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Abstract

A major bottleneck in the modelling of biological networks is the parameter
explosion problem – the exponential increase in the number of parameters
that need to be optimised to data as the size of the model increases. Here,
we address this problem in the context of the plant circadian clock by ap-
plying the method of distributed delays. We show that using this approach,
the system architecture can be simplified efficiently – reducing the number
of parameters – whilst still preserving the core mechanistic dynamics of the
gene regulatory network. Compared to models with discrete time-delays,
which are governed by functional differential equations, the distributed delay
models can be converted into sets of equivalent ordinary differential equa-
tions, enabling the use of standard methods for numerical integration, and
for stability and bifurcation analyses. We demonstrate the efficiency of our
modelling approach by applying it to three exemplar mathematical models
of the Arabidopsis circadian clock of varying complexity, obtaining signifi-
cant reductions in complexity in each case. Moreover, we revise one of the
most up-to-date Arabidopsis models, updating the regulation of the PRR9
and PRR7 genes by LHY in accordance with recent experimental data. The
revised model more accurately reproduces the LHY -induction experiments
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of core clock genes, compared with the original model. Our work thus shows
that the method of distributed delays facilitates the optimisation and refor-
mulation of genetic network models.

Keywords: Plant circadian clock, Arabidopsis thaliana, Distributed delays,
Parameter optimisation, Systems biology, computational modelling

1. Introduction

Almost all living organisms co-ordinate their activities with daily envi-
ronmental changes. Endogenous circadian clocks with approximately 24 h
rhythmicity have been found in most eukaryotes as well as in some prokary-
otes, e.g., cyanobacteria (Dunlap et al., 2004). Circadian rhythms control
the timing of diverse biological processes throughout the day/night cycle,
ranging from flowering, gene expression, leaf movement, photosynthesis, and
plant growth (Dodd et al., 2005; McClung, 2006; Atamian et al., 2016) to
the anticipation of herbivory (Goodspeed et al., 2012).

Circadian clocks involve feedback loops that generate rhythmic expression
of core clock genes. Molecular genetic studies in the higher plant Arabidopsis
thaliana have revealed a complex clock network. For systematic understand-
ing of clock function, mathematical modelling of the gene regulatory network
has become one of the central approaches used (Locke et al., 2005a,b, 2006;
Pokhilko et al., 2010, 2012; Akman et al., 2012; Bujdoso and Davis, 2013;
Fogelmark and Troein, 2014; Foo et al., 2016; De Caluwé et al., 2016). De-
spite a large collection of advanced molecular experiments (Flis et al., 2015),
many biochemical details – such as the values of chemical reaction constants
– are still unknown. Parameter optimisation is therefore indispensable in
reproducing quantitative features of the experimental data (Locke et al.,
2005a; Pokhilko et al., 2010; Akman et al., 2008, 2010, 2012; Foo et al., 2016;
De Caluwé et al., 2016; Doherty et al., 2017). The optimisation procedure,
however, rapidly becomes computationally intractable as the network archi-
tecture gets more complex, due to the concomitant increase in the number
of unknown parameters.

One approach to mitigating this parameter explosion problem is to re-
duce the number of unknown parameters, e.g., by simplifying the network
architecture (Akman et al., 2012). In this work, we simplify the plant clock
architecture by introducing distributed time delays (Mittler et al., 1998; Mac-
Donald, 2008; Akman et al., 2008, 2010) to represent protein translation and
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transport. The idea of time-delayed feedback is conceptually much simpler
than biochemical reaction models and allows a potentially large number of
parameters related to protein production and modification to be dropped.

Time-delay models have been used previously in computational biological
rhythms research (Mackey and Glass, 1977), including circadian biology (olde
Scheper et al., 1999; Lema et al., 2000; Smolen et al., 2001, 2002; Sriram and
Gopinathan, 2004; Akman et al., 2008; Troein et al., 2009; Akman et al.,
2010, 2012; Korenčič et al., 2012, 2014; Ananthasubramaniam et al., 2014).
These models are mostly based on discrete (delta-function) delays, in which
only the states at specific past times are considered. One drawback of the
discrete delay models is that they are governed by delay-differential equations
that belong to a class of functional differential equations (Hale, 1977; Hale
and Lunel, 2013). Thus, more advanced numerical techniques are required
for their simulation and analysis (e.g. for determining stability properties
and bifurcations). Distributed delay models, on the other hand, can be
cast into equivalent sets of ordinary differential equations by the linear chain
trick (MacDonald, 2008), enabling standard stability and bifurcation analysis
methods to be used. The distributed delay approach has been applied to
understand the viral dynamics of HIV-1 infection (Mittler et al., 1998) and
the design principles of the fungal circadian clock (Akman et al., 2008, 2010),
but not extensively to other systems.

The aim of the present paper is to investigate the utility of the distributed
delay technique in reducing the complexity of plant circadian clock models.
To this end, three established models of the Arabidopsis circadian clock of
varying complexity are simplified using the distributed delay framework: (i)
the single feedback loop model of Locke et al. (2005a); (ii) the Kernel model
of Foo et al. (2016); and (iii) the compact model of De Caluwé et al. (2016).
We show that, in the three models, this leads to a marked reduction in the
number of parameters (38%, 13% and 21%, respectively). Despite this sim-
plification, essential properties of each clock model – such as the free-running
period and the phases of entrainment – are preserved. Furthermore, we ex-
ploit the advantages conferred by the reduction in complexity to efficiently
revise one of the most up-to-date Arabidopsis models, the compact model of
De Caluwé et al. (2016). Specifically, we replace the activation of the PRR9
and PRR7 genes by LHY with repression, in line with recent experimental
and computational work (Fogelmark and Troein, 2014; Adams et al., 2015).
The revised compact model reproduces the experimental data more precisely
than the original one, demonstrating the power of our approach.
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The paper is organized as follows. In Section 2, the distributed delay
method is introduced. In Section 3, the method is applied to each of the three
chosen Arabidopsis circadian clock models (Locke et al., 2005a; De Caluwé
et al., 2016; Foo et al., 2016). Simulations generated with the revised compact
model are then compared with the LHY -induction experiment of Adams
et al. (2015). The final section is devoted to discussion and future work.

2. Methods & Results

2.1. Distributed delay modelling of protein dynamics
Let us denote the mRNA concentration of the ith gene in a gene regu-

latory network by c
(m)
i (t). In the distributed delay framework (MacDonald,

2008), the corresponding protein level c
(dni )

i (t) in the nucleus is modelled by
the following integral of the delayed mRNA level (Akman et al., 2008, 2010):

c
(dni )

i (t) =
1

fi

∫ t

−∞
Gni−1
fi

(t− s)c(m)
i (s)ds. (1)

Here, the delay kernel Gni−1
fi

(t) = tni−1

(ni−1)!f
ni
i e
−fit specifies the distribution

in delays that are introduced by translation and protein modification pro-

cesses, which govern the action of c
(dni )

i (t) as a transcription factor (Akman
et al., 2008, 2010). Gni−1

fi
(t) is a gamma distribution, parametrised by an

integer-valued shape parameter ni and a real-valued rate parameter fi, yield-
ing a mean delay of ni/fi and a variance of ni/f

2
i . Using the linear chain

trick (MacDonald, 2008), the delay term (1) can be computed by solving the
equivalent set of ordinary differential equations

dc
(d1)
i

dt
= c

(m)
i (t)− fic(d1)i (t),

dc
(d2)
i

dt
= fic

(d1)
i (t)− fic(d2)i (t),

...

dc
(dni )

i

dt
= fic

(dni−1)

i (t)− fic
(dni )

i (t). (2)

The shape parameter ni thus specifies the number (ni − 1) of intermediate

species {c(dj)i : j = 1, 2, . . ., ni − 1} in the chain, whilst the rate parameter

fi specifies the rate at which each intermediate species c
(dj)
i is converted into

the subsequent species c
(dj+1)
i in the chain.
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2.2. Distributed delay modelling of the plant circadian clock

In plant circadian clocks, there are a variety of protein-related biochem-
ical processes that yield oscillation-generating delays – these include trans-
lation of mRNA, transport between cytoplasmic and nuclear proteins and
protein phosphorylation (Kurosawa et al., 2002). Since experimental values
are mostly unavailable for the rate constants of these processes, the corre-
sponding parameters are fitted to experimental data. The distributed delay
method therefore simplifies this optimisation procedure by reducing the num-
ber of fitted parameters in each protein production term to only the shape
parameters ni and the rate constants fi (Akman et al., 2008, 2010).

In the following sections, we demonstrate the efficacy of our distributed
delay modelling approach by applying it to each of the three Arabidopsis
circadian clock models in turn (Locke et al., 2005a; De Caluwé et al., 2016;
Foo et al., 2016). We note that for simplicity, in each model considered, the
shape parameters ni were set equal to the same value (and hence counted
as a single parameter). All simulations were carried out using MATLAB
(R2018a, MathWorks, Inc.). Numerical integration of ODEs was performed
using the ode23tb solver. Bifurcation diagrams were generated by combining
the fsolve and eig solvers.

2.3. Distributed delay model of the single feedback loop system

Among various mathematical models developed for plant circadian clocks
(Bujdoso and Davis, 2013), we first selected the simplest single feedback loop
model comprising one repressor and one activator (Locke et al., 2005a). The
repressor combines two clock genes, LATE ELONGATED HYPOCOTYL
(LHY ) and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1 ), whereas the
activator represents TIMING OF CAB EXPRESSION 1 (TOC1 ) (Note that
at the time that the model was constructed, TOC1 was believed to be an ac-
tivator, rather than a repressor (Huang et al., 2012)). Despite its simplicity,
this architecture captures some core features of the clock gene circuit and
quantitatively reproduces experimental results. As described in Appendix
A.1, the original model – which we refer to as L2005A – consists of 7 state
variables: mRNA and cytoplasmic/nuclear protein levels for the two genes
and the level of a light-sensitive protein. By replacing the protein concen-
tration equations with distributed delay terms of the form (1), the original
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system can be reduced to the following 3 equations:1

dc
(m)
L

dt
= q1cPL(t) +

h1c
(dnT )
T

a

ga1 + c
(dnT )
T

a −
m1c

(m)
L

k1 + c
(m)
L

,

dc
(m)
T

dt
=

h2g
b
2

gb2 + c
(dnL

)

L

b
− m4c

(m)
T

k4 + c
(m)
T

,

dcP
dt

= (1− L(t)) p3 −
m7cP
k7 + cP

− q2L(t)cP . (3)

Here, c
(m)
i (t) and c

(dni )

i (t) represent mRNA concentration and the delayed
product of the ith gene, respectively (i.e. the final (nith) species in the
chain), whilst i = L and T correspond to the LHY/CCA1 and TOC1 genes,
respectively. The rate constants denote transcription (hl, gl), degradation
(ml, kl), translation (pl), transport between the nucleus and cytoplasm (rl)
and the light input (ql). (a, b) are the Hill coefficients. The concentration
level cP of the protein P is regulated by the light input L(t) (L = 1 and
L = 0, when light is on and off, respectively). Note that in order to facil-
itate comparison between the original, fully parametrised models and their
distributed delay formulations, we preserve the parameter names used for
describing equivalent processes (e.g., in the single feedback loop model, k4
denotes the Michaelis constant for TOC1 mRNA degradation in both formu-
lations). This convention is applied to all three models considered here.

To restrict the parameter search, the Hill coefficients were fixed to the
same values as in the original model (a = 1, b = 2) (Locke et al., 2005a). For
a fixed choice of shape parameters (nL, nT ), the remaining parameters,

Φ = (fL, fT , h1, h2, g1, g2,m1,m4,m7, k1, k4, k7, p3, q1, q2) ,

were optimised by minimizing the following cost function:

E(Φ) =
1

σ2

∑
i=L,T

[
minαi,1,αi,2

∑N

j=1
{αi1c(m)

i (tj) + αi2 − c̃(m)
i (tj)}2

]
. (4)

In the above, c̃
(m)
i (tj) represents the mRNA concentration of the ith gene

generated from the original single feedback loop model. For each parameter

1Here and thereafter, for brevity we do not show the equations associated with the
distributed delay terms, as these are functionally homogenous. For this model, these yield
a further 10 differential equations.
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combination Φ, the scaling constants αi,1 and αi,2 were obtained by minimiz-

ing the least-squares-error between the time traces c̃
(m)
i (tj) and c

(m)
i (tj). The

normalisation constant is given by σ2 =
∑

i=L,T

∑N
j=1{c̃

(m)
i (tj) − c̄}2, where

c̄ = 1
2N

∑
i=L,T

∑N
j=1c̃

(m)
i (tj). A normalized error E(Φ) of 1 therefore implies

that the difference between the timeseries of the distributed delay and orig-
inal models is comparable to the variation in the trajectory of the original
model, whilst an error close to 0 indicates that the two model timeseries are
very similar to each other. In the computation of (4), the delay model and
the original model were simulated under light-dark cycles (12h:12h) for 5
days, under constant light (LL) for 3 days, under light-dark cycles (12h:12h)
again for 5 days, and then under constant darkness (DD) for 3 days. After
removing the first 3 days of each LD phase as transient dynamics, the re-
maining 10 days of data (sampling interval of 1 h) were used for evaluating
the cost function.

Using the Sobol algorithm, 105 quasi-random points were generated in the
parameter space Φ⊂[0.1, 10]15. From the Sobol points, the cost function was
calculated and sorted in descending order. The 100 points with the lowest
cost function score obtained from the Sobol sampling were then passed to a
simulated annealing routine for further minimisation (Locke et al., 2005a,b,
2006; Akman et al., 2008, 2010).

Following (Akman et al., 2008, 2010), the shape parameters (nL, nT ) were
initially both set to 2 in order to minimize the number of equations in each
chain (cf. equations (2)); however, this yielded poor fits. Consequently,
(nL, nT ) were incremented in further optimization rounds, until sufficiently
good solutions were obtained with (nL, nT ) = (5, 5). For this choice of shape
parameters, the average cost of annealed solutions was 0.2729±0.0923, and
22 % of solutions exhibited limit cycle oscillations under constant DD and
LL conditions. Fig. 1 shows simulations of the distributed delay model for
the solution yielding the minimum cost (E = 0.107) amongst the 22 sets
of autonomously oscillating solutions (the corresponding parameter values
are given in Table 1). Figs. 1(a-b) compare the time traces of LHY/CCA1
and TOC1 mRNA concentration for the distributed delay model (dashed
lines) and the original L2005A model (solid lines); these were obtained by
simulating in 12h:12h LD cycles for the first 3 days, in LL for the next 3
days, and in DD for the last 3 days. It can be seen that quantitatively
similar waveforms were obtained for both genes.

We note that whilst this optimal parameter set simulated the acute light-
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induced activation characteristic of the original model to some degree, more
pronounced acute responses were observed with other parameter sets, al-
though these were not the best in terms of cost. The free-running period of
the distributed delay model was 24.0 h (in both LL and DD), which is close
to the free-running period of 24.6 h (in both LL and DD) observed in the
original L2005A model. Under LL, the phase difference between LHY/CCA1
and TOC1 mRNA levels was 6.27 h for the distributed delay model and 5.53
h for the original model, agreeing with each other reasonably well.

In Figs. 1 (c-d), peak phases of mRNA expression are plotted as a func-
tion of the photoperiod. For LHY/CCA1 (red circles) and TOC1 (green
triangles), the peak phase remains almost the same as photoperiod varies.
These properties discernible in the original model (d) are well reproduced in
the distributed delay model (c).

In Figs. 1 (e-f), bifurcation diagrams are plotted for both the distributed
delay model and the original model under DD. The LHY/CCA1 transcription
rate (h1) was used as the bifurcation parameter, normalized to its nominal
value in the case of the original model and its optimized value in the case
of the distributed delay formulation (in each case, a normalized parameter
value h̄1 of 1 thus gives rise to the periodic oscillations of the simulated plant
circadian clock under DD – these are shown as green circles in the figure). In
both diagrams, it can be seen that a stable equilibrium (red points) bifurcates
into a limit cycle oscillation (green points) through a super-critical Hopf
bifurcation, at which a complex conjugate pair of eigenvalues of the Jacobian
matrix at the equilibrium become purely imaginary (Guckenheimer, 1983).
Although the bifurcation point h̄H was located more closely to the reference
value h̄1 = 1 in the original L2005A model than the distributed delay model,
their bifurcation structures are qualitatively similar.

Concerning model complexity, the distributed delay formulation has 18
parameters, which is a significant reduction from the 29 parameters of the
original model. Thus, the model complexity has been efficiently reduced in
the distributed delay model, whilst preserving the quantitative dynamics.

2.4. Distributed delay representation of the Kernel model

As our second example, the Kernel model (Foo et al., 2016) was utilized.
From a comprehensive model (MF2015) of the genetic circuitry in the Ara-
bidopsis circadian clock, essential interactions were extracted to obtain the
kernel model (MF2015K). By dropping 6 components that have no feedback
to the main circadian loop, the MF2015K model can be further reduced to
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a set of 18 ordinary differential equations (see Appendix A.2). Introducing
delay terms of the form (1) to represent protein or protein complex formation
in this reduced model yields the following 10 equations:2

dc
(m)
L

dt
=

θ4

θ25 + θ6

(
θ54c

(dnP9)
P9 + θ55c

(dnP7)
P7 + θ56c

(dnP5)
P5

)2 + θ7 c
(m)
L ,

dc
(m)
P9

dt
= θ10cPL(t) + θ11 +

θ12c
(dnL)
L

2

θ213 + c
(dnL)
L

2 + θ14 c
(m)
P9 ,

dc
(m)
P7

dt
=

θ17

(θ18 + cEC)

(
θ219 + c

(dnT )
T

2) + θ20 c
(m)
P7 ,

dc
(m)
P5

dt
=

θ23(
θ224 + c

(dnT )
T

2) (
θ225 + c

(dnL)
L

2) + θ26 c
(m)
P5 ,

dc
(m)
T

dt
=

θ29

(θ30 + cEC)

(
θ231 + c

(dnL)
L

2) + θ32 c
(m)
T ,

dc
(m)
E3

dt
=

θ37

θ238 + c
(dn)
L

2 + θ39 c
(m)
E3 ,

dc
(m)
E4

dt
=

θ42

(θ43 + cEC)

(
θ244 + c

(dnL)
L

2) + θ45 c
(m)
E4 ,

dc
(m)
LUX

dt
=

θ48

(θ49 + cEC)

(
θ250 + c

(dnL)
L

2) + θ51 c
(m)
LUX ,

dcP
dt

= θ1L(t) + θ2cP + θ3,

dcEC
dt

= θ35 c
(dnE3)
E3 c

(dnE4)
E4 c

(dnLUX )
LUX + θ36 cEC . (5)

2Incorporation of the homogenous delay equations yields a further 16 equations.
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Here, c
(m)
i (t) and c

(dni )

i (t) represent the concentrations of mRNA and the final
element of the corresponding protein modification chain, respectively. The
subscripts i = L, P9, P7, P5, T, E3, E4 and LUX denote LHY (as a proxy for
LHY/CCA1 ), PRR9, PRR7, PRR5, TOC1, ELF3 (EARLY FLOWERING
3 ), ELF4 and LUX (LUX ARRHYTHMO), respectively. Finally, cP and cEC
represent the concentrations of proteins P and EC (EVENING COMPLEX ),
respectively. The variables for the concentration levels are dimensionless with
an arbitrary scale for each component. The θls parametrize transcription,
translation and degradation processes.

In our modelling, the shape parameters ni were all set equal to 2 on the
basis of preliminary parameter sweeps, which established that larger values
were not required to obtain good fits. Values for the rate parameters Φ =
(fL, fP9, . . . , fLUX) were optimized by minimizing the cost function defined
in (4). All other parameters (i.e., the θls) were fixed at their nominal values
in the original model, listed in Table A.2.

Using the same procedure as that performed in the previous subsection,
the Sobol algorithm was used to generate 5×104 quasi-random points within
the hypercube Φ⊂[0.1, 10]8. Among them, 100 points with the lowest cost
function scores were passed to the simulated annealing routine. The average
cost of the 100 annealed solutions was 0.4942±0.1235. 87 % of these solutions
exhibited limit cycle oscillations under constant DD and LL conditions.

The optimised parameter values that gave the minimum cost (E = 0.147)
amongst the 87 parameter sets yielding self-sustained oscillations are shown
in Table 2. Fig. 2 plots the corresponding simulation results. Time traces for
the mRNA concentrations of LHY (a), TOC1 (b), PRR9 (c), ELF3 (d) and
LUX (e) are compared between the original Kernel model (solid lines) and
its formulation with distributed delays (dashed lines). The simulations were
carried out under 12h:12h LD cycles for the first 3 days, under LL for the next
3 days and under DD for the last 3 days. It can be seen that quantitatively
similar waveforms were again reproduced. The free running period of the
distributed delay model was 25.0 h (in both LL and DD), which is very close
to the original period of 25.8 h (in both LL and DD).

In Figs. 2 (f,g), peak phases of mRNA expression are plotted as a function
of the photoperiod in LD cycles. In the original Kernel model (panel (f)),
clock genes attain peak phase in the following order: PRR9 (green triangles),
LUX (magenta stars), TOC1 (blue squares), ELF3 (black diamonds) and
LHY (red circles). The same ordering is preserved in the distributed delay
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formulation (panel (g)). In both models, the peak phases are insensitive to
the change in photoperiod. We finally note that the distributed delay model
has 49 parameters, compared with the 56 parameters of the original model.

2.5. Distributed delay representation of the compact model

For our final example, we chose the compact model introduced by De Caluwé
et al. (2016), which will be referred to hereafter as DC2016. The original
model consists of 9 ordinary differential equations (see Appendix A.3). 8
equations describe the temporal evolution of the mRNA and protein levels
of the main clock genes, grouped into four sets of lumped pairs. These pairs
are represented by the following labels: CL (CCA1 and LHY ), P97 (PRR9
and PRR7 ), P51 (PRR5 and TOC1 ) and EL (ELF4 and LUX ). The 9th
equation is for light-sensitive protein P (PIF4 and PIF5 ).

To obtain the reduced model considered here, two modifications were
made. First, the protein levels were replaced by delay terms of the form
(1). Second, in the original model (De Caluwé et al., 2016), the P97 variable
(PRR9 and PRR7 ) is assumed to be activated by CL (CCA1 and LHY ),
based on the experiments reported in (Farré and Kay, 2007). More recent
work (Fogelmark and Troein, 2014; Adams et al., 2015), however, has revealed
that the LHY gene acts as a repressor of all other clock components, including
PRR9 and PRR7. We therefore revised the compact model accordingly,
replacing the activation term for the CL→ P97 connection with a repression
term. The revised model is governed by the following differential equations:3

dc
(m)
CL

dt
=(v1 + v1LL(t)cP ) · 1

1 +

(
c
(dnP97)
P97

K1

)2

+

(
c
(dnP51)
P51

K2

)2

+

(
c
(dnCL)
CL

K0

)2

− (k1LL(t) + k1DD(t)) c
(m)
CL ,

dc
(m)
P97

dt
= (v2LL(t)cP + v2A) · 1

1 +

(
c
(dnP51)
P51

K4

)2

+

(
c
(dnEL)
EL

K5

)2

+

(
c
(dnCL)
CL

K3

)2

− k2c(m)
P97,

3Incorporation of the homogenous delay equations yields a further 8 equations.
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dc
(m)
P51

dt
= v3

1

1 +

(
c
(dnCL)
CL

K6

)2

+

(
c
(dnP51)
P51

K7

)2 − k3c
(m)
P51,

dc
(m)
EL

dt
= L(t) v4

1

1 +

(
c
(dnCL)
CL

K8

)2

+

(
c
(dnP51)
P51

K9

)2

+

(
c
(dnEL)
EL

K10

)2 − k4c
(m)
EL ,

dcP
dt

= 0.3(1− cP )(1− L(t))− cPL(t). (6)

As before, c
(m)
i (t) and c

(dn)
i (t) represent the concentrations of mRNA and the

corresponding final delayed protein element, respectively (i = CL, P97, P51
and EL). cP represents the concentration of the light-activated protein P .
In our modelling, the shape parameters ni were all set to 2 on the basis of
initial parameter sweeps that indicated larger values were not necessary for
accurate data-fitting. The following rate parameters

Φ = (fCL, fP97, fP51, fEL, K0, K3, K4, K5) ,

specifying the delays and thresholds for CL repression, were optimised by
minimizing the cost function defined in Appendix B (since the original com-
pact model has been revised here, the cost function (4) used to fit distributed
delay versions of L2005A and MF2015K was not utilized in this case). The
remaining parameters were fixed at the values reported in the original paper
of De Caluwé et al. (2016) (cf. Table A.3). Sobol search and simulated an-
nealing were combined as before to optimise Φ within the range Φ⊂[0.1, 10]8.
The average cost of the annealed solutions, which all exhibited self-sustained
oscillations under constant DD and LL conditions, was 3.99±0.38.

The optimised parameter values that gave the minimum cost (E = 3.435)
for the distributed delay formulation are listed in Table 3. This cost value
implies that most of the criteria implemented in the cost function detailed in
Appendix B are satisfied, with the exception of a few free-running periods or
phases that deviate from the desired ones by about 0.1 h. The corresponding
simulation results are shown in Fig. 3, which compares the timeseries gener-
ated by the distributed delay model (dashed lines) and the original compact
model (solid lines) for CCA1/LHY (a), PRR5/TOC1 (b), PRR9/PRR7 (c),
and ELF4/LUX (d). Simulations were carried out under 12h:12h LD cycles
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for the first 3 days, under LL for the next 3 days and under DD for the
last 3 days. The simulation plots demonstrate that quantitatively similar
waveforms were reproduced by the reduced model . The free running periods
of the distributed delay model are 23.6 h (LL) and 29.0 h (DD). Compared
to the free running periods of 23.5 h (LL) and 26.3 h (DD) observed in the
original model, the period deviates in DD but is still very close to the original
period in LL.

Figs. 3 (e,f) plot the peak phases of mRNA expression as a function of
photoperiod. In both the original compact model and its distributed delay
formulation, the clock genes peak in the following order: PRR9/PRR7 (green
triangles), ELF4/LUX (black diamonds), PRR5/TOC1 (blue squares) and
CCA1/LHY (red circles). In both models, the phases of the genes, espe-
cially ELF4/LUX, get progressively delayed as the photoperiod is increased.
It should be noted that the distributed delay model has 27 parameters, a
reduction from the 34 parameters of the original model.

Finally, in order to assess the consequences of our modification to the
clock gene circuit, we simulated the experiment of Adams et al. (2015),
which revealed that the LHY gene represses the expression of other clock
components. The experimental protocol was reproduced as follows. First,
the model was entrained to a 12h:12h LD cycle. Then, at t = 0, the simula-
tion condition was changed to LL. Next, at t = t0, the LHY gene (i = CL)
was over-expressed by adding a constant term of 2.5 nM/h to the right-hand-
side of the CL equation in (6), for different values of t0 spaced at 4 h intervals
over the circadian cycle.

Fig. 4 compares expression levels of the clock genes (filled back bars),
which were measured 2 h after the LHY induction, with those of the control
(white bars), under which LHY was not induced. The time axis indicates
when the gene expression was measured (i.e., t0 + 2). As expected, the LHY
gene (a,b) was clearly expressed at a higher level in both models, compared
with the control. In the distributed delay model, both the PRR5/TOC1
(d) and PRR9/PRR7 (g) genes were repressed, agreeing quite well with
the experiment (f,i). In the original compact model, on the other hand,
PRR9/PRR7 (h) was not repressed, and although PRR5/TOC1 (e) was re-
pressed, the temporal expression level pattern did not fit the data as well as
the distributed delay formulation (d). This is due to the inherent architec-
ture of the original compact model, in which LHY activates PRR9/PRR7.
The repression from CL → P97 introduced in our distributed delay model
therefore improved the predictive capacity of the compact model, in addition
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to reducing the number of parameters to be optimised.

3. Discussion

3.1. Distributed delays – a simple approach to reducing model complexity

In the present study, the method of distributed delays has been intro-
duced to mathematical modelling of the plant circadian clock for the first
time. The distributed delay yields a minimal model of protein translation,
transport and modification in the underlying gene regulatory network, which
reduces the number of parameters required to represent these intermediate
processes (MacDonald, 2008; Akman et al., 2008, 2010). The key advantages
this confers over more detailed biochemical network models are that: (1) the
reduction in the number of model parameters controlling protein synthesis
greatly lowers the computational cost of the parameter optimisation process,
thereby facilitating data-fitting; and (2) the distributed delay framework pro-
vides a simplified representation of the core mechanism of the gene network,
facilitating the interpretation of experimental results.

Here, by constructing distributed delay versions of three established math-
ematical models of the Arabidopsis circadian clock, and fitting these to
synthetic and experimental data, the efficiency and accuracy of this mod-
elling approach has been comprehensively demonstrated. Notably, the num-
ber of parameters was reduced from 29 to 18 in the single feedback loop
model L2005A (Locke et al., 2005a), from 56 to 49 in the Kernel model
MF2015K (Foo et al., 2016) and from 34 to 27 in the compact model DC2016
(De Caluwé et al., 2016). Despite this simplification, the essential properties
of the original models – such as the endogenous period, the peak phases of
gene expression and the dependence of peak phase on photoperiod – were
accurately reproduced. Indeed, for the compact model – which exhibits pho-
toperiod sensitivity – although our reduced formulation was optimised to
data simulated in 12h:12h LD cycles only, we obtained a good match across
all photoperiods, conferring a degree of validation. Furthermore, our newly
introduced repression term from LHY to PRR9 and PRR7 revised the com-
pact model (De Caluwé et al., 2016), which is now capable of reproducing
the LHY induction experiment of (Adams et al., 2015) more faithfully.

This type of approach to reducing computational complexity could be of
significant use in constructing quantitative models of more complex circadian
systems, including mammalian clocks (Korenčič et al., 2012, 2014; Anantha-
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subramaniam et al., 2014), the dynamics of clock output pathways (Martins
et al., 2016), as well as other biochemical networks.

One disadvantage of the distributed delay models is that when the in-
tegrodifferential equation terms are converted into sets of equivalent ordi-
nary differential equations using the linear chain trick (MacDonald, 2008),
the number of resulting differential equations to be solved can be increased
significantly, depending upon the values of the shape parameter ni in each
such term. For a network of N clock genes, ΣN

i=1ni equations of the form

(2) should be added to compute the auxiliary variables {c(d1)i , c
(d2)
i , . . ., c

(dni )

i }
(i = 1, 2, . . ., N). However, the homogenous nature of these equations means
that provided ΣN

i=1ni is not too large, the increased computational cost that
may be incurred by numerically integrating the auxiliary equations is still
offset by the significant reduction in the number of model parameters, and
the subsequent acceleration in the computationally intensive task of search-
ing over highly-parametrised cost landscapes (Akman et al., 2012; Doherty
et al., 2017).

It should also be noted that in this study, all shape parameters ni for a
given model were set to the same value and hence counted as a single op-
timisation parameter. Assigning different ni values to different genes would
therefore increase the number of parameters to be optimised. Consequently,
for clock models such as MF2015K (Foo et al., 2016), where protein produc-
tion is described with only two rate constants (translation and degradation),
the distributed delay approach may not significantly reduce the size of the
parameter space. However, compared with such simplified representations
of translation and protein modification processes, varying the shape parame-
ters provides a more flexible framework for data-fitting by allowing a broader
family of delay kernels to be explored by the optimisation process (Akman
et al., 2008, 2010).

3.2. Future work

To further extend the approach presented here, the dependence of model
behaviour on the shape parameters ni should be investigated in more detail.
For each gene, ni determines the form of the distributed delay kernel Gni

fi
(t).

In particular, in the limit ni, fi →∞ with ni/fi → τi, G
ni
fi

(t)→ δ(t− τi) and
so the distributed delay term (1) converges to the discrete delay term

c
(dni )

i (t) = c
(m)
i (t− τi). (7)
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Consequently, optimisation algorithms have the potential to drive ni and fi
to very large values. However, as mentioned above, to keep the system size
(and hence the computational cost) tractable, it is necessary to keep the nis
within reasonable ranges. A systematic criterion for constraining ni and fi is
therefore desired to develop distributed delay models of optimal complexity.

Another potential extension of this approach is to cellular network mod-
elling of the plant system. A variety of spatiotemporal dynamics – such as
phase wave propagation, spiral waves and stripe waves – have been observed
in plant circadian systems (Fukuda et al., 2007, 2012; Wenden et al., 2012;
Gould et al., 2018). These dynamics are due to cell-to-cell interactions, which
can be very strong, e.g., in shoot apexes (Takahashi et al., 2015). Although
the coupling agents have yet to be clearly identified by experimental studies,
it will be straightforward to develop a reduced cellular network model for key
clock components using distributed delays, which can then be employed to
explore the effect of coupling different cells together. Future work will deal
with the modelling of coupled plant cells to gain an insight into potential
candidates for the coupling agents, and to identify viable coupling schemes.
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Tables

Parameter Value

nL 5
nT
fL 8.5029 1/h
fT 1.8297 1/h
h1 2.7545 nM/h
h2 2.0592 nM/h
g1 2.5540 nM
g2 1.8043 nM
m1 3.5510 nM/h
m4 0.6280 nM/h
m7 9.4567 nM/h
k1 8.1412 nM
k4 0.1502 nM
k7 5.0711 nM
p3 6.8702 1/h
q1 0.4013 1/h
q2 8.2053 1/h

Table 1: Optimal parameter values for the distributed delay formulation of the single loop
feedback model L2005A.
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Parameter Value

nL

2

nP9

nP7

nP5

nT
nE3

nE4

nLUX
fL 2.6337 1/h
fP9 9.3862 1/h
fP7 1.0027 1/h
fP5 0.5900 1/h
fT 0.5183 1/h
fE3 2.5701 1/h
fE4 9.5609 1/h
fLUX 0.1181 1/h

Table 2: Optimal parameter values for the distributed delay formulation of the kernel
model MF2015K.

Parameter Value

nCL

2
nP97

nP51

nEL
fCL 2.0236 1/h
fP97 0.8375 1/h
f51 0.6977 1/h
fEL 6.0013 1/h
K0 8.4945 nM
K3 1.9591 nM
K4 0.3940 nM
K5 4.7937 nM

Table 3: Optimal parameter values for the distributed delay formulation of the compact
model DC2016.

18



Figures

0 4 8 12 16 20 24

Photo Period [h]

0

4

8

12

16

20

24

P
e

a
k
 P

h
a

s
e

 [
h

]

c)
0 4 8 12 16 20 24

Photo Period [h]

0

4

8

12

16

20

24

P
e

a
k
 P

h
a

s
e

 [
h

]

d)

120 144 168 192 216 240 264 288 312 336

Time(Hours)

0

0.5

1

1.5

2

2.5

3

L
H
Y

m
R

N
A

a)
120 144 168 192 216 240 264 288 312 336

Time(Hours)

0

0.2

0.4

0.6

0.8

1

T
O
C
1

m
R

N
A

b)

Delay model O iginal model

e) f)

Delay model

Normalized LHY Transcription Rate

L
H
Y

 m
R

N
A

0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

Normalized LHY Transcription Rate

L
H
Y

 m
R

N
A

Original model

0.4 0.6 0.8 1 1.2
0

0.5

1

1.5

2

Figure 1: (a,b) Time traces of mRNA concentration c
(m)
i (t) in the single feedback loop

model L2005A (Locke et al., 2005a) (blue solid lines) and its distributed delay implemen-
tation (green dashed lines). The models were simulated under 12h:12h LD cycles for 3
days, under LL for the next 3 days and then finally under DD for 3 days. LHY/CCA1
(i = L) and TOC1 (i = T ) genes are plotted in (a) and (b), respectively. (c,d) Peak phases
of mRNA expression in LD cycles as a function of the photoperiod (LHY/CCA1 : red cir-
cles; TOC1 : green triangles). Results for the distributed delay model and the original
model are plotted in (c) and (d), respectively. Dotted lines denote dusk. (e,f) Bifurcation
diagrams for the distributed delay model (e) and the original model (f). Stable equilibria
(red lines), unstable equilibria (blue lines), and limit cycles (green lines) are plotted as a
function of the LHY/CCA1 transcription rate (h1), normalized so that a value of 1 (green
circles) corresponds to limit cycle oscillations of the plant circadian clock under DD.
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Figure 2: (a-e) Time traces of mRNA concentration c
(m)
i (t) in the Kernel model MF2015K

(Foo et al., 2016) (blue solid lines) and its distributed delay formulation (green dashed
lines). The models were simulated under 12h:12h LD cycles for the 3 days, under LL for
the next 3 days and then finally under DD for 3 days. mRNA timeseries for LHY (i = L),
TOC1 (i = T ), PRR9 (i = P9), ELF3 (i = E3) and LUX (i = LUX) are plotted in
panels (a) to (e), respectively. (f,g) Peak phases of mRNA expression as a function of
photoperiod. (LHY : red circles; PRR9 : green triangles; TOC1 : blue squares; ELF3 :
black diamonds; LUX : magenta stars). Results for the distributed delay model and the
original model are plotted in (f) and (g), respectively. Dotted lines denote dusk.
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Figure 3: (a-d) Time traces of mRNA concentration c
(m)
i (t) in the compact model DC2016

(De Caluwé et al., 2016) (blue solid lines) and its distributed delay formulation (green
dashed lines). The models were simulated under 12h:12h LD cycles for 3 days, under
LL for the next 3 days and then finally under DD for 3 days. CCA1/LHY (i = CL),
PRR5/TOC1 (i = P51), PRR9/PRR7 (i = P97), and ELF4/LUX (i = EL) are plotted
in panels (a) to (d), respectively. (e,f) Peak phases of mRNA expression as a function of
photoperiod (CCA1/LHY : red circles; PRR9/PRR7 ; green triangles, PRR5/TOC1 ; blue
squares, ELF4/LUX ; black diamonds). Results for the distributed delay model and the
original model are plotted in panels (e) and (f), respectively. Dotted lines denote dusk.
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Figure 4: Simulating over-expression of LHY using the distributed delay formulation of
the compact model DC2016, in which LHY represses the expression of the other clock com-
ponents. After entrainment to 12h:12h LD cycles, the simulation environment is changed
to LL at t = 0. At t = t0, the LHY gene (i = CL) was over-expressed, for the following
values of t0: 0 h, 4 h, 8 h, 12 h, 16 h, 20 h. In each case, mRNA expression levels (filled
back bars) for LHY (a–c), PRR5/TOC1 (d–f), and PRR9/PRR7 (g–i) were compared
2 h post-perturbation with those of the control (white bars), under which LHY was not
overexpressed. The times shown indicate when gene expression was measured (i.e. t0 +2).
Panels (a,d,g) plot simulations generated by the distributed delay model, (b,e,h) plot the
corresponding simulations generated by the original model (De Caluwé et al., 2016) and
panels (c,f,i) show the experimental results of (Adams et al., 2015).
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Appendix A. Plant clock models

Appendix A.1. The single feedback loop model – L2005A

The single feedback loop model (Locke et al., 2005a) consists of the LHY
and TOC1 genes, acting as repressor and activator, respectively. The dy-
namics is described by the following seven ordinary differential equations:

dc
(m)
L

dt
= q1c

(c)
P L(t) +

h1c
(n)
T

a

ga1 + c
(n)
T

a −
m1c

(m)
L

k1 + c
(m)
L

,

dc
(c)
L

dt
= p1c

(m)
L − r1c(c)L + r2c

(n)
L −

m2c
(c)
L

k2 + c
(c)
L

,

dc
(n)
L

dt
= r1c

(c)
L − r2c

(n)
L −

m3c
(n)
L

k3 + c
(n)
L

,

dc
(m)
T

dt
=

h2g
b
2

gb2 + c
(n)
L

b
− m4c

(m)
T

k4 + c
(m)
T

,

dc
(c)
T

dt
= p2c

(m)
T − r3c(c)T + r4c

(n)
T −

m5c
(c)
T

k5 + c
(c)
T

,

dc
(n)
T

dt
= r3c

(c)
T − r4c

(n)
T −

m6c
(n)
T

k6 + c
(n)
T

,

dc
(c)
P

dt
= (1− L(t))p3 −

m7c
(c)
P

k7 + c
(c)
P

− q2L(t)c
(c)
P . (A.1)

In the above, c
(j)
i (t) represents the cellular concentration of the ith gene/protein,

where i = L and T correspond to the LHY and TOC1 genes, respectively,
i = P denotes light-sensitive protein P and the labels j = m, c, n denote
mRNA and protein in the cytoplasm and nucleus, respectively. Note that
CCA1 and LHY are considered as one component (labelled LHY ) (Locke
et al., 2005a). L(t) represents the input light signal (L(t) = 0: light off;
L(t) = 1: light on). The rate constants denote transcription (hl, gl), degra-
dation (ml, kl), translation (pl), transport between the nucleus and cytoplasm
(rl) and light input (ql). (a, b) are the Hill coefficients. The model has 29
parameters in all. The optimised parameter values reported in (Locke et al.,
2005a) that were used to generate target timeseries data for this study are
listed in Table A.1.
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Parameter Value

a 1
b 2
h1 7.5038 nM/h
h2 0.6801 nM/h
g1 1.4992 nM
g2 3.0412 nM
m1 10.0982 nM/h
m2 1.9685 nM/h
m3 3.7511 nM/h
m4 2.3422 nM/h
m5 7.2482 nM/h
m6 1.8981 nM/h
m7 1.20 nM/h
k1 3.8045 nM
k2 5.3087 nM
k3 4.1946 nM
k4 2.5356 nM
k5 1.442 nM
k6 4.8600 nM
k7 1.20 nM
p1 2.1994 1/h
p2 9.444 1/h
p3 0.5 1/h
r1 0.2817 1/h
r2 0.7676 1/h
r3 0.4364 1/h
r4 7.3021 1/h
q1 4.5703 1/h
q2 1.0 1/h

Table A.1: Nominal parameter values for the single feedback loop model L2005A (Locke
et al., 2005a).

Appendix A.2. Kernel model – MF2015K
Here, we consider the system obtained from the kernel model (Foo et al.,

2016) of the Arabidopsis circadian clock by removing the components with
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no feedback to the main circadian loop (namely the RVE8 and GI genes,
their proteins and COP1 and ZTL proteins). This results in a set of 18 ordi-
nary differential equations for the genes LHY (as a proxy for LHY/CCA1 ),
PRR9, PRR7, PRR5, TOC1, ELF3, ELF4 and LUX, together with the
light-sensitive protein P and the evening complex EC :

dc
(m)
L

dt
=

θ4

θ25 + θ6

(
θ54c

(p)
P9 + θ55c

(p)
P7 + θ56c

(p)
P5

)2 + θ7c
(m)
L ,

dc
(p)
L

dt
= θ8c

(m)
L + θ9c

(p)
L ,

dc
(m)
P9

dt
= θ10c

(p)
P L(t) + θ11 +

θ12c
(p)
L

2

θ213 + c
(p)
L

2 + θ14c
(m)
P9 ,

dc
(p)
P9

dt
= θ15c

(m)
P9 + θ16c

(p)
P9,

dc
(m)
P7

dt
=

θ17(
θ18 + c

(p)
EC

) (
θ219 + c

(p)
T

2
) + θ20c

(m)
P7 ,

dc
(p)
P7

dt
= θ21c

(m)
P7 + θ22c

(p)
P7,

dc
(m)
P5

dt
=

θ23(
θ224 + c

(p)
T

2
) (

θ225 + c
(p)
L

2
) + θ26c

(m)
P5 ,

dc
(p)
P5

dt
= θ27c

(m)
P5 + θ28c

(p)
P5,

dc
(m)
T

dt
=

θ29(
θ30 + c

(p)
EC

) (
θ231 + c

(p)
L

2
) + θ32c

(m)
T ,

dc
(p)
T

dt
= θ33c

(m)
T + θ34c

(p)
T ,

dc
(m)
E3

dt
=

θ37

θ238 + c
(p)
L

2 + θ39c
(m)
E3 ,

dc
(p)
E3

dt
= θ40c

(m)
E3 + θ41c

(p)
E3,
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dc
(m)
E4

dt
=

θ42(
θ43 + c

(p)
EC

) (
θ244 + c

(p)
L

2
) + θ45c

(m)
E4 ,

dc
(p)
E4

dt
= θ46c

(m)
E4 + θ47c

(p)
E4,

dc
(m)
LUX

dt
=

θ48(
θ49 + c

(p)
EC

) (
θ250 + c

(p)
L

2
) + θ51c

(m)
LUX ,

dc
(p)
LUX

dt
= θ52c

(m)
LUX + θ53c

(p)
LUX ,

dc
(p)
P

dt
= θ1L(t) + θ2c

(p)
P + θ3,

dc
(p)
EC

dt
= θ35 c

(p)
E3 c

(p)
E4 c

(p)
LUX + θ36c

(p)
EC . (A.2)

Here, c
(m)
i (resp. c

(p)
i ) represents the ith mRNA (resp. protein or protein

complex) concentration, and has a dimensionless value with arbitrary scale
for each component; thus, values within the same component – but not be-
tween different components – can be meaningfully compared. The subscripts
i = P , L, P9, P7, P5, T , EC, E3, E4 and LUX denote protein P , LHY (as
a proxy for LHY/CCA1 ), PRR9, PRR7, PRR5, TOC1, EC, ELF3, ELF4
and LUX, respectively. L(t) represents the input light signal (L(t) = 0: light
off; L(t) = 1: light on). The model has a total of 56 parameters. The op-
timised parameter values presented in (Foo et al., 2016) that were used to
generate synthetic data for this study are listed in Table A.2.
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Parameter Value Parameter Value

θ1 −0.43301 θ2 −0.4949
θ3 0.4358 θ4 1.9601
θ5 0.7412 θ6 0.3821
θ7 −2.7804 θ8 1.9601
θ9 0.7412 θ10 0.3821
θ11 −2.7804 θ12 0.83604
θ13 −0.64719 θ14 0.73369
θ15 6.4976× 10−5 θ16 0.75976
θ17 1.3352 θ18 −0.59706
θ19 0.50077 θ20 −0.22337
θ21 0.0099479 θ22 0.034706
θ23 0.87726 θ24 −0.23934
θ25 0.23744 θ26 −0.18571
θ27 0.026728 θ28 0.13201
θ29 0.031588 θ30 −40.9795
θ31 4.0753 θ32 −2.5872
θ33 0.01501 θ34 0.036926
θ35 0.011307 θ36 −12.2192
θ37 1.4074 θ38 −1.5159
θ39 0.32848 θ40 −0.14877
θ41 0.014607 θ42 0.23392
θ43 −0.27265 θ44 14.0123
θ45 −17.3569 θ46 0.014384
θ47 0.032117 θ48 0.051737
θ49 −11.007 θ50 0.67365
θ51 −0.39718 θ52 0.028907
θ53 0.01727 θ54 1.275
θ55 1.5983 θ56 −0.44539

Table A.2: Nominal parameter values for the kernel model MF2015K (Foo et al., 2016).

Appendix A.3. Compact model - DC2016

The compact model of De Caluwé et al. (2016) is based on 4 pairs of
clock genes, CL (CCA1 and LHY ), P97 (PRR9 and PRR7 ), P51 (PRR5
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and TOC1 ) and EL (ELF4 and LUX ), together with the light-sensitive
protein P (PIF4 and PIF5 ) (De Caluwé et al., 2016). The system dynamics
are modelled by the following 9 ordinary differential equations:

dc
(m)
CL

dt
=
(
v1 + v1LL(t)c

(p)
P

)
· 1

1 +

(
c
(p)
P97

K1

)2

+

(
c
(p)
P51

K2

)2

− (k1LL(t) + k1DD(t)) c
(m)
CL ,

dc
(p)
CL

dt
= (p1 + p1LL(t)) c

(m)
CL − d1c

(p)
CL,

dc
(m)
P97

dt
=

(
v2LL(t)c

(p)
P + v2A + v2B +

c
(p)
CL

2

K2
3 + c

(p)
CL

2

)
· 1

1 +

(
c
(p)
P51

K4

)2

+

(
c
(p)
EL

K5

)2

− k2c(m)
P97,

dc
(p)
P97

dt
= p2c

(m)
P97 − (d2DD(t) + d2LL(t)) c

(p)
P97,

dc
(m)
P51

dt
= v3

1

1 +

(
c
(p)
CL

K6

)2

+

(
c
(p)
P51

K7

)2 − k3c
(m)
P51,

dc
(p)
P51

dt
= p3c

(m)
P51 − (d3DD(t) + d3LL(t)) c

(p)
P51,

dc
(m)
EL

dt
= L(t) v4

1

1 +

(
c
(p)
CL

K8

)2

+

(
c
(p)
P51

K9

)2

+

(
c
(p)
EL

K10

)2 − k4c
(m)
EL ,

dc
(p)
EL

dt
= p4c

(m)
EL − (d4DD(t) + d4LL(t)) c

(p)
EL,

dc
(p)
P

dt
= 0.3

(
1− c(p)P

)
D(t)− c(p)P L(t). (A.3)

In the above, c
(m)
i (resp. c

(p)
i ) represents the concentration of the ith mRNA

(resp. protein or protein complex), for i = CL, P97, P51, EL and P . L(t)
represents the input light signal (L(t) = 0: light off; L(t) = 1: light on) and
D(t) denotes a corresponding input dark signal, given by D(t) = 1 − L(t).
The model contains 34 parameters, the values of which were obtained through
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automated optimisation in (De Caluwé et al., 2016). These values are listed
in Table A.3. They were used here to generate synthetic data for constructing
the distributed delay version of the modified DC2016 clock circuit in which
CL is a universal repressor.

Appendix B. Optimising the distributed delay representation of
the compact model

This section provides details of the protocol used to optimise the parame-
ters of equations (6). To compute the cost function, the model was simulated
under 12h:12h LD conditions for a total of 25 days and then released into con-
stant light (LL) for 15 days, followed by constant dark (DD) for 15 days. In
each light condition, the first 10 days were discarded as transient dynamics.

To ensure detectable rhythmicity under LL/DD conditions, all variables
were required to have a minimum value of 0.1, as well as a minimum differ-
ence of 10 % between their minimum and maximum values. Any solution
that did not meet these criteria was considered to be arrhythmic. Arrhyth-
mic solutions were penalised with an arbitrarily large score. For rhythmic
solutions, the free-running period was calculated using the chi-square peri-
odogram (Sokolove and Bushell, 1978) of the LHY gene at a significance
level of 1%. A score of 0 was assigned to a solution having a free-running
period between 24 and 25 h under LL and between 25 and 28 h under DD.
Solutions with free-running periods outside these ranges were allocated the
following scores: (τLL − 24.5)2/(0.1·24.5)2 (τLL: free-running period under
LL) and (τDD − 26.5)2/(0.1·26.5)2 (τDD: free-running period under DD).

For simulations under 12h:12h LD cycles, solutions that were not en-
trained to the LD cycles were penalised with an arbitrarily large score. En-
trained solutions were given a score of 0 for each gene that attained peak ex-
pression within ±1 h of the expected ZT, which were as follows: CCA1/LHY
(ZT24), PRR5/TOC1 (ZT12), PRR9/PRR7 (ZT6) and ELF4/LUX (ZT9)
(De Caluwé et al., 2016). Expression peaks lying outside these intervals
were scored as follows: (ZTCL− 24)2/(0.1·24.5)2, (ZT P51− 12)2/(0.1·24.5)2,
(ZT P97 − 6)2/(0.1·24.5)2 and (ZTEL − 9)2/(0.1·24.5)2, where ZT i denotes
the target Zeitgeber time of the ith gene’s peak expression).
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Parameter Value

v1 4.58 nM/h
v1L 3.0 nM/h
v2A 1.27 nM/h
v2B 1.48 nM/h
v2L 5.0 nM/h
v3 1.0 nM/h
v4 1.47 nM/h
k1L 0.53 1/h
k1D 0.21 1/h
k2 0.35 1/h
k3 0.56 1/h
k4 0.57 1/h
p1 0.76 1/h
p1L 0.42 1/h
p2 1.01 1/h
p3 0.64 1/h
p4 1.01 1/h
d1 0.68 1/h
d2D 0.5 1/h
d2L 0.29 1/h
d3D 0.48 1/h
d3L 0.78 1/h
d4D 1.21 1/h
d4L 0.38 1/h
K1 0.16 nM
K2 1.18 nM
K3 0.24 nM
K4 0.23 nM
K5 0.3 nM
K6 0.46 nM
K7 2.0 nM
K8 0.36 nM
K9 1.9 nM
K10 1.9 nM

Table A.3: Nominal parameter values for the compact model DC2016 (De Caluwé et al.,
2016).
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De Caluwé, J., Xiao, Q., Hermans, C., Verbruggen, N., Leloup, J.-C., Gonze,
D., 2016. A compact model for the complex plant circadian clock. Front.
Plant Sci. 7, 74.

Dodd, A. N., Salathia, N., Hall, A., Kévei, E., Tóth, R., Nagy, F., Hi-
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