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Abstract

Amyloid formation has been implicated in a wide range of human diseases, and the interaction of 

amyloidogenic proteins with membranes are believed to be important for many of these. In type-2 

diabetes, human islet amyloid polypeptide (IAPP) forms amyloid which contributes to β-cell death 

and dysfunction in the disease. IAPP membrane interactions are potential mechanisms of 

cytotoxicity. In vitro studies have shown that cholesterol significantly modulates the ability of 

model membranes to induce IAPP amyloid formation and IAPP mediated membrane damage. It is 

not known if this is due to the general effects of cholesterol on membranes or because of specific 

sterol-IAPP interactions. The effects of replacing cholesterol with eight other sterols/steroids on 

IAPP binding to model membranes, membrane disruption and membrane mediated amyloid 

formation were examined. The primary effect of the sterols/steroids on the IAPP membrane 

interactions was found to reflect their effect upon membrane order, as judged by fluorescence 

anisotropy measurements. Specific IAPP sterols/steroids interactions have smaller effects. The 

fraction of vesicles which bind IAPP was inversely correlated with the sterols/steroids’ effect on 

membrane order, as was the extent of IAPP induced membrane leakage and the time to form 

amyloid. The correlation between the fraction of vesicles binding IAPP and membrane leakage 

was particularly tight, suggesting the restriction of IAPP to a subset of vesicles is responsible for 

incomplete leakage.
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INTRODUCTION

Islet amyloid polypeptide (IAPP also known as amylin) is a 37 residue pancreatic hormone 

which is co-secreted with insulin from the β-cells in the islets of Langerhans1. IAPP plays a 

role in regulating glucose metabolism, but aggregates to form islet amyloid in type 2 

diabetes (T2D) by unknown mechanisms2–7. The process of islet amyloid formation 

contributes to the loss of β-cell mass and β-cell death in T2D and also plays a key role in the 

failure of islet grafts4, 5, 8–14.

The mechanisms of IAPP induced cell death are not completely understood, but membrane 

permeabilization has been proposed to play a role13, 15–17. A large body of biophysical work 

has investigated the interactions of IAPP with model membranes, usually in the form of 

large unilamellar vesicles (LUVs). Early studies focused on binary systems containing a 

zwitterionic lipid and an anionic lipid, usually phosphatidylserine18–23. Such vesicles 

enhance the rate of IAPP amyloid formation and IAPP efficiently induces leakage from 

them. More recent studies have highlighted the importance of cholesterol in modulating 

membrane-IAPP interactions24–31. Cholesterol is an important component of cellular 

membranes that significantly affects membrane properties, and is important for the uptake of 

hIAPP by cells in vivo24, 29, 31–36. It has been observed that cholesterol significantly inhibits 

phospholipid-catalyzed IAPP amyloid formation and reduces the ability of IAPP to induce 

model membrane leakage, but the molecular basis of these effects is not 

known25, 26, 30, 31, 37.

Prior studies found that physical properties of membranes, such as membrane order, 

curvature and lipid composition, influence the binding of IAPP to membranes38–41. For 

example, it has been shown that in the presence of cholesterol IAPP inserts in a small 

number of larger protein clusters, i.e. clusters with a larger number of IAPP molecules26. It 

has also been shown that cholesterol can limit leakage from membranes30, 37. Because 

cholesterol has dramatic effects on the biophysical properties of membranes some workers 

have suggested that these are the cause of its effects on amyloidogenic protein-membrane 
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interactions26, 28–30, 34, 39, 40, 42. However, cholesterol can also interact directly with 

membrane-bound polypeptides and specific cholesterol-polypeptide interactions have been 

proposed to be important as well27, 34, 43–46.

Here we systematically examine the effects of various sterols on the ability of LUVs to 

promote IAPP amyloid formation and on the ability of IAPP to disrupt model membranes 

(Figure 1).

The sterols were chosen to explore the potential importance of the OH group at carbon 

position 3, double bond presence and position, hydrocarbon tail structure, and the planarity 

of the sterol rings. No obvious correlation was observed with specific chemical features of 

the sterols. Instead the rate of amyloid formation and IAPP-induced membrane leakage was 

strongly correlated with the effect of sterols on membrane packing as judged by 

fluorescence anisotropy measurements. Sterols which led to more tightly packed lipids in 

membranes resulted in slower amyloid formation and decreased membrane leakage. The 

decrease in leakage appears to be a consequence of a sterol-induced restriction in the 

fraction of vesicles that bind IAPP.

MATERIALS AND METHODS

Materials.

1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2–1,3-benzoxadiazol-4-yl) 

(NBD-DOPE), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1-palmitoyl-2-

oleoyl-sn-glycero-3-phospho-L-serine (sodium salt) (POPS), and cholesterol were obtained 

from Avanti Polar Lipids. 5α-cholestan-3-one, cholestenone, coprostanol, and epicholesterol 

were obtained from Steraloids. 5(6)-carboxyfluorescein, 7-dehydrocholesterol, cholestanol, 

dimethyl sulfoxide (DMSO), ergosta-5,7,9(11),22-tetraen-3β-ol (DHE), 

hexafluoroisopropanol (HFIP), lathosterol, pregnenolone, thioflavin-T, triton X-100 and 

sucrose were obtained from Sigma-Aldrich. The concentrations of unlabeled lipids were 

determined by dry weight and that of NBD-DOPE lipids by absorbance using εNBD-DOPE = 

21, 000 M−1 cm−1 at 460 nm in methanol. Sterol purity were assayed by TLC and no 

significant impurities were detected.

Peptide Synthesis and Purification.

Human islet amyloid polypeptide was synthesized on a 0.1 mmol scale using 9-

fluoronylmethoxycarbonyl (Fmoc) chemistry with a CEM microwave peptide synthesizer. 

The 5-(4’-fmoc-aminomethyl-3’, 5-dimethoxyphenol) valeric acid (Fmoc-Pal-PEG-PS) resin 

was used to provide an amidated C-terminus. Fmoc-protected pseudoproline dipeptide 

derivatives were incorporated at positions 9–10, 19–20 and 27–2847. Double coupling were 

performed for all pseudoprolines, Arg and β-branched residues. A maximal temperature of 

50 °C was used for the His and Cys coupling to reduce racemization48. Standard 

trifluoroacetic acid (TFA) methods were used to cleave peptides from the resin. The crude 

peptides were dissolved in 20% acetic acid (vol/vol) to increase solubility and lyophilized. 

The disulfide bond was formed by dissolving dry peptide in pure DMSO at room 

temperature49. The peptide was purified by reverse-phase high-performance liquid 
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chromatography with a Proto 300 C18 preparative column (10 mm х 250 mm). A two-buffer 

system was used: buffer A consisted of 100% H2O and 0.045% HCl (vol/vol), buffer B 

consisted of 80% acetonitrile, 20% H2O and 0.045% HCl (vol/vol). HCl was used as the ion-

pairing agent instead of TFA, as TFA can impact amyloid formation and affect cell toxicity 

assays50. The molecular weight of the pure product was confirmed using a Bruker 

AutoFlexII MALDI-TOF/TOF mass spectrometer: human IAPP, expected 3903.3, observed 

3903.8. Analytical HPLC was used to check peptide purity before experiments. The purity is 

estimated to be 98% or higher based on HPLC. A single peak was detected by analytical 

reverse phase HPLA with a C18 column. This is an important control because IAPP can 

deamidate and this can affect IAPP amyloid formation51, 52.

Preparation of Peptide Samples.

Material from the same synthesis was used in all biophysical studies to ensure comparable 

conditions for all experiments. Peptide stock solutions were prepared by dissolving pure 

peptide in 100% HFIP at a concentration of 0.8 mM, filtering through a 0.22 μM Millex low 

protein binding durapore membrane filter to remove preformed aggregates, and stored at 

4 °C. Aliquots were lyophilized for 20–24 hours to remove organic solvent and redissolved 

in buffer at the desired concentration immediately before the experiments started. The 

peptide concentration was measured by absorbance at 280nm using ε = 1600 M−1cm−1.

Preparation of Large Unilamellar Vesicles.

Large unilamellar vesicles (LUVs) were prepared from multilamellar vesicles (MLV). MLVs 

were prepared by dissolving lipids in chloroform at the desired concentration in a glass tube. 

Mixtures were evaporated with nitrogen gas and were dried in high vacuum for at least 1 h 

to completely remove the residual organic solvent. The resulting lipid mixtures were then 

dispersed in tris buffer (20 mM Tris·HCl, 100 mM NaCl at pH 7.4) and agitated at 55 °C for 

at least 30 min. Samples were cooled to room temperature before use. LUVs were prepared 

by subjecting the MLVs to 8 freeze-thaw cycles and then passing through a 100 nm 

polycarbonate filter (Avanti Polar Lipids) 15 times to obtain uniform vesicle size. The 

phospholipid concentration was determined by the method of Stewart53. For the membrane 

leakage experiments, LUVs containing 5(6)-carboxyfluorescein were prepared using the 

same protocol except that 5(6)-carboxyfluorescein was dissolved in tris buffer at a 

concentration of 80 mM before lipid hydration. Nonencapsulated 5(6)-carboxyfluorescein 

was removed from 5(6)-carboxyfluorescein-filled LUVs using a PD-10 desalting column 

(GE Healthcare Life Sciences) and elution with tris buffer. Dynamic light scattering (DLS) 

was used to check the effective diameter and polydispersity of each vesicle preparation 

before use. A fresh vesicle solution was used for each experiment.

Dynamic Light Scattering.

Dynamic light scattering experiments were performed on a NanoBrook 90Plus Particle Size 

Analyzer with a 35 mW red diode laser. The wavelength of irradiation was 640 nm. 

Membrane samples were prepared to a final concentration of 40 μM with tris buffer. For 

each sample, three runs were taken at 25 °C with 60 seconds per run. The average diameter 

(effective diameter) and the distribution width (polydispersity) were calculated using the 

90Plus Particle Sizing Software.
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Anisotropy Measurements.

Anisotropy measurements were conducted at room temperature using a SPEX automated 

Glan-Thompson polarizer accessory. Anisotropy values were calculated from the 

fluorescence intensities with polarizing filters set at all combinations of horizontal and 

vertical orientations. Fluorescence intensity in background samples lacking fluorophore 

were subtracted. Anisotropy (A) was calculated from the equation

A= Ivv×Ihh Ivh×Ihv −1 Ivv×Ihh Ivh×Ihv +2 , (1)

where Ivv, Ihh, Ihv, and Ivh are the various fluorescence intensities after subtraction of 

background intensities with the excitation and emission polarization filters, respectively, in 

vertical (v) and horizontal (h) orientations.

Sucrose Density Gradient Centrifugation Assays.

Sucrose gradient centrifugation was performed using a Beckman L8–55M ultracentrifuge 

with an SW-60 rotor. Sucrose gradients were prepared by freezing 3.5 ml of 10% (w/w) 

sucrose at –20 °C in centrifuge tubes overnight and thawing to room temperature. Sucrose 

concentrations in the fractions were estimated using a refractometer. The highest density was 

20 percent sucrose (bottom layer) and the lowest was 5 percent sucrose (top layer). Vesicles 

contained 2 mole percent NBD-DOPE to allow visualization. Vesicles were incubated with 

hIAPP until amyloid formation was complete. 500 μl samples were loaded on top of the 

gradients and samples were then centrifuged for 45 minutes at 37,500 rpm (190,000 G). 

Vesicles that bind substantial peptide migrate to the bottom layer of the gradient while those 

that do not float on top of the gradient. The two lipid-containing layers were removed and 

diluted to 1.2 ml with tris buffer. The amount of NBD-DOPE in each layer was quantified 

using a SPEX FluoroLog 3 spectrofluorometer with excitation and emission wavelengths of 

465 nm and 534 nm. The slit bandwidths for fluorescence measurements were set to 4.0 nm 

for both excitation and emission. Background intensities in samples lacking fluorescent 

probe were negligible (1–2%), and were generally not subtracted from the reported values.

Thioflavin-T Fluorescence Assays.

Thioflavin-T fluorescence experiments were performed using a Beckman Coulter DTX880 

plate reader with excitation and emission wavelengths of 430 nm and 485 nm, respectively. 

Samples were incubated in 96-well quartz microplate at 25 °C. Samples contained 20 μM 

peptide in tris buffer with 32 μM Thioflavin-T. This concentration of IAPP was chosen to 

yield a peptide to lipid ratio of 1:20 since this is typical of values used for studies of hIAPP-

membrane interactions22, 37, 54, 55. Experiments in the presence of membranes were initiated 

by adding LUVs at a 400 μM lipid concentration. Uncertainties in T50 were estimated by 

conducting measurements in triplicate using different solutions of hIAPP.

Membrane Permeability Assays.

Leakage experiments were performed using a Beckman Coulter DTX880 plate reader with 

excitation and emission wavelength filters of 485 nm and 535 nm, respectively. All of the 

samples were incubated in 96-well quartz microplate at 25 °C. 400 μM lipid LUVs with 
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encapsulated 5(6)-carboxyfluorescein were used. Peptide concentration was 20 μM. The 

fluorescence signal of the 5(6)-carboxyfluorescein, which increases upon leakage out of 

vesicles, was continuously measured during the course of each experiment. The maximum 

leakage for totally disrupted membranes was measured by adding the detergent Triton X-100 

to a final concentration of 0.2% (vol/vol).

The percent change in 5(6)-carboxyfluorescein fluorescence was calculated as:

Percent Fluorescence Change=100%× F T ‐Fbaseline / Fmax‐Fbaseline (2)

Where F(T) is the fluorescence intensity at time T, Fmax is the fluorescence intensity when 

all of the vesicles have been disrupted with Triton X-100 and Fbaseline is the fluorescence 

intensity before addition of hIAPP. The percent change in fluorescence will equal the 

percentage change in leakage provided the 5(6)-carboxyfluorescein fluorescence response is 

linear. Previous work has shown that this is a reasonable assumption for the condition used 

in studies37. Uncertainties were estimated by repeating the measurements three times using 

different stock solutions of hIAPP.

Transmission Electron Microscopy.

TEM was performed at the Life Science Microscopy Center at Stony Brook University. 

Aliquots of samples from the thioflavin-T fluorescence experiments were used to prepare 

TEM samples. Eight microliters of the solution were blotted on a carbon-coated Formvar 

300 mesh copper grid for 1 min and then negatively stained for additional 1 min with 

saturated uranyl acetate.

Förster Resonance Energy Transfer (FRET) Measurements of Peptide Binding.

A donor/acceptor pair of tyrosine (in hIAPP)/ DHE was used. Fluorescence was measured 

using an Applied Phototechnology fluorescence spectrophotometer with an excitation 

wavelength of 270 nm and an emission wavelength of 305 nm. F samples contained a 

hIAPP/vesicle with a mixture of unlabeled lipid and 2 mol% DHE, while Fo samples 

contained a hIAPP/vesicle with a mixture of unlabeled lipid and 2 mol% cholesterol in place 

of DHE. Background for F samples contained unlabeled lipid with DHE without peptide. 

Background samples for Fo contained pure unlabeled lipid without peptide. For FRET 

experiments, LUVs were injected into 20 μM hIAPP/tris buffer at concentrations ranging 

from 0 to 960 μM lipid. Backgrounds were LUVs injected into tris buffer.

RESULTS

The primary sequence of hIAPP and the structure of the sterols studied are displayed in 

Figure-1. The polypeptide contains an amidated C-terminus and a disulfide bond between 

residue 2 and 7. Positively charged residues include Lys-1, Arg-11 and potentially His-18 

depending upon its pKa. To analyze the effect of sterol structures upon membrane IAPP 

interactions, nine sterols were chosen. They can be broadly classified in terms of properties 

including the ability or inability to support tight lipid packing (see below). Comparison of 
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the effects of the different sterols allows specific features in the sterol structure to be probed, 

including a) the presence or absence of a hydroxyl group in position 3, b) hydroxyl group 

stereochemistry, c) the presence or absence of a double bond between the 4 and 5 carbons in 

the sterol A ring, or between 5 and 6 carbons or 7 and 8 carbons in the sterol B ring, d) the 

presence and absence of a normal aliphatic tail and f) the planarity of the sterol rings 

(Figure-1). Note that the cholesterol analogues without a hydroxyl group are formally 

speaking steroids not sterols, but we will refer to all of the cholesterol analogs as sterols for 

simplicity.

Analysis of the ability of sterols to support tight lipid packing.

First, the ability of the sterols to support tight lipid packing was analyzed. These 

experiments were carried out using LUVs containing POPC, POPS and various sterols at 

25°C, by measuring the fluorescence anisotropy of DPH incorporated into the lipid 

mixtures. The degree of DPH fluorescence anisotropy/polarization reflects the degree to 

which a DPH molecule reorients while in the excited state. This degree of reorientation 

decreases (anisotropy increases) in an environment where motion is restricted such as a tight 

packing/liquid ordered state-promoting environment56. Table-1 lists the effects of various 

sterols on DPH anisotropy. Sterols were chosen based on their reported ability to promote or 

inhibit liquid ordered state formation32, 57–59. In general terms, sterols that promote the 

formation of ordered lipid domains should also promote tight lipid packing in model 

membranes. The anisotropy values observed were consistent with this hypothesis. At 25°C, 

the values of the anisotropy for POPC/POPS mixed vesicles ranged from 0.107 to 0.112, 

depending on the percentage of POPS. Although POPS/POPC vesicles are not likely to form 

ordered domains without sterols, sterols that promote ordered domain formation (sterols 2–6 
32, 57–59) showed the largest effect on tight lipid packing, with anisotropy values in the range 

0.166 to 0.236 in mixed vesicles containing 20 mol% sterols and 80 mol% POPC/POPS, 

while sterols that do not promote ordered domain formation (sterols 7–10 32, 57, 58) had a 

smaller effect upon packing, with anisotropy values in the range 0.111 to 0.157 under the 

same conditions. Addition of 10 mol% POPS into mixed vesicles did not change the 

anisotropy values significantly, but increasing the sterol mol% from 20 mol% to 40 mol% 

increased anisotropy values; with a range of 0.199 to 0.230 for raft promoting sterols and 

0.119 to 0.172 for sterols that do not support raft formation. Overall, sterols that promote 

ordered domain formation give higher values of anisotropy in mixed LUVs than values for 

sterols that do not promote ordered domain formation, confirming that the former promote 

tight lipid packing more strongly than the latter.

The effect of sterols on the ability of vesicles to bind peptide: An inverse correlation 
between membrane order and the fraction of vesicles that bound peptide.

In our previous studies of IAPP interactions with model vesicles, we found that a subset of 

the LUVs bind peptide and another subset either do not, or bind only a very small number of 

peptides37. To test if the sterols affect the ability of LUVs to bind peptide, we conducted 

sucrose gradient experiments using mixed LUVs containing POPC with POPS and different 

sterols. We choose a lipid to peptide ratio of 20:1 and a hIAPP concentration of 20 μM for 

these and all following studies since this is typical of values used for biophysical studies of 

membrane catalyzed hIAPP amyloid formation. The LUVs were labeled with 2 mol% of the 
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fluorescence lipid probe NBD-DOPE. After incubation with peptide, the LUVs were 

centrifuged in a 5 to 20 percent sucrose gradient. Two fractions were observed in the 

presence of hIAPP, a lighter fraction which floats at the top of the gradient in the same 

position observed for control LUVs in the absence of peptide, and a second fraction which 

pellets. Because vesicle with bound peptide are more dense, the lighter fraction contains 

vesicles with little hIAPP bound while the pellet contains those which bind a high amount of 

peptide. The fact that there were two fractions indicated that not all vesicles bound much 

peptide under the conditions examined. Table-2 lists the fraction of vesicles that bind peptide 

for mixed vesicles containing POPC, POPS and various sterols. A larger percentage of 

POPS containing vesicles bound peptide compared with vesicles that did not contain POPS. 

The fraction of sterols also had a large effect on the fraction of vesicles that bind peptide.

There is a statistically significant inverse correlation between the fraction of vesicles that 

bind peptide and the effect of different sterols on membrane order (Figure-2). A larger 

fraction of the LUVs that contain sterols which do not promote very tight lipid packing 

bound peptide than did LUVs which contained sterols that strongly promote tight packing. 

This is true for all composition sets with varying fractions of POPS and sterols. The square 

of the correlation coefficient, R2, varied with the presence of POPS and sterol concentration 

over the range of 0.6637 to 0.7719. This statistically significant, but imperfect correlation 

suggests that other factors also influence the fraction of vesicles that bind peptide (see 

Discussion).

The differences in the percent of vesicles which bound peptide might reflect lipid and sterol 

composition-dependent differences in how much peptide was bound to the vesicles. To test 

this hypothesis, a control experiment using FRET measurements was performed to measure 

the amount of peptide bound to LUVs under our experimental conditions. A donor−acceptor 

pair of tyrosine (in hIAPP) and ergosta-5,7,9(11),22-tetraen-3β-ol (DHE) was used. LUVs 

containing 2 mol% DHE or with 2 mol% cholesterol in place of DHE were injected into 20 

μM hIAPP at LUV concentrations ranging from 0 to 960 μM. Binding of both hIAPP freshly 

dissolved in aqueous solution and samples pre-incubated to form hIAPP fibrils were tested 

separately. Binding of IAPP with LUVs leads to energy transfer from donor tyrosine to 

acceptor DHE, resulting in a decrease of tyrosine fluorescence. Tyrosine fluorescence was 

recorded during the titration. Data were collected for POPS-only LUVs, POPC-only LUVs, 

and LUVs containing 80 mol% POPC with 20 mol% cholesterol (promotes tight lipid 

packing) and LUVs containing 80 mol% POPC with 20 mol% pregnenolone (does not 

promote tight lipid packing). Binding of peptide to POPS-only vesicles exhibited saturation 

at lower lipid concentrations and a slightly larger level of FRET (lower F/Fo) than the other 

samples. There were only small differences between POPC-only vesicles and POPC with 20 

mol% sterol vesicles, with slightly weaker binding to vesicles with cholesterol, as indicated 

by a higher lipid concentration for half-maximal FRET (Figure-S1). More importantly, the 

experiments revealed that peptide binding was saturated by excess lipid under our 

experimental conditions of 20 μM peptide with 400 μM lipid for all conditions. Thus, the 

centrifugation studies described above are not explained by significant differences in the 

amount of vesicle-bound peptide.
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hIAPP is more effective at permeabilizing LUVs which contain sterols that do not strongly 
promote tight lipid packing.

We next examined the effects of different sterols on membrane leakage using mixed binary 

LUVs with POPC as the zwitterionic lipid. Membrane leakage was followed using 

fluorescence-detected 5(6)-carboxyfluorescein leakage assays. 5(6)-carboxyfluorescein is a 

highly fluorescent molecule whose fluorescence is self-quenched at high concentrations. 

High concentrations of the dye are encapsulated into LUVs, and upon membrane disruption/

pore formation by hIAPP, the dye is released and the consequent dilution leads to relief of 

self-quenching and thus enhanced fluorescence. The percent fluorescence change of the dye 

is related to the percent membrane leakage.

We measured the time course of leakage of mixed LUVs during incubation with hIAPP over 

times long enough to form amyloid. Inclusion of sterols that promote very tight lipid 

packing decreased the fluorescence change relative to the change observed with pure POPC 

vesicles, indicating decreased leakage, while inclusion of sterols that do not strongly 

promote tight lipid packing in vesicles did not have significant effects on membrane leakage 

(Figure-3, Figure-S2, Table-S2). Significant leakage was detected for incubation times 

noticeably less than the time required to from amyloid, indicating that leakage can induced 

by oligomeric species formed early in the amyloid self-assembly process.

Dye leakage was also measured for vesicles that contained 10 mol% POPS and with vesicles 

in which the sterol percentage was increased from 20 to 40 mol%. Adding 10 mol% of 

anionic lipids led to a significant increase in membrane leakage for both short and long 

incubation times for all sterols tested. Increasing the concentration of sterols that strongly 

promote tight lipid packing from 20 to 40 mol% significant decreased membrane leakage, 

while changing the percentage of sterols that do not strongly promote tight lipid packing did 

not have significant effects upon leakage (Figure-S2, Table-S2).

The amount of leakage observed after incubation for a time long enough to ensure amyloid 

formation has an extremely strong correlation (R2 = 0.9700–0.9941) with the fraction of 

vesicles pelleted, i.e. those vesicles which bound peptide (Figure-4). This indicates that the 

extent of leakage reflects the fraction of vesicles that bind substantial amounts of peptide. It 

also suggests there is little or no leakage from the vesicles that do not bind substantial 

amounts of peptide, and explains why the observed percentage leakage for some lipid 

compositions remains at a low level and does not reach 100% even for long incubation 

times, and even though hIAPP is added in excess in these experiments.

Sterols that promote tight lipid packing have an inhibitory effect on amyloid formation.

We next examined the effects of different sterols on hIAPP amyloid formation using mixed 

binary or ternary LUVs that contained 80 mol% POPC and 20 mol% sterols. Amyloid 

formation was monitored by fluorescence thioflavin-T assays. Thioflavin-T is a small 

fluorophore whose quantum yield is low in solution, but is enhanced upon binding to 

amyloid fibrils. Thioflavin-T assays are a well-documented approach to follow hIAPP 

amyloid in solution and in the presence of membranes. Transmission electron microscopy 

(TEM) was used to visualize the final products of the amyloid formation assays to provide 
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an independent test of amyloid formation. This is an important control since thioflavin-T is 

an extrinsic probe and sometimes gives a low signal even in the presence of amyloid 

fibrils60. Under the conditions of our study, in the absence of membranes, hIAPP has a T50, 

defined as the time to reach 50 percent of the signal change due to amyloid formation in a 

thioflavin-T amyloid assay, of 25.8 hours in 20 mM tris buffer (Table-S2). We first examined 

LUVs that did not contain POPS. The rate of hIAPP amyloid formation, as judged by T50 

values, was inhibited in the presence of vesicles containing sterols that promote tight lipid 

packing, with T50 values increasing from 27.6 hours to 48.2 hours, when compared to the 

rate of amyloid formation in the presence of POPC vesicles (19.8 hours). The rate of hIAPP 

amyloid formation in the presence of vesicles containing sterols that do not promote very 

tight lipid packing was similar to that observed for LUVs without sterol, with T50 values 

from 18.5 hours to 20.2 hours. Coprostanol was an exception, with a T50 values of 38.4 

hours, even though it is a sterol that does not promote very tight lipid packing (Figure-5, 

Table-S2). T50 values which differ by 2 or more hours are judged to be significant. TEM was 

used to probe the morphology of the amyloid fibrils which result from these experiments and 

the morphology of the vesicles. No detectable change in fibril morphology as a function of 

vesicle composition was observed at the level detectable by TEM (Figure-S5).

We next examined the effects of adding 10 mol% POPS as well as increasing the sterol 

percentage from 20 mol% to 40 mol%. POPS accelerated the rate of amyloid formation in 

all cases, as judged by the T50 values (Figure-S4, Table-S2), while increasing the sterol 

fraction led to slower rates of amyloid formation. This effect was more significant in 

vesicles containing sterols that promote very tight lipid packing. For example with 

cholesterol the T50 value decreased from 29.1 hours to 11.4 hours upon inclusion of 10 mol

% POPS, and then increased to 17.4 hours when the cholesterol percentage was increased 

from 20 mol% to 40 mol% while maintaining the POPS faction at 10 mol%. Vesicles 

containing sterols that do not promote very tight lipid packing also showed a decrease in T50 

when POPS was added. A small increase in T50 for vesicles containing POPS was observed 

when the concentrations of these sterols were increased. For example, T50 values changed 

from 20.2 hours to 8.8 hours for vesicles containing 5α-cholestan-3-one upon addition of 

POPS. A modest change to T50 = 9.5 hours was observed when the sterol concentration was 

increased from 20 mol% to 40 mol% while maintaining the POPS concentration.

As noted above, sterols that strongly promote tight lipid packing had an inhibitory effect on 

amyloid formation, but those that only weakly promote tight lipid packing had a much 

smaller inhibitory effect on amyloid formation, or even accelerated amyloid formation a bit.

Overall, a significant correlation (R2 = 0.6125–0.8117) was observed between the time 

required to form amyloid and the effect of different sterols on membrane order, as judged by 

anisotropy values (Figure-6). This statistically significant, but imperfect correlation suggests 

that other factors also influence the fraction of vesicles that bind peptide (see Discussion).

There is also a significant inverse correlation between the time required to form amyloid and 

the fraction of vesicles that bind peptide (Figure-7). However, the correlation (R2 ranging 

from 0.6347 to 0.8161), while strong, is not perfect, indicating that the effect of sterol 
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structure on the fraction of vesicles that bind peptide does not fully explain the differences in 

amyloid formation (see Discussion).

DISCUSSION:

Prior studies have explored several aspects of the effect of cholesterol on IAPP interactions 

with membranes25–31, 39, 40, but have not investigated the extent to which the effects of 

cholesterol were due to its effect on membrane physical properties or direct/specific 

interactions with IAPP.

Other studies have examined the behavior of IAPP in cholesterol-containing membranes that 

have co-existing ordered and disordered domains (Ld)30, 61. It has been reported that IAPP 

localizes primarily in Ld domains and that membranes with domains accelerate IAPP 

induced membrane leakage and fiber growth30. In such case, cholesterol has been reported 

to enhance fiber growth. It should be noted that protein behavior can differ in membranes 

lacking domains from that in domain-containing membranes because interactions between 

protein and lipid can be enhanced at the boundary between ordered and disordered 

domains62–64, and because the interaction of protein and lipid can influence the properties of 

domains and thus the properties at domain boundaries30, 65.

The data presented in this study indicate that sterols modulate IAPP-membrane interactions 

in the vesicles tested mainly by affecting the tightness of lipid packing, rather than directly 

interactions involving specific chemical features of sterol. Sterols which led to more tightly 

packed membrane lipids generally resulted in binding of IAPP to a smaller fraction of 

vesicles, decreased membrane leakage, and slowed amyloid formation. Sterols that did not 

lead to tighter packing generally had relatively little effect upon IAPP-membrane 

interaction.

The correlation between the fraction of vesicles that bind peptide and vesicle leakage was 

revealed in this study to be extremely strong, and indicates that it is the subpopulation of 

vesicles that bind substantial amounts of peptide that undergo leakage. This implies that the 

inhibition of leakage by sterols that increase membrane order reflects the influence of those 

sterols on the distribution of IAPP in the vesicles. This likely reflects the clustering of IAPP 

into a lesser number of (larger) clusters in cholesterol-containing membranes26. An 

alternative explanation for the effect of sterol on leakage could involve a sterol-dependent 

effect on the amount of bound peptide, but this is ruled out by the observation that the vast 

majority of peptides were vesicle bound with and without sterol under our experimental 

conditions. It should also be noted that the slope of a plot of the fraction of vesicles that bind 

peptide vs membrane leakage (Figure-4) was <1.0 (~ 0.85). The deviation of the slope from 

one could result from a small fraction of vesicles that bind peptide, but do not form pores, or 

from slight non-linearity of the carboxyfluorescein leakage assay37. Why cholesterol and 

sterols that promote tight lipid packing promote IAPP-IAPP interactions leading to fewer, 

but larger clusters is not obvious. One possibility is that tight lipid packing might inhibit/

slow IAPP binding to the lipid bilayer and allow IAPP to oligomerize in solution. This could 

result in larger portion of the IAPP binding to vesicles as oligomers which, in turn, could 
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lead to a higher level of positive cooperativity if oligomers bound to a vesicle are especially 

effective in nucleating additional peptide binding to that vesicle.

The possibility that cholesterol and other sterols that promote tight lipid packing may result 

in more highly cooperative binding with IAPP molecules forming larger clusters in a smaller 

number of vesicles may also help rationalize why cholesterol can inhibit amyloid formation. 

If IAPP molecules are tightly bound to each other, they may be stably trapped in a 

membrane bound oligomeric state which would act as a pre-fibrillar thermodynamic sink.

There were also some deviations from a strict linear correlation between tightness of lipid 

packing induced by sterols and the various membrane-hIAPP interactions. These likely 

result from secondary effects reflecting the different chemical features of the different 

sterols, for example, differences in the ability to form hydrogen bonds between IAPP polar 

residues and the sterol hydroxyl group, or differences in van der Waals interactions between 

sterol rings, methyl and/or iso-octyl groups and the hydrophobic and aromatic amino acid 

residues in IAPP. The observed effects might also involve the way that the sterols interact 

with other lipids, for example by an effect on overall lipid curvature that somehow alters 

interactions with IAPP. Perhaps the most striking example of deviation from the observed 

correlation of lipid packing and membrane binding was that of coprostanol, for which there 

was a decreased fraction of vesicles binding hIAPP and a decrease in hIAPP-induced 

leakage relative to vesicles without sterol, even though coprostanol did not promote tight 

lipid packing. Interestingly, the effect of coprostanol on amyloid formation did not differ 

greatly from those induced by sterols that did not promote tight lipid packing in vesicles 

containing POPS, suggesting that IAPP clusters in coprostanol-containing vesicles are not 

conformationally trapped in the same manner as they are in vesicles that promote tight lipid 

packing.

To summarize, this work presents a systematic study of the effect of varying sterol structure 

on IAPP membrane interactions. Future studies could examine the conformation of bound 

IAPP using spectroscopy methods. Previous studies have exclusively made use of 

cholesterol and it was not possible to determine to what extent cholesterol exerts its effects 

by modulating the biophysical properties of membranes as opposed to specific sterol 

interactions. We have shown that the primary effect of different sterols on IAPP amyloid 

formation and IAPP induced membrane leakage (via its effect upon the fraction of vesicles 

that bind peptide) is due to the effect of the sterols upon lipid packing. Effects due to 

specific sterol IAPP interactions are less pronounced, although they may influence some 

IAPP-membrane interactions. The approach illustrated here is not limited to IAPP and can 

be applied to other amyloidogenic proteins. Along these lines, cholesterol is known to 

modulate Aβ membrane interactions, but a detailed molecular level understanding of the 

effects is lacking66–70.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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ABBREVIATIONS:

DHE Dehydroergosterol/ergosta-5,7,9(11),22-tetraen-3β-ol

DLS dynamic light scattering

DMSO dimethyl sulfoxide

Fmoc fluoronylmethoxycarbonyl

FRET Förster resonance energy transfer

HFIP hexafluoroisopropanol

hIAPP human islet amyloid polypeptide

HPLC high performance liquid chromatography

IAPP islet amyloid polypeptide

LUV large unilamellar vesicles

MALDI-TOF time-of-flight matrix-assisted laser desorption ionization

MLV multilamellar vesicles

NBD-DOPE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(7-nitro-2–1,3-

benzoxadiazol-4-yl)

POPC 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine

POPS 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-L-serine

PS phosphatidylserine

Rho-DOPE 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(lissamine 

rhodamine B sulfonyl)

T2D type-2 diabetes

T50 the time to reach 50% of the signal change in a thioflavin-T amyloid 

assay

TEM transmission electron microscopy

TFA trifluoroacetic acid.
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Figure 1. Molecules studied.
(A) The sequence of human IAPP. The peptide has an amidated C-terminus and contains a 

disulfide bridge between residues 2 and 7. Residues which have the potential to be positively 

charged near physiological pH are colored red. (B) Structures of the different sterols 
studied. The numbering is used throughout the remaining figures to denote the different 

sterols.
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Figure 2. Correlation between the percentage of vesicles that bind peptide and the effect of 
different sterols on membrane order.
The percentage of LUVs that bind hIAPP are plotted against the DPH anisotropy values. 

LUVs contain (A) 20 mol% sterol, 80 mol% POPC. R2 =0.7219, P-value = 0.0019. (B) 20 

mol% sterol, 10 mol% POPS and 70 mol% POPC. R2 =0.7719, P-value = 0.0008. (C) 40 

mol% sterol, 10 mol% POPS and 50 mol% POPC. R2 =0.6637, P-value = 0.0041. The sterol 

numbering corresponds to that shown in table-1 and figure-1. Samples with sterols/

compositions that do not promote tight lipid packing are in blue. Samples with sterols that 

do promote tight lipid packing are in red. Note that corresponding samples without sterol 

also included (black point). The POPS mole% is the same for samples in the presence and in 

the absence of sterols.
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Figure 3. Effect of different sterols on membrane leakage.
The time course of carboxyfluorescein leakage experiments are displayed for vesicles 

containing 100 mol% POPC (red), 80 mol% POPC and 20 mol% sterol: cholesterol (blue), 

cholestanol (cyan), lathosterol (dark cyan), 7-dehydrocholesterol (yellow), epicholesterol 

(green), pregnenolone (pink), cholestenone (dark red), coprostanol (purple) and 5α-

cholestan-3 one (grey). Experiments were conducted in 20 mM Tris·HCl, 100 mM NaCl, pH 

7.4 at 25 °C with 400 μM lipid and 20 μM hIAPP.
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Figure 4. Correlation between the percentage of vesicles that bind peptide and the percent 
leakage.
The final carboxyfluorescein fluorescence change is plotted vs the fraction of vesicles that 

bind peptide as deduced from sucrose gradient experiments. LUVs contain (A) 20 mol% 

sterol, 80 mol% POPC. R2 =0.9772, P-value = 0.0001. (B) 20 mol% sterol, 10 mol% POPS 

and 70 mol% POPC. R2 =0.9941, P-value = 0.0001. (C) 40 mol% sterol, 10 mol% POPS 

and 50 mol% POPC. R2 =0.9766, P-value = 0.0001. (D) All lipid compositions. R2 =0.9700, 

P-value = 0.0001. Note that corresponding samples without sterol are also included. The 

sterol numbering in (A) to (C) corresponds to that shown in table-1 and figure-1.
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Figure 5. Effect of different sterols upon amyloid formation.
Vesicles were prepared with different sterols and the zwitterionic lipid POPC. The results of 

thioflavin-T assays are displayed. Data are plotted for hIAPP in solution (black), LUVs 

containing 100 mol% POPC (red) or LUVs containing 80 mol% POPC and 20 mol% of the 

following sterols: cholesterol (blue), cholestanol (cyan), lathosterol (dark cyan), 7-

dehydrocholesterol (yellow), epicholesterol (green), pregnenolone (pink), cholestenone 

(dark red), coprostanol (purple) and 5α-cholestan-3 one (grey). Experiments were conducted 

in 20 mM Tris·HCl, 100 mM NaCl, pH 7.4 at 25 °C with 400 μM lipid and 20 μM hIAPP.
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Figure 6. Correlation between the time required to form amyloid and the effect of different 
sterols on membrane order.
The values of T50 for amyloid formation are plotted against the LUV anisotropy values. 

LUVs contain (A) 20 mol% sterol, 80 mol% POPC. R2 =0.6125, P-value = 0.0072. (B) 20 

mol% sterol, 10 mol% POPS and 70 mol% POPC. R2 =0.6946, P-value = 0.0027. (C) 40 

mol% sterol, 10 mol% POPS and 50 mol% POPC. R2 =0.8117, P-value = 0.0004. The 

numbering corresponds to that shown in table-1 and figure-1. Note that corresponding 

samples without sterol are also included.
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Figure 7. Correlation between the time required to form amyloid and the percentage of vesicles 
that bind peptide.
The values of T50 for amyloid formation are plotted against the percentage of vesicles that 

binding peptide. LUVs contain (A) 20 mol% sterol, 80 mol% POPC. R2 =0.6347, P-value = 

0.0058. (B) 20 mol% sterol, 10 mol% POPS and 70 mol% POPC. R2 =0.6843, P-value = 

0.0031. (C) 40 mol% sterol, 10 mol% POPS and 50 mol% POPC. R2 =0.8161, P-value = 

0.0003. The sterol numbering corresponds to that shown in table-1 and figure-1. Note that 

corresponding samples without sterol are also included.
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Table 1.
Anisotropy values for LUVs containing different amounts of POPC, POPS and various 
sterols.

Experiments were conducted in 20 mM Tris·HCl, 100 mM NaCl, pH 7.4 at 25 °C with 400 μM lipid.

DPH Fluorescence Anisotropy

Lipid Composition

Sterol POPC with 20%
sterol, no PS

POPC with 20%
sterol, 10% PS

POPC with 40%
sterol, 10%PS

1 no sterol 0.112±0.0055 0.107±0.0031 0.109±0.0018

2 Cholesterol 0.167±0.0069 0.166±0.0056 0.218±0.0074

3 Cholestanol 0.179±0.0122 0.168±0.0051 0.221±0.0054

4 Lathosterol 0.236±0.0055 0.207±0.0069 0.211±0.0037

5 7-Dehydrocholesterol 0.172±0.0072 0.177±0.0034 0.230±0.0077

6 Epicholesterol 0.180±0.0074 0.170±0.0024 0.199±0.0057

7 Pregnenolone 0.111±0.0062 0.108±0.0018 0.119±0.0043

8 Cholestenone 0.114±0.0055 0.138±0.0035 0.172±0.0053

9 Coprostanol 0.157±0.0064 0.139±0.0042 0.171±0.0044

10 5α-cholestan-3-one 0.145±0.0079 0.135±0.0037 0.165±0.0038
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Table 2.
Percentage of vesicles that bind peptide for vesicles containing different amounts of 
POPC, POPS and various sterols.

Experiments were conducted in 20 mM Tris·HCl, 100 mM NaCl, pH 7.4 at 25 °C with 400 μM lipid and 20 

μM hIAPP.

Percentage of Vesicles Binding Peptide

Lipid Composition

Sterol POPC with 20%
sterol, no POPS

POPC with 20%
sterol, 10% POPS

POPC with 40%
sterol, 10% POPS

1 no sterol 47.3 66.1 66.1

2 Cholesterol 37.6 46.3 36.9

3 Cholestanol 40.1 49.3 42.1

4 Lathosterol 32.6 35.5 34.8

5 7-Dehydrocholesterol 37.2 46.9 40.5

6 Epicholesterol 35.7 49.9 50.7

7 Pregnenolone 56.9 77.5 69.1

8 Cholestenone 52.2 68.3 65.8

9 Coprostanol 36.7 47.4 40.3

10 5α-cholestan-3-one 51.6 70.3 67.2
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