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The maximum coercivity that can be achieved for a given hard magnetic alloy is estimated by
computing the energy barrier for the nucleation of a reversed domain in an idealized microstructure
without any structural defects and without any soft magnetic secondary phases. For Sm;_.Zr,
(Fe_,Coy)1,,Ti, based alloys, which are considered an alternative to Nd,Fe ;4B magnets with a
lower rare-earth content, the coercive field of a small magnetic cube is reduced to 60% of the
anisotropy field at room temperature and to 50% of the anisotropy field at elevated temperature
(473 K). This decrease of the coercive field is caused by misorientation, demagnetizing fields, and

thermal fluctuations. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4999315]

Permanent magnets are an important material for energy
conversion in modern technologies. Wind power and hybrid
and electric vehicles require high performance permanent
magnets. In motor applications, the magnet should retain a
high magnetization and coercive field at an operating tempera-
ture around 450 K. At this temperature, the magnetization and
the anisotropy field of Sm,_.Zr.(Fe,_,Coy)»Ti, are higher
than those of Nd,Fe,,B.! In addition, the rare earth to transi-
tion metal ratio of the SmFe;, based magnets is lower.
Therefore, magnets based on this phase are considered as a
possible alternative to Nd,Fe 4B magnets.2 At high tempera-
ture, thermal fluctuations may reduce the coercive field. In this
work, we numerically compute the reduction of coercivity by
thermal fluctuations in Sm,;_.Zr.(Fe,_,Co,)>_,Ti,. For compar-
ison, we also include results for Nd,Fe 4B. The letter is orga-
nized as follows. We first review the different effects that
reduce the coercive field in permanent magnets. Then, we pre-
sent a numerical method for the computation of the coercive
field including thermal fluctuations, which is based on finite
element micromagnetics. We introduce the concept of the acti-
vation volume which is widely used in the experimental analy-
sis of coercivity in permanent magnets. Then, we present
numerical results for Nd,Fe 4B and Sm,_.Zr.(Fe,_,Co,),>_,Ti,.

Besides thermal fluctuations, several other effects
reduce the coercive field of modern permanent magnets.
Kronmiiller e al.? refer to the difference between the anisot-
ropy field of a magnet and its coercive field as a discrepancy
from theory. Aharoni® predicted that the coercive field of a
hard magnet decreases with increasing width of surface
defects with zero anisotropy. The corresponding minimum
coercive field is 1/4 of the anisotropy field which is reached
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for a defect width greater than 5,/A/K, where A is the
exchange constant and K is the anisotropy constant. Even
smaller coercive fields may occur if the anisotropy increases
gradually from zero to its maximum value as shown by
Becker and Déoring” and Hagedorn.®

In addition to defects, local demagnetizing fields reduce the
coercivity of permanent magnets. Gronefeld and Kronmiiller’
show that the local demagnetizing field may reach values of the
order of the saturation magnetization, M;, near the edges of a
hard magnetic grain. The total field which is essential for the
switching of a grain is the sum of the local demagnetizing field
and the external field. Therefore, the local demagnetizing field
leads to a further reduction of coercivity.

A further reduction of the coercive field as compared to
the ideal nucleation field, Hy =2 K/(uoM;), may result from
dynamic effects.®* When the external field or the internal
effective field is changing at a rate much faster than the
energy dissipation in the system, the system cannot follow
fast changes in the energy landscape and thus does not reach
the nearest metastable state. Instead, a path through the
energy landscape that brings the system into a reversed mag-
netic state may be taken. Leineweber and Kronmiiller” show
that dynamic effects can reduce the ideal nucleation field by
up to 20%.

In this work, we focus on thermal fluctuations and calcu-
late the reduction of coercivity caused by these fluctuations.
Magnetization reversal in a permanent magnet is the process
by which an external field creates a reversed nucleus near
structural defects. Thermal fluctuations assist the formation
of the reversed nucleus and thus reduce the coercive field.
The formation of the nucleus is associated with an energy
barrier. Before magnetization reversal, the system is in a
local energy minimum. With the increasing external field,

Published by AIP Publishing.
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the energy barrier that separates the local minimum from the
reversed magnetic state decreases.'® Taking into account
thermal activation, the system can overcome an energy
barrier, E, within a time t = tgexp (E/(ksT)).” Here, kg
=1.38 x 10" J/K is the Boltzmann constant. The time con-
stant ) is the inverse of the attempt frequency f,. Often, it is
assumed that the magnet can overcome an energy barrier of
25kgT within the time 7= 1s which gives an attempt fre-
quency of fy=7.2x 10'%s~".'" Then, the coercive field is
the critical value of the external field, H, at which the energy
barrier E(H) reaches 25kgT.

Using numerical micromagnetics, we compute the
energy barrier as a function of the applied field. We discre-
tize the magnet’s microstructure with tetrahedral finite ele-
ments. Minimizing the energy for varying external fields
gives the magnetic states along the demagnetization curve.
For energy minimization, we apply the non-linear conjugate
gradient method as described by Fischbacher and co-work-
ers.'? The coercive field obtained from the computation of
the demagnetization curve is Hy. This is the field at which
the energy barrier is zero. We now want to compute the
energy barrier for a field H<H, We apply the string
method"? in order to compute the minimum energy path that
connects the local minimum at field A with the reversed
magnetic state. A path is called a minimum energy path, if
for any point along the path the gradient of the energy is par-
allel to the path. In other words, the component of the energy
gradient normal to the path is zero. The magnetization con-
figurations along the path are described by images. Each
image is a replica of the total system. The minimum energy
path over a saddle point is found iteratively. A single itera-
tion step consists of two moves. First, each image is
relaxed'* by applying a few steps of the conjugate gradient
method, and then, the images are moved along the path so
that the distance between the images is constant. We use an
energy weighted distance and truncate the path'® so that
there are more images next to the saddle point. We repeat
the computation of the minimum energy path for different
applied fields and obtain E(H). We compute H. (T) by the
intersection of the E(H) curve with the line £ =25kgT (see
Fig. 1).

Path finding algorithms are well established both
in chemical physics and in micromagnetics.'> As shown in
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FIG. 1. Left: Computed demagnetization curve for a Nd,Fe;4B cube at
T=300K with an edge length of 40 nm. Right: Energy barrier as a function
of the external field. At the coercive field, the energy barrier crosses the
25kgT line.
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Fig. 1, the applied algorithms are self-consistent. The switch-
ing field obtained by a classical micromagnetic method is
equal to the critical field at which the computed energy barrier
vanishes. Please note that the computation of the demagneti-
zation curve by energy minimization'® and the computation
of the minimum energy path use the same computational grid
and the same numerical minimization algorithm. Thermal
fluctuations at the atomistic level are taken into account by
using temperature dependent intrinsic magnetic properties
such as M, (T), K(T), and A(T).

The above numerical scheme takes into account thermal
activation over finite energy barriers. Skomski et al.'’
reported another mechanism of coercivity reduction by ther-
mal fluctuations. Spin waves interact with small soft mag-
netic structural defects which in turn cause a reduction of
coercivity. The corresponding change in coercivity was
found to be less than one percent. In our analysis, this effect
is not taken into account.

We can express the coercive field as

H. = oHN — NegtM — Hy. (D

Expression (1) is reminiscent of the micromagnetic equation’
often used to analyze the temperature dependence of coerciv-
ity in hard magnets. The coefficient o expresses the reduction
in coercivity due to defects, misorientation, and intergrain
exchange interactions.'® The microstructural parameter Nqg
is related to the effect of the local demagnetization field near
sharp edges and corners of the microstructure. The fluctua-
tion field Hy gives the reduction of the coercive field by
thermal fluctuations.'® In this work, we will quantify the dif-
ferent effects that reduce the coercivity according to (1). In
particular, we are interested in the limits of coercivity. By
computing o, N.g, and Hy for a perfect hard magnetic particle
without any defect, we can estimate the maximum possible
coercive field for a given magnetic material and microstruc-
ture. This is especially important considering the current
effort to search for new hard magnetic phases with reduced
rare-earth content.” In addition, one might take into account
the thermal fluctuation field to know how much magnetic
anisotropy is enough for a permanent magnet.?® The coercive
field which would be measured in the absence of thermal
activation is Hy= oHy — NegM.

The height of the energy barrier as a function of field,
E(H), can be derived from viscosity measurements, series
expansion, or micromagnetic simulations. Néel*! derived a
series expansion of the form E = c(Hy — H)" to describe the
field dependence of the energy barrier, where ¢ is a constant.
Analyzing the micromagnetic free energy, Skomski et al.*
showed that physically reasonable exponents are m = 3/2 and
m="72. The numerical algorithm presented above does not
make any prior assumption on how the energy barrier changes
with the field. Instead, we compute E(H) for a finite element
model of a magnetic material numerically. For the analysis of
experimental data, the energy barrier is often expressed by a
linear approximation E(H) = vuoM (HO—H).23 The activation
volume v is not necessarily related to a physical volume.
Solving E(H)=25kgT for H gives the coercive field. Thus,
we can write (1) as**
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25kgT
U:uOM S -

H. = aHN — NegtMs — (2)

The last term in (2) is proportional to the magnetic viscosity
coefficient®% S, =kgT/(vuoM), which can be measured
experimentally. Traditionally, equations of form (2) have
been used to analyze the temperature dependence of the
coercivity.>”?

The viscosity coefficient can be written as S, =—kgT/
(OE/OH)."" Thus, we can define the activation volume as

e
ﬂoMsaH.

3)

In this work, we will use (3) to compute the activation vol-
ume, whereby E(H) is computed by finite element micro-
magnetic simulations.

From the comparison of the numerical results with
Equation (1), we can numerically determine the microstruc-
tural parameters «, Negp, and the fluctuation field Hy:

(1) We compute the demagnetizing curve but we switch
off the demagnetizing effects by neglecting the magne-
tostatic self-energy in the total energy. This gives
H}§ = aHy and we can derive o = H{/Hx.

(2) We compute the demagnetizing curve taking into
account the magnetostatic energy term. This gives
Hy = oaHN — NeggMs = Hy — NeggMg and  we  compute
Negr = (H{ — Ho) /M.

(3) We compute the coercive field including thermal activa-
tion by E(H.) =25kgT. The fluctuation field, Hy=H,
—H,_, represents the reduction in coercivity due to ther-
mal activation effects.

We are particularly interested in the limits of coercivity
for a given magnetic material. Therefore, we apply the above
procedure for a perfect, nano-sized hard magnetic cube with-
out any defects. The edge length of the cube is 40nm.
However, we apply the magnetic field one degree off the easy
axis which is parallel to one edge of the cube. First, we apply
the method for Nd,Fe 4B. Then, we will show the limits of
coercivity for Sm,;_.Zr.(Fe,;_,Co,);>_,Ti, magnets. Table I
gives the intrinsic magnetic properties used for the

TABLE L. Intrinsic magnetic properties used for the simulations. The table
gives the anisotropy constant K(MJ/m?), the saturation magnetization oM
(T), and the exchange constant A(pJ/m) for different temperatures 7(K). For
Nd,Fe 4B, the material properties are taken from Hock?® and Durst and
Kronmiiller.*® For Sm,_.Zr.(Fe,_,Co,) > Ti, compounds, the material prop-
erties are taken from Kuno ez al.' The exchange constant is estimated.

Material T LoM K A
Nd,Fe 4B 300 1.61 4.30 7.7
Nd,Fe 4B 450 1.29 2.09 4.89
SmFeTi 300 1.26 5.17 10
Sm(Feg.75C00.25)11Ti 300 1.42 4.67 10
Sm(Fe75C00.25)11.5Tio 5 300 1.58 4.57 10
(Smy gZro 2)(Feg.75C00.25)11.5Ti0.5 300 1.63 4.81 10
SmFeTi 473 1.02 2.80 6.5
Sm(Fe(.75C00.25)11Ti 473 1.28 2.54 8.1
Sm(Fe(.75C00.25)11.5Tlo.s5 473 1.45 2.61 8.4
(Smg gZro 2)(Feg.75C00.25)11.5Tio.5 473 1.50 2.79 8.4

Appl. Phys. Lett. 111, 072404 (2017)

simulations. For the simulation, the mesh size was 1.5 nm.
Without soft magnetic defects, the numerically calculated
reversal field computed without magnetostatic interactions
corresponds to an analytic switching field estimated by
Stoner and Wohlfarth,”" H; = f(i/o)Hx. Here, i, denotes the
angle between the applied field and the negative anisotropy
direction and f () = { cos?/3 (i) + sin®> ()} /232 The
agreement between the finite element results without the
magnetostatic energy term and the Stoner-Wohlfarth switch-
ing field was already shown previously.12 For Nd,Fe 4B at
300K, we obtain pyHj = 6.09T. The self-demagnetizing
field reduces the coercive field to poHy=>5.29T. Finally,
with thermal fluctuations, the coercive field is poH. =3.94T.
Therefore, we can conclude that in Nd,Fe 4B, the maximum
possible coercive field of a cubic grain is only 60% of the
ideal nucleation field Hy. The values of o, Neg, uoHy, and
oS, are 0.91, 0.5, 1.35T, and 0.054 T, respectively.

Figure 1 shows the computed demagnetizing curve for
the Nd,Fe 4B cube and the energy barrier as a function of
the external field computed with the intrinsic magnetic prop-
erties at T=300K. Static energy minimization for the
decreasing external field gives a switching field of
UoHo=15.29T. This is exactly the field at which the energy
barrier reaches zero. The reduction of coercivity owing to
thermal fluctuations is 25%. Using (3), we can compute the
activation volume, v=(4.38 nm)3, from the slope of the
E(H) curve. The activation volume can be compared with
the domain wall width, 6 = /A /K, which is 4.2 nm, giving
v=1.120"2% Figure 2 gives the minimum energy path and
the magnetization configuration at the saddle point of the
energy landscape. At the saddle point, a small nucleus,
which has an extension a, is formed. Interestingly, the vol-
ume of the reversed nucleus, (1/8)(47ra3/3), roughly corre-
sponds to the activation volume v as given by (3). For the
small perfect cube, the computed coercivity, the viscosity
coefficient, and the activation volume are higher than the
experimental values found in Nd,Fe 4B based magnets.

For comparison with experiments, we performed a simi-
lar simulation of a granular Nd,Fe 4B ensemble consisting
of 64 polyhedral grains with an average grain size of 60 nm.
We generated the grain structure from a centroid Voronoi
tessellation, using the software tool Neper.** The grains of
the Nd,Fe 4B model system were separated by a weakly fer-
romagnetic grain boundary phase with puoM;=0.5T. The
thickness of the grain boundary phase was approximately
3 nm. Grain boundaries in hot deformed Nd,Fe 4B magnets
were found to contain up to 55at. % Fe.” The average

0
i saddle point |

PR I . .

o 02 04 06 08 1 /
normalized path length 20 070

FIG. 2. Left: Minimum energy path for a Nd,Fe 4B cube at T=300K with

an edge length of 40 nm. Right: Magnetization configuration of the saddle

point with a reversed nucleus of size a.
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misorientation angle of the grains was 15 degrees. For this
magnet, the values for the coercive field without magneto-
static interactions yuyH}, the intrinsic coercivity fioHo, and the
coercivity computed with thermal activation taken into
account uoH. were 3.24T, 2.88 T, and 2.64 T, respectively.
The resulting values of o, Negr, and poHy were 0.48, 0.22, and
0.24T, respectively. The reduction of coercivity owing
to thermal fluctuations is 8%. The computed viscosity coeffi-
cient upS,=0.0094T and the computed activation volume
v=(7.9nm)’ are very close to values measured by Villas-
Boas et al.®® for a mechanically alloyed Nd,5 5Dy, sFegsCojq
Gaj 75B¢.5s magnet at room temperature. Figure 3 shows the
saddle point configuration computed from the minimum
energy path. The reversed nucleus is formed in the grain
boundary near the edge of the magnet. This is the location
where the demagnetizing fields are the strongest.

A comparison of the numerical results reveals a striking
increase in the activation volume from the small cube to the
multigrain system which is mainly caused by the presence of
the soft magnetic grain boundary phase. Whereas the small
cube is a perfect hard magnetic particle, a 3nm thick soft
magnetic phase separates the grains in the granular magnet.
In addition, the demagnetizing field from the neighboring
grains is acting on the soft phase where magnetization rever-
sal will be initiated. The soft layer present between hard
grains in the multigrain structure makes the spatial variation
of the magnetic energy more progressive than in the small
cube. Thus, a larger volume (by a factor of 6 in the present
case) corresponds to the 25kgT energy term provided by
thermal activation. As evidenced by Egs. (1) and (2), the
fluctuation field is subsequently reduced by the same factor.
By moving from the ideal cube to a realistic structure, the
activation volume increases and the thermal reduction of
coercivity decreases. However, the more realistic structure
of the magnet also reduces the intrinsic coercivity H.

Finally, we computed the limits of coercivity for SmFe-
based magnets which are considered as candidates for high
performance magnets with a rare earth content smaller
than Nd,Fe4B. For various Sm,_.Zr.(Fe,_,Coy)>_,Ti, com-
pounds, we computed the effects that reduce the ideal nucle-
ation field towards the maximum possible coercive field. The

saddle
point

%

Nm

FIG. 3. Saddle point of the energy for thermally assisted reversal of a multi-
grain Nd,Fe,4B magnet. The reversed nucleus is formed at the grain bound-
ary near the outer edge of the magnet.
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intrinsic material parameters used for the simulations are
listed in Table I. Again, the sample was a cube with an edge
length of 40nm. The field was applied at an angle of one
degree. Figure 4 shows the ideal nucleation field, the coer-
cive field without demagnetizing effects, the intrinsic coer-
cive field, and the coercivity computed with thermal
activation at room temperature and at elevated temperature.
At T =473 K, the maximum possible expected coercive field
for (Smo_8ZTOA2)(FCO.75COO.25)11_5Ti0.5 is /,l()Hc =2.61T. This
can be compared with the computed coercivity limit for
Nd,Fe 4B at T=450K which is puoH. = 1.88 T. These limits
were computed for a small cubic grain without any soft mag-
netic defects. Rounding the edges of the cube will improve
the coercivity owing to a reduction in the local demagnetiz-
ing field near the edges and corners.

Using numerical micromagnetics, we computed the
effects that reduce the ideal nucleation field of permanent
magnets towards the coercive field. We found that even for a
magnet with perfect structure, a small cube without surface
defects, coercivity is reduced to 60% at room temperature and
50% at 473K of the ideal nucleation field by the small mis-
alignment angle (one degree), demagnetizing field, and ther-
mal activation. In the case of a more realistic grain assembly,
the coercive field is reduced by the presence of intergranular
defects (represented here by a soft magnetic layer). However,
the effect of thermal activation is significantly reduced, as
explained above. Therefore, a competition between two
antagonistic effects is revealed: as one approaches ideal hard
magnetic properties, the drop in coercivity due to defects is

]2 - ideal nucleation field 300K ]
1 O :_ + misorientation _:
- } demag -
&

8k x 3
- + thermal RN * Y -
= F ® & 8 8 7
]5:3- 6 C ’ coercive field & * .
= [ [ =
2 C SM(Fe0.75C00.2s)11Ti Sm0.82r0.2(Fe0.75C00.25)lI.STiO.S_—
L SmFeyTi Sm(Feo.7sC00.2s)11.5Tios ]

0
12 C 473K ]
10— -]
8 C ideal nucleation field -
= [ w1 misorientation ]
T b b d |
:% 6 n § emag ]
=+t t thermal § g ]
iC e § & ]
r coercive field @ ® ) ]
2 - Sm(Feo.7sC0o2s)1Ti Smo.aZI'o.z(FewsCOo.zf))l|.5Ti0.5__
L SmFeyuTi Sm(Feo.75C00.2s)11.5Tios ]

0

FIG. 4. Reduction of the ideal nucleation field in various Sm;_.
Zr(Fe_yCo,) 1>, Ti, compounds at T'=300K and 7= 473 K of a small mag-
netic cube without structural defects. The fields indicated by stars are the
ideal nucleation fields. Symbol x denotes the field taking into account mis-
orientation. The switching fields computed by Brown’s equation'® are repre-
sented by the symbol 4. The circles indicate the critical field at which the
energy barrier reaches 25kgT. All fields were computed for a cube with an
edge length of 40 nm.
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reduced but the drop due to thermal activation is increased. In
real materials, defects play a major role, whereas coercive
field reduction due to thermal activation is of secondary
importance at least up to 300 K.
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