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a b s t r a c t

The dynamic emulation of non-linear deterministic computer codes where the output
is a time series, possibly multivariate, is examined. Such computer models simulate the
evolution of some real-world phenomenon over time, for example models of the climate
or the functioning of the human brain. The models we are interested in are highly
non-linear and exhibit tipping points, bifurcations and chaotic behaviour. However, each
simulation run could be too time-consuming to perform analyses that require many
runs, including quantifying the variation in model output with respect to changes in
the inputs. Therefore, Gaussian process emulators are used to approximate the output
of the code. To do this, the flow map of the system under study is emulated over a
short time period. Then, it is used in an iterative way to predict the whole time series.
A number of ways are proposed to take into account the uncertainty of inputs to the
emulators, after fixed initial conditions, and the correlation between them through the
time series. The methodology is illustrated with two examples: the highly non-linear
dynamical systems described by the Lorenz and van der Pol equations. In both cases,
the predictive performance is relatively high and the measure of uncertainty provided
by the method reflects the extent of predictability in each system.
©2019 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Computer models, e.g. numerical simulators, are sophisticated mathematical representations of some real-world
phenomenon implemented in computer programs (O’Hagan, 2006). Such models are widely used in many fields of science
and technology to aid our understanding of physical processes or because conducting physical experiments is too costly,
highly time-consuming or even impossible in some cases (Sacks et al., 1989). Often, simulators are available as commercial
packages and the underlying functions are unknown to the user. In most applications, it is crucial to understand the
sensitivity of model outputs to variation or uncertainty in inputs (O’Hagan, 2006). Performing such quantitative studies
requires a large number of simulation runs, see for example Ferrat et al. (2018). It becomes impractical if each simulation
run is time-consuming.

Emulators, also known as surrogate models, metamodels or response surfaces (Kleijnen, 2009) provide a ‘‘fast’’ approxi-
mation of complex simulation models using a limited number of training runs. The most popular classes of emulators are
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neural networks, splines, regression models, etc. We refer the reader to Jin et al. (2000), Chen et al. (2006) and Forrester
and Keane (2009) for more information on different types of emulators and their properties. Among the diverse types of
emulators, Gaussian processes (GPs) have become increasingly popular over the last two decades in the field of the design
and analysis of computer experiments (Sacks et al., 1989; Santner et al., 2003; Jones and Johnson, 2009). Also known
as Kriging, especially in geostatistics (Cressie, 1993), GPs have been effectively used in many real-world applications
including wireless communication (Schwaighofer et al., 2004), metallurgy (Bailer-Jones et al., 1997), biology (Swain et al.,
2016; Kalaitzis and Lawrence, 2011; Lawrence et al., 2006), environmental science (Lee et al., 2011; Challenor, 2004), and
sensor placements (Krause et al., 2008).

There are several reasons for the popularity of GPs. Firstly, they can be used to fit any smooth (with different degrees of
smoothness), continuous function thanks to the variety of covariance kernels available (Neal, 1998). See Section 2 for more
details on kernels. Secondly, GPs are non-parametric models, i.e., no strong assumptions about the form of the underlying
function are required, unlike polynomial regression (Rawlings et al., 2006). Moreover, the prediction performance of GPs
is comparable to (if not better than) other methods such as neural networks (Rasmussen, 1997; Kamath et al., 2018). The
limit of a single layer neural network as the number of neurons tends to infinity is a Gaussian process (MacKay, 1998;
Neal, 1996). The main advantage of GPs is that they provide not only a mean predictor but also a quantification of the
associated uncertainty. This uncertainty reflects the prediction accuracy and can serve as a criterion to enhance prediction
capability of the emulator (Jin et al., 2002).

This paper deals with the emulation of dynamic computer models that simulate phenomena evolving with time. The
output of a dynamic simulator is a time series for each input. The time series represents the values of the state variables
at each time step. Such models are often expressed by a system of differential equations.

Dynamic simulators appear in many applications. For instance, Stommel’s box model (Stommel, 1961) simulates the
evolution of temperature and salinity to determine the ocean density. In Birrell et al. (2011) a dynamic model is developed
whose output is a time series of general practice consultations for the 2009 A/H1N1 influenza epidemic in London. Since
this model is computationally expensive, a GP emulator is developed for calibration (Farah et al., 2014). Another real-
world example of dynamic computer models is presented in Kuczera et al. (2006) where a saturated path hydrology
model simulates the movement of water at catchment scales. In Williamson and Blaker (2014) large climate models with
time series output that exhibit chaotic behaviour are emulated using Bayesian dynamic linear model Gaussian processes.
We refer to Conti and O’Hagan (2010) for more examples on such simulators.

There are many different proposed approaches for emulating dynamic simulators. According to Reichert et al. (2011),
these approaches can be divided into four categories:

1. One method is to use a multi-output emulator for predicting time series output (Conti and O’Hagan, 2010). In this
case, the dimension of output space is q = T where T is the number of time steps the simulator is run for. However,
when T is large, the efficiency will reduce or may cause numerical problems. In addition, prediction is possible
only for a fixed time horizon and one needs to repeat the prediction procedure for different time horizons. Building
q separate emulators for q time points has the drawback of losing some information, as the correlation between
various outputs (which we expect to be high) is not considered. Such correlation is taken into account in Fricker et al.
(2013) and Rougier (2008) within multivariate emulators. However, as mentioned earlier, multivariate emulators
are not efficient when the simulator’s output is highly multivariate. A common approach to alleviate this problem
is to perform dimension reduction techniques on the output space such as principal components analysis (Higdon
et al., 2008) and wavelet decomposition (Bayarri et al., 2007). A potential drawback of these techniques is that we
may lose information by leaving out some components.

2. A second approach is to treat time as an additional model input (Kennedy and O’Hagan, 2001). Gaussian processes
have a computational complexity of O(n3) where n is the number of sample points. Considering time as an extra
parameter increases the computational cost to O(n3

+ T 3) using a separable covariance function (Plumlee, 2014).
As a result, the method can be burdensome when T is large. Moreover, it is shown in Conti and O’Hagan (2010)
that the performance of multi-output emulators exceeds emulators with time as an extra input.

3. One-step ahead emulations are another example in which the basic assumption is that the model output at a given
time depends only on the previous output in time. Then, the transition function needs to be approximated. This
method is reported to be efficient (Conti et al., 2009).

4. Finally, methods have been described that combine stochastic dynamic models with innovation terms in the form
of GPs. For example, in Liu and West (2009) a time-varying auto regression time series, which is a type of dynamic
linear model, combined with GPs is used to emulate a dynamic computer code in a hydrological system. Similar
work is carried out in Williamson and Blaker (2014) with application to climate models.

We propose a methodology based on iterative one-step ahead predictions. Given that simulating a long time series from
the system is computationally expensive, our strategy is to emulate the flow map of the system over a short period of
time. Then, we use the estimated flow map, which is computationally cheaper, to approximate the whole time series in an
iterative way similar to the work in Conti et al. (2009). However, our method is different from that work in several ways.
First, we build separate emulators to approximate each state variable that allows to have different covariance properties.
Second, we propose a methodology to incorporate the uncertainty of inputs to the emulators at time t and the correlation
between them through the time series, starting from a fixed initial condition. This is an important aspect of one-step ahead
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predictions because input to the GP model is uncertain after the first time step. Besides, it can be used as a criterion to
estimate the predictability horizon of an emulator. Third, we emulate the flow map which is novel to our knowledge and
has not yet been pursued. The last item is the main difference between our work and the method presented in Girard
et al. (2003) where multi-step ahead forecasting of a given time series is performed by doing repeated one-step ahead
prediction conditional on the observed time series.

2. Gaussian processes as emulators

Let f be the underlying function of an expensive simulator we want to approximate (or predict) defined as f : X ↦−→ F .
Here, X ⊂ Rd and F ⊂ Rq are the input and output space respectively. We further assume that f is a ‘‘black-box’’ function;
there is no analytic expression for it and additional information such as gradients are not available. Also throughout this
paper we assume the simulator to be deterministic (vs. stochastic); i.e. if it is run twice with the same inputs, the outputs
will be identical.

A GP defines a distribution over functions which can be regarded as a generalization of the normal distribution to
infinite dimensions. Formally, a GP indexed by X is a collection of random variables {Zx : x ∈ X } such that for any N ∈ N
and any x1, . . . , xN ∈ X ,

(
Zx1 , . . . , ZxN

)⊤ follows a multivariate Gaussian distribution (Rasmussen and Williams, 2005).
GPs are fully characterized by their mean function µ(.) and covariance kernel k(., .), which are defined as

µ : X ↦−→ R ; µ(x) = E[Zx] (1)

k : X × X ↦−→ R ; k(x, x′) = Cov (Zx, Zx′) . (2)

The mean function reflects our prior belief about the form of f . That is why µ(.) is also called the ‘‘prior’’ mean within
the Bayesian framework. While µ(.) could be any function, k(., .) must be symmetric positive definite. The most commonly
used kernel is the squared exponential (SE) which has the form

k
(
x, x′

)
= σ 2

d∏
l=1

exp
(
−
| xl − x′l |

2

2θ2
l

)
. (3)

In the above equation, the parameter σ 2 is referred to as the process variance and controls the scale of the amplitude of
sample paths. The parameter θl is called the characteristic length-scale and controls the degree of smoothness of sample
paths along the coordinate l , 1 ≤ l ≤ d. The Matérn family of covariance functions is also widely used (Rasmussen
and Williams, 2005). Usually the kernel parameters are unknown and need to be estimated. Choosing appropriate kernel
parameters has a huge impact on the accuracy of emulators. Maximum likelihood, cross validation or Bayesian estimation
are common methods for this purpose.

Covariance kernels play an important role in GP modelling. They customize the structure of sample paths of GPs.
As an example, three different kernels (exponential, Matérn 3/2, and SE, see Rasmussen and Williams, 2005 for more
information) and the associated sample paths are illustrated in Fig. 1. While in a process incorporating the SE kernel the
sample paths are smooth (infinitely differentiable), they are only continuous (not differentiable) when the exponential
kernel is used. Herein, we consider stationary covariance kernels that are translation invariant. The value of a stationary
kernel depends only on the difference between input vectors. In other words, k(x, x′) = k(x+ h, x′ + h) for any h ∈ Rd.

To fit a GP, the true function f is evaluated at n locations Xn =
{
x1, . . . , xn

}
with the corresponding outputs

(observations) y =
(
f (x1), . . . , f (xn)

)⊤. Together, Xn and y form the set of training samples/data denoted by D = {Xn, y}.
Then the conditional distribution of Zx is calculated as:{

Zx | D : Zx1 = f (x1), . . . , Zxn = f (xn)
}
. If the mean function µ(.) is known, the prediction (conditional mean, m(.)) and

its uncertainty (conditional variance, s2(.)) at a generic location x are of the form

m(x) = µ(x)+ k(x)⊤K−1(y− µ(Xn)) (4)

s2(x) = k(x, x)− k(x)⊤K−1k(x), (5)

where k(x) =
(
k(x, xi)

)
1≤i≤n is the vector of covariances between the observation at x and the outputs at the xis and

K =
(
k(xi, xj)

)
1≤i,j≤n denotes the matrix of covariances between sample outputs. Also, µ(Xn) is the vector of mean

function values at the training samples. The mean predictor obtained by Eq. (4) interpolates the points in the training
data. Moreover, the prediction uncertainty vanishes at the training points and grows as we get further from them. An
illustrative example is shown in Fig. 2.

3. Emulating dynamical simulators

3.1. One-step ahead emulation: general methodology

We wish to predict the output of a computationally expensive dynamical simulator relying on a d-dimensional
autonomous system of ordinary differential equations (ODEs) of which the state variable is given by the real-valued vector
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Fig. 1. The structure of GP sample paths is determined by the covariance kernel. Left: Graphs of three (stationary) kernels: exponential (solid), Matérn
3/2 (dotted), and squared exponential (dashed). Right: Three sample paths corresponding to the covariance kernels shown on the left picture. The
process with squared exponential kernel is infinitely differentiable, whilst with Matérn 3/2 the process is only once differentiable. The process with
exponential kernel is not differentiable.

Fig. 2. Gaussian process mean (thick blue dashed line) conditional on 6 training samples (red bullets), which is also known as the conditional mean
(denoted by m(x)), along with confidence intervals (thick dotted blue lines) equal to m(x)± 2s(x). The true function is the thick solid line. The thin
lines are 50 sample paths of the GP.

x(t) = (x1(t), . . . , xd(t))⊤. This system gives rise to the flow map Φ : Rd
× R ↦−→ Rd such that x(t0 +∆t) = Φ(x(t0), ∆t)

for any x(t0) and ∆t . We are interested in a ‘‘short’’ fixed time step ∆t to give x(t1) at time t1 = t0+∆t . Since ∆t is fixed,
we consider the flow map as a function of x(t0) only.

To predict x(t) over time, we assume that Φ(.) consists of d components given by

Φ(.) := (f1 (.) , . . . , fd(.))⊤ , fl : Rd
↦−→ R , 1 ≤ l ≤ d, (6)

such that each fl maps x(t0) to xl(t1) the lth component of x(t1). A 2D example is illustrated in Fig. 3 to clarify our
assumption. Then, fls are treated as black-box functions that are replaced with their emulators denoted by f̂ls which
are iteratively used for one-step ahead predictions over the time horizon T .

The training set consists of n initial conditions with the corresponding outputs, which are the solution of the system at
time t1, obtained by running the simulator over the short time horizon ∆t . This training set is then used to approximate
each function fl by a GP. The instructions are summarized in Algorithm 1.

Note that in Algorithm 1, only the initial input to the emulators is certain. Thereafter, inputs are actually outputs of the

emulators in the previous step. For example, to predict x at t2 = t0+2∆t , the input is x̂∗(t1) =
(
f̂1 (x(t0)) , . . . , f̂d (x(t0))

)⊤
in which p

(
f̂l (x(t0))

)
∼ N

(
ml(x(t0)), s2l (x(t0))

)
, 1 ≤ l ≤ d, see Eqs. (4) and (5). So, we need to incorporate the input

uncertainty in our modelling which is discussed below. Propagating such uncertainty, which is neglected in Conti et al.
(2009), results in a more accurate representation of the uncertainty in the emulator over the time horizon.
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Fig. 3. Left: space of the initial conditions x(t0) = (x1(t0), x2(t0))⊤ . Right: space of the solution of the system at time t1 = t0 + ∆t , i.e. x(t1). The
flow map Φ(.) maps from x(t0) to x(t1) : x(t1) = Φ(x(t0)) = (f1(x(t0)), f2(x(t0)))⊤ where f1 and f2 are unknown functions approximated by GPs.

3.2. Emulation with uncertain input: uncorrelated emulators

GPs with uncertain inputs have been studied in Girard et al. (2003), Candela et al. (2003) and Kuß (2006). Suppose x∗
is drawn from a distribution that has mean µ∗ and variance Σ∗. The probability distribution of the prediction at x∗ with
the GP emulator f̂ is determined by

p
(
f̂ (x∗)|µ∗,Σ∗,D

)
=

∫
p
(
f̂ (x∗)|x∗,D

)
p(x∗) dx∗, (7)

where p
(
f̂ (x∗)|x∗,D

)
has a normal distribution whose mean and variance are specified by Eqs. (4) and (5). The integral

in (7) is analytically intractable (Girard et al., 2003). However, it can be approximated by different techniques which
are divided into two groups: Monte Carlo-based methods and deterministic techniques such as Laplace’s approximation.
In this work, the former approach is used because it is simple, we only need to sample from N (µ∗,Σ∗), and the
approximated distribution will converge to the true distribution as the number of samples grows (Girard et al., 2003;
Rasmussen, 1997). We refer the reader to MacKay (2002) for more information on the deterministic techniques.

Let x∗ ∼ N (µ∗,Σ∗), the first and second moments of p
(
f̂ (x∗)|µ∗,Σ∗,D

)
using the law of iterated expectations and

conditional variance are given by

E
[
f̂ (x∗)|µ∗,Σ∗

]
= Ex∗

[
Ef̂ (x∗)

[
f̂ (x∗)

⏐⏐x∗]]
= Ex∗

[
m(x∗)

]
(8)

Var
[
f̂ (x∗)|µ∗,Σ∗

]
= Ex∗

[
Varf̂ (x∗)

[
f̂ (x∗)

⏐⏐x∗]]
+ Varx∗

[
Ef̂ (x∗)

[
f̂ (x∗)

⏐⏐x∗]]
= Ex∗

[
s2(x∗)

]
+ Varx∗

[
m(x∗)

]
. (9)

Algorithm 1 Emulation of dynamic non-linear computer models

1: Select n samples of initial conditions: Xn =
{
x1(t0), . . . , xn(t0)

}
2: Run the simulator to obtain

{
x1(t1), . . . , xn(t1)

}
3: for l = 1 to d do
4: y←

(
x1l (t1), . . . , x

n
l (t1)

)⊤
5: Build the l-th emulator f̂l, based on D = {Xn, y}
6: end for
7: Predict over time horizon T given initial condition x(t0) as follow

x̂∗(t1) =
(
f̂1 (x(t0)) , . . . , f̂d (x(t0))

)⊤
▷ x with a superscript ∗ indicates that it is uncertain.

x̂∗(t2) =
(
f̂1
(
x̂∗(t1)

)
, . . . , f̂d

(
x̂∗(t1)

))⊤
...

...

x̂∗(tT ) =
(
f̂1
(
x̂∗(tT−1)

)
, . . . , f̂d

(
x̂∗(tT−1)

))⊤
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Fig. 4. Estimating the probability distribution of the output given a distribution of inputs using the Monte Carlo method. Left: the model input is
uncertain with the probability distribution: x∗ ∼ N (0.55, 0.052), as shown by the red line. Right: the estimated output distributions for the true
function (solid) and the emulator (blue dashed). These estimates are based on nMC = 10 000 samples drawn from x∗ that are propagated in f (.) and
m(.). Performing such a large number of function evaluations is impractical if f is computationally expensive, but in our case this step is performed
using the emulator.

Computing quantities in (8) and (9) is not straightforward because they are functions of the random variable x∗. In
this work, m(x∗) and s2(x∗) are approximated using a Monte Carlo (MC) method which relies on samples repeatedly
drawn from a probability distribution and statistical analysis to infer the results (Raychaudhuri, 2008). For example, to
approximate Ex∗ [m(x∗)] in Eq. (8), samples are repeatedly drawn from the random variable x∗. Then, they are propagated
through the function m(.) defined in Eq. (4). Finally, the desired quantity is approximated using

Ex∗
[
m(x∗)

]
≈

1
nMC

nMC∑
i=1

m(x∗i), (10)

where nMC denotes the number of MC samples. To shed more light on the MC method, an illustrative example is
demonstrated in Fig. 4.

3.3. Emulation with uncertain input: correlated emulators

In the previous section, each element of x(t) = (x1(t), x2(t), . . . , xd(t))⊤ is emulated separately; d different GP
emulators denoted by f̂1, f̂2, . . . , f̂d are employed independently such that the lth emulator f̂l emulates the transition
function fl defined as fl : x(t0) ↦−→ xl(t1). However, we may lose some information if correlation between emulators
is neglected.

Let x∗ ∼ N (µ∗,Σ∗) be an uncertain input to the d emulators. As a result, x∗∗ =
(
f̂1(x∗), . . . , f̂d(x∗)

)⊤
is a random

vector whose mean is determined by

µ∗∗ =
(
E
[
f̂1(x∗)|µ∗,Σ∗

]
, . . . ,E

[
f̂d(x∗)|µ∗,Σ∗

])⊤
. (11)

The elements in µ∗∗ are approximated using (10). Notice that x∗∗ is not necessarily a random normal variable, see Fig. 4 as
an example in which the underlying function is highly non-linear. However, we approximate it by a Gaussian which has
been used in similar works such as Girard et al. (2003). It is convenient to generate samples from a Gaussian distribution
as we use the Monte Carlo method to approximate the unknown quantities. Note that if we use a very small time step
relative to the size of the vector field (∆t → 0), the change in x(t1) under the flow map for ∆t is very small. Therefore,
the function will be approximately fl (x(t0)) = x(t0) (this is the limit) and the assumption of normality on x∗∗ is quite
reasonable, see Fig. 5.

Let Σ∗∗ be the covariance matrix of x∗∗. In order to include the correlation between emulators, Σ∗∗ must be of the
form: ⎡⎢⎢⎣

Var
[
f̂1(x∗)|µ∗,Σ∗

]
. . . Cov

[
f̂1(x∗), f̂d(x∗)|µ∗,Σ∗

]
.
.
.

. . .
.
.
.

Cov
[
f̂d(x∗), f̂1(x∗)|µ∗,Σ∗

]
. . . Var

[
f̂d(x∗)|µ∗,Σ∗

]
⎤⎥⎥⎦ .
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Fig. 5. The flow map of the van der Pol model as a function of the initial condition x(t0) for the time step ∆t = 0.01. Since the time step is small, the
flow map is approximately linear. The two functions f1 and f2 are the components of the flow map defined as x(t1) = Φ(x(t0)) = (f1(x(t0)), f2(x(t0)))⊤ .

The diagonal elements of Σ∗∗ are calculated using Eq. (9) which is approximated by the MC method. The off-diagonal
elements, i.e. cross covariances, are given by:

Cov
[
f̂l(x∗), f̂j(x∗)|µ∗,Σ∗

]
= E

[
f̂l(x∗)f̂j(x∗)|µ∗,Σ∗

]
− E

[
f̂l(x∗)|µ∗,Σ∗

]
E
[
f̂j(x∗)|µ∗,Σ∗

]
, 1 ≤ l, j ≤ d, l ̸= j, (12)

which are approximated by the MC method as below

Cov
[
f̂l(x∗), f̂j(x∗)|µ∗,Σ∗

]
≈

1
nMC

nMC∑
i=1

f̂l(x∗i)f̂j(x∗i)

−

(
1

nMC

nMC∑
i=1

f̂l(x∗i)

)(
1

nMC

nMC∑
i=1

f̂j(x∗i)

)
. (13)

For example, the mean and covariance of x̂∗(t2) are obtained analogous to the way that µ∗∗ and Σ∗∗ are computed. The
uncertain input is x̂∗(t1) with the following distribution

N

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
E
[
f̂1(x(t0))

]
= m1 (x(t0))
.
.
.

E
[
f̂d(x(t0))

]
= md (x(t0))

⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
Var

[
f̂1(x(t0))

]
= s21 (x(t0)) . . . 0

.

.

.
.
.
.

.

.

.

0 . . . Var
[
f̂d(x(t0))

]
= s2d (x(t0))

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠ ,

where the mean and covariance are equivalent to µ∗ and Σ∗ in Eqs. (11)–(13). The same rules apply to predict the state
variable at times t = 3, 4, . . . , T .

It is worth mentioning that by applying a Gaussian distribution as a ‘‘prior’’ on the input at each time step (t ≥ 2),
the process can be considered as part of a family of ‘‘Deep Gaussian Processes’’ in which some properties of a GP are
themselves another GP, see Dunlop et al. (2018). In that paper, they show that for the squared exponential kernel and
certain parameter values, the process can become degenerate. We have not encountered this problem in any of our
examples.

To shed more light on this method, the mean and the covariance matrix of the input in one-step ahead predictions are
presented in Table 1. If cross covariances are not calculated and Σ∗∗ is assumed to be a diagonal matrix, then it means
the emulators are independent. Note that the GP emulators f̂1, . . . , f̂d are independent and hence, the cross covariances
are zero if the input to the emulators is deterministic, e.g. at t = 1. However, when the input is uncertain (t ≥ 2), the
predictive distribution of two independent GP becomes correlated (Kuß, 2006; Deisenroth et al., 2009).

4. Application to nonlinear dynamical systems

In this section we first describe the emulator which is applied for predicting dynamic models. We then examine the
prediction capability of the emulator on two well studied dynamical systems: the Lorenz and the van der Pol systems,
which are described in subsequent sections.

The GP emulator we use in our experiments consists of a first order polynomial regression for the mean function in
Eq. (1) (i.e., µ(x) = β0+β1x) and a squared exponential kernel, given in Eq. (3), for the covariance kernel k. These choices
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Table 1
Mean and covariance matrix of the input in one-step ahead predictions.
• t = 0, the input is deterministic:

x(t0) ∼ N

⎛⎜⎝x(t0),

⎡⎢⎣0 . . . 0
.
.
.

.

.

.
.
.
.

0 . . . 0

⎤⎥⎦
⎞⎟⎠

• t = 1, the cross covariances are zero because the emulators are independent:

x̂∗(t1) ∼ N

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
E
[
f̂1(x(t0))

]
.
.
.

E
[
f̂d(x(t0))

]
⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
Var

[
f̂1(x(t0))

]
. . . 0

.

.

.
.
.
.

.

.

.

0 . . . Var
[
f̂d(x(t0))

]
⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

• t = 2, the input to emulators are no longer deterministic and the method described
in this section should be applied:

x̂∗(t2)
app.
∼ N

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
E
[
f̂1(x̂∗(t1))

]
.
.
.

E
[
f̂d(x̂∗(t1))

]
⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
Var

[
f̂1(x̂∗(t1))

]
. . . Cov

[
f̂1(x̂∗(t1)), f̂d(x̂∗(t1))

]
.
.
.

.

.

.
.
.
.

Cov
[
f̂d(x̂∗(t1)), f̂1(x̂∗(t1))

]
. . . Var

[
f̂d(x̂∗(t1))

]
⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

.

.

.
.
.
.

.

.

.

• t = T :

x̂∗(tT )
app.
∼ N

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
E
[
f̂1(x̂∗(tn−1))

]
.
.
.

E
[
f̂d(x̂∗(t1))

]
⎤⎥⎥⎥⎦ ,

⎡⎢⎢⎢⎣
Var

[
f̂1(x̂∗(tn−1))

]
. . . Cov

[
f̂1(x̂∗(tn−1)), f̂d(x̂∗(tn−1))

]
.
.
.

.

.

.
.
.
.

Cov
[
f̂d(x̂∗(tn−1)), f̂1(x̂∗(tn−1))

]
. . . Var

[
f̂d(x̂∗(tn−1))

]
⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠.

of µ and k are recommended in Conti et al. (2009). A set of training samples of size n = 12d, as recommended in Jones
et al. (1998) and Loeppky et al. (2009), is drawn over the space of initial conditions. Our training sample is constrained
to lie in a cube. For example, a suitable boundary for the Lorenz attractor, as described in Afraimovich et al. (1977) and
Williams (1979), is given by the unstable manifold of the origin. To define a bounding box that contains the attractor,
we therefore simulated the system with initial conditions close to the origin and chose as boundaries in each coordinate
the extremes of the simulation. Note we do assume that the system is constrained to lie in the same volume, although
clearly we would like to capture most of its variation. The points of the training samples should be selected based on a
space-filling sampling scheme, and we therefore use a Latin hypercube (Stein, 1987; Pronzato and Müller, 2012). The goal
in a space-filling design is to spread the points evenly within the input space. No attempt is made to have the points lie
along the stable manifold, we simply try to ‘fill’ space.

To build each emulator f̂l, 1 ≤ l ≤ d, the training data consists of X =
{
x1(t0), . . . , xn(t0)

}
with the corresponding

outputs y =
(
x1l (t1), . . . , x

n
l (t1)

)⊤. The R package DiceKriging (Roustant et al., 2012) is employed to fit the GP emulator.
The unknown parameters of the SE kernel k (i.e. σ and θls) and the mean function µ (i.e. β0 and β1) are estimated by
maximum likelihood implemented in DiceKriging. After building the emulators, their accuracies are assessed by the
leave-one-out cross-validation mean squared error (MSELOO) defined as

MSELOO =
1
n

n∑
i=1

(
f̂l,−i

(
xi(t0)

)
− xil(t1)

)2
. (14)

In the above equation, f̂l,−i
(
xi(t0)

)
is the prediction obtained by the GP emulator f̂l based on all the data points in X except

the ith one.
The ODEs are solved by the default solver of the R package deSolve (Soetaert et al., 2010) which is called ‘‘ode’’. It is

based on a variable order method to integrate the system over the next step ahead, i.e. t1 = t0 + ∆t . More precisely, it
uses the LSODA (Livermore solver for ordinary differential equations with automatic switching between stiff and nonstiff
methods) method (Petzold, 1983). A full Jacobian matrix is used which is calculated internally by LSODA. In these two
examples, we use a fixed time step equal to ∆t = 0.01. In the following sections, we first apply the method of uncorrelated
emulators and subsequently examine the method of correlated emulators on two dynamical systems, i.e. the Lorenz and
van der Pol models.

4.1. Lorenz system: uncorrelated emulators

The Lorenz system was first proposed by Edward Lorenz in 1963 (Lorenz, 1963) as a mathematical representation
of atmospheric convection. It is a three-dimensional system of ordinary differential equations. Under certain choices of



186 H. Mohammadi, P. Challenor and M. Goodfellow / Computational Statistics and Data Analysis 139 (2019) 178–196

Fig. 6. The Lorenz system (solid black) and its emulation (blue dashed) considering the input uncertainty, but neglecting correlation between
emulators, as described in Algorithm 1. The 1-D pictures illustrate evolution of state variables x1, x2, x3 and their predictions. The emulators built
based on iterative one-step ahead predictions are able to well predict up to about t = 14. The 3-D picture shows the evolution and prediction of
the whole system.

parameters it can display chaotic behaviour, i.e. its behaviour is highly sensitive to initial conditions. The evolution of
three state variables is described by Soetaert et al. (2010)⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

dx1
dt
= ax1 + x2x3

dx2
dt
= b(x2 − x3)

dx3
dt
= −x1x2 + cx2 − x3,

(15)

where a, b and c are parameters. Here, we assume a = −8/3, b = −10 and c = 28. We focus on the case with initial
conditions x(t0) = (x1(t0) = 1, x2(t0) = 1, x3(t0) = 1)⊤. The accuracy of the emulators is high based on the MSELOO
criterion which is given below.

f̂1 f̂2 f̂3
MSELOO 1.946× 10−4 3.533× 10−7 1.288× 10−4

Emulation of the Lorenz model using the iterative one-step ahead predictions considering the input uncertainty, but
neglecting correlation between emulators, as described in Algorithm 1 is demonstrated in Fig. 6. We show the evolution
of predictions for each system variable over time, as well as a three-dimensional picture showing the evolution of the
whole system, (x1(t), x2(t), x3(t))⊤. The solid line represents the true model and the blue dashed line is the GP prediction.
It can be seen that the prediction precision is high at the beginning of the time course, for example t ≤ 14. However, the
emulator deviates from the true model as time progresses. Fig. 6 suggests that the emulator is well suited to describing
the evolution of the system within a ‘‘wing’’ of the Lorenz attractor, but that predictions break down upon switching to
the other part of the attractor.

Fig. 7 shows the uncertainties (solid black) associated with the predictions illustrated in Fig. 6. The uncertainties are
compared with the case in which the input uncertainty is not considered (red dashed line). Generally, if emulation is
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Fig. 7. Standard deviation (SD) associated with the predictions of state variables of Lorenz system (Fig. 6) with and without considering input
uncertainty, solid black and red dashed lines respectively. Incorporating input uncertainty augments the prediction SD. Contrary to our expectations,
the uncertainties do not grow with time.

Fig. 8. Top: Evolution of state variables of the van der Pol oscillator (solid black) and their predictions (blue dashed) considering the input uncertainty,
but neglecting correlation between emulators, as described in Algorithm 1. Bottom: Difference between the state variables of the van der Pol system
and their predictions, i.e. |xi − x̂i|. The prediction capability of emulators is high up to approximately t = 30.
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Fig. 9. Standard deviation (SD) of predicting the van der Pol system with and without considering input uncertainty, solid black and red dashed
lines respectively.

Fig. 10. The Lorenz system (solid black) and its prediction (blue dashed) considering input uncertainties and the correlation between emulators. The
prediction accuracy is high at the beginning of the time course, say up to t ≈ 13. From this point onwards, i.e. where the emulator is not able to
predict the true model well, the prediction tends to the average of the process. However, the credible intervals (shaded) are large enough to contain
the true model most of the time. Note when deviation from the true model occurs the prediction uncertainty reaches its maximum.

carried out with uncertain inputs, the magnitude of uncertainties is higher. Nevertheless, they are still too small and
contrary to our expectations do not increase over time as the uncertainty builds up from step to step. The true model is
not inside the credible intervals, which are defined as m(x) ± 2s(x). Note the credible intervals are not shown in Fig. 6,
but can easily be derived from Figs. 6 and 7. In particular, we would expect the uncertainty to ‘‘blow up’’ when we reach
the point of switching between wings of the attractor (at about t = 14) where our emulator can be on a different wing
to the true model but still has very small uncertainty.

4.2. van der Pol oscillator: uncorrelated emulators

The van der Pol model was first introduced by the Dutch electrical engineer Balthasar van der Pol in 1920. The van der
Pol oscillator model expresses the behaviour of non-linear vacuum tube circuits. In its two-dimensional form, it is given
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Fig. 11. The van der Pol model (solid black) and its prediction (blue dashed) considering input uncertainties and the correlation between emulators.
The shaded area represents the credible intervals. The predictive capability of the emulator is high at the beginning of the time course, up to t ≈ 25,
but subsequently is a frequency miss-match and the prediction damps. From this point onwards, the prediction tends to the long term average of
the system. However, the prediction uncertainty blows up when the emulator deviates from the true model.

Fig. 12. Left: standard deviation (SD) of prediction associated with the three variables in the Lorenz model. Right: SD of prediction associated with
the two variables in the van der Pol model. The y-axis is on logarithmic scale. In both cases, an SD reaches its maximum where the corresponding
emulator cannot well predict the true model. This can be used as a criterion to detect the predictability horizon of dynamic emulators. The vertical
green lines show the predictability horizon in the corresponding time series, change point in x̂1(t) (solid), x̂2(t) (dashed) and x̂2(t) (dotted).

Fig. 13. The determinant of the covariance matrix, used in Table 1, over time in correlated (black) and uncorrelated (red) emulators in the Lorenz
(left) and van der Pol (right) systems. In both examples, the determinant is larger in the correlated method which leads to a wider sampling of
update directions for the next step. This is in line with the magnitude of uncertainties in the correlated and uncorrelated methods. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

by the following equations (Strogatz, 2007)⎧⎪⎪⎨⎪⎪⎩
dx1
dt
= x2

dx2
dt
= α(1− x21)x2 − x1.

(16)
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Fig. 14. Correlated method: prediction of the Lorenz system (x1(t): first panel, x2(t): second panel and x3(t): third panel) with six different initial
conditions (corresponding to each row). The black line represents: x̂i(t)+ 2SD

(
x̂i(t)

)
− xi(t) and the red line is SD

(
x̂i(t)

)
with the (log scale) y-axis

shown in red on the right side. The change point is shown by the vertical green line. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Here, the scalar α > 0 determines the nonlinearity and the strength of damping. Here, we use the initial condition
x(t0) = (x1 = 1, x2 = 1)⊤ and α = 5. The accuracy of the emulators is given below.

f̂1 f̂2
MSELOO 7.887× 10−7 2.580× 10−7

The results of predicting state variables of the van der Pol oscillator, neglecting correlations between emulators are
illustrated in Fig. 8. The corresponding uncertainties are given by Fig. 9 where they are compared with the case that the
input uncertainty is not considered. The difference between emulation and the true model is low up to approximately
t = 30. Again, taking into account the input uncertainty augments prediction uncertainties everywhere. But, since they
are small, the true model is not inside the credible intervals (= prediction ± 2× prediction standard deviation) when
prediction accuracy declines. As is shown in the next section, considering both the input uncertainty and the correlation
between emulators allows uncertainties to grow over time.
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Fig. 15. Uncorrelated method: prediction of the Lorenz system (x1(t): first panel, x2(t): second panel and x3(t): third panel) with six different initial
conditions (corresponding to each row). The black line represents: x̂i(t)+ 2SD

(
x̂i(t)

)
− xi(t) and the red line is SD

(
x̂i(t)

)
with the (log scale) y-axis

shown in red on the right side. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

4.3. Application of correlated emulators to the Lorenz and van der Pol systems

The results of emulating the Lorenz and van der Pol systems considering input uncertainties together with the
correlation between emulators are illustrated in Figs. 10 and 11, respectively. The predictive capability of these emulators
is high at the beginning of the time course, say up to t ≈ 13 for the Lorenz and t ≈ 25 for the van der Pol models. In
both cases, when the emulators deviate from the true models, the prediction uncertainties blow up which can be used to
identify the time for which the prediction obtained by the emulator is reliable. This will be discussed later.

In the emulation of the Lorenz model, the prediction (blue dashed lines) tends to the average of the system after the
emulator no longer predicts the true model well, i.e. t ≈ 13. However, the uncertainty is large enough to encompass most
values of the system such that the true model predominantly remains inside the credible intervals represented by the
shaded area. Recall that the main drawback of the uncorrelated emulators method is that the prediction uncertainty is
too small and the true model is not inside the credible intervals.

In the case of the van der Pol system, the prediction is accurate up to t ≈ 25. From this time onwards, a frequency
miss-match happens and deviation from the true trajectory grows such that the simulator output is rarely inside the
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Fig. 16. Correlated method: prediction of the van der Pol model (x1(t): first panel and x2(t): second panel) with six different initial conditions
(corresponding to each row). The black line represents: x̂i(t) + 2SD

(
x̂i(t)

)
− xi(t) and the red line is SD

(
x̂i(t)

)
. The change point is shown by the

vertical green line. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

credible intervals after t ≈ 40. Also, the amplitude of the prediction gradually damps which can be interpreted as the
emulator in effect ‘‘giving up’’ on trying to emulate the value at a particular time t and instead falling back on a prediction
for a random time. Such a prediction is useless in practice but statistically makes sense.

We note that both the Lorenz and van der Pol models were set in regimes that contain an attractor, and we consider
initial conditions within their basins of attraction. Therefore, any trajectory converges to a bounded region. This means that
the uncertainty is bounded above by the uncertainty of all flow maps initiated within the basin of attraction, propagated
through the emulator. In each case we begin emulation with a single initial condition, i.e. certain input. As the variance
of the input distribution grows, a greater volume of the phase space is used as input into the emulation of the flow
map. As the variance of the input distribution grows, the mean of the emulator output tends to zero. We believe this is
because the mean is taken over flows with many different directions, such that on the average there is not a preferred
direction. This is in contrast to the case in which the variance of the input distribution is small, for example within the
initial emulated time period. In this case, the input distribution covers a small volume in phase space such that there
is a preferred direction of the sampled flows on average (for example when the distribution spans a small region of the
attractor).
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Fig. 17. Uncorrelated method: prediction of the van der Pol model (x1(t): first panel and x2(t): second panel) with six different initial conditions
(corresponding to each row). The black line represents: x̂i(t)+ 2SD

(
x̂i(t)

)
− xi(t) and the red line is SD

(
x̂i(t)

)
. (For interpretation of the references

to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 12 shows uncertainties associated with predictions of the variables in the Lorenz (left) and van der Pol systems
(right) considering the correlation between the emulators through the time series. As can be seen, the uncertainty grows
and reaches its maximum, interestingly, when deviation from the true model begins. From this point onwards, the
expected value of the emulator is the long term average of the underlying model while the uncertainty of prediction
is large. This point can be used as a measure for the predictability horizon of dynamic emulators. More precisely, the time
at which the mean value of uncertainty changes significantly is considered as the predictability horizon. To identify the
change point in the mean of time series, the cpt.mean function implemented in the changepoint R package (Killick
and Eckley, 2014) is applied to the prediction uncertainties. The vertical green lines in Fig. 12 represent the change points
in the time series. Similar results are obtained when emulating the Lorenz and van der Pol systems with different initial
conditions using the correlated method. In Appendix A, the emulation of the two systems is demonstrated for additional
initial conditions.

Using correlated emulators, the magnitude of uncertainty is generally larger than for the uncorrelated case, which
would lead to a wider sampling of update directions for the next step, and hence greater deviation from the true
underlying trajectory. This is especially the case of the van der Pol model where the prediction accuracy is higher in
the uncorrelated method, see Figs. 11 and 8. However, in this approach the uncertainty is too small and the true model
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Fig. 18. Emulation of the Lorenz system in which, at each iteration, the output distribution is approximated by the Laplace’s method.

is not inside the credible intervals. The larger uncertainty in the correlated method can be justified by looking at the
determinant of the covariance matrix (Fig. 13) used in Table 1 to generate samples from the input distribution. As can be
seen, the determinant of the covariance matrix is consistent with the prediction uncertainties. Note that the determinant
measures overall dispersion of a multidimensional random variable and is referred to as generalized variance.

5. Conclusion

In this paper we develop a general framework for dynamically emulating highly non-linear functions with time series
outputs using Gaussian processes. Such functions show the behaviour of phenomena evolving with time. One advantage
of our method is that it is easy to implement in comparison to alternative methods; it uses a GP emulator to perform
one-step ahead predictions in an iterative way over the whole time series. Moreover, we propose a number of ways to
propagate uncertainty through the time series based on both the uncertainty of inputs to the emulators and the correlation
between them. The capability of our method is illustrated in application to two non-linear dynamical systems: the Lorenz
and van der Pol systems. In both examples, the prediction uncertainty obtained by the proposed method (i.e. correlated
emulators) allows to measure a ‘‘predictability horizon’’, within which the prediction accuracy is high. It should be noted
that in our two examples the computer model run time is small and we can compare the model and emulator directly.
This is not the case for many applications where the model run time is large.

One can extend the idea of one-step to several-step ahead predictions. The main consideration is that the flow map
becomes more non-linear if the number of steps increases. As a result, more training data is required to approximate the
flow map well which increases the computational complexity of GPs. Recall that a GP has a computational complexity
of O(n3). With respect to the approximation of the distribution of inputs at subsequent time steps, as mentioned before,
Eq. (7) can be approximated by the deterministic methods such as the Laplace’s approximation. Another possible future
research direction is to investigate such techniques in the framework of dynamic emulation. Fig. 18 (Appendix B)
illustrates the results of emulating the Lorenz system in which, at each iteration, the output distribution is approximated
by the Laplace’s method. In this case, the prediction uncertainty does not grow over time, similarly to the case of
uncorrelated emulators.

Acknowledgements

The authors gratefully acknowledge the financial support of the EPSRC via grant EP/N014391/1. The contribution of
MG was generously supported by a Wellcome Trust Institutional Strategic Support Award (WT105618MA). MG further
acknowledges support from the EPSRC [grant number EP/P021417/1]. The authors warmly thank Peter Ashwin and Jennifer
Creaser for the constructive discussions.



H. Mohammadi, P. Challenor and M. Goodfellow / Computational Statistics and Data Analysis 139 (2019) 178–196 195

Appendix A. Correlated emulators with different initial conditions

The Lorenz and van der Pol systems are emulated (based on the correlated method) with six more different initial
conditions selected randomly from [−10, 10]d. These results are consistent with the previous observations in that the
prediction uncertainty can be used to obtain the predictability horizon using the change point detection (see Figs. 14–17).

Appendix B. Laplace’s approximation

See Fig. 18.
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