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Abstract
This thesis presents the results of a study conducted to understand
the effect of free surface on forces generated by a flat plate being
towed in a quiescent fluid, with the plate surface being normal to the
towing direction. The work is based on a parametric study involving
aspect ratio, Reynolds number, and submergence depth, with the
depth always being measured as the distance between free surface and
the upper edge of the plate. Force measurements and quantitative
flow visualization techniques have been employed to understand the
flow physics. It was found that the drag increases abruptly prior
subsiding with increasing submergence depth, with this jump in drag
being more prominent in low aspect ratio plates. The abrupt rise
in the drag is due to the existence of a gap-flow at the free surface
resulting in the formation of a recirculating flow in close proximity
to the base region of plate. Overall, the trends are Reynolds number
independent, except when the aspect ratios are in the range from 0.75
to 1.33, and the plate was near the free surface.

Furthermore, two different plate configurations have been investi-
gated. First, rigid plates with porosity at distinct locations and sec-
ondly structural flexibility. Both concepts have resulted in significant
drag reduction, especially near the free surface. The mechanism of
drag reduction for porous models has been shown to be due to the
interaction between the jets formed at holes, the shear layers and the
gap-flow. With structural flexibility, reconfiguration leads to drag
reduction.
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Chapter 1

Introduction

Boats and ships have always played an important role in human ac-

tivities. Although their designs have evolved over centuries, they are

nowhere near to the natural systems, both in terms of performance

as well as design. Nature has had thousands of years to optimize the

design and functional traits of organisms through evolution but our

lack of understanding of the physics involved in these systems is a

major limitation. The effect of free surface on the forces generated

being one such phenomenon. It is expected that only through a bet-

ter understanding of the fluid-structure interaction involving the free

surface can help us achieve not only huge improvements in current

marine structural and naval designs through drag reduction but also

develop newer modes of underwater propulsors for Autonomous Un-

derwater Vehicles (AUV), and devices for harvesting of energy from

renewable sources, like tides and surface waves.

1.1 Background

The study of forces generated by bluff bodies has been one of the old-

est problems in fluid mechanics. Cylinders and flat plates oriented

9
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Chapter 1 Introduction

normal to the flow exemplify bluff bodies owing to large regions of

separated flow and a significant pressure drag component. The free

streamline theory (hodograph plane) applied to two-dimensional flat

plates held normal to the flow by von Helmholtz (1868) and Kirchhoff

(1869) have been the earliest works to characterize the flow proper-

ties such as velocities and wake pressures and the consequent forces

acting on the body. This was followed up by Roshko (1954) with

a modified version of the hodograph plane theory to accommodate

arbitrary base pressures and obtain better results. There is a good

amount of literature on the interaction between cylinders and bound-

aries, but very little information is available related to the interaction

between flat plates and deformable boundaries. Miyata et al. (1990)

conducted experimental and numerical studies on the flow around

a horizontal circular cylinder with its axis normal to the flow, lo-

cated beneath the free surface. They found a decrease in drag with

increasing proximity to the free surface, and attributed to an asym-

metric vortex shedding process and their mutual interaction. Other

researchers have also studied the interaction of circular cylinders and

a free surface such as Sheridan et al. (1997), Reichl, P., Hourigan,

K., Thompson (2005) and Bouscasse et al. (2017). Cylinders how-

ever present no edge discontinuities and have flow separation points

that are Reynolds number dependent, unlike thin flat plates held nor-

mal to the flow with fixed separation points at the edges. Dennis and

Chadna (1995) investigated numerically the steady 2D flow across a

normal flat plate in an infinite domain at very low Reynolds numbers

10
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1.1 Background

(Re). They found that the vortex cores traverse increasingly down-

stream with Reynolds number, with the vortices remaining attached

to the plate. Koumoutsakos and Shiels (1996) studied 2D viscous,

incompressible flow across a normal flat plate undergoing impulsive

or uniformly accelerated motion (Reb=20–1000) using an adaptive

vortex method to compute the drag coefficient. They found that

an impulsively started plate generates a stable vortex configuration

due to the shear layer roll-up, while the uniformly accelerated plate

generates a Kelvin-Helmholtz type instability due to the increased

strength of the shear layer, resulting in the formation of multiple vor-

tex centres, dependent on the acceleration magnitude. Several other

researchers (Hudson and Dennis (1985), Dennis et al. (1993), Najjar

and Vanka (1995b), Hemmati et al. (2016b)) have studied numeri-

cally, using different techniques the shedding process and the wake

characteristics of two-dimensional flat plates and the low-frequency

fluctuations in the lift and drag. Plates of finite span involve com-

plex three-dimensional flow phenomena which cannot be captured

accurately with 2D simulations, as indicated by Najjar and Vanka

(1995a) and Najjar and Balachandar (1998) through their 3D DNS

studies on a flat plate of aspect ratio (AR) of 6 placed normal to the

flow at a ReDh
≈ 1700 and 400, with periodic boundary conditions

along the span. They found that the vortex break-up and shear layer

extension occur further downstream in 3D simulations and attributed

it to secondary flow instabilities. Narasimhamurthy and Andersson

(2009) also conducted 3D DNS studies on a similar configuration at

11
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Chapter 1 Introduction

a ReDh
of 1300, but with a finer mesh compared to the former. They

found that a base pressure reduction caused an increase in the shed-

ding frequency and produced a shorter recirculation bubble. These

results indicated the importance of conducting 3D numerical studies

even when the geometry is 2D, and provided a greater understanding

regarding the flow and its instabilities, but they still fail to account

for the vortex shedding from the other 2 edges of the plate and their

effect on the force. Hemmati et al. (2016a) found through their DNS

studies at a ReDh
of 1830 on a thin flat plate (AR = 3.2) and its

comparison with a 2D plate that the additional 2 shear layers in the

3D plate resulted in an increased shedding frequency, smaller recir-

culation zone, reduced drag, an absence in the drift in lift and drag

values, and suppression of the spanwise secondary instability. This

was attributed to the difference in the shedding process denoted as

peeling, wherein vortices are shed alternately by the adjacent mutu-

ally perpendicular sides.

Fage and Johansen (1927) conducted one of the earliest set of ex-

periments on a flat plate connected floor-to-floor (AR ≈ 14) and at

various inclinations, at a ReDh
= 1.5·105, and estimated drag coef-

ficients when the flow is normal to the plate. The deviation from

theoretical solution was attributed to the greater shear layer velocity

over the freestream. Winter (1936) also presented a trove of data

in his technical report linked to the forces generated by airfoils and

flat plates of various aspect ratios and planforms. Fail et al. (1959)

studied the effect of aspect ratio and geometries on the drag gener-

12

UNIVERSITAT ROVIRA I VIRGILI 
HYDRODYNAMICS OF FLAT PLATES IN CROSS-FLOW NEAR THE FREE SURFACE 
Sukruth Satheesh 
 
 
 



1.1 Background

ated when the flow was normal to the plate, that had aspect ratios

in the range 1 to 20, in experiments conducted at ReDh
in the range

from 1.6·105 to 3.7·105. They found the effect of geometry to be

insignificant compared to the aspect ratio and the existence of two

shedding frequencies for a rectangular plate; one associated with the

smaller plate dimension and a lower frequency associated with the

longer dimension. Lisoski (1993) studied the effect of aspect ratio

for nominally two-dimensional flows across a normal flat plate at low

Reynolds numbers and found that a minima exists in the drag gener-

ated at high AR, which was attributed to a symmetric wake bubble.

But with one end free, no such minima was observed, indicating the

significant influence of the tip. Ringuette et al. (2007) investigated

semi-infinite flat plates at two different aspect ratios and their results

not only verified Lisoski’s observations but also presented informa-

tion regarding the evolution and interaction of the lower tip vortex

with the side vortices. Malavasi and Guadagnini (2007) studied the

effects of free surface on the force generated by a rectangular cylinder

with its axis along the flow direction, at various Reynolds numbers

experimentally. They found that boundaries, rigid or flexible have a

higher effect on lift than drag. The lift force changed in direction and

magnitude significantly as the distance between the cylinder and free

surface reduced, and its dependence on Reynolds number attributed

to the free surface distortion.

However, not much information is available regarding the mechanism

of force modulation in the presence of boundaries. Ortiz et al. (2015)

13
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Chapter 1 Introduction

conducted wind tunnel tests to study the dynamics of flat plates with

AR ranging from approximately 0.1 to 2.5, over a range of incidence

angles at a fixed wind speed, with the plate being located either in

close proximity to the wall or far from it. It was found that the drag

coefficient calculations were in reasonable agreement with the mod-

ified theoretical equation of Gould (1969), (ESDU, 1970) when the

plate was normal to the flow. Fernando and Rival (2016b) studied

the force and vortex ring dynamics of thin elliptical and rectangular

plates with aspect ratios ranging from 1 to 4, of a constant hydraulic

diameter. They found that the drag force of the AR = 1 circular

plate was the lowest due to the interaction of the vortex ring with

the plate. The AR = 1 square plate also presented lower drag when

compared to other rectangular plates but higher than the circular

one. This was attributed to the faster spanwise and downstream

convection of the ring, and resulted in reduced interaction. Another

observation indicated by them was that at higher aspect ratios, corre-

sponding elliptical and rectangular plates showed minimal difference

in trends of force and the shed vortex rings. This demonstrated that

the edge discontinuities are not very significant compared to AR. In

another paper by Fernando and Rival (2016a), the authors studied

experimentally elliptical plates with AR ranging from 1 to 2, with

a constant hydraulic diameter in order to determine the reason for

extensive appearance of propulsors with AR greater than 1 in bio-

logical entities. It was found that plates with AR greater than 1.5

were insensitive to Reynolds number and presented peaks in the force
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signals, indicating a better suitability for manoeuvring and braking

situations, whereas the AR = 1 plate produced lower force due to

enhanced vortex ring-body interaction. Liu et al. (2016) performed

2D simulations of flow past a normal plate near the free surface at 5

different submergence depths and found that the drag decreased with

depth i.e., drag was lowest at the free surface and highest when away

from it, and attributed to the change in the vortex shedding pattern

and frequency. A jet-like flow originating from the free surface was

seen to merge with the vortex shed from the lower tip and dissipate in

the wake whereas no such phenomena was observed when the plate

operated far from the free surface, similar to Miyata et al. (1990).

Sumner et al. (2003) and Hémon (2017) studied the dynamics of var-

ious kayak paddles under several configurations and compared their

performance against a flat plate. They found that all paddle profiles

had distinct attributes which made them suitable at particular op-

erating regimes, but altogether, most of the paddles had lower drag

than a flat plate when placed normal to the flow.

With drag reduction being highly relevant for better energy efficiency,

several techniques have been tested for streamlined bodies, ranging

from vortex generators and chemical coatings to even active flow

control. However, this kind of study is lacking in bluff bodies, espe-

cially with regards to normal plates. Castro (1971) conducted one

of the earliest studies involving plates with perforations and their ef-

fect on drag, and found that porosity (β) plays a significant role in

drag generation with an inverse relationship between drag coefficient
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Chapter 1 Introduction

and porosity due to the motion of the recirculation region further

downstream. Roberts (1980) conducted studies on series of slotted

circular disks at high Reynolds numbers and found that the location

of the holes apart from porosity plays a strong role in drag genera-

tion. Perera (1981) studied the wakes of solid and porous fences in

an atmospheric boundary layer and found that the location of the re-

circulation bubble moves further downstream in case of porous fences

when compared with that of a solid fence. Several subsequent works

have studied the effect of porosity, but with a viewpoint of charac-

terizing the turbulent flow-fields generated downstream, for example

Chen and Jirka (1995); Kim and Lee (2001). Malavasi et al. (2012)

conducted experiments on pressure losses in circular pipes with differ-

ent perforated plates and found that the hole location and number of

holes have a strong effect on the pressure drop. Huera-Huarte (2014)

conducted experiments on paddle racquets with several porosity val-

ues and their distribution across the racquet head to understand and

quantify the effect of holes on the aerodynamic performance and

found that a distribution of the holes closer to the racquet periphery

yielded lower drag values. Theunissen and Worboys (2018) have re-

cently performed experiments involving drag and wake measurements

of circular disks over a range of porosities and their spatial distribu-

tion. They found no coherent link between the spatial distribution of

the holes and the drag coefficient, but the aspect of porosity plays a

dominant role. They also found that the hole jets generally deviated

from their axes to merge with the outer shear layer, with this inter-
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1.1 Background

action being highly three dimensional and stronger with increasing

proximity of the holes to disk edge. Wave absorbers or breakwaters

are structures developed for minimizing wave reflection and utilized

frequently in wave tanks as well as harbour walls as a coastal bar-

rier, with their designs involving a series of vertical or inclined plates

with holes, with several factors such as number of plates, their spac-

ing and individual porosities playing a significant role in determining

absorption efficiency (see Tuck (1975); Yu and Chwang (1994); Cho

and Kim (2008) for more details). Since the literature involving the

effect of porosity and its spatial distribution are only available for

circular disks and wave absorbers, its efficacy for rectangular plates

and in the environment of free surface has not been established.

Another parameter of importance is the flexibility of the body. Struc-

tural flexibility is ubiquitous in nature, be it flora or fauna. It has

always been used as an asset for enhancing the exposed area of the

leaves thereby increasing the area for photosynthesis as shown by

Niklas (1992) in his simulations, or for reducing the drag generated

due to steady or unsteady fluid loading, which in turn has been stud-

ied over the years since the fundamental work of Vogel (1984). The

work by Vogel suggested that an increase in fluid velocity results in a

change in the quadratic relationship between drag force and velocity

(F ∝ U2) to a benign relationship of U2+Υ, where Υ is the Vogel

exponent and is negative, due to the reduction in the exposed area

and streamlining. Vogel (1989) showed that the increase in velocity

results in rolling up of the leaves of the trees into cones and reduced
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Chapter 1 Introduction

the cross-sectional area, generating lower drag. This process of drag

reduction through the manipulation of the exposed area is known

as reconfiguration. Harder et al. (2004) studied a few aquatic plant

species and confirmed the importance of reconfiguration as an adap-

tation for survival. Alben et al. (2002, 2004) presented theoretical

and experimental results on reconfiguration of fibres in soap films and

attainment of self similar bending profiles which contribute to drag

reduction. They found that Υ shifts from 0 to -2/3 as the fluid load-

ing is increased with respect to fibre rigidity. Ghisalberti and Nepf

(2002) studied the effect of a mixing flow on aquatic plant canopies

and its effect on plant motion. They found that the Kelvin-Helmholtz

instabilities generated by the flow profile caused a coherent waving

of the plant structures, with high vertical transport of momentum.

Gosselin et al. (2010) conducted significant amount of experiments to

study the drag reduction of flexible plates and developed models to

explain the reconfiguration process. They found that the results of

reconfiguration for finite width plates to be similar to that presented

by Alben et al. (2004) for fibres in soap-film, indicating it to be mostly

two-dimensional, and the asymptotic Vogel exponent to be -2/3 by

dimensional analysis. In fact, the drag-velocity scaling behaviour

was studied using a non-dimensional parameter for the rigidity, the

Cauchy number (CY ), which is the ratio of inertial force acting on the

model to the elastic force offered by the material and scaled with the

drag coefficient of a rigid plate (CD0) of the same dimensions. They

found that the force generated decreases with increasing Cauchy num-

18

UNIVERSITAT ROVIRA I VIRGILI 
HYDRODYNAMICS OF FLAT PLATES IN CROSS-FLOW NEAR THE FREE SURFACE 
Sukruth Satheesh 
 
 
 



1.2 Present work

ber. Luhar and Nepf (2011) conducted theoretical and experimental

studies of flow induced reconfiguration on buoyant structures that

mimic seagrass, both in terms of stiffness and buoyancy. Their stud-

ies for structures without buoyancy reinforced the previous results of

drag-velocity scaling transitioning from quadratic to almost linear,

but with buoyancy as a significant parameter, the scaling might even

be sub-linear up to a certain extent. Leclercq and de Langre (2016)

presented results from numerical simulations involving different flow

profiles across cantilevers of varying cross-section and proved that

the scaling of drag with velocity can be obtained using power law

approximations.

1.2 Present work

Based on the limited amount of literature available pertaining to the

effect of free surface and bluff bodies in general, this work focuses on

understanding its effect on normal rigid plates. The shape/orientation

of the plates, and the effect of Reynolds number has been looked at

in order to understand its behaviour over a range of submergence

depths measured from the free surface. This has been followed up

with experiments involving flexible structures in order to character-

ize the effect of bending rigidity on the horizontal forces and finally,

experiments involving strategically located holes on rigid plates and

their effect on drag, all within the realm of understanding the effect
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Chapter 1 Introduction

of free surface on plates translating normal to the flow. Additionally,

qualitative as well as quantitative flow visualization techniques have

been used to analyse the wake structure and correlate the forces with

flow.

1.3 Thesis layout

The thesis is organized with Chapter 1 laying the groundwork by pro-

viding an introduction to the topic, presenting the state of the art, the

voids in knowledge, and the current research objectives. Chapter 2

enumerates the experimental facilities used, and the instrumentation

employed for characterizing the phenomenon. Chapter 3 discusses

the results obtained for the rigid plates, Chapter 4 for flexible foils,

and Chapter 5 for a rigid plate incorporating porosity at strategic

junctures, with each of these chapters being independent works of

study which have either been published or the manuscripts are be-

ing prepared for publishing in scientific journals. Finally, Chapter 6

summarizes the overall work and suggests recommendations for fu-

ture course of action.

20

UNIVERSITAT ROVIRA I VIRGILI 
HYDRODYNAMICS OF FLAT PLATES IN CROSS-FLOW NEAR THE FREE SURFACE 
Sukruth Satheesh 
 
 
 



Chapter 2

Experimental Methodology

2.1 Overview

This chapter describes the experimental facilities, the instrumenta-

tion used to quantify the hydrodynamic forces as well as the high

speed imaging system utilized for visualizing and quantifying the flow.

2.2 Experimental Facilities

The tests were accomplished in a towing tank facility of the Labora-

tory for Fluid-Structure Interaction (LIFE) research group within the

Department of Mechanical Engineering, Universitat Rovira i Virgili.

The towing tank, which was developed in 2010 consists of a carriage

that can travel along a water tank of outer dimensions 0.6×0.6×2

m. A variable frequency drive is used to control an AC geared motor

system. The rotary motion of the motor is converted into linear mo-

tion via a belt drive system connected to the carriage. The carriage

reaches a constant velocity just after the start of its motion, depend-

ing on the prescribed speed, stopped using a magnetic proximity sen-

sor and the motion monitored by a precision rotary potentiometer.
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Chapter 2 Experimental Methodology

In order to identify the operational limits of the system, a calibration

process was undertaken by running the motor at different speeds to

estimate the carriage linear velocities and the achievable run lengths

at a steady velocity. The calibration process was conducted with

increasing and decreasing input RPM to check for repeatability. Fig-

ure 2.1 presents the calibration curve. It was found that an increase

in velocity results in a reduction in the run length available in order

to stop the carriage safely without damaging the tank. Thus, the

maximum safe achievable run lengths are restrained to around 1.45

m and velocity of 0.5 ms−1.

Figure 2.1: Tow tank calibration
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2.3 Instrumentation

2.3.1 Force measurements

The test specimens in the tow tank were mounted by means of a L -

shaped sting that was based on a vertical strut to which a submersible

bending beam load cell, rated for 49 N was attached to measure the

total horizontal force. The load cell was calibrated by applying a

known set of weights and its voltage response measured in loading

as well as unloading sequences to account for any hysteresis effects.

Figure 2.2 shows the load cell response and was found to be linear.

Figure 2.2: Load cell calibration
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The models were connected to the load cell via a 0.25 m long screw

rod, with the screw rod length being chosen to ensure minimal in-

fluence of the strut on the flow as well as yield minimum structural

vibrations. The force, and the position signal from the potentiometer

were sampled at 2 kHz using a data acquisition system. The lowest

natural frequency of the model-sting system was identified to be near

13 Hz, well away from the frequencies excited during the experimen-

tal runs. The Cartesian coordinate system was defined such that the

plate centre corresponded to the origin of the axes, with the x-axis

being in the direction of tow, z-axis being in the vertical direction,

and y-axis the direction perpendicular to the other 2 axes. Figure 2.3

presents a schematic of the experimental setup.

2.3.2 Qualitative flow visualization

Amixture of milk and corn-syrup was used against a dark background

to visualize the flow across the rigid plates. A hollow bent steel tube

of 5 mm inner diameter was mounted onto the carriage, upstream of

the model and supplied the mixture continuously during the entire

motion, and imaged using a high speed camera.

2.3.3 DPIV measurements

Hydrogen bubble flow technique was employed for visualizing the

flow across the rigid plates. A 50 µm Nichrome wire was fastened be-
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Figure 2.3: Tow tank facility with a plate specimen

tween 2 steel supports and mounted onto the carriage, upstream of

the model. Power was supplied to the wire using a laboratory power

supply rated 42V and 10A. Common salt was added to enhance the

conductivity of water and increase the bubble concentration. A 532

nm green continuous wave laser with ancillary optics was mounted

underneath the model and on the carriage to generate a laser sheet.

The location of the laser sheet and the bubble wire were aligned such

that most of the bubbles generated moved only in the laser sheet.

The bubble-laden flow was then imaged using a 2048×1088 pixels

resolution high speed camera and a 25 mm fixed focal length lens,
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with the optical axis of the camera being perpendicular to the laser

sheet. Image acquisition was undertaken at 170 fps and an exposure

time of 1/180 s. The same setup of flow visualization was also uti-

lized for the plates with holes and the flexible models, but with 20

µm neutrally buoyant Polyamide seeding particles in lieu of hydrogen

bubbles. The acquired images were processed by intensity threshold-

ing and the non-illuminated regions masked. PIV analysis based on

Fast Fourier Transform (Willert and Gharib (1991)) was undertaken

on these images using an interrogation window of 64×64 pixels and an

overlap of 50% to yield 1122 and 1584 vectors in each velocity field for

the experiments involving rigid plates and flexible foils, respectively.

The analyses of the porous models was done with an interrogation

window of 40×40 pixels and an overlap of 50% in order to capture

the effect of the holes on the flow and thus yielded 4081 vectors in

each velocity field. The pixel resolution was 0.25 mm, yielding spa-

tial resolutions of 0.85 × 0.825 cm, 0.787 × 0.791 cm, 0.508 × 0.512

cm and fields of view around 28.9×27.2 cm, 49.2×26.1 cm, 51.2×27.2

cm for the rigid, flexible and porous models, respectively. The outlier

vectors obtained from the cross-correlation scheme were identified af-

ter applying a threshold and replaced with new values obtained from

averaging the vectors neighbouring the outlier. PIV analyses of the

unperturbed flow in the absence of the model was also conducted

at one of the speeds and the velocity obtained was compared against

that from the potentiometer, and the error in velocity magnitude was

less than 3%.
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Chapter 3

Rigid flat plates

3.1 Overview

This chapter presents the methodology of data processing as well as

the results of the analyses for the rigid normal plates, focusing on the

effect of aspect ratio, Reynolds number, and submergence depth on

the drag generated.

3.2 Experimental Setup

All the models used for the experiments in this scenario were based

on the canonical profile of a plate, which was held normal to the flow.

Rectangular plate models were fabricated out of acrylic sheet 5 mm

thick (e). Due to the geometry, the aspect ratio of these plates was

the ratio of plate span (b) to plate chord (c), and ranged from 0.25 to

4. The thickness of 5 mm ensured that no deformations took place

during the experiments. Experiments were conducted at different

towing speeds (U∞), and submergence depths (d) measured from the

free surface to the upper plate edge. The blockage ratio, computed

as the ratio of the plate area to the tow tank cross-sectional area
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Chapter 3 Rigid flat plates

was kept constant at around 8% for all cases. Table 3.1 presents the

dimensions of all the models tested.

Table 3.1: Characteristics of the rigid plates

b c AR Dh Blockage ReDh

(·10−2 m) (·10−2 m) b/c (·10−2 m) (%) ·104

8 32 0.25 12.8 7.88
11.5 23 0.5 15.33 8.14
12.5 20 0.625 15.39 7.69
14 18.5 0.756 15.94 7.97 3, 4.5, 6
15 17 0.882 15.94 7.85
16 16 1 16 7.88
23 11.5 2 15.33 8.14
32 8 4 12.8 7.88

The plates of different dimensions, as mentioned in Table 3.1 were

mounted at various positions ranging from a depth such that the

upper edge of the plate was located at the free surface, to a depth

at which the centres of the plate and the tank were coincident. The

submergence depth was always measured as the distance between

the upper plate edge and free surface. The tank centre was chosen so

that the upper and lower boundaries were equidistant from the plate

edges and the effects on the forces generated were minimal. Each

run was conducted three times to ensure repeatability of the results.

Drag measurements were also conducted at the tank centre for all

the speeds without the plates, to account for the forces generated by

the sting and supports, which were then subtracted from the mean

force to obtain the mean plate drag (F). The mean plate drag force
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was then non-dimensionalized in the form of a drag coefficient (CD)

using expression,

CD = F
1
2ρU

2
∞ bc

(3.1)

The expression,

ReDh
= U∞Dh

ν
(3.2)

Dh = 2 b c
b+ c

(3.3)

is for the Reynolds number based on the plate hydraulic diameter.

3.3 Results

The force signals exhibit an initial acceleration peak related to added

mass effect prior reaching steady state values. A second force peak

is observed to exist in the latter part of the signal. This is due to the

instantaneous stoppage of the carriage. In order to obtain the steady

value of force generated, the accelerating and decelerating parts of

the signal were not considered to avoid transient phenomena. This

required the definition of specific time windows in which the analysis

was conducted, ensuring only the steady part of the signals was used.

The analyses windows are carriage speed dependent and during the

carriage calibration trials, which involved various acceleration rates,

it was found that accelerating the carriage to the steady state value

within a short interval of time O(0.1–0.6 s) ensured that a sufficient
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duration of constant-velocity travel could be achieved. Thus, with

the identification of the deceleration peak as the test end-point, time

window sizes (in seconds) of 2.75, 2.25, 2 along with an offset of 1

s from the end-point were selected for drag coefficient computations

at ReDh
of 3·104, 4.5·104 and 6·104 respectively. The window sizes

have been selected based on the amount of data samples available at

constant travel speed. Figure 3.1 presents a typical non-dimensional

force signal resulting from one of the experiments with a plate with

AR of 1 at a ReDh
of 6 · 104, at the tank centre. The time in the

abscissa is in dimensionless form.

Figure 3.1: Typical dimensionless force signal for a case with AR =
1, ReDh

= 6 · 104 at the tank centre

The experiments of Fernando and Rival (2016a), Fernando and Rival

(2016b) were carried out in a towing tank with plates of various
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aspect ratios and they were able to observe steady drag values even

when the run length was only 0.5 m. They used a dimensionless run

length of approximately 5, expressed as s∗ = s/Dh with s being the

length. With the same dimensionless expression in the experiments

presented here, s∗ goes up to 10.93, confirming the attainment of

steady velocity and forces as in their cases.

3.3.1 Theoretical estimation

The forces involved in the problem can be estimatated theoretically

by thinking of the 2D flow analysis across a normal flat plate in an

infinite flow domain, using the Schwarz-Christoffel transformation

(hodograph plane, Helmholtz-Kirchhoff method) (Currie, 2012) that

yields the expression,

Fx = π

π + 4ρU
2
∞b (3.4)

which is developed under the assumptions of an ideal fluid with sepa-

rated flow downstream of the plate such that the streamline velocity

at the separation point to be that of the free-stream, and Fx cor-

responding to the horizontal force component. According to this

equation, drag is directly proportional to the plate span. Drag esti-

mates obtained using equation (3.4) range from 1.408 to 22.523 N,

depending on the flow velocity and the plate span. The magnitude

of the theoretical values for the drag are consistently higher than
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those measured as expected, due to the assumptions involved in the

derivation and the fact that it does not account for AR. Although

limited in its applicability, the resulting values are different from the

measured ones. With an AR of 0.25 and its complementary of 4, the

experimental results (0.9 to 4.4 N) are close to the theoretical ones

(1.408 to 5.632 N), at all speeds implying variations of 25% in CD.

This is due to the fact that this configuration can be thought to be

more ‘two-dimensional’ compared to the other AR plates.

3.3.2 Effect of Aspect ratio on drag forces

In this section the effect of the aspect ratio is studied without taking

into account the effect of the free surface, i.e. at the tank centre.

Figure 3.2 presents the variation of CD with AR for different ReDh
.

The plot is arranged such that (M), (O), (�) denote ReDh
of 3·104,

4.5·104 and 6·104, respectively. At all Reynolds numbers, CD de-

creases with increasing AR, with minima near AR = 1, followed by a

monotonic increase up to the highest AR tested. The figure exhibits

symmetry with respect to AR of 1 as expected, as plates with com-

plementary AR should exhibit the same loading when not influenced

by the free surface. Notwithstanding, there exists minimal differences

(of approximately 3%) in the CD magnitudes of complementary AR

plates, even though the measurements have been conducted with the

same plate, but rotating it 90◦. The small differences are due to the

fact that the tank has a finite size, resulting in some cases for the
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plates to operate in closer proximity when compared to their com-

plementary, thereby involving slightly different upper plate-edge and

free surface interaction.

Although the experiments by Fernando and Rival (2016b) on vari-

ous rectangular plates with AR in the range of 1 to 4 were centred

on the analysis of the near wake and forces for impulsively started

plates, steady drag values from their results can be inferred. In their

experiments, they found square plates to have the lowest drag. This

was attributed to the generation of arch-vortices from the plate edges

which coalesced to form rings, and the delayed separation of the vor-

tex rings, resulting in a greater interaction with the plate. This effect

was found to be more prominent in circular plates than in square

ones. The dimensionless steady force measurements on square plates

(at similar Reynolds numbers) presented by the authors for AR of 1,

2, and 4, have been included in figure 3.2, showing values of CD of

1.6, 1.75, and 1.85 for a ReDh
= 4·104, that are well in accordance to

the results presented here, confirming again the measurements.

The experiments by Fage and Johansen (1927) on a floor-to-floor

mounted flat plate with AR ≈ 14 at a ReDh
= 1.5·105, yielded a CD

of 2.13 (1.86 after using blockage correction by Fail et al. (1959)),

when the flow was normal to the plate. Tian et al. (2012) conducted

2D unsteady-RANS and 3D LES on case similar to Fage and Johansen

(1927) and their 3D results are in good agreement with it. However,

their 2D simulation results over-predicted CD. Narasimhamurthy and
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Figure 3.2: Variation of CD with aspect ratio at different Reynolds
numbers at the tank centre and inset figure highlighting
the sensitive range

Andersson (2009) conducted 3D DNS studies (ReDh
≈ 0.13·104) on

a setup similar to Fage and Johansen (1927), with periodic bound-

ary condition in 1 direction and estimated the CD to be 2.31. These

results indicate the importance of 3D analyses for the flow character-

ization of 3D features even though the geometry is 2D.

In general, as depicted in figure 3.2, for a given ReDh
CD decreases

with increasing AR, up to a minima at around AR = 1. Further

increase in AR results in a symmetric rise. The influence of AR
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reduces as it gets very small or very large, fact also observed by

other researchers (Fail et al. (1959); Ringuette et al. (2007)).

3.3.3 Effect of Reynolds number on drag forces

Figure 3.2 also shows the variation of CD with Reynolds number,

with trends that are parallel to each other indicating small Reynolds

number dependence if compared to that of the aspect ratio. There is

the exception in the range 0.75 6 AR 6 1.33, which can be observed

in the inset figure. In terms of CD magnitude, the maximum change

with ReDh
for a plate AR of 1 is less than 6% whereas for AR of

0.75 and 0.882, it is around 13% and 10%, respectively, indicating a

larger Reynolds number sensitivity and a change in the trends shown

by the curves. The CD for the plate with AR of 0.882 is lower than

that of 1 at the lowest ReDh
, while the CD magnitudes are almost

equal at the highest ReDh
. Fernando and Rival (2016a) showed with

different elliptical plates at ReDh
of the same order of magnitude, that

Reynolds number sensitivity was large only when 0.67 6 AR 6 1.5.

The data presented in figure 3.2 has not been blockage corrected as

all the data points included were obtained as explained before, with

a constant blockage. Gould (1969) developed an empirical equation

based on wind tunnel tests conducted on flow across normal flat plates

to understand the effect of blockage and type of mounting on the drag

generated, for a fixed aspect ratio of 2. The equation for blockage

corrected drag coefficient mounted centrally is of the form,
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Chapter 3 Rigid flat plates

CDc = 1.163 · (1 + 2.81 · (CD B)− 0.96 · (CD B)2) (3.5)

where B denotes the model blockage ratio and CD, CDc are the mea-

sured and corrected drag coefficients, respectively. This equation is

applicable only when 0 < CD B 6 0.3. Applying this correction to

the values presented in figure 3.2, for the case with AR = 0.5 yields

values of CD near 1.6 at ReDh
in the order of 104, which is close to the

results by Gould (1969) of approximately 1.55 at ReDh
in the order

of 105. These results are comparable as well to the results by Sumner

et al. (2003), involving performance quantification of kayak paddles

modeled using a flat plate of AR = 2.6 at ReDh
≈ 3.5·105, resulting

in CD near 1.7. Although there are large differences in the Reynolds

numbers of each one of these set of experiments if compared to the

results reported here, they all show trends that imply the effect of

Reynolds number to be limited except when aspect ratios are near 1.

3.3.4 Effect of submergence depth on drag forces

In this section the effect of the proximity to the free surface is inves-

tigated, the highlight of this study. Figure 3.3 presents the variation

of drag coefficient for all the plates, with non-dimensional depth to

chord ratio, at all the Reynolds numbers and aspect ratios investi-

gated. In all the horizontal axes, the largest depth corresponds to

the tank centre position, so in this configuration it was ensured that
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3.3 Results

the free surface and the lower wall of the tank were equidistant from

the plate edges. Again, a d/c = 0 means that the upper edge of the

plate is located at free surface at the start of experiment.

Figure 3.3: Variation of drag coefficient with depth-chord ratio at the
three Reynolds numbers investigated

An increase in submergence depth from the free surface, results in an

abrupt increase in drag coefficient, peaking at a d/c ∼ 0.1 followed

with a reduction that leads to the values measured at the tank centre.

This is true for plates of AR < 0.75, whilst plates with AR of 0.75,

0.882, 1, and 2, the peak is attained at d/c ∼ 0.2. The trends for the

case of AR of 4, indicate a limited effect of the free surface on the

generated drag force, as expected. Overall, all the plates apart from

AR of 4, present a monotonic increase in drag force followed with

an abrupt drop as the submergence depth is reduced from the tank

centre to the free surface. It is also observed that the sudden drop in

drag at the free surface for AR of 2 from a d/c around 0.2 is not as
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Chapter 3 Rigid flat plates

prominent as that observed on AR of 0.5 from d/c approximately 0.1.

The absence of variation in drag force with submergence depth for the

plate with AR of 4 is opposite to that observed in its complementary

configuration. These show the decreasing influence of aspect ratio

on drag force with increasing depth, indicating that the effect of

AR is limited after a critical value, confirming the results of other

researchers (Ringuette et al. (2007), Fernando and Rival (2016a)).

Figure 3.4 presents the same data, but now the depth has been non-

dimensionalized using the hydraulic diameter, for plates of AR rang-

ing from 0.5 to 2, as they have comparable magnitudes of hydraulic

diameter. The primary drag peak takes place now at a d/Dh ∼ 0.2

in all cases.

Figure 3.4: Variation of drag forces with depth-hydraulic diameter
ratio at the three Reynolds numbers investigated

Arslan et al. (2013) studied the effect of free surface on a rectangular

cylinder spanning their entire test-section (with a 10% blockage) at
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different submergence depths and ReDh
near 1.8·104. Their numerical

and experimental results showed a CD ≈ 1.8 for a rectangular cylin-

der of AR ≈ 0.2 when near the free surface. The result of CD ≈ 1.6

for AR of 0.25 and ReDh
of 3 · 104 at a position similar with respect

to the free surface is comparable, considering the fact that the flow

around a non-circular cylinder differs to that over a flat plate. Sim-

ilarly, the CD results of Malavasi and Guadagnini (2007) (case (b))

are well within the measurement band for plate AR of 0.25. The

2D RANS results from Liu et al. (2016) indicate the presence of a

recirculation zone in the plate downstream when operating in close

proximity to the free surface, with size varying inversely with depth.

These simulations however did not account for the plate orientation

or the mutual interaction of the vortex structures forming at the other

edges which result in a smaller wake.

With the free surface being a deformable boundary, Froude number

is another parameter that can be used for studying the drag of the

plates, apart from depth ratio. Here, the characteristic length used

for Froude number computation is the submergence depth. Bous-

casse et al. (2017) included in their work a discussion on the different

possibilities of characteristic lengths when studying the flow around

a cylinder near the free surface. Thus, the magnitude of Froude num-

bers ranges from 0.13 when the plate is located at the tank centre to

a value of around 1.2 when the upper plate edge is located near the

free surface to finally reaching an extremely high value at free surface.

Figure 3.5 presents this variation for all the plates tested. Similar to
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Chapter 3 Rigid flat plates

figure 3.3, it can be seen that no trends are visible for plate AR of

4 at any of the tested ReDh
whereas the rest of the plates present a

peak in drag. The location of the drag peak also shifts rightward to

higher Frd, with increasing ReDh
, from Frd ∼ 0.4 to Frd ∼ 0.8.

Figure 3.5: Variation of drag forces with Froude number for different
plates at the three Reynolds numbers investigated

Besides force measurements, the results of qualitative flow visual-

ization at ReDh
of 4.5·104 using milk indicated the change in the

wake characteristics and thus was the motivation for further analy-

sis using the PIV technique. Figure 3.6 presents the results of flow

visualization and can be seen that an asymmetric wake exists at low

submergence depth, unlike in the other cases.
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3.3 Results

Figure 3.6: Variation in wake profiles at specific submergence depths
for AR = 0.5

3.3.5 Wake characterization

In this section results obtained by means of PIV show the evolution

of the near wake region of the plate. In figure 3.7, the flow fields re-

sulting from PIV interrogations carried out at 6 specific depths with

the plate of AR = 0.5, are depicted. This data was obtained at a

ReDh
of 4.5 · 104, and in the figure the flow is from left to right. The

images have been ordered with increasing depth, starting from the

free surface (d/c = 0) in the upper row of plots, to the tank centre

(d/c = 0.96). The colour map indicates the sign of the vorticity field

with red for clockwise and blue for counter-clockwise directions. The

thick black vertical line is used to indicate the location of the plate,

while the thick blue lines are used to indicate the approximate lo-
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Chapter 3 Rigid flat plates

cation of the free surface. The free surface distortion was estimated

from the PIV images using an in-house image processing code. The

location of the sting has not been included here for the sake of clar-

ity, but as described in the experimental set-up, it was connected at

the middle of all the plates investigated. The three vorticity fields

shown at each depth correspond to time averaged fields over a ∆t of

0.25 s. The first 2 fields at every depth (in the first two columns)

correspond to the initial wake formation phase and have been in-

cluded in order to see the evolution of the wake up to the steady part

of the run and for validation with other researchers findings, even

though the drag analysis presented in the previous sections, has been

carried out only with the steady part of the run, as explained be-

fore (third column). The non-dimensional time indicated per column

(t∗) is defined based on the timing of last vorticity field utilized for

averaging the specific band to the total run-time, and the vorticity

has been non-dimensionalized using the hydraulic diameter and the

towing speed.
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3.3 Results

Figure 3.7: Near wake evolution for AR = 0.5 plate at different in-

stants of time and depths, at ReDh
= 4.5 · 104
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Chapter 3 Rigid flat plates

At the tank centre (d/c = 0.96) in the last row, the initiation of

the plate motion (plot 3.7p) results in the generation of vorticity at

the edges. The vortices evolve and travel downstream as the plate

accelerates, with the vorticity being fed continuously through the

shear layers connected to the plate edges (plot 3.7q). When the plate

achieves a constant velocity (plot 3.7r), the initial vortices are shed

and a newer set of vortices are produced which in the averaged vor-

ticity field has the form of an elongated shear layer, with reverse flow

occurring at the mid-span location. The symmetrical arrangement of

the initial vortices and the shear layers about the z = 0 plane indi-

cate minimal influence of the boundaries on the wake. This begins

to change as the depth is reduced. At d/c = 0.63 (plots 3.7m-3.7o),

the initial evolution and the lower shear layer appear similar to that

at the tank centre but the free surface starts to have an influence

on the upper shear layer. Further reduction in depth depicts drastic

differences with the loss of wake symmetry being the most observable

feature. At d/c of 0.39 (plots 3.7j-3.7l) and 0.22 (plots 3.7g-3.7i), the

lower shear layer evolution is still close to that observed at the tank

centre while the upper shear layer is affected by the free surface sig-

nificantly due to increasing interaction between the gap-flow and free

surface. When the depth is d/c = 0.1 (plots 3.7d-3.7f), neither the

initial vortices nor the steady state flow are comparable to that at the

tank centre. The flow occurring in the gap between the free surface

and the upper plate-edge at this depth interacts with the free sur-

face resulting in the vortex formed at the upper plate edge to evolve
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closer to the plate and towards the midspan region compared to that

at the other edge. The free surface modifies the vortex formation on

both the edges, but effects are obviously stronger on the upper edge.

By the time the plate has achieved constant velocity, the interaction

of the upper vortex with the free surface results in the shear layer

being bent downwards and towards the opposite edge. This results

in a significant recirculating flow that envelops the base region of the

plate. Conversely, at d/c of 0 (plots 3.7a-3.7c), no such interactions

are visible due to the fact that there exists no gap-flow above the

upper plate edge. The flow across the lower plate edge is similar to

that observed at the tank centre. Within these plots, the free surface

distortion is visible only up to a d/c of 0.22. By the time the steady

flow is attained, the free surface is disturbed and lie at a level below

compared to that at the start of the experiment.

PIV measurements were also conducted with the plate AR of 0.25,

with the results presented in Figure 3.8. The flow at d/c of 0.75 (plots

3.8g-3.8i) is very similar to that of AR = 0.5 at d/c of 0.96 (plots 3.7p-

3.7r), which reinforces the argument of minimal interference of the

boundaries. At d/c of 0.08 (plots 3.8a-3.8c), the gap-flow interacts

further downstream (x/b ∼ 1.7) of the plate than in the case with AR

= 0.5 at d/c of 0.1 (x/b ∼ 0.9), and the upper shear layer evolution

is such that there exists no significant recirculating flow on the base

region of the plate. At d/c of 0.1875 (plots 3.8d-3.8f), the visualized

gap-flow is in an intermediate state to that observed at d/c of 0.22

and 0.39 for the plate AR of 0.5.
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Chapter 3 Rigid flat plates

Figure 3.8: Near wake evolution for AR = 0.25 plate at different in-
stants of time and depths, at ReDh

= 4.5 · 104

3.4 Discussion and Remarks

The force measurements and flow visualization have provided crucial

information regarding the behaviour of plates of various aspect ra-

tios when being towed both near and far from the free surface. Far

from any of the boundaries, vortices are shed from the plates in a

symmetric manner during the acceleration phase, with another set

of vortices from plate forming the visualized shear layer. The pro-

cess of shedding of the initial vortices, with the production of newer
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3.4 Discussion and Remarks

vortices from plate edges has also been observed by Fernando and

Rival (2016b) on plates of aspect ratios in the range from 1 to 4, who

denoted them as primary and secondary vortices, respectively. They

also linked the evolution of these vortices to the crests observed in

their CD temporal plots. Not only do their flow visualization results

match well with present results when comparing the initial phase of

the experiments, but also their steady drag data matches well when

compared to the data, as commented in the previous sections.

The variation of submergence depth introduces new interesting phe-

nomena and large changes in the drag forces observed, not reported

before. In section 3.3.4 it was shown how a drag peak appears at

d/c ∼ 0.1 for AR of 0.25 to 0.625 which shifted to d/c ∼ 0.2 in the

rest of plates, to its final disappearance for the AR = 4 case. The

absence of variations in drag when submergence depth was varied,

in the case with the plate AR of 4, indicates the minimal effect of

the shear layer structures that develop parallel to the free surface.

Figure 3.3 showed how for the specific case of AR of 0.5, for which

the PIV data appears in figure 3.7, the CD value increased some-

where between a 12% to a 20% (depending on Reynolds number),

as submergence was changed from the free surface to the drag peak

location. After the peak, CD reduces monotonically to the values at

the tank centre. The location of the peak for the case with AR of

0.25 appears to be dependent on Reynolds number. For this case, the

PIV data in figure 3.8, at d/c of 0.08 and ReDh
of 4.5 · 104 shows no

strong recirculating flow enveloping the base region of the plate, un-
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Chapter 3 Rigid flat plates

like the case of the plate with AR of 0.5 at the same ReDh
. The PIV

data in figure 3.7, indicates that this peak is due to the existence of

a strong recirculating flow in the base region. For most of the plates,

the observation of abrupt rise in drag followed with a reduction holds

true even while using Dh for non-dimensionalization of submergence

depth, with the results presenting a collapse of the data for all the

plates and the drag peak occurring approximately at d/Dh of 0.2.

Miyata et al. (1990) as well as Liu et al. (2016) have observed a

similar recirculating flow caused by a biased gap-flow, in their studies

with a cylinder and a flat plate at different submergence depths,

respectively. However, the results from Miyata et al. (1990) indicated

a very different drag force that changed abruptly on their cylinder,

with drag being lower at low submergence depths, if compared to the

data presented here. The 2D simulations from Liu et al. (2016) have

captured this flow feature, but neither the CD magnitudes nor the

trends are in agreement with the current results. The differences can

be attributed to the fact that the wake generation process for a plate

is inherently three dimensional at all submergence depths.

In terms of Froude numbers, it was observed that an increase in ReDh

resulted in translation of the drag peak location to higher Frd. Re-

ichl, P., Hourigan, K., Thompson (2005) presented in detail the flow

structures and wake interactions from 2D simulations of a cylinder

at various Froude numbers and depth ratios, at low Re. They in-

dicate that vortex shedding for a cylinder ceases to exist when the
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3.4 Discussion and Remarks

depth ratio is less than approximately 0.3 and Froude numbers are

between 0.25 and 0.4. This is due to the interaction of the vortex

from the top half of the cylinder with the free surface and result-

ing in free surface distortion and introduction of vorticity of strength

opposite to that shed from the lower half of the cylinder and anni-

hilating it. However, it must be mentioned that the characteristic

length utilized by them was the cylinder diameter. Choosing sub-

mergence depth as characteristic length for Froude number results

in a relation Frd = FrD/
√

d
D
, indicating an inverse relation between

critical Froude number and depth ratio, ranging from 0.4 to 0.63 for

fixed depth ratio of 0.4. This indicates that in order for a cylinder

to continuously shed vortices even at lower depth ratios, the Froude

number has to be increased. Bouscasse et al. (2017) has also found

similar results from his simulations. The force and PIV results for

AR of 0.5 show a drag peak, and substantial reduction in the length

of the wake structure when d/c ≈ 0.1 and Frd ≈ 0.6, respectively.

This indicates that plates have a similar dependency.

Far from the free surface, the flow separation occurring at the plate

edges and the resulting low base pressure is the major source of

drag. Near the surface, drag is expected to increase due to wave

formation, with increasing significance with increasing Reynolds and

Froude numbers. At a given Reynolds number, it is known that the

reduction in submergence depth creates divergent and transverse sur-

face waves which alter the wake characteristics and thereby the force

generated. The results from experiments of Benusiglio et al. (2015)
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Chapter 3 Rigid flat plates

showed that the ratio wave drag to total drag, on spheres under the

influence of the free surface changes quickly with submergence depth.

On the whole, the drag forces showed minimum values for aspect ra-

tios close to 1 when plates are away from the free surface, with the

trends also being insensitive to changes in Reynolds number, except

when 0.75 6 AR 6 1.33. However, the trends with changing submer-

gence depth were observed to be clearly dependent on Reynolds num-

ber, and on aspect ratio to a smaller extent. Most of the plates pre-

sented an increase in drag at low submergence depths, with hydraulic

diameter acting as a good parameter for non-dimensionalization. The

peak in drag has been linked to the interaction between the free sur-

face, the resultant gap-flow and the upper shear layer. This interac-

tion leads to the formation of a recirculating flow in close proximity

to the base region of the plate, due to the ability of free surface to

distort and enable fluid entrainment.
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Chapter 4

Flexible foils

4.1 Overview

This chapter presents the methodology of data processing as well as

the results of the analyses for flexible normal foils, with the focus of

the study being the effect of flexibility and submergence depth on the

drag generated.

4.2 Experimental Setup

In this scenario, the material as well as thickness was varied in order

to achieve a spectrum of flexibilities, measured as a product of E and

I, but with the aspect ratio fixed at 0.625. The results obtained from

the rigid case were used as a benchmark to compare the behavior of

the flexible models, owing to the fact that its deflection under fluid

loading is negligible. Foils of different thickness, ranging 25-125 µm

but with same AR as the acrylic case were fabricated of brass, steel or

Polyethylene Terephthalate (PET) to obtain different values of flex-

ural rigidities, which allowed for the calculation of Cauchy numbers

(CY ). The flexible models were fabricated by attaching the foils us-
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Chapter 4 Flexible foils

ing cyanoacrylate based adhesive onto a small acrylic skeleton with

a span of 2.5 cm and chord equal to that of the acrylic plate, which

resulted in the length of the flexible region (l) to be 5 cm on either

side of the skeleton, and was kept constant for all the cases. The

blockage ratio was the same as before, around 8% for the rigid case.

With the towing velocity and the cantilever length being constant,

thickness plays a major role in controlling the flexural rigidity due to

its relationship with the sectional moment of inertia being cubic in

nature. Thus, large changes in Cauchy numbers have been achieved

by varying the foil thickness marginally.

Table 4.1: Characteristics of the flexible models

Case Material e E CY

·10−6 m GPa
1 Acrylic 5000 3.2 0.0003
2 Brass 100 100 1.1
3 Brass 75 100 2.6
4 Steel 50 210 4.1
5 PET 125 5 11
6 Steel 25 210 33
7 PET 50 5 173

Table 4.1 presents a summary with the main characteristics of the

tested models, such as material, thickness, Young’s modulus (E),

Cauchy number, at a chord-based Reynolds number of 6×104. The

models were mounted as before, at various positions ranging from a

depth such that the undeflected upper edge of the foil was located

at the free surface, to a depth at which the centres of the foil and
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the tank were coincident. The submergence depth was always mea-

sured as the distance between the upper edge of the foil and free

surface. Each run was repeated five times to ensure repeatability.

Base drag measurement, that is a run without the model was also

conducted at the tank centre to account for the forces generated by

the sting and supports, which was subtracted from the mean force

to obtain the mean plate drag (F ). The mean plate drag force was

then non-dimensionalized in the form of a drag coefficient (CD) using

expression,

CD = F
1
2ρU

2
∞bc

(4.1)

The Cauchy number is calculated using the expression,

CY = ρU2
∞ c l

3CD0

2EI (4.2)

where I the sectional moment of inertia of the model, c e
3

12 , and CD0

is the drag coefficient of the rigid plate at the tank centre.

4.3 Results

Similar to the results observed in the previous chapter, the force

signals exhibit 2 prominent force peaks- an initial acceleration peak

related to added mass effect prior reaching steady state values and
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another in the latter part of the signal due to the instantaneous stop-

page of the carriage. For steady force calculation, it is essential to

disregard the regions of transient phenomena and requires usage of

specific analyses windows. Thus, within these sets of experiments,

Figure 4.1: Typical non-dimensionalized force signal for all the mod-
els at the tank centre over a single run

the time window size of around 2 seconds along with an offset of 0.5

s from the end-point were selected for drag coefficient calculations.

Figure 4.1 presents a typical non-dimensional force signal resulting

from one of the experiments for each of the models at Rec of 6·104,

at the tank centre against non-dimensional time. s∗ in these experi-
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ments goes up to approximately 12 for certain flexible models, which

indicates the attainment of steady velocity and forces as in cases of

Fernando and Rival (2016a,b), while figure 4.2 is a representative

montage of the attained foil deflection during the steady state.

Figure 4.2: Snapshot of steady state deflections for the specified mod-
els at tank centre

4.3.1 Effect of Flexibility on drag forces

In this section, the variation of drag coefficient with flexibility is dis-

cussed for all models when operating at the tank centre that is, far

from the lower boundary as well as the free surface. With the aspect

ratio, towing velocity and the cantilever length being the same for

all the cases, Cauchy number is dependent only on EI, the flexural

rigidity. The lowest Cauchy number corresponds to the completely

rigid acrylic plate and the highest to the 50 µm PET foil, the most

flexible case. Figure 4.3a presents the variation of drag coefficient

with CY whereas Figure 4.3b the variation of Reconfiguration num-
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ber, defined as the ratio of the measured force to that experienced

by the most rigid plate (< = F
F R

), when located far from any of the

boundaries. Here FR corresponds to the force experienced by the

acrylic plate. From figure 4.3, it can be seen that the drag coefficient

as well as < decreases with increasing CY . The drag coefficient of

the rigid plate is around 1.6 and begins to decrease as the Cauchy

number starts to increase, with the drop in CD being significant even

at Cauchy numbers as low as 2.6, as expected due to the reduction in

the exposed or frontal area. Further increase in Cauchy numbers only

enhances this drop in drag, with the value for the most flexible case

tending to approximately a quarter of that experienced by the rigid

plate. Figure 4.3b presents same phenomena with the Reconfigura-

tion number. Results obtained by other researchers (Gosselin et al.

(2010); Leclercq and de Langre (2016)) have also been plotted for

comparision and it can be observed that there is a very good match

with the published results over the range of CY tested, confirming

the reconfiguration process to be mostly two-dimensional in this case

too.

The steady drag results from Fernando and Rival (2016a) for an el-

liptical flat plate with an aspect ratio of 1.5 and ReDh
of 5·104 is

around 1.5, which is close to the value obtained by us for the plate

with highest rigidity. The current result is comparable with the for-

mer due to the effect of edge discontinuities on drag being minimal

(Fernando and Rival (2016b)), and that the orientation of the rect-

angular plate has an insignificant effect on the drag generated when
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4.3 Results

Figure 4.3: Variation of drag coefficient and Reconfiguration number
with Cauchy number

located far from any of the boundaries, at a given aspect ratio (AR =

b/c or c/b). Overall, the current results are in good agreement with

those presented by other authors, thus confirming the measurements

as well as the methodology of analysis.

4.3.2 Effect of submergence depth on drag forces

In this section, the effect of the proximity to free surface is studied

for all the models with the aforementioned Cauchy numbers. Again,

the submergence depth has been measured as the distance between

the free surface and the undeflected upper edge of the foil. This

value in turn, has been non-dimensionalized using the plate chord.

Thus, d/c = 0 corresponds to the case with the upper edge at the

free surface, and d/c = 1.1 to the scenario when the model edges are

equidistant from the free surface and the bottom wall.
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Chapter 4 Flexible foils

Figure 4.4: Variation of drag coefficient with depth ratio for models
at different Cauchy numbers

Figure 4.4 presents a variation of drag with depth, with the solid

symbols representing the flexible cases and (�) the rigid plate. For

the rigid case, CD monotonically increases as the submergence depth

is reduced from tank centre to d/c ∼ 0.1, followed with an abrupt

drop in values as the submergence depth is further reduced to zero, as

indicated in chapter 3. This behavior is also replicated for CY values
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up to 2.6, however the drag values at tank centre are correspondingly

lower, as has been explained in the previous section. At CY of 4.1,

CD values appear to monotonically increase till the free surface with

the abrupt increase in drag being conspicuously absent. For CY > 11,

drag coefficient presents no such variation with depth, indicating that

the generated drag force to be independent of submergence depth.

It must be restated that the drag coefficient calculations presented

here have been done using the frontal area of the rigid plate as the

reference area for all the cases.

Previously, chord as well as hydraulic diameter was used for non-

dimensionalization of submergence depth and the latter was found to

be a good parameter which resulted in the drag peak to be located at

approximately d/Dh ≈ 0.2 for most of the plates. However, with the

current experiments involving flexible structures and the consequent

area reduction, hydraulic diameter changes with flexibility. Thus,

chord is the only parameter that remains constant for all the models

and is better suited as a reference.

4.3.3 Foil deflection estimation

In this section, an estimate of the maximum foil deflection and tip lo-

cation is attempted using Euler-Bernoulli beam theory (Timoshenko

(1983)). From theory, it is known that a cantilever beam subjected to

an uniformly distributed load (q Nm−1) about its length l undergoes

a deflection of the form,

59

UNIVERSITAT ROVIRA I VIRGILI 
HYDRODYNAMICS OF FLAT PLATES IN CROSS-FLOW NEAR THE FREE SURFACE 
Sukruth Satheesh 
 
 
 



Chapter 4 Flexible foils

u(z) = q

24EI (z4 − 4l z3 + 6l2 z2) (4.3)

where z is the coordinate along the beam length, u the deflection and

x the direction of loading. The loading on the cantilevered sections

has been calculated by subtracting the force acting on the region of

the skeleton from the total drag. The drag on the skeleton region has

been estimated in turn using the drag value obtained on the rigid

plate at the tank centre and assumed to be distributed uniformly

along its span. The deflection estimate from this equation can be

observed in Figure 4.5a where the dotted lines correspond to theory,

the points (�, •,N,J,I) to the actual tip location obtained from the

captured images, and the solid black line to the rigid plate location. It

can be observed in figure 4.5a that the theoretical estimates are close

to the experimental values for cases up to CY of 4.1. This indicates

that the linear theory is valid and can be utilized for estimating

the foil tip position due to the deflections being not very strong.

However, the deviation from theory increases with increasing CY . It

is interesting to note that the theoretical deflection at CY of 173 is

higher than the actual deflection, whereas it is the opposite when CY

is 11 and 33. This suggests at a deflection limit or the existence of a

‘universal’ shape that is achieved when the trailing edges are parallel

to the flow, and the classical beam theory is valid when the Cauchy

numbers are mild and the model is far from any of the boundaries.

Figure 4.5b presents a similar analysis at specific submergence depths
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Figure 4.5: Variation of foil deflection with Cauchy numbers and
depth ratio

where images have been acquired for the case of CY of 4.1, which has

been chosen specifically due to the very good match observed between

theory and experiments in figure 4.5a. It can be seen that at high

submergence depths the agreement between theory and experiments

is very good, with the difference being less than 2%. However, the

match between theory and experiments changes with submergence

depth. The differences are more significant on the region closer to

the free surface than the lower edge. On the lower side, the foil is

seen to maintain a similar position experimentally at all the visu-

alized depths, indicating similar or no effect of free surface on the

deflection. The deviation from theory increases with reducing depth

as expected due to the greater proximity of the upper edge of the foil

to free surface when compared to the lower edge. These results prove

that the assumption of an uniformly distributed load in linear beam
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Chapter 4 Flexible foils

theory cannot be expected to provide accurate information regard-

ing foil deflection when in proximity to the free surface or when the

deflections are extremely large.

Even though the linear beam theory is limited to small deflections,

its simplistic formulation and applicability to a vast range of prob-

lems renders it extremely convenient. In order to obtain a better

estimate of large deflections at high CY values and different submer-

gence depths, the loading has been assumed to be varying along the

span and is of the form,

q = q0

(
1− z

l

)n

(4.4)

where n is the loading exponent, with n equal to 0 corresponding

to the classical uniform distribution (UDL), a constant load and n

of 1 to a uniformly varying load (UVL) with the force magnitude

being maximum at z = 0 and zero at z = l. Substituting this form

of loading into the beam equation and the implementation of the

appropriate boundary conditions for a cantilever with one end rigidly

mounted and the other end being free yields,
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EI
∂4u

∂z4 = q0

(
1− z

l

)n

(4.5)

u = q0l
4

EI(n+ 1)(n+ 2)(n+ 3)(n+ 4)Z (4.6)

Z =
(1− z

l

)n+4

−
(

1− z

l

)
(n+ 4) + (n+ 3)

 (4.7)

And the equation for maximum tip deflection being,

umax = q0l
4

EI(n+ 1)(n+ 2)(n+ 4) (4.8)

Figure 4.6: Cantilever load distribution at different loading exponents
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Substituting the values of n being equal to 0 or 1 yields the maximum

tip deflection of q0l4

8EI
and q0l4

30EI
, which correspond to the conditions of

UDL and UVL, respectively. Figure 4.6 presents the load distribution

for specific loading exponents. When equation 4.8 is utilized for iden-

tifying the loading exponents in the experiments at tank centre, they

are obtained as ∼ [0.175,-,0,-0.075,-0.25,0.213] for the Cauchy num-

bers ranging from 1 to 173, respectively. Due to the fact that imaging

was not undertaken at CY of 2.6, no exponent has been identified.

An exponent rated 0 < n < 1 signifies a loading of a form intermedi-

ate to UDL and UVL, wherein the force acting along the cantilever

length is reducing at a non-linear rate, but with the force acting at

the tip to be zero, whereas a negative exponent signifies a loading

which reaches infinite values at the tip. The magnitude of the expo-

nents also indicate the same– that the UDL assumption is valid for

low to medium CY values, post which the exponent becomes negative

indicating that the loading needs to account for an extra force that

acts near the tip which results in a greater deflection. At higher CY ,

the exponent is positive again, indicating that the loading is again

non-linear but such that the tip load is zero. A relation between the

loading exponent and Cauchy number is obtained by curve fit and is

of form,

n = −0.1505 ln(CY )+2.165·10−5(CY )2+3.27·10−4(CY )+0.249 (4.9)
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4.3.4 Reconfiguration number and Vogel

exponent

In this section, the effect of reconfiguration is presented in greater

detail. For the sake of brevity, Figure 4.7a presents the variation of

Reconfiguration number with Cauchy number only for certain depths,

where < has been defined as the ratio of the force experienced by

a foil at a particular depth to that of the rigid plate of the same

AR at tank centre. From this figure, it can be observed that an

increase in Cauchy number results in reduction in magnitude of <,

indicating that the drag generated by the foil to be lower than the

plate. Except for varying magnitudes, the trend is almost the same

at all the presented depths, indicating that the decline in drag to be

due to the reduction in frontal area. It is also seen that the lowest

drag values are either at the tank centre or free surface. At certain

depth ratios such as 0.05 and 0.1, the drag generated at Cauchy

numbers less than 2.6 is higher than 1, illustrating that the drag at

these depths to be higher than equivalent rigid plate at tank centre.

Post CY of 2.6, the reconfiguration numbers are less than 1 and begin

to overlap for most of the depths, indicating that submergence depth

does not a play a significant role after a certain Cauchy number.

Since this work involves studying the effect of submergence depth

on drag generation, it is more prudent to define the reconfiguration

number as the ratio of the drag experienced by the foil to that experi-

enced by the equivalent rigid plate (<∗ = F d

F Rd

), when operating at the
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Chapter 4 Flexible foils

same submergence depth. This method ensures that the comparision

of forces is always occurring with respect to rigid plate at the same

depth. Figure 4.7b presents this behavior and it can be immediately

observed that this method results in presentation of the drag values

of the rigid plate at 1 and the rest of the foils being lesser than 1,

irrespective of the depth. Thus, it is explicit from this plot that the

drag generated by the rigid plate to be the highest and that flexibil-

ity results only in drag reduction. Even in terms of comparision of

the results with that from literature (Gosselin et al. (2010); Leclercq

and de Langre (2016)), it can be observed that the <∗−CY presents

the results in better light, with <∗ values at most of the depths to

be almost the same as that obtained by other researchers and that

submergence depth does not have significance after a critical Cauchy

number, which was also observed in figure 4.4.

Figure 4.7: Variation of < and <∗ with CY at specific depth ratios

Having presented the effect of reconfiguration in the previous section,
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the Vogel exponents are calculated from the logarithmic slopes of the

<∗ − CY plot at all the depths, that is Υ = 2 ∂ ln<∗

∂ ln CY
, where Υ is the

Vogel exponent. So, a Vogel exponent of 0 signifies that the classical

quadratic relationship of drag with velocity holds true while a value

of -1 signifies a linear relation. Figure 4.8a presents the variation of

the Vogel exponent with Cauchy number only at particular depths

for the sake of clarity. It can be seen that the Υ is close to zero up

to a Cauchy number of 1 for all of the depths presented, post which

the exponent begins to decrease with an increase in CY . Barring a

few points at CY of 4.1, it is observed that the lowest magnitude of

the exponent occurs at CY of 11 for most of the depths, ranging from

around -1.1 at the tank centre to -1.4 at the free surface. Further

increase in Cauchy number results in an increase in the exponent

value. Overall, this indicates that the quadratic relationship between

drag and velocity does not hold true post a certain Cauchy number,

irrespective of the depth and there exist certain Cauchy numbers

where submergence depth has a strong influence on the drag-velocity

scaling, but not on the rest.

In fact, this trend becomes explicitly clear when the Vogel exponents

are plotted against submergence depth for different foils. Figure 4.8b

presents this behavior, with the line markers and colours being the

same as in Figure 4.4. It can be noticed that the trend of the exponent

for the most rigid cases, that is of the rigid plate and CY of 1 are

almost flat and close to zero. Increasing the Cauchy number brings

a significant variation in the Υ magnitudes. At CY of 2.6 and 4, the
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behavior is highly non-linear, with the lowest values being achieved

at d/c of 0.1. At CY of 4.1, the exponent value at the free surface

is almost equal to that at the tank centre- ≈ -0.7, distinct from that

at CY of 2.6, where the exponent is far higher at the free surface

than at the tank centre. At Cauchy number of 11, no such non-

linear behavior is observed, rather the magnitude of the exponent

increases monotonically from free surface to the tank center. On

further increasing the CY values to 33 and 173, no such variations

with respect to the depth are also observable and maintain almost a

constant value of around -1 and -0.65, respectively.

Figure 4.8: Variation of the Vogel exponent with Cauchy numbers
and submergence depths

Leclercq and de Langre (2016) have calculated the Vogel exponents

numerically with various flow profiles and their results in an uniform

flow has been incorporated in figure 4.8a for comparision. It can

be seen that the present results match favourably to their calcula-
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tions, both in terms of the trend as well as magnitudes. Alben et al.

(2004) and Gosselin et al. (2010) have shown through modelling of fi-

bres and dimensional analysis for rectangular plates, respectively for

cases involving large deformations that the Vogel exponent reaches

an asymptotic value of -2/3 at high Cauchy numbers, which is close

to the values obtained by us for CY of 173 when operating close to

the tank centre. This indicates that the asymptotic limit has been

reached, with further increase in CY expected to lead to marginal or

even no changes in the magnitude of the Vogel exponent. In fact,

Gosselin et al. (2010) and Leclercq and de Langre (2016) have stated

that a near linear drag-velocity scaling is achieved theoretically and

numerically at CY = 101.1 ≈ 12.6 due to the additive effects of area

reduction and streamlining, which is close to experimental value of

11, at the tank centre.

4.3.5 Wake characterization

In this section, the results obtained by means of PIV show the evolu-

tion of the near wake region of the model. In figure 4.9, the flow fields

resulting from PIV interrogations undertaken at 4 specific depths and

with the foils with CY of 0.0003, 1, 4.1, 11, 33, and 173 are depicted,

the flow being from left to right. Each row corresponds to models

of different Cauchy numbers, while the submergence depth increases

horizontally- starting from the free surface in the first column and

ending with the tank centre. The submergence depths utilized for
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the visualization in the current set of experiments (d/c = 0, 0.1,

0.4, and 1.1) have been selected based on the results obtained for

the rigid plate. The colour map indicates the sign of the vorticity

field with red for clockwise and blue for counter-clockwise directions.

The thick black line indicates the location and the orientation of the

models with flow, while the thick blue lines are used to indicate the

approximate location of the free surface The free surface distortion

was estimated from the PIV images using an in-house image process-

ing code, with the distortions being visible only at low submergence

depths and for models of low CY . The location of the sting has not

been included here for the sake of clarity, but as described in the ex-

perimental set-up, was connected at the centre of all the investigated

models. The PIV data being presented here is also averaged over a

timespan similar to that presented in the previous chapter and corre-

sponds to the steady part of the run which has been utilized for drag

calculations, and the vorticity has been non-dimensionalized using

the towing speed and chord.

A detailed explanation for the effect of the free surface on the rigid

plates of AR = 0.25 and 0.5 appears in section 3.3.5. In the case

of AR = 0.625 and the plate being rigid (plots 4.9a-4.9d), similar

behavior is shown at the specified depths- a symmetric evolution of

the time averaged vortices in the form of an elongated shear layer

from the upper and lower edges whose symmetry breaks up with

the reduction in submergence depth. This results in the interaction

of gap-flow (d/c = 0.1) with free surface and formation of a strong
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Figure 4.9: Near wake details for models of different CY and at spe-
cific depths, at Rec of 6·104
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asymmetric (with respect to span) recirculating flow enveloping the

base region of the plate to a no flow condition over the upper edge

and an elongated form near the lower edge at the free surface. For CY

of 1.1 (plots 4.9e-4.9h), the aforementioned trends of the rigid plate

seem to be replicated with a small weakening of the vorticities even

though the foil does undergo a small deflection. This indicates the

reason for the drag-depth plot to be similar to that presented by the

rigid plate. At CY of 4.1, (plots 4.9i-4.9l), the foil deflections increase,

resulting in further change in the near wake vorticities. The major

difference when compared to previous cases is the absence of strong

recirculating flow in the base region at d/c of 0.1 (plot 4.9j) while

the weak, recirculating flow is still visible in plot 4.9i. This indicates

that an increase in foil deflection results in an increase in effective

submergence depth. This is the reason for shift in the location of the

stronger base region recirculating flow from d/c of 0.1 to 0. Further

increase in CY to 11 (plots 4.9m-4.9p) leads to greater foil deflection

whose trajectory is almost the same at all the tested depths, thus

exhibiting similar near wake profiles. The aspect of similar wake

profile holds true even at Cauchy number of 33 and 173 (plots 4.9q-

4.9x), apart from slight stretching of the wakes further downstream

besides greater foil deflection at all the depths tested.
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4.4 Discussion and Remarks

Although chapter 3 presented the trends of rigid plates near the free

surface, the force and vorticity plots presented in the previous sec-

tions have provided an unique range of results for flexible systems.

When the Cauchy number is increased to 1, the same phenomena is

present at all the depths even though the model undergoes a small

deflection due to fluid loading. This is observed in both force as well

as PIV results. This indicates that the reconfiguration of the foil

does reduce the drag generated but is not strong enough to alter the

flow. Although no visualization tests have been done for the case

of CY = 2.6, the variation of drag with depth mimics that of the

previous 2 cases, indicating that the reduction of the frontal area is

not significant enough to alter the near wake. Further increase in

Cauchy numbers only intensifies the reconfiguration process, causing

significant drag reduction. In fact, the abrupt drop in drag when

submergence depth is reduced from d/c of 0.1 to 0 at low Cauchy

numbers is missing in this situation, and the highest drag is observed

at the free surface. This indicates that the fluid loading is strong

enough to reconfigure the foil, resulting in the effective submergence

depth to be greater than that established initially. So, when the foil

is placed at free surface at the start of the experiment, it undergoes

a reconfiguration process causing the effective submergence depth to

be greater than 0, and the situation to be closer to d/c of 0.1 of the

rigid case. The flow in the gap between the deflected upper edge and
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free surface forms a recirculating zone in the near wake that envelops

the base region, as visualized in figure 4.9i. Increasing the Cauchy

number only enhances the area reduction process and consequently

reduces drag, and the drag reduction being depth independent, as

seen for CY > 11. In terms of the reconfiguration number, the trends

presented here at all the depths match very well to that by Gosselin

et al. (2010) and Leclercq and de Langre (2016), confirming that a

CY greater than 1 always ensures drag reduction. Alben et al. (2002)

presented in his analysis of the existence of a ‘universal’ deflection

profile for the fibres and found a profile that was almost parabolic,

while Gosselin et al. (2010) presented a model which indicated that

at very high values of CY , the foil deflection ought to be such that its

trailing edges are parallel to the flow but were not able to achieve the

same experimentally due to flutter. In the current experiments, the

comparision of classical beam theory solutions with the experimental

positions indicated experimental deflection at CY of 173 to be lower

(figure 4.5a), suggesting that there indeed exists a limit for the foil

deflection.

In terms of the Vogel exponent, there is a transition of the drag

velocity scaling from quadratic to linear and its variation with sub-

mergence depth. At very low CY , the exponents are almost 0 at

all the submergence depths, indicating that the classical relation-

ship holds true. As soon as CY increases to 2.6, a strong variation

with submergence depth is observed, varying from 0 to around -0.4,

suggesting that the drag-velocity scaling is sensitive to submergence
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depth. Further increase in CY to 4.1 confirms this matter, but the

band of values of Υ reduces, suggesting the scaling to be almost linear

at low submergence depths (d/c = 0.05, 0.1). It is when the CY is 11

that the best performance in terms of Υ is displayed. At minimum,

the drag-velocity scaling is linear and this occurs at the tank centre.

The reduction in submergence depth in fact makes the behavior sub-

linear, suggesting that the drag varies much more slowly when the

foil is located closer to the free surface. PIV results also reveal the

near wake vorticities to be altered, with the elongated wake profiles

to be near parallel to the flow due to area reduction and streamlining

effect. Also, the interaction of upper shear layer with free surface

is such that the weakening of the wake occurs, with no recirculating

bubble in the base region. At CY of 33, the fluid loading ensures

greater area reduction and streamlining which causes lower drag, but

the free surface has no significant effect on Vogel exponent. The

loading ensures that the deflection results in a near parallel wake,

and is always far from the influence of free surface, resulting in a

near constant Υ. At CY of 173, Υ increases and reaches close to the

asymptotic value of -2/3, as predicted by other researchers (Alben

et al. (2004); Gosselin et al. (2010); Leclercq and de Langre (2016)).

Overall, in terms of drag generated, flexibility is always advantageous

for drag reduction, with higher Cauchy numbers signifying greater

area reduction and streamlining, and the drag reduction being sig-

nificant at all depths.
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Chapter 5

Strategic porosity

5.1 Overview

This chapter presents the methodology of data processing as well

as the results of the analyses for rigid plates incorporating holes at

strategic locations, with the focus of the study being the effect of

holes, its orientation, and submergence depth on the drag generated.

5.2 Experimental Setup

All the experiments were conducted for a plate AR of 0.625 and

Rec of 6·104. These conditions were selected based on the trends

observed in the earlier experiments (figure 3.3) wherein this particular

plate presented a wide range of CD values over the entire gamut

of submergence depths tested, thereby acting as an ideal baseline

model. The current experiments focused on studying the effect on a

rectangular flat plate with the hole centers being located 14 mm from

the upper and lower edges of the plate, respectively. This ensured

that small variations in hole diameter will result in an insignificant

change in the distance between the hole jet and the proximal plate
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edge, with all the hole axes being parallel to the flow. In order to

obtain holes at angles, the hole exit planes were maintained at the

same distance from the plate edges while the hole inlet plane locations

were varied, resulting in the jet angles (α) of either +45◦ or -45◦,

with the positive jet angle indicating the jet direction to be away

from the model centerline in the downstream side of the plate. The

hole diameter (h) and the number of holes (nh) were varied such that

the maximum porosity was always less than 10%. The constraint

of the distance from the plate edge and the porosity were selected

to ensure sufficient wall thickness existed between the holes and the

corresponding proximal edges, and on the requirement of minimal

change in the structural rigidity of model. The lateral spacing ratio

of the holes, that is the ratio of hole center to center distance to the

hole diameter was also fixed at 1.1. Table 5.1 presents characteristics

of the fabricated models and figure 5.1 a schematic of the model.

Table 5.1: Characteristics of the porous models

Case h nh β α

·10−3 m % (◦)
1 10 30 9.4 0
2 7 42 6.5 0
3 10 30 9.4 -45
4 10 30 9.4 +45

The models were mounted as described in section 3.2, at various posi-

tions ranging from a depth such that the upper edge of the plate was

located at the free surface, to a depth at which the upper and lower
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5.3 Results

Figure 5.1: Schematic of the plate with holes

plate edges were equidistant from the free surface and the ground.

The submergence depth was always measured as the distance between

the upper edge of the plate and free surface. Each run was repeated

five times to ensure repeatability of the results. The mean plate drag

force (F ) was non-dimensionalized using the expression,

CD = F
1
2ρU

2
∞A

∗ (5.1)

where A∗ corresponds to the actual exposed area, accounting for the

reduction in area due to the holes.

5.3 Results

Similar to the cases with the rigid plate as described in chapter 3, the

force signals exhibit 2 prominent force peaks and were disregarded for
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Chapter 5 Strategic porosity

Figure 5.2: Non-dimensional force signal against non-dimensional
time for all the models at tank centre.

steady force calculations. Thus, the time windows were selected on

a similar basis, along with an offset of 0.5 s from the end-point were

selected for drag coefficient calculations. Figure 5.2 presents a typical

non-dimensional force signal resulting from one of the experiments

for each of the models at Rec of 6·104, at the tank centre against

non-dimensional time.
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5.3.1 Effect of holes on drag forces with

submergence depth

In this section, the effect of porosity on drag is studied for all models

with the hole axes being parallel to the towing direction (α = 0◦),

at different submergence depths. The submergence depth has been

non-dimensionalized using the chord, with 0 corresponding to free

surface and 1.1 to the tank centre.

Figure 5.3: Variation of CD with depth ratio at different hole diame-
ters for cases with hole axes parallel to the flow.

Figure 5.3 presents the variation of drag with depth, with � repre-

senting the solid plate and �, • the models with holes of 7 and 10
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Chapter 5 Strategic porosity

mm diameters, respectively. It can be seen that the trends exhibited

by the porous models are similar to that of the solid case but with

the magnitudes of drag coefficient being lower. There is a monotonic

increase in drag as the submergence depth is reduced from the tank

centre value, with a region displaying a change in the gradient when

0.2 6 d/c 6 0.5, leading to an abrupt rise in drag at d/c of 0.05 and

finally reducing at free surface. Although the model with 7 mm holes

also exhibits this behavior, neither the decrease in drag coefficient at

the tank centre nor at d/c of 0.1 are significant as that compared to

the model with holes of 10 mm diameter. Note that the CD values

for the porous models have been calculated using the actual exposed

area, that is an area less than that of the rigid plate on account of

the holes. This reduction in drag occurs at all submergence depths,

the reduction with respect to the rigid plate being on the order of 3%

at the tank centre and around 18% at d/c of 0.1, and the drag peak

location of the porous models being shifted closer to the free surface.

In fact, the results at tank centre compare favourably to experimental

and computational results of Castro (1971) and Xiong et al. (2012),

respectively. The experiments by Castro (1971) were accomplished

on two dimensional plates over a wide range of porosities and with Re

ranging 2.5·104 to 9·104. The difference in drag between the current

results and that obtained by Castro (1971) for plates with porosity

of 10% is less than 10%, indicating that the method as well as the

analysis procedure holds good even for cases of low porosity. The

drag values at free surface are slightly higher than that of the rigid
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case, indicating their effect in terms of drag reduction at the free sur-

face to be minimal. Overall, this indicates that holes located near the

edges have a strong effect on the drag generated. This was previously

observed by Huera-Huarte (2014) in experiments with circular plates

in cross-flow used to model sport equipment. The author linked the

drag reduction provided by the holes to the modification of the shear

layer detachment in the plate. The coaxial jets formed in the holes

near the edges moved the shear layer interaction region further away

from the plate, thus lowering the overall CD. The results obtained

in figure 5.3 indicate that a similar phenomena occurs in rectangu-

lar plates with holes close to the edges and located at tank centre.

Flow visualization results are presented in the subsequent section to

identify the source of drag reduction in the porous model compared

to the solid plate, at low submergences.

5.3.2 Effect of hole inclination on drag forces

with submergence depth

Since a significant reduction in drag was observed in the model with

holes of 10 mm diameter, the effect of tilting the hole axis with respect

to the flow direction was also investigated and is presented in this

section. As explained earlier, the jet angles have been obtained by

maintaining the hole exit plane locations at the same distance from

the plate edges while the hole inlet planes have been relocated based

on the requisite angle.
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Chapter 5 Strategic porosity

Figure 5.4: Variation of drag coefficient with depth ratio for different
hole angles.

The trends for the solid plate as well as porous α = 0◦ case have

also been plotted for the sake of comparision in figure 5.4, while N,H

represent the jet angles of 45◦ oriented away and towards the model

centerline, respectively. The data shows clearly how an inclination in

the hole axis with respect to the flow direction has a strong effect on

the drag generated. The trends of the models involving inclined holes

follow that of holes parallel to the flow but with drag magnitudes

being lower or higher, dependent on the hole inclination. For all

the cases involving the holes, the drag values at the tank centre and

the free surface are similar, suggesting mild efficacy when the free
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surface is far from the plate. When the holes are tilted towards the

centerline, the drag values are lower than the solid model but higher

than α = 0◦ case. A significant reduction in drag is observed over

the entire range of submergence depths when the holes are tilted

away from the centerline, with the reduction being most prominent

at d/c of 0.1. Perera (1981) studied the orientation of porosity, in the

form of horizontal or vertical slots spanning the entire length in fence

models and found that the level of porosity has a stronger influence

on the wake rather than its orientation. However, the current results

show that the aspect of directionality as well as its proximity not

only to the plate edge but also the free surface has a strong effect on

the total drag. The results from flow visualization are presented in

the following section to understand the observed force trends.

5.3.3 Wake characterization

The PIV results have been presented in this section involving vor-

ticities, with the plot specifications and the colormap being same as

that in the previous chapters, similar to the last column of figures 3.7

and 3.8, due to the focus of the measurements being the steady flow

scenario. However, the non-dimensionalization here is with respect

to chord instead of hydraulic diameter. The visualization has been

undertaken at specific depths based on the results observed for the

solid plate and model incorporating holes of 10 mm diameter. Fig-

ure 5.5 presents results for the cases of solid plate and the plate with
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Chapter 5 Strategic porosity

holes parallel to the flow at Rec of 6·104 and d/c of 0.1 and 1.1.

These depths have been selected based on the results observed in

chapter 3 for AR of 0.625, with these depths corresponding to the

location of the drag peak and the tank centre, respectively, as seen in

figure 4.9. The green lines in the plots of porous models indicate the

approximate location and orientation of the holes for reference and

comparision.

Figure 5.5: Wake features for solid plate (first column) and a porous
model (α = 0◦) at d/c = 0.1 and tank centre

For the solid plate case at tank centre (plot 5.5c), the symmetric
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evolution of elongated shear layers and at d/c = 0.1 (plot 5.5a), the

asymmetric wake due to the interaction of the gap-flow with the free

surface and a strong recirculating flow in the base region are similar

to that observed in the previous chapter (plots 4.9d, 4.9b). Plot 5.5d

presents wake features of porous model at tank centre and is similar

to that exhibited by the solid plate, barring for the presence of a

pair of vortices near the hole location and close to the lower plate

edge. The orientation of these vortices is skewed towards the shear

layer, as has also been reported by Theunissen and Worboys (2018)

in their work involving holes on circular plates. This indicates that

the skewing of the jets towards the shear layer is not dependent on

the model geometry but on the proximity of the holes to the plate

edges, as previously described by Huera-Huarte (2014). The most

significant difference in the wake is visible in plot 5.5b wherein the

recirculating flow existing in the plate wake is located at a greater

downstream distance (x/b ∼1.1) than that observed for the solid plate

(x/b ∼0.5). For the solid plate at low submergence, the interaction

of the gap-flow with the plate shear layer and free surface has been

identified as the source of drag peak, as presented in chapter 3. This

indicates that the jets emanating from the upper holes interact with

the gap-flow, shear layer and the free surface, resulting in a greater

downstream excursion of the recirculation zone.

The effect of hole angle is discussed in figure 5.6. The first column

corresponds to the condition of hole axis being parallel to the flow

(α = 0◦), the second column to the case with hole axis towards the
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model centerline (α = −45◦) and the last in the opposite direction

(α = +45◦). The submergence depths shown in the figure have been

selected after the phenomena described in the force plot of figure 5.4.

At the tank centre (plots 5.6m-5.6o), the symmetric layout of the

shear layers is visible in all the hole configurations, and no major

observable differences in the wake seems to be introduced by the hole

angle. As the submergence depth is reduced (plots 5.6j-5.6l), the

free surface has an effect on the proximal plate edge shear layers and

the hole jets, resulting in its evolution to be near parallel to the free

surface. This is very different from the case of the solid plate which

has been presented in the preceding chapter (plots 4.9a-4.9d). At d/c

of 0.1, which corresponds to the location of drag peak for the solid

plate, it is clearly visible in all the hole configurations (plots 5.6g-

5.6i) that the presence of jets results in an asymmetric recirculating

flow due to the interaction of the gap-flow and free surface to occur

further downstream when compared to the solid plate. The location

of the recirculating flow is also seen to be dependent on the hole

orientation, with the location being the farthest in the case of plate

with holes tilted outward from the model centerline (x/b ≈ 1.5) and

x/b ≈ 1.1 in the other 2 porous models. At the location of drag peak

for all the hole configurations, that is d/c of 0.05, it is seen (plots

5.6d-5.6f) that the free surface gap-flow interaction is stronger than

the effect of the hole jet, resulting in the formation of a recirculating

flow in the base region of the plate, with the location being dependent

on the hole angle. The recirculating region is observed to be located
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closer to the model (x/b < 0.75) when the jets are angled towards the

centerline than when away from it (x/b ≈ 0.75). At free surface, the

wakes of the 3 configurations (plots 5.6a-5.6c) are similar, indicating

the same or limited effect of the hole orientation.

The magnitude of the velocities (U =
√
u2 + w2), non-dimensionalized

with the towing velocity are plotted for the porous models in figure 5.7

at the same depths as those in figure 5.6. The colormap indicates red

to be the highest velocity and blue the lowest, with black dotted

lines indicating the orientation and location of the holes. The veloc-

ity fields again emphasize the observations made based on vorticities.

The symmetric evolution of the shear layers at the tank centre for all

the model configurations (plots 5.7m- 5.7o) indicates that the orien-

tation of the holes has no significant effect, besides a slight reduction

or extension of the wake region downstream the plate when the holes

are towards or away from the centerline, respectively. The break in

the symmetry is observed as the submergence depth is reduced (plots

5.7j- 5.7l), with a region of significant flow velocity in the base region

of the plate, whose size is clearly dependent on the hole orientation.

At d/c of 0.1 (plots 5.7g- 5.7i), the interaction of the hole jet with

the gap-flow is clearly visible and results in a greater downstream

excursion of wake, as explained in figure 5.5. Further reduction in

submergence depth to d/c of 0.05 results in an observable variation

in the wake velocities (plots 5.7d- 5.7f), which is dependent on the

hole orientation. When the holes are tilted away from the model cen-

terline, the high velocity region of the wake is observed at x/b ≈ 0.75
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Figure 5.6: Wake characteristics for different hole angles at specific
depths, at Rec of 6·104
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which reduces to x/b ≈ 0.5 when the holes are parallel to the flow and

shrinks further when the holes are tilted towards the model center-

line. At free surface (plots 5.7a-5.7c), the wake velocities are similar

in the three cases indicating limited impact of hole orientation, which

was also observed in plots 5.6a-5.6c.

With the greatest reduction in drag being observed when the jets are

inclined in a direction away from the model centerline, wake veloci-

ties and streamlines are plotted and compared against that observed

for the solid plate, as seen in figure 5.8. At d/c of 1.1, (plots 5.8c-

5.8d), the velocity distribution in the wake for the solid and porous

model are similar, apart from the greater downstream location of the

recirculating region in the porous case. At d/c = 0.1, the character-

istics (plots 5.8a-5.8b) are starkly different. For the solid plate, the

gap-flow free surface interaction results in the location of the high ve-

locity region to be asymmetrically distributed about the span in the

base region (x/b 6 0.75), whereas in the porous model, the features

associated with the gap-flow and free surface interaction is located

further downstream (x/b < 1.5) than for the solid plate.

5.4 Discussion and Remarks

The force plots showed that the presence of holes result in drag re-

duction. Though the effect of porosity on cross-flow plates has been

studied earlier by several researchers, the effect of locating them
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Figure 5.7: Porous model wake velocities at different hole angles and
specific depths, with the white region denoting the model
and shaft.
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Figure 5.8: Wake velocity comparision for solid (first column) and
porous model, with the white region denoting the model
and shaft. (α = +45◦)

at particular locations and the effect of orientation for rectangular

plates, when operating in proximity to the free surface has not been

done. The results by Castro (1971) over a wide range of porosities on

rectangular plates indicated a critical porosity value (β ≈ 15%) post

which the drag reduction is extremely rapid. But, at low porosities,

similar to that in the current scenario, the drag reduction was mild.

The findings by Roberts (1980) for slotted circular disks indicated
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that porosity as well as their arrangement played a significant effect

on the drag generated. The present results for a rectangular plate

with holes being distributed close to the plate edges also indicate a

similar dependency. Huera-Huarte (2014) observed drag reduction,

with respect to a solid circular plate of approximately 7% when the

holes were located close to the periphery. The results at the tank

centre for 10 mm parallel holes are close to these findings, the reduc-

tion being O(3%). This can mainly be attributed to the difference

in model geometry and the different hole distribution from the pe-

riphery. Overall, the drag reduction is due to the interaction of the

hole jet with the shear layers generated from the plate edges, with

larger CD reduction being achieved when near the free surface. The

magnitude as well as the location of the drag peak is altered due to

the presence of the holes, as observed in figure 5.3. Moreover, it has

been shown here that the orientation of the holes is important as well.

By varying the angle of the hole jet, a major variation in drag values

can be obtained. This is due to the change in the distance at which

the hole jet interacts with the shear layer. The results indicate that

the drag reduction is highest when the holes are oriented such that

the plate shear layers are pushed away from the model centerline as

seen in the wake plots, with this action being explicit at d/c of 0.05

and culminates in the recirculating flow to occur further downstream

rather than in close proximity to base region of the plate. This re-

sults in a drag reduction with respect to the solid plate of ∼ 23%,

compared to ∼ 18% achieved with parallel holes.
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Chapter 6

Summary and Future work

The work presented in this thesis focuses on understanding the mech-

anism of interaction of the free surface of a fluid with a canonical

structure, a rectangular plate being towed cross-flow over a wide

range of submergence depths and Reynolds numbers, and its effect

on the horizontal force, to finally its modulation using two different

approaches– strategically located holes and structural flexibility.

The rigid flat plate experiments act as a foundation for understanding

the behavior of free surface on drag generation. When plates are

away from the free surface, drag forces showed minimum values for

aspect ratios close to 1. The trends were also found to be insensitive

to changes in the Reynolds number investigated, except when 0.75 6

AR 6 1.33. Conversely, the trends with changing submergence depth

were observed to be clearly dependent on Reynolds number, and on

aspect ratio to a smaller extent. These experiments indicated that

the drag increased abruptly at low submergence depths for almost

all of the plates, due to the interaction between the free surface, the

resultant gap-flow and the upper shear layer. This interaction leads

to the formation of a recirculating flow in close proximity to the base

region of the plate, due to the ability of free surface to distort and
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enable fluid entrainment. The value of the drag at this submergence

is modulated by how much the gap-flow is deflected and how close it

ends up being the recirculation region from the plate.

Having described the physics associated with the drag phenomena

near the free surface, two different model configurations were stud-

ied. One is the concept of strategic porosity. Although the effect of

porosity, and its spatial distribution in circular disks has been looked

at in earlier studies and shown the benefit of drag reduction, its ef-

fects in rectangular plates and near the free surface has not been

explored. These experiments have shown that the presence of holes

leads to drag reduction at most of the depths, with its effect being

greatest at low depths. Although there still exists a jump in drag

values at low submergences, the magnitude is reduced significantly.

The drag reduction occurs due to the interaction of the jets formed

at the holes, the proximal plate shear layer and the gap flow which

results in a larger area of recirculating flow. Besides the location of

the holes, the angle of the hole jet with respect to the flow also affects

the drag, with the greatest drag reduction being achieved when the

holes were inclined such that the plate shear layers were pushed away

from the model centerline.

Another method studied during the course of this thesis was struc-

tural flexibility. The study showed that structural flexibility is always

an asset with regards to drag mitigation. In fact, it fared better than

the previous concept with the drag peak observed in the rigid plate
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being virtually non-existent, post a particular magnitude of flexural

stiffness. There appears to be a critical Cauchy number CY1 , 4.1 6

CY1 6 11 over which the drag variation is depth independent rather

than the behaviour exhibited at CY 6 2.6. With respect to the Vogel

exponents, the behavior at low flexibility is similar to that shown

by classical systems at all depths that is, a quadratic scaling. How-

ever, there is a critical CY2 , 4.1 6 CY2 6 33 that implies the Vogel

exponents to be lesser than -1 and independent of depth. Further

increase in Cauchy number (> 173) is not expected to provide sig-

nificant changes with respect to the scaling, and thus the behavior

remain asymptotic. More experiments ought to be conducted in or-

der to check if CY1 ≈ CY2 and the existence of a ‘universal’ deflection

profile.

All through the thesis, the focus has been on understanding the ef-

fect of free surface on the horizontal force. Previous studies involving

cylinders have shown existence of a vertical component of force at

low submergences. With the observed flow asymmetry at low depths

as well as certain similarities in Froude number studies involving the

plates and cylinders, it is expected that vertical forces are bound to

come into this scenario too. Whether their behaviour is similar to

that observed in the cylinders or their variation amongst the afore-

mentioned model configurations can be substantiated only with more

experiments. Another aspect is wave drag. Though its effect is obvi-

ously included in total drag measurements, its individual contribution

to the total has not been estimated.
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From a fluid dynamics standpoint, flexible structures show lower drag

than strategic porosity. However this drag reduction comes at a price,

the very same flexural stiffness values being low which may or may

not be acceptable from an engineering point of view when the struc-

ture is also expected to be a part of a load bearing member, or due to

its large displacements. Moreover, with the ability of the structure to

deform generously under loading, the premise of the member being a

bluff body also comes into question. This makes the method of uti-

lizing holes highly promising for immediate and easy implementation

in current systems. Moreover, by optimizing the size, location, ori-

entation, and porosity, it is expected to perform far better than that

presented in this work. As a matter of fact, more concepts involving

strategic porosity are being pursued currently, and to identify their

operational limits. For example, implementation of strategic porosity

in the foundation structures of offshore wind turbines and oil rigs is

expected to not only realize in lower hydrodynamic loads acting on

them thus increasing their lifespan but also provide an opportunity

to optimize the design as well. In general, both these techniques show

great promise of drag mitigation near the free surface and a mixture

of both these methods is expected to provide a balance between drag

mitigation and structural rigidity.
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