Metaheuristic Design Pattern: Visitor for Genetic
Operators

Giovani Guizzo, Silvia R. Vergilio
Computer Science Department, DInf-UFPR, Curitiba—PR, Brazil
Email: {gguizzo, silvia} @inf.ufpr.br

Abstract—Metaheuristics, such as Genetic Algorithms (GAs),
and hyper-heuristics have been widely studied and applied in the
literature. This led to the development of several frameworks
to aid the execution and development of such algorithms. Con-
sequently, the reusability, scalability and maintainability became
fundamental points to be attacked by developers. Such points can
be improved using Design Patterns, but despite their advantages,
few works have explored their usage with metaheuristics and
hyper-heuristics. In order to contribute to this research topic, we
present a solution based on the Visitor pattern used to design
genetic operators. A case study is presented with the Hyper-
heuristic for the Integration and Test Order problem (HITO).
This case study shows that the proposed solution can increase
the reusability of the implemented operators, and also enable
easy addition of new genetic operators and representations.

I. INTRODUCTION

Genetic Algorithms (GAs) [1], [2] have been widely used
in the optimization literature. GAs are metaheuristics that
employ the concept of genetic evolution and natural selection
to find good solutions for hard problems. Therefore, the
algorithms have some components such as fitness evaluation,
crossover, gene mutation and population replacement. Each
component may vary from one algorithm to another, but often
some procedures are the same for all of them.

More recently, research on hyper-heuristics has raised
interest of the optimization community [3]. Hyper-heuristics
are heuristics used to select or generate low-level heuristics,
such as genetic operators and metaheuristics. Hyper-heuristics
act over the heuristic space instead of the search space directly,
i.e., rather than searching for a solution, hyper-heuristics search
for the best heuristic to find the solution.

This constant research in the evolutionary computation field
led to the development of several frameworks used to aid the
usage and design of new algorithms [4]-[7]. However, because
GAs and hyper-heuristics may have complex structures, the
code reuse, maintainability and extensibility became a concern
for the developers. One issue is to design frameworks that
can accommodate new algorithms, problems, chromosome
representations, operators, and so on, without decreasing the
software quality. Furthermore, hyper-heuristic adds another
level of complexity to the framework, since it employs a
higher level of optimization, e.g., automatic tuning of GAs and
Adaptive Operator Selection (AOS) [3]. Hence, the framework
code can become interlaced and hard to maintain. For example,
considering a problem that has several representations and ge-
netic operators for the optimization, a selection hyper-heuristic
for AOS must select during its execution the specific operators
for the representation chosen by the user. In a greatly coupled

design, incompatible operators and representations may result
in execution errors and compromise the optimization integrity.

Design Patterns (DPs) [8] are reusable solutions for com-
mon design problems that can be used for decreasing the
coupling and increasing the cohesion between elements. The
benefits of DPs are directly related to the scalability, main-
tainability and reusability of the software. Another benefit is
that these patterns are usually abstract solutions and can be
adapted to almost any object-oriented software [8], including
frameworks for evolutionary optimization. Due to this we
find some works [5], [9]-[12] devoted to the application of
DPs with metaheuristics, GAs and hyper-heuristics in the area
called Meta-heuristic Design Patterns (MDP). The researches
show how DPs can help the developer to achieve more flexible
algorithm designs. However, this is still an underexplored area
when compared to the DP literature.

To contribute to the MDP area, this work presents a
solution to improve the design of GAs and hyper-heuristics
using the Visitor DP [8]. The idea is to freely interchange
genetic operators and representations, and to provide a struc-
ture that is able to easily accommodate new components. In
order to present how this solution is applied in a real world
scenario, we describe a case study using the Hyper-heuristic
for the Integration and Test Order Problem (HITO) [13]. This
case study shows how this hyper-heuristic, designed for a
specific problem, is easily extended to another context by using
the proposed DP solution. HITO was chosen because it is
an operator selection hyper-heuristic and uses GAs as main
algorithms, which fits well in the context of this paper and
can greatly benefit from the DP solution herein presented.

This paper is organized as follows. Section II describes DP
concepts. Section III reviews related work from MDP. Sec-
tion IV introduces the proposed solution. Section V presents
the case study using HITO. Finally, Section VI concludes this
paper and discusses future work.

II. DESIGN PATTERNS

In the object oriented design, the developer must address
some issues, such as how to grant reuse of artifacts, easy
maintainability, good organization, and decoupled addition and
removal of software components. If not addressed earlier in the
development process, these issues may increase the product
final cost and affect its quality. Design Patterns (DPs) are
elegant solutions for these and other problems in the software
development [8]. DPs are defined as description of interacting
objects and classes that need to be personalized to solve a
general design problem in a given context [8]. In other words,

DPs are common solutions for common design problems, but
at the same time that they provide well-defined solutions for
the problems, they also need to be adapted for the particular
context in which they are applied.

DPs are usually extracted from existing software and
described into catalogs, such as the Gang of Four (GoF)
catalog [8]. A DP names, abstracts and identifies the main
characteristics of the problem in which it is applied, in order
to make it useful for almost any design. A DP is composed by
four main elements: i) Name — the name given to describe the
DP; ii) Problem — describes what are the common problems in
which the DP is applicable; iii) Solution — describes the solu-
tion for the problem, which contains the elements that compose
the pattern, their responsibilities, interaction and relationships;
and iv) Consequences — the advantages, disadvantages and
results of the pattern application.

The main benefits of using DPs are the improvement
of some important software attributes, such as reusability,
maintainability, understandability, extensibility, scalability and
others. This improvement can be achieved by carefully select-
ing the most appropriate DP for solving a design problem. In
other words, a misapplied DP can cause the deterioration of
the software design, hence the evaluation of which DP is the
most appropriate requires some effort, but not as much as it
would require maintaining a software with a bad solution.

III. METAHEURISTIC DESIGN PATTERNS

According to some authors [14], [15], DPs are useful for
designing and implementing GAs. The main motivation is that
DPs define a standard to design and develop algorithms, while
also improve the code reusability and wisdom sharing between
the evolutionary computation community. Frameworks in the
GA literature already use DPs [4]-[7] and the observed conse-
quences are mostly beneficial. Therefore, the documentation of
DPs in this context can be advantageous for metaheuristics and
frameworks developers seeking for reusable solutions. In this
section we present some related work on this subject, focusing
on DPs used in the design or development phases.

Raidl [16] reviews eight kinds of DPs for developing hybrid
metaheuristics, which are used to help the engineer to decide
the components used in the hybridization. Fernandez-Marquez
et al. [17] present a catalog of bio-inspired mechanisms for
self-organizing systems. Wick and Phillips [10] do a com-
parison between Strategy and Bridge [8] for developing a
Genetic Algorithm (GA). The paper tries to give students some
experience with DPs by means of implementing GAs, since,
as the authors described, the GAs design and implementation
can be very interesting and enjoyable.

Besides DPs for conventional metaheuristics, some works
use DPs for improving the design of hyper-heuristics. Patelli
et al. [9] extracted two anti-patterns (bad solution for a
problem) commonly seen in hyper-heuristics. The authors then
propose two new DPs called Simple Black Box (Two-B) and
Utility-based Black Box (Three-B). Woodward et al. [12] treat
hyper-heuristics as a metaheuristic based on the Composite
pattern [8]. Using this pattern, a hyper-heuristic can perform
search on the metaheuristic, search operators or hyper-heuristic
search space. Woodward and Swan [11] use the Template
Method pattern [8] to represent metaheuristics, which allows

hyper-heuristics to easily generate and configure new imple-
mentations for these metaheuristics. This is useful when the
user does not want to change the structure of the algorithm,
but rather its behavior at runtime.

We can see that MDP works have appeared recently. If
we take the DP literature as a whole, only few works apply
DPs to metaheuristics and (specially) hyper-heuristics. In short,
we only found three works on DPs and hyper-heuristics, all
of them were published in the Metaheuristic DPs Workshop
(MetaDeeP), a workshop of the Genetic and Evolutionary
Computation Conference (GECCO). We acknowledge that the
field of hyper-heuristics and GAs can benefit a lot from the
usage of DPs, and our work addresses this underexplored
subject. The goal is to ease the design of more reusable,
extensible and cohesive algorithms. For this end, in the next
section, we present a solution based on Visitor [8], a pattern
not yet explored with genetic algorithms.

IV. VISITOR DESIGN PATTERN FOR GENETIC OPERATORS

This section presents a solution based on the Visitor DP [8]
for designing crossover and mutation operators. The idea is to
use this DP to decrease the coupling between genetic operators
and the problem representation. The next subsections present
the problem, the solution and its main consequences.

A. Problem

Genetic Algorithms (GAs), usually apply search oper-
ators such as crossover and mutation for generating new
solutions [2]. These genetic operators use existing solutions
(parents) to create similar new solutions (children). However,
the solutions are modified in the genotype level instead of
the phenotype level. That means that the chromosome of the
solutions (decision variables) are changed, and these changes
will reflect in different phenotypes (fitness values) for them.

A difficulty found manipulating chromosomes is the great
gamma of possible representations for the chromosomes (so-
Iutions) of the problem [2]. For instance, a solution can be
represented as an array of integers, an array of bits, an array of
float numbers or many others. Each of these representations has
some restrictions such as the maximum and minimum values
that each gene can have, or even restrictions dictating that a
value cannot appear more than once in the whole array (e.g.
permutation representation). If these concerns are not taken
into account when an operator is generating new solutions,
then unfeasible solutions may be generated and the evolution
may be negatively affected [1].

Due to these restrictions, when a genetic operator is imple-
mented, usually it is applied to only one kind of representation.
For example, the Two Points Crossover Operator [2] cuts two
parents in two points, and all the genes contained between
these points are copied from parent 1 to child 1 and from parent
2 to child 2. After this, the remaining genes are copied from
parent 1 to child 2 and parent 2 to child 1. When this operator
is applied to a bit array, the procedure goes as described.
However, for a permutation array the genes cannot repeat. Even
though the main steps are similar, they differ in the details.

When a developer is designing a genetic algorithm frame-
work that supports several operators and problem representa-

tions, he/she may be tempted to create a class for each com-
bination of operator-representation (e.g., “PermutationTwo-
PointsCrossover” and “BitArrayTwoPointsCrossover” classes).
An improvement to this would be the addition of interfaces
for each kind of operator and representation in order to enable
the free exchange of operators. However, both situations can
lead to code duplication, which hardens the maintenance of
the algorithm and decreases reuse of source-code. Another
problem is that runtime errors can happen when an operator
is instantiated for an incompatible problem representation.

Furthermore, hyper-heuristics can manage several genetic
operators in their procedure. This can be a complex algorithm
to develop and, if the design flexibility is not treated earlier,
the developer may deal with a low scalability later when trying
to add new operators in the selection process.

B. Solution

The proposed solution is based on the Visitor DP [8].
Briefly, the Visitor pattern defines a set of visitor classes
(the operators) that must behave in different ways depending
on the concrete class of the visited elements (the problem
representations). Both types are abstracted by interfaces or
abstract classes, which eases the object interchange. Figure 1
illustrates the standard Visitor structure.

<<interface==>
client | . Visitor
+visitCancrete ElementA(concrate ElementA)
+visitConcrefeElemeniB(concreteElemeniB)
7~
r- - - - - - T - - - = al
ObjectStructure ConcreteVisitor1 ConcreteVisitor2

v

Element

ConcreteElementA ConcreteElementB

+ accept(visitor) &+ accept(visitor)

¢+ acceptivisitor)

1 1
visitor acceptCancreteElamentA(this); %|visitoracceptConcreteE\ementB(this)‘ %

Fig. 1. Visitor Standard Structure

Instead of the visitor
and “ConcreteVisitor2”)

classes (“ConcreteVisitorl”
considering which elements
(“ConcreteElementA” and “ConcreteElementB”) they
can operate upon, these classes will only hold the
available operations (“visitConcreteElementA()” and
“visitConcreteElementB()”). In turn, the concrete element
classes have a common operation receiving a visitor, and with
this operation the element will only call the operation that can
be applied to itself. For instance, “ConcreteElementA” can
only receive the application of the “visitConcreteElementA()”
operation, thus it will only call this operation regardless of
which visitor object is applied.

In terms of GAs, the Visitor classes (the ones holding
the functional operations) are the Mutation and Crossover
operators, whereas the visited elements are the solutions.
Figure 2 depicts how we implemented this pattern with GAs.

In the figure, each crossover and mutation operator imple-
ments one operation per solution representation. For instance,
the “TwoPointsCrossover” class implements both operations
“doBitArrayCrossover()” and “doPermutationCrossover()” for
“BitArraySolution” and ‘PermutationSolution” respectively.
When an algorithm wants to apply this operator in two
Permutation solutions, then this operator and a parent solution
are given as parameters to the “acceptCrossover()” method
of the other parent solution. The solution will then call the
“doPermutationCrossover()” operation from the operator and
pass itself and the other parent as parameter. At the end, the
crossover operation is applied to the solutions, and the solution
class is the only class that obtains any information about which
operation must be executed for which kind of solution.

The same situation occurs when a mutation operator is ap-
plied to a solution. The only difference is that the solution will
receive the visit of the operator through the “acceptMutation()”
method. If a mutation operator cannot be applied to Bit Array
solutions for example, then its “doBitArrayMutation()” method
can be empty, throw an exception or be handled in other ways.

C. Consequences
The main consequences of using the proposed solution are:

e Decoupling of Operator and Solution — By using this pattern,
the developer can decouple the operator from the problem
solution type;

o Increased Cohesion — By giving the responsibility of only im-
plementing the operations and not handling solution types, the
crossover and mutation operators do not need to have solution
type checking and only implement their main functionality.
This better responsibility assignment decreases the scattering
of similar functionalities along the program;

e Prevents Code Duplication — Instead of creating a class for
each combination of operator-representation and implementing
similar code for each one, the developer has a single class
for each operator and can reuse common code with shared
methods. Reusing shared methods and not recoding them is
what really prevents the code duplication;

e Easy and Dynamic Interchange of Operators and Solutions
— This structure eases how operators and solutions are handled
by enabling their free interchange using interfaces. Also, it en-
ables a dynamic interchange of objects during runtime, which
is specifically useful for online selection hyper-heuristics;

e Easy Addition of New Operators and Solutions — To add a
new solution type or a new operator, the developer just needs
to create a concrete class for the interfaces and instantiate it
whenever needed;

o Methods Without Implementation — Because some operators
are very specific for a single solution representation (e.g. Bit
Flip Mutation [2]), these operators have the declaration of
methods for other representations, but no implementation. This
can lead to methods being called and no operation being
executed, which hardens the debugging and maintenance of
the algorithm. This is a disadvantage of this pattern;

V. CASE STUDY

In order to demonstrate how the proposed solution can be
employed in a real scenario, this section presents a case study

Solution

SwapMutation N <<interface=> <<interface>>
T MutationOperats CrossoverOperator
utationQOperator - A|Ol’lthm | . P
InsertionMutation | N + doBitArrayMutation{solution - Solution) + doBitArrayCrassover(parent : Solution, parent2 : Solutian)
+doPermuiationMutation(solution : Solution) +doPermutationCrossover(parent? : Solution, parent2 : Solution)

TwoPointsCrossover SinglePointCrossover

+acceptMuiation{operator : MutationCperafor)
+ accpeiCrossover(operator : CrossoverOperator, secondParent : Solution)

N

operator doBitArrayMutation(this); 5
T

PermutationSolution

ll
: BitArraySolution
T
[l

e+ acceptivutation(operator - MutationOperator)
*+ accpetCrossover(operator . CrossoverOperator, secondParent : Solution)

#+ acceptivutation(operator - MutationOperator)

:+ accpetCrossover(operator . CrossoverOperator, secondParent : Solution) — ® [
I
I

I
operator doBitArrayCrossaver(this, secondParent); Iﬁ

1
‘operatordoPermutatimMutat\0ﬂ(th\5)‘ % |operat0rdoPermutahonCrossover(th\5‘sewﬂdparemt)‘ b|

Fig. 2. Visitor Structure for GA Operators

conducted using the Hyper-heuristic for the Integration and
Test Order Problem (HITO) proposed in [13]. We chose to
present a case study using HITO and the ITO problem since
it shows how the proposed pattern solution can improve the
design of a hyper-heuristic based on GAs. In addition, HITO
is a selection hyper-heuristic, uses several operators and is
applied into two different representations, therefore it fits very
well in the context of this paper. Furthermore, the ITO problem
can be represented in many ways and has a variation (with
clusters) that introduces different restrictions to the problem.
Therefore, this problem is a good example to show how the
change on its representation can be accommodated by the
proposed solution. The next subsections present, respectively:
1) the Integration and Test Order Problem; ii) HITO; and iii)
how we applied Visitor with HITO.

A. The Integration and Test Order Problem

Briefly, for solving the Integration and Test Order (ITO)
problem [18], the algorithm must find an order of units (the
smallest part of a software, e.g., a class, a function or an aspect)
to be integrated and tested. The cost of the integration and
testing activities increases when a unit is integrated and tested
after the units that require it, since in such situation a stub
must be created to emulate this required unit. The issue with
developing stubs is that, eventually, the units emulated by the
stubs are developed and the stubs are discarded. Thus, the
human effort allocated to the stubbing is simply wasted. By
minimizing the stubbing cost, the cost of the whole software
testing activity is also minimized.

The objective functions for this problem are designed to
assess the cost of the required stubs. Some works just compute
the number of stubs [19], however, other works such as [13],
[18] use multi-objective approaches in order to increase the
accuracy of the measurement and better guide the evolutionary
optimization. In these works, the objective functions used are:
i) A — Number of emulated attributes; ii) O — Number of
emulated operations/methods; iii) R — Number of return types;
and iv) P — Number of parameter types.

The representation of the problem is a simple permutation
array of integers, where each number (gene) represents a unit.
The order in which the genes appear in the chromosome is the

order for the integration and testing of the respective units. As
in other permutation problems, each number cannot repeat in
the chromosome, because a unit must be integrated and tested
only once. For this reason, the operators used for this problem
must be adapted to comply with these restrictions.

There is also another instance of this problem. This in-
stance is concerned with the integration of units in the presence
of modularity constraints, introducing the idea of testing and
integrating units in clusters [20]. A cluster can be a logical
or an organizational grouping of units to define the ones that
must be integrated and tested together. A common scenario is
the distributed software development, where each unit cluster
is assigned to one team. In addition, the units of a cluster are
usually developed at the same time, thus it might be a good
practice to test them at the same time too. For instance, if the
developer must deploy a small release of the software, it would
be wise to group the units of the requirements included in the
plan for the release and test them before deploying.

Even though it appears to be a small change in the
representation when compared to the problem without clusters,
there are some issues that must be addressed by the genetic
operators. One of them is to not mix units from different
clusters, i.e., units of a cluster must stay in that cluster
throughout the whole search process. In addition, not only the
units have to be rearranged to decrease the testing cost, but also
the search process must consider the ordering of the clusters.
For example, a cluster with a lot of units required by units of
different clusters would better fit at the start of the order. If
these issues are not addressed, then the operators may generate
infeasible solutions, which may delay the optimization and
even decrease the quality of the results.

B. HITO

HITO is an online hyper-heuristic for dynamically selecting
low-level heuristics for solving the Integration and Test Order
Problem [13]. Each low-level heuristic is a composition of a
crossover and a mutation operator, or only a crossover operator.
These low-level heuristics are evaluated and selected at each
mating, while the problem is being solved.

In order to evaluate the operators, HITO uses a function
based solely on the Pareto dominance concept [1] that rewards

<<interface=>

HITO Low-Level Heuristic

Solution

+acceplCrossaver(crassoverOperatar, secondParent)
+accpetMutation{mutationOperator)

1.7 + execute(firstParent, secondParent)

Y

1 0.1

T~

PermutationSolution

CrossoverOperator

<<interface=>
MutationOperator

=<interface=>>

+doPermutationCrossover(firstParent, secondParent)

+ doPermutationMutation(solufion)

+ acceptCrossover(crossoverOperator, secondParent) #
++ accpetMutation(mutationCperator) : AN AN
I 1 1
L RN S e - - -
‘mutanonOperator doPermutati oniutation(this); % : r T B : B
1 TwoPoints Uniform PMX Swap Simplelnsertion
‘cro’s'soverOperator.doPermutat\onCrossover(this, secondParent); %
Fig. 3. HITO implemented with the Visitor design pattern
ClusteredPermutationSolution
: “crossoverOperator doPermutationCrossover(this, secondParent, clusters); B}
+ acceptCrossover(crossoverOperator, secondParent) ef -
+ accpethutation(mutationOperator) o - «{mutat\onOperator.doPermutationMutationW\thC\usters(th\5‘ clusters); 'ﬁ

PermutationSolution

+ acceptCrossover(crossoverOperator, secondParent) -

r ﬁcrossoverOperator.doPermutat\onCrossover(thws‘ secondParent); [ﬁ
4

& &

+ accpethutation(mutationOperator) o]-- «{mutat\onOperator.doPermutat\omMutatwon(th\5)‘ %
1
<<interface>>
Solution P
HITO Low-Level Heuristic

+acceptCrossover(crassoverOperafor, secondParent)
+accpethMutation(mutationOperator)

1

1.k + execute(firstParent, secondParent)

? 0.1

<<interface>>
CrossoverOperator

<<interface>>
MutationOperator

+doPermutationCrossover(firsiPareni, secondParent)

+doPermutationCrossoverWithClusters(firstParent, secondParent, clusters)

+doPermutationMutation(solution)
+ doPermutationMutationWithClusters(solution, clusters)

TwoPoints Uniform PMX

Fig. 4. HITO with both representations using Visitor

the heuristics when they generate good solutions, or punish
them when they generate bad solutions. This performance
value is later used as an exploitation factor by the Choice
Function (CF) [21] to select the best heuristic to be applied.
HITO also takes into account the number of matings since the
last time each heuristic was applied, and uses this value as an
exploration factor in CF.

In [13] we used 9 low-level heuristics, composed by three
crossover operators and two mutation operators [2]: i) Two
Points Crossover, PMX Crossover and Uniform Crossover;
and ii) Swap Mutation and Simple Insertion Mutation. The
representation is a permutation array of integer values and each
operator was executed considering this. The PMX Crossover
is an operator specific for permutation representations, which
employs a more complex procedure when compared to the
other operators. Therefore, it can be used in this problem and
can depict how a specific operator can be included in a generic
design such as the Visitor pattern.

C. Visitor Applied with HITO

To solve the ITO problem in the presence of modularity
restrictions, it is necessary to use the HITO operators and also

Simplelnsertion

add the restrictions. To ease the implementation we used the
solution based on the Visitor pattern, proposed before. Figure 3
presents the class diagram for the structure of HITO and the
operators using the Visitor DP. For space reasons, some types
and methods are omitted in the figure.

The structure presented in the figure is similar to Figure 2.
HITO is the algorithm which has a set of low-level heuristics
and a set of solutions. At each mating, HITO applies the low-
level heuristic to two parents (although it can vary). The low-
level heuristic then delegates the responsibility of the crossover
to its aggregated crossover operator, and the responsibility
of mutation to its aggregated mutation operator. However,
because it is a Visitor structure, the low-level heuristic calls
the methods “acceptCrossover()” and ‘“acceptMutation()” of
the interface “Solution”, instead of calling the methods of the
operators directly. The concrete solution, in this case the class
“PermutationSolution”, then accepts the operators by calling
the methods “doPermutationCrossover()” and “doPermutation-
Mutation()” for the parents and children respectively.

In this paper, we extended HITO to solve the integration
and test order problem in the presence of modularity con-
straints. When dealing with clusters, the operators must behave

differently in order to not only reorder units, but also clusters.
In order to do this, we had to add another representation to
our framework. Figure 4 presents the new structure.

For this new structure, a new concrete class “ClusteredPer-
mutationSolution” was created for the representation interface.
This representation contains information about the clusters,
which in turn are used by the operators to comply with the
restrictions. Moreover, the interfaces “CrossoverOperator” and
“MutationOperator” received new methods to visit this new
kind of representation. Hence, all the concrete operators now
implement methods to deal with clusters. These new methods
are only called by the methods “acceptCrossover()” and “ac-
ceptMutation()” of the class “ClusteredPermutationSolution”.
Therefore, the previous functionality (optimization without
clusters) remained the same and a new one was added without
changing the main algorithm (“HITO” class).

D. Discussion

During the implementation, one significant easiness was the
great reusability of the operators code. The existing methods
were refactored and broken into smaller methods (omitted in
the figure), which enabled reuse of common code. For instance,
Two Points Crossover has procedures to cut an array in two
points, swap subarrays between children and fill the remaining
array positions, which all turned into new methods. Not only
the addition of a new functionality was easier, but also the
need of code reuse for the Visitor pattern drove us to better
refactor our code.

When we executed HITO after the implementation, all we
had to do were: 1) instantiate the solution class with clusters;
and ii) inform the clustering description to the solution. Be-
cause the operator classes are the same (the only change relies
on which methods are invoked), even the low-level heuristic
instantiation, performance update and selection were reused.

VI. CONCLUDING REMARKS

This work presented a solution based on the Visitor DP [8]
to design genetic operators. This solution aims at decreasing
the coupling between the problem representation and operators.
The main benefits can be extended not only to other kind of
evolutionary algorithms, but also to hyper-heuristics.

To demonstrate how the proposed solution can help to
improve the design of genetic based algorithms, we presented
a case study using HITO, a hyper-heuristic proposed in [13].
HITO was implemented with Visitor, and then extended to
another variation of the same problem. Because the solution
presented is scalable, the extension was easy to perform and
demanded little effort. The main advantages observed were re-
lated to the easiness to add new operators and representations,
while also providing a good code reuse.

As future work, we intend to study how other DPs can help
to achieve a good design for meta- and hyper-heuristics. Even
though HITO was proposed for the ITO problem, it does not
mean that it cannot be applied to other problems. As future
work, we intend to evaluate this possibility.

ACKNOWLEDGMENT
The authors would like to thank CAPES and CNPq.

(1]

(2]

(31

(4]

(6]

(71

(8]

(91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

REFERENCES

C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems, 2nd ed., 2007.

A. E. Eiben and J. E. Smith, Introduction to evolutionary computing,
2003.

E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Ozcan,
and R. Qu, “Hyper-heuristics: A survey of the state of the art,” J. of the
Operational Research Society, vol. 64, no. 12, pp. 1695-1724, 2013.

E. Alba, G. Luque, J. G. Nieto, G. Ordonez, and G. Leguizamon,
“MALLBA: a software library to design efficient optimisation algo-
rithms,” International Journal of Innovative Computing and Applica-
tions, vol. 1, no. 1, p. 74, 2007.

A. J. Nebro, J. J. Durillo, and M. Vergne, “Redesigning the jMetal
Multi-Objective Optimization Framework,” in 24" Genetic and Evolu-
tionary Computation Conference, 2015, pp. 1093-1100.

A. V. Tsyganov and O. I. Bulychov, “Implementing Parallel Meta-
heuristic Optimization Framework Using Metaprogramming and Design
Patterns,” Applied Mechanics and Materials, vol. 263-266, pp. 1864—
1873, 2012.

S. Ventura, C. Romero, A. Zafra, J. A. Delgado, and C. Hervis,
“JCLEC: a Java framework for evolutionary computation,” Soft Com-
puting, vol. 12, no. 4, pp. 381-392, 2007.

E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software, 1995.

A. Patelli, N. Bencomo, A. Ekart, H. Goldingay, and P. Lewis, “Two-
B or not Two-B? Design Patterns for Hybrid Metaheuristics,” in 24"
Genetic and Evolutionary Computation Conference, 2015, pp. 1269—
1274.

M. R. Wick and A. T. Phillips, “Comparing the template method
and strategy design patterns in a genetic algorithm application,” ACM
SIGCSE Bulletin, vol. 34, no. 4, p. 76, 2002.

J. Woodward, J. Swan, and S. Martin, “The ’composite’ design pattern
in metaheuristics,” in 23" Genetic and Evolutionary Computation
Conference, 2014, pp. 1439-1444.

J. R. Woodward and J. Swan, “Template method hyper-heuristics,”
in 23" Genetic and Evolutionary Computation Conference, 2014, pp.
1437-1438.

G. Guizzo, S. R. Vergilio, and A. T. R. Pozo, “Evaluating a Multi-
Objective Hyper-Heuristic for the Integration and Test Order Problem,”
in 4th Brazilian Conference on Intelligent Systems, 2015.

M. A. Lones, “Metaheuristics in nature-inspired algorithms,” in 23rd
Genetic and Evolutionary Computation Conference, 2014, pp. 1419—
1422.

V. Mannava and T. Ramesh, “Load Distribution Design Pattern for
Genetic Algorithm Based Autonomic Systems,” Procedia Engineering,
vol. 38, pp. 1905-1915, 2012.

G. R. Raidl, “Decomposition based hybrid metaheuristics,” European
Journal of Operational Research, vol. 244, pp. 6676, 2015.

J. L. Fernandez-Marquez, G. Di Marzo Serugendo, S. Montagna,
M. Viroli, and J. L. Arcos, “Description and composition of bio-inspired
design patterns: A complete overview,” Natural Computing, vol. 12,
no. 1, pp. 43-67, 2013.

W. K. G. Assun¢do, T. E. Colanzi, S. R. Vergilio, and A. Pozo, “A
multi-objective optimization approach for the integration and test order
problem,” Information Sciences, vol. 267, no. 0, pp. 119-139, 2014.

Z. Wang, B. Li, L. Wang, and Q. Li, “A Brief Survey on Automatic
Integration Test Order Generation,” in 23"¢ Conference on Software
Engineering and Knowledge Engineering, 2011, pp. 254-257.

W. Klewerton Guez Assun¢do, T. Colanzi, S. Vergilio, and A. Pozo,
“Determining Integration and Test Orders in the Presence of Mod-
ularization Restrictions,” in 27" Brazilian Symposium on Software
Engineering, Oct. 2013, pp. 31-40.

M. Maashi, E. Ozcan, and G. Kendall, “A multi-objective hyper-

heuristic based on choice function,” Expert Systems with Applications,
vol. 41, no. 9, pp. 4475-4493, 2014.

