 # assign names to the vector

 rownames(m.p.it) <- v.n

 # Calculate delta cumulative hazards

 # Stable to Progressive

 H.SP <-

 pweibull(

 q = (dur[M_it == "Stable"]-1)*cl,

 scale = Trt*lambda_treatment + (1-Trt)*lambda_control,

 shape = k1,

 lower.tail = FALSE,

 log.p = TRUE) -

 pweibull(

 q = dur[M_it == "Stable"]*cl,

 scale = Trt*lambda_treatment + (1-Trt)*lambda_control,

 shape = k1,

 lower.tail = FALSE,

 log.p = TRUE)

 # Stable to Dead

 H.SD <-

 pgompertz(

 q = (dur[M_it == "Stable"]-1)*cl,

 shape = a2,

 rate = b2,

 lower.tail = FALSE,

 log.p = TRUE) -

 pgompertz(

 q = dur[M_it == "Stable"]*cl,

 70

 shape = a2,

 rate = b2,

 lower.tail = FALSE,

 log.p = TRUE)

 # Progressive to Dead

 H.PD <-

 plnorm(

 q = (dur[M_it == "Progressive"]-1)*cl,

 meanlog = mu3,

 sdlog = sigma3,

 lower.tail = FALSE,

 log.p = TRUE) -

 plnorm(

 q = dur[M_it == "Progressive"]*cl,

 meanlog = mu3,

 sdlog = sigma3,

 lower.tail = FALSE,

 log.p = TRUE)

 # Probabilities leaving Stable

 H.S <- H.SP + H.SD

 p.SS <- exp(-H.S)

 p.SP <- H.SP/H.S * (1 - exp(-H.S))

 p.SD <- H.SD/H.S * (1 - exp(-H.S))

 # Probabilities leaving progressive

 p.PP <- exp(-H.PD)

 p.PD <- 1 - exp(-H.PD)

 # update the v.p with the appropriate probabilities

 m.p.it[, M_it == "Stable"] <- rbind(p.SS, p.SP, p.SD)

 m.p.it[, M_it == "Progressive"] <- rbind(0, p.PP, p.PD)

 m.p.it[, M_it == "Dead"] <- c(0, 0, 1)

 ifelse(colSums(m.p.it) == 1,

 return(t(m.p.it)),

 print("Probabilities do not sum to 1")) # return the transition

probabilities or produce an error

}

Function to calculate costs across all individuals

Costs <- function(M_it, dur, Trt = FALSE) {

 # M_it: health state occupied by individual i at cycle t (character

variable)

 # dur: the duration spent in the current state

 # Trt: is the individual being treated? (default is FALSE)

 c.it <- rep(0, length(M_it))

 if (any(M_it == "Stable"))

 71

 c.it[M_it == "Stable"] <- cl * (Trt*c_treatment + (1-Trt)*c_control)

 if (any(M_it == "Progressive"))

 c.it[M_it == "Progressive"] <- c_progression * (dur[M_it == "Progressive"]

== 1) + cl * c_pd

 if (any(M_it == "Dead"))

 c.it[M_it == "Dead"] <- c_death * (dur[M_it == "Dead"] == 1)

 return(c.it)

}

Function to calculate QALYs across all individuals

Effs <- function(M_it, t, Trt = FALSE) {

 # M_it: health state occupied by individual i at cycle t (character

variable)

 # t: the current cycle

 # Trt: is the individual treated? (default is FALSE)

 u.baseline <- u0 + u1 * ((t + 0.5) * cl) + u2 * ((t + 0.5) * cl) ** 2

 u.it <- rep(0, length(M_it))

 u.it[M_it == "Stable"] <- u.baseline * v_sd

 u.it[M_it == "Progressive"] <- u.baseline * v_pd

 u.it[M_it == "Dead"] <- 0

 # calculate the QALYs during cycle t

 QALYs <- u.it * cl

 return(QALYs)

}

Function factory

Returns a function with all necessary parameters in a suitable

environment

prep_MarkovMicrosim <- function(params, n_microsim, cycle_length) {

 e <- new.env(parent = globalenv())

 e$n.i <- n_microsim

 e$n.t <- floor(20 / cycle_length)

 e$cl <- cycle_length

 e$v.n <- c("Stable", "Progressive", "Dead")

 e$n.s <- length(e$v.n)

 e$v.M_1 <- rep("Stable", e$n.i)

 e$d.c <- e$d.e <- (1 + params$dr) ** cycle_length - 1

 e$v.Trt <- c("Control", "Treatment")

 # Copy over parameters

 e <- list2env(params, e)

 l_MicroSim <- MicroSim

 72

 e$Probs <- Probs

 e$Costs <- Costs

 e$Effs <- Effs

 environment(l_MicroSim) <- e

 environment(e$Probs) <- e

 environment(e$Costs) <- e

 environment(e$Effs) <- e

 return(l_MicroSim)

}

Perform the microsimulation given a function from the function

factory and combine results for control and treatment arms

do_MarkovMicrosim <- function(microsim) {

 control <- microsim(TR.out = FALSE, TS.out = FALSE, Trt = FALSE, seed = 1)

 treatment <- microsim(TR.out = FALSE, TS.out = FALSE, Trt = TRUE, seed = 1)

 return(

 bind_rows(

 tibble(arm = "Control", costs = as.vector(control$tc), QALYs =

as.vector(control$te)),

 tibble(arm = "Treatment", costs = as.vector(treatment$tc), QALYs =

as.vector(treatment$te))

)

)

}

results <- do_MarkovMicrosim(prep_MarkovMicrosim(meanParams, 100000, 1/12))

 73

Appendix 7: Detailed description of capabilities of different

methods

Sojourn time-dependent transitions
Transitions between states can depend on the length of time in the current state

(excluding case when individuals start in a given state and cannot return to it). Can use

non-exponential time-to-event distributions.

MGF method

Fully supported. Any distribution for which ∫ 𝑥𝑗𝑒−𝑟𝑥𝑑𝑥
∞

0
 is finite and amenable to

analytic or numerical evaluation can be incorporated into the method.

Markov cohort without tunnel states

Not supported. There is no memory component in these models, so transition

probabilities cannot depend on the length of time in the current state.

Markov cohort with tunnel states

Partially supported. Tunnel states provide a memory component allowing transition

probabilities to vary, but the extent to which transitions can depend on sojourn time is

limited by the number of tunnel states.

Markov microsimulation

Fully supported. Within a Markov microsimulation a full memory can be represented

in the state and transition probabilities can be calculated accordingly.

Discrete event simulation

Fully supported. Fundamental property of the method.

Wall time-dependent transitions
Transitions between states can depend on the length of time since the model start

(excluding case when individuals start in a given state and cannot return to it). Typical

example is age-related other cause mortality.

MGF method

Not supported (at present). This capability has not yet been incorporated into the

method.

Markov cohort with/without tunnel states

Fully supported. Transition probabilities are updated for each cycle. Tunnel states are

not required.

 74

Markov microsimulation

Fully supported. Transition probabilities are updated for each cycle.

Discrete event simulation

Fully supported. Transitions can be modelled by events whose time origin is the model

start. Also, new events can be sampled conditionally on the current time elapsed (or any

other aspect of an individual’s history).

Kaplan–Meier survival
Directly use Kaplan–Meier survival curves, without fitting a parametric model or

piecewise exponential model. Particularly valuable when parametric models give a poor

fit.

MGF method

Fully supported. Described in the section Methods for evaluating MGFs.

Markov cohort with/without tunnel states and Markov microsimulation

Partially supported. The use of the time cycle means that Kaplan–Meier survival

curves can only be represented up to a certain fidelity.

Discrete event simulation

Fully supported. Given a Kaplan–Meier curve, its inverse (the quantile function) can be

obtained, and a uniform random variable between 0 and 1 can be sampled in order to

sample a random time-to-event in accordance with the Kaplan–Meier curve.

Sojourn time-dependent payoffs
Payoffs depend on the time in the current state, e.g., costs are initially high within a state

but then diminish.

MGF method

Partially supported. The method supports one-off payoffs, polynomial payoffs and

exponential payoffs (and any linear combination of these). It does not currently support,

e.g., piecewise constant payoffs.

Markov cohort without tunnel states

Not supported. Without tunnel states there is no memory of how long an individual has

been in a state.

Markov cohort with tunnel states

Partially supported. Dependency is limited by the number of tunnel states.

Markov microsimulation

Fully supported.

 75

Discrete event simulation

Fully supported.

Wall time-dependent payoffs
Payoffs depend on the time since the model start, e.g., health state utility values decline

with age.

MGF method

Partially supported. The method supports one-off payoffs, polynomial payoffs and

exponential payoffs (and any linear combination of these). It does not currently support,

e.g., piecewise constant payoffs.

Markov cohort with/without tunnel states

Fully supported.

Markov microsimulation

Fully supported.

Discrete event simulation

Fully supported.

Monte Carlo variation
There is random error introduced into results, which must either be minimised with a

large number of simulations, or accounted for within statistical analyses.

MGF method

No (unless a Monte Carlo algorithm is used for numerical integration, although this is

unlikely to be necessary as deterministic numerical integration algorithms are well

suited to one-dimensional integrals).

Markov cohort with/without tunnel states

No.

Markov microsimulation

Yes.

Discrete event simulation

Yes.

Convergence behaviour
The global truncation error as a function of 𝑛, which is the number of quadrature nodes

for the MGF method, the cycle length for the Markov cohort simulations, and the

number of simulations for the microsimulation methods. In general one would prefer an

algorithm with exponential convergence, i.e., 𝒪(𝑐−𝑛) for some 𝑐 > 1 to an algorithm

 76

with polynomial convergence 𝒪(𝑛−𝑏) for some 𝑏. One would also prefer an algorithm

with error 𝒪(𝑛−𝑏) to an algorithm with error 𝒪(𝑛−𝑎) if 𝑏 > 𝑎.

MGF method

Behaviour depends on the integrands. If numerical integration is not required then

there is no error from the method (except for rounding errors). If all numerical

integration is conducted on [−1,1] and all functions are analytic in this domain,

exponential convergence will be obtained,25 i.e., 𝒪(𝑐−𝑛) for some 𝑐 > 1; otherwise, if a

function is not analytic (e.g., Weibull with shape parameter 𝛾 < 1) it is challenging to

derive a general error bound, since the 2nth derivative of the function must be

obtained26, 27

Markov cohort without tunnel states

𝒪(𝑛−1)

The global truncation error is 𝒪(𝑛−1) since it is 𝒪(ℎ) (where ℎ is the step size) and ℎ ∝

𝑛−1.

Markov cohort with tunnel states

𝒪 (𝑛−
1
2)

As for a Markov cohort without tunnel states the global truncation error is 𝒪(ℎ)

however to halve the step size it is necessary to double the number of cycles and double

the number of tunnel states, i.e., ℎ ∝ 𝑛−
1

2.

Markov microsimulat ion

𝒪 (𝑛−
1
2)

There are two sources of error in a Markov microsimulation. First is the error inherent

in a Markov model without tunnel states (tunnel states are not needed in a Markov

microsimulation), and additionally there is Monte Carlo error. Monte Carlo error is the

greater of these and is 𝒪(𝑛−1 2⁄).

Discrete event simulation

𝒪 (𝑛−
1
2)

Discrete event simulation only includes Monte Carlo error, which is the same as for

Markov microsimulation.

 77

Appendix 8: Assumption of independence of random variables

It is assumed in the method outlined in this paper that the time-to-event random

variables in a model are independent. This is important because even though

𝔼𝑋,𝑌[𝑋 + 𝑌] = 𝔼𝑋[𝑋] + 𝔼𝑌[𝑌] it is not generally true that 𝑀𝑋+𝑌(𝑡) = 𝑀𝑋(𝑡)𝑀𝑌(𝑡) – it is

only true if 𝑋 and 𝑌 are independent.

There are two types of dependence we are likely to consider incorporating into a model:

 𝑋 and 𝑌 represent competing events in a single state (e.g., 𝑋 represents time to

receiving a kidney transplant and 𝑌 represents death on dialysis) but one (the

greater) is always a latent variable since the random variable taking the lesser

value represents the event which takes place while the competing event does not

take place;

 𝑋 and 𝑌 represent events which can occur sequentially (e.g., 𝑋 represents time to

receiving a kidney transplant and 𝑌 represents time to graft failure).

The first thing we note is that if 𝑋 and 𝑌 are conditionally independent given another

random variable, 𝑍, then we are able to proceed as before and take the expectation over

𝑍.

For example, consider:

 𝑋 is the time to receiving a kidney transplant;

 𝑌 is the time to graft failure;

 𝑍 is a measure of immunological risk (which makes it harder to obtain a kidney

transplant and increases the risk of graft failure).

We would partition the population according to values of 𝑍, evaluate the model

substituting the conditional distributions for 𝑋 and 𝑌 given 𝑍 and treating them as

independent, then take a weighted average of the results according to the probabilities

of the different values of 𝑍.

 78

Z, immunological

risk

Pr(Z) Costs (£) QALYs

Low 30% 60,000 20.0

Moderate 50% 80,000 14.0

High 20% 120,000 10.0

Weighted average 82,000 15.0

If 𝑋 and 𝑌 represent competing events then it does not necessarily make sense to talk

about them being dependent, since only one is ever observed so it is not possible to

deduce their joint probability distribution. What can be deduced though is the joint

probability distribution of 𝐷 (a categorical random variable denoting which event takes

place) and 𝑇 (the time-to-event variable for the event which takes place). The pattern-

mixture approach (as used in statistical flowgraph modelling) represents this joint

distribution by modelling Pr(𝐷) and 𝑓(𝑇 ∣ 𝐷), since 𝑓(𝐷, 𝑇) = 𝑓(𝑇 ∣ 𝐷) Pr(𝐷). There is

no restriction that this should be equivalent to an alternative formulation with 𝑋 and 𝑌

as independent random variables and setting 𝐷 = argmin{𝑋, 𝑌} and 𝑇 = min{𝑋, 𝑌}.

For example, suppose that 𝑋 and 𝑌 represent the competing events of receiving a kidney

transplant and dying on dialysis. Suppose that there is some negative correlation in the

latent time-to-event variables, such that an individual with a short time to kidney

transplantation would tend to have (in the absence of the transplantation) lived for a

long time on dialysis and vice versa, as shown in the figure below.

 79

This can be represented in the pattern-mixture approach by calculating the proportion

of patients with each outcome and then the appropriate distribution for the time spent

on dialysis (prior to transplantation or death) is estimated separately for each outcome,

as shown in the figure below.

 80

In summary, we conclude that the restriction that TTE variables in the model be

independent is not a significant restriction as conditional independence can be

exploited, by conditioning on some covariate (like immunological risk in the example

above) or on the branch taken in the model (e.g., death on dialysis versus kidney

transplant in the next example).

