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Abstract

Background: Multiple primary outcomes may be specified in randomised controlled trials (RCTs). When analysing
multiple outcomes it’s important to control the family wise error rate (FWER). A popular approach to do this is to
adjust the p-values corresponding to each statistical test used to investigate the intervention effects by using the
Bonferroni correction. It’s also important to consider the power of the trial to detect true intervention effects. In the
context of multiple outcomes, depending on the clinical objective, the power can be defined as: ‘disjunctive power’,
the probability of detecting at least one true intervention effect across all the outcomes or ‘marginal power’ the
probability of finding a true intervention effect on a nominated outcome.
We provide practical recommendations on which method may be used to adjust for multiple comparisons in the
sample size calculation and the analysis of RCTs with multiple primary outcomes. We also discuss the implications
on the sample size for obtaining 90% disjunctive power and 90% marginal power.

Methods: We use simulation studies to investigate the disjunctive power, marginal power and FWER obtained
after applying Bonferroni, Holm, Hochberg, Dubey/Armitage-Parmar and Stepdown-minP adjustment methods.
Different simulation scenarios were constructed by varying the number of outcomes, degree of correlation
between the outcomes, intervention effect sizes and proportion of missing data.

Results: The Bonferroni and Holm methods provide the same disjunctive power. The Hochberg and Hommel
methods provide power gains for the analysis, albeit small, in comparison to the Bonferroni method. The
Stepdown-minP procedure performs well for complete data. However, it removes participants with missing values
prior to the analysis resulting in a loss of power when there are missing data. The sample size requirement to
achieve the desired disjunctive power may be smaller than that required to achieve the desired marginal
power. The choice between whether to specify a disjunctive or marginal power should depend on the clincial
objective.

Keywords: Multiple comparison methods, Multiple outcome, Sample size, Statistical analysis, Randomised
controlled trials
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Background
Multiple primary outcomes may be specified in a ran-
domised controlled trial (RCT) when it is not possible
to use a single outcome to fully characterise the effect
of an intervention on a disease process [1–3]. The
use of multiple primary outcomes (or ‘endpoints’) is
becoming increasingly common in RCTs. For ex-
ample, a third of neurology and psychiatry trials use
multiple primary outcomes [4]. Data on two primary
outcomes (abstinence and time to dropout from treat-
ment) were collected in a trial evaluating the effect-
iveness of a behavioural intervention for substance
abuse [5] and data on four primary outcomes were
collected in a trial evaluating a multidisciplinary inter-
vention in patients following a stroke [6]. Typically,
these outcomes are correlated and often one or more
of the outcomes has missing values.
Typically multiple statistical tests are performed to

investigate the effectiveness of the intervention on
each outcome. If two outcomes are analysed inde-
pendently of each other at the nominal significance
level of 0.05, then the probability of finding at least
one false positive significant results increases to
0.098. This probability is known as the familywise
error rate, ‘FWER’. One approach to control the
FWER to its desired level is to adjust the p-values
corresponding to each statistical test used to investi-
gate the intervention effects. Many adjustments have
been proposed including the Bonferroni [7], Holm
[8], Hochberg [9], Hommel [10] and Dubey/Armitage-
Parmar [11] methods. Once the p-values have been
adjusted, they can be compared to the nominal
significance level. For example in the trial on sub-
stance abuse [5], two unadjusted p-values: 0.010,0.002
were reported. If the Bonferroni method was used,
the p-values could have been adjusted to 0.020, 0.004
and compared to the significance level α of 0.05.
Alternatively, the significance level could be adjusted
(to 0.05/2 = 0.025 in this example) and compared to
the unadjusted p-values.
In clinical trials, it is also important to consider the

power of the tests to detect an intervention effect. In the
context of multiple outcomes, the power of the study
can be defined in a number of ways depending on the
clinical objective of the trial: i) ‘disjunctive power’, ii)
‘conjunctive power’ or iii) ‘marginal power’ [12].
The disjunctive power (or minimal power [13]) is

the probability of finding at least one true interven-
tion effect across all of the outcomes [12, 14]. The
conjunctive power (or maximal power [13]) is the
probability of finding a true intervention effect on all
outcomes [14]. It may be noted that the disjunctive
and conjunctive power have previously been referred
to as ‘multiple’ and ‘complete’ power respectively [13].

The marginal (or individual) power is the probability
of finding a true intervention effect on a particular
outcome and is calculated separately for each out-
come. When the clinical objective is to detect an
intervention effect for at least one of the outcomes
the disjunctive power and marginal power are recom-
mended whereas the conjunctive power is recom-
mended when the clinical objective is to detect an
intervention effect on all the outcomes [12, 14]. In
this paper, we are focusing on the former clinical ob-
jective and therefore we focus on disjunctive and
marginal power.
The power requirements of a trial should match the

clinical objective which needs to be pre-specified when
designing the study and the sample size calculation
should be performed accordingly. In current practice,
the sample size calculations for trials often focus on the
marginal power for each outcome. An approach that has
been recommended and is often used in trials is to cal-
culate the sample size separately for each of the primary
outcomes by applying a Bonferroni correction to adjust
the significance level [15]. The largest value of the sam-
ple size is then considered as the final sample size for
the trial [16].
Missing outcome data are common in RCTs [17]

which will inevitably reduce the power and efficiency of
the study [18] which may result in failure to detect true
intervention effects as statistically significant.
When using multiple primary outcomes, there is lim-

ited guidance as to which method(s) should be used to
take account of multiplicity in the sample size calcula-
tion and during the statistical analysis.
Some studies have compared a selection of methods

which adjust p-values to account for multiplicity to
handle multiple outcomes in trials. Sankoh, Huque
and Dubey [11] compare a selection of adjustment
methods for statistical analysis in terms of FWER but
they do not evaluate the methods with respect to the
power obtained. Blakesley et al. discuss both FWER
and power requirements for selected methods for a
large number of outcomes with varying degrees of
correlation [19]. Lafaye de Micheaux provide formulae
to calculate the power and sample size for multiple
outcomes [20] which require several assumptions to
be made about the outcomes, including normality and
whether the covariance matrix between the outcomes
is known or not. They discuss global testing proce-
dures, including the Hotelling T2 method. None of
these studies have investigated the adjustment
methods in the presence of missing data.
There is limited literature discussing the sample size

requirements for clinical trials with multiple primary
outcomes where the clinical objective is to detect an
intervention effect for at least one of the outcomes.
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Dmitrienko, Tamhane and Bretz [14] and Senn and
Bretz [13] provide some discussion regarding the
sample size in the context of multiple outcomes.
However, neither discuss sample size in the context
of which adjustment method should be used and they
do not provide a comparative table depending on the
type of desired power to show implications on the re-
quired sample sizes.
In this paper, we compare easy to use methods to

adjust p-values in terms of FWER and power, when
investigating two, three and four outcomes in pres-
ence of complete outcome data and outcome data
with missing values. We also consider a range of cor-
relations between the outcomes. We consider both
marginal and disjunctive power. Based on our find-
ings, we provide practical recommendations on the
adjustment methods which could be used for the
sample size calculation and analysis of RCTs with
multiple primary outcome. We also present tables
showing the implications of using the marginal and
disjunctive power on the required sample size for a
trial under different scenarios.

Methods
We assume that we have a two-arm trial in which there
are M primary outcomes. We are interested in testing
the null hypotheses Hj (j = 1, … ,M) that there is no
intervention effect on the nominated outcomes. The test
statistics tj are used to test the null hypotheses Hj.
Further suppose that there is an overall null hypothesis
HðMÞ ¼ ⋂Mj¼1H j: Under this overall hypothesis, the joint

test statistic (t1, … , tM) has a M-variate distribution. We
denote pj as the marginal, unadjusted p-values obtained
from the appropriate statistical test associated with
analysing each outcome separately in a univariate frame-
work. For example, when analysing continuous out-
comes, an unpaired Student’s t-test may be used or
when analysing binary outcomes a Chi-squared test may
be used to investigate the intervention. To control the
FWER a correction method is then applied to the un-
adjusted p-values (pj). We compare the following com-
monly used adjustment methods in this paper: Šidák,
Bonferroni, Holm, Hochberg and Hommel. In addition,
we consider the Dubey/Armitage-Parmar (D/AP) adjust-
ment and Stepdown minP resampling procedure which
take account of the pairwise correlation between the
outcomes.

The method proposed by Šidák is defined as pS
ˇ

i
j ¼ 1−

ð1−pjÞM . Equivalently, the significance level could be ad-

justed to αS
ˇ

i ¼ 1−ð1−αÞ1=M , where α is the unadjusted

significance level. Under the assumption that the out-
comes are independent, the adjustment can be derived
as

Pðno Type I error on 1 testÞ ¼ 1−αS
ˇ

i;

→Pðno Type I error on M testsÞ ¼ ð1−αS
ˇ

iÞ
M

;

→Pðatleast one Type I error on M testsÞ ¼ 1−ð1−αS
ˇ

iÞ
M

¼ α:

The Bonferroni method is the most common approach
to account for multiplicity due to its simplicity. In this
method, the unadjusted p-values pj are multiplied by the
number of primary outcome =1 − = 1 − ≈ s. The
Dubey/Armitage-Parmar (D/AP) is an ad-hoc method
based on the Šidák method, which takes into account
the correlation between the outcomes [11]. The adjusted

p-value is padjj ¼ 1−ð1−pjÞgð jÞ where g(j) =M1 −mean ρ(j)

and mean ρ(j) is the mean correlation between the jth

outcome and the remaining M − 1 outcomes. When
using this method in the analysis of multiple outcomes,
the mean correlation may be estimated from the data.
There has been little theoretical work to assess the per-
formance of this approach [11].One of the nice proper-
ties of the D/AP procedure, which may have contributed
to its development, is that when the average of the cor-
relation coefficients is zero, the D/AP adjustment is ac-
cording to the Bonferroni test, and when the average
correlation coefficient is one, the D/AP adjusted and the
unadjusted p-values are the same. The Holm method [8]
involves a step-down method, whereby the unadjusted
p-values are ordered from smallest p(1) to largest p(M)

and each unadjusted p-value is adjusted as pHolmðkÞ ¼ ðM−

k þ 1Þ pðkÞ , where k = 1,…M is the rank of the corre-

sponding p-value. Then starting with the most signifi-
cant p-value (smallest p-value), each adjusted p-value is
compared to the nominal significance level, until a p-
value greater than the significance level is observed after
which the method stops [21]. The Hochberg step-up
method [9] is similar to the Holm step-down method
but works in the other direction. For this method, the
unadjusted p-values are ranked from largest p(1) to smal-
lest p(M) and adjusted as pHochðkÞ ¼ ðM−k þ 1Þ pðkÞ. Starting
with the least significant p-value (largest p-value), each
adjusted p-value is compared to the pre-specified signifi-
cance level, until a p-value lower than the significance
level is observed after which the method stops [21].
Contrary to the Šidák based approaches, this is a semi-
parametric method meaning the FWER is only con-
trolled when the joint distribution of the hypotheses test
statistics is known, most commonly multivariate normal
[22]. The Hommel method [10] is another data-driven
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stepwise method. For this method, the unadjusted p-
values are ranked from largest p(M) to smallest p(1). Then

let l be the largest integer for which pðM−lþ jÞ >
jα
l or all

j = 1,… l. If no such j exists then all outcomes can be
deemed statistically significant; otherwise, all outcomes
with pi≤

α
j may be deemed statistically significant, where

j = 1,… , M; i = 1,… , M. To control the FWER, the
Hommel method requires that the joint distribution of
the overall hypothesis test statistic is known.

Another step-down method to adjust p-values is the
‘Stepdown minP’ procedure [23, 24]. Unlike the previous
methods, it does not make any assumptions regarding the
distribution of the joint test statistic. Instead it attempts to
approximate the true joint distribution by using a resam-
pling approach. This method takes into account the correl-
ation structure between the outcomes and therefore may
yield more powerful tests compared to the other adjust-
ment methods [25]. The Stepdown minP adjusted p-values
are calculated as follows: 1) calculate the observed test sta-
tistics using the observed data set; 2) resample the data with
replacement within each intervention group to obtain boot-
strap resamples, compute the resampled test statistics for
each resampled data set and construct the reference distri-
bution using the centred and/or scaled resampled test sta-
tistics; 3) calculate the critical value of a level α test based
on the upper α percentile of the reference distribution, or
obtain the raw p-values by computing the proportion of
bootstrapped test statistics that are as extreme or more ex-
treme than the observed test statistic [26]. That is, the Step-
down minP adjusted p-value for the jth outcome is defined
as [24, 26] pminP

j ¼ maxk¼1;…; jf Prðð minl¼k;…;M pl ≤pk
j HðMÞÞg; where pk is the unadjusted p-value for the kth

outcome, pl is the unadjusted p-value for the lth outcome
(l = k,… , M), and H(M) is the overall null hypothesis.
Although, the resampling based methods have previ-

ously been recommended for clinical trials with multiple
outcomes they are not widely used in practice [25]. The
Stepdown minP has been shown to perform well when
compared to other resampling procedures [26] and was
therefore investigated in this paper.
We perform a simulation study to evaluate the validity

of these methods to account for potentially correlated
multiple primary outcomes in the analysis and sample
size of RCTs. We focus on two, three and four outcomes
as a review of trials with multiple primary outcomes in
the psychiatry and neurology field found that the major-
ity of the trials had considered two primary outcomes
[4]. Additionally, it has been recommended that a trial
should have no more than four primary outcomes [27].
We estimate the family wise error rate (FWER), the dis-
junctive power to detect at least one intervention effect
and the marginal power to detect an intervention effect
on a nominated outcome in a variety of scenarios.

Simulation study
We used the following model to simulate values for two
continuous outcomes Yi = (Yi, 1,Yi, 2),

Y i ¼ β0 þ β1xi þ ϵi ð2Þ

where xi indicates whether the participant i received
intervention or control, β1 = ( β11, β12 )T is vector of the
intervention effects for each outcome, ϵi are errors
which are realisations of a multivariate normal distribu-

tion ϵi ¼ ðϵi;1; ϵi;2 ÞT∼Nðð00Þ;
1 ρ
ρ 1

� �
Þ; and ρ ϵ {0.0, 0.2,

0.4, 0.6, 0.8}. The model was also extended to simulate
three and four continuous outcomes. When simulating
three and four outcomes we specified compound sym-
metry, meaning that the correlation between any pair of
outcomes is the same. We explored both uniform inter-
vention effect sizes and varying effect sizes across out-
comes. For the uniform intervention effect sizes, we
specified an effect size of 0.35 for all outcomes, that is
β1 = (0.35, 0.35)T, β1 = (0.35, 0.35, 0.35)T or β1 = (0.35,
0.35, 0.35, 0.35)T for two, three and four outcomes sce-
narios respectively. This represents a medium effect size,
which reflects the anticipated effect size in many RCTs
[28]. For the varying intervention effect sizes, we speci-
fied that β1 = (0.2, 0.4)T, β1 = (0.2, 0.3, 0.4)T or β1 = (0.1,
0.2, 0.3, 0.4)T for two, three and four outcomes scenarios
respectively. We also explored the effect of skewed data
by transforming the outcome data with uniform inter-
vention effect sizes to have a gamma distribution with
shape parameter = 2 and a scale parameter = 2. The
gamma distribution is often used to model healthcare
costs in clinical trials [29, 30] and may also be appropri-
ate for skewed clinical outcomes.
We set the sample size to 260 participants, with an

equal number of participants assigned to each arm.
This provides 80% marginal power to detect a clinic-
ally important effect size of 0.35 for each outcome,
using an unpaired Student’s t-test and the significance
level is unadjusted at 0.05. We introduced missing
data under the assumption that the data were missing
completely at random (MCAR). When simulating two
outcomes, 15 and 25% of the observations in outcome
1 and 2 are missing respectively, and on average ap-
proximately 4% of the observations would be missing
for both outcomes. When simulating three outcomes,
15% of the observations are missing in one outcome
and 25% of the observations are missing in the other
two outcomes. When simulating four outcomes, 15%
of the observations are missing in two outcomes and
25% of the observations are missing in the other two
outcomes. This proportion of missingness in out-
comes is often observed in RCTs [31–34].
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We estimated the FWER and disjunctive power by
specifying no intervention effect (β1j = 0) and an inter-
vention effect (β1j ≠ 0), respectively, and calculating the
proportion of times an intervention effect was observed
on at least one of the outcomes. The marginal power
was similarly estimated but we calculated the proportion
of times an intervention effect was observed on the
nominated outcome. For each scenario we ran 10,000
simulations. The simulations were run using R version
3.4.2. The Stepdown minP procedure was implemented
using the NPC package.
We calculated the sample size based on disjunctive

power using the R package “mpe” [35] and we calculated
the sample size based on the marginal power using the
R package “samplesize” [36]. The statistical methodology
used for the sample size calculation in these packages is
described in the Additional file 1.

Results
The Bonferroni and Holm methods lead to the same
FWER and disjunctive power when analysing multiple
primary outcomes. This is because both methods adjust
the smallest p-value in the same way. Similarly, the
Hochberg and Hommel methods lead to same FWER
and disjunctive power when two primary outcomes are
analysed and differences between these methods arise
when analysing three or more outcomes.

Family wise error rate, FWER
The FWER obtained when evaluating two, three and four
outcomes are displayed in Figs. 1, 2 and 3 respectively.
Following on from the explanation above, the Holm and
Hommel methods are not displayed in Fig. 1 and the
Holm method is not displayed in Fig. 2 or 3. The results
for the varying intervention effect sizes and skewed data
are presented in the Additional file 1.
When there is correlation between the outcomes (ρ ≥

0.2), the D/AP method does not control the FWER. All
other adjustment methods control the FWER in all sce-
narios. The Stepdown minP performs well in terms of
FWER. Unlike the other methods, it maintains the error
rate at 0.05 even when the strength of the correlation be-
tween the outcomes increases. Differences between the
Bonferroni, Hochberg and Hommel methods arise when
there is moderate correlation between outcomes (ρ ≥ 0.4).
The Hommel provides the FWER which is closest to 0.05,
whilst being controlled, followed by Hochberg and then
Bonferroni. Very similar results were observed when the
outcomes followed a skewed distribution, consequently
these results are presented in the Additional file 1.

Disjunctive power
Figures 1, 2 and 3 show that the disjunctive power de-
creases as the correlation between the outcomes

increases for all approaches. We do not consider the
power obtained when using the D/AP approach due to
its poor performance in controlling the FWER. When
there is no missing data, the Stepdown minP and Hom-
mel approaches provide the highest disjunctive power.
For weak to moderate correlation (ρ = 0.2 to 0.6) the
Hommel method has slightly more disjunctive power,
but the Stepdown minP performs better when there is
strong correlation (ρ = 0.8). The Stepdown minP proced-
ure gives the lowest power in the presence of missing
data. This could be attributed to the fact that it uses list-
wise deletion removing participants with at least one
missing value prior to the analysis thus resulting in a
loss of power when there is missing data. As expected
the Bonferroni method gives slightly lower power com-
pared to the other methods for complete data but con-
siderably out performs the Stepdown minP method
when there is missing data. Very similar results were
observed when the outcomes followed a skewed
distribution.
When the intervention effect sizes varied, the differ-

ences observed between the methods were less pro-
nounced. When using four outcomes with varying effect
sizes, very similar disjunctive power were observed to
that of constant effect sizes. When using the Hommel
adjustment, higher disjunctive power was observed com-
pared to the Holm and Bonferroni methods albeit by a
very minimal amount.

Marginal power
The marginal power obtained for each outcome when
using the different adjustment methods are shown in
Table 1. In terms of marginal power, the Hommel adjust-
ment was the most powerful method, followed closely
by the Hochberg method. When two independent out-
comes were analysed, a power of 76.8% was observed
after applying a Hommel correction. The power de-
creased to 76.8 and 75.2% when three and four out-
comes were analysed, respectively, after applying a
Hommel correction. As expected the Bonferroni method
was the most conservative method, providing the least
power. However, contrary to popular belief, the Bonfer-
roni method maintains similar levels of power as the
strength of correlation increases.
When analysing two outcomes the percentage of simu-

lations in which an intervention effect was observed on
neither outcome, one outcome or both outcomes are
shown in Table 2. When using the Holm method, a sta-
tistically significant intervention effect was observed on
both outcomes in 48–58% of the simulations. This re-
duced to 36–48% of the simulations when using the
Bonferroni method. As expected, when using the Hoch-
berg adjustment the same results were observed as when
using the Hommel adjustment. Compared to Holm,
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slightly higher percentages of simulations with two sta-
tistically significant intervention effects are observed
when using Hochberg and Hommel.

Sample size calculation
We recommend the Bonferroni adjustment to be used
for the sample size calculation when designing trials
with multiple correlated outcomes since it can be ap-
plied easily by adjusting the significance level and it
maintains the FWER to an acceptable level up to a cor-
relation of 0.6 between outcomes. As the Hochberg and
Hommel methods are data-driven, it is not clear how
these more powerful approaches can be incorporated
into the sample size calculation unless prior data are
available. Determination of the required sample size
using these methods may require simulation-based
approach.

In Table 3, we present the required sample sizes to ob-
tain 90% disjunctive power for trials with two outcomes
for varying degrees of correlations between the out-
comes (ρ = {0.2, 0.4, 0.6, 0.8}). For these calculations, we
specified that there is equal allocation of participants be-
tween the intervention arms. To calculate the sample
size a priori information on the degree of correlation be-
tween the outcomes is required. More details regarding
the sample size calculation are provided in [13]. For
comparison, we also present the sample size required to
obtain 90% marginal power for each outcome. For all
calculations, we have used the Bonferroni method to ac-
count for multiple comparisons. We provide the sample
sizes required to analyse two, three and four outcomes
in Tables 3, 4 and 5, respectively. In Table 5, the top line
provides an example sample size calculation for four
outcomes where there is a small standardised effect size

Fig. 1 The FWER (top) and disjunctive power (bottom) obtained when evaluating two continuous outcomes using a variety of methods to
control the FWER. In the left hand graphs, there are no missing data. In the right hand graphs, the missing data are missing completely at
random, with 15% missing in the first outcome and 25% missing in the second outcome (‘Missing data’). The graphs display various degrees of
correlation between the outcomes, ranging from ρ = 0 to ρ = 0.8. The Monte Carlo standard errors (MCSE) were similar across all methods. When
there were no missing data, the MCSE was between 0.002–0.004 for the disjunctive power and 0.002–0.004 for the FWER. In the missing data
scenario, the MCSE was between 0.002–0.003 for the disjunctive power and between 0.003–0.005 for the FWER.)
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for all four outcomes (Δ = 0.2). When there is weak pair-
wise correlation between all four outcomes (ρ = 0.2), 325
participants would be required into each arm to obtain
90% disjunctive power. As the pairwise correlation in-
creases to ρ = 0.8 the required sample size increases to
529. The sample size required to obtain 90% marginal
for each outcome in this scenario is 716 participants per
trial arm. The number of participants required to obtain
90% marginal power is greater than the number of par-
ticipants required to obtain 90% disjunctive power. Thus
the required sample size varies considerably depending
on whether marginal or disjunctive power is used. The
smallest of the sample sizes required to obtain the de-
sired marginal power is the required sample size to
achieve 90% disjunctive power if the outcomes are per-
fectly correlated (ρ = 1) [37].

Discussion
When using multiple primary outcomes in RCTs it is
important to control the FWER for confirmatory phase
III trials. One approach to do this is to adjust the p-
values produced by each statistical test for each out-
come. Additionally, some of the outcomes are likely to
have missing values, consequently this needs to be con-
sidered when choosing an appropriate method to adjust
the p-values.

Statistical analysis
We found that all methods investigated, except the
D/AP, controlled the FWER. This agrees with the re-
sults previously reported in [19]. The Stepdown minP
performed best in terms of FWER, but the R package
used to implement the method uses listwise deletion

Fig. 2 FWER (top) and disjunctive power (bottom) obtained when evaluating three continuous outcomes using a variety of methods to control
the FWER. In the left hand graphs, there are no missing data. In the right hand graphs, the missing data are missing completely at random, with
15% missing in one outcome and 25% missing in the other two outcomes (‘Missing data’) The graphs display various degrees of correlation
between the outcomes, ranging from ρ = 0 to ρ = 0.8. The Monte Carlo standard errors (MCSE) were similar across all methods. When there was
no missing data, the MCSE was between 0.001–0.004 for the disjunctive power and 0.002–0.004 for the FWER. In the missing data scenario, the
MCSE was between 0.001–0.004 for the disjunctive power and between 0.001–0.004 for the FWER
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removing participants with at least one missing value
before the analysis resulting in a loss of power. The
validity of this approach depends on how the method
is implemented and the extent of the missing data.
We recommend that the Hommel method is used

to control FWER when the distributional assumptions
are met, as it provides slightly more disjunctive power
than the Bonferroni and Holm methods. The distribu-
tional assumption associated with the Hommel
method is not restrictive and is met in many multipli-
city problems arising in clinical trials [22]. Even when
the data followed a skewed distribution, the Hommel
method performed well, showing it may be used to
analyse a variety of outcomes, including those with a
skewed distribution.

Given the availability of the software packages to
implement the more powerful approaches, there is lit-
tle reason to use the less powerful methods, such as
Holm method. For example, the Hommel method can
easily be implemented in R or SAS. Even though it is
not currently available in Stata or SPSS, the p-values
can be copied across and adjusted in R. However, if
the assumptions cannot be met, the simpler Holm
method could be used.
When the intervention effect size varied across the

outcomes, we found that the differences in disjunctive
power between the methods were less pronounced. It
appeared that the outcome with the largest effect size
‘dominated’ the disjunctive power. When the sample
size is based on the disjunctive power, the outcomes

Fig. 3 FWER (top) and disjunctive power (bottom) obtained when evaluating four continuous outcomes using a variety of methods to control
the FWER. In the left hand graphs, there are no missing data. In the right hand graphs, the missing data are missing completely at random, with
15% missing in two outcomes and 25% missing in the other two outcomes (‘Missing data’). The graphs display various degrees of correlation
between the outcomes, ranging from ρ = 0 to ρ = 0.8. The Monte Carlo standard errors (MCSE) were similar across all methods. When there was
no missing data, the MCSE was between 0.001–0.004 for the disjunctive power and 0.002–0.004 for the FWER. In the missing data scenario, the
MCSE was between 0.001–0.004 for the disjunctive power and between 0.001–0.004 for the FWER
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with the largest effect size would have high marginal
power, whereas the outcome with the smallest effect
size would have low marginal power – much below
the overall desired level of power. It follows that
when investigators are looking for an intervention ef-
fect for at least one outcome, it is unlikely that they
will see an intervention effect on the outcomes with
the smaller effect sizes without seeing an intervention
effect on the outcomes with the largest effect size.
Consequently, in this scenario, it may be advisable to
pick the outcome(s) with the largest effect size as the
primary outcome(s) and treat the other outcomes as
secondary outcomes, however, this decision will need
to account for the relative clinical importance of the
outcomes. Alternatively, when the intervention effect
size varies across the outcomes, investigators may
wish to consider ‘alpha spending’ in which the total
alpha (usually 0.05) is distributed or ‘spent’ across the
M analyses.
We appreciate that in practice the choice of the ad-

justment method may also depend on other factors,
such as the availability of simultaneous confidence in-
tervals and unbiased estimates. It is standard practice
to report the 95% confidence intervals alongside point
estimates and p-values. When using multiple primary

outcomes, it may be necessary to adjust the confi-
dence interval so that it corresponds to the p-values
adjusted for multiplicity. The confidence interval may
be easily adjusted when using Bonferroni or Holm ad-
justments, using the R function “AdjustCIs” in the
package “Mediana” [38]. However, it is not straight-
forward to adjust the confidence interval when using
the Hochberg and Hommel. Consequently, the confi-
dence intervals reported may not align with the p-
values when these adjustments are used. As stated in
the European Medical Agency (EMA) guidelines, in
this instance, the conclusions should be based on the
p-values and not the confidence intervals [3]. If confi-
dence intervals that correspond to the chosen multi-
plicity adjustment are not available or are difficult to
derive, then the EMA guidelines advise that simple
but conservative confidence intervals are used, such
as those based on Bonferroni correction [3].
The statistical analysis plan of a trial should clearly de-

scribe how the outcomes will be tested including which
adjustment method, if any, will be used [39].
Our review of trials with multiple outcomes showed

that majority of the trials analysed the outcomes separ-
ately without any adjustments for multiple comparisons
[4]. Where adjustment methods were used, only the

Table 1 Marginal (individual) power obtained for each outcome, when analysing two (top), three (middle) or four (bottom)
continuous outcomes using a variety of methods to control the FWER

Pairwise correlation between outcomes None Bonferroni Holm Hochberg Hommel Stepdown minP

Two outcomes

0 80.9 72.4 78.5 79.2 79.2 78.2

0.2 80.6 71.8 77.8 78.6 78.6 77.7

0.4 80.0 71.3 76.6 77.7 77.7 76.7

0.6 80.0 71.0 76.0 77.4 77.4 76.7

0.8 80.3 71.3 75.6 77.4 77.4 77.2

Three outcomes

0 80.2 65.9 75.2 76.7 76.8 75.5

0.2 80.5 66.4 75.0 76.6 76.7 75.3

0.4 80.2 65.7 73.8 75.4 75.6 73.2

0.6 80.0 65.7 73.3 75.0 75.2 73.8

0.8 80.0 65.9 72.2 74.6 74.8 76.1

Four outcomes

0 80.5 62.3 73.2 75.0 75.2 72.7

0.2 80.4 62.3 72.6 74.4 74.8 72.2

0.4 80.6 62.4 72.1 74.1 74.4 72.2

0.6 80.3 62.0 70.7 73.1 73.5 72.3

0.8 80.3 61.9 69.7 73.2 73.6 73.5

D/AP method was not examined due to the poor performance observed when exploring FWER
There was no missing data in any of the outcomes. The tables display various degrees of correlation between the outcomes, ranging from no correlation (ρ = 0.0)
to strong correlation (ρ = 0.8)
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most basic methods were used, possibly due to their ease
of implementation. The Bonferroni method was the
most commonly used method, although the Holm and
Hochberg methods were also used. As a consequence,
we focused on relatively simple techniques in this paper.
However, more advanced approaches, such as graphical
methods to control the FWER are available and de-
scribed in Bretz et al. [40] and Bretz et al. [41] .
It is not necessary to control the FWER for all types of

trial designs, for example, for trial designs with co-
primary outcomes where all outcomes have to be de-
clared statistically significant for the intervention to be
deemed successful. The FDA guidelines state that in this
scenario no adjustment needs to be made to control the
FWER [39] and the ‘conjunctive’ power is used. We have
not evaluated the conjunctive power as it is not relevant
to the scenarios considered in this paper. The conjunc-
tive power may be substantially reduced compared to

the marginal power for each outcome [39] and is never
larger than the marginal power [13]. The conjunctive
power behaves in reverse to the disjunctive power in that
as the correlation between the outcomes increases, the
conjunctive power increases.
Additionally, multiplicity adjustments may not be ne-

cessary for early phase drug trials. However, it is gener-
ally accepted that adjustments to control the FWER are
required in confirmatory studies, that is when the goal
of the trial is the definitive proof of a predefined key hy-
pothesis for the final decision making [42].

Sample size
When designing a clinical trial, it is important to calculate
the sample size needed to detect a clinically important
intervention effect. Usually the number of participants
that can be recruited in a trial is restricted because of
ethical, cost and time implications. The sample size

Table 2 The percentage of simulations in which an intervention effect was observed for neither outcome, one outcome or both
outcomes when analysing two outcomes, using a variety of methods to control the FWER

Method Pairwise correlation between outcomes Number of outcomes an intervention effect was observed on

0 1 2

Bonferroni 0 16.1 48.4 35.5

0.2 18.6 43.2 38.2

0.4 20.6 37.7 41.7

0.6 23.4 32.7 43.9

0.8 26.3 26.3 47.5

Holm 0 16.1 35.6 48.3

0.2 18.6 31.0 50.4

0.4 20.6 26.4 53.0

0.6 23.4 22.0 54.6

0.8 26.3 16.0 57.7

Hochberg 0 15.1 35.6 49.4

0.2 17.6 31.0 51.5

0.4 19.3 26.4 54.3

0.6 22.0 22.0 56.0

0.8 24.8 16.1 59.1

Hommel 0 15.1 35.6 49.4

0.2 17.6 31.0 51.5

0.4 19.3 26.4 54.3

0.6 22.0 22.0 56.0

0.8 24.8 16.1 59.1

Stepdown minP 0.0 23.7 37.5 38.8

0.2 25.6 33.6 40.8

0.4 29.6 27.1 43.4

0.6 32.2 20.2 47.6

0.8 33.8 13.8 52.4

In these simulations there was missing data in the outcomes (15% in one outcome and 25% in the other outcome). The tables display various degrees of
correlation between the outcomes, ranging from no correlation (ρ = 0.0) to strong correlation (ρ = 0.8)
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calculation for a trial is usually based on an appropriate
statistical method which will be used for the primary ana-
lysis depending on the study design and objectives. The
sample size can vary greatly depending on if the marginal
power or overall disjunctive power is used highlighting the
importance of calculating the sample size based on the
trial objective. To account for multiplicity in the sample
size calculation, we recommend that the Bonferroni ad-
justment is used. The Bonferroni adjustment can be ap-
plied easily within the sample size calculation using an
analytical formula [39] and our simulation study showed
that it maintains the FWER to an acceptable level for low
to moderate correlation between the outcomes. Addition-
ally, there is not much loss in power when using the Bon-
ferroni adjustment, compared to the other methods, in

the presence of missing data. In contrast, the other
methods investigated in this paper are data driven and
therefore it is not clear how these can be incorporated
without prior data.
One approach that has previously been used to calculate

the sample size for multiple primary outcomes, was to cal-
culate the sample size based on the individual marginal
powers for each outcome and to choose the maximum
sample size for the trial [43]. This approach guarantees ad-
equate marginal power for each individual test. However,
this approach will overestimate the number of participants
required if the investigators are interested in disjunctive
power. Moreover, it may be problematic to achieve that
sample size in trials where recruitment is a problem and
may result in trials being closed down prematurely.

Table 3 Sample size required to obtain 90% disjunctive power and 90% marginal power when analysing two outcomes, after
applying a Bonferroni correction

Standardised effect sizes for
each of the 2 outcomes

Sample size required to obtain 90% DISJUNCTIVE power Sample size required to
obtain 90% MARGINAL power
for each outcome

Correlation between outcomes

Outcome 1 Outcome 2 0.2 0.4 0.6 0.8 Outcome 1 Outcome 2

0.2 0.2 402 436 475 522 622 622

0.2 0.3 237 251 264 274 622 278

0.2 0.4 145 150 154 156 622 157

0.2 0.5 96 98 99 100 622 101

0.3 0.3 179 194 211 232 278 278

0.3 0.4 126 135 144 152 278 157

0.3 0.5 89 93 97 99 278 101

0.4 0.4 101 109 119 131 157 157

0.4 0.5 78 84 90 96 157 101

0.5 0.5 65 70 76 84 101 101

Sample sizes provided are required per arm. A Bonferroni correction is applied for all calculations to account for the multiple comparisons

Table 4 Sample size per group, assuming three outcomes, 90% disjunctive power, after applying a Bonferroni correction

Standardised effect sizes for
each of the 3 outcomes

Sample size required to obtain 90% DISJUNCTIVE power Sample size required to obtain
90% MARGINAL power for each
outcome

Correlation between outcomes

Out.a 1 Out. 2 Out. 3 0.2 0.4 0.6 0.8 Out. 1 Out. 2 Out. 3

0.2 0.2 0.2 353 401 456 524 677 677 677

0.2 0.3 0.3 185 207 229 254 677 302 302

0.2 0.4 0.4 109 120 131 143 677 171 171

0.2 0.5 0.5 71 77 84 92 677 110 110

0.3 0.3 0.3 157 179 203 234 302 302 302

0.3 0.4 0.4 101 114 127 143 302 171 171

0.3 0.5 0.5 68 76 83 92 302 110 110

0.4 0.4 0.4 89 101 114 132 171 171 171

0.4 0.5 0.5 64 72 81 91 171 110 110

0.5 0.5 0.5 57 65 73 84 110 110 110

Sample sizes provided are required per arm. A Bonferroni correction is applied for all calculations to account for the multiple comparisons. Key: a‘Out’ Outcome
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Finally, the sample size should be inflated to account for
the expected amount of missing data.

Study extensions and limitations
In this paper, we only explored continuous outcomes.
However, in RCTs binary outcomes or a combination of
continuous and binary outcomes may be used. For two
binary outcomes, the maximum possible pairwise correl-
ation between the outcomes will be less than one in ab-
solute magnitude [44] and therefore we would expect
similar results but with less pronounced differences be-
tween methods for the strong correlations.
Additionally, we only explored global effects, that is ei-

ther no interventions effect on any of the outcomes
(β1j = 0 ) or an intervention effect on all the outcomes
(β1j ≠ 0). Global effects are most realistic when the
strength of the correlation between the outcomes is
moderate to strong. However, in practice a mixture of
no effects and some intervention effects may be ob-
served, especially when the strength of the correlation
between the outcomes is weak.

Conclusions
To ensure that the FWER is controlled when analysing
multiple primary outcomes in confirmatory randomised
controlled trials, we recommend that the Hommel
method is used in the analysis for optimal power, when
the distributional assumptions are met. When designing
the trial, the sample size should be calculated according to
the trial objective. When specifying multiple primary out-
comes, if considered appropriate, the disjunctive power
could be used, which has smaller sample size require-
ments compared to that when using the individual mar-
ginal powers. The Bonferroni adjustment can be used in
the sample size calculation to account for multiplicity.

Additional file

Additional file 1 Sample size calculation methodology. Varying the
effect size across outcomes. Skewed data. (DOCX 1675 kb)
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