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ABSTRACT 

Numerical analysis such as the finite element analysis (FEA) have been widely 

used to solve many engineering problems. Constitutive modelling is an important 

component of any numerical analysis and is used to describe the material 

behaviour. The accuracy and reliability of numerical analysis is greatly reliant on 

the constitutive model that is integrated in the finite element code. In recent years, 

data mining techniques such as artificial neural network (ANN), genetic 

programming (GP) and evolutionary polynomial regression (EPR) have been 

employed as alternative approach to the conventional constitutive modelling. In 

particular, EPR offers great advantages over other data mining techniques. 

However, these techniques require a large database to learn and extract the 

material behaviour. On the other hand, the link between laboratory or field tests 

and numerical analysis is still weak and more investigation is needed to improve 

the way that they matched each other. Training a data mining technique within 

the self-learning simulation framework is currently considered as one of the 

solutions that can be utilised to accurately represent the actual material 

behaviour.  In this thesis an EPR based machine learning technique is utilised in 

the heart of the self-learning framework with an automation process which is 

coded in MATLAB environment. The methodology is applied to simulate different 

material behaviour in a number of structural and geotechnical applications. Two 

training strategies are used to train the EPR in the developed framework, total 

stress-strain and incremental stress-strain strategies. The results show that 

integrating EPR based models in the framework allows to learn the material 

response during the self-learning process and provide accurate predictions to the 

actual behaviour. Moreover, for the first time, the behaviour of a complex material, 

frozen soil, is modelled based on the EPR approach. The results of the EPR 

model predictions are compared with the actual data and it is shown that the 

proposed model can capture and reproduce the behaviour of the frozen soil with 

a very high accuracy. 

The developed EPR based self-learning methodology presents a unified 

approach to material modelling that can also help the user to gain a deeper insight 

into the behaviour of the materials. The methodology is generic and can be 

extended to modelling different engineering materials.  
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Chapter 1  

 

Introduction 

 

1.1  General Background 
 

The finite element method (FEM) is a very powerful technique which has been 

used over several decades. The method is utilised to solve very complex 

engineering problems of different disciplines including structural analysis, fluid 

mechanics, thermal analysis, and electromagnetics, among others. One of the 

essential components of the FEM is the constitutive model which is used to 

represent the behaviour of materials at the point or element level. In their basic 

formulation, constitutive models describe the stress-strain relationship (Hashash 

et al., 2004b). The successful application of finite element simulations in 

engineering problems is largely dependent on the choice of an appropriate 

constitutive model that represents the material behaviour. Constitutive models 

have been developed for various materials such as concrete, soil, rock, polymer, 

etc. These models range from simple elastic to more complex nonlinear elastic, 

elastoplastic, hyperelastic, etc. Despite the large number of constitutive models 

developed with different degrees of complexity, it has been indicated that none 

of these models can entirely capture the real material behaviour under different 

loading conditions. Furthermore, implementation of such complex models into 

finite element code could be very challenging, consequently delimiting their 

functionality in engineering applications (Shin and Pande, 2000). The high 

demand for developing accurate and robust constitutive models for different 

materials encourages many researchers to work in this field. Recently, with the 

significant developments in computational software and hardware, the field of 

constitutive modelling has been extended beyond the classical constitutive 

modelling theories, to computer-aided pattern recognition approaches which 

have been introduced as an alternative approach for modelling of a wide range 

of engineering applications.  
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A number of data-driven techniques such as an artificial neural network (ANN), 

genetic programming (GP) and evolutionary polynomial regression (EPR) have 

been used for modelling of different material behaviour (e.g. Ahangar-Asr et al., 

2011; Ghaboussi et al., 1991; Javadi and Rezania, 2009; Rezania, 2008).  

The main purpose of developing a constitutive model is to be implemented in 

numerical analysis such as FEM. The implementation of constitutive models 

based on data mining techniques such as ANN and EPR in FEA has been 

presented in different ways by a number of researchers (e.g. Hashash et al., 

2004b; Rezania; et al., 2008).  

ANN-based constitutive modelling has been successfully incorporated in finite 

element code through an interesting and comprehensive training procedure 

called autoprogressive or self-learning algorithm. This work was first presented 

by Ghaboussi et al. (1998) and (Shin and Pande, 2000) and then extended to a 

full framework, named self-learning simulation, by (Hashash et al., 2006a). The 

results from these works revealed that ANN models trained in this way, could 

learn and capture the embedded information in non-homogenous structural tests 

and provide better predictions of material behaviour compared with traditional 

constitutive models.  

Although there has been some valuable research on the development of the self-

learning FEM based on ANN and the demonstration of the advantages that ANN 

offers in constitutive modelling, however, to date, the algorithm has been applied 

to simulate relatively limited aspects of engineering problems. More importantly, 

it is well known that ANNs have some drawbacks. For instance, when using 

ANNs, the number of neurons, number of hidden layers, transfer function, etc. 

must be determined a priori, requiring a time-consuming trial and error procedure. 

Moreover, the black box nature, the large complexity of the network structure, the 

lack of interpretability of the relationship between input and output have 

prevented the ANNs from achieving their full potential (Ahangar-Asr, 2012; 

Faramarzi, 2011; Rezania; et al., 2008; Rezania, 2008). On the other hand, using 

the EPR in constitutive modelling has been presented as an alternative approach 

that avoids some of the shortcomings of ANN in material modelling. EPR employs 

a combination of a genetic algorithm (GA) and the least square method (LS) to 

search for mathematical formula to represent the behaviour of a system 

(Giustolisi and Savic, 2006).  
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EPR was first used for environmental modelling by (Giustolisi and Savic, 2006). 

Recently, the application of EPR for material modelling and the implementation 

of EPR-based constitutive models in FEM have been presented as an effective 

alternative approach for simulation of different boundary value problems 

(Faramarzi, 2011; Faramarzi et al., 2012; Javadi and Rezania, 2009; Rezania, 

2008). This thesis presents the application of EPR for constitutive modelling of 

materials in the framework of self-learning simulation. An automated process of 

EPR based self-learning finite element simulation is developed and coded in 

MATLAB environment. The application of the EPR based self-learning finite 

element simulation is illustrated through analysis of a number of civil engineering 

problems in the areas of structural engineering and geotechnics. 

 

 

1.2  Objectives 
 

In this thesis, the effectiveness and capabilities of EPR in representing the 

constitutive behaviour of materials in a transparent and explicit form, has been 

the inspiration to use this technique in the heart of the self-learning algorithm to 

build a robust constitutive model. The main objectives of this work are as follows: 

• Review and present the recently developed approaches in constitutive 

modelling of different engineering materials and their implementation in 

FEA. 

• Develop and demonstrate a new methodology of incorporating the data 

mining technique, EPR, into finite element code (ABAQUS) through an 

automated process coded in MATLAB environment. 

• Take advantage of using EPR in constitutive modelling in the framework 

of self-learning simulation and reduce the gap between laboratory or field 

tests and numerical modelling. 

• Develop and introduce constitutive models using experimental (laboratory) 

and hypothetical (simulated) data by using the EPR based self-learning 

technique.  

• Develop and demonstrate constitutive models within EPR-based self-

learning simulation model using different training strategies. 

• Simplify the way of training EPR within the self-learning simulation 

algorithm. 
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• Verify the capability of the proposed algorithm using some structural and 

geotechnical problems. 

• Develop an EPR-based constitutive model for frozen soils using 

experimental data. 

 

1.3  Contribution to the knowledge  
 

Developing a self-learning simulation algorithm based on a robust data mining 

technique is very important in accurate prediction of behaviour of engineering 

systems and representation of the material behaviour. Using the advantages that 

EPR offers over other data mining techniques, especially in terms of the 

transparent form of its equations, can significantly simplify the incorporation of 

data mining technique in finite element analysis. The main contribution of this 

work is the development of a unified framework, based on the self-learning 

simulation methodology to model the response of various materials (linear elastic, 

nonlinear elastic, elastoplastic, etc.) under different loading conditions. Also, for 

the first time, a robust constitutive model is presented to describe the complex 

behaviour of frozen soils using EPR approach.  

  

1.4   Layout and structure of the thesis 
 

This thesis is divided into seven chapters. The main description of each chapter 

content is briefly summarised in the following paragraphs. 

Chapter one (current chapter) provides a general introduction and objectives of 

the thesis. It presents the contribution of the thesis and illustrates how the thesis 

is organised. 

 

Chapter two presents a general background to constitutive modelling of 

materials. The chapter begins with a historical review of using conventional 

constitutive material modelling and then illustrates the importance and purpose 

of their implementation in numerical analysis, mainly the FEM. 
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Chapter three presents the use of data mining-based constitutive modelling. In 

particular, the use of the ANN, GP and EPR in material modelling is introduced 

in detail. The main advantages of EPR over other data mining techniques are 

highlighted in this chapter. 

 

Chapter four describes the methodology of the self-learning simulation based on 

ANN. Some applications of ANN-based self-learning simulation are presented. 

The main advantages of the self-learning simulation are highlighted. This chapter 

also illustrates the developed algorithm for using EPR-based self-learning 

simulation in detail. Furthermore, it introduces different strategies which are 

followed to train the EPR-based constitutive models within the self-learning 

framework. 

 

In chapter five, some applications of the developed EPR-based self-learning 

simulation are presented. These include modelling the behaviour of structural 

boundary value problems including truss and an aluminium plate considering 

linear elastic, nonlinear elastic and elastic-plastic behaviour. The results from 

these applications are used to verify the developed algorithm.  

 

In chapter six the modelling of the very complex behaviour of frozen soils is 

introduced to verify the capability of the EPR as a unified approach to constitutive 

modelling of materials. Furthermore, EPR-based self-learning algorithm is 

applied to simulate a geotechnical application. This include simulation of 

consolidated drained triaxial test using experimental data.  

 

Chapter seven includes the main conclusions of the thesis and provides some 

suggestions for further research.
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Chapter 2  
 

Constitutive Modelling of Materials 

 

2.1 Introduction  
 

The fundamental aim of a successful engineering project is to reduce the time 

and cost which are very important factors in the design and construction of many 

civil engineering structures. As cost considerations are vital at initial design 

stages, determinations of loading capacity and durability of structures, numerical 

simulations during construction can avoid or minimise the possibility of expensive 

and time-consuming in later stages of project (Basan, 2016). Selection of an 

appropriate material, together with the knowledge of its behaviour is one of the 

main decisions to be made in the early design stages of any engineering 

application. Every single operating condition, especially the severe ones such as 

higher mechanical loadings or changes in temperature, influence the engineering 

material in use and causes deterioration of material properties, due to, usually 

concurrent processes of deformation and damage. These can cause failure of an 

engineering component, or the whole structure could collapse. To avoid 

unexpected events such as building damage, an earthquake, etc., simulations 

and engineering analysis must be performed in advance, to predict a safe design 

life for components and structures. Most of the practical methods for predicting 

the design life of engineering structures are based on empiricism. Therefore, a 

significant amount of experimental and field data are required to have realistic 

predictions. Durability calculations are performed in early design stages when 

experimental/field data are rarely available (due to demanding, expensive and 

long-lasting experiments). It would therefore be useful to predict material 

response under applied loading condition, and typically this is the task of 

constitutive modelling (Basan, 2016). 
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Constitutive model can be defined as a set of simplified mathematical equations 

that connect the state of stresses and strains (stress-strain history, strain rate, 

and other field quantities) and predict the response of given material under 

applied load, displacement, temperature, etc. Generally, constitutive models can 

be very different for different materials used in engineering applications, such as 

steel, concrete, soil, rock, polymer, etc. Despite the variety of material behaviour 

responses, the primary principles and concepts are mostly the same in 

establishing and developing the constitutive models for different materials. The 

mathematical formulation of a constitutive model depends not only on the material 

properties itself but also on its purpose and degree of accuracy required. There 

are some criteria to choose the best model, and these are highly reliant on the 

experience and judgment of the engineer whose task is to select a model that 

(Basan, 2016): 

• describes the physical phenomena representing the system, 

• is able to predict the behaviour of the material accurately, and 

• can be incorporated into a robust numerical algorithm such finite element 

method (FEM). 

 

2.2  Material behaviour models 

In material modelling, a mathematical form is firstly postulated according to the 

understanding of the phenomena. In the next step, some experimental 

measurements are taken from the material being tested and the behaviour of the 

material is extracted to define the variables of the proposed model. Selecting an 

appropriate model to describe material behaviour is very important, hence 

choosing inappropriate model could lead to entirely wrong prediction (Bower, 

2010). 

Whatever the type of material and the physical mechanism that appears when 

the material is under loading condition, the response and real behaviour of a 

material can be within the following categories: rigid, elastic, viscous, plastic and 

perfectly plastic (Lemaitre and Chaboche, 2000). The classification of materials 

behaviour according to the above criteria is shown in Table (2-1). There are many 

models developed to represent the stress-strain behaviour and failure of different 
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materials, all of which have advantages and shortcomings depending on their 

applications.  

Chen (1985) introduced some fundamental criteria for model validation. The 

models should consider the theoretical assumption concerning the continuum 

mechanics principles such as the requirements of continuity, stability, 

uniqueness, etc. The developed models also need to fit the experimental data 

created from a number of available standardised tests, and their parameters 

should be easily determined from these tests. Furthermore, assessing the ease 

with which they can be implemented in numerical models such as FEM is also 

vital.   

   Table 2-1: Material behaviour classification (Lemaitre and Chaboche, 2000). 

Type of solid Material behaviour Rate dependency 

 

Elastic 

Perfectly elastic solid Independent 

Viscoelastic solid Dependent 

 

Plastic 

Rigid-perfectly plastic solid  

Independent 

 

Elastic perfectly plastic solid 

Elastoplastic hardening solid 

 

Viscoplastic 

Perfectly viscoplastic solid  

Dependent Elastic perfectly viscoplastic solid 

Elastic viscoplastic hardening solid 

 

 

2.3  Classical constitutive models 

Various types of traditional constitutive models of different engineering materials 

have been widely developed over the last decades. Constitutive models can be 

classified according to the degree of complexity from simple linear elastic to more 

advanced elastic-plastic models. Some materials (including geomaterials, e.g., 

soils and rocks) exhibit very complex behaviour when subjected to different 

conditions. Therefore, it would be useful to briefly present some of the commonly 

used constitutive models in geotechnical applications.  
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The earliest model was introduced by (Hooke, 1675) to represent the stress-strain 

relationship of linear elastic material behaviour. The general form of Hooke’s law 

is: 

 𝜎 = 𝐸 𝜀 (2-1) 

where 𝐸  is Young’s modulus and 𝜎,  𝜀  are stress and strain respectively. 

However, the simple linear isotropic elastic model is unable to simulate the main 

important soil responses (e.g. change in stiffness). At the end of 19th century, 

material modelling using the plasticity theory was introduced. The concept of this 

model was developed by Mohr. The combination and generalization of Hooke’s 

law and Coulomb’s law was gathered in a plasticity framework which is known as 

Mohr-Coulomb model (MC). This model is an elastic perfectly plastic constitutive 

model which is wieldy used in engineering practice. In the field of geotechnical 

engineering, this model is defined by two elastic parameters based on Hooke’s 

law (Young’s modulus E, and Poisson’s ratio µ) to define the elastic behaviour, 

strength parameters (apparent cohesion c, angle of shearing resistance ɸ) to 

define the plastic behaviour and dilatancy angle (ψ) to define the irreversible 

volume change due to shearing.  

Although the model has been commonly used to analyse different geotechnical 

engineering applications such as stability of slopes, dams, shallow foundation, 

etc., it does not consider hardening or softening behaviour of soils. It also does 

not consider the effects of volume change on shear behaviour and vice versa. 

Duncan and Chang, (1970) developed a model (called Duncan Chang model) 

based on stress-strain relationship in the drained triaxial test. In this model, the 

deviator stress-axial strain curve can be approximated by a hyperbolic model as 

shown in Figure (2-1) (Ti et al., 2009).  
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Figure 2-1: Hyperbolic stress-strain curve; q is deviator stress, ɛy is axial strain, Ei is 

initial elastic modulus, Eur is the elastic modulus of unloading and reloading, E50 is 

primary elastic modulus. 

In the Duncan Chang model, the failure behaviour follows the MC failure criterion. 

The main advantages of this model are its ability to define the non-linearity, stress 

dependency and inelastic response of soils. The model parameters can be 

determined directly from standard triaxial tests. Therefore, this model has been 

applied to analyse different geotechnical applications. However, this model has 

some shortcomings; for example, differentiation between loading and unloading 

is not clear. Also, the model cannot represent the behaviour of soils under entirely 

plastic range (Ti et al., 2009).  

The geotechnical group at Cambridge University developed the Cam Clay model, 

which is a more advanced and realistic model based on the critical state theory. 

This model is an elastic-plastic strain hardening model where the hardening 

plasticity is applied to model the nonlinear behaviour of soils (Roscoe and 

Schofield, 1963). Later, many modifications have been made to improve the 

capability of the model to meet the requirements of more complex conditions (i.e. 

Modified Cam Clay Model, MCC) (Roscoe and Burland, 1968).  

 

  

ɛy 

q 
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The MCC is a well-known constitutive model for soils and is widely used in 

analysing different geotechnical applications. The yield surface of MCC model 

can be shown in Figure (2-2). However, this model also has some limitations. Yu 

(1998) noted that this model is unable to provide reasonable predictions of the 

undrained condition of loose sand and normally consolidated clay due to the 

assumption of associated flow rule. Further, (Munda et al., 2014) reviewed the 

effectiveness of MCC model for fine-grained soil by comparing the results of MCC 

model with experimental data of different samples. They showed that the model 

provided resealable agreement with the experimental data in drained condition 

while there were apparent discrepancies of the results under undrained condition. 

The generalisation of MCC model to be used for different types of soil and 

conditions is the main limitation of this model  (Ti et al., 2009).   

 

          

Figure 2-2: Yield surface of MCC Model in the q - p' plane; M is the slope of the CSL in 

the p-q space, pc is pre consolidation pressure. 
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2.4 Applications of conventional constitutive models 

Constitutive modelling of different engineering materials has been the theme of 

research over several decades. A large number of books, papers, reports, etc. 

deal with the developments in constitutive modelling to represent the material 

response subjected to certain conditions. Most of the classical constitutive 

models have been subjected to several modifications to minimise their limitations 

and enhance their performance in representing material behaviour.  

 

2.4.1 Constitutive models in numerical analysis 

High accuracy predictions of material behaviour are very essential to reduce the 

cost, time and risk of failure. Numerical simulation and analysis of an engineering 

problem is formulated within an advanced computational system (a numerical 

model). Numerical methods such as the FEM play an important role in solving 

different boundary value problems. The successful application of finite element 

simulations in engineering applications is greatly dependent on the selection of 

an appropriate model that is able to describe the material behaviour (e.g. stress-

strain curve). The field of constitutive modelling in numerical analysis has been 

significantly developed with time with the development of more advanced and 

sophisticated models to extract the real behaviours of materials (Figure 2-3). 
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Figure 2-3: Evolution of different types of constitutive model used in numerical analysis 

of soft soils between 1970 to 2002 (Mestat et al., 2017) 

 

A large number of constitutive models have been developed to analyse different 

engineering applications including static and dynamic analyses. For instance, in 

the field of geotechnical engineering, significant amount of research has been 

conducted to develop and implement these models in numerical (especially finite 

element analysis) to solve various problems such as shallow foundations, 

tunnels, deep excavations, slope stability, as well as problems involving more 

complex material behaviour such as frozen soils. Therefore, it would be useful to 

review some typical works done in the literature, in particular, the recent ones, on 

constitutive models with their modifications in the analysis of different boundary 

value problems.  

Loukidis and Salgado, (2009) performed a numerical study using FEM, based on 

the Mohr-Coulomb model to evaluate the bearing capacity of the strip and circular 

footings designed on sandy soil. They investigated the possible effect of dilatancy 

angle (ψ) on the bearing capacity of foundations with and without associated flow 

rule. The results showed good agreement between FEA and rigorous analytical 

methods.  
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In this work some assumptions were made without considering their effects on 

the results. Also, the analysis applied only on sandy soil, and the possibility to be 

applied on different types of soil was not indicated. 

Modified cam clay (MCC) model was used to perform coupled numerical analysis 

using FEM  to study the compression and uplift capacity of a shallow foundation 

under undrained and partially undrained conditions (Li et al., 2015). This paper 

emphasised the failure mechanism and responses of pore pressure within the 

soil. The compression and uplift of the foundation were modelled based on the 

simulation of triaxial compression and tension tests in order to gain a clear 

understanding of the soil behaviour. The soil was assumed as homogenous, and 

the yield surface of MCC was considered as isotropic. This study could be 

considered as a validation of using MCC in the coupled analysis.   

Wang et al., (2016) investigated the effect of seepage on the effective stresses 

of a slope using the Duncan Chang model. Triaxial compression experiments and 

numerical simulation, both including the seepage effects, were performed. In this 

work, the Duncan Chang model was modified by applying the concept of 

equivalent confining pressure, and the modified model was verified through 

comparison between the experimental and finite element simulation results. Also, 

a case study of slope stability analysis under seepage effects confirmed the 

reliability of the Duncan Chang model for estimation of factor of safety for slope 

considering the seepage effects. However, the study included some 

modifications to the Duncan Chang model assuming seepage does not affect the 

internal angle of effective shearing resistance, which may not be applicable in 

some other conditions.  

Ng et al., (2015) studied the capability of three different constitutive models to 

simulate the response of an existing tunnel to stress relief during a basement 

excavation. The results computed from the implementation of Mohr-Coulomb 

(MC), Duncan Chang (DC) and Hypoplastic (HP) models in finite element 

analysis were compared with a three-dimensional centrifuge model test. It was 

shown that, in this case, the ability of HP model in predicting soil heave due to 

stress relief of all excavation stages is better than other models and that the 

changes in soil stiffness with strain and stress paths were captured well by the 

HP model, even with small strains. 
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They also showed that none of the three models could estimate the changes in 

tunnel size and maximum tensile bending strain in the transverse direction. To 

address this problem, the authors may need to consider the actual soil stiffness 

around the tunnel. Thus, the accuracy of these models are contingent on being 

consistant with field conditions.     

 

2.4.2 Constitutive models of frozen soils 

Frozen soil is a complex multiphase material including soil particles, frozen water, 

unfrozen water and air  (Lackner et al., 2005; Pimentel et al., 2012; Xue-lei et al., 

2013). Recently, some attempts have been made to develop constitutive models 

to represent the complex behaviour of frozen soils.  

Lai et al. (2016) introduced a constitutive model for frozen saline sandy soil based 

on series of triaxial compression tests. The developed model involved the effect 

of salt content on mechanical properties of frozen ground. They showed that the 

proposed model could simulate the mechanical properties of materials with both 

straight critical state line and curved critical state line as well as predicting the 

deformation regularity of such soil. The proposed model was able to introduce 

the influence of different parameters on the frozen soil behaviour such as salt 

content and anisotropy. 

Rotta Loria et al., (2017) presented an elasto-plastic constitutive model, based 

on associated flow rule, which is able to simulate the non-linear mechanical 

behaviour of frozen silt. The model was verified against triaxial test results 

available in the literature, and it was shown that it could predict the non-linear 

mechanical response of frozen silt subject to both low and high confinement. 

However, this model has parameters that need to be calibrated based on 

experimental tests. The main issue is that some of the parameters, such as 

variation in temperature, need to be implicitly considered. This could limit the 

capability of the model in capturing the frozen soil behaviour under different 

environmental field conditions. 

Xu et al. (2017) introduced an elasto-plastic model, including the effects of 

temperature and strain rate on the mechanical behaviour of frozen Helin Loess. 

Based on the experimental results, the stress-strain curves of saturated frozen 

Helin loess exhibited strain-softening behaviour under different temperatures and 

strain rates.  
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The model parameters were identified by fitting the experimental data. 

Comparing the experimental and simulated results showed a good agreement, 

and it was shown that the constitutive model could predict the behaviour of frozen 

Helin loess with reasonable accuracy.  

It should be mentioned that, although these models showed good agreement with 

experimental results, they include many assumptions and the presented 

equations are highly complex. Therefore, implementation of these models in 

numerical analysis could be very challenging. Furthermore, the developed 

models have not been used in a case study to show their ability in solving a 

boundary value problem.  

 

2.5  Summary 

The field of constitutive modelling has been considerably developed with time, 

especially with the significant developments in the advanced computational 

algorithms. Each constitutive model has its own limitations and shortcomings. 

Although there has been considerable amount of research on the development 

of a wide range of constitutive models based on empirical data and theoretical 

assumptions with high complexities, none of these models is able to extract the 

exact behaviour of the material under different loading conditions. Moreover, 

most of these models have (material) parameters with little or no physical 

meaning (Shin and Pande, 2000). Recently with developments in computational 

techniques, the area of material modelling has been extended beyond the 

conventional theories, to computer-aided pattern recognition algorithms which 

have been reintroduced for modelling of a wide range of engineering applications. 

Some data-driven techniques such as an ANN, GP, EPR, etc have been utilised 

successfully to model the behaviour of various materials. In the next chapter, the 

description and application of the main types of data mining techniques will be 

presented in detail.



Chapter (3)                                 Data Mining Approach in Constitutive Modelling 
 

17 
 

Chapter 3  
 

Data Mining Approach in Constitutive 

Modelling 

 

3.1  Introduction 

The field of constitutive modelling has been progressed in parallel with the rapid 

development of computational algorithms and user-friendly software packages.  

The existing codes and software packages enable researchers to solve very 

complex problems in different areas of engineering including structural and 

geotechnical engineering, biomedical engineering, aerospace and many others. 

Numerical analysis, such as FEA, has been widely used to simulate very 

challenging problems. The accuracy of such analysis is highly reliant on the 

appropriate constitutive model that is able to represent material behaviour under 

different conditions. 

To address the difficulties of classical constitutive models mentioned previously, 

many researchers have exploited the use of artificial intelligence and data mining 

techniques (i.e. ANN,GP, and EPR) to extract the real behaviour of different 

complex materials (e.g. soils, rocks, concrete, polymers, etc). 

In this chapter, these types of data mining techniques are firstly discussed in 

detail, reviewing their main contributions in representing the behaviour of 

materials (in general and soils in particular) in numerical analysis. Towards the 

end of this chapter, the focus will be on the successful applications of EPR-based 

constitutive modelling and its advantages over other methods.  
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3.2  Artificial neural network (ANN) 

Artificial neural networks (ANNs) are pattern recognition techniques that have 

been inspired by the human brain and nervous system. ANNs have been 

successfully employed in data modelling in different science and engineering 

applications. The main features of ANN are its capability to learn and be fault 

tolerant (i.e. noise data). Thus ANNs have excellent interpolative capabilities, and 

their performance depends on the information provided to them during training. 

ANNs can be deployed in most situations, for instance when an uncertain model 

with a purely analytical basis is required in engineering applications  (Millar, 

2008). The main advantage of using ANNs over classical models is that ANNs 

can learn from samples of data and generate models that can describe the 

behaviour of engineering systems without any assumption on the relationships 

between the input and output parameters of the system (Shahin et al., 2008).  

ANN is the most widely used data mining technique in constitutive modelling of 

materials. Ghaboussi et al., (1991) were the first to introduce ANN-based 

constitutive modelling to describe the behaviour of concrete. The work on neural 

network-based constitutive modelling was then extended to more complex non-

linear material behaviour, including geomaterials (Ellis et al., 1995, 1992). The 

results of these and many other works have indicated that ANN-based 

constitutive models can represent the highly non-linear behaviour of a wide range 

of engineering materials with a reasonable accuracy. ANNs have the capability 

to work with large quantities of data and learn the complex response of materials 

by training with an appropriate set of input and output variables.  

In general, ANN consists of some artificial neurons, also known as nodes, which 

are arranged in layers. Usually there is an input layer, an output layer and one or 

more intermediate layers, named hidden layers. Each neuron in a layer is fully 

linked to every neuron in the next layer through weighted connections as shown 

in Figure (3-1).  
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Figure 3-1: Typical neural network form; X1, X2 ,X3 are the input variables, y is the 

output variable. 

 

ANN modelling is rather similar to some traditional statistical models in that both 

try to extract the relationship between a set of input variables and the 

corresponding output variables. The weighted connections represent the 

information stored in the process of the network. The model is trained by updating 

its connection weights via the training process. This process is continued until the 

predicted output variable(s) are satisfactorily agreed with the target values of the 

training data. The algorithm of training of a neural network in such a way is called 

back-propagation in the sense that the observed error in the predicted output 

variable is used to update the connection weights. The back-propagation is one 

of the most widely used training approaches for multi-layered feedforward 

networks (Shin, 2001). 

An important key point in developing ANN-based models is to choose the right 

input parameters that have the most significant influnce on the model prediction 

(Faraway and Chatfield, 1998). Among different types of ANN, multi-layer 

feedforward network has been the main type of neural network used in material 

constitutive modelling (e.g. Hashash et al., 2004b).  
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3.2.1  Applications of ANN in material modelling  

Ghaboussi and Sidarta (1998) suggested nested adaptive neural network 

(NANN) to model the behaviour of geomaterials. They used NANN to construct 

models for the drained and undrained behaviour of sands in triaxial tests. NANN 

takes advantage of the nested structure of the material test data and represents 

it in the architecture of the neural network. Penumadu and Zhao (1999) presented 

the use of ANN to model the mechanical behaviour of sand and gravel. They 

used an excessive amount of experimental data from about 250 triaxial 

compression tests under drained condition. The ANN structure consisted of three 

hidden layers with 15 neurons in each layer, 11 neurons in the input layer and 

two outputs. This optimum structure was developed through a trial and error 

procedure. The input and output variables for the developed model were as 

follows: 

Input variables    𝐷50 , 𝐶𝑐, 𝐶𝑢, ℎ, 𝑛𝑠, 𝑒, 𝜀
𝑖 , ∆𝜀𝑖, 𝜎3

′ , 𝜎𝑑
𝑖 , 𝜀𝑣

𝑖  

Output variables                𝜎𝑑
𝑖+1, 𝜀𝑣

𝑖+1
 

where 𝐷50 , 𝐶𝑐, 𝐶𝑢 are parameters of particle size distribution curve, ℎ is hardness 

of material, 𝑛𝑠  and  𝑒 are shape factor and void ratio respectively and 𝜎3
′ is the 

effective confining pressure. The current state of stress and strain was introduced 

in terms of deviator stress 𝜎𝑑
𝑖  and volumetric strain 𝜀𝑣

𝑖 . Providing the state of 

stress and strain, the proposed model was aimed to predict two output variables, 

deviator stress ( 𝜎𝑑
𝑖+1) and volumetric strain (𝜀𝑣

𝑖+1) for the next stress-strain state 

corresponding to an incremental axial strain (∆𝜀𝑖). The results revealed that the 

proposed model was able to represent the non-linear stress-strain and volume 

change behaviour of the soil with an acceptable level of accuracy. However, the 

model trained on such vast amount of experimental data has not been 

implemented in numerical analysis such as FEA. 

Banimahd et al., (2005) modelled the stress-strain behaviour of sandy soils using 

ANN based on results from an extensive set of undrained triaxial tests. They 

developed a model using multi-layer perceptron (MLP), which is a class of 

feedforward ANN, to predict the undrained behaviour of in situ sandy soils. An 

incremental training procedure was utilised to train the MLP neural network. 

Verification of the model capability was performed through a sensitivity analysis. 
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However, the MLP neural network required significant effort and a complex 

procedure to identify the key parameters that influence the behaviour of the soil. 

Millar, (2008) demonstrated that using an ANN can provide new capabilities over 

a broad range of problem areas in rock mechanics and rock engineering. 

Correia et al., (2013) investigated the applications of data mining in transportation 

geotechnics. The research included the use of ANN, support vector machine 

(SVM) and evolutionary computation techniques such as multiple regression 

(MR). The analysis involved the compaction management, mechanical behaviour 

of jet grouting material and pavement evaluation. In the case of compaction, they 

used collection tables based on fieldwork and experiments in France as 

database. The evaluation process aimed to model the compaction control 

parameters and provide understanding of the relationship between parameters 

that contribute to the compaction work of an embankment layer. The results 

showed that ANN and SVM present better accuracy than the traditional multiple 

regression method. They also showed the capability of data mining techniques in 

predicting the mechanical behaviour of improved soils (i.e. from jet grouting 

technology). In this analysis, modelling the uniaxial compressive strength (UCS) 

and elastic (Young’s) modulus at small strains (Eο) were predicted using ANN 

and SVM. The analysis used the following variables:  

(𝑛
𝐶𝑖𝑣

𝑑⁄ ) the ratio between the mixture porosity and volumetric content of cement, 

(t) the age of the mixture, (W/C) water cement ratio, (s) coefficient of cement type, 

(C%) cement content, and (S%, ML%, CL%, OM%) the percentage of sand, silt, 

clay and organic matter respectively. The results illustrated that SVM produces a 

higher accuracy compared with ANN (Figure 3-2). The authors mentioned that 

although ANN can be considered as an advanced computational tool to extract 

implicit information from the available data space, however, it is a black box 

system and suffers from slow convergence speed, low generalisation 

performance and overfitting problems.  
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Figure 3-2: Comparison between experimental results and prediction of ANN and SVM 
for a) UCS b) Eο (Correia et al., 2013). 

 

Khademi et al., (2016) introduced a comparative study to deal with the modelling 

of 28 day compressive strength of recycled aggregate concrete (RAC) using three 

different data-driven techniques, ANN, adaptive neuro-fuzzy inference system 

(ANFIS) and multiple linear regression (MR). They included 14 input (dimensional 

and non-dimensional) parameters in the training process. It was noticed that all 

the data-driven models used performed better when the non-dimensional 

parameters were used. The results also revealed that ANN and ANFIS predicted 

better than MR. However, the study declared that including some non-

dimensional parameters would cause increase or decrease in the accuracy of the 

prediction of the compressive strength of concrete. This can be noted as one of 

the drawbacks of such data-driven techniques.  

Sharma et al., (2017) presented a comparative modelling study to evaluate the 

unconfined compressive strength (UCS) of rocks by utilising three different data 

mining techniques ANN, MR and ANFIS. Rock collected from five geological 

regions in India were used in this study. Extensive laboratory tests were used to 

develop the models and they were all trained using three input variables which 

were density (d), slake durability index (SDI) and ultrasonic P-wave velocity (VP) 

while the only output was UCS. The neural network structure used is shown in 

Figure (3-3). The results of the predicted UCS using the developed models versus 

the observed UCS are presented in Figure (3-4).  
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The authors intended from this work to minimise the uncertainty and 

inconsistency that come from using statistical models such as MR and ANN and 

highlighted the performance of using ANFIS among others. However, the results 

have not shown a clear difference between the performance of ANN and ANFIS. 

Also, the study did not consider other possible variables that might be affected 

during the analysis such as type of material filling and grain size distribution. 

 

 

Figure 3-3: A schematic structure of ANN (Sharma et al., 2017). 

 

 
Figure 3-4: Comparison between measured and predicted UCS using MR, ANN and 

ANFIS models (Sharma et al., 2017). 

 

 

 



Chapter (3)                                 Data Mining Approach in Constitutive Modelling 
 

24 
 

Yan et al., (2017) proposed a new algorithm to improve the capabilities of ANN 

by combining the approximation ability of ANN with the global search ability of 

GA for modelling the bonding behaviour of glass fibre-reinforced polymer (GFRP) 

bar to concrete. In this approach, the ANN was used to map the relationship 

between the bond strength and the contributing parameters while GA was used 

to optimise the connection weights and biases of ANN. Data available from 157 

beam-test specimens from the literature were utilised for training, including seven 

input parameters (bar surface, bar position, bar diameter (dp), ratio of concrete 

cover to bar diameter (c/dp), ratio of embedment length to bar diameter (Ld/dp) 

and one output parameter, the bond strength (Ʈb). The effectiveness of the 

developed ANN-GA model was evaluated by comparison with the original ANN 

model and a mulit-nonlinear regression model MNLR. The results revealed that 

the developed model predicts the bond strength more accurately in comparison 

with other conventional models and also better matches with the experimental 

data. However, the ANN-GA modelling strategy has its own limitations. For 

instance, the selection of variables including in the algorithm, size and quality of 

data plays an important role in providing accurate predictions.  

 

3.2.2  Incorporation of ANN-based material models in FEM 

The use of ANNs as constitutive models in numerical methods, particularly the 

FEM, has increased over the past few decades. Javadi and his co-workers 

introduced the use of ANN in constitutive modelling to represent the response of 

complex materials including soils. They developed an intelligent finite element 

code based on the incorporation of a back-propagation neural network in FEA. 

The method was applied to some engineering applications and it was indicated 

that ANNs could be efficient in extracting and representing the constitutive 

behaviour of complex materials (Javadi et al., 2003). 

Furukawa and Hoffman (2004) presented an algorithm to implement ANN into 

FEA to describe monotonic and cyclic plastic deformation. They used two ANNs 

to learn the kinematic hardening and isotropic hardening behaviour of materials.  

The structure of their proposed neural networks and the corresponding inputs 

and outputs are presented in Figure (3-5). In this figure, Y and R show the 

kinematic and isotropic hardenings respectively and ɛp is the plastic strain.  
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The subscripts k, k-1 and k-2 refer to the current and previous states of every 

parameter. After training, the developed model was implemented in a commercial 

finite element (FE) code, MARC, via its user subroutine utility for material models.  

 

                          

                                     

Figure 3-5: Neural network material models for back and drag stresses (Furukawa 

and Hoffman, 2004). 

The stress-strain relation was presented through the stiffness matrix (D) defined 

as:                                                                                                                         

 σ = D ɛ (3-1) 

where D was given by the sum of the elastic matrix De and the plastic matrix Dp                                                                                                                                       

 D = De + Dp (3-2) 

The Young's modulus E and Poisson’s ratio µ were used to derive the elastic 

matrix while the plastic matrix was continuously updated using the trained ANN 

model. The validation of the model performance was presented in which two 

material models similar to Figure (3-5) were generated using real data with 

monotonic plastic deformation. The non-linear kinematic hardening model 

(Chaboche model) and also laboratory data were used to validate the proposed 

approach. The results showed acceptable agreement by following the same 

procedure for the cyclic plastic deformation.  

Finally, the developed ANN models were implemented in the finite element 

engine (MARC) utilising the introduced technique to represent the behaviour of 

the central part of a tensile specimen under cyclic loading. The results are 

presented in Figure (3-6). 
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It can be noted from this figure that, although the proposed ANN-based finite 

element analysis shows divergence from the experimental data at higher number 

of cycles, it shows better prediction compared with the Chaboche model.  

 

   

Figure 3-6: Comparison of experimental data, ANN-based FEM and Chaboche model 

in terms of total equivalent stress against cycles (Furukawa and Hoffman, 2004). 

 

Hashash et al., (2004b) addressed some of the issues related to the use of ANN 

based constitutive models in FEA with a number of numerical examples. They 

defined the material stiffness matrix, required in incremental FEA procedure, as: 

 

 
𝜕𝑛+1∆𝜎𝑖

𝜕𝑛+1∆𝜀𝑗
 =  

𝜕(𝑛+1𝜎𝑖
− 𝑛𝜎𝑖 

)

𝜕𝑛+1∆𝜀𝑗
= 

𝜕𝑛+1𝜎𝑖

𝜕𝑛+1∆𝜀𝑗
  (3-3) 

In the above equation n+1 refers to the next state of stresses and strains. The 

differentiation of the above equation can lead to calculation the material stiffness 

(Jacobian) matrix which can provide efficient convergence of the global solution. 

However, the incorporation of an ANN based constitutive model in equation (3-3) 

could result in a set of equations with complex mathematical structure that would 

not provide the user with a meaningful relationship between the input and output 

parameters of the material model. 
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Kessler et al., (2007) implemented an ANN-based constitutive model in FEA for 

prediction of the rheological behaviour of Aluminium. They compared the 

performance of an ANN model trained based on experimental tests of 6061 

aluminium under compression at various temperatures (found in literature) with 

two conventional constitutive models (power law and tabular data).  

The incorporation of the developed ANN model in the finite element code 

(ABAQUS) was via its user-defined subroutine VUMAT while the other two 

conventional models were analysed using the built-in models in ABAQUS.  

The data extracted from the actual stress-strain curves were used to train the 

ANN by applying a set of networks with different number of neurons and different 

neural network structures. The analysis included four variables (stress, strain, 

strain rate and temperature). The results shown in Figure (3-7) demonstrate the 

predictions of the ANN and the conventional models versus the experimental 

results at 450 °C. These results indicate that the ANN-based finite element model 

has a better performance than the conventional constitutive models to mirror the 

experimental data. It can also be seen from this figure that the power law model 

captures the behaviour only with high strain level and the model based on tabular 

data provides a reasonable prediction.  

However, the values of some input variables needed to be estimated a priori. 

Moreover, the model based on tabulated data underestimates the stresses when 

tested with different temperatures.  

In this paper, the advantage of using ANN over the classical modelling approach 

was highlighted, however, the description of the way the proposed ANN model 

was implemented in finite element code has not been clarified. 
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Figure 3-7: A comparison of experimental data and finite element model results using 

(a) power law model, (b) tabular data and (c) ANN model, presenting the real stress-

strain relationships at 450 °C (Kessler et al., 2007). 

 

Some researchers also introduced the ANN approach for modelling of the cyclic 

behaviour of materials and their implementation in FEA (e.g., Kim et al., 2010; 

Yun et al., 2008a, 2008b). 

 

 

 

(b) 

(a) (c) 
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3.3  Genetic programming (GP) 

Evolutionary algorithms (EAs) are search strategies inspired by biological 

evolution in nature (such as selection, crossover, and mutation) in which 

computer implementation of such evolutionary mechanisms is utilised to solve a 

function identification problem. The primary aim of this function identification 

problem is to search for a function in a symbolic structure that matches a set of 

experimental or field data (Rezania, 2008).  

The major types of evolutionary algorithms are genetic algorithm GA and genetic 

programming GP. The GA is mainly used in parameter optimisation to generate 

the best values for model parameters by using a string of numbers to represent 

the solution. 

Koza, (1992) extended the GA to an evolutionary computing method as a domain-

independent problem-solving approach (called genetic programming GP). In GP, 

a series of computer programs made of functions and terminals are evolved to 

generate a transparent and structured model representing the system being 

analysed. GP has recently become more popular as an optimisation and learning 

technique. This technique generates mathematical equations to fit a set of data 

to represent the behaviour of a system (or a material). 

The GP modelling process is first initialised by generating an initial population of 

computer models. This population involves a set of functions and terminals which 

are randomly chosen and defined by the user for a particular problem. They are 

arranged in a tree structure to make up a computer model. The model consists 

of nodes which are elements from the terminal set (e.g. constants = 3, variables 

x1, x2, x3, and functional set (e.g. mathematical operators ±, 𝑥𝑦).  

A typical GP tree structure, representing the algebraic expression of 

[(3 + 𝑥1)/(𝑥2 − 𝑥3)]
2 is illustrated in Figure (3-8).  
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Figure 3-8: A typical GP tree structure for function [(3 + 𝑥1)/(𝑥2 − 𝑥3)]
2                                                                         

(Fatehnia and Amirinia, 2018). 

 

GP begins with finding a set of functions that correspond to the nature of the 

problem. Every single element in the population gets a measure of its fitness in 

the current generation. The fitness criteria are determined by the objective 

function (i.e. how fit the individual is within the population). Through the process 

of reproduction, cross-over, and mutation, a new population is evolved 

representing a certain proportion of the computer models. Reproduction is 

achieved by copying a computer model from the current population into the next 

generation without any change. This is usually done based on the fitness of each 

tree structure. The mutation process is the exchange of a randomly chosen 

functional or terminal node with others from the same function or terminal set.  

Eventually, to improve the fitness of the population, the tree structures undergoes 

cross-over which is the genetic recombination of randomly selected portions of 

two computer models. A typical cross-over operation in GP is shown in Figure  

(3-9). (Fatehnia and Amirinia, 2018). 
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Figure 3-9: Typical cross-over operation in GP. 

 

The new population will then replace the current population. The evolutionary 

process of GP is stopped when the termination criteria are fulfilled which is either 

the maximum number of generations or a specific tolerance.  Finally, the best 

computer model is created by GP according to the fitness function chosen 

(Fatehnia and Amirinia, 2018). 

 

3.3.1  Applications of GP in material modelling  

GP, as one of the most general evolutionary computation algorithms, has been 

recently used in material modelling of the field of civil engineering. In particular, 

the capabilities of GP in the field of geotechnics have been investigated by some 

researchers (Javadi et al., 2006; Javadi and Rezania, 2006; Rezania and Javadi, 

2007). 
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Javadi et al., (2006) introduced GP for estimation of the lateral displacements of 

soil due to liquefaction during earthquake. The prediction of lateral displacements 

during liquefaction is a complex problem due to the large number of parameters 

involved, including the parameters related to the earthquake intensity, soil 

properties and geology of the site. The results of this work showed that the GP 

model outperforms the multilinear regression model in prediction of lateral 

displacements. 

Following this work, Rezania and Javadi (2007) proposed a new GP-based model 

to estimate the settlement of shallow foundations resting on cohesionless soils. 

They discussed the possible errors that may occur in predicting the settlement of 

foundations using the traditional methods. The results showed that the GP model 

provides a more accurate prediction compared with the conventional methods 

and also ANN in determining the settlement of shallow foundations. 

Although GP generally outperforms ANN, provides global interpretations and 

gives the user a clear insight into the relation between contributing input and 

output parameters, it also has some shortcomings. It has been shown that GP is 

not a robust tool in determining constants of a model, and it produces functions 

which grow in length over time (Giustolisi and Savic, 2006). 

 

3.4  Evolutionary polynomial regression (EPR) 

3.4.1  General overview  

As mentioned above, ANN and GP have been successfully used in material 

modelling and their applications in various engineering problems (including 

constitutive modelling) have gained increasing attention. ANN and GP are 

powerful non-linear modelling techniques that are able to represent the complex 

behaviour of various materials. However, these methods have their own 

limitations. For instance, when using ANNs, the number of hidden layers, number 

of neurons, transfer functions, etc. must be initially determined, using a time-

demanding trial-and-error procedure. Moreover, the black box nature, the high 

complexity of the network structure, and the lack of interpretability have the main 

obstacles in using the ANNs in material modelling (Faramarzi, 2011; Javadi and 

Rezania, 2009a; Rezania, 2008).  



Chapter (3)                                 Data Mining Approach in Constitutive Modelling 
 

33 
 

On the other hand, GP has problem in finding the constants of the mathematical 

expressions generated during the training process. Also, in GP the number of 

terms in the model can exceed and the evolutionary search can be prolonged 

(Giustolisi and Savic, 2006). To address the limitations of ANN and GP, another 

data mining technique named EPR, has been developed. EPR is a combination 

of genetic algorithm GA and least square LS introduced by Giustolisi and Savic, 

(2006). 

3.4.2  EPR based models 

To understand the differences between mathematical modelling algorithms, 

usually, colours are used to specify their level of required information. In this 

classification, white box, grey box, and black box models are considered. The 

definition of each model can be illustrated as in the following points (Giustolisi 

and Savic,2006): 

• White box model is referred to a model with known variables, parameters 

and underlaying physical laws. It declares the relationship of the system 

in form of set or single equation. 

• Grey box model is considered as a conceptual model which its 

mathematical structure can be derived from conceptualisation of physical 

aspect or via a set of differential equations representing a physical 

phenomenon. EPR is considered as a symbolic grey box model. 

• Black box model is referred to a system with no prior information about 

the relationship between variables. ANN is an example of a black box 

model. 

EPR is a new hybrid approach based on evolutionary computing, aimed to search 

for polynomial structures representing the behaviour of a system (Giustolisi and 

Savic, 2006). EPR implements numerical and symbolic regression to perform 

evolutionary polynomial structure. The main idea of the EPR is to use 

evolutionary search for exponents of polynomial expressions by means of a 

genetic algorithm (GA). GA allows an efficient search for explicit equations that 

represent the behaviour of a system and offers more control over the complexity 

of the structures generated (Giustolisi and Savic, 2009). A typical formulation of 

EPR expression can be written as (Giustolisi and Savic, 2009, 2006): 
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 𝑌 =  ∑𝐹(𝐗, 𝑓(𝐗), 𝑎𝑗)

𝑚

𝑗=1

+ 𝑎0 (3-4) 

where Y is the estimated vector of output of the system; aj is a constant; F is a 

function constructed by the process; X is the matrix of input variables; 𝑓 is a 

function defined by the user and m is the number of terms of expression excluding 

the bias term (a0) (Giustolisi and Savic, 2006). Genetic algorithm is utilised to 

select the useful input vectors from X to be integrated together. The building 

blocks of the structure of F can be defined by the user based on an understanding 

of the physical process. While the selection of feasible structures is done during 

an evolutionary process, the parameters aj are determined by the least square 

method. The first step in the identification of the model structure is to convert 

equation (3-4) to the following vector form (Giustolisi and Savic, 2009). 

 YNx1(Ө, Z) = [ INx1   Zj
Nxm] x [ a0   a1    …….  am]T   = ZNxd x ӨT

dx1  (3-5) 

 

Where YNx1(Ө, Z) is the least squares estimate vector of the N target values; Өdx1 

is the vector of d= m+1 parameters aj and a0 (ӨT is the transposed vector); ZNxd 

is a matrix generated by I (unitary vector) for bias a0, and m vectors of variables 

Zj. For a fixed j variables Zj
 is a product of the independent predictor vectors of 

inputs, X = <X1  X2…. Xk>. 

Generally, EPR follows a two-step process for constructing a mathematical 

model. In the first step, it searches for the best form of the function structure and 

in the second step, it uses the least squares method to find the adjustable 

parameters of the symbolic structures. In this way, EPR algorithm searches for 

the best set of input combinations and related exponents simultaneously. The 

matrix of input parameters X is given as (Giustolisi and Savic, 2006):  

 X = [

𝑋11    𝑋12    𝑋1𝑘

𝑋21    𝑋22    𝑋2𝑘

…  … …   
  𝑋𝑁1      𝑋𝑁2       𝑋𝑁𝐾   

]     = [ X1      X2  ……… Xk ]    (3-6) 

 

where the kth column of X refers to the candidate variables for the jth term of 

Equation (3-5). The jth term of Equation (3-5) can be written as: 
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 Zj
Nx1 = [ (X1)ES( j,1) . (X1)ES( j,2) ……(Xk)ES( j,k) ]   (3-7) 

where Zj is the jth column vector whose elements are products of candidate-

independent inputs and ES is a matrix of exponents. Therefore, the problem is to 

find the matrix ESkxm of exponents the values of which can be within user-defined 

bounds. For example, if a vector of candidate exponents for variables (inputs) in 

X is selected to be EX [0, 2, 3] and m (the number of terms without bias) is 4, and 

k (the number of candidate-independent variables/inputs) is 3, then polynomial 

regression problem is to find a matrix of exponents ES4x3 (Giustolisi and Savic, 

2006). An example of such a matrix is given here: 

 ES = [

0    2    3
0    2    2
2    3    0   

   2        2       0   

] (3-8) 

 

Each exponent in ES matrix corresponds to a value from the user-defined vector 

EX. Also, each row in the ES matrix determines the exponents of the candidate 

variables of the jth term in equations (3-4) and (3-5). This would allow the 

transformation of the symbolic regression problem into one of choosing the best 

ES matrix. In this way, the best structure of the EPR model can be generated. If 

the above matrix is substituted into Equation (3-7) the following terms can be 

formed: 

Z1 = (X1)0 . (X2)2. (X3)3 = X2
2 . X3

3 

Z2 = (X1)0 . (X2)2. (X3)2 = X2
2 . X3

2 

Z3 = (X1)2 . (X2)3. (X3)0 = X1
2 . X2

3 

Z4 = (X1)2 . (X2)2. (X3)0 = X1
2 . X2

2 

Equation (3-5) it can be written as: 

 
Y = a° + a1. Z1 + a2. Z2 + a3. Z3 + a4. Z4  =  a° + a1 . X2

2 . X3
3 + a2 . 

X2
2 . X3

2 + a3 . X1
2 . X2

3 +  a4 . X1
2 . X2

2 
(3-9) 
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The adjustable parameters (aj) can be estimated by using the LS method based 

on minimisation of the sum of square errors (SSE) which is used to map the 

search toward the best fit model and can be presented as:       

 SSE = 
∑ (𝑦𝑎−  𝑦𝑏)2𝑁

𝑖=1

𝑁
   (3-10) 

where ya are the target values in the training data and yb are the model predictions 

computed by EPR. The presence of zero in the exponent matrix ensures the 

ability to exclude some of the inputs from the regression model. The modelling 

procedure of EPR starts from a constant mean of output values. By increasing 

the number of evolutions, it gradually picks up the different parameters to 

construct equations representing the system.  

The best structure of the EPR model is identified using a GA search over the 

values in the user-defined vector of particular exponents. Detailed description of 

the GA procedure and its role in EPR can be found in (Giustolisi and Savic, 2006).  

The EPR process is stopped when the termination criteria are satisfied, which 

could be either the maximum number of generations, the maximum number of 

terms in the EPR equation or a specified tolerance. The general flowchart of the 

EPR procedure is shown in Figure (3-10).  
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Figure 3-10: Flowchart of the EPR procedure (Doglioni A., 2004). 

 

3.4.2.1 Least square technique  

Determination of aj in equation 3-9 is defined as an inverse problem of solving an 

overdetermined linear system based on the least squares method. This problem 

is usually solved by the Gaussian elimination method. Instead, an evolutionary 

search approach could generate candidate solutions such as combinations of 

exponents of 𝑋 variable that are related to an ill-conditioned inverse problem.  

Start 

Initialize the input matrix 

Generate initial population of exponent vectors 
randomly 

Assign exponent vectors to the corresponding columns 

of the input matrix (creating mathematical structure) 

Evaluate coefficients by using Least square method  

Evaluate fitness of equations in the 

population 

Criterion 

satisfied? 

Yes 
Output 

results 

End No 

 

 

 

Select individual from mating pool of exponent vectors 

Select two exponent vectors (for crossover) 

Select one exponent vector (for mutation) 

Creating offspring generation of exponent vectors 

GA 
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The rectangular matrix (𝑍𝑁×𝑑) shown below could not be of full rank (Giustolisi 

and Savic, 2006). 

 𝑍 = [ 𝐼𝑁×1  𝑍𝑁×1   
1  𝑍𝑁×1   

2  𝑍𝑁×1   
3 … . . 𝑍𝑁×1   

𝑚 ]𝑁 ×(𝑚+1)𝑁×𝑑 

 

(3-11) 

 

Particularly if the solution has a column of zeros or the columns 𝑍𝑗are linearly 

dependent. In this case, significant issues are raised to the Gaussian elimination 

approach and consequently a more rigorous method is required. In the EPR 

procedure, Singular Value Decomposition (SVD) is utilised to estimate the 

parameters aj of the matrix 𝑍. This technique enhances the process of finding the 

solution to the least square problem (Faramarzi, 2011; Rezania, 2008). 

 

3.4.3  Objective functions used in EPR 

EPR optimisation can be achieved by using different objective functions in order 

to have the best characteristic equation(s) representing the phenomena being 

studied. Either single or multi-objective configuration can be used in the 

framework of EPR. Figure (3-11) illustrates the main objective functions available 

in EPR. In general, EPR provides a different approach to model selection through 

a detailed analysis of complexity (i.e. a number of terms, number of exponents, 

number of inputs) and model fitness. 

Usually, the best modelling technique is also the simplest model that adequately 

matches the purpose of the system being analysed. The principle of parsimony 

points out that for a set of equivalent models representing a single phenomenon, 

the user needs to select the simplest model to represent a set of available data. 

Consequently, the fitness in a regression procedure should also include the trade-

off between the complexity and fitness of the model. To achieve this, the following 

techniques can be considered (Doglioni, 2004). 

i) Single objective function: an objective function is utilised to represent 

the fitness without having models with unnecessary complexities. 

ii) Multi-objective functions: at least two objective functions are involved; 

one function controls the fitness of the models, while another one can 

manage the model complexity. The main advantage of this approach is 

that it returns a set of non-dominated models each one introducing fitness 
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and complexity features. In this case, there is no need for prior assumption 

made by the user of the number of building blocks. However, the user 

needs to set the maximum number of terms, whereas the control on the 

complexity will let the number of blocks vary according to the model's 

fitness (Doglioni, 2004; Giustolisi and Savic, 2006).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-11: Overview of main objective functions in EPR (Doglioni, 2004). 

 

3.4.3.1 Single Objective technique 

In EPR, to represent a set of experimental or field data, a regression-based 

technique is used. To model a particular application, EPR needs to search among 

several potential models to find an optimum model. In EPR, the search process 

for the possible models is done through changing the exponents for the models 

(columns of matrix (𝑿)) and searching for the best fit set of parameters (Ө). 

Therefore, an objective function is required to avoid complexity and introduce the 
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best fit model. The ‘complexity’ here means including extra terms into the model 

or combinations of inputs parameters that provide noise to the raw data rather 

than representing the real behaviour of the entire system.  In order to tackle the 

problem of overfitting, the following approaches are considered (Giustolisi and 

Savic, 2006). 

i)  Reduce the number of terms by penalising the complexity. 

ii) Control the variance of aj constants  

iii) Control the variance of aj. 𝒁𝒋  terms concerning the variation of 

residuals. 

iv) Cross-validation of the models. 

v) Optimisation of the sum of squared errors (SSE) evaluated on the 

simulation (off-line prediction) of the system being studied performed 

by the models. 

Further details of these approaches can be found in (Doglioni, 2004) 

 

3.4.3.2 Multi-objective technique 

The previous versions of EPR used single objective genetic algorithm (SOGA) 

strategy to explore the search space. In this strategy, the maximum number of 

terms in the polynomial expressions can be assumed as in equation (3-5), then 

sequentially exploring the formula space with different number of terms. The 

SOGA strategy has a number of drawbacks as follows (Giustolisi and Savic, 

2006): 

a) When the number of polynomial terms increases, the performance of the 

SOGA decreases exponentially; hence more terms would lead to more GA 

runs. 

b) The final results of SOGA strategy are usually difficult to be explained. The 

set of models can either be graded based on their fitness to available data 

or considering their structural complexity.  

c) It is known that grading models based on structural complexity would need 

some subjective judgments. Therefore this process can be biased by the 

user’s experience instead of being chosen according to some 

mathematical criteria. 
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d) The results do not include the entire formulas (the formulas with few terms 

are not presented). However, these formulas may have a better accuracy 

among others with more terms (Giustolisi and Savic, 2009). 

To avoid the above drawbacks and limitations, a multi-objective genetic algorithm 

strategy (MOGA) has been added to EPR . This strategy aims to find the best 

model structures that respond to the fitness and minimise the structural 

complexity. The multi-objective modelling in hybrid evolutionary computing offers 

a number of advantages: It:  

i) provides a set of appropriate symbolic models, 

ii) makes a robust option to select the model, and 

iii) provides a set of models with variable parsimony levels in efficient 

computational time. 

MOGA based EPR aims to find the set of symbolic structures which perform well 

considering multiple criteria simultaneously. The objective functions used in the 

framework of EPR are: 

i) Maximizing the fitness. 

ii) Minimizing the total number of input variables selected by the 

modelling strategy. 

iii) Decreasing the number of terms in the model structure. 

The developed models are ranked according to Pareto dominance criterion. 

MOGA based EPR decreases the computational time needed by the multiple runs 

of EPR.  

The models that dominate others in the population of solutions are introduced to 

the user based on MOGA strategy (Giustolisi and Savic, 2009; Laucelli and 

Giustolisi, 2011). The most commonly used objective functions to measure the 

fitness of the symbolic structures are based on the SSE or the Penalisation of 

Complex Structures (PCS).  

The result of SOGA based EPR optimisation includes a set of equally good 

models. It could be easier to rank them according to their SSE value than 

structural complexity. Arranging the models according to their structural 

complexity can be a difficult task (Giustolisi and Savic, 2009). The multi-objective 

technique generally improves both the post-processing aspect and the modelling 

framework of EPR. The developed EPR models are ranked according to the 

coefficient of determination (CoD) and also their structural complexity. There are 
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several objective functions implemented in the MOGA based EPR including 

(Giustolisi and Savic, 2009): 

 

i)  

 𝐶𝑜𝐷 = 1 − 
𝑁 − 1

𝑁
 

∑ [(𝑌𝑝 − 𝑌𝑎)2
𝑁 ]

∑ [(𝑁 𝑌𝑎−  
1
𝑁 ∑ 𝑌𝑎)𝑁

2

]

 =  1 −  𝑘 .  𝑆𝑆𝐸          (3-12) 

 

 

𝑘 =  
2 (𝑁 − 1)

∑ [(𝑌𝑎 − 
1
𝑁

∑ 𝑌𝑎)𝑁

2

]𝑁

 

 

 

where N is the number of data points on which the CoD is calculated, Ya and Yp 

are the vectors of actual and predicted data respectively. 

ii) The number of constant values aj  

iii) The total number of inputs included in the symbolic structure (% of 𝑋𝑖). 

It should be mentioned that the total number of inputs variables corresponds to 

the number of times that each input is included in the symbolic expression.  

The EPR user must fix the maximum number of constants values, which sets an 

upper limit on the maximum number of the symbolic expression inputs. MOGA 

based EPR searches for the best non-dominated models considering both fitness 

on the models and structural complexity (placed on the best Pareto front surface) 

(Giustolisi and Savic, 2009; Laucelli and Giustolisi, 2011). 

Furthermore, MOGA based EPR applies additional pressure to gain structural 

parsimony. The objective functions can be used either in double objective or all 

together as follows (Doglioni, 2004): 

1) The coefficient of Determination (CoD) Vs. % of Xi. 

2) The coefficient of Determination (CoD) Vs. % of aj. 

3) The Coefficient of Determination (CoD) Vs. ((% of Xi) and (% of aj)). 

If Pareto dominance criteria are chosen, the Multi-objective strategy provides the 

following advantages (Doglioni, 2004): 

i) It requires less time: It should be faster for few objective functions 

compared with multiple single-objective runs. 

ii) It deals simultaneously with multiple solutions. 

iii) It provides a uniformly distributed range of Pareto solutions. 
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3.4.4  EPR user interface  

EPR has been coded using MATLAB environment by Professor Giustolisi at Bari 

University, Italy and Professor Savic at Exeter University, UK (Giustolisi and 

Savic, 2006). EPR is provided with a user-friendly interface and works in an Excel 

add-in file. EPR has been updated several times with new versions adding new 

features. In particular, for the work of this project a new bespoke model has been 

provided with Multi-objective function (MOGA) to be easily integrated with other 

software used during the development of the EPR based self-learning framework. 

The new user interface of EPR is as shown in Figure (3-12). From this user 

interface, the user can set up the modelling phase according to the phenomena 

being studied and can also enter the number of generations and size of the 

population in the GA parameters box. There is an option for bias which looks for 

a symbolic structure having the constant a0. If the bias option is off, EPR will 

exclude all models containing a0. Otherwise, bias option is on by default and EPR 

will search for models with and without the term a0 (Doglioni, 2004). Also, EPR 

gives the user the ability to scale the data (scale input, scale output). Finally, the 

results of the EPR are directly written in a MATLAB file after completing the 

training process. 

 

 

Figure 3-12: EPR User Interface. 
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3.4.5  EPR based material modelling 

EPR has been proposed as an effective and alternative to other types of data 

mining techniques such as ANN and GP. An EPR based model provides a unified 

approach to material modelling. It has many advantages in introducing the 

behaviour of complex materials. EPR based model can learn and extract the 

material behaviour directly from experimental data. Consequently, it is the 

shortest route from experiments to numerical modelling (Faramarzi, 2011; 

Rezania, 2008). Models developed by EPR are concise and explicit mathematical 

equations that give the user an understanding of the effect of input variables on 

the predicted output. Another interesting feature in EPR is that in the training 

process, it can discard from EPR equations the parameters that have no effect 

on the material behaviour by including zero in the predefined exponents range. 

EPR was initially used for environmental and hydrological modelling (Berardi et 

al., 2008; Doglioni et al., 2010, 2008; Giustolisi et al., 2007; Giustolisi and Savic, 

2006). In parallel, because of its outstanding performance in modelling of 

engineering systems, EPR was also successfully used for modelling of different 

civil engineering materials.  

For instance, Rezania; et al., (2008) introduced the use of EPR for modelling of 

the nonlinear interaction between different parameters in civil engineering 

applications and compared it with the traditional and ANN based models. The 

EPR methodology was applied to some civil engineering applications including 

determination of the uplift capacity of suction caissons and shear strength of 

reinforced deep concrete beams.  This study showed that EPR models perform 

well and overcome the issues related to traditional and ANN-based models. 

Ahangar-Asr et al., (2011) used EPR to predict the mechanical behaviour of 

rubber concrete. They used extensive experimental data on rubber concrete and 

developed three models. The developed models predicted the compressive 

strength, tensile strength and elastic modulus of rubber concrete. Each model 

has eight input parameters that are known to affect the behaviour of rubber 

concrete. The results of the developed models were compared with the 

experimental data and also with linear regression, GP, and ANN models. The 

results revealed that EPR models were able to provide very accurate predictions 

for strength parameters of rubber concrete.  
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EPR was also utilised to model the behaviour of saturated and unsaturated soils. 

Comparison of results with experimental data showed a very close agreement. 

Results from some comparative studies have shown that the EPR models 

outperform the ANNs (Ahangar-Asr et al., 2012). EPR was also used to study the 

dynamic response of engineering materials. Faramarzi et al., (2011) utilised EPR 

to model the behaviour of steel plate shear walls under cyclic loading. They used 

experimental tests on steel plate structures to develop EPR models.  

Rezania et al., (2011) used EPR for assessment of liquefaction potential and 

lateral displacement caused by earthquakes using data from real field case 

histories. The predictions of the developed EPR models were compared with 

those obtained from ANN and Multi-Linear Regression (MLR) models (Figure 3-

13). The results showed that EPR could represent the liquefaction behaviour of 

soils accurately and outperform the existing ANN-based model. One of the key 

advantages of EPR over ANN is that EPR provides an explicit relationship 

between the contributing inputs and output variables.  

                

Figure 3-13: Results of EPR, MLR and ANN models for cases moderate displacement 

(a) training data (b) validation data (After Rezania et al., 2011). 

Doglioni and Simeone, (2014) investigated the dynamic response of the deep 

karst aquifer of central Apulia, Italy using multi-objective EPR model. Four EPR 

models were developed to help understand the response of variations of 

groundwater level with symbolic equations. 
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3.4.6  Incorporation of EPR in finite element analysis 

The methodology of incorporating EPR in FEA was first introduced in the work of 

Javadi and Rezania (Javadi and Rezania, 2009b; Rezania, 2008). They showed 

that a properly trained EPR-based constitutive model (trained on experimental 

data) could be readily implemented in a finite element model. Like neural network-

based models, an EPR-based constitutive model does not require complex yield 

function, plastic potential, failure function, flow rule, etc. There is no need to check 

yielding, calculate the gradients of the plastic potential function and update the 

yield surface, etc. Figure (3-14) shows the procedures of both the conventional 

and EPR based FEM. The EPR-based FE methodology was applied to a number 

of boundary value problems, and the results were compared to those obtained 

from FE analyses using conventional and ANN-based constitutive models.  

Rezania, (2008) introduced the implementation of EPR into FEM through a FEM 

procedure coded in Fortran to model some engineering problems. The 

methodology was initially tested through simple structural applications including 

linear and nonlinear elastic behaviour.  

Then data from a series of triaxial tests were used to train the EPR models 

representing the soil behaviour. These models were then implemented into a FE 

code to analyse different geotechnical applications such as embankment, tunnel, 

and footing. Furthermore, a coupled analysis was carried out using data from 

simulated consolidated undrained triaxial tests. The data were generated by 

numerical simulation of the tests (using Modified Cam Clay model) under different 

confining pressures. Two different EPR models were developed including 

effective stress and permeability. A comparison between the predictions of the 

standard FEM using MCC model and the EPR-based finite element model 

showed excellent agreement. This encouraged the EPR based FEM to be applied 

to more complex applications (Rezania, 2008). 

Faramarzi, (2011) and Faramarzi et al., (2012) and Javadi et al., (2012) 

presented the implementation of trained EPR models in FEA using ABAQUS (as 

the finite element engine) through its user-defined material module (UMAT). 

UMAT was used to update the stresses and provides the Jacobian matrix (J) for 

every increment in every integration point. The methodology of incorporation EPR 

into ABAQUS showed that it is possible to construct the material stiffness 

(Jacobian) matrix using partial derivatives of the trained EPR models.  
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The EPR based Jacobian matrix was integrated into finite element code, and the 

EPR-based FEM was applied to some boundary value problems including two 

and three dimensions, and cyclic loading analyses. The results from these 

analyses were compared with those obtained from conventional finite element 

method using Cam-Clay and Mohr-Coulomb models among others. The results 

showed that an EPR-based constitutive model (EPRCM) can be implemented in 

a finite element model in the same manner as a conventional constitutive model, 

with several advantages. This work is an essential step towards the incorporation 

of EPR based model into a commercial FE code. 

Javadi et al., (2012) presented a new approach for modelling the behaviour of 

soils under cyclic loading. They developed an EPR model by generating data 

from numerical simulation (using MCC model) of triaxial tests under cyclic 

loading. The EPR model was then incorporated in a FE model and was used to 

simulate the cyclic loading tests. The results illustrated that EPR based finite 

element model was able to accurately predict and learn the complex behaviour 

of soils under cyclic loading considering the loading history of the soil. Although 

the work was primarily focused on soils, the methodology could be applied to 

other materials that have complex constitutive behaviours.  
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Figure 3-14: Comparison of Conventional FEM and EPR based FEM (After Rezania, 

2008). 
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3.5  Summary  

Data mining techniques have been widely used as a robust tool to represent the 

behaviour of various materials in different engineering disciplines. The main 

feature of these data-driven models is their ability to learn the material behaviour 

directly from experimental or field data. This approach to modelling can be 

considered as the shortest way from experimental (or field) data to numerical 

modelling. More importantly, they can be implemented in the numerical analysis, 

particularly FEM. This is a significant step forward in FE modelling of complex 

engineering problems. Although ANN based finite element modelling has been 

successfully applied to a number of engineering problems, however, it is well 

known that ANN suffers from some limitations and shortcomings. EPR was 

recently considered as an effective alternative tool that generates explicit 

equations and simplifies the way of incorporation in finite element method.  

It should be mentioned that training of any type of data mining-based model 

requires a significant amount of data that would, in some cases, raise other 

challenges in material modelling. Consequently, another procedure called self-

learning FEM was recently considered to train ANN and EPR models. 
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Chapter 4  
 

Self-learning Approach to Constitutive 
Modelling 

 

4.1 Introduction  

The use of artificial intelligence techniques, especially ANNs and EPR, in material 

constitutive modelling has recently gained considerable attention among 

researchers. The implementation of such techniques has been proven as a robust 

procedure to represent various aspects of material behaviour for different 

engineering applications. However, the key to the successful use of these 

techniques is their implementation in numerical analysis (particularly FEM). 

Although valuable work has been done on developing constitutive models based 

on ANN and EPR and their implementation in FEA, it is generally known that 

ANNs and EPR require considerable amount of data in order to extract and learn 

the material behaviour. In other words, few laboratory tests would not be enough 

to develop an ANN- or EPR-based model. Generally, having a large amount of 

data from a single test on one sample is not possible. This problem was 

successfully addressed for ANN training through an innovative training procedure 

called auto-progressive algorithm originally presented by Ghaboussi and his co-

workers (Ghaboussi et al., 1998). After that, the algorithm was extended and 

modified into a full framework by Hashash et al., (2003). It should be mentioned 

that although the way of training and learning capability of ANN was improved 

significantly in the auto-progressive algorithm, the mentioned previously 

drawbacks of ANN still prevail. Consequently, by exploiting the advantages that 

EPR can offer in representing material response in a simple and explicit model 

would be extremely useful to be used as a learning engine in the heart of the self-

learning methodology. This chapter covers the applications of ANN-based self-

learning algorithm and presents the new framework of EPR-based self-learning 

FEM.  
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Two different training strategies are presented. The advantages of employing 

EPR in the framework of self-learning FEM are highlighted.  

4.2  Auto-progressive training algorithm 

Ghaboussi et al. (1998) introduced a different approach to train ANN, named the 

auto-progressive algorithm. The concept of this algorithm is to use the information 

from a global load-displacement response of a structural test to train ANN-based 

models. The auto-progressive approach is used to extract the rich stress-strain 

data embedded in non-homogenous structural tests, to train the ANN models. 

The material model developed in this approach is extracted from an iterative non-

linear FEA of the test sample and gradually improves the stress-strain data for 

training the ANN model. This allows to train ANN models from a limited number 

of structural tests in which one of the major limitations of ANN in material 

modelling can be avoided.  

Sidarta and Ghaboussi, (1998) applied the auto-progressive algorithm using a 

series of non-uniform experimental tests (triaxial compression tests with end 

friction) on a sandy soil with different densities. The trained ANNs models were 

used in forward analysis of the triaxial tests with end friction and the developed 

models were used to predict the behaviour of the soil in a hypothetical test without 

end friction. The results revealed that the trained models could effectively learn 

the behaviour of sand very well in case of end frication and provide reasonable 

predictions for the tests without end friction. This has been one of the earliest 

works in this field. 

4.2.1  Self-learning finite element algorithm 
 

The methodology of auto-progressive training was extended to self-learning finite 

element algorithm. Shin and Pande, (2000) developed a strategy for training 

neural network based constitutive model (NNCM) by using data of stresses and 

strains at certain calibration points of structural tests in which stress-strain 

relations are not homogenous. They illustrated the proposed strategy by analysis 

of two engineering applications. The first application was a two-bar structure 

including two cases using different material behaviour. 
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 In the first case, one bar was made from an elastic ideally plastic material while 

other one was made from a linear elastic material. In the second case, the 

structure included one bar with an elastic softening and the other bar with linear 

elastic behaviour.  

The data from only one monitoring point was collected in both cases to train the 

ANN in the self-learning finite element code. The ANN model consisted of three 

inputs and three output variables (i.e. 𝜀𝑥 , 𝜀𝑦 , 𝜏𝑥𝑦  and 𝜎𝑥, 𝜎𝑦, 𝛾𝑥𝑦  for input and 

output variables respectively).The results showed that the stress-strain relation 

matched well the original data after seven cycles of self-learning FEA. This could 

be related to the amount of data used for training ANN. The second problem was 

a panel of linear elastic material under plane stress condition subjected to a 

concentrated load on the top surface. Unlike the first problem, in this problem 

several monitoring points were used to provide input data for the self-learning FE 

model. It was found that the locations selected for the monitoring points may 

affect the training program and hence the convergence of the NNCM towards the 

standard solution. The application of the self-learning methodology was 

illustrated on a two relatively simple applications.  

Shin and Pande, (2001) proposed another strategy to construct the tangential 

stiffness matrix using partial derivatives of ANN based model. They trained ANN 

via total stress-strain strategy and implemented the computed stiffness matrix in 

the self-learning FE code. The verification of the proposed approach was done 

by analysing a rock sample with fixed ends subjected to uniaxial cylindrical 

compression. Further applications of ANN with the self-learning finite element 

code were also implemented to identify anisotropic elastic material parameters 

from a single numerical test (Shin and Pande, 2003). The methodology consisted 

of two steps: in the first step a number of monitoring points of structural test were 

used to obtain data to train the NNCM embedded in FE code whereas in the next 

step the elastic constants were calculated. The first derivative of the NNCM leads 

to so called tangential stiffness matrix to obtain the elastic constants for a material 

at a specific value of current strain (ɛi):                                

 𝐷𝑁𝑁 = 𝐷𝑁𝑁𝑖𝑘 (𝜀𝑖, 𝜎𝑘) =  
𝜕 𝜎𝑘

𝜕 𝜎𝑖
 (4-1) 
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The structure of the ANN used in this methodology contained six nodes with each 

input and output layer having the following variables: 

𝜀𝑥, 𝜀𝑦, 𝜀𝑧 , 𝛾𝑥𝑦, 𝛾𝑦𝑧 , 𝛾𝑥𝑧 𝑎𝑠 input, and   𝜎𝑥, 𝜎𝑦, 𝜎𝑧 , 𝜏𝑥𝑦 , 𝜏𝑦𝑧 , 𝜏𝑥𝑧 as output.  

To verify the capabilities of the proposed methodology, a plane stress panel with 

a circular cavity in its centre was used. The measurements of displacements at 

66 nodes on the panel surface at 5 load increments of the FE simulation were 

used to train the NNCM. The material behaviour was linear elastic and after three 

cycles of self-learning FEA the discrepancy between the predicted and the actual 

data was reduced to an allowable value. The constitutive matrix based NN model 

was compared to the conventional orthotropic elastic matrix to obtain nine elastic 

constants. It should be mentioned that although the methodology was only 

applied to a simple boundary value problem it required too many monitoring 

points for a simple linear elastic behaviour. This means more complexity could 

be faced with more complex material and geometry. 

 

4.2.2 Self-learning simulation (Self-Sim) 

The self-learning FEM has proven to be a robust tool for extracting the real and 

complex material behaviour. This inverse analysis technique overcomes the 

limitations of the traditional constitutive modelling approach that requires pre-

defined material models. Consequently, more improvements on the auto-

progressive approach have been implemented to enhance the performance of 

this approach. Hashash et al, (2003) introduced the use of field measurements 

of excavation response to extract the constitute behaviour of soil. The 

methodology of auto-progressive training was extended in this work (second 

version) to construct a constitutive soil model using field observations of lateral 

wall deflections and surface settlement from several stages of a braced 

excavation.  After that, the third version of the auto-progressive training procedure 

was developed by (Hashash et al., 2006a). They introduced a new framework to 

implement and extend the auto-progressive methodology in a software analysis 

procedure called self-learning simulation (Self-Sim). The methodology mainly 

followed the same procedure presented in the work of Ghaboussi et al. (1998) 

and Hashash et al., (2003). 
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The Self-Sim framework generally consists of two steps (Hashash et al., 2006a). 

In step 1, a laboratory experiment with boundary conditions and load is carried 

out and boundary forces and displacement are measured for each loading 

increment. Step 2 is achieved by developing a FE model to represent the 

geometry and corresponding measurements.  

A neural network model is used as stress-strain relationship and trained at the 

beginning with linear elastic behaviour (within a small strain range). Two finite 

element analyses are run with the initial ANN model in parallel; finite element A 

(FE-A) simulates the behaviour of the structure under applied forces and 

determines stresses and strains at each integration point.  

It is assumed that, since the applied boundary forces are accurate, and the 

equilibrium condition is satisfied, the computed stresses will be acceptable 

approximation of the actual stresses that are experienced throughout the test. 

However, the computed strains form this analysis could be a poor approximation 

of the actual strains, due to the difference between the computed and measured 

displacements. 

In parallel, finite element B (FE-B) analyses the structure using the same initial 

ANN model whereby the measured boundary displacements are imposed. The 

strains obtained from this analysis are assumed to be accurate approximation of 

the actual strains, whereas the stresses may be a poor approximation of the 

actual stresses due to the difference between the computed and measured 

boundary forces. The stresses obtained from FE-A and the strains obtained from 

FE-B are collected to form stress-strain pairs of data and used to retrain the ANN 

model. The analyses of the finite element models A, B and subsequent training 

of the ANN model form the Self-Sim learning cycle. The procedure of analyses of 

finite elements A and B is repeated using a new ANN model which is updated at 

each iteration. Convergence is considered to be achieved when the results of 

both analyses (FE-A and FE-B) are matched. Each cycle of Self-Sim that 

accomplishes the applied load is called a pass. Several Self-Sim learning passes 

may be needed to extract accurate material behaviour.  
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Finally, the developed model can be utilised in the analysis of new boundary 

value problems. Figure (4-1) illustrates the Self-Sim algorithm applied to extract 

soil behaviour in a deep excavation problem. The self-learning simulation 

methodology has been applied to different material modelling problems for 

instance, soil behaviour, rate dependent materials and cyclic or dynamic 

response of material.  

 

 

Figure 4-1: Self Sim algorithm applied to a deep excavation problem after (Hashash et 

al., 2006a). 
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4.2.2.1 Self-learning simulation for modelling of soil 

behaviour 
 

In geotechnical engineering applications, the mismatch between field 

measurements and model simulations is raising concern about the ability of 

constitutive models in representing the real behaviour of soils under loading 

condition. Therefore, sophisticated inverse analysis technique has been 

introduced to model the behaviour of material more accurately.  

As mentioned above, Hashash et al, (2006a) applied the Self-Sim modelling 

approach to analysis of deep excavations to extract the actual behaviour of soil. 

In this work, the Self-Sim algorithm was validated using a simulated excavation 

case study. The measurements including lateral wall deformations and surface 

settlement were obtained using the MIT-E3 soil model in FEA and used to train 

the ANN model. The capabilities of the Self-Sim algorithm in analysis of a deep 

excavation was examined through three numerical problems and two field case 

histories. The results demonstrated that the Self-Sim algorithm can extract the 

required information to realistically represent the soil behaviour under certain 

conditions (Hashash et al., 2006a). 

(Hashash et al., 2006c) investigated the constitutive behaviour of extra-terrestrial 

soils using the Self-Sim approach. They applied load-displacement 

measurements to run the Self-Sim algorithm in which the applied loads and the 

corresponding displacements were recorded from the in-situ test. Following the 

same procedure presented in (Hashash et al., 2006a), the behaviour of the soils 

was captured with reasonable accuracy. 

Fu et al., (2007) and (Hashash et al., 2006b) used the Self-Sim methodology to 

present the integration of laboratory testing and constitutive modelling of soils. 

Self-Sim was applied to two simulated laboratory tests including a triaxial 

compression test with no-slip friction ends and a triaxial torsional shear test with 

no-slip frictional ends. The use of frictional ends was to generate data on non-

union states of stress and strain throughout the sample.  
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This study showed that Self-Sim could establish a direct link between laboratory 

testing and soil constitutive modelling to capture the soil behaviour under complex 

loading conditions. The developed ANN model was successfully used to predict 

the load-settlement behaviour of a simulated strip footing.  

Hashash and Song, (2008) employed self-learning simulation (Self-Sim) to 

extract the underlying constitutive behaviour of soils via training of neural network 

models. Self-Sim was applied to different practical geotechnical applications to 

verify the capability of the proposed approach. First, data from triaxial tests on 

sand with frictional end loading plates were used to create non-uniform states of 

stress and strain in the sample. Secondly, a deep excavation problem was 

considered where lateral wall deformation and surface settlement measurements 

corresponding to the known construction stages were used to extract the 

anisotropic soil behaviour. The last application was the analysis of site response 

due to horizontal shaking. The results from the three applications revealed that 

Self-Sim is able to capture the real behaviour of soils under different loading 

conditions. For example, the NN model developed from triaxial test simulation 

was able to accurately capture the underlying soil behaviour after a number of 

Self-Sim passes as shown in Figure (4-2). 
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Figure 4-2: Self-Sim learning of triaxial test (a) before Self-Sim learning (b) after 8 
passes of Self-Sim learning (Hashash and Song, 2008). 

 

Hashash et al, (2009) presented the Self-Sim inverse analysis approach to 

investigate the drained behaviour of sandy soil using triaxial compression tests 

with fully frictional loading platens. Three different series of isotopically 

consolidated drained triaxial tests were carried out on sand with various particle 

sizes under confining pressures ranging between 25 to 300 kPa. The Self-Sim 

was applied using global load-displacement measurements from triaxial tests 

with up to 8.03 % of axial strain applied on each sample. The results showed that 

Self-Sim was able to extract the non-uniform stress-strain behaviour of sand. It 

was also shown that the integration between laboratory modelling and Self-Sim 

(a) 

(b) 
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could reduce the number of experimental tests required, as from a single test, 

multiple stress paths were generated, and the data were used iteratively to train 

the NN model. Although the model developed was based on rich information 

extracted from the real soil behaviour, the model was not applied on a different 

boundary value problem to verify the practical capability of the developed model.  

Field instrumentations were also used in the Self-Sim algorithm for analysis of 

ground response of a deep excavation in soft soil (Osouli et al., 2010). They 

utilised the Self-Sim technique during excavation stages to develop a model 

representing soil behaviour. A synthetically generated set of different instruments 

were used at different locations to monitor the site response. The soil behaviour 

was represented synthetically using the MIT-E3 effective stress soil model to 

create the observed measurements used for the Self-Sim procedure.  

Eventually, the developed NN model could be used to predict the ground 

response around the excavation (given a complete picture of the site), other types 

of excavation with similar ground condition and later excavation stages. The 

findings of this comprehensive study were confirmed by using an excavation case 

study and revealed that implementation of Self-Sim with field instrumentations 

provides full information of site response inexpensively and reliably. Further, the 

study presented the use of various instruments in excavation problems and the 

quality of information that could be gained for excavation modelling. Although all 

instruments showed their usefulness in the site response analysis, inclinometers 

placed at some distance behind the wall and measured forces in the struts 

considerably improved the quality of the represented soil behaviour.  

Hashash et al., (2010) introduced two different techniques, based on inverse 

analysis, for learning the behaviour of soil in deep excavation projects in urban 

environment. An optimization approach based on genetic algorithm GA and Self-

Sim algorithm were presented and compared for the analysis of the deep 

excavation problems. In the optimization approach PLAXIS (finite element 

engine) with the implemented hardening soil constitutive model was used in the 

GA to simulate the excavation problem. Field measurements collected by using 

inclinometers and surface settlements in Lurie Research Centre USA were 

considered in both inverse analysis approaches.   
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The excavation was divided into seven stages and the data from the last stage 

were only used in the optimization approach. However, lateral wall displacements 

and surface settlements for all construction stages were used as boundary 

conditions in the Self-Sim approach. Figure (4-3) illustrates the performance of 

Self-Sim learning after 12 passes. Although the deformations estimated using the 

NN models developed through the Self-Sim approach are in close agreement 

with the field measurements, the analysis involved significant number of Self-Sim 

passes. Comparison of the estimated lateral wall deformations and surface 

settlements obtained from GA and Self-Sim for the last construction stage is 

shown in Figure (4-4). It can be seen that the estimation of lateral wall 

deformations matches well for both approaches with the field measurements. 

However, the estimation of surface settlements behind the wall by the GA 

approach was not captured neither in magnitude nor in shape, although the 

settlement profile was also considered during the optimization process. This was 

because the hardening model used in the FE model does include the small strain 

nonlinearity. The authors claimed that this could be a limitation of using such 

optimization technique hence the accuracy of GA relies significantly on the 

constitutive model used, however, another possible non-linear model including 

small strain range could remove the concern.      

 

 

Figure 4-3: Results of the Self-Sim after 12 passes (a) lateral wall deformations; (b) 

surface settlements (Hashash et al., 2010). 
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Figure 4-4: Comparison between measured data, GA and Self-Sim approaches of 

stage 7 of excavation (a) lateral wall deformations; (b) surface settlement (Hashash et 

al., 2010). 

Hashash et al., (2011) adapted the Self-Sim algorithm to capture underlying soil 

behaviour from field measurements using a three-dimensional (3D) model of a 

deep excavation in clay soil. A case study involving a site with deep excavation 

(about 9 m depth) was analysed in 3D to estimate the variation in ground surface 

elevation around the site. The essential modifications of the FE mesh, the NN 

model structure and computational cost of 3D analysis within the Self-Sim were 

presented in detail in this paper. Measurements from inclinometers placed in 

different locations were used to learn and capture the soil behaviour. The results 

of the analysis showed that learning from inclinometers at multiple excavation 

sides was important to capture 3D response of the site excavation. It was also 

shown that the developed 3D model was generally able to capture the wall 

deflections and settlements. Although the predicted settlements around the 

excavation troughs were non-symmetric because of the uneven ground surface 

around the excavation, the predicted settlements reflected strong 3D effects and 

the extracted soil model predictions were consistent with the laboratory 

measurements.  

Moon and Hashash, (2015) used the Self-Sim algorithm to link laboratory testing, 

soil constitutive modelling and numerical modelling,  similar to the work presented 

by Fu et al., (2007) and Hashash et al, (2009). They applied the self-Sim 

framework to interpret and extract non-uniform stress-strain behaviour of soil 

using direct shear test (DSS), particularly within K0 consolidation (with lateral 
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constraint) undrained direct simple shear (CK0UDSS) test to generate a soil 

constitutive model representing the behaviour of Boston blue clay (BBC) soil. 

They developed different constitutive models based on synthetic and laboratory 

data. The first model was performed in the Self-Sim framework by simulating 3D 

FE modelling of direct shear test using the MCC soil model. Figure (4-5) illustrates 

the simulated DSS based model and boundary conditions. The measurements 

from the simulated model of horizontal and vertical forces with the corresponding 

lateral displacements were used in the Self-Sim algorithm. The results showed 

that as the Self-Sim progressed, the model was able to capture well the first 

portion of the stress-strain curve (i.e. linear part), but it was not very close in some 

locations where the curve moved further. This can be clearly seen in Figure (4-6) 

for different locations.  

 

 

Figure 4-5: Simulated the direct shear test: a) Sample with boundary conditions; (b) 3D 

FE mesh; (c) Radial cross section; (d) Horizontal cross section after (Moon and 

Hashash, 2015). 
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Figure 4-6: Stress-strain relationships generated from DSS and MCC model test at 

each location shown in Figure (4.5) after (Moon and Hashash, 2015). 

 

The second constitutive model was developed based on data from CK0UDSS 

laboratory tests from literature. The same measurements as the previous 

simulated model were used in the Self-Sim algorithm in several stages. The 

developed model was compared with the MCC and MIT-E3 constitutive soil 

models. The results showed that the developed NN based Self-Sim model was 

in a close agreement with the actual data and performed better than MCC and 

MIT-E3 models as shown in Figure (4-7).  
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Figure 4-7:  Comparison of (a)global share; (b) vertical stress- strain relation, OCR= 1 

(Moon and Hashash, 2015). 

 

The developed Self-Sim models were then applied in the analysis of a deep 

excavation case history. The results revealed that although the outcome showed 

some discrepancies, the proposed models were reasonably able to capture the 

global responses (lateral wall deformations and vertical ground surface 

settlements) of the deep excavation. This is a crucial step towards linking the 

laboratory measurements with the numerical analysis. 

 

4.2.2.2 Self-learning simulation for cyclic and dynamic 
material behaviour 

 

Yun et al. (2008c) and Yun et al. (2006) implemented the self-learning simulation 

methodology to model the cyclic and dynamic behaviour of framed structures. 

They used 3D beam-column elements, in conjunction with a neural network 

based material model of hysteretic behaviour proposed by (Yun et al., 2008a, 

2008b), for modelling the frame structure system under cyclic loading. The ANN 

model consisted of two internal variables that could learn the complex hysteretic 

behaviour of material with only single-valued mapping. The form of the NN model 

can be expressed as follows (Yun et al., 2008c): 
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 𝑀𝑛  = Ḿ𝑁𝑁 (𝜃𝑛, 𝜃𝑛−1, 𝑀𝑛−1, 𝜉Ө,𝑛, ∆𝜂Ө,𝑛 ) (4-2) 

   

where 𝜉Ө,𝑛 = 𝑀𝑛−1 𝜃𝑛−1  and  ∆𝜂Ө,𝑛 = 𝑀𝑛−1 ∆𝜃𝑛 are the two internal variables, 𝑀 = 

moment, 𝜃 = rotation, Ḿ𝑁𝑁 : 𝑅5 → 𝑅  is the functional mapping to be constructed 

through ANN. 𝑛  indicates 𝑛𝑡ℎ time step. Figure (4-8) illustrates the two internal 

variables included in the analysis. 

 

                              

 

Figure 4-8: Variables for the cyclic model: a) displacement control, b) stress resultant 

control (Yun et al., 2008c). 

 

The self-learning simulation was improved in this work by employing a new 

algorithmatic tangent stiffness form with the new NN model within the 

autoprogressive algorithim. The proposed tangent stiffness of the connection 

model in FE code was considerd as a relation between the rates of moment and 

rotation in terms of nonlinear incremental constitutive relations which can be 

stated as the following equation: 

 
Kcon =

𝜕(𝑛+1 ∆𝑀)

𝜕(𝑛+1 ∆𝜃)
, where 𝑛 + 1∆𝑀 = − 𝑛 + 1∆𝑀 − 𝑛∆𝑀  and  𝑛 + 1∆𝜃 =

               𝑛 + 1∆𝜃 − 𝑛∆𝜃   

(4-3) 

The self-learning procedure was applied to simulate the structure with two parallel 

finite element models FEM-A and FEM-B. Synthetic (numerically simulated) and 

actual data were used to learn the real behaviour of connections.  

(a) (b) 
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In FEM-A, measured forces were applied while in FEM-B the corresponding 

displacements were imposed. In this work, two different cases were used to train 

the NN model and construct the stiffenss matrix in an incremental way. Case I 

represented the classical way of self-learning simulation in which from FEM-A, 

moment variables were extracted while the coressponding rotations were 

extracted from FEM-B. The data were then used to train the NN in an iterative 

loop as shown in Figure (4-9). In Case II, a different training approach was used 

in such a way that all input variables from each FEM model were separately used 

to train the NN model of that finite element analysis (Figure 4-10). Two numerical 

examples were illustrated to validate the performance of the proposed 

methodology including three dimensional simulations. The self-learning 

simulation was verified with real experimental data. The results showed that 

nonlinear cyclic behaviour of the local connections can be captured from global 

responses of framed structures within several passes of self-learning simulation. 

It was also shown that the NN model developed from Case I performs better than 

the one that was developed from Case II. It appears that using all data sets from 

the both analyses could reduce the quality of training data. 

 

 

Figure 4-9: The self-learning simulation with algorithmic tangent stiffens formulation in 

Case I (Yun et al., 2008c). 
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Figure 4-10:  The self-learning simulation with algorithmic tangent stiffens formulation 

in Case II (Yun et al., 2008c). 

 

Yun et al, (2012) stated that Self-Sim with conventional ANN based models 

required ad hoc data processing that usually caused problem with the Self-Sim 

training procedure. Consequently, to avoid this issue, they introduced 

improvements in the Self-Sim algorithm to inversely extract inelastic and 

nonlinear behaviour of materials through limited measurements under cyclic 

loading. The new Self-Sim was used in conjunction with a novel ANN hysteretic 

model for capturing the nonlinear and inelastic behaviour under multiaxial and 

cyclic stress states. In the hysteresis material behaviour one strain value could 

be mapped to multiple stresses causing problem with learning of the material 

behaviour in ANN.  

A single valued mapping between inputs and outputs of ANN model via the 

internal variables was suggested and an explicit incorporation of the ANN based 

model was presented for finite strain problem to tackle this problem. Numerical 

and experimental applications were introduced in this paper to verify the 

performance of the proposed Self-Sim approach. The numerical simulation was 

applied on a laminated rubber bearing with steel shims using two different 

constitutive models to synthetically generate data including multi-mechanism-

based generalized hysteretic model and the hysteretic neo-Hookean model in 

ABAQUS library. Figure (4-11) shows the gradual learning of the NN model 

developed during the Self-Sim compared with the actual data.    



Chapter (4)                                Self-learning Approach to Constitutive Modelling 
 

68 
 

 

Figure 4-11: Comparison between the actual and Self-Sim results for local stress-

strain constitutive response under cyclic loadings (Yun et al., 2012). 

 

Furthermore, experimental tests were carried out on dog-bone type low carbon 

SAE 1006 specimens to verify the proposed algorithm and to assess the 

generalization capability of the proposed model. Figure (4-12) illustrates that the 

model can extract the global load-displacement behaviour, even beyond the 

range used during the training process. The results showed unexpected 

extrapolation capability of the ANN model developed based on the experimental 

data. However, too many load steps and Self-Sim passes were applied to train 

the ANN model. Also, a clear discrepancy was seen in the shear stress results 

between the plasticity model and the developed NN model. Although the authors 

tried to improve the Self-Sim based ANN algorithm, but the developed ANN 

model with its extracted Jacobian matrix used within FE code could be very 

complicated.  
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Figure 4-12: Force-displacement relationship of the experimental results and forward 

analysis using Self-Sim ANN model (Yun et al., 2012). 

 

Tsai and Hashash, (2008) presented the integration of site response analysis and 

field measurements to extract the undelaying soil behaviour via self-learning 

simulation (Self-Sim) during shaking. The proposed methodology provided an 

opportunity for the civil engineers to gain clear insight into the seismic site 

response by training a NN model to represent the real behaviour of soil under 

dynamic loading conditions. They extended the Self-Sim methodology to one 

dimensional seismic site response analysis using base shaking. The 

corresponding measurements were used as observations in the Self-Sim 

procedure. Figure (4-13) illustrates the application of the Self-Sim algorithm to 

seismic site response analysis.  

They utilised three different soil profiles generated synthetically including single 

soil layer, uniform multilayer soil profile and non-uniform multilayer soil profile, to 

investigate how the Self-Sim can be used to capture dynamic behaviour of soil 

when the target site response is extracted from downhole arrays. The results 

showed that Self-Sim is able to provide a close prediction of the site response in 

all different soil profiles. However, the authors tried to investigate the capability 

of the developed NN models from each event through a paramedic study in which 
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the analysis was performed by using material model representing a specific event 

using input motions of the other events. The results revealed that the NN models 

could not define the nonlinearity very well and could only predict the site response 

well within the strain range experienced during the training process.  

    

   

Figure 4-13:  Self-Sim algorithm applied to a downhole array application (Tsai and 

Hashash, 2008). 

 

To enhance and generalize of the proposed material models, the stress-strain 

behaviour was also extracted by combining the data of all profiles in one single 

data base which was used to train the NN model. The developed model provided 

very good agreement with the target response as illustrated in Figure (4-14).          

It should be mentioned however the combination of the data was done through 

Self-Sim loop which includes consecutive Self-Sim passes resulting in a very 

complex training process.  
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Figure 4-14: Comparison of surface response spectra of three events predicted by the 

combined NN model after several Self-Sim passes (Tsai and Hashash, 2008). 

 

Tsai and Hashash, (2009) deployed the previously developed Self-Sim approach 

using field recordings from a number of downhole arrays within the soil profile in 

the Self-Sim framework for total stress site response analysis to estimate the 

measured site response while the behaviour of individual soil layers was 

extracted unconstrained by initial assumptions of soil behaviour. The Self-Sim 

approach was successfully applied to recordings of two sites, Lotung arrays in 

Taiwan and La Cienega arrays in Los Angeles case studies.  
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The results revealed that implementing this approach provides a clear insight into 

the soil behaviour under seismic events. The extracted soil behaviour could be 

used to interpret the changes made in the soil properties.  

Later, other work employed the same Self-Sim approach but including the effect 

of the pore pressure generation on the seismic analysis. Groholski and Hashash, 

(2013) used synthetic downhole arrays to measure motions in the ground and 

record the pore pressure within soft soil layers during earthquake events. 

Moreover, Groholski et al. (2014) reintroduced the methodology using field 

measurements. Self-Sim was applied based on monitoring measurements taken 

from a real case study, the Wildlife Liquefaction Array (WLA) in California, using 

accelerometer and piezometer instruments. Figure (4-15) shows the application 

of the Self-Sim approach to array measurements of ground motion and pore 

water pressure response. Two earthquake events in the WLA were used in this 

analysis. The Superstition Hills event was used to build the NN based models 

and the Elmore Ranch event was used for predictions.  

Four sets of NNCMs were developed using Self-Sim analysis representing 

various type of soils. Each set had a NN model representing soil behaviour and 

another model representing the pore pressure response of the Superstition Hills 

earthquake. These NN models were used for the prediction of surface 

acceleration, surface response and pore pressure for the Elmore Ranch event. 

The results revealed that the Self-Sim algorithm was able to consider the pore 

pressure response and learn important characteristics of the natural soil during 

earthquake event. The developed NN models were also compared with other 

conventional constitutive models for pore pressure generation embedded in the 

DEEPSOIL finite element code (strain-based pore pressure D/M and energy-

based pore pressure GMP models).  

Figure (4-16) shows the model performance at Elmore Ranch event including two 

directions NS and ES after 13 passes of Self-Learning compared with the 

recorded data and numerical simulations.  
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It can be noticed that NN models learned the soil behaviour which was dependent 

on ground motion direction but with some discrepancy. The authors state that this 

discrepancy could be due to soil anisotropy or effects of multi-dimensional pore 

pressure response in this event that was not used during the Self-Sim process. 

However, the extracted soil behaviour from arrays could be employed to interpret 

the soil behaviour and pore pressure response.  

 

 

Figure 4-15:  Self-Sim procedure applied to array showing pore pressure and 

acceleration measurements (Groholski et al., 2014). 
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Figure 4-16: Comparison of results of Self-Sim Pass 13 predictions for Elmore Ranch 

NS (left column) and EW (right column). Event (a and d) surface acceleration, (b and e) 

surface response, and (c and f) excess pore pressure profile (Groholski et al., 2014). 
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4.2.2.3  Self-learning simulation for rate dependent 
material modelling  

 

The self-learning approach was also extended to include the rate-dependent NN 

based models. Jung and Ghaboussi, (2006) presented the use of self-learning 

methodology to extract rate-dependent material behaviour via load-displacement 

boundary conditions from structural tests. This method was developed to 

overcome the issues from conventional optimization techniques that are used to 

evaluate the material parameters. The proposed methodology was verified 

through a synthetic structural test using viscoelastic material with creep function 

as shown in Figure (4-17a). 

The structure was selected as a cylinder with variable diameter and used to 

generate non-uniform stress distribution within the sample test. The NN model 

that was created from this analysis was applied to solve another plane strain 

boundary value problem having the same material (Figure 4-17b). In this work 

the authors investigated the influence of time step on the NN model learning 

capability. To improve the performance of the NN model more time steps were 

required to be included in the self-learning analysis.  

    

                             

                        

 

Figure 4-17: (a) The structure and the creep function used in the simulated 

experiment; (b) the structure of boundary value problem (Jung and Ghaboussi, 2006). 
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Furthermore, the methodology was applied to a more complex non-linear material 

behaviour. It was applied to extract the non-linear creep behaviour of a superalloy 

from experiments data for which was collected from the literature. Although the 

proposed algorithm worked well, more experimental results were needed to 

improve the accuracy of the NN model.  

Aquino and Brigham, (2006) utilised the Self-Sim to develop a NN thermal 

constitutive model following the same procedure of previous work. Unlike 

conventional approaches that are used to find particular material parameters (e.g. 

thermal conduction), this methodology adopted a thermal constitutive 

relationship. Figure (4-18a) illustrates the full procedure of the self-learning 

approach in which two finite element analyses were developed to simulate an 

experiment. In the first one only heat flux J was recorded (as output) whereas in 

the second FE model, measured temperature was imposed and only the 

temperature 𝑇 and temperature gradient▽𝑇 were recorded (as input).  

The applicability of the proposed approach was tested through a simulated 

experiment of simple steel plate as shown in Figure (4-18b). The plate was 

heated with a surface heat flux in one side while a constant temperature was 

applied on other sides. The results showed that the methodology was able to 

develop a NN based thermal constitutive model with good stability even with the 

existence of noisy data. The authors also mentioned that although the approach 

was only applied to steady-state problem, it could be easily extended to transient 

and coupled heat transfer problems. In this paper, the implementation of Jacobian 

matrix in FE analysis and how the proposed algorithm could be applied to a case 

study were not clearly presented. 
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Figure 4-18: (a) Self-learning algorithm; (b) Simulated experimental test (Aquino and 

Brigham, 2006). 

Jung et al., (2007) introduced the Self-Sim approach to predict the time-

dependent behaviour of concrete at the time of construction of a segmental 

bridge. The application of the Self-Sim approach included two steps. In the first 

step the deflection measurements were collected from a segmental bridge 

construction at different points from selected construction stages. The NN 

material model was initialized as a simple visco-elastic model to represents the 

rate-dependent behaviour of concrete. The second step was to perform two finite 

element analysis FE-A and FE-B in parallel followed by training the NN model 

with the data created in the first construction stage. Stresses and the 

corresponding stress rates were collected from FE-A while strains and the 

corresponding strain rates were collected from FE-B. The required data were 

used to retrain the NN model gradually. Eventually, the developed NN model 

trained from the early stages of construction could be used to predict the 

response in the remaining stages of the construction or to help having better 

information for the analysis of similar construction projects. Figure (4-19) shows 

the Self-Sim algorithm applied to the segmental bridges.     

 

 

  
(a) (b) 
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Figure 4-19:  Self-Sim used to the field calibration of segmental bridges (Jung et al., 

2007). 

The proposed procedure was applied to the field calibration of Pipiral Bridge in 

Colombia as a case study.  They used two different ways to predict the deflection 

of the segmental bridge. In the first one, the construction contained many 

cantilevers, the NN model could be calibrated using the first two cantilevers, and 

then casting curves were adjusted for the other cantilevers using the same NN 

model. However, in the second approach, when high accuracy was required, the 

NN model was calibrated using observations from early segments and was used 

to predict the deflections of other segments in the same cantilever as shown in 

Figure (4-20).  

It should be mentioned that NN cannot predict the behaviour beyond the range 

of data used during training of the NN model. Therefore, an additional source of 

data was needed such as laboratory tests, field measurements from similar 

materials etc. The proposed methodology offered a systematic approach of 

transferring the information stored from each bridge project to the analysis of new 

projects. It also showed the capability of the Self-Sim approach to be used for 

different materials. 
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Figure 4-20: (a) training NN model from the current cantilever and predicting 

deflections of other cantilevers; (b) training from earlier segments and predicting the 

deflection of the other segments (Jung et al., 2007). 

 

Jung and Ghaboussi, (2010) utilised the self-learning simulation to train a NN 

based constitutive models that could represent the overall time-dependent 

behaviour of concrete by using the load-displacement measurements collected 

from several sensors on a structural test. In this work, the rate-dependent NN 

based constitutive model was introduced with their training procedure and used 

to study the creep behaviour of concrete beam.  A comparison of the results of 

the model prediction and the actual data of the concrete beam is illustrated in 

Figure (4-21). 

 

Figure 4-21:  Comparison between actual data and model predictions for mid-span 

deflection of concrete beam (Jung and Ghaboussi, 2010). 
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Figure 4-22: Comparison between actual data and model predicted at mid-span 

deflection of the concrete beam including the shrinkage effect (Jung and Ghaboussi, 

2010). 

The model was modified to improve its capability in learning the time-dependent 

creep strains of concrete. The authors added the shrinkage effect to the NN 

model parameters. The results illustrated that including shrinkage effect to the 

NN model made no significant improvement in comparison with the previous NN 

model as seen in Figure (4-22). In addition, the prediction of long-term behaviour 

with short term measurements was investigated via the auto-progressive 

algorithm. Data sets from outside the range of training of the NN were added to 

update the NN model. The calibrated NN model did not clearly show the ability to 

capture the real behaviour even after several passes. This could be due to the 

lake of information taken from the short-term measurements.  

Gandomi and Yun, (2015) applied a coupled Self-Sim and genetic programming 

GP framework for the analysis of nonlinear material behaviour. They suggested 

to combine the recent version of GP called linear genetic programming (LGP) 

with the Self-Sim based ANN to improve the performance of the methodology 

and present an explicit model that can be implemented in the FE code. The Self-

Sim based ANN was used to extract the comprehensive stress-strain fields while 

LGP was used for generating the explicit formula of the non-linear material 

behaviour. The new technique was verified by introducing a simple numerical 

example that was simulated in FE code (ABAQUS) using non-linear elastic 

constitutive model.  
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The results were compared with the actual data and Self-Sim based ANN model. 

Although the study was to improve the performance of the Self-Sim methodology 

and apply more effort to be readily applied in the practical engineering field 

however, the results indicated that the new approach has not added any 

significant improvements in the Self-Sim algorithm. In addition, using the ANN in 

the proposed framework was still valid for data preparations.  

 

4.3 EPR based Self-learning FEM 

The self-learning simulation (Self-Sim) methodology has been successfully 

applied to various aspects of engineering problems including modelling the 

material behaviour from experimental/field data. The main feature of using Self-

Sim in material modelling is that it learns directly from the real measurements and 

provides accurate predictions under static and dynamic loading conditions. 

Therefore, it works as a comprehensive model to link the field or experimental 

data to numerical modelling. As mentioned above, Self-Sim has been applied in 

conjunction with ANN to capture the material behaviour. However, as mentioned 

in Chapter 3, ANNs suffer from a number of drawbacks. Although there has been 

some limited work to improve the effectiveness of the ANN based Self-Sim 

framework, the heart of the framework still includes the NNCM in all the 

developments. An alternative data mining tool called evolutionary polynomial 

regression (EPR) has shown robustness in material modelling and it provides an 

explicit equation that can be easily implemented in FE models. This has 

motivated this research to use EPR in the Self-Sim framework instead of ANN. 

The implementation of an EPR based constitutive model in FE code was first 

developed by Rezania, (2008) as discussed in Chapter 3 (Figure. 3-14). It was 

shown that the incorporation of a suitably trained EPR model in a FE code is a 

straightforward step in material modelling in numerical analysis (Faramarzi, 2011; 

Rezania, 2008). In this thesis an EPR-based self-learning FE model has been 

developed using ABAQUS as the finite element engine. The developed approach 

implements EPR based constitutive model in the FE code. The multi-objective 

function in EPR was used. The linking of ABAQUS with EPR was effectively done 

in MATLAB environment in a fully automated iterative loop.  
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The entire procedure of the EPR-based self-learning FEM is shown in Figure (4-

23). The process starts by running two finite element analyses (FE-A and FE-B) 

in parallel, initialized with an elastic model. A finite element model (FE-A) 

simulates the behaviour of the structure under applied forces and determines 

stresses and strains at each integration point. Since the applied boundary forces 

are accurate and the equilibrium condition is satisfied, the computed stresses will 

be accurate approximation of actual stresses that are experienced throughout the 

test. However, the computed strains form this analysis could be poor 

approximation of actual strains, due to the difference between the computed and 

measured displacements.  

In parallel, another finite element model (FE-B) analyses the structure using the 

same initial elastic model in which the measured boundary displacements are 

imposed. The strains obtained from this analysis are assumed to be accurate 

approximation of the actual strains, whereas the stresses may be a poor 

approximation of the actual stresses due to the difference between the computed 

and measured boundary forces. The stresses obtained from FE-A and the strains 

obtained from FE-B are collected to form stress-strain pairs of data and used to 

retrain the EPR model. The analyses of the finite element models A and B and 

subsequent training of the EPR model form the Self-Sim learning cycle. The 

analyses of finite elements A and B are repeated and an EPR model is developed 

from the results which is updated at each iteration. Convergence is considered to 

be achieved when the results of both analyses (FE-A and FE-B) are 

approximately matched. Each cycle of Self-Sim that accomplishes the applied 

load is called a pass. More than one pass may be required to extract the accurate 

material behaviour by retraining of the EPR model.      
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Figure 4-23: Flow chart of the proposed automation process of EPR-based self-

learning algorithm (Nassr et al., 2018). 
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4.3.1 EPR based Self-Sim code 

ABAQUS is a widely used FE engine to simulate different engineering 

applications including civil, mechanical, aerospace, biomechanical and more 

(ABAQUS, 2016). One of the several useful features of ABAQUS is that the 

constitutive model for material can be implemented via its user defined subroutine 

UMAT which is coded in FORTRAN language. Moreover, the postprocessing 

capabilities are quite useful to interpret the outcomes. Linking ABAQUS with the 

EPR based constitutive model has been done in MATLAB environment as 

follows: 

1- The required boundary value problem is set up in ABAQUS. Two 

simulation models (FE-A and FE-B) are created in parallel. 

2- The number and location of the monitoring points are specified where the 

load and the corresponding displacement are applied. 

3- MATLAB calls ABAQUS to run FE-A and FE-B sequentially and the 

required results from them are written in MATLAB as text files. 

4- MATLAB prepares the data (shuffles and removes duplicated data) and 

prepares the input and output parameters to be all written in the EPR Excel 

sheet. 

5- MATLAB runs EPR and selects the best model according to the highest 

CoD.  

6- The Jacobian matrix is constructed and written in a Fortran file as a UMAT 

used in both FE-A and FE-B analyses. 

7- ABAQUS simulations are run again implementing the new UMAT. The 

process is repeated iteratively in a loop until the whole load is applied and 

through the necessary cycles and/or passes until the termination criteria 

are satisfied.  

The above steps have been programmed to run automatically in a MATLAB 

code. The whole analysis takes a relatively short amount of time to complete, 

depending on the type and size of the problem being analysed.  
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4.3.2 Training strategy of EPR based Self-Sim  

There are two main strategies (total stress-strain strategy and incremental stress-

strain strategy) that can be employed to train ANN or EPR to generate a 

constitutive model representing the material behaviour. There are several factors 

that should be taken into account in choosing the best strategy and specifying 

the input and output parameters to train the EPR based constitutive model. These 

include the source of data, the way the trained EPR is to be used, and the training 

procedure (Faramarzi et al., 2012). Unlike ANN, in the EPR training process, the 

input parameters that do not have any effect on the output can be automatically 

discarded from the EPR models. Therefore, it is useful to include all possible input 

variables in the training process of EPR. 

 

4.3.2.1 Total stress-strain strategy  

This technique can be considered as a direct training in which strains are used 

as inputs and stresses as output. The total stress-strain strategy can be utilised 

for modelling of materials that show no significant difference in behaviour in 

loading and unloading (i.e., are not path dependent). This algorithm has been 

applied to different boundary value problems by several researchers to train ANN 

based model (Ghaboussi and Sidarta, 1998; Shin, 2001). This technique 

considers strain variables (𝑒. 𝑔., 𝜀𝑥, 𝜀𝑦, 𝜀𝑧 , 𝛾𝑥𝑦)  that represent the strain 

components in a two dimensional (2D) continuum as input variables and the 

corresponding stresses variables (e.g.,  𝜎𝑥, 𝜎𝑦, 𝜎𝑧 , 𝜏𝑥𝑦) as output. In the ANN, one 

model could have more than one output with the corresponding inputs, however, 

EPR constructs one mathematical equation for each output. For instance, in the 

2D problem we may have four equations representing one material model as 

shown below.  

𝜎𝑥 =  𝑓( 𝜀𝑥, 𝜀𝑦, 𝜀𝑧 , 𝛾𝑥𝑦) 

𝜎𝑦 =  𝑓( 𝜀𝑥, 𝜀𝑦, 𝜀𝑧, 𝛾𝑥𝑦) 

𝜎𝑧 =  𝑓( 𝜀𝑥, 𝜀𝑦, 𝜀𝑧 , 𝛾𝑥𝑦) 

𝜏𝑥𝑦 =  𝑓( 𝜀𝑥, 𝜀𝑦, 𝜀𝑧, 𝛾𝑥𝑦) 
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This strategy has been deployed in the training procedure of some applications 

to train the EPR model within the Self-Sim framework. 

 

4.3.2.2 Incremental stress-strain strategy 

EPR can also be trained incrementally where input variables provide the EPR 

model with the behaviour corresponding to the current state (i.e., current stresses 

and current strains) and an output which predicts the next state of stress or strain 

corresponding to an input strain or stress increment. This technique was mainly 

used to train EPR based models with experimental data by several researchers 

(Faramarzi et al., 2012; Javadi and Rezania, 2009a; A. A. Javadi et al., 2012). 

The same approach was utilised to train most of ANNs based constitutive models           

(Ghaboussi et al., 1998). The difference between the two strategies is that in the 

incremental strategy, invariants of stresses and strains are used instead of using 

their values in the spatial directions. For example, the input variables can be 

selected as the current state of mean effective stress 𝑝′𝑖 , deviator stress 𝑞𝑖 , 

volumetric strain 𝜀𝑣
𝑖 , axial strain 𝜀𝑦

𝑖  and increment of axial strain ∆ 𝜀𝑦
𝑖  

corresponding to the current state of stresses and strains in a load increment 𝑖, 

while deviator stress 𝑞𝑖+1 corresponding to the input increment of the axial strain 

∆𝜀𝑦
𝑖  can be used as the output parameter. For instance, the form of the inputs and 

output for a triaxial test simulation would be: 

Input variables: 𝜀𝑣 
𝑖 , 𝜀𝑦

𝑖  , ∆𝜀𝑦
𝑖 , 𝑞𝑖, 𝑝′𝑖   

Output variable: 𝑞𝑖+1 

The input variable for deviator stress 𝑞𝑖, is the variable that should be updated 

incrementally during the EPR training stage, according to the output variable 

passed from the previous increment of the training stage. Using such training 

strategy seems to be useful for soils due to their incremental nature, therefore for 

modelling soil behaviour this technique has been used in this thesis. 
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4.3.2.3 Jacobian matrix in EPR-based Self-Sim  

When implementing a constitutive model in finite element analysis, the material 

stiffness (Jacobian) matrix must be determined as: 

 𝐽 =  
𝜕(𝑑𝜎)

𝜕(𝑑𝜀)
 (4-4) 

where, 𝜎 and 𝜀 are the stress and strain vectors respectively. Jacobian matrix is 

explicitly formed for various constitutive models. For example, the Jacobian 

matrix for a linear elastic model following the Hooke’s law in plane stress 

condition is stated as follows (Stasa, 1986): 

 𝐷 =  
𝐸

1 + 𝜇2
 [

1
  𝜇
0

        
𝜇
1
0
      

0
0

(1 − 𝜇)/2
  ]   (4-5) 

 

where, 𝐷 is the stiffness matrix, 𝐸 is the elastic modulus and 𝜇 is the Poisson’s 

ratio. The direct derivation of ANN was proposed by Shin and Pande, (2003) to 

calculate the Jacobian stiffness matrix using the following equation: 

 𝐷𝐴𝑁𝑁 = 
𝜕𝜎

𝜕𝜀
 (4-6) 

In the EPR based Self-Sim, this procedure was adopted within the total stress 

strain strategy to construct the Jacobian matrix. The above equation can be 

applied in elastic and inelastic behaviour. The Jacobian matrix constructed in this 

way can be readily implemented in ABAQUS instead of a conventional built in 

constitutive model. The form of EPR based Jacobian matrix for plane stress 

condition can be presented as: 

 𝑱𝑬𝑷𝑹 =

[
 
 
 
 
 
 

 

𝜕𝜎𝑥

𝜕𝜀𝑥

𝜕𝜎𝑥

𝜕𝜀𝑦

𝜕𝜎𝑥

𝜕𝛾𝑥𝑦

𝜕𝜎𝑦

𝜕𝜀𝑥

𝜕𝜎𝑦

𝜕𝜀𝑦

𝜕𝜎𝑦

𝜕𝛾𝑥𝑦

𝜕𝜏𝑥𝑦

𝜕𝜀𝑥

𝜕𝜏𝑥𝑦

𝜕𝜀𝑦

𝜕𝜏𝑥𝑦

𝜕𝛾𝑥𝑦

 

]
 
 
 
 
 
 

 (4-7) 
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The Jacobian matrix provided by EPR model is constructed in a different way 

when the incremental stress-strain technique is utilised to train EPR in the Self-

Sim framework. This technique utilises the advantage of the standard elastic 

stiffness matrix which is presented in terms of elastic parameters (e.g. E, µ). 

Owen and Hinton, (1980) derived the constitutive stress-strain relationship as 

described below: 

   𝛿𝜎 = 𝐷𝛿𝜀 (4-8) 

where  𝐷 is the stiffness matrix which for isotropic and elastic materials can be 

constructed using only two elastic parameters (E, µ). To describe the elastic 

stress-strain curve of materials, there are four more elastic parameters that can 

be utilised for material modelling: 𝐺  (shear modulus), 𝐾  (bulk modulus), 𝜆 

(Lame’s first parameter) and 𝑀 (P-wave modulus) (Timoshenko and Goodier, 

1970). For isotropic materials, any two of the above parameters are enough to 

construct the stiffness (Jacobian) matrix hence all parameters are related to each 

other as stated in the following equations: 

 𝐾 =
𝐸 

3(1 − 2𝜇)
 (4-9) 

 

 𝜆 =
𝐸 𝜇

(1 − 2𝜇)(1 + 𝜇)
 (4-10) 

 

 𝐺 =
𝐸 (1 − 𝜇)

3(1 + 𝜇)
 (4-11) 

 

 𝑀 =
𝐸 (1 − 𝜇)

(1 + 𝜇)(1 − 2𝜇)
 (4-12) 

 

The Jacobian matrix provided by the EPR based Self-Sim model trained 

incrementally was constructed based on calculating and updating the 𝐸 at each 

increment in the Self-Sim framework while the value of µ was assumed constant 

for simplicity. The calculation of 𝐸 can be described in two steps: 
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Step (1): for the 𝑖 + 1𝑡ℎ load increment, the input variables 𝜀𝑣 
𝑖 , 𝜀𝑦

𝑖  , ∆𝜀𝑦
𝑖 , 𝑞𝑖, 𝑝′𝑖 have 

already been calculated in the previous increment. The new value of the output 

variable  𝑞𝑖+1  is calculated for the next step based on the EPR model. 

Step (2): The value of Young’s modulus 𝐸 is calculated through the stress-strain 

curve. For instance, in case of axisymmetric problem: 

 𝐸 =
∆𝑞𝑖

∆𝜀𝑦
𝑖
 (4-13) 

By assuming the value of Poisson’s ratio to be constant, the Jacobian matrix can 

be constructed and iteratively implemented in ABAQUS via its user subroutine 

UMAT at every load increment. Every step of the framework has been automated 

in a MATLAB code using its comprehensive functions.  

 

4.4  Summary  

Self-Sim approach has proven to be a robust technique for material modelling. 

This has been shown by application to a number of engineering applications 

under static and dynamic loading conditions. This approach builds a bridge 

between experimental or field measurements and numerical analysis, providing 

deep insight into material behaviour and widening the knowledge on how 

materials behave in a more realistic sense. Therefore, in general, improving the 

capabilities of this inverse approach would be highly valuable in engineering and 

science fields.  

One of the main drawbacks of the Self-Sim algorithm is that it usually uses ANN 

in representing the material behaviour.  However, ANNs are known to suffer from 

a number of drawbacks that make them difficult to work within numerical analysis. 

The complex structure of the ANN models that are generated within the traditional 

Self-Sim approach is probably the reason why this approach has not gained more 

interest from other researchers in different fields. EPR as an alternative machine 

learning technique has proven to be a powerful tool that overcomes most of the 

shortcomings of ANNs. 



Chapter (4)                                Self-learning Approach to Constitutive Modelling 
 

90 
 

In this thesis EPR has been utilised in the framework of Self-Sim with some 

important modifications to the whole algorithm which make it much simpler to 

extract and represent the material constitutive behaviour. 

Like ANN, an EPR based model does not require to define the yield function, 

plastic potential function, failure, flow rule, etc (Rezania, 2008) . Two different 

strategies of training EPR based Self-Sim are implemented in this work. The next 

two chapters will demonstrate and verify the new Self-Sim framework in modelling 

some structural and geotechnical applications.  
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Chapter 5  
 

 

Structural Applications of EPR Based Self-

learning FEM 

 

5.1 Introduction 

Simulation algorithms, and in particular the FEM, have been used successfully in 

different fields of engineering including structural and geotechnical engineering, 

aerospace, biomedical engineering, chemical engineering, among many others.  

In FEA the behaviour of the real material is approximated with that of an idealised 

material that behaves in accordance of some theoretical relations (i.e. constitutive 

models). It is generally known that the successful application of FEM in 

engineering applications is mainly dependent on the choice of a suitable 

constitutive model that is able to describe the material behaviour (e.g., stress-

strain relationship). Many constitutive models have been developed for various 

materials such as concrete, soils, rocks, polymers, etc. In spite of the large 

number of constitutive models with different degrees of complexity, it has been 

indicated that these models are not able to fully capture the real material 

behaviour of some complex materials under different loading conditions. In 

addition, incorporation of such complex models in finite element codes could be 

challenging, consequently delimiting their functionality in engineering 

applications. 

The rapid developments in the computer hardware and software has enabled 

scientists and engineers to include the data mining technique in this important 

field. For example, the use of ANN in representing the constitutive behaviour of 

different materials has gained a lot of attention in the last 3 decades, as discussed 

in chapter 3. The conventional procedure for training of ANN involves using data 

from many experimental tests which is costly, time consuming and may not be 

available in some cases.  
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Therefore, a new methodology, called auto-progressive training or Self-Sim, was 

developed to train ANN through finite element analysis of boundary value 

problems (Fu et al., 2007; Shin and Pande, 2000; Sidarta and Ghaboussi, 1998).  

However, it is well known that ANNs have some drawbacks as described in 

chapter one. EPR has been developed, as an alternative data mining technique, 

to avoid most of the ANNs’ drawbacks (Giustolisi and Savic, 2006). EPR has 

been applied successfully to represent the constitute behaviour of different 

materials (Rezania; et al., 2008). Although EPR has been shown to be a robust 

tool for capturing and learning the material behaviour, again as in the 

conventional training of ANN, the way that EPR is trained requires considerable 

amount of experimental (or field) data to build a reliable material model.  

To address this problem, the self-learning algorithm has been introduced in this 

thesis for training of EPR models (see Chapter 4). In this chapter, the 

methodology of EPR-based self-learning simulation (EPR-Self-Sim), developed 

in the previous chapter, will be used for the analysis of different structural 

engineering applications using the total stress-strain training strategy.  

 

5.2  MATLAB Environment  

MATLAB (Matrix Laboratory) is a proprietary programming language developed 

by MathWorks. It has many functions that can be used directly. MATLAB has 

series of mathematical processes that work on arrays or matrices which are built-

in to the MATLAB environment. In this research, the automation process utilises 

the interesting facilities available in the MATLAB environment. These are 

included in the following steps which are coded in MATLAB. 

• Running the finite element analyses (FE-A and FE-B) sequentially in an 

iterative loop.  

• Generally, EPR produces the developed models in LaTeX form. In the 

MATLAB, the best model was selected based on the CoD value and the 

EPR formula was transformed to a symbolic form based on the exponent 

and constants matrixes. This would ensure that the mathematical 
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expressions developed by the EPR model are ready to be differentiated 

and incorporated in finite element code appropriately. 

• The model is prepared, differentiated and written in a FORTRAN file 

(UMAT) using a set of functions in the MATLAB code. It should be 

mentioned that the way that the model is written in the Fortran file is 

automatically simplified and arranged to be calculated easily using the 

MATLAB function [fortran (Input,'file','UMAT.f')]. 

• The results from finite element analyses are written in text files: MATLAB 

prepares the requested data, shuffles the data and removes the duplicated 

data and implements them into the EPR file. 

• The EPR is run repeatedly in a loop process.  

• Scaling of the data: EPR is quite sensitive with the small numbers as the 

precision of MATLAB (which is behind the EPR) is about (10-16). Therefore, 

when the analysis deals with small numbers, the input and output data 

should be normalized and denormalized at each EPR run between [0 1]. 

Normalizing and denormalizing the data is done in the EPR and MATLAB 

codes respectively using the scaling equations: 

      
𝑋𝑖𝑛𝑝𝑢𝑡 =

𝑋 − 𝑋𝑚𝑖𝑛 

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

 

(5-1) 

 𝑌𝑜𝑢𝑡𝑝𝑢𝑡 =
𝑌 − 𝑌𝑚𝑖𝑛

𝑌𝑚𝑎𝑥 − 𝑌𝑚𝑖𝑛
 (5-2) 

 

• Termination criterion: During the analysis, the results of displacements at 

FE-A and FE-B models are compared. When the difference between the 

results of the two models becomes less than a pre-defined tolerance, the 

EPR based self-learning simulation is terminated.  

5.2.1  Numerical examples  

The automation process of implementation of the multi-objective EPR model in 

the self-learning procedure is presented in this chapter. The methodology is 

applied on several structural applications including truss elements and plane 

stress conditions following the framework presented in Figure (4-23).  
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To verify the capability of the developed algorithm, the developed procedure is 

examined for linear elastic, nonlinear elastic and elastic-plastic behaviour of 

structural materials. The choice of the training strategy is dependent on the 

application that needs to be analysed. The total stress-strain strategy is suitably 

selected to train the EPR through the self-learning process in these applications. 

In the proposed framework, choosing the appropriate number and locations for 

the monitoring points could significantly influence the quantity and quality of the 

training data. Hypothetical and experimental data are used to run the EPR-based 

self-learning procedure. The results of the developed EPR models are compared 

with the actual data and showed the capabilities of the proposed algorithm in 

representing the constitutive behaviour of materials. 

 

5.2.1.1 Application 1: Aluminium plate (linear elastic 
model) 

 

A 2D plane stress panel subjected to in-plane compression is considered. The 

geometry of the plate, boundary conditions and loading are shown in Figure        

(5-1). Due to the symmetry, only a quarter of the plate is modelled, and 

appropriate boundary conditions are applied on the left and bottom boundaries. 

The material of the plate is linear elastic with Young’s modulus E = 500 Pa and 

poison’s ratio µ = 0.3 and the pressure applied is 20 Pa. The load was applied on 

a rigid surface to make sure that the plate is deformed uniformly. This example 

has been deliberately kept simple in order to verify the process of EPR based 

self-learning simulation. The measurement data are generated synthetically from 

a standard FE model in ABAQUS. The plate is analysed with 80 isotropic 8-node 

elements. It is assumed that during the experiment the displacements at the node 

on the top right corner of the plate, N1 (monitoring point, shown in Figure 5-1) are 

recorded as experimental measurements and used in the self-learning process. 
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Figure 5-1: Geometry, loading, mesh and BCs of the plate. 

 

The EPR-based self-learning framework is applied where two finite elements 

analyses are created (FE-A and FE-B) and run in parallel. The procedure starts 

from an initial (usually a linear elastic model) only for the first increment of load in 

the first iteration however in this case the same linear elastic model is used. The 

following input and output variables are used in the total stress-strain training 

strategy to train and develop the EPR models.  

𝜎𝑥 = 𝑓(𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦) 

𝜎𝑦 = 𝑓(𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦) 

𝜏𝑥𝑦 = 𝑓(𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦) 
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In the EPR setting, the maximum number of terms is set to be 5 and the 

exponents are limited to [0 1]. After completing the training process within the 

self-learning algorithm, three sets of EPR models are generated and the best 

models are selected based on CoD values and used for the analysis of the plate. 

These models with the highest CoD (99.99% for each model) are sequentially 

generated within the MATLAB code. The Jacobian matrix is then formulated by 

the differentiation of the following EPR constitutive equations and transferred via 

UMAT to the FE analysis: * 

 𝜎𝑥 = 549.48 𝜀𝑥 + 164.64 𝜀𝑦 − 5.134 × 10−12  
(5-3) 

 

 𝜎𝑦 = 549.41 𝜀𝑥 + 164.67 𝜀𝑦 − 1.235 × 10−11 

(5-4) 

 

 

 𝜏𝑥𝑦 = 0.0064𝜀𝑥  + 192.32 𝛾𝑥𝑦 − 7.159 × 10−13 (5-5) 

 

The Jacobian matrix that is implemented in the FE model is as follows: 

 𝐽 =

[
 
 
 
 
 
 
 
 
∂σx

∂εx

∂σx

∂εy

∂σx

∂γ
xy

∂σy

∂εx

∂σy

∂εy

∂σy

∂γ
xy

∂τxy

∂εx

∂τxy

∂εy

∂τxy

∂γ
xy]

 
 
 
 
 
 
 
 

= 

[
 
 
 
 
 
 
549.48 164.64 0.00

164.67 549.41 0.00

0.0064 0.00 192.32]
 
 
 
 
 
 

 (5-6) 

The above Jacobian matrix is the same as the standard stiffness matrix for an 

isotropic elastic material under plane stress condition (equation 4-5) with E = 500 

Pa and µ = 0.3 as follow. 

 

𝐷 = 

[
 
 
 
 
 
 
549.45 164.83 0.00

164.83 549.45 0.00

0 0.00 192.31]
 
 
 
 
 
 

 

 

 

 

* Unit: Stresses in N/m2 

(5-7) 
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It can be seen that equation (5-6) developed through EPR based self-learning 

and (5-7) based standard elastic matrix are in an excellent agreement. The 

convergence is achieved from one pass of the self-learning. This is because the 

behaviour is simple and EPR has enough data to capture the behaviour. Figures 

(5-2) and (5-3) show the convergence of FE-A and FE-B models. It can be seen 

that the contours of vertical stress and strain are similar. This clearly shows the 

capability of the proposed algorithm in general. It should be mentioned that the 

running time for such a simple application is very short within the automation 

process.  

 

       

               

                                           (a)                                                                (b) 

Figure 5-2: Comparison between vertical stress contours (S22) of (a) FE-A (b) FE-B of 

EPR based self-Learning model showing the convergence state. 

 

 

 

 

 

 

 

 

* Unit: Stress (S22) in N/m2 
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Figure 5-3: Comparison between vertical strain contours (E22) of (a) FE-A (b) FE-B of 

EPR based self-Learning model showing the convergence state. 

Figure (5-4) shows the prediction of the developed EPR-based self-learning FE 

model for the displacement at the monitoring point (N1). Comparison is made 

between the results of the actual (linear elastic) model and the EPR based self-

learning FEM. It can be seen that the EPR-based FEM is able to provide an 

excellent agreement with the actual data. 

 

 

Figure 5-4: EPR based self-learning FEM prediction at node N1 and actual model 

prediction. 

0

5

10

15

20

25

0 0.1 0.2 0.3 0.4 0.5 0.6

P
re

s
s
u
re

 (
P

a
)

Displacement (cm)

Standard FE with linear elastic model

EPR-based self-learning model

 

(a) (b) 



Chapter (5)                    Structural Applications of EPR Based Self-learning FEM 
 

99 
 

5.2.1.2 Application 2: Truss structure (non-linear 
elastic model) 

 

A 2D truss structure with 13 axial force elements is considered in the second 

application. The geometry, boundary conditions and loading are illustrated in 

Figure (5-5). The truss is subjected to a concentrated load (100 KN) at node 3 

(n3). The simulation is carried out with 13 truss elements considering non-linear 

elastic behaviour (Ramberg-Osgood model) for the material to generate the 

synthetically measured data. The maximum displacement is expected to be at 

node 3 (n3) therefore it is convenient to choose this node as a monitoring point.  

The self-learning framework is used in which the load is applied in FE-A and the 

corresponding displacement at n3 is enforced on FE-B. The load and the 

corresponding displacement at n3 are considered as the experimental 

measurements (monitoring data) used in the self-learning process. The training 

variables are axial stress and axial strain.  

The general form of the Ramberg-Osgood model (Ramberg and Osgood, 1943). 

is: 

  ɛ =  
𝜎

𝐸
+

2𝛽𝜎°

3𝐸
  ×  (

𝜎

𝜎°
)
𝑛

  (5-8) 

The model parameters are presented in Table (5-1). In this application only the 

values of the axial strain are output, and the values of axial stress are input which 

is similar to the original model formulation. EPR models are developed with these 

variables using the self-learning FEM framework. After selecting the best EPR 

model, the equation is transformed and differentiated to the axial strain. This step 

is included in the MATLAB code taking very short time to be solved.  

Table 5-1: The Ramberg Osgood model parameters. 

Young’s modulus 
(E) 

20 х 109 Pa 

β 2.34 

𝜎° 1.0×107 Pa 

𝑛 3 
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The procedure starts with an initial simple linear elastic model with E = 20 х 109 

Pa. This is to ensure that the initialised step is not run with a random. In the EPR 

setting, the maximum number of terms is set to 5 and the exponents are set to 

be in range [0  1  2  3]. After training and completing the load increments applied, 

an EPR model with the highest CoD (99.97%) is chosen. *   

 𝜀11 = 1.5899 𝜎11 − 3.7333 𝜎11
2 + 3.1443 𝜎11

3 − 9.0355 × 10−5 (5-9) 

 

where 𝜀11, 𝜎11 are the axial strain and stress respectively.  

The developed EPR model is able to capture the material behaviour from the first 

pass of the self-learning procedure. The convergence of the FE-A and FE-B 

models of the structure is shown in Figure (5-6) through the stress-strain curves. 

It can be seen that the two analyses are in very good agreement.   

The vertical displacements (U2) at the monitoring point n3, obtained using the 

Ramberg-Osgood model and the EPR based self-learning model, are presented 

in Figure (5-7). Comparison of the results shows that the EPR model can capture 

the behaviour very accurately. 

 

 

Figure 5-5: Truss structure and the applied load. 

 

 

 

 

* Unit: Stress (σ11) in N/m2 
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Figure 5-6: Convergence of FE-A and FE-B of EPR-based Self-learning model 

predictions. 

 

 

Figure 5-7: Comparison between the Ramberg Osgood model and the EPR-based 

self-learning FE model (displacements U2 at node n3). 
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5.2.1.3 Application 3: Truss structure (elastic-plastic model)  

The same truss structure presented in the previous application (Figure 5-5) is 

used in this analysis. The truss is subjected to a concentrated load (100 KN) at 

node 3 (n3). The load–displacement data were synthetically generated within FE 

simulation using an elastic-plastic model with hardening (using tabulated data 

option of the material module) in ABAQUS. In this application, one monitoring 

point was considered enough to represent the response of the structure to the 

loading. The load and the corresponding displacement at n3 are considered as 

the experimental measurements (monitoring data) and used in the self-learning 

process. Two finite element models FE-A and FE-B are created, and the self-

learning process was initialized first with a linear elastic model with Young’s 

modulus of 3×106 Pa. Again, the total stress-strain strategy is employed in this 

application in which the values of axial strain and axial stress are considered as 

input and output respectively: 

 𝜎11  =  𝐹(𝜀11).  

In the EPR settings, the maximum number of terms is set to 6 and the exponents 

are set to be in range of [0 1 2 3 4 5]. These settings are specified following a trial 

and error procedure of EPR runs. Following the developed framework of EPR 

based self-learning simulation, the load was applied in increments and at each 

load increment, an EPR model with highest CoD is chosen and forwarded for the 

next increment. Convergence of the FE-A and FE-B models is achieved after two 

cycles of self-learning (within a single pass). The final EPR model developed is 

as follows: * 

 
𝜎11 = 73.38 ×  105 𝜀11

5 − 8.82 ×  103 𝜀11
4 + 71.28 × 105 𝜀11

3

+ 43.59 103 𝜀11
2 + 3 × 103 𝜀11 

(5-10) 

The above EPR model has CoD of 99.86 %. From Figure (5-8) it can be seen 

that during the self-learning procedure, the prediction capability of the developed 

EPR model was improved gradually towards the expected behaviour within two 

cycles of self-learning. The convergence criteria between the FE-A and FE-B 

models is introduced in Figure (5-9). It can be seen that the two finite element 

analyses converged. 

* Unit: Stress (σ11) in N/m2 
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Figure 5-8: Stress-strain results of the EPR-based self-learning model and the original 

model (a) 1st cycle of self-learning, (b) 2nd cycle of self-learning (c) the elastic-plastic 

model prediction. 
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To verify the developed EPR model, the results of load and displacement at node 

(n3) in the EPR-based self-sim model and the original model are compared. It can 

be seen from Figure (5-10) that the developed EPR model is able to predict the 

deformation of the truss with one pass of self-learning with very good accuracy 

within both elastic and plastic regions. 

 

 

Figure 5-9: Convergence of the load-displacement curves of the FE-A and FE-B 

models after completion of the self-learning simulation. 

 

 

Figure 5-10: Deformation of node (n3) predicted by the EPR-based self-learning model 

and the original elastic-plastic model. 
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5.2.1.4 Application 4: Aluminium plate (non-linear 

elastic model)  
 

A 2D plane stress square plate subjected to a biaxial tensile loading is considered 

in this application. The geometry of the plate, boundary conditions and loading 

are shown in Figure (5-11). Due to the symmetry, only a quarter of the plate is 

simulated. The experimental measurements are generated synthetically by using 

a non-linear elastic model implemented in the FE simulation (Faramarzi, 2011). 

 

 

Figure 5-11: Geometry, loading, mesh and boundary conditions of the plate. 

 

The applied pressures are 17.5 Pa and 25 Pa along the x and y axes and the 

corresponding strains are 5% and 10% respectively. The finite element simulation 

of the plate is carried out using 100 (8-node biquadratic plane stress) elements. 

This application has a different approach in the way that the training data are 

generated within the self-learning procedure. This is because the stress-strain 

values represent loading along the principal axes only (shear strains and shear 

stresses are zero) which are not enough to train the EPR-based self-learning 

model.  
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Consequently, a strategy is applied to generate more data with non-zero shear 

stresses and strains. This strategy has been utilised by several researchers to 

generate more data to train ANN and EPR models when the material being 

analysed is isotropic (Faramarzi, 2011; Shin, 2001). In this strategy, the material 

is assumed to be isotropic and the EPR is trained with the global axes having 

non- zero shear stress values.  

The strategy of data extension utilises the isotropic assumption, hence it allows 

to exchange the normal components. Figure (5-12) illustrates the transformation 

of the stress components. The transformation of stress-strain components is 

achieved by rotating the local axes (x-y) from the global axes (1-2) and based on 

Mohr’s circle and using (2𝜃 ) angle. The transformation of stress and strain 

components can be calculated from the following equations: 

 

 𝜎𝑥 =
𝜎1 + 𝜎2

2
 + 

𝜎1 − 𝜎2

2
 cos (2𝜃)     (5-11) 

 𝜎𝑦 =
𝜎1 + 𝜎2

2
− 

𝜎1 − 𝜎2

2
 cos (2𝜃)    (5-12) 

 𝜏𝑥𝑦 =
𝜎1 − 𝜎2

2
  cos (2𝜃)     (5-13) 

 𝜀𝑥 =
𝜀1 + 𝜀2

2
 + 

𝜀1 − 𝜀2

2
 cos (2𝜃)  (5-14) 

 𝜀𝑦 =
𝜀1 + 𝜀2

2
− 

𝜀1 − 𝜀2

2
 cos (2𝜃)  (5-15) 

 𝛾𝑥𝑦 =
𝜀1 − 𝜀2

2
 cos (2𝜃)  (5-16) 

 

The above equations were coded in MATLAB in the process of preparing data for 

the EPR.  
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          Figure 5-12:  Stress components transformation in plane stress (Faramarzi, 

2011). 

The pressures and the corresponding displacements on the edges of the plate 

are selected as monitoring data; they are considered as the experimental 

measurements and used in the self-learning process. Two finite element models, 

FE-A and FE-B are created and the self-learning process is initialized first with 

an elastic modulus of 500 Pa and Poisson’s ratio 0.3. The total stress-strain 

strategy is employed in which the values of strains and stresses are used as input 

and output respectively as:  

𝜎𝑥 = 𝑓(𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦) 

𝜎𝑦 = 𝑓(𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦) 

𝜏𝑥𝑦 = 𝑓(𝜀𝑥, 𝜀𝑦, 𝛾𝑥𝑦) 

In the EPR setting module, the maximum number of terms is set to be 10 and the 

range of exponents is [0 1 2]. After training, in each run, three EPR models with 

the highest CoD values are chosen and Jacobian matrix is calculated from the 

partial derivation of these equations. The final EPR equations used in the analysis 

have CoD = 99.96% and are as follows: * 
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𝜎𝑥 = 26365 𝜀𝑦 𝜀𝑥

2 − 7965.5 𝜀𝑦 𝛾𝑥𝑦
2 − 26336 𝜀𝑥 𝛾𝑥𝑦

2 − 7318 𝛾𝑥𝑦
2 +

                        7924 𝜀𝑥 𝜀𝑦
2  − 4752.5 𝜀𝑥

2 − 2564 𝜀𝑦
2 + 166.2 𝜀𝑦 + 554 𝜀𝑥   

(5-17) 

 

 

𝜎𝑦 = 26372.4 𝜀𝑥 𝜀𝑦
2 + 7917 𝜀𝑦 𝜀𝑥

2 − 26362.5 𝜀𝑦 𝛾𝑥𝑦
2 + 1241.4 𝜀𝑥  

2 𝛾𝑥𝑦
2 −

                     8119.2 𝜀𝑥 𝛾𝑥𝑦
2 +  4230 𝛾𝑥𝑦

2    − 2188 𝜀𝑦
2 − 6410.6 𝜀𝑥 𝜀𝑦 +

                               166.2 𝜀𝑥 + 554 𝜀𝑦   

(5-18) 

 

 
𝜏𝑥𝑦 = 3366 𝜀𝑥

2 𝜀𝑦
2 𝛾𝑥𝑦 + 4100 𝜀𝑥

2 𝛾𝑥𝑦 + 4095 𝜀𝑦
2 𝛾𝑥𝑦 + 8167 𝜀𝑥 𝜀𝑦 𝛾𝑥𝑦

− 2188 𝜀𝑥 𝛾𝑥𝑦 − 2187.2   𝜀𝑦 𝛾𝑥𝑦 + 387 𝛾𝑥𝑦   
(5-19) 

 

Figure (5-13) shows the stress-strain relations prior to the self-learning process, 

using the linear elastic model. During the self-learning process, accurate stresses 

and strains (from FE-A and FE-B models respectively) are used to train the EPR 

models. The availability of data used through the self-learning algorithm gradually 

enables the EPR to learn and capture the elastic material behaviour within a 

single pass.  

Figure (5-14) shows the convergence between the FE-A and FE-B models in the 

self-learning process presenting the vertical and horizontal stress-strain curves. 

The results show an excellent convergence between both FE analyses until the 

softening behaviour occurred when the FE-A model was stopped.    

To verify the capability of the EPR-based self-learning model, a comparison is 

made between the prediction of the actual model and the EPR-based model 

applied on FE-B (see Figure 5-15). The results show an excellent agreement 

between the EPR-based FE analysis and the actual data and demonstrate the 

excellent ability of the developed EPR-based self-learning model to capture the 

nonlinear behaviour of the plate. Furthermore, the comparison between the EPR-

based model developed and the actual model is introduced via the horizontal and 

vertical displacement contours as shown in Figures (5-16) and (5-17). In this 

analysis, the developed model is applied on FE-A. The EPR model shows good 

approximation to the actual displacement results. 

 

*  Units: Stresses in N/m2 
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 Figure 5-13: The stress-strain relations prior the self-learning process of FE-A and 

FE-B (a) horizontal stress-strain; (b) vertical stress-strain. 

 

 

 

 

 

 

 

 

 

 

Figure 5-14: Convergence of FE-A and FE-B of the stress-strain results, (a) horizontal 

stress-strain; (b) vertical stress-strain. 
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Figure 5-15: Stress-strain curves of EPR-based model applied on FE-B and the actual 

model, (a) horizontal stress-strain; (b) vertical stress-strain. 

 

 

        

 

Figure 5-16: Comparison between contours of horizontal displacements in (a) actual 

model; (b) EPR based self-learning model applied on FE-A. * 

 

 

 

 

 

 

* Unit: displacement (U1) in m 

(a) (b) 

0

5

10

15

20

0 1 2 3 4 5 6

σ
x

(P
a
)

ɛx (%)

Standard FE with non-
linear elastic model

EPR model based self-
learning FE

0

5

10

15

20

25

30

0 2 4 6 8 10 12

σ
y

(P
a)

ɛy (%)

Standard FE with non-
linear elastic model

EPR model based self-
learning FE



Chapter (5)                    Structural Applications of EPR Based Self-learning FEM 
 

111 
 

          

 

Figure 5-17: Comparison between contours of vertical displacements in (a) actual 

model; (b) EPR based self-learning model applied on FE-A. * 

 

5.2.1.5 Application 5: Aluminium plate (elastic-plastic 

behaviour) 
 

In this application the same plate illustrated in the previous application (Figure 5-

11) with the same geometry and the boundary conditions, is analysed considering 

elastic-plastic behaviour. The experimental data are generated synthetically 

using an elastic-plastic model. The model is assumed to represent the elastic-

plastic material behaviour in which elastic and plastic parts are defined clearly 

and implemented in finite element analysis (ABAQUS) through the UMAT 

subroutine. Tensile strains are applied on x-y edges of the plate in which 

horizontal and vertical strains are 15% and 30% respectively. After generating 

the experimental data, the self-learning procedure is carried out by running two 

finite element models, FE-A and FE-B. Figure (5-18) shows the square plate 

under the tensile strains. The self-learning process was initially started with a 

linear elastic model (Young’s modulus of 250 Pa and Poisson’s ratio of 0.33). The 

same procedure as presented in the previous application (including the way that 

EPR model was trained, the contributing variables and the training strategy) is 

used here. 

  

 

* Unit: displacement (U2) in m 

(a) (b) 
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Figure 5-18: Geometry, loading, mesh and boundary conditions of the plate. 

In the EPR setting, the maximum number of terms is set to 10 and the range of 

exponents is [0 1 2 3 4 5]. After training, in each run, three EPR models with the 

highest values of CoD are chosen and the Jacobian matrix is calculated from the 

partial derivatives of these models. The final EPR models used in the analysis 

have CoD = 99.26%, 99.27% and 99.72% for the vertical, horizontal and shear 

stresses respectively. These models are: * 

 

𝜎𝑥 = 164.4 𝜀𝑦 − 2522.5 𝜀𝑦
2 + 1465.7 𝜀𝑦

3 − 37436 𝜀𝑦
4 + 35049 𝜀𝑦

5 

+ 420 𝜀𝑥 − 5559 𝜀𝑥
2 + 40256.7 𝜀𝑥

3 − 135049 𝜀𝑥
4 

+ 183206 𝜀𝑥
5  

(5-20) 

 

 
𝜎𝑦 = 427 𝜀𝑦 − 4090 𝜀𝑦

2 + 20340 𝜀𝑦
3 − 47058 𝜀𝑦

4 + 40366 𝜀𝑦
5 + 183 𝜀𝑥

− 4596 𝜀𝑥
2 + 41475 𝜀𝑥

3 − 163422 𝜀𝑥
4 + 426439 𝜀𝑥

5  
(5-21) 

 

 

𝜏𝑥𝑦 = 245 𝛾𝑥𝑦 − 30433 𝛾𝑥𝑦
3 − 1308.6 𝜀𝑦𝛾𝑥𝑦 + 150378 𝜀𝑦𝛾𝑥𝑦

3   

− 465 × 105 𝜀𝑦
3  𝛾𝑥𝑦

5 − 9575 𝜀𝑦
4 𝛾𝑥𝑦 − 1069 𝜀𝑥𝛾𝑥𝑦 

+ 9979 𝜀𝑥𝜀𝑦𝛾𝑥𝑦 −  27 × 105 𝜀𝑦
2  𝛾𝑥𝑦

3 

+ 23 × 108 𝜀𝑥 𝜀𝑦
4  𝛾𝑥𝑦

5  

(5-22) 

 

 

*  Unit: Stresses in N/m2 
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The above EPR models are generated within the self-learning framework in one 

pass. This is because sufficient amount of data is generated. The results of this 

analysis show that EPR-based self-learning model is able to capture the elastic 

and plastic parts of the material response with reasonable accuracy. Figures (5-

19) and (5-20) show the convergence between the FE-A and FE-B models for 

the horizontal stress-horizontal strain and vertical stress-vertical strain curves 

respectively. It can be seen that the developed EPR model is able to present a 

good match between the analyses. To verify the ability of the proposed EPR 

model, the results of stress-strain curves in the x and y directions are presented 

for the original model and the EPR models applied on FE-A and FE-B. Figures 

(5-21) to (5-24) illustrate the comparison between their predictions. The EPR 

model shows very good agreement with the actual data in both axes using the 

developed EPR model.  

It should be mentioned that the EPR model is a polynomial function that may 

have some limitations when the experimental data are in the form of straight lines 

as in this application. Also, in reality the elastic-plastic material behaviour usually 

introduces some curvature at yield point which appears in the EPR model 

predictions. Therefore, it can be claimed that using EPR based modelling, is able 

to reflect the real material behaviour under certain conditions. 

 

 

Figure 5-19: Convergence of FE-A and FE-B based self-learning simulation for 

horizontal stress-strain relation. 
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Figure 5-20: Convergence of FE-A and FE-B based self-learning simulation for vertical 

stress-strain relation. 

 

 

 

Figure 5-21: Result of the horizontal stress-strain curve showing the comparison 

between the actual elastic-plastic model and the EPR based self-learning model 

applied in FE-A. 
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Figure 5-22: Result of the horizontal stress-strain curve showing the comparison 

between the actual elastic-plastic model and the EPR based self-learning model 

applied in FE-B. 

 

 

Figure 5-23: Result of the vertical stress-strain curve showing the comparison between 

the actual elastic-plastic model and the EPR based self-learning model applied in     

FE-A. 
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Figure 5-24: Result of the vertical stress-strain curve showing the comparison between 

the actual elastic-plastic model and the EPR based self-learning model applied in     

FE-B. 

 

5.3  Summary  
 

Self-learning finite element method is a new approach that can link between field 

measurements and numerical analysis. This field in particular needs significant 

improvement and development. Training EPR with experimental data is not the 

ultimate goal of using EPR in constitutive modelling. Improving the way that EPR 

is trained and is implemented in FE codes would encourage researchers to use 

EPR in the constitutive modelling of different engineering materials and in 

numerical modelling of various boundary value problems. The proposed 

methodology has been developed as a full framework, coded in MATLAB 

environment. In the EPR-based self-learning approach, the real behaviour of 

material is approximated by the EPR-based constitutive models. This provides a 

unified approach to constitutive modelling that can be used in the analyse of 

different boundary value problems. The efficiency and capabilities of the 

proposed approach have been illustrated by application to a number of structural 

engineering applications. The EPR based self-learning procedure has been 

applied to a range of material behaviour, including linear elastic, nonlinear elastic 

and elastic plastic behaviour.  
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The synthetic data generated using these models were considered as 

experimental data and were used in the self-learning simulations. This was to 

verify that the developed model is working correctly by comparing the results with 

those of the conventional models. The results revealed that the methodology can 

be effectively used as an alternative approach to train the EPR-base models. The 

developed EPR-based constitutive models were successfully applied to analyse 

a number of basic structures. The comparison between EPR models and the 

actual material models was presented to verify the ability of EPR in constitutive 

modelling. The total stress-strain strategy was utilised to train the EPR models 

within the framework of self-learning simulation in all the applications.  

The developed automation process simplifies the way that EPR is trained, 

significantly reducing the time required for training and implementation of EPR in 

finite element code. 
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Chapter 6  
 

 

Geotechnical Applications Based on EPR 

Material Modelling 

 

6.1  Introduction  
 

Modelling of behaviour of some materials such as soils and rocks is a challenging 

due to their erratic and complex nature. In recent decades, with the 

advancements in computer hardware and software, numerical modelling has 

progressed rapidly. Some researchers have introduced the use of data mining 

techniques for constitutive modelling of materials (including soils and rocks) 

under different loading conditions. ANNs offer great potential for representation 

of complex material behaviour, however, it is also well known that ANNs have 

some shortcomings.  

As mentioned in Chapter 4, EPR based material modelling was introduced as an 

alternative algorithm to represent the complex behaviour of soils including 

saturated and unsaturated soil states. EPR has several features that enable it to 

be used in modelling of such complex materials. For example, its learning 

capability, ability to generalise the behaviour, learning directly from raw data 

without any assumption and more importantly one of the key advantages of EPR 

it generates explicit and transparent equations/models that can be easily 

understood and implemented in numerical analysis (e.g., FEA) by the users. 

Through a wide range of engineering applications, EPR-based constitutive 

modelling has proven to be a robust tool that can be utilised as a unified 

framework to represent the material response under different loading conditions.  

Furthermore, as discussed in Chapter 5, EPR-based Self-Sim approach has 

been introduced that uses EPR as an alternative data mining technique in the 
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heart of the self-learning framework. This methodology improves the way EPR is 

trained, provides the required data and offers the possibility to be used in 

simulation of different engineering problems. In Chapter 5, a number of structural 

applications were analysed using the developed methodology. It was shown that 

the methodology has the ability to construct constitutive models representing 

different material behaviour. In this chapter, the use of EPR based constitutive 

modelling is presented for two geotechnical applications: (1) modelling of the 

behaviour of a very challenging material (frozen soil), and (2) analysis of the 

stress-strain behaviour of a clay soil in triaxial experiments using laboratory test 

data from literature. The incremental stress-strain strategy is used to train the 

EPR in both geotechnical applications. The selection of an appropriate procedure 

for training EPR models depends on several factors such as the source of data 

and the way the data are used to train EPR. The incremental strategy is more 

appropriate for modelling materials that are path dependent such as soils and 

rocks. The results of both applications are presented and compared with the 

actual data to verify the ability of EPR in material modelling. 

 

6.2  Frozen soil  
 

Artificial ground freezing (AGF) has been frequently used in underground 

engineering. It has no effects on the volume change of ground, adjacent 

buildings, groundwater, surrounding soil and environment (Chamberlain, 1981). 

Accurate determination of the shearing behaviour of frozen soils under different 

conditions and stress paths plays an important role in the geotechnical 

construction projects such as open excavations, underground subway stations 

and tunnels. Improper determination of the behaviour of frozen soils could have 

disastrous consequences as it could lead to underestimation of the allowable 

shear strength under loading conditions of a particular application. In AGF, 

artificial withdrawal of heat temporarily freezes the in-situ soil which leads to 

stabilization of the soil mass such that the closed frozen bodies are watertight 

(Ziegler et al. 2013). One of the main advantages of AGF is that frozen bodies 

can be produced in all soil conditions such as heterogeneous, soft and loose 

soils. AGF is an eco-friendly method, because during implementation, there is no 

environmental impact on the soil and groundwater (Esmaeili-Falak, 2017; Harris, 
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1995). It should be noted that AGF in geotechnical engineering should not be 

mistaken for natural earth freezing or permafrost freeze-thaw cycles (Wang et al. 

2016). AGF is the deliberate freezing of pore water of soil which leads to increase 

in shear strength and reduction in permeability. The mechanical behaviour of 

unfrozen soils has been extensively investigated by many researchers, however, 

there has been limited research on the behaviour of frozen soils.  Frozen soils 

exhibit higher strength under loading compared with unfrozen soils (Czurda, K. 

A., & Hohmann, 1997). They also show similarity with ice behaviour in terms of a 

time dependent creep and their frictional properties like unfrozen phase (Ma and 

Chang, 2002).  

Frozen soil can be considered as a complex multiphase material consisting of 

soil particles, frozen water, unfrozen water and air (Lackner et al., 2005). Over 

the last few years, with the rapid development in the equipment and theoretical 

implementation of thermomechanical procedures, several attempts have been 

made to develop constitutive and numerical models for frozen soils based on 

experimental results. These models followed the non-linear elastic-plastic theory 

to represent the approximate mechanical behaviour of frozen soils (Xu et al., 

2011; Yang et al., 2010). 

Recently, with the developments in the computational field (software and 

hardware) some researchers (e.g. Jahed Armaghani et al., 2015; Momeni et al., 

2014) have emphasized on the use of soft computing techniques such as the 

Simple Regression Analysis (SRA), Multiple Regression Analysis (MRA) and 

Artificial Neural Network (ANN) in geotechnical engineering problems. Data-

driven models provide reasonable, quick and rigorous tools for solving wide range 

of engineering problems, in particular when the relations between independent 

and dependent parameters are unknown and complex. Furthermore, from the 

cost viewpoint, these methods are helpful as direct determination of behaviour of 

frozen soils in laboratory is costly. To the author’s knowledge, no previous 

research has been reported on the application of artificial intelligence techniques 

to describe the constitutive behaviour of frozen soils. However, extensive 

research has been done on the use of artificial intelligence in modelling the 

behaviour of unfrozen soils and rocks (A. Ahangar-Asr et al., 2011; Javadi and 

Rezania, 2009a; Johari et al., 2011; Millar, 2008). 
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6.2.1  Modelling of frozen soil  

6.2.1.1 Data preparation  
 

Triaxial testing can be used to determine the mechanical behaviour of unfrozen 

and frozen soils. Triaxial equipment is widely used by geotechnical researchers 

to investigate the shear behaviour of various types of soils.  In this application the 

triaxial data collected from literature (Esmaeili-falak et al., 2017) is utilised to 

model the stress-strain behaviour of frozen soil using EPR. Esmaeili-falak et al., 

(2017) conducted a comprehensive program of tests using a triaxial compression 

apparatus, made specifically for frozen soils under special conditions and using 

standard procedures according to ASTM D4083. The particle size distribution 

curve of the soil used in the tests is shown in Figure (6-1). The soil can be 

classified as poorly graded sand (SP). The physical properties of the soil are 

presented in Table (6-1) (Esmaeili-falak et al., 2017). 

 

 

Figure 6-1: Particle size distribution of frozen soil. 
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 Table 6-1: Physical properties of SP soil. 

Soil classification           SP 

Saturated density (Mg/m3)     1.98 

Angle of friction (degree)      33 

Specific gravity (Gs)     2.635 

Gravel (%)       0 

Sand (%)     98.8 

Clay and silt (%)     1.2 

Coefficient of uniformity (Cu)                                           2.17 

Coefficient of curvature (Cc)     1.04 

 

The experimental data from a comprehensive set of triaxial tests on samples of 

the frozen soil are used to train an EPR-based model to predict the stress-strain 

behaviour of the soil. The tests were performed on samples of a sand compacted 

in the laboratory under different confining pressures, temperatures and strain 

rates. The testing program included unconsolidated undrained (UU) triaxial tests 

where the axial strain was applied increasingly to shear the sample under 

constant confining pressure. In the experiments, the samples were tested at 

temperatures ranging between -0.5 oC to -11 oC and strain rates between            

0.1 %/min to 2 %/min (Esmaeili-falak et al., 2017). The applied confining 

pressures varied between 0 to 800 kPa.  

The dataset is divided into two groups, the first group (80% of the data) is used 

for training of the EPR model, while the remaining (20% of the) data, which is not 

used in the training stage, is used to validate the prediction capability of the 

developed EPR model. In general, if a larger portion of data is used for training, 

the accuracy of the training will improve. Many researchers have used about 80% 

of the data for training and 20 % for testing (e.g. Ahangar-Asr et al., 2015; 

Alangar-Asr; and Javadi, 2011; Rezania; et al., 2008). It is ensured that all 

parameters in the testing dataset lied between the minimum and maximum values 

in the training dataset to avoid extrapolation.  
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The incremental stress-strain strategy is utilised in developing the EPR model. In 

this strategy, the input and output data are used incrementally in which the input 

data provide the EPR model with adequate information on the current state of 

stresses and strains while the output parameter represents the next state of 

stress corresponding to an input strain increment. The EPR model has six input 

variables as shown in Table (6-2). The input variables of the model are the 

temperature, confining pressure, strain rate, current axial strain and current 

deviator stress, and the models were developed to predict the deviator stress in 

the soil (model output) related to an increment of axial strain.  

The deviator stress and axial strain are updated incrementally through the training 

and testing stages based on output of the model at the end of each increment. 

Table 6-2: The Input and output parameters used for developing the EPR model. 

Type                   Contributing Parameters                               Range 

 

Input                   Temperature (𝑇)                                        -0.5 to -11°C 
 
                            Confining pressure (𝜎3)                              0 to 800 kPa 
 
                            Strain rate (𝜀̇ )                                             0.1 to 2 %/min 
 
                            Axial strain (ɛ𝑦)                                           0 to 10% 

 
                            Axial strain increment (∆ɛ𝑦)                        0.1 to 0.4% 

 
                            Deviator stress (q)                                     0 to 12500 kPa 
 
Output                Deviator stress for next increment (𝒒𝒊+𝟏)   0 to 12500 kPa                                                 

  

In the EPR settings, the number of terms is set to 15 and the exponents are set 

to be in the range [0  1  2  3]. These settings are specified following a trial and 

error process of EPR runs. Before running the EPR, all the datasets are randomly 

shuffled to ensure that the obtained EPR model is not biased towards a particular 

part of the training data. To reduce the required time for EPR training, duplicated 

data are removed. 
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These steps are implemented through a code written in MATLAB in order to 

simplify the training and reduce the time required for analysis.  

The best EPR model with the highest CoD (which is 99.88%) is selected as: * 

 

𝒒𝒊+𝟏 = 1.1053 𝑞 + 154078.5 ∆𝜀𝑦 − 477650.84 𝑇 ∆𝜀𝑦
2

− 994036.26 𝜎3 𝑇 ∆𝜀𝑦
3 − 27993.26 𝜀𝑦 − 1.449 𝜀𝑦 𝑞       

+ 12415.7 𝜀̇ 𝜀𝑦 + 242790.28 𝜀𝑦
2 − 4446986.22 ∆𝜀𝑦 𝜀̇ 𝜀𝑦

2

− 2784857.5 ∆𝜀𝑦 𝜀̇ 𝑇 𝜀𝑦
2 + 57959.6 𝑇 𝜀𝑦

3                               

− 0.0817 𝜎3 𝜀̇ 𝑞
2 ∆𝜀𝑦

3 − 34.09   

(6-1) 

   

Figure (6-2) shows the deviator stress-axial strain curves predicted using the 

developed EPR model (equation 6-1) together with the actual experimental data 

used for the training process. It can be clearly seen that the proposed EPR model 

is able to extract the behaviour of the frozen soil under different temperatures, 

strain rates and confining pressures with excellent accuracy. 

To verify the generalization capability of the developed EPR model, the 

experimental results are compared with the EPR model predictions for the 

unseen (testing) data in Figure (6-3). The results show that the model is able to 

extend the learning and predict the behaviour of the frozen soil under different 

temperatures, strain rates and confining pressures with very high accuracy.  

 

 

 

 

 

 

 

 

 

*Units: 𝑞, 𝜎3 in KN/m2, 𝜀 ̇ in %/min, 𝑇 in °𝐶  
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Figure 6-2: Comparison between the EPR model predictions and the experimental 

data for different confining pressures, temperatures and strain rates: (a) 100 kPa, -

3 °C and 0.2 %/min, (b) 50 kPa, -5 °C and 0.5 %/min, (c) 800 kPa, -5 °C and 1.0 

%/min, (d) 200 kPa, -11 °C and 1.0 %/min.

0

1000

2000

3000

4000

5000

0 2 4 6 8 10

q
 (

k
P

a
)

ɛy (%)

Actual data

EPR model prediction

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10

q
 (

k
P

a
)

ɛy (%)

Actual data

EPR model prediction

0

2000

4000

6000

8000

10000

12000

14000

0 2 4 6 8 10

q
 (

k
P

a
)

ɛy (%)

Actual data

EPR model prediction

0

1000

2000

3000

4000

5000

6000

7000

0 2 4 6 8 10

q
 (

k
P

a
)

ɛy (%)

Actual data

EPR model prediction

(a) 

(d) (c) 

(b) 



Chapter (6)             Geotechnical Applications Based on EPR Material Modelling  
 

126 
 

 

 

 

 

 

Figure 6-3: Comparison between the EPR model predictions and the (unseen) 

experimental data for different confining pressures, temperatures and strain rates: 

(a) 0 kPa, -5 °C and 0.2 %/min, (b) 100 kPa, -2 °C and 1 %/min, (c) 400 kPa, -5 °C 

and 1.0 %/min. 
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6.2.1.2  Predicting the entire stress-strain curve using 

the EPR model 
 

Further to the model validation described in the previous section, the EPR model 

is used to predict the entire stress-strain curve in the 𝑞: ɛ𝑦 space incrementally, 

point by point. The results from various sets of unseen (testing) data are used to 

measure the ability of the developed model to predict the behaviour of the frozen 

soil, point by point, through the entire stress-strain curve. For each experiment, 

the magnitudes of temperature, strain rate and confining pressure are kept 

constant and the other parameters are updated incrementally based on the axial 

strain increment.  

Figure (6-4) shows the proposed procedure to update the input variables and 

build the whole stress-strain curve for the shearing stage of a triaxial experiment. 

Starting the procedure with zero axial strain and zero deviator stress 

(representing the starting point of the shearing stage) and using a prescribed axial 

strain increment, the values of the deviator stress  𝑞𝑖+1  are calculated using the 

developed EPR model (Ahangar-Asr et al., 2015; Faramarzi et al., 2012). For the 

next increment, the values of axial strain (ɛ𝑦) and deviator stress (q) are updated 

as: 

𝑞𝑖 = 𝑞𝑖+1 

ɛ𝑦,𝑖   =  ɛ𝑦,𝑖   +  ∆ɛ𝑦   
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Figure 6-4: Procedure for predicting the entire stress-strain curve. 

 

 

In this way, the next point on the deviator stress-axial strain curve is predicted. 

This algorithm is applied until all the points on the curve are predicted. Figure (6-

5) shows the comparison between the three stress-strain curves predicted (point 

by point) by the EPR model and the experimental data. The results show very 

good agreement with the experimental results. The key point of such EPR model 

validation is that, while the errors are accumulated at every single point during 

the predictions, the entire curve is predicted very accurately. This is a strong 

testament of the robustness of the proposed EPR model in capturing and 

representing the real behaviour of the frozen soil.
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Figure 6-5: Comparison between the EPR model prediction (point by point) and the 

experimental  data for confining pressures, temperatures and strain rates of (a) 0 

kPa, -9 °C and 0.2 %/min, (b) 50 kPa, -4 °C and 0.5 %/min, (c) 200 kPa, -3 °C and 

0.2 %/min. 
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6.2.1.3 Sensitivity analysis  
 

A sensitivity analysis is conducted on the sets of validation (unseen) data. In this 

analysis, changes are applied to the values of one selected input variable (within 

its maximum and minimum range) while other input variables are fixed to their 

mean values. The analysis includes the effects of changes in confining pressure, 

temperature and strain rate on the deviator stress - axial strain curve. Figures (6-

6 to 6-8) show the effect of each input parameter on the soil behaviour. It can be 

seen that, as expected, decrease in temperature results in increase in the 

deviator stress. Any increase in the confining pressure or strain rate would cause 

an increase in the deviator stress. These results are expected and consistent with 

the trends noticed in the experimental tests. The results of the sensitivity analysis 

indicate that the EPR model has been able to extract and correctly predict the 

patterns of mechanical behaviour of the frozen soil. 

 

 

Figure 6-6: Effect of temperature on the behaviour of the frozen soil. 
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Figure 6-7: Effect of confining pressure on the behaviour of the frozen soil. 

 

 

          Figure 6-8: Effect of strain rate on the behaviour of the frozen soil. 

 

In this application, a comprehensive set of experimental data from 

unconsolidated undrained (UU) triaxial tests on a frozen sandy soil are used to 
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The model considers the effects of temperature, confining pressure and strain 

rate on the soil behaviour. The results show the ability of the proposed model in 

capturing and representing the complex behaviour of frozen soils. Furthermore, 

predicting the entire stress-strain curve (point by point) is another verification of 

the capabilities of the developed model. The results of the parametric study show 

the EPR model is able to extract and predict the effect of each parameter on the 

entire shear-stress curve of frozen soil.  

 

6.3 Simulation of triaxial experiments using EPR-based 

self-learning approach 
 

The main target of the EPR based self-learning algorithm is to develop a 

constitutive model that is trained directly from experimental or field data and is 

used to predict the behaviour of other structures with the same material under 

different loading conditions. In this application the behaviour of a clay (kaolin) in 

triaxial experiments is analysed under consolidated drained (CD) conditions. The 

experimental data reported in (Cekerevac and Laloui, 2004) are used as the 

measurement data for the EPR based self-learning algorithm. Figure (6-9) 

illustrates the two-dimensional axisymmetric finite element simulation of triaxial 

test in ABAQUS.  
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Figure 6-9: Axisymmetric finite element simulation of triaxial test. 

 

The incremental stress-strain strategy is employed in this application in the same 

way that was presented in the previous application, however, in this case the 

invariants of stresses and strains are used for training. The general expression 

of the volumetric and distortional stresses and strains is defined as (Muir Wood, 

1990): 

 𝑝′ =
𝜎𝑥

′ + 𝜎𝑦
′ + 𝜎𝑧

′ 

3
 

(6-2) 

 

 

 

𝑞 = [
(𝜎𝑦

′ − 𝜎𝑧
′)2 + (𝜎𝑧

′ − 𝜎𝑥
′)2 + (𝜎𝑥

′ − 𝜎𝑦
′)2 

2
+ 3(𝜏𝑦𝑧

2 + 𝜏𝑧𝑥
2

+ 𝜏𝑥𝑦
2) ]

0.5

 

(6-3) 
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 𝜀𝑣 = 𝜀𝑥 + 𝜀𝑦 + 𝜀𝑧  (6-4) 

   

 
𝜀𝑞 =

1

3
 {[(𝜀𝑦 − 𝜀𝑧)

2 + (𝜀𝑧 − 𝜀𝑥)
2 + (𝜀𝑦 − 𝜀𝑧)

2

+ 3 (𝛾𝑦𝑧
2 − 𝛾𝑧𝑥

2 + 𝛾𝑥𝑦
2)2]}

0.5
 

(6-5) 

 

Generally, the constitutive relationship is given in the form of δσ = Dδɛ (Owen 

and Hinton, 1980), where (D) is material stiffness (or Jacobian) matrix. This matrix 

can be expressed in terms of modulus of elasticity (E) and Poisson’s ratio (µ). For 

the triaxial tests, the parameters of mean effective stress 𝑝′𝑖, deviator stress 𝑞𝑖, 

volumetric strain 𝜀𝑣
𝑖 , axial strain 𝜀𝑦

𝑖  and increment of axial strain ∆𝜀𝑦
𝑖  are chosen 

as input parameters corresponding to the current state of stresses and strains in 

a load increment 𝑖 , while deviator stress 𝑞𝑖+1  corresponding to the input 

increment of the axial strain ∆𝜀𝑦
𝑖  is used as the output parameter. The triaxial test 

results on the clay (Cekerevac and Laloui, 2004) presented the shear and 

volumetric behaviour of the soil samples. For triaxial test conditions, due to the 

axisymmetric nature of the problem, these stresses and strains can be written as: 

 𝑝′ = (𝜎1
′ + 2𝜎3

′)/3 (6-6) 

 

 𝑞 =   𝜎1
′ − 𝜎3

′  (6-7) 

 

 𝜀𝑣 = 𝜀𝑦 + 2𝜀𝑟 (6-8) 

 

 𝜀𝑦 = (𝜀𝑞 + 𝜀𝑣)/2  (6-9) 

   

 𝜀𝑞 = 2(𝜀𝑦 + 𝜀𝑟)/3 (6-10) 



where 𝜎1
′ and 𝜎3

′ are the major and minor principle stresses, and 𝜀𝑞 and 𝜀𝑟 are the 

deviator and radial strains respectively. In order to build the Jacobian matrix, at 

each run an EPR-based model with highest CoD is chosen and the value of E is 

calculated as: 
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 𝐸 =  
𝑞𝑖+1 − 𝑞𝑖

∆𝜀𝑦
𝑖

 (6-11) 

while the value of µ is assumed to be 0.3 for simplicity. Six monitoring points are 

specified on the top of the sample, monitoring the vertical deformations. The EPR 

based self-learning methodology is applied in which the FE-A and FE-B models 

were simulated in ABAQUS in parallel.  

The soil sample is meshed with 50 eight-node pore fluid/stress axisymmetric 

quadrilateral elements with biquadratic displacement and bilinear pore pressure. 

Figure (6-10) shows the FE models with mesh, applied load and boundary 

conditions for both analyses. 

 

 

Figure 6-10: Finite element models of triaxial test showing FE-A and FE-B with their 
mesh, loading and boundary conditions. 
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Experimental data from 6 triaxial tests conducted at different confining pressures 

ranging from 100 to 600 kPa are used for training of EPR within the self-learning 

algorithm. Each confining pressure is applied individually and one EPR based 

model is developed to represent the soil behaviour for each confining pressure.  

The procedure is started by assuming an initial value for Young’s modulus E for 

the first run only, which is in the linear portion of the global stress-strain curve. 

The initial value of E is set for all confining pressures to 20 x103 kPa and µ is set 

to 0.3. Once the Jacobian matrix was constructed, it is implemented in ABAQUS 

via its UMAT. The same procedure as described in the previous chapter is applied 

for running the EPR based self-learning model. The EPR settings for each 

confining pressure are specified by a trial and error procedure. For all confining 

pressures, the exponents are limited to the range [-1 0 1 2 3] and the maximum 

number of terms is set to 8. The input and output parameters are set as follows: 

𝑞𝑖+1 =  𝐹(𝜀𝑣 
𝑖 , 𝜀𝑦

𝑖  , ∆𝜀𝑦
𝑖 , 𝑞𝑖, 𝑝′𝑖  )                                                                                                                                                                                                                                                                                            

Figure (6-11) shows the actual data that are used to extract the pressure-

displacement data as the measurement data (applied pressure and 

corresponding displacement in FE-A and FE-B respectively). In the dataset, for 

the soils that exhibited softening behaviour, the data after the failure points are 

removed. Modelling of the softening behaviour introduces additional challenges 

in training of the EPR (or ANN) models which is outside the scope of the present 

work. Six EPR models are developed with various CoD values and taking 

different number of cycles of self-learning as summarized in Table (6-3). 
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Table 6-3: CoD values of EPR models with their training process. 

Confining pressure 

(kPa) 

CoD value of the selected EPR model No. of cycles of EPR-Self-

learning 

100  99.92% One cycle of self-learning 

200  99.63% One cycle of self-learning 

300  99.78% One cycle of self-learning 

400  99.86% Two cycles of self-learning 

500  99.27% Three cycles of self-learning 

600  99.86% Two cycles of self-learning 

 

 

 

 

 

 

 

 

 

 

 

Figure 6-11: Experimental data of triaxial tests on kaolin (after Cekerevac and Laloui, 

2004). 

The best EPR models (six models) after a single pass of self-learning with 

different number of cycles  for 100 to 600 kPa confinig pressures are as follows: 
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* 

 

𝑞100
𝑖+1 = 0.96 𝑞 − 72.2 𝜀𝑦 (0.24𝜀𝑣 + 1)2                                         

− 0.068  (0.02 𝑝 − 2)3  + 50 ∆𝜀𝑦(0.24𝜀𝑣 + 1)3  

+ 9.4 × 10−4  (
𝑞 𝜀𝑦𝜀𝑣

3

6.8 + ∆𝜀𝑦
) + 13.5                

(6-12) 

 

 

 

𝑞300
𝑖+1 = 102 ∆𝜀𝑦 + 1.03 𝑞 + 91.11 (0.18 𝜀𝑣 + 1)3 − 8 × 10−3 𝜀𝑦 ∆𝜀𝑦               

−  
6.5 × 10−2 ∆𝜀𝑦𝑞2 

𝜀𝑦
 

+  
(3.4 × 10−9 𝑞3 + 0.01 𝑞(0.18 𝜀𝑣 + 1)3)

∆𝜀𝑦
− 9.6 

 
 

(6-14) 

 

𝑞400
𝑖+1 = 1.99 𝜀𝑣 + 5.1𝑞 + 175  ∆𝜀𝑦(0.16 𝜀𝑣 + 1 )2 − 0.64 𝑞 𝜀𝑣 + 

1.2 × 10−2𝜀𝑦

𝑞∆𝜀𝑦

− 345.5 ∆𝜀𝑦𝑞 (0.16 𝜀𝑣 + 1 )2

− 
1.2 × 10−2𝜀𝑦 (6.14 × 10−3𝑝 − 2.58)2

𝑞

− 2.9 × 10−2∆𝜀𝑦(6.14 × 10−3𝑝 − 2.58)2 (0.16 𝜀𝑣 + 1 )3 

(6-15) 

 

 

𝑞500
𝑖+1 = 𝑞 + 0.38 𝜀𝑦(5.36 × 10−3𝑝 − 2.68)2 +

3.2 × 10−9𝑞 

∆𝜀𝑦

+ ∆𝜀𝑦(5.36 × 10−3𝑝 − 2.68)2(4.9𝜀𝑣 + 364)                     

+ 180∆𝜀𝑦(0.135𝜀𝑣 + 1)3

− 1.3 × 10−2𝜀𝑦

(5.36 × 10−3𝑝 − 2.68)2

∆𝜀𝑦
− 2.6 

(6-16) 

 

 

*Units: 𝑞, 𝑝 in KN/m2 

 

𝑞200
𝑖+1 = 1.06 𝑞 − 0.39 𝜀𝑦 (0.2 𝜀𝑣 + 1)2 + 70.5 ∆𝜀𝑦 (0.2 𝜀𝑣 + 1)3

+ 77.4 × 10−11 𝑝𝜀𝑣𝑞
3 + 3.9 ×  10−10 𝑝 𝑞3

− 15 × 10−9 𝜀𝑣 𝑞
3 + 0.25 × 10−6  

𝜀𝑦 (0.2 𝜀𝑣 + 1)3

(∆𝜀𝑦 − 0.28)
 

(6-13) 
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* 

 

𝑞600
𝑖+1 = 180 ∆𝜀𝑦 (0.13𝜀𝑣 + 1)3 − 153 (0.13𝜀𝑣 + 1)3  

− 1190 ∆𝜀𝑦  (0.13𝜀𝑣 + 1)3(4.8 10−3 𝑝 − 2.88)2  

− 6.4 × 10−9𝜀𝑦
2 𝑞3 + (

0.142 𝑝 − 8.22

∆𝜀𝑦
) + 0.233 𝑞2

+ 1.002 𝑞 − 86.21 𝜀𝑣 + 3862.44                            

(6-17) 

                                                                                                                                

The analysis results are presented in terms of the convergence criterion in which 

FE-A and FE-B are approximatly matched after different cycles of self-learning 

(see Figure 6 -12). For confining pressures 100, 200 and 300 kPa, convergence 

was achived only after the first cycle of one pass of the EPR based self-learning 

algorithm and there is a good match between the model predictions in both 

analyses. For the confining pressures 400, 500 and 600 kPa, convergence was 

achived after two, three and two cycles of one pass of EPR based self-learning 

respectively (Figure 6-13).The difference between the different confining 

pressures could be related to the training data, especially within the plastic region.  

Figures (6-14 to 6-16) show comparison between the stress-strain relationships 

predicted using the EPR-based self-learning models and the actual data for the 

all confining pressures.  

It can be noted that during the self-learning cycles, the performance of the EPR 

based models improved significantly. This is because during cycles much more 

data were generated which improved the accuracy of training and predictions of 

the EPR models.The results show that EPR has been able to learn and predict 

the material behaviour under different conditions with very good accuracy. Figure 

(6-17) shows the results of stress paths (relationship between mean effective 

stress and deviator stress) of the developed EPR based models and the actual 

data, showing excellent agreeement. 

 

 

 

 

*Units: 𝑞, 𝑝 in KN/m2 
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Figure 6-12: Convergence of FE-A and FE-B models using the developed EPR models 

for the confining pressures (a) 100 kPa, (b) 200 kPa and (c) 300 kPa. 
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Figure 6-13: Convergence of FE-A and FE-B models using the developed EPR models 

for the confining pressures (a) 400 kPa, (b) 500 kPa and (c) 600 kPa. 
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Figure 6-14:  Comparison of stress-strain curves predicted by the developed EPR 

models  and the actual data based FE for confining pressures (a) 100 kPa, (b) 200 kPa 

and (c) 300 kPa. 
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Figure 6-15: Comparison of stress-strain curves predicted by the developed EPR 

models and the actual data based FE for confining pressures (a) 400 kPa, (b) 500 kPa 

and (c) 600 kPa. 
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Figure 6-16: Comparison of stress-strain curves predicted by the developed EPR 

models based FE after completion of learning and the actual data based FE for 

confining pressures (a) 400 kPa, (b) 500 kPa and (c) 600 kPa. 
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Figure 6-17: Comparison of (p'-q) curves of the developed EPR based self-learning FE 

models and the actual data. 

  

6.4  Summary 
 

In this chapter modelling of complex geomaterials was introduced using EPR-

based material modelling. The conventional approach to represent the 

mechanical behaviour of frozen soils requires special equipment and 

environment which could be expensive, time consuming and not available in all 

scenarios. In addition, the behaviour of such soils is very complex because of the 

multi-phase nature of the mixture. In the first application, a comprehensive set of 

experimental data from unconsolidated undrained (UU) triaxial tests on a frozen 

sandy soil was used to develop a model, using EPR, to predict the shear 

behaviour of a frozen soil. The model considers the effects of temperature, 

confining pressure and strain rate on the soil behaviour. 
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The results showed the ability of the proposed model in capturing and 

representing the complex behaviour of frozen soils. Furthermore, predicting the 

entire stress-strain curve (point by point) was presented successfully as another 

verification of the capabilities of the developed model. A parametric analysis was 

introduced to assess the sensitivity of the developed EPR model to variations of 

the individual variables including temperature, confining pressure and strain rate. 

The results showed the EPR model is able to extract and predict the effect of 

each parameter on the entire shear-stress curve of frozen soil. 

In the second application, the EPR based self-learning methodology was used 

for the analysis of triaxial tests using a series of triaxial drained test data as 

experimental measurements. In this application the behaviour of a clay soil was 

modelled under different confining pressures. This application was presented to 

validate the ability of the EPR-based self-learning approach in capturing the 

complex soil behaviour. The developed EPR models gave accurate predications 

compared with the actual data with one or several cycles of a single pass of the 

self-learning algorithm. The results revealed that the EPR-based self-learning 

method can be a robust tool for linking laboratory (or field) testing and constitutive 

modelling. The main advantage of using EPR in material modelling is that it 

provides a unified approach to material modelling. It can also provide an explicit 

and well-structured model representing the behaviour of the material. EPR has 

several advantages over other types of data mining tools such as neural network. 

It is able to extract the complex nonlinear behaviour of different materials such 

as soils by feeding it with large amount of data. 

It should be noted that, like any other data mining technique, the trained EPR 

models in both applications are good in interpolation but could be not so good at 

extrapolation. Therefore, any attempts to use the developed EPR models outside 

the range of the training or measurement data may not provide reliable results.
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Chapter 7  
 

 

Conclusions and Recommendations for 

Future Research 

 

7.1 Introduction 
 

Material modelling is one of the most vital scientific research areas which 

significantly contributes in solving very complex engineering problems and 

providing deep understanding of material behaviour. A lot of research has been 

done to investigate the modelling of different engineering materials employing 

various constitutive models and mathematical procedures.  

The numerical analysis techniques such as FEM, are widely used to analyse a 

range of engineering applications in different fields including civil, geotechnical, 

mechanical, hydrological, chemical and many more. The accuracy of such 

numerical techniques relies heavily on the constitutive material model used in the 

FE code. Significant amount of research has been done looking for developing 

constitutive models that can adequately represent the real material behaviour 

under different conditions.  In recent years, with the rapid developments in 

computational techniques, postprocessing, automation processes etc., the use of 

data mining technique has been introduced as an effective alternative approach 

to constitutive modelling. Data mining techniques such as artificial neural network 

(ANN) have been used in modelling the response of different materials. However, 

as mentioned in chapter 3, ANN has a number of shortcomings. An alternative 

approach named evolutionary polynomial regression (EPR) has been introduced 

to overcome some of the ANN drawbacks.  
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Training of such data mining techniques (ANN or EPR) requires large quantities 

of data which could be costly and may not be available under certain conditions. 

The self-learning methodology is a realistic approach for training of data mining 

techniques. The self-learning algorithm is an inverse analysis technique which 

creates a constitute model that represents a material response using global load-

displacement boundary measurements.  

In this thesis, by utilising the benefits of EPR in material modelling, EPR was 

adapted as a machine learning technique in the self-learning framework. Three 

software packages were used in this study including EPR as the data mining 

engine, ABAQUS finite element tool and MATLAB environment. The EPR based 

self-learning framework was coded in MATLAB using its functionality and 

comprehensive library. The developed self-learning finite element model was 

applied to analyse a number of structural and geotechnical problems using 

synthetic and experimental data. EPR offers great advantages especially when it 

is incorporated in finite element analysis. It creates explicit formula that can be 

readily incorporated in FEM.  

A separate application was presented in this thesis involving the development of 

a constitutive model for a very challenging soil behaviour (frozen soil) to show the 

ability of EPR in material modelling in general and encourage the investigation of 

multiphase material behaviour for future studies. 

 

7.2 Limitations of the proposed methodology 
 

Although the EPR based self-learning algorithm has been successfully applied to 

modelling different material behaviour, there are a couple of limitations that need 

to be carefully considered. 

• In the EPR based self-learning process, moving to another pass of self-

learning could cause overfitting problem in the EPR model. Therefore, 

once an appropriate convergence is achieved the training process should 

be terminated. 
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• As any data mining technique, EPR model performs well in interpolation, 

however, it is not good at extrapolation. A trained EPR model may be 

unable to accurately predict the material behaviour outside the range of 

the training data.  

 

7.3 Conclusions 

The following conclusions are the main outcomes from this research: 

• The new approach of using EPR based self-learning methodology is 

introduced in this work. EPR is a new hybrid data mining algorithm, based 

on an evolutionary computational procedure. When applied to material 

modelling, its target is to find the best polynomial equation representing 

the behaviour of the material in a unified framework. 

 

• The multi-objective function was utilised in the EPR algorithm and two 

strategies were used to train EPR within the self-learning procedure (i.e. 

total stress-strain and incremental stress-strain strategies).  

 

• The whole framework of self-learning simulation was coded in MATLAB 

environment which considerably simplifies the way that EPR is trained and 

implemented in FE code. EPR has been shown to be an effective tool in 

the heart of the self-learning algorithm. It provides the user with explicit 

and symbolic equations that can be implemented in FE code. 

 

• The feasibility of the developed methodology was validated through a 

number of structural applications using hypothetical data to simulate 

various material behaviour.  

 

• A triaxial compression test was simulated and analysed using the 

developed EPR based Self-learning approach. A series of experimental 

data were utilised as boundary measurements and a set of EPR based 

constitutive models were developed for different confining pressures.  
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• The EPR based self-learning approach is a direct link between the 

laboratory tests and material modelling. The results from the above 

applications reveal that using such comprehensive approach in training of 

EPR is very promising in capturing the material behaviour.  

 

• It should be noted that this methodology is generic and can be applied to 

analysis of different engineering problems. 

 

• The capability of EPR in material modelling was also examined by 

modelling the behaviour of frozen soils using experimental data. Although 

this application does not involve the self-learning approach, it illustrates 

the capability of EPR in modelling of a complex coupled soil behaviour and 

opens the possibility to model such complex behaviour within the self-

learning approach in future. The results of the developed EPR model 

predictions were compared with the actual data of the frozen soil and it 

was shown that the proposed model can extract and reproduce the 

behaviour of the frozen soil with a very high accuracy. 

 

7.4 Recommendations for future research work 
 

The EPR based self-learning methodology is a comprehensive approach to link 

between experimental or field tests and numerical modelling. This methodology 

is generic and can be applied for any material. EPR offers valuable advantages 

in material modelling and using EPR in the developed framework is very 

promising. The work presented in this thesis can be extended to analyse different 

engineering problems. There are a number of recommendations for further 

research using the developed algorithm: 

▪ The developed methodology can be applied to simulate triaxial 

compression tests with end friction which leads to a non-uniform stress-

strain state and the developed EPR model can be used to solve boundary 

value problems. 
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▪ The geotechnical applications of EPR based self-learning method 

presented in this thesis have not included the effect of Poisson’s ratio. 

Developing another EPR model for this parameter using the self-learning 

framework should be investigated. 

 

▪ Modelling a complex behaviour of frozen soils using the EPR-based model 

opens the opportunity to implement the EPR model in FEM and also the 

EPR based self-learning simulation. This would be very challenging and 

interesting application because of the implementation of coupled thermo-

mechanical analysis. 

 

▪ The developed methodology was applied to extract the linear and non-

linear behaviour without softening state. Considering the softening 

behaviour requires further investigation. 

 

▪ The developed algorithm was applied to model soil under saturated state. 

More complex behaviour of unsaturated soil using triaxial experimental 

data can be the subject of future work. 

 

▪ All applications presented in this thesis were under only static condition. 

Extending the algorithm to include dynamic conditions such as earthquake 

events need to be investigated.  

 

▪ The methodology can be applied on a case study application, especially 

for analysis of geotechnical boundary value problem using field 

measurements. 
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