
A Multi-Objective and Evolutionary Hyper-Heuristic
Applied to the Integration and Test Order Problem

Giovani Guizzo∗, Silvia R. Vergilio, Aurora T. R. Pozo, Gian M. Fritsche
DInf - Federal University of Parana, CP: 19081, CEP 19031-970, Curitiba, Brazil

Abstract

The field of Search-Based Software Engineering (SBSE) has widely utilized

Multi-Objective Evolutionary Algorithms (MOEAs) to solve complex software

engineering problems. However, the use of such algorithms can be a hard task

for the software engineer, mainly due to the significant range of parameter and

algorithm choices. To help in this task, the use of Hyper-heuristics is recom-

mended. Hyper-heuristics can select or generate low-level heuristics while opti-

mization algorithms are executed, and thus can be generically applied. Despite

their benefits, we find only a few works using hyper-heuristics in the SBSE field.

Considering this fact, we describe HITO, a Hyper-heuristic for the Integration

and Test Order problem, to adaptively select search operators while MOEAs are

executed using one of the selection methods: Choice Function and Multi-Armed

Bandit. The experimental results show that HITO can outperform the tradi-

tional MOEAs NSGA-II and MOEA/DD. HITO is also a generic algorithm,

since the user does not need to select crossover and mutation operators, nor

adjust their parameters.
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1. Introduction

Search-Based algorithms have been successfully applied to solve hard soft-

ware engineering problems in the field of Search-Based Software Engineering

(SBSE) [23]. Some of the most used algorithms in SBSE are Multi-Objective

Evolutionary Algorithms (MOEAs). Such algorithms are based on Pareto dom-5

inance concepts and offer to the user a set of good solutions that represent the

best trade-off between different objectives, which, in software engineering, are

generally associated to software metrics to evaluate the quality of a solution.

However, the usage of a MOEA is not always easy for the software engi-

neer. Many times, it demands effort to adapt implementation details, to adjust10

parameters (e.g. mutation and crossover probabilities), to select search-based

operators, and so on. Another difficulty is that some of them are adjusted, de-

signed or evaluated for a specific problem, which can affect their generality [8].

To overcome these limitations, the hyper-heuristic field has emerged. A

hyper-heuristic is a methodology to automate the design and tuning of heuristic15

methods to solve hard computational search problems [9]. It is used to select or

generate new low-level heuristics (LLHs) while algorithms are being executed.

The idea is to provide more generally applicable and flexible algorithms, while

yielding better results than conventional algorithms alone. A distinctive charac-

teristic of hyper-heuristics is that they operate over the heuristic space instead20

of the solution space. This can be interpreted as a technique to select or generate

the best heuristic that solves the problem, instead of solving the problem di-

rectly [8]. To allow this, a hyper-heuristic dynamically guides the search process

by managing a set of LLHs (e.g. metaheuristics and genetic operators).

The usage of such methodology in SBSE has raised interest. Harman et25

al. [22] state that hyper-heuristics can contribute to obtain holistic and generic

SBSE algorithms. However, we can find few works applying hyper-heuristic

in SBSE [6, 27, 31, 37]. Motivated by this, we introduced HITO in [21], a

Hyper-Heuristic for the Integration and Test Order Problem.

The Integration and Test Order Problem (ITO) consists in generating an30
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order for the units (the smallest part of a software) to be integrated and tested,

in a way that the stubbing cost is minimized [4]. A stub is an emulation of a unit

that is not yet implemented, tested or integrated in the software. Therefore, a

unit that is required by another unit shall be emulated to enable a proper testing

or integration. The underlying cost of this problem is the potentially great35

number of stubs that may be generated during the testing activity. These stubs

will be obsolete once the emulated units are implemented, and consequently,

such stubs become wasted resources. By rearranging the unit ordering, we

can force the most required units to be integrated and tested first, so that

the next units will not require a stub for such a unit. This problem has some40

characteristics that make it suitable for application of hyper-heuristics [21]. The

cost is impacted by different factors, such as size/complexity/number of classes,

methods, attributes, return types, parameter types, and any other element that

must be emulated in order to proceed with the integration and testing. Hence

multi-objective algorithms have presented good results [4]. It is possible to use45

several search operators and the problem is found in several contexts such as

object- and aspect-oriented testing, thus, it may be configured in several ways.

To allow a proper, generic and efficient solution to the ITO problem, HITO

uses a selection method and a novel rewarding measure to select the best LLH

(combination of crossover and mutation operators) at each evolutionary mating.50

By using HITO the software engineer does not need to select the crossover and

mutation operators to be used by the MOEAs. He/she does not need to choose

the probabilities for these operators.

HITO was designed to be flexible and robust, hence it has the following main

characteristics: i) a set of steps to select and apply LLHs using MOEAs; ii) a55

set of parameters to allow the user to personalize its functionality; iii) selection

of the best LLH at each mating, in contrast to other works (such as [28, 31, 36])

that perform the selection at each generation; iv) a rewarding function that is

based on the Pareto dominance concept and uses solely the parents and children

involved in the mating, rather than using quality indicators such as in [36]; v)60

score based selection methods, e.g. Choice Function (CF) [36] and Multi-Armed

3



Bandit (MAB) [19], which can also be chosen by the user. We acknowledge that

these characteristics can help HITO in overcoming the limitations of MOEAs

and also obtaining the best results. Preliminary results [21] proved that HITO

is capable of solving real instances of the ITO problem.65

Considering the HITO advantages and its promising results, this work ex-

tends [21] by providing a better description and a deep analysis of HITO with

new experimental results. We can mention the following contributions:

• We propose an improved reward measure that was redesigned to encom-

pass different numbers of parents and children involved in the mating (e.g.70

generating one child or generating two children);

• We present results from a broader evaluation encompassing two quality

indicators, two statistical tests, a set of many objective functions, three

versions of HITO (using MAB, CF and a random selection strategy), and

two conventional MOEAS: i) NSGA-II: well-known and widely applied in75

SBSE.; and ii) MOEA/DD: state of the art algorithm for multi-objective

problems. This new empirical evaluation was conducted to improve the

accuracy of the evaluation of HITO, and to assess not only how well it

performs when compared to conventional algorithms, but also to assess if

a random LLH selection is enough for this problem;80

• We use four different objective functions to analyze how a selection hyper-

heuristic such as HITO behaves with many objectives. The experimenta-

tion shows favorable results for all considered systems.

In the experimentation we used two sets of objective functions to evaluate

the solutions: a set based on two metrics (number of attributes and number85

of methods to be emulated), and a set based on four metrics (number of at-

tributes, number of methods, number of return types, and number of parameter

types to be emulated). These are the same objective functions used in previ-

ous works [4, 21, 37]. Furthermore, we applied the algorithms on 7 real world

object-oriented and aspect-oriented systems. These are well known and widely90
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used systems [4, 3, 21, 47, 37, 48], with different characteristics and varying

in size (lines of code, number of classes, etc). The results are favorable for

HITO in terms of quality indicators and statistical analysis. HITO was able, in

overall, to outperform all the MOEAs with statistical significance, while being

outperformed by MOEA/DD in only one system.95

This work is organized as follows: Section 2 contains a brief explanation of

hyper-heuristics, their main components and the selection methods used in this

work. Section 3 reviews the ITO problem. Section 4 presents related work;

Section 5 presents a detailed description of HITO, the reward measure being

proposed, the LLHs, the credit assignment measures and the adapted selection100

methods implemented in this work. Section 6 describes and analyses empiri-

cal results from HITO evaluation. Finally, Section 7 presents the concluding

remarks and future works.

2. Hyper-Heuristics

Hyper-heuristics are often defined as “heuristics to select or generate heuris-105

tics” [9]. A hyper-heuristic may be used to select the most appropriate heuristics

or to generate new heuristics using existing ones. Chakhlevitch and Cowling [10]

define hyper-heuristics as higher level heuristics that: i) manages a set of LLHs;

ii) searches for a good method to solve a problem rather than searching for a

good solution; and iii) uses only limited problem-specific information.110

The goal is to find the right method or sequence of heuristics to be used in a

given situation rather than trying to directly solve the problem [8]. Thereby, one

of the main ideas is to develop algorithms that are generally applicable in several

problem instances [8]. By achieving that generality, the algorithm may be used

with less human effort and additionally to obtain better results. This idea was115

motivated by the difficulties regarding the application of conventional search

techniques, such as the great number of parameters for configuring algorithms

and the lack of guidance on how to select the right LLHs [8].

It is important to emphasize the “limited problem-specific information” used
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by the hyper-heuristic approaches [10]. The idea is to maintain a “domain120

barrier” that channelizes and filters the domain information visible by the hyper-

heuristics. In other words, the hyper-heuristic should be independent of the

problem domain by only having access to some domain-independent information

from the domain barrier [9, 10].

In this paper we use the hyper-heuristic definition given by Burke et al. [9]:125

“A hyper-heuristic is an automated methodology for selecting or generating

heuristics to solve hard computational search problems”. The authors also pro-

posed a classification for hyper-heuristics as seen in Figure 1. We can see two

main dimensions [9]: i) the heuristic search space nature; and ii) the sources of

heuristic feedback. The heuristic search space nature defines if a hyper-heuristic130

is either used to: i) select existing LLHs; or ii) generate LLHs using components

of existing ones. In this categorization there is a second level dimension that

is concerned with the nature of the LLHs used by the hyper-heuristic: i) con-

struction; or ii) perturbation. The construction heuristics start with an empty

solution, and gradually build a complete solution. On the other hand, the per-135

turbation heuristics start with a complete solution (either randomly generated

or gradually built by construction heuristics) and try to iteratively improve it.

Figure 1: Classification of hyper-heuristic approaches according to [9]. Extracted from [9].

The second dimension is the source of heuristic feedback [9]. The learning

hyper-heuristics can be divided into two categories: i) offline learning; and ii)

online learning. Offline learning hyper-heuristics gather knowledge from a set140

of training instances, and use this knowledge to generalize the solving of unseen

instances. Online hyper-heuristics use online information about the performance

of LLHs to dynamically select them, thus it is potentially more flexible than

offline approaches. There are also non-learning hyper-heuristics (e.g. random)

that simply do not use feedback to guide the search.145

In this paper we work with a hyper-heuristic for online selection of perturba-

tion LLHs, more specifically for selecting search operators for Multi-Objective
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Evolutionary Algorithms (MOEAs) [11]. Selection hyper-heuristics use two

main components [8]: i) heuristic selection method; and ii) move acceptance

method. In addition, each of these methods can vary independently, which150

brings more generality to the hyper-heuristic approaches. A selection method

uses techniques to select a LLH in a given moment of the search, either using

a learning or a non-learning approach, whereas the move acceptance method

decides whether a solution obtained by the selected LLH must be accepted.

The hyper-heuristic presented here uses two score-based heuristic selection155

methods: Choice Function (CF) [12] and Multi-Armed Bandit (MAB) [19].

2.1. Choice Function

The Choice Function (CF) adaptively ranks the LLHs according to their

previous performances [12]. CF was proposed initially to select LLHs based on

their scores and using several strategies in order to solve the Scheduling Sales160

Summit combinatorial problem. The promising results of the authors motivated

other works to use CF as a selection method, such as [29, 36].

The credit assignment equation of CF is formulated according to the works

of Cowling et al. [12] and Kendall et al. [29], and was presented as follows:

f(hi) = αf1(hi) + βf2(hi, hj) + δf3(hi) (1)

where hi is the LLH being evaluated; hj is the LLH that has just been applied;

f1(hi) is the recent improvement of hi; f2(hj , hi) is the recent improvement of hi

when called immediately after hj ; f3 counts the CPU seconds that have passed165

since hi was last called; and the variables α, β and δ are the weight parameters

in the interval [0,1] for the functions f1, f2 and f3 respectively.

In Equation 1, the functions f1 and f2 are used for intensification purposes,

i.e., for a better exploitation of the search space by favoring the LLHs that

have been yielding the best results so far [29]. In contrast, f3 is used for the170

diversification of the solutions, i.e., for a better exploration of the search space

by favoring LLHs that have not been applied in a while. These functions and

their weight parameters were introduced in the equation to balance the search
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between the intensification and diversification factors. If a greater intensification

is desired, then α must be increased, or decreased otherwise.175

Equation 2 shows a simplified version of the credit assignment of CF used

in [36]. This version contains only two functions: f1 and f2.

f(h) = αf1(h) + βf2(h) (2)

where f(h) gives a score for a LLH h; f1 reflects the recent improvement of h;

f2 is the elapsed CPU seconds since h has been called; and α and β are the

weight parameters to balance the values of f1 and f2.

We use in this work the adaptation of CF proposed by Maashi et al. [36]

due to its promising results and easy usage. We propose a different mechanism180

to evaluate LLH improvements using solely the concept of Pareto dominance as

f1 and elapsed iterations as f2. We adopted these changes in order to design a

CF more compatible with HITO.

2.2. Multi-Armed Bandit

Auer et al. [5] proposed the Upper Confidence Bound (UCB) selection strat-185

egy inspired by the Multi-Armed Bandit (MAB) problem [5, 19, 33]. In this

problem there is a set of K independent arms and each arm has an unknown

probability of giving a reward. The goal is to maximize the accumulated reward

by pulling the arms in an optimal sequence. Other works such as [13, 19, 24, 35]

proposed new algorithms to adaptively select operators using the MAB and190

UCB inspiration. In this work, we call UCB as MAB method, and the other

MAB based selection methods as a derivation of the MAB method.

The idea behind the MAB method is that a given operator i is associated

to two main values [5, 19]: i) an estimated empirical reward q̂i that measures

the empirical reward of the operator over time; and ii) a confidence interval,

depending on the number of times the operator was executed. The MAB method

selects the operator with the best value according to Equation 3 [19]:

argmax
i∈I

(
q̂i + C

√
2 log n

ni

)
(3)
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where i is the i-th operator of a set of operators I; q̂i is the average reward

obtained by i so far; C is the scaling factor parameter, i.e., controls the trade-

off between the exploration and exploitation; n is the overall number of operator195

executions so far; and ni is the number of times the operator i was executed.

Originally, the scaling factor C was not introduced in the MAB equation [5],

but was proposed by Fialho et al. [18] to balance the scales of exploration

and exploitation. If the exploration is desired, then the C parameter must be

increased. However, if exploitation is desired, then C must be decreased. In200

essence, other adaptations of the MAB method vary the computing of q̂i and

ni (i.e. credit assignment and memory length), while maintaining the heuristic

selection as the max value for Equation 3.

In this paper we use a variation of the original MAB method, which is

called Sliding Multi-Armed Bandit (SlMAB) proposed in [19]. This strategy205

introduces a memory length adjustment and a credit assignment function that

allow a faster identification of changes on the performance of LLHs. Because of

this, we decided to use SlMAB in this paper.

The SlMAB credit assignment uses two main functions to compute the score

of a given operator. Equation 4 shows how SlMAB computes the reward esti-

mate q̂i, which corresponds to the exploitation factor:

q̂i,t+1 = q̂i,t
W

W + (t− ti)
+ ri,t

1

ni,t + 1
(4)

where i is the i-th operator; t is the current time step (e.g. algorithm iteration

or generation); ti is the last time step in which i was applied; W is the size of210

the sliding window ; ri,t is the instant/raw reward given to the operator i at the

time step t; and ni,t is the number of times i was applied until the time step t.

The key element in this equation is the introduction of a sliding window of

sizeW , which is the memory length. A sliding window is a type of memory that

stores the last W rewards obtained by the operators. These values are used to215

compute the quality of the operator. This can be done in several ways, but in

this work we use the extreme credit assignment, which defines the reward of

an operator as the best reward found in the sliding window. We adopted this
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strategy because Fialho et al. [19] concluded that it is the most robust operator

selection method in combination with SlMAB.220

The second function (described in Equation 5), which composes the credit

assignment component of SlMAB, is used to compute the exploration factor.

ni,t+1 = ni,t

(
W

W + (t− ti)
+

1

ni,t + 1

)
(5)

where ni,t is the application frequency of i until the time step t; and the other

variables are the same as the previous equation.

This equation demands a counter ni,t for storing the application frequency

for each operator. This credit assignment is later used in Equation 3, where the

operator that maximizes the equation is chosen to be applied.225

The good learning capability of MAB and its results in other works [19, 35]

are our main motivations for its usage. Furthermore, we expect that this method

properly guides the hyper-heuristic search with more accuracy than CF, due to

its mechanisms designed for a continuous learning. We adapted the SlMAB

implementation in order to make it more compatible with the hyper-heuristic230

proposed in this paper. The adaptations of CF and SlMAB can be seen in

Sections 5.3 and 5.4 respectively.

3. The Integration and Test Order Problem

The unit test focuses on testing the smallest part of the program. However,

a software usually has several units that must be integrated and tested in order235

to reveal interaction problems between them. This activity, called integration

testing, sometimes requires the creation of stubs. A stub is an emulation of

a unit that is created when such unit is required by other units, but it is not

yet available. The problem in creating stubs is that the development of these

artifacts is error-prone and costly [48]. Therefore, minimizing stubbing costs240

is fundamental to reduce the testing efforts and costs. This minimization can

be done by finding an optimal sequence of software units for integration and

testing, which is the problem known as ITO problem.
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The ITO problem is found in different development contexts [4], such as:

i) component-based [26]; ii) object-oriented (OO) [4, 48]; iii) aspect-oriented245

(AO) [4]; and iv) software product lines [25]. Nevertheless, to represent units

and their interdependencies, one may use different kinds of models, such as

graphs, Test Dependency Graphs (TDG) [45], and Object Relation Diagrams

(ORD) [32]. The latter is the most used for OO and AO contexts [48]. An ORD

of a system contains its classes, interfaces and their interdependencies modeled250

as a graph, where the classes and interfaces are the vertices and the dependencies

are the edges. The ORD graphs are represented by data matrices that are used

by the algorithms to compute the cost of each unit sequence. In this paper we

use an extension of ORD (proposed in [4]) to include the AO components in

this graph, such as aspects, advices and join points. This allows the execution255

of algorithms previously used only in OO context, for AO systems. In addition,

based on the results of [4], we use a combinatorial approach in which classes

and aspects are all integrated and tested together.

In other contexts the tester must be concerned about how many dependency

cycles he/she must break in order to minimize the test cost. If a cycle is broken,260

then a stub must be created to fulfill the dependency. When there are no cycles

in the dependency graph, then a simple inverse topological sort of the graph

can find a solution that does not require stubs [4]. On the other hand, if a

dependency graph has many cycles, then the problem becomes complex and

search-based algorithms are applicable to find good orders. Some SBSE works265

have applied metaheuristics to solve this problem [4, 7, 47, 48].

We choose to tackle this problem due to its main characteristics that al-

low a robust application of hyper-heuristics: i) it is properly solved by multi-

objective algorithms [3, 4, 47]; ii) the representation of the problem is the same

as permutation problems, which provides several operators to be selected by the270

hyper-heuristic; iii) the problem can be addressed in several contexts; and iv) it

is a real problem, hence if effectively solved, the engineer effort invested in this

activity can be significantly reduced. In this sense, the objective of applying

hyper-heuristics in this work is to provide a generic and robust approach to solve
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this problem, while also outperforming traditional algorithms (such as Genetic275

Algorithms – GAs) on the minimization of stubbing cost.

4. Related Work

We split this section in two subsections: the first one describes the works

that use evolutionary computation to solve the ITO problem, and the second

one relates to the usage of hyper-heuristics in SBSE.280

4.1. ITO in Evolutionary Computation

Briand et al. [7] used a GA to optimize solutions represented by ORD. This

work also showed some coupling based metrics to assess the complexity of a stub

by measuring the inner-class relationships.

Vergilio et al. [47] focused on solving the class ITO. The authors proposed285

two minimization metrics based on class attributes and method complexity in

order to improve the accuracy of stub cost estimation. Their approach was

evaluated using five real programs and three optimization algorithms: i) Pareto

Ant Colony Optimization (PACO) [16]; ii) Multi-Objective Tabu Search; and iii)

Non-dominated Sorting Genetic Algorithm-II (NSGA-II) [14]. The results were290

compared to a Single Objective Genetic Algorithm (SOGA) and showed that the

multi-objective approach yielded better results than SOGA for all problems.

A more recent work [4] proposed a complete approach called MOCAITO

(Multi-objective Optimization and Coupling-based Approach for the Integration

and Test Order problem) for solving this problem. MOCAITO focuses on the295

OO and AO contexts and uses several coupling based metrics to assess the

quality of the solutions. In their work, Assunção et al. [4] compared the re-

sults of three MOEAs (NSGA-II, Strength Pareto Evolutionary Algorithm 2

(SPEA2) [49] and Pareto Archived Evolution Strategy (PAES) [30]).

4.2. Hyper-Heuristics and SBSE300

There is an area related to hyper-heuristics called “Adaptive Operator Se-

lection” (AOS) [38], which aims at adaptively selecting evolutionary operators
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during the optimization process of genetic algorithms. It is our understanding

that AOS can be considered a sub-area of hyper-heuristics, but this is not a con-

sensus in the community. We classify our approach as a hyper-heuristic because305

it uses concepts and components from the hyper-heuristic literature. Further-

more, a hyper-heuristic can be applied to a wider set of different heuristics such

as optimization meta-heuristics, and not only to operators. Thus, we believe

that the mechanisms used by HITO are better classified in the hyper-heuristic

field because they can be easily adapted to other kinds of LLHs.310

Some surveys have already cited hyper-heuristics as trends and future re-

search topic for SBSE [22, 41]. However, very few works explore the usage of

hyper-heuristics for solving software engineering problems.

Kumari et al. [31] proposed a multi-objective algorithm called Fast Multi-

objective Hyper-heuristic Genetic Algorithm (MHypGA) to solve the module315

clustering problem. The proposed hyper-heuristic selects LLHs while the opti-

mization is being executed. Each LLH is composed by a selection operator, a

mutation operator and a crossover operator. The authors empirically evaluated

MHypGA with six real-world problems. MHypGA outperformed a conventional

evolutionary algorithm in all problems.320

Basgalupp et al. [6] applied an offline hyper-heuristic to evolve an algorithm

for the generation of effort-prediction decision trees. The authors concluded

that the algorithm created by their hyper-heuristic was able to obtain better

results than some state-of-the-art algorithms and other traditional heuristics.

Jia et al. [27] proposed a single online hyper-heuristic algorithm to intelli-325

gently learn and apply combinatorial interaction testing strategies. The goal

of the authors is to obtain better solutions and to provide an algorithm more

generally applicable. The experimental evaluation compares the results of their

hyper-heuristic approach to the results of state-of-the-art techniques and to the

best known results of the literature. The hyper-heuristic performed well on330

constrained and unconstrained problems in several instances.

Kateb et al. [28] propose Sputnik, a hyper-heuristic designed to online se-

lect mutation operators for MOEAs in order to improve the performance and
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reduce the cost of cloud infrastructures. Sputnik uses a score-based selection

mechanism and apply the best mutation operator for a whole generation before335

evaluating and selecting the operators again. In the experiments, the authors

observed that Sputnik achieved better trade-offs than a Random algorithm, and

also decreased the number of generations needed to obtain acceptable results.

In a previous work [37], we introduced an offline hyper-heuristic to generate

MOEAs for solving the ITO problem. The drawback of this hyper-heuristic is340

its great computational cost in generating the LLHs and its low flexibility when

compared to online hyper-heuristics such as HITO. As far as we are aware, this

is the only hyper-heuristic besides HITO for this kind of problem, and one of

the few hyper-heuristics ever applied to software testing.

We treat the ITO problem as multi-objective in order to increase the ac-345

curacy in measuring the real effort needed to develop the stubs. In the lit-

erature, some works such as [1, 20, 28, 31, 36, 39, 42, 43, 44, 46] proposed

multi-objective hyper-heuristics using evolutionary algorithms and LLH selec-

tion. However, most of these works are concerned in selecting construction

LLHs, meta-heuristics, heuristics to generate new heuristics, or using offline ap-350

proaches to train the algorithms. To the best of our knowledge, only [28, 31]

use online hyper-heuristics for selecting perturbation LLHs, such as mutation

and crossover operators, using genetic algorithms. We recommend [8], a com-

plete survey on hyper-heuristics, for a more detailed description on the hyper-

heuristics applicability in evolutionary computation.355

5. HITO

Hyper-heuristic for the Integration and Test Order Problem (HITO) is an

online hyper-heuristic for selecting perturbative LLHs (mutation and crossover

operators) used by MOEAs in order to solve the ITO problem. The main goal

of HITO is to select in each mating the best combination of mutation and360

crossover operators based on their previous performances. Our hyper-heuristic

does not wait for one or more generations to select a LLH (such as in [31, 36]),
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but rather keeps the scores of LLHs updated and selects the best one in each

mating (parent combination for generating children). HITO is designed to be

generic and used by any MOEA, therefore the user must provide five inputs that365

are used in the HITO workflow. Next and taking Figure 2 as basis, we better

explain how HITO works, its main steps and its main components.

Figure 2: HITO workflow

In the first step of HITO, Initialize Configuration, the hyper-heuristic is

initialized using the some inputs given by the user: i) the instance of the problem

to be optimized; ii) the fitness functions to evaluate the solutions; iii) a set of370

LLHs (combination of a mutation and a crossover operator) to generate solutions

compatible with the problem representation; iv) a MOEA and its parameters

to perform the optimization using the fitness functions and the LLHs; and v) a

selection method to select the best LLH in each mating of the MOEA.

In this work, we use as inputs ORDs of real systems and NSGA-II [14] as the375

main MOEA of HITO. Differently to our previous work [21], we use as input four

different objective functions: 1) Number of Attributes (A): counts the number

of attributes to be emulated by the stubs; 2) Number of Operations (O): counts

the number of operations (including constructors) to be emulated by the stubs;

3) Number of Distinct Return Types (R): counts the number of distinct return380

types for the operations of the stubs; 4) Number of Distinct Parameters (P):

counts the number of distinct parameter types for the operations of the stubs.

The objectives are the same ones reported in the literature [7, 4]. Even

though these objectives are not necessarily conflicting, they may be optimized

simultaneously and independently, i.e., the optimization process may find several385

non-dominated solutions regarding these four objectives, but it is still a hard

task to balance the trade-off. An advantage is to enable the tester to choose

from the Pareto front the non-dominated solution that best fits his/her purposes.

For instance, if the tester is not comfortable emulating operations, he/she can

choose a non-dominated solution with almost no operations to be emulated. If390
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the tester is only concerned with return types and parameter types, he/she can

choose solutions with lower R and P values, and greater A and O values.

The problem is represented as an array of units and optimized as a permu-

tation problem. Due to this, we use the LLHs specific for this kind of problem

(see Subsection 5.1). Moreover, we also implemented and adapted two selection395

methods: CF [36] and MAB [19] (see Sections 5.3 and 5.4).

The second step of HITO is Initialize Low-level Heuristics. Each LLH has

an associated value for each of the two measures: i) a reward measure, denoted

as r in the interval [0, 1]; and ii) a time measure, denoted as t in the interval

[0..+∞]. The value of the reward measure r is the instant reward given to a400

LLH regarding its performance. The greater the r reward, the better its recent

performance. In contrast, the value of the t measure counts how many matings

have past since the last application of that LLH. The greater the t value, the

longer the LLH has been idle. Both values are initialized as 0 for all LLHs.

Subsection 5.2 presents r and t and how they are computed for each LLH.405

After initializing the LLHs, in the Initialize Population step, the first pop-

ulation is created by the MOEA according to its own initialization strategy

(usually random). This population is then evaluated by the objective functions.

Following, in the Loop of Generations step, generations of solutions are cre-

ated until the stop criterion is met. Firstly, for each generation, the pool (popu-410

lation) of offspring solutions must be filled. The size of this pool varies for each

MOEA, but usually it is the population size.

For filling this pool, first two parents must be selected (Select Parents) to

generate new children. This selection is specific for each MOEA, e.g., for NSGA-

II the parent selection is done by a binary tournament. After this, a LLH is415

selected (Select Low-Level Heuristic) using the hyper-heuristic selection method,

which in turn uses the LLH values of the measures r and t. HITO then applies

the crossover and mutation operators provided by the LLH (Apply Low-Level

Heuristic) in order to generate offspring solutions from the selected parents.

Usually two children are generated, but it may vary for each MOEA. If these420

new solutions violate any constraint, then a correction algorithm can be applied.
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These children are then evaluated by the fitness functions (Evaluate New Solu-

tions) and added to the offspring pool. These children are also used to assess the

performance of the selected LLH (Evaluate Low-Level Heuristic). If the LLH

generates good solutions, then it receives a good r reward, or a bad r reward,425

otherwise. This LLH then has its t set to 0, and the other LLHs have their t

incremented by 1. If the offspring population is not full yet, then the process

described in this paragraph is repeated until all the children are created.

With an offspring population full of solutions, the algorithm can now se-

lect the solutions to survive for the next generation (Select Surviving Popula-430

tion) using the replacement strategy implemented by the MOEA. For instance,

NSGA-II joins parents and children in a single population, and then ranks them

according to their Pareto dominance and their crowding distance [14]. NSGA-II

then selects the most well ranked solutions and let them survive for the next

generation, whereas the worst ranked solutions are discarded. After this, HITO435

increments the number of generations (Increment Generation), and continues

to the next execution of the loop (if necessary).

At the end of the Loop of Generations step, HITO returns the non-dominated

solutions of the current surviving population in the Return Current Population

step. The non-dominated solutions returned by HITO are the ones that present440

the best trade-off between the considered objectives.

The next subsections present, respectively: the LLHs implemented in this

work; the measures r and t and how their values are updated for each LLH; and

how we adapted the CF and MAB methods.

5.1. Low-Level Heuristics445

In this work a LLH is either a crossover operator, or a combination of a

mutation operator and a crossover operator. HITO can use any type of operators

as LLH, depending just on the problem encoding. In this paper we use three

crossover operators and two mutation operators, all for permutation encoding:

i) Two Points Crossover (2P), Uniform Crossover and PMX Crossover; and ii)450

Swap Mutation and Insertion Mutation.
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Table 1 presents the LLHs used in this work, which are composed by the

operators mentioned in this subsection. We decided to include LLHs composed

only by crossover operators (h1, h4 and h7 ), because this kind of operator is a

distinguishing feature of evolutionary and genetic algorithms [40].455

Table 1: Low-level heuristics composition

Mutation

Crossover – Swap Insertion

Two Points (2P) h1 h2 h3

Uniform h4 h5 h6

PMX h7 h8 h9

5.2. The measures r and t

As mentioned in the previous sections, r and t are updated in each genetic

mating. Therefore, we implemented the credit assignment rules based on this

fact. The update rules for t are straightforward: in each mating increment the

t value for the LLHs not applied in that mating, and reset the counter to 0 for

the applied one. Thus, the t value of a LLH is set in the interval [0..+∞]. On

the other hand, for each LLH, its r value is computed using the mating parents

and the generated children as shown in Equation 6.

rh =
1

|P | · |C|
·
∑
p∈P

∑
c∈C


1 if c ≺ p

0 if p ≺ c

0.5 otherwise

(6)

where rh is the computed r value for the applied LLH h; P is the set of mating

parents; p is a parent in P ; C is the set of children generated in that mating;

and c is a child in C. One comparison is done for each parent and child and the

result of this comparison is summed. If a child dominates a parent (c � p), then460

1 is added. If a parent dominates a child (p � c), then 0 is added. If both child
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and parent are non-dominated, then 0.5 is added. The sum result is normalized

with 1/(|P | · |C|) to encompass algorithms that generate different numbers of

children in each mating.

For instance, if two children generated by a LLH i dominate both parents,465

then rh = 1. If the two parents dominate both children, then rh = 0. If both

children are non-dominated in relation to their parents, then rh = 0.5. The

higher the value of rh, the better the LLH h performed in that mating.

As far as we know, there are no reward measures for credit assignment that

use solely the concept of Pareto dominance and only the individuals involved in470

the mating. In some works, such as [28, 36], the reward is computed by compar-

ing the generated solutions with the whole population using quality indicators

for each generation or after n (parameter) generations. One of the advantages

of our measure is its straightforward implementation using explicitly the well-

known Pareto dominance concept. In addition, it is potentially faster to execute,475

because it uses only the mating solutions and some constant values, instead of

complex population based indicators and several solutions. The minor drawback

is the positive reward given to a LLH when using the worst possible individuals

as parents, as it will usually generate children that dominate their parents.

The next subsections present how these measures are used by CF and MAB.480

5.3. Choice Function Adaptation

The CF adaptation, proposed in this work, uses the measures t and r di-

rectly. However, it still maintains the main features of this CF variation: an

exploration and an exploitation factor. The adaptation proposed is a derivation

of Equation 2, where the f1 function was replaced by the direct value of r, and485

f2 was replaced by the direct value of t, while the weight parameters α and β

were kept to balance the exploration and exploitation. Usually the α is set to 1

and β to a very low decimal value (0.005 or less), since the r interval is relatively

small ([0, 1]) when compared to the t interval ([0..+∞]).
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5.4. Multi-Armed Bandit Adaptation490

To adapt MAB we used the SlMAB [19] method. It is similar to the original

equation presented in Subsection 2.2, changing only the reward ri,t and the time

factor t. In our implementation, the proposed r measure replaces the original

instant reward ri,t, and the time factor t replaces (t− ti) in the equations.

In essence, the adapted MAB method is the same as the original [19], because495

it differs only in the computing of the instant reward and the elapsed time. At

the end of the evaluation, a LLH is chosen according to its value regarding

Equation 3. The only parameter that needs to be tuned for this method is C,

which balances the exploration and exploitation factors.

For both methods, CF and MAB, we used the max strategy selection. If CF500

is being used as selection method, then the LLH with the maximum CF value

is applied. If MAB is being used, then the LLH with the maximum MAB value

is applied. If there is a tie in the CF/MAB value between two or more LLHs,

then a random tied LLH is selected.

6. Empirical Evaluation505

The empirical evaluation focuses on the results obtained by HITO when com-

pared to two MOEAs. This section describes the research questions (RQs) that

guided this evaluation, used systems, and how the algorithms were configured.

Then, it presents the analyses and the results to answer the RQs.

6.1. Research Questions (RQs)510

RQ1: How is the performance of HITO regarding the ITO problem? This

question investigates if HITO can properly solve the considered problem when

compared to two other conventional MOEAs: the well-known and widely used

NSGA-II, and the state of the art MOEA/DD [34]. In addition, it investigates

if HITO can overcome the results achieved by these conventional metaheuristics515

and by a hyper-heuristic using a random selection.
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Table 2: Details of the systems used in the study

Name Paradigm
Units

Dependencies LOC
Classes Aspects

MyBatis OO 331 – 1271 23535

AJHSQLDB AO 276 25 1338 68550

AJHotDraw AO 290 31 1592 18586

BCEL OO 45 – 289 2999

JHotDraw OO 197 – 809 20273

HealthWatcher AO 95 22 399 5479

JBoss OO 150 – 367 8434

RQ2: How is the performance of the selection methods CF and MAB? For

answering this question, we analyzed the results of both selection methods in

order to identify which one provides the best results.

RQ3: Which LLH is the most appropriate to this problem? To answer520

this question, we analyzed the number of times each LLH (Subsection 5.1) was

applied during the execution of HITO.

6.2. Systems Used in the Study

The real systems used in this work are detailed in Table 2. The first column

presents the name of the systems. The second column presents the paradigm525

of the system (OO or AO). The third and fourth columns present respectively

how many classes (Cls.) and aspects (As.) (both considered units) exist in the

system. The fifth column presents the number of dependencies between the

units of the system. Finally, the sixth column presents how many Lines of Code

(LOC) the system has. Cells with a hyphen (-) represent none.530

These are the same systems used in [4]. We chose to generate integration

and test orders for these systems for a consistent comparison with this work.

Moreover, some of these systems are AO, which inserts a bit of complexity to

the problem, due to the increased number of dependencies between the units

and to the different possible dependency scenarios.535
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6.3. Experiments Organization

In order to answer our questions we configured the following algorithms: i)

MOEA/DD; ii) NSGA-II; iii) HITO-CF – algorithm that applies HITO with the

CF selection method; iv) HITO-MAB – algorithm that applies HITO with the

MAB selection method; and v) HITO-R – algorithm that applies HITO with540

a random selection method. Each algorithm was executed 30 times for each

system. The results were compared using the quality indicators hypervolume

and Inverted Generational Distance (IGD) [50]. We also computed the Kruskal-

Wallis statistical tests (at 95% significance level) [15] and Vargha-Delaney’s Â

effect size [2] for the quality indicators’ results.545

The hypervolume indicator computes the area (or volume when working with

more than 2 objectives) of the objective space that a Pareto front dominates

[50]. Its calculation is done using a reference point solution, usually the worst

of all possible solutions. The advantage of hypervolume is that it takes into

account both convergence and diversity. In addition, the software engineer is550

able to determine if a Pareto front is better by comparing their hypervolume

values. The greater the hypervolume value, the better the front is. The IGD

indicator, in turn, calculates the distance of the true Pareto front (PFtrue)

to another front, thus the lower the IGD of a front, the better this front is.

However, for our systems, the PFtrue fronts are unknown. Due to this, we555

generated an approximated PFtrue for each system using the non-dominated

solutions of the known Pareto fronts (PFknown) found by the algorithms. A

PFknown front is composed by all the non-dominated solutions found in the 30

executions of an algorithm. Hence, each algorithm found a PFknown for a given

system at the end of its 30 executions by joining the 30 resulting fronts. These560

PFknown fronts were later used to compose the PFtrue approximation by joining

all non-dominated solutions, and to compute the IGD values for the algorithms.

HITO was implemented using jMetal [17], an object-oriented framework for

multi-objective evolutionary optimization. The conventional MOEAs and HITO

were executed in all systems and with two sets of objective functions, according565

to the measures presented in Section 5: i) a set of two objectives (Number of
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Attributes (A) and Number of Operations (O)); and ii) a set of four objectives

(A, O, Number of Distinct Return Types (R) and Number of Distinct Param-

eters (P)). For all experiments we defined NSGA-II [14] as the MOEA used by

HITO, since it is one of the common MOEAs used for solving this problem and570

within the hyper-heuristics field for comparison [4, 28, 36, 47]. For executing

the described algorithms, we used the chromosome representation and the con-

straints adopted by the approach presented in [4], since this approach was used

as a standard approach for the MOEA due to its good results.

The NSGA-II parameters were set according to [4], whereas the MOEA/DD575

parameters were set according to [4, 34]. The parameters required by MAB

and CF were set after an empirical tuning. This tuning was done to properly

balance the different intervals between the credit assignment metrics r and t.

The NSGA-II, MOEA/DD, HITO-CF, HITO-MAB and HITO-R parameters

for this study are presented in Table 3. The CF weight parameters (α and β),580

and the MAB size of the sliding window (W ) and scaling factor (C) are used

to balance exploration and exploitation. Furthermore, MOEA/DD has three

additional parameters when compared to NSGA-II: a penalty for the Penalty

based Boundary Intersection (PBI) decomposition method, a neighborhood size

(T ), and a probability to select solutions from the neighborhood (δ).585

Table 3: Parameters

Common Parameters MOEA/DD HITO-CF HITO-MAB

Population Size: 300 PBI Penalty: 5.0 α: 1.0 W : 150

Max. Generations: 200 T : 20 β: 0.00005 C: 5

δ: 0.9

The mutation and crossover probabilities were set differently. For NSGA-

II and MOEA/DD, we used a crossover probability of 95% and a mutation

probability of 2%, as described in [4]. For HITO-CF, HITO-MAB and HITO-

R, we did not use such probabilities because if a LLH is selected by HITO then
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Figure 3: PFknown fronts for MyBatis

Figure 4: PFknown fronts for AJHSQLDB

its operators are mandatorily applied. Hence, the engineer does not need to590

select the operators and configure their probability. This is one of the main

advantages of HITO. Moreover, for MOEA/DD with 4 objectives, we had to set

the population size to 364 in order to successfully generate weighting vectors.

6.4. Results

The obtained results are divided by number of objectives (2 and 4), but595

they are discussed together. First, we analyzed the fronts generated by each

algorithm. Figures 3-6 depict PFknown fronts for 4 problems with 2 objectives.

We presented only the plots that show visible differences between the fronts.

As seen in Figure 3 for MyBatis, NSGA-II, HITO-CF, and HITO-MAB ob-

tained the best fronts with solutions overlapping each other. MOEA/DD was600

able to find some solutions among the best ones, but some solutions found

are dominated by the other algorithms. On the other hand, for AJHSQLDB

in Figure 4, MOEA/DD obtained the majority of the non-dominated solu-

tions, and HITO-CF just a few non-dominated solutions. For BCEL (Figure

5), only NSGA-II performed noticeable worse than the other algorithms. Fi-605

nally, for AJHotDraw depicted in Figure 6, HITO-CF and HITO-MAB obtained

all the non-dominated solutions, NSGA-II obtained intermediate solutions, and

MOEA/DD and HITO-R obtained overlapping fronts with the worst solutions.

Because the plots cannot reveal the best algorithm, the usage of quality

indicators is necessary. Tables 4 and 5 show the average hypervolume found by610

the algorithms for 2 and 4 objectives respectively. The average was computed

using the 30 fronts found by each algorithm and for each system. For both tables,

Figure 5: PFknown fronts for BCEL
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Figure 6: PFknown fronts for AJHotDraw

the first column shows the system, and the second, third, fourth, fifth and sixth

columns show respectively the results obtained by MOEA/DD, NSGA-II, HITO-

CF, HITO-MAB and HITO-R. Values highlighted in bold are the best values or615

the values statistically equivalent to the best one using the Kruskal-Wallis test

with 95% of significance. It is important to note that the Kruskal-Wallis test

was performed using the 30 hypervolume values (one value for each independent

run) of the resulting fronts of each algorithm, and not the average values alone.

Table 4: Hypervolume averages found for 2 objectives

System MOEA/DD NSGA-II HITO-CF HITO-MAB HITO-R

MyBatis 6,81E-1
(4,41E-2)

7,65E-1
(3,96E-2)

8,00E-1
(2,71E-2)

7,83E-1
(3,06E-2)

6,88E-1
(2,37E-2)

AJHSQLDB 7,41E-1
(7,94E-2)

5,86E-1
(1,12E-1)

6,90E-1
(6,76E-2)

6,45E-1
(1,06E-1)

4,11E-1
(6,86E-2)

AJHotDraw 5,74E-1
(7,95E-2)

5,91E-1
(1,15E-1)

8,16E-1
(8,56E-2)

8,11E-1
(9,30E-2)

5,52E-1
(9,27E-2)

BCEL 8,08E-1
(1,25E-2)

2,87E-1
(5,15E-3)

7,87E-1
(8,01E-3)

7,81E-1
(3,51E-2)

6,95E-1
(5,44E-2)

JHotDraw 8,06E-1
(1,13E-1)

4,72E-1
(2,67E-1)

8,53E-1
(1,26E-1)

9,19E-1
(7,53E-2)

7,88E-1
(1,25E-1)

HealthWatcher 8,17E-1
(5,45E-2)

8,52E-1
(2,61E-2)

8,65E-1
(2,57E-2)

8,80E-1
(4,36E-2)

8,78E-1
(4,14E-2)

JBoss 9,50E-1
(1,40E-1)

5,38E-3
(0,00E0)

8,81E-1
(1,85E-1)

9,32E-1
(1,32E-1)

7,16E-1
(2,45E-1)

Because we normalized the objective values of all solutions into the interval620

of [0..1], the worst possible value for the objectives is 1 (given that the problem

is a minimization one). Hence, adding a small offset of 0.01, the reference

point for the hypervolume calculation was set to (1.01, 1.01) for 2 objectives

and (1.01, 1.01, 1.01, 1.01) for 4 objectives.

For every system, on both objective sets, HITO was able to outperform625

NSGA-II by finding a greater hypervolume average. Only in four cases (Health-

Watcher and MyBatis with 2 objectives, and MyBatis and AJHSQLDB with 4
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Table 5: Hypervolume averages found for 4 objectives

System MOEA/DD NSGA-II HITO-CF HITO-MAB HITO-R

MyBatis 1,09E-1
(3,25E-2)

7,13E-1
(4,99E-2)

7,30E-1
(3,73E-2)

6,58E-1
(4,76E-2)

5,44E-1
(4,20E-2)

AJHSQLDB 6,69E-2
(3,20E-2)

7,26E-1
(1,01E-1)

7,80E-1
(7,65E-2)

7,11E-1
(9,59E-2)

4,90E-1
(5,31E-2)

AJHotDraw 4,99E-1
(4,86E-2)

6,94E-1
(5,47E-2)

7,99E-1
(6,11E-2)

7,91E-1
(6,09E-2)

5,68E-1
(5,58E-2)

BCEL 6,55E-1
(3,06E-2)

8,06E-2
(9,85E-4)

7,31E-1
(8,99E-3)

7,20E-1
(7,20E-3)

6,10E-1
(2,93E-2)

JHotDraw 8,53E-1
(9,25E-2)

8,28E-1
(1,30E-1)

9,51E-1
(4,15E-2)

9,46E-1
(5,49E-2)

8,60E-1
(6,67E-2)

HealthWatcher 7,31E-1
(1,71E-1)

5,69E-1
(4,39E-2)

6,41E-1
(1,36E-1)

6,10E-1
(8,49E-2)

6,44E-1
(1,29E-1)

JBoss 9,83E-1
(9,49E-2)

3,24E-3
(0,00E0)

9,70E-1
(9,57E-2)

9,94E-1
(3,37E-2)

7,67E-1
(2,17E-1)

objectives) NSGA-II yielded statistically equivalent results to the ones of HITO-

CF and HITO-MAB. For MyBatis with 4 objectives, NSGA-II was statistically

better than HITO-MAB, but yet HITO-CF outperformed it. MOEA/DD could630

statistically outperform all the other algorithms only in BCEL with 2 objectives.

Apart from that, it performed equally or worse than HITO-CF and/or HITO-

MAB, sometimes even losing to NSGA-II. We expected a better performance

from this state of the art algorithm, specially for 4 objectives where the benefits

of decomposition could be better availed.635

We also computed the IGD values for all 30 fronts obtained by the algorithms

in each system. The reference front was generated joining all non-dominated

solutions found in this experiment. These results are presented in Tables 6 and 7.

MOEA/DD was only able to statistically outperform the other algorithms

in BCEL with 2 objectives. Besides that, MOEA/DD presented mixed results640

when compared to HITO-CF and HITO-MAB, always showing worse or equal

results. For the biggest two systems with 4 objectives, NSGA-II obtained statis-

tically equivalent results to HITO-CF. HITO-CF on the other hand presented

the best overall results considering IGD. Except for BCEL with 2 objectives,

26



Table 6: IGD averages found for 2 objectives

System MOEA/DD NSGA-II HITO-CF HITO-MAB HITO-R

MyBatis 2,95E-2
(7,89E-3)

1,41E-2
(6,63E-3)

8,93E-3
(4,00E-3)

1,12E-2
(4,74E-3)

2,60E-2
(3,88E-3)

AJHSQLDB 5,50E-2
(2,18E-2)

1,12E-1
(3,72E-2)

8,03E-2
(2,10E-2)

9,52E-2
(3,53E-2)

1,88E-1
(2,78E-2)

AJHotDraw 6,10E-1
(1,54E-1)

5,02E-1
(2,11E-1)

2,11E-1
(1,20E-1)

2,11E-1
(1,37E-1)

5,22E-1
(1,60E-1)

BCEL 7,04E-3
(3,50E-3)

1,26E-1
(1,39E-3)

1,26E-2
(2,07E-3)

1,41E-2
(6,52E-3)

3,05E-2
(9,84E-3)

JHotDraw 1,77E0
(1,29E0)

5,90E0
(5,16E0)

1,40E0
(1,34E0)

6,55E-1
(7,74E-1)

1,27E0
(1,28E0)

HealthWatcher 0,00E0
(0,00E0)

0,00E0
(0,00E0)

0,00E0
(0,00E0)

0,00E0
(0,00E0)

0,00E0
(0,00E0)

JBoss 0,00E0
(0,00E0)

0,00E0
(0,00E0)

0,00E0
(0,00E0)

0,00E0
(0,00E0)

0,00E0
(0,00E0)

Table 7: IGD averages found for 4 objectives

System MOEA/DD NSGA-II HITO-CF HITO-MAB HITO-R

MyBatis 4,89E-2
(6,38E-3)

5,59E-3
(1,22E-3)

5,12E-3
(1,11E-3)

7,58E-3
(1,77E-3)

1,17E-2
(1,95E-3)

AJHSQLDB 1,72E-1
(2,13E-2)

2,11E-2
(1,07E-2)

1,66E-2
(7,20E-3)

2,40E-2
(1,08E-2)

5,32E-2
(9,67E-3)

AJHotDraw 8,99E-2
(1,82E-2)

4,48E-2
(8,90E-3)

3,22E-2
(8,90E-3)

3,27E-2
(8,89E-3)

8,49E-2
(1,89E-2)

BCEL 1,90E-2
(2,79E-3)

1,28E-1
(1,80E-4)

9,63E-3
(2,60E-3)

9,03E-3
(9,15E-4)

2,11E-2
(2,52E-3)

JHotDraw 2,36E-1
(1,14E-1)

2,05E-1
(1,35E-1)

9,91E-2
(3,79E-2)

9,50E-2
(4,31E-2)

1,74E-1
(5,48E-2)

HealthWatcher 0,00E0
(0,00E0)

0,00E0
(0,00E0)

0,00E0
(0,00E0)

0,00E0
(0,00E0)

0,00E0
(0,00E0)

JBoss 0,00E0
(0,00E0)

0,00E0
(0,00E0)

0,00E0
(0,00E0)

0,00E0
(0,00E0)

0,00E0
(0,00E0)

HITO-CF was always better or equal to the other algorithms. For both quality645

indicators, HITO-R performed statistically worse or equal to HITO.

The HealthWatcher and JBoss instances appear to be the easiest to solve,

since almost all algorithms yielded statistically equivalent results. Furthermore,

when analyzing IGD, we observed that all algorithms were able to find the same
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non-dominated solutions for both instances with both sets of objectives. They650

are in fact two of the smallest system used in this study, hence the similarity of

the results was expected.

We also calculated the Vargha-Delaney’s Â effect size [2]. While Kruskal-

Wallis calculates if there is statistical difference between groups of data, the

effect size calculates the magnitude of this difference for each pair of groups655

A/B of data. According to [2], the Â value varies between [0, 1], where 0.5

represents absolute no difference between the two groups, values below 0.5 rep-

resent that group A loses to group B, and values above 0.5 represent that B

loses to group A. Values in ]0.44, 0.56[ represent negligible differences, values in

[0.56, 0.64[ and ]0.36, 0.44] represent small differences, values in [0.64, 0.71[ and660

]0.29, 0.44] represent medium differences, and values in [0.0, 0.29] and [0.71, 1.0]

represent large differences. A negligible magnitude usually does not yield statis-

tical difference. The small and medium magnitudes represent small and medium

differences between the values, and may or not yield statistical differences. Fi-

nally, a large magnitude represents a significantly large difference that usually665

can be seen in the numbers without a lot of effort.

Because we have computed the Â value for each group comparison, in all

systems, for both sets of objectives, and for both hypervolume and IGD values,

we present the results in the format of boxplots with HITO-CF as group A.

These boxplots are presented in Figures 7 to 10. The lower the values, the670

worse the results of HITO-CF in comparison to the respective algorithm.

Figure 7: Hypervolume effect size for 2 objectives

Figure 8: Hypervolume effect size for 4 objectives

Figure 9: IGD effect size for 2 objectives

The effect size results endorse what we observed on the hypervolume and
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Figure 10: IGD effect size for 4 objectives

Table 8: Average number of low-level heuristic applications by HITO-CF with 2 objectives

LLH MyBatis AJHSQLDB AJHotDraw BCEL JHotDraw HealthWatcher JBoss

2P 13232 13367 11661 1117 9121 10798 4690
2P+Swap 4004 3758 3024 843 2894 3124 2991

2P+Insertion 5856 5879 4437 950 4082 4317 3473
Uniform 1218 843 1093 808 1468 1932 2282

Uniform+Swap 1010 736 1055 729 1392 1675 2242
Uniform+Insertion 1092 755 1077 764 1424 1743 2264

PMX 998 2376 4378 23098 5928 2559 7029
PMX+Swap 1115 970 1459 750 1672 1760 2402

PMX+Insertion 1320 1163 1664 786 1863 1938 2474

IGD comparisons. HITO-CF performed very similar to HITO-MAB in almost

all cases. HITO-CF usually performed better than HITO-R and NSGA-II with

large differences. Lastly, when comparing HITO-CF with MOEA/DD, we ob-675

served more balanced results. Comparing the results for 2 objectives, HITO-CF

showed effect size medians inside the small difference ranges, favorable in the

hypervolume comparisons and unfavorable in the IGD comparison. However,

for 4 objectives, MOEA/DD obtained worse results than HITO-CF, for both

hypervolume and IGD, with medians in the large difference range.680

We collected the average number of times each LLH was applied during the

optimization. These averages were calculated using the 30 executions of each

algorithm and are shown in Tables 8, 9, 10 and 11. The first two tables show

the averages of HITO-CF and HITO-MAB with 2 objectives, and the last two

the averages with 4 objectives. The greatest values are highlighted in bold.685

We observed in all cases that the most applied LLHs are the ones composed

only by crossover operators (h1 – 2P Crossover, h4 – Uniform Crossover and

h7 – PMX Crossover). Moreover, these three LLHs were applied more often

than their respective LLHs with mutation operators. The most applied LLH is

h1 (2P Crossover), followed by h7 (PMX Crossover). In every scenario, h7 has690

a greater number of applications for BCEL and JBoss. Additionally, h7 was

applied more often in JHotDraw by HITO-MAB with 2 objectives. Apart from
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Table 9: Average number of low-level heuristic applications by HITO-MAB with 2 objectives

System MyBatis AJHSQLDB AJHotDraw BCEL JHotDraw HealthWatcher JBoss

2P 8868 9954 9593 2882 7366 6254 3318
2P+Swap 4456 4264 2900 1571 2713 4129 1887

2P+Insertion 5954 6180 4297 1956 4373 5435 2582
Uniform 1419 1020 1209 1445 1266 1697 1163

Uniform+Swap 1219 1026 1166 1424 1288 1515 1244
Uniform+Insertion 1289 991 1223 1508 1402 1542 1206

PMX 2111 2837 5632 15418 7414 4241 14779
PMX+Swap 2057 1509 1623 1537 1653 2154 1509

PMX+Insertion 2473 2063 2204 2105 2372 2878 2159

Table 10: Average number of low-level heuristic applications by HITO-CF with 4 objectives

System MyBatis AJHSQLDB AJHotDraw BCEL JHotDraw HealthWatcher JBoss

2P 14430 14336 14796 389 13171 10241 4555
2P+Swap 4398 4096 3505 348 3044 3175 2991

2P+Insertion 6580 6198 6190 353 4861 4406 3503
Uniform 981 974 440 334 875 2178 2139

Uniform+Swap 706 786 390 313 768 1732 2095
Uniform+Insertion 933 887 419 316 819 1862 2116

PMX 499 1340 2346 27166 3701 2649 7821
PMX+Swap 619 579 809 308 1172 1733 2279

PMX+Insertion 699 650 952 318 1434 1869 2347

Table 11: Average number of low-level heuristic applications by HITO-MAB with 4 objectives

System MyBatis AJHSQLDB AJHotDraw BCEL JHotDraw HealthWatcher JBoss

2P 8628 9411 10362 2116 8343 6551 3794
2P+Swap 4298 4455 3458 1895 3477 4129 2158

2P+Insertion 5650 6658 5708 1948 5125 5121 2731
Uniform 1466 1155 1266 1557 1328 1669 1308

Uniform+Swap 1393 1130 1146 1638 1312 1450 1343
Uniform+Insertion 1456 1175 1198 1617 1384 1506 1341

PMX 2233 2349 2672 15322 4669 4504 13436
PMX+Swap 2147 1582 1535 1713 1747 2148 1572

PMX+Insertion 2576 1930 2501 2040 2460 2768 2163
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these situations, h1 was always the most applied LLH.

The number of applications of each LLH is correlated to its overall perfor-

mance during the optimization. If a given LLH was applied more than others,695

then it means that this LLH constantly held a greater score throughout the pro-

cess, and hence generated better children than others. Therefore, these numbers

point out that, regardless of which selection method is being used, the PMX

Crossover operator is the most suitable for BCEL and JHotDraw, and the Two

Points Crossover operator is usually the most suitable for the remaining systems.700

Furthermore, we observed that in most of the cases, the LLHs composed by Sim-

ple Insertion Mutation were applied more often than the LLHs composed by the

same crossover and Swap Mutation. It shows that Simple Insertion Mutation is

overall the best mutation operator for this problem.

Using only crossover during the optimization generates the best children705

in this kind of problem, whereas the usage of mutation operators can provide

worse solutions in some cases. The reason behind this may be that, changing a

lot the sequence of the genes is not always beneficial for permutation problems

such as this one. This can be evidenced by the functionality of the operators.

The crossover operators strictly use the sequence of the parents to generate the710

children, whereas the mutation operators rely on randomness to insert diversity.

Going even further, Simple Insertion Mutation is the best mutation operator

because it changes the position of only one random gene, in contrast to Swap

Mutation that changes the position of two random genes. In parallel, Two Points

Crossover is the best crossover because it usually changes less the sequence of the715

genes provided by the parents, whereas Uniform Crossover (the crossover least

often applied) is the worst one because it performs the most drastic changes.

However, even though randomness is not always beneficial, the mutation

operators should not simply be discarded, since they can provide diversity for

the population in some moments of the search process. If the mutation operators720

were useless, then the selection methods would have selected less often such

LLHs. In some cases, the LLHs with mutation operators were applied more than

the ones without these operators, which is understandable given the role that
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the mutation plays in the evolution. Further investigations on the functionality

of these operators in the hyper-heuristic field must be done in order to provide725

a more comprehensive insight about their impact on the optimization process.

Nevertheless, the real advantage here is that HITO can identify when it is

preferable to apply each kind of operator and then can perform accordingly.

6.5. Answering the Research Questions

RQ1: How is the performance of HITO regarding the ITO problem?730

As seen in the previous subsection, HITO (CF or MAB) was able to outperform

or equal NSGA-II and HITO-R in all systems and for both sets of objectives re-

garding the hypervolume and IGD indicators. When compared to MOEA/DD,

in general, HITO was statistically better or equal, but MOEA/DD was the only

algorithm able to outperform HITO with statistical difference in one system.735

The effect size also supported these facts, since HITO usually outperformed

NSGA-II, MOEA/DD and HITO-R with large or medium differences. Further-

more, the IGD values show that HITO can also find the best PFknown fronts

for most systems, except BCEL where MOEA/DD stood out as the best al-

gorithm. Taking these results into account, it is possible to assert that HITO740

can properly solve this problem, and usually with better performance than an

approach using only a conventional or state of the art MOEA. These positive

results emphasize even more the applicability of hyper-heuristics in SBSE.

RQ2: How is the performance of CF and MAB?

Even though HITO-CF performed slightly better than HITO-MAB, it is not745

possible to determine for sure if it is superior. The results of the Kruskal-Wallis

test for the algorithms using both selection methods rarely showed statistical dif-

ferences, and the effect size values usually presented negligible, small or medium

magnitudes. We expected MAB to yield significant better results, since some of

its equations focus on quickly identifying changes in the ranking of LLHs [19].750

For future works, we intend to tweak the rewarding credit assignment equation

(proposed in Subsection 5.2) for a better compatibility with MAB.

RQ3: Which LLH is the most appropriate for this problem?
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Overall, the best LLHs are composed only by crossover operators, specifically

h1 (Two Points Crossover) and h7 (PMX Crossover). The PMX operator is the755

most suitable crossover for BCEL and JHotDraw, whereas Two Points Crossover

is the best one for the other systems. Regarding the mutation operators, Simple

Insertion Mutation performed better due to its small changes in the genes order.

6.6. Threats to Validity

Some systems used in the experimentation are small when compared to the760

others, such as JBoss, HealthWatcher and JHotDraw. For instance, almost in

all cases the results found by the algorithms for HealthWatcher are very similar,

therefore, the Kruskal-Wallis test showed statistical equivalence between the

results. The IGD indicator also showed that all algorithms found the same non-

dominated solutions for HealthWatcher and JBoss. Thus, the results for these765

systems cannot be generalized for larger systems.

The rewarding measure and the CF and MAB adaptations used by HITO

may be accurate only for HITO using NSGA-II. For instance, if SPEA2 is used

by HITO, then the time factor t of each LLH will scale quicker and the per-

formance of HITO may be affected, since SPEA2 generates only one child per770

mating in its implementation of the framework jMetal.

We used a fixed set of operators. Different operators can lead to differ-

ent results. Therefore, we intend to evaluate other sets of operators in future

work, such as newer operators, bigger sets of operators, different combinations

of operators (e.g. no crossover, multiple mutation), and so on.775

The MOEAs compared in this study were previously proposed and tested

in continuous problems. This might be one explanation for their inferiority in

comparison to HITO in the experimentation shown in this paper. Nevertheless,

if the user is planning to arbitrarily choose and configure a MOEA for this

problem, he/she should consider a hyper-heuristic instead, since it might be a780

better choice for this kind of problem.
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7. Concluding Remarks

In this study we introduced HITO, a hyper-heuristic for the ITO problem.

HITO dynamically selects LLHs (combination of crossover and mutation op-

erators) during the multi-objective evolutionary optimization. We proposed a785

novel rewarding measure based on the Pareto dominance concept to assess the

performance of each LLH. This metric is straightforward and uses only the par-

ents and children involved in the mating. The reward is then used by selection

methods, such as Choice Function (CF) and Multi-Armed Bandit (MAB), to

select the best LLH at each mating. HITO was designed to encompass a set of790

steps and to use inputs in order to allow the tester to flexibly personalize its

execution. Therefore, the tester can provide his/her LLHs, MOEAs, software

metrics to be used as fitness functions, selection methods and problem instances,

according to his/her goals. However, the tester does not need to select the op-

erators, nor to configure the algorithm parameters, because HITO makes such795

decisions. This is an advantage of using hyper-heuristics.

HITO also presents other advantages. Even though we only used HITO to

the ITO problem, it is a generic hyper-heuristic that can be applied for other

software engineering problems and for any MOEA. For example, HITO can be

used with SPEA2 [49] for solving problems such as prioritization and selection800

of test cases, considering different objectives, such as coverage, size of test set,

memory consumption, etc.

To evaluate HITO performance, we designed experiments with 2 and 4 objec-

tives and used 7 real systems in an empirical evaluation, in both object-oriented

and aspect-oriented contexts. We implemented the CF and MAB methods and805

compared HITO with its random version, with a well-known MOEA (NSGA-

II [14]), and with a state of the art MOEA (MOEA/DD [34]). HITO was able to

outperform or statistically match NSGA-II and the random hyper-heuristic for

all systems and sets of objectives. When compared to MOEA/DD, the results

were also favorable in overall, but MOEA/DD was able to outperform HITO810

in one instance of the problem. The effect size test showed that CF and MAB
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performed similarly, but CF was slightly better. By analyzing the number of

applications of each LLH, we observed that some crossover and mutation oper-

ators are more suitable for the systems used, specifically Two Points Crossover

and Simple Insertion Mutation.815

Future works should to test the flexibility of HITO using other MOEAs and

other problems to address its performance across the SBSE field. We also in-

tend to increase the accuracy of the proposed rewarding measure by allowing

a fine-grained evaluation of LLHs that hopefully will improve the results. Fur-

thermore, HITO shall be evaluated using other selection methods and other820

search operator. Moreover, other hyper-heuristic techniques can be used, such

as on-line parameter tuning, metaheuristic selection and acceptance functions.

Instead of working solely on the search space of operators, hyper-heuristics

can be employed to identify key characteristics of each system module. Later,

these characteristics can be used to better guide the units ordering. Finally, we825

will investigate why mutation operators were not so useful for this problem.
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