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ABSTRACT 

Plasmonic nanostructures have been widely incorporated into different semiconductor materials 

to improve solar energy conversion. An important point is how to manipulate the incident light 

so that more light can be efficiently scattered and absorbed within the semiconductors. Here, by 

using a tunable three-dimensional Au pillar/truncated-pyramid (PTP) array as a plasmonic 

coupler, a superior optical absorption of about 95% within a wide wavelength range is 
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demonstrated from an assembled CdS/Au PTP photoanode. Based on incident photon to current 

efficiency measurements and the corresponding FDTD simulations, it is concluded that the 

enhancement is mainly attributed to an appropriate spectral complementation between surface 

plasmon resonance (SPR) modes and photonic modes in the Au PTP structure over the 

operational spectrum. Because both of them are wavelength dependent, the Au PTP profile and 

CdS thickness are further adjusted to take full advantages of the complementary effect and 

subsequently, an angle independent photocurrent with an enhancement of about 400% was 

obtained. The designed plasmonic PTP nanostructure of Au is highly robust and it could be 

easily extended to other plasmonic metals equipped with semiconductor thin film for 

photovoltaic and photoelectrochemical cells. 

 

Solar energy conversion is a significant approach to providing a sustainable and fossil-free 

energy source.1-5 Photoelectrochemical (PEC) water splitting, which could convert solar energy 

into chemical energy, has been intensively investigated over the last few decades.6-14 One of the 

main challenges that limit the conversion efficiency of PEC electrodes is the severe trade-off 

between the long penetration depth of photons and the relatively short distance of carrier 

extraction at the electrode/electrolyte interface.15, 16 Incorporating plasmonic nanostructures into 

a thin semiconductor is a promising route to address this issue, because surface plasmon 

resonance (SPR) that originates from the plasmonic nanostructures can give rise to intriguing 

phenomena, including guiding electromagnetic (EM) radiation and enhancing near-filed electric 

field etc.17-24 By properly constructing plasmonic nanostructure, the incident light could be 

folded into the active material through directional scattering and intense-electric-field aided light 
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absorption around the plamonic nanostructures to achieve a film of electrical thinness and optical 

thickness.25-27 Some attempts, like embedding gold nanoparticles into a thin hematite Fe2O3 

film,28 or integrating gold pillars within CdS nanorod arrays,29 were tried to incorporate these 

SPR features into PEC cells. However, SPR modes are typically suppressed in the short 

wavelength range (e.g., < 500 nm for gold because of the strong intrinsic interband light 

absorption).17 In order to achieve a better light utlization, solar spectrum with short wavelengths 

needs to be concerned as well. Photonic modes that are capable of reducing reflection and 

inducing diffraction effect to the short wavelength range have been widely adopted, such as 

nanoengineering semconductor films into archetectures with gradient refractive index profiles or 

manufacturing subwavelength periodic stuctures.30-36 Moreover, SPR and photonic modes can 

work in synergy and compensate each other over a wide wavelength range. Such as, by 

conformally coating gold nanoparticle arrays with a thin hematite Fe2O3 film, an improved light 

utilization has been reported, in which the contributions of the photonic modes start over 500 nm 

and the SPR modes dominate at around 650 nm.37 However, the zero dimensional nanostructure 

only supports SPR modes at discrete wavelengths, which largely limits SPR function domain.38-

41 Meanwhile, the zero dimensional surface profile leads to a poor tunability of the photonic 

modes. Thus, in order to broaden the SPR optical region and photonic mode induced light 

trapping region, as well as to maximize their complementary absorption range, competent design 

of nanostructure architecture is highly requested. 

In this work, an approach was proposed to construct a three-dimensional (3D) array of 

pillar/truncated-pyramid (PTP) Au plasmonic nanostructure on a large scale of centimeter-sized 

range, in which each unit is composed of a pillar (P) setting on a truncated-pyramid (TP). To 

demonstrate the advantages of the Au PTPs for light absorption, a uniform semiconductor (e.g., 
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CdS) film was deposited to form a CdS/Au PTP photoanode. Comparing to CdS/Au plane and 

pillars, a continuous incident photon to current efficiency (IPCE) enhancement from 300 to 600 

nm was observed for the CdS/Au PTPs. Along with detailed FDTD simulation, we concluded 

that the IPCE enhancement above 450 nm is mainly originated in SPR modes, whereas the IPCE 

enhancement below 450 nm is dominated by the photonic modes. Systematic studies on the 

aspect ratio of P/TP and the thickness of CdS film were carried out to reach an omnidirectional 

and broadband enhancement in both optical absorption and quantum efficiency. The 

photocurrent density up to 3.5 mA cm-2 was obtained with only 120 nm thick CdS film on PTP 

(height = 270 nm, aspect ratio of P/TP = 0.5). Moreover, the activity of the as-prepared 

photoanode is almost angle independent and only less than 8% loss was observed from 0 to 40 

degree. 

Results and discussion 

The process for fabricating CdS/Au PTP structures is revealed in Figure 1a. The details can be 

found in the experimental section. Briefly, a first-step anodization was carried out on an 

imprinted aluminum foil to grow anodic aluminum oxide (AAO) template. By dissolving the 

AAO template in H3PO4 solution, aluminum nanotips were observed at the fourfold junction 

sites of anodized nanopores. Then, a second-step anodization was conducted to form inverted 

PTP nanopores. An Au (100 nm)/Ti (5 nm) layer was deposited on the surface of the inverted 

PTP nanopores followed by growth of a thick Ni supporting film. An array of Au PTP was 

achieved by removing the unoxidized aluminum foil and AAO template, as the SEM images 

shown in Figure 1b and 1c. The profile of the PTP structure includes a P (height: 180 nm, size: 

150 nm) on the top and a TP (height: 180 nm, size of the front- and back-side square surfaces: 
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150 and 370 nm) at the bottom. The P height can be easily tuned by altering the second-step 

anodization time. Finally, a continuous CdS thin layer (90 nm) was uniformly coated on the Au 

PTP using an electrodeposition process, as the top-down and cross-sectional SEM images shown 

in Figure 1d and 1e.  

The composition of the as-prepared CdS/Au PTPs was confirmed by XRD measurement (Figure 

1f). Besides the diffraction peaks of Au (JCPDS No. 65-8601), the other peaks can be indexed to 

(002), (101), (102), (103), (112), (004) and (104) diffractions of hexagonal CdS (PDF#65-3414). 

Meanwhile, an Au pillar array (with the same height of Au PTPs, Figure S1) and an Au planar 

coated with a 90 nm CdS film were used as the comparison samples. The absorption spectra of 

the CdS/Au PTPs, along with the CdS/Au pillars and planar, were collected under a diffuse 

reflectance mode (Figure 1g). The CdS/Au planar presents an absorption onset at 520 nm, in 

consistence with the bandgap of bulk CdS (2.42 eV).42 More importantly, the CdS/Au PTPs 

shows a superior optical absorption of about 95% within the wavelength range of 300 − 600 nm. 

And a better optical absorption above 500 nm was also observed for the CdS/Au PTPs in contrast 

to the CdS/Au pillar, which agrees with the tendency of the Au PTPs and pillars absorption, 

indicating that the optical enhancement should be ascribed to the distinctive structure of the Au 

PTPs (Figure S2). 
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Figure 1. (a) Schematic of the fabrication process for CdS/Au PTP nanostructure array. (b) 

Large-area and (c) tilted SEM view of an Au PTP array, including top pillar (height: 180 nm, 

size: 150 nm) and bottom truncated-pyramid (height: 180 nm, size of the front- and back-side 

square surfaces: 150 and 370 nm, respectively). (d) Top-down and (e) cross-sectional SEM view 

of a CdS/Au PTP array coated with a 90 nm CdS film. (f) XRD of the as-prepared CdS/Au PTPs. 

(g) Light absorption spectra of the CdS/Au PTPs, CdS/Au pillars, and CdS/Au planar, 

respectively. Inset: photo of a typical CdS/Au PTPs. 

The PEC performance was measured in a mixed aqueous solution (0.2 M Na2S and 1.0 M 

Na2S2O3) using a three-electrode cell under the illumination of AM 1.5G. The chopped I-V 

curves were collected in Figure 2a. The photocurrent density was significantly enhanced for the 
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CdS/Au PTPs when compared to that of the CdS/Au pillars and planar, with an enhancement of 

about 40% and 125% at a bias of -0.4 V (vs. Ag/AgCl), respectively. Moreover, because the 

onset potential of the photocurrent remained the same for all three photoanodes, it can be 

concluded that the underneath Au has not been involved in a surface catalysis process at the 

semiconductor-electrolyte interface. The durability of the CdS/Au PTPs was tested at a bias of -

0.4 V (vs. Ag/AgCl), in which the photocurrent maintained almost no degradation under AM 

1.5G illumination over 100 minutes (Figure S3). Also, the CdS/Au PTPs photoanode exhibits 

excellent thermal robustness after an annealing treatment at 350 oC, because the photocurrent 

even shows a slight improvement. The reason may be ascribed to the crystallization of the CdS 

film, which can be evidenced by the emergence of grains on the CdS surface and the intensity 

enhancement of the CdS diffraction peaks (Figure S4). On the other hand, spectrally resolved 

IPCE was measured in the same solution using a two-electrode cell without applying external 

bias. The CdS/Au PTPs showed a substantially IPCE enhancement within the wavelength range 

of 300 − 600 nm when compared with that of the CdS/Au planar, agreeing with the tendency of 

the photocurrent results (Figure 2a). In the meantime, a better IPCE enhancement over 450 nm 

was also observed for the CdS/Au PTPs than that of the CdS/Au pillars (Figure 2b). The 

difference is more clearly from the normalized IPCE in Figure 2c, where a wavelength 

dependent IPCE enhancement with two peaks at 490 and 550 nm was observed for the CdS/Au 

PTPs, while only one peak at 490 nm for the CdS/Au pillars. 

Since the light absorption in the semiconductor (CdS) and in the metallic (Au) regions is hard to 

distinguish, theoretical FDTD simulations were employed to elucidate the optical difference 

between the CdS/Au PTPs and pillars. When SPR is excited, the collective charge oscillations at 

the metal surface cause increased the ohmic loss of EM energy, which can be visualized as peaks 
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in the spectrally resolved absorption of the metal.43 By extracting the absorption in the Au region, 

the EM energy dissipated at the top P (180 nm) and bottom TP (180 nm) of Au PTPs were 

obtained, respectively (Figure 2d). It shows that the top P part has two distinct absorption peaks 

at 500 and 550 nm, while the bottom TP part has one major peak at 525 nm and one shoulder at 

550 nm. These Au absorption peaks are generally coincident with the normalized IPCE features 

of the CdS/Au PTP (Figure 2c). Small peak shift might originate from a discrepancy between the 

experiment and simulation, like the variation of the PTP geometry, the surface roughness of 

CdS/Au PTPs that is unavoidable in reality but not considered in the simulation. For a 

comparison, the FDTD simulation concerning the Au pillar was also studied. The top part of Au 

pillars (top P: 180 nm) shows two absorption peaks at 500 and 525 nm, which is quite similar to 

that of the Au PTPs (top P: 180 nm). However, no absorption peak from the bottom part of the 

Au pillars (bottom P: 180 nm) was observed, which explains the loss of the normalized IPCE 

peak at 550 nm for CdS/Au pillars. These results can be further supported by the electric field 

distribution on CdS/Au PTPs and pillars at 550 nm (Figure 2e). The red and yellow color areas in 

CdS present relatively strong electric fields, which uniformly distribute around the whole profile 

of the PTP, but only partially focus on the top part of the pillar. Therefore, the IPCE 

enhancement over 450 nm should be mainly caused by the SPR modes that generate at the CdS-

Au interface and result in an enhanced light absorption in CdS layer. This point can be further 

confirmed by a CdS photoande based on weakly- or non- plasmonic metals (e.g., Pt) PTP 

structure, where the IPCE enhancement can be barely observed in the long wavelength range 

(Figure S5).  
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 Figure 2. (a) Chopped photocurrent densities of CdS/Au PTPs, pillars, and plane under AM 

1.5G illumination. (b) Spectrally resolved IPCE curves of the CdS/Au PTPs, pillars and plane 

within the wavelength range of 300 – 600 nm without applying an extra bias. (c) Normalized 

IPCE curves of the CdS/Au PTPs and pillars, which were calculated by dividing the IPCE of 

CdS/Au PTPs and pillars by that of the CdS/Au plane, respectively. (d) FDTD simulated 

absorption curves of the top (180 nm) and bottom (180 nm) parts of the Au PTPs and pillars in 

CdS/Au PTPs and pillars, respectively. (e) FDTD simulated electric field distributions |E/E0| of 

the CdS/Au PTPs (left) and pillars (right) at the wavelength of 550 nm. 

On the other hand, because no SPR peak was observed below 450 nm, the IPCE enhancement 

within the range of 300 − 450 nm might be ascribed to the photonic modes and/or the increased 

surface area of the nanostructure. Considering that, CdS/Au PTPs with different P/TP height 

ratios (0.1, 0.5, 1.0) were prepared, in which the surface area increases gradually (Figure 3a). 

The chopped I-V curves of these photoanodes revealed that the photocurrent reaches to a 
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maximal value of about 2.5 mA cm-2 at a bias of -0.4 V (vs. Ag/AgCl) when the ratio of P/TP is 

0.5, instead of increasing with the raise of the photoanode surface area (Figure 3b). Moreover, 

from the normalized IPCE of CdS/Au PTPs in Figure 3c, the P/TP (0.5) shows an even IPCE 

enhancement across the whole wavelength range with a magnitude of about 300% and 150% to 

that of the P/TP (0.1) and P/TP (1.0), respectively. Thus, the change of surface area has an 

ignorable effect, while the photonic modes resulted strong light scattering at the interface of the 

CdS and Au plays a dominant role in the enhanced photocurrent below 450 nm. These results 

can also be supported by the FDTD simulation results (Figure 3c). Comparing to the PTP (0.1) 

and (1.0), the PTP (0.5) demonstrates a strong electric field distribution not only at the top and 

side wall but also in the valley between the neighboring PTPs. More importantly, we can 

conclude that with an appropriate aspect ratio of P/TP, the SPR and photonic modes can 

efficiently compensate each other to improve the light utilization in CdS layer over a wide range 

of wavelengths. 
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Figure 3. (a) SEM view of typical CdS/Au PTPs with different P/TP height ratios. From left to 

right: 0.1, 0.5, and 1.0, respectively. (b) Chopped photocurrent densities of the CdS/Au PTPs 

under AM 1.5G illumination. (c) Normalized IPCE curves of the CdS/Au PTPs, which were 

calculated by dividing the IPCE of the CdS/Au PTPs by that of the CdS/Au plane. (d) FDTD 

simulated electric field distributions |E/E0| of the CdS/Au PTPs with different P/TP ratios at the 

wavelength of 350 nm. From top to bottom: 1, 0.5, and 0.1, respectively. 

Besides the metallic nanostructure, SPR effect also depends upon the dielectric environment 

surrounding the metal.44, 45 Because of the subwavelength thickness of the CdS layer, the 

effective refractive index is an average of the CdS layer and the electrolyte.40, 46, 47 Thus, the 

wavelength related photocurrent is possible to be tuned by changing CdS thickness. With 

deposition time elongation, the architecture of CdS/Au PTPs (0.5) gradually evolved from a 
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core/shell structure to a planar film and the uniformity of the deposited CdS layers over large 

scales can be confirmed in Figure 4d and Figure S6. The chopped I-V curves reveal that the 

photocurrent density was enhanced more than two times with the increase of CdS thickness from 

60 to 120 nm (Figure 4a). When the CdS thickness was further increased, a merged CdS film 

was formed with a pronounced decline of photocurrent. Because the normalized IPCE peaks in 

the long wavelength region show minimal wavelength shift, SPR effects play a similar role in all 

samples (Figure 4b). But the absolute values of the normalized IPCE alter significantly with the 

change of CdS thickness, implying that the photonic modes strongly depend on the CdS 

thickness and the formed nanostructure profile. The FDTD simulated electric field distribution of 

the CdS/Au PTPs are in accordance with the IPCE results. Obviously, the coverage of the strong 

electric field in the CdS layer becomes broader with the CdS thickness increasing from 60 to 120 

nm. After the CdS layer merged to a planar film, surface-profile-induced photonic modes 

vanished, which results in a sharp shrink of the strong electric field in the CdS layer (Figure 4c). 
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Figure 4. (a) Chopped photocurrent densities of the CdS/Au PTPs (0.5) with different CdS 

thicknesses under AM 1.5G illumination. (b) Normalized IPCE curves of the CdS/Au PTPs (0.5) 

with different CdS thicknesses, which are calculated by dividing the IPCE of the CdS/Au PTPs 

(0.5) by that of the CdS/Au planar, respectively. (c) FDTD simulated electric field distributions 

|E/E0| of the CdS/Au PTPs (0.5) with different CdS thicknesses at the wavelength of 550 nm. 

From left to right: 60 nm, 90 nm, 120 nm, and merged, respectively. (d) Top-down SEM image 

of a typical large-scale CdS/Au PTP (0.5). 

It should be noted that all previous measurements were performed under the normal incidence of 

AM 1.5G illumination and from a practical perspective, the investigation of incident angle effect 

is essential. The wavelength-resolved optical absorption of the CdS/Au PTPs (0.5) as a function 

of incident angle was calculated by FDTD simulations. The results revealed that only a slight 

variation is observed in the photonic-modes dominated short wavelength region, while the 

optical loss is mainly generated over long wavelength region that is dominated by the SPR 

modes (Figure 5a). In order to evaluate the overall light absorption of the CdS/Au PTPs, the 

averaged light absorption (ALA) is employed, which is calculated by dividing the solar photons 

absorbed in the CdS/Au PTPs by the total solar photons in the wavelength range of 300-600 nm 

[Equation 1].48, 49 

                                                                         (1) 
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where h is Planck’s constant, c is light speed in free space, λ is light wavelength (λ0 and λ1 equal 

300 and 600 nm, respectively) and IAM1.5 is the solar spectrum of AM 1.5G, LA is the simulated 

light absorption in Figure 5a.  All ALA maintain around 90% regardless of the incident angle 

which implies an almost angle-independent PEC performance (Figure 5b). Note that, a slight 

reduction of the photocurrent density (< 8%) was observed as the incident angle is altered from 0 

to 40 degree (Figure 5b and S7).  It can be ascribed to the nonuniform electric field distributions 

that increasing incident angle results in spatial shrinkage of the strong electric filed in the CdS 

layer, which will lead to stronger recombination of the photogenerated carriers and consequently, 

a somewhat deteriorated photocurrent (Figure S8). 

 

Figure 5. Characterization of the CdS/Au PTPs (0.5) with 120 nm CdS as a function of incident 

angle. (a) Simulated spectrally-resolved light absorption. (b) Averaged light absorption and 

normalized photocurrent density under AM 1.5G illumination at -0.4 V vs. Ag/AgCl. 

 Conclusions 
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Perfectly ordered arrays of CdS/Au PTP nanostructures were successfully fabricated with a 

combination of nanoengineered AAO template and conventional techniques (e.g., PVD and 

electrodeposition). A significant IPCE enhancement was observed by taking advantage of SPR 

and photonic modes root in Au PTPs, where the SPR modes dominate in the longer wavelength 

range over 450 nm and photonic modes contribute mainly in the shorter wavelength range below 

450 nm. Different Au PTP profile and CdS thickness were systematically investigated with 

experiments and FDTD simulations to reach an omnidirectional and broadband enhancement in 

both optical absorption and quantum efficiency. The photocurrent up to 3.5 mA cm-2 was 

obtained from the CdS/Au PTP (0.5) with only less than 8% loss from 0 to 40 degree irradiation, 

four times of that from the planer CdS/Au. Moreover, the scalable strategy demonstrated here 

should not be limited to the CdS/Au PTP. Other plasmonic PTP, such as Ag, Al, Cu and alloyed 

metals together with thin semiconductor materials are highly expectable for cost-effective 

photovoltaic and photochemical electrodes. 

Experimental Section 

Fabrication of CdS/Au PTPs photoanodes. 1) A Ni imprinting mould with periodic pillar 

arrays of 400 nm pitch was prepared using a Si mother mould (AMO GmbH). Polished Al foils 

were imprinted using the as-prepared Ni mould to obtain a periodic-nanodent pattern. 2) The 

first-step anodization was performed on the imprinted Al foils in a 5 wt% phosphoric acid under 

a constant voltage of 160 V for 5 minutes which was followed by the AAO dissolution into an 

aqueous solution (1.5 wt% chromium acid and 6 wt% phosphoric acid) at 60°C. 3) The second-

step anodization was carried out in the same condition as outlined in the first-step anodization. 

And elongating anodization time led to the height increase of the bottom hole of the inverted 
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PTP AAO template. 4) The inverted PTP AAO template was coated with a 5 nm Ti and 100 nm 

Au layer using PVD followed by the electrochemical deposition of a thick Ni film under a 

constant current of 5.0 mA/cm2 in an aqueous electrolyte (0.38 M NiSO4 , 0.12 M NiCl2 , and 0.5 

M H3BO3). 5) An Au PTP array was attained after etching the remainng Al in a mixed aqueous 

solution (27 wt% CuCl2 and 3 wt% HCl) and AAO template in 5 wt% phosphoric acid. 6) CdS 

was cathodically electrodeposited under a constant current of 1.0 mA/cm2 at 130°C in a two-

electrode electrochemical bath where a Pt mesh and the as-fabricated Au PTPs served as the 

counter electrode and working electrode, respectively. The electrolyte was made by dissolving 

3.6 g CdCl2 and 1.6 g S in dimethyl sulfoxide (DMSO).  Thermal treatment of the sample was 

carried out in ambience at 350°C for 30 minutes with 5°C/min heating rate and then naturally 

cooled to room temperature. 

Photoelectrochemical performance measurement. Oriel solar simulator (300 W Xe lamp, AM 

1.5 global filter) was taken as the simulated light source and calibrated to AM 1.5G by a standard 

Si photodiode (Model 818, Newport). The photocurrent density was measured using a three-

electrode electrochemical cell, in which Na2S/Na2S2O3 (0.2 M/1 M) aqueous solution served as 

the electrolyte, the CdS/Au PTPs acted as the working electrode, the Pt mesh worked as the 

counter electrode, and an Ag/AgCl electrode functioned as the reference electrode. IPCE 

measurements were performed using the same electrolyte in a two-electrode electrochemical cell 

under no external bias with QEPVSI-b Quantum Efficiency Measurement System (Newport). 

Characterizations. SEM measurements and the cross-section cutting process were performed by 

Auriga Zeiss FIB. XRD tests were conducted using a Bruker-AXS Discover D8 applying the Cu 
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Kα (1.54056 Å) radiation equipment. Ultraviolet–visible absorbance spectroscopy was carried 

out with Varian Cary 5,000 UV–vis-NIR spectrophotometer. 

Theoretical Calculations. All simulations were performed using FDTD simulation software 

package from Lumerical Computational solutions, Inc. 3D layout was employed for the 

theoretical simulation in which periodic boundary condition was applied along the x and y axes 

with the periodicities of 400 nm, and the z axis was truncated by perfectly matched layers (PML) 

condition at z=-500 nm and z=2000 nm. Accordingly, a unit cell of the investigated array was 

simulated. Simulated samples were set on a platform which was parallel with the xy plane and 

was 1000 nm below the light source. Plane-wave light source, which polarized in the x direction 

and propagated along -z direction, was exploited to illuminate the samples. All geometrical 

parameters of the sample were set according to the experimental measurements. The permittivity 

for Au was taken from Johnson and Christy, and the experimental data in Treharne’s literature 

were used for the dielectric index for CdS.50 In all simulations, mesh accuracy was set to be 6 

and mesh override region includes all CdS/Au nanostructures in which the maximum mesh step 

is set to be 1 nm. Electric field distributions were recorded through two-dimensional field profile 

monitors. The reflection was detected using a power monitor placed 500 nm up the light source. 

Because of the opaqueness of all samples, the transmission was set to be 0. Light absorption in 

the Au nanostructures was calculated using Equation 2: 

                                                                                                (2) 
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in which ω = 2π/λ and λ is the illumination wavelength, E is the electric field intensity and ε is 

the Au permittivity. The electric field intensity and Au permittivity were measured by a three-

dimensional frequency-domain field monitor and a refractive index monitor, respectively. 
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