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INTRODUCTION 

Epilepsy is a common neurological disorder with an estimated prevalence in 

Europe of 4.3-7.8 per 1000 [1]. Despite advances in antiepileptic drug (AED) 

therapy about one-third of patients with epilepsy are resistant to drug treatment 

[2]. Most patients with refractory epilepsy are resistant to several, if not all, 

AEDs, even though these drugs act by diverse mechanisms [3].  

Temporal lobe epilepsy (TLE) is the most common focal epilepsy. The most 

common cause of TLE in surgical series is hippocampal sclerosis (HS), which 

can be reliably detected in vivo by magnetic resonance imaging (MRI) [4]. 

Structural damage in TLE associated with HS is a condition that characterises 

mesial temporal lobe epilepsy (mTLE). Such damage and dysfunction frequently 

extends beyond the hippocampus into the parahippocampal and entorhinal 

cortex [5]. In this review we will first describe one putative mechanism of 

pharmacoesistance in epilepsy, the transporter hypothesis, and then discuss 

preclinical and clinical studies investigating ABC transporters and 

pharmacoresistance in epilepsy and emphasize molecular imaging techniques 

as a help towards analysis of the mechanisms of pharmacoresistance in 

epilepsy. 
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PHARMACORESISTANT EPILEPSY 

Definition of pharmacoresistant epilepsy 

The concept of pharmacoresistant epilepsy seems to be self-explanatory, but for 

some years a universally agreed definition remained elusive. In 2010 the 

International League against Epilepsy suggested that  pharmacoresistant 

epilepsy  be defined as failure of adequate response to two tolerated and 

appropriately prescribed  AED schedules (whether as monotherapies or in 

combination) to achieve sustained seizure freedom [6]. 

There are several hypotheses that explain the mechanisms associated with 

pharmacoresistance in epilepsy. Current theories on the causes of pharmaco- 

resistance in epilepsy include the transporter hypothesis, the target hypothesis, 

the network hypothesis, the gene variant/methylation hypothesis and the intrin-

sic severity hypothesis. However, none of these hypotheses is currently a stand-

alone theory that is able to convincingly explain how drug resistance arises in 

human epilepsy [7]. 

The transporter hypothesis 

The drug transporter hypothesis proposes that pharmacoresistance is related to 

increased expression of multidrug efflux transporter proteins such as P-

glycoprotein (Pgp). These proteins are thought to prevent AED entry by actively 

extruding AEDs from their target site [8]. Multidrug efflux transporters are highly 

expressed in capillary endothelial cells and astrocytic foot processes that form 

the Blood-Brain Barrier (BBB). They limit intracellular concentration of substrates 
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by pumping them out of the cell through an active energy-dependent 

mechanism. Pgp (encoded by the adenosine triphosphate (ATP)-binding 

cassette subfamily B member 1 gene (ABCB1) was discovered more than thirty 

years ago [9] and it is the multidrug efflux transporter protein we know most 

about in terms of its structure and mechanism. Epilepsy was the first CNS 

disorder for which pharmacoresistance was associated with enhanced 

expression of Pgp in the brain [10]. Pathologically elevated expression of Pgp 

has been found in resected brain tissue of patients with pharmacoresistant 

mTLE undergoing surgery [8] as well as in limbic brain regions of mouse and rat 

models of mTLE [11]. It is currently not clear whether the endothelial and 

parenchymal overexpression of Pgp is a consequence of epilepsy, of 

uncontrolled seizures, of chronic treatment with AEDs, or is constitutive, i.e. 

present before the onset of epilepsy [11].  

Blood-brain barrier  

The blood-brain barrier (BBB) is a physical and metabolic barrier between the 

brain and the systemic circulation [12]. The BBB is composed of a monolayer of 

brain capillary endothelial cells. Unlike capillaries in other parts of the body, the 

cerebral capillaries are joined by tight junctions, which restrict solute flux 

between the blood and the brain. The brain capillary endothelial cells are 

surrounded by extracellular matrix, pericytes, and astrocyte foot processes [13]. 

Circulating molecules gain access to the brain via one of two processes: 1) lipid-

mediated transport of small nonpolar molecules through the BBB by free 

(passive) diffusion, or 2) catalyzed transport [12, 13].  
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The endothelial cells of the BBB contain numerous membrane transporters 

involved in the influx and efflux of essential substrates [14]. ABC efflux 

transporters, such as Pgp, at the BBB limit the brain uptake of a variety of 

therapeutic agents, including compounds that are relatively lipophilic and would 

be predicted to permeate the endothelial lining of the brain microvasculature 

[15]. Pgp is located at the luminal (apical = blood-facing side) membrane of 

endothelial cells [16, 17]. Thus, Pgp substrates entering the endothelial cells 

from blood are immediately pumped back into blood. As a consequence, the net 

penetration of substrate compounds from the blood into the brain tissue can be 

dramatically decreased. In the absence of Pgp in the BBB, the brain penetration 

of Pgp substrate drugs can increase up to ten - to 100-fold, with sometimes 

dramatic consequences for the toxicity of compounds [16]. Furthermore, 

blockade of BBB Pgp by cerebral application of Pgp inhibitors significantly 

increases the brain concentration of various drugs, again being in line with Pgp 

functioning as an efflux transporter in the BBB [18]. 

Clear expression of Pgp in astrocytes is especially seen in certain pathological 

states such as epilepsy [19].   

In contrast to Pgp, data on the other ABC transporters in the BBB are much 

more limited [16]. At least six multidrug resistant proteins (MRP) (MRP1-6) are 

expressed at the BBB of different species. However, the exact subcellular 

localization (apical vs basolateral) of most of these MRPs in brain capillary 

endothelial cells remains to be determined [11].  
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Blood-cerebrospinal-fluid barrier  

Several drug efflux transporters are present in epithelial cells of the blood- 

cerebrospinal-fluid (CSF) barrier. However, in contrast to the BBB, the exact 

functional role of efflux transporters in these other brain barrier is less well 

understood [18]. The blood-CSF barrier is located at the choroid plexus (CP) 

and the outer arachnoid membrane. The blood-CSF barrier plays a vital role in 

the selectivity and permeability of the CP membrane to various nutrients and 

xenobiotics [14]. The CP, which is the main source for CSF production, is a leaf-

like highly vascular organ that projects into the ventricles of the brain and 

functions as a highly regulated solute- and drug-permeability barrier. The apical 

surface area has a same size range as the luminal surface area of the 

endothelial cells of the BBB, thereby providing a similarly large surface for solute 

exchange [18]. The CP is comprised of fenestrated, highly permeable capillaries 

at the blood side that are surrounded by stroma and a monolayer of epithelial 

cells that face the CSF and are joined together by tight junctions [14]. Once a 

solute or drug has crossed the capillary wall, it must penetrate the epithelial cells 

before entering the CSF [18].  

The molecular identity and localization of the proteins responsible for the influx 

and efflux of drugs and metabolites at the CP are currently explored. Transport 

of drugs and metabolites involves mainly the solute carrier and ABC transporters 

[14, 20, 21]. Rao et al. [22] first described the expression of Pgp and MRP1 in 

the epithelia of the CP and their contribution in a bipolar permeation barrier for 

selected drugs crossing the blood-CSF barrier [18]. It was concluded that Pgp 
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localizes sub-apically at the CP with transport into the direction of CSF, whereas 

MRP1 localizes basolaterally, conferring transport to the blood side of epithelial 

cells [22]. Thus, in the choroidal epithelium, Pgp and MRP1 seem to have 

opposing drug-transport functions. The basolateral localization of MRP1 at the 

CP epithelium was subsequently confirmed by other groups [23]. However, in 

general, the role of these and other drug transporters in blood-CSF barrier 

function is only incompletely understood and more studies need to be done [18]. 

ABC transporters: function and role in pharmacoresistance 

Active drug efflux transporters of the ATP binding cassette (ABC)-containing 

family of proteins have a major impact on the pharmacological behaviour of 

most of the drugs in use today. The penetration of drugs into a range of 

important pharmacological sanctuaries, such as brain, testis, and fetus, and the 

penetration into specific cell- and tissue compartments can be extensively 

limited by ABC transporters [16, 24]. ABC transporters are expressed in many 

tissues including the intestine, liver, kidney, brain and they maintain chemical 

homeostasis by mediating the transport of molecules across a membrane 

irrespective of concentration gradient. These transporters are encoded by 49 

genes in the human genome and have been grouped into seven subfamilies 

(designated ABCA-ABCG) based on sequence homology [25-27]. ABC 

transporters in their functional form comprise a minimum of four core domains 

that form the permeation pathway for transport of substrates, and two nucleotide 

binding domains that hydrolyze adenosine triphosphate (ATP) to power this 

process. Three ABC proteins appear to account for most observed multidrug 



7 
 

resistance (MDR) in humans and rodents [28]; P-glycoprotein 

(Pgp/MDR1/ABCB1), MDR-associated protein (MRP)1 (ABCC1) and breast 

cancer resistance protein ABCG2 (variously known as BCRP, ABCP for its high 

expression in placenta or MXR for mitoxantrone resistance) [29]. We will focus 

on these three most important multidrug transporters; however the family of 

mammalian ABC transporters is far more extensive and functionally highly 

diverse [30]. 

P-glycoprotein 

Pgp was discovered more than 30 years ago [9] and it is the ABC protein we 

know most about in terms of its structure and mechanism. Pgp is generally 

expressed at higher levels in epithelial cell surfaces throughout the body. It is 

found exclusively at the apical surface of cells in the kidney proximal tubule, 

canalicular membrane of hepatocytes, pancreas, the villous membrane of the 

small and large intestine and the adrenal gland [31, 32]. Pgp is also located in 

blood-tissue barriers, including the placenta and endometrium, blood-inner ear 

barrier, blood-mammary tissue barrier, blood-testis barrier, blood-nerve barrier, 

blood- brain barrier (where it is exclusively oriented to transport substrates 

toward blood) and epithelial cells of the blood-CSF barrier [22, 33]. Pgp either 

restricts drug-entry to the body via the gastrointestinal tract and excretes 

metabolites into the urine or gastrointestinal tract or prevents their access from 

the blood to the fetus and sensitive organs such as the brain and testis [33].  

Pgp is a phosphorylated glycoprotein with an apparent molecular weight of 

170kDA [18]. There are two types of human Pgp: type I, encoded by the MDR 1 
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gene (ABCB1), which confers the drug resistance phenotype and promotes drug 

efflux at the blood-brain barrier, and type II, encoded by (ABCB2), present in the 

canalicular membrane of hepatocytes and functioning as phosphatidylcholine 

translocase [34]. The MDR1 gene in humans is located on chromosome seven 

and has 28 exons [35]. Structurally the transporter consists of two interwoven 

transmembrane regions, each containing six transmembrane helices and an 

ATP-binding site located intracellularly. The transmembrane helices of Pgp allow 

it to bind and induce efflux of a broad range of substrates with varying affinities 

[36]. Although substrates for Pgp tend to be hydrophobic or weak base 

molecules with a planar ring system, Pgp is considered polyspecific because it 

can recognize a wide range of substrates including antiarrhythmics, 

antihistamines, cholesterol-lowering statins and human immunodeficiency virus 

protease inhibitors [26].  

Multidrug resistance protein 

The multidrug resistance protein (MRP) 1 was discovered in 1992 by Cole [37] 

and co-workers and the MRP family of proteins comprised nine characterized 

members (MRP1-9) also named ABCC1-6 and 10-12, respectively. Among MRP 

proteins, MRP1 is the most studied and like Pgp, MRP1 is an ATP-dependent 

transporter. It is expressed at low levels throughout many normal tissues and 

cell types in the body, but it is more highly expressed in the adrenal gland, 

bladder, CP, colon, erythrocytes, kidney, lung, placenta, spleen, stomach, testis, 

helper T-cells and muscle (both skeletal and cardiac) [33]. In contrast to Pgp 

and MRP2, it is localized on the basolateral membranes in polarized cells [38]. 
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The basolateral localization of MRP1 serves to protect sensitive tissues. For 

example, basolateral expression of MRP1 in the CP allows the protein to 

transport drugs from the cerebrospinal fluid to the blood to protect sensitive 

nervous tissues [22]. MRP1 is a 190-kDa protein containing 1531 amino acids 

and its cognate gene is located on chromosome 16p13.11 [39]. MRP1 functions 

mainly as a co-transporter of amphipathic organic anions. It can transport 

hydrophobic drugs or other compounds that are conjugated or complexed to the 

anionic tripeptide glutathione, glucuronic acid, or to sulfate [16].  

Breast cancer resistance protein  

In the early 1990s several groups began reporting non-Pgp, non-MRP1-

mediated pharmacoresistance in a variety of drug selected cell lines [40, 41]. 

The gene responsible for the novel phenotype was first cloned by Doyle and 

colleagues from a breast cancer cell line and was therefore called BCRP for 

breast cancer resistance protein [42]. Like Pgp, the breast cancer resistance 

protein (BCRP) is also localized to the apical face of polarized membranes. It is 

found in epithelial cells of the intestine, human placenta syncytiotrophoblasts, 

liver bile canaliculi, prostate, brain, lobules and lactiferous ducts of the 

mammary gland, and renal tubules, as well as the endothelium of veins and 

capillaries, including those at the blood-brain barrier and the placenta [33, 42]. 

Based on messenger ribonucleic acid (mRNA) analysis ABCG2 was more 

strongly expressed at the BBB than Pgp or MRP1 [43]. 

The tissue distribution of BCRP shows extensive overlap with that of Pgp, 

suggesting that it might have a similar role as Pgp in the pharmacological 
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handling of substrate drugs. It appears to transport both positively and 

negatively charged drugs, including sulfate conjugates and the list of its 

substrates is rapidly expanding, highlighting the importance of this protein [28]. 

MECHANISMS OF PGP OVEREXPRESSION IN 

PHARMACORESISTANT EPILEPSY 

An important question is whether the overexpression of efflux transporters in 

epileptic brain tissue is constitutive or acquired/induced, or both mechanisms 

may be at play. A constitutive overexpression could occur as a result of a 

genetic predisposition, or it could be intrinsic to the development of the specific 

pathology. It is also conceivable that overexpression is acquired such as 

induction by recurrent seizures or even the AEDs intended to prevent them [3]. 

We will discuss the evidence for the possible various mechanisms in the 

following paragraphs. 

Seizures induce Pgp overexpression 

In rats and mice, experimentally induced seizures have been shown to increase 

the expression of Pgp in brain capillary endothelial cells (BCECs), astrocytes 

and neurons [18]. Zhang et al. [44] reported increased Pgp expression in the 

hippocampus following intracerebroventricular injection of kainate in rats, 

causing neuronal injury. This increase in Pgp expression was observed in 

reactive astrocytes as early as one day after injection, peaked at two weeks but 

was still visible at ten weeks. Seeger et al. [45] studied Pgp expression at 24 

hours and ten days after status epilepticus (SE) (to differentiate between seizure 

related changes and changes developing during epileptogenesis). Pgp 
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increased significantly 24 hours after kainate-induced SE in BCECs at the 

dentate gyrus, amygdala, piriform and parietal gyrus. Additionally in the brain 

parenchyma of rats 24 hours after SE, a significant increase in Pgp expression 

was observed in the piriform and parietal cortex, dentate gyrus and 

hippocampus. However, the alterations in Pgp expression were only transient 

and disappeared ten days after the SE, except for the dentate hilus and the CA1 

sector of the hippocampus, in which a significant increase in parenchymal Pgp 

was observed ten days after the status. Following systemic injection of kainate 

in mice, expression of mdr-1, the gene encoding Pgp, was found to be increased 

in the hippocampus for three-24 hours after the seizures but returned to control 

level by 72 hours [46]. Recently Pekcec et al. [47] studied Pgp expression in 

brain tissue sampled from epileptic dogs following spontaneous status 

epilepticus or seizure clusters to avoid a putative bias of status epilepticus 

induction. They demonstrated a significant upregulation of Pgp in the 

hippocampal hilus (82% above control), the dentate gyrus granule cell layer 

(132% above control) and parietal cortex of canines (123% above control) one-

seven days following a seizure. In further support of the temporal increase of 

Pgp after seizures is the study by Bankstahl and co-workers [48] in two rat SE 

models. Immunohistochemical staining of Pgp did not indicate any increase of 

Pgp expression in brain capillary endothelial cells during SE, whereas significant 

overexpression was determined in both models 48 hours after SE. Seven days 

after SE, Pgp expression had returned to control levels [48]. Löscher and 

Potschka [11] suggested that the excitatory neurotransmitter glutamate, which is 

excessively released by seizures, is involved in the seizure-induced over-
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expression of Pgp in the brain. This suggestion was based on a report by Zhu 

and Liu [49], showing that glutamate up regulates the expression and functional 

activity of Pgp in rat BCECs in vitro. They suggested that glutamate upregulates 

Pgp expression in BCECs by an N-methyl-D-aspartate (NMDA) receptor-

mediated mechanism, which could play a role during ischemic and anoxic injury. 

Bankstahl et al. [50] recently examined this hypothesis and evaluated whether 

glutamate is involved in seizure-induced upregulation of Pgp in brain capillaries 

after systemic-administration of pilocarpine, a model of mTLE. Their data shows 

that the administration of the glutamate receptor antagonist MK-801 after 

convulsive SE prevents the upregulation of Pgp in brain microvessels in the 

hippocampus, indicating that SE-induced glutamate release is involved in the 

regulation of Pgp expression after seizures. Additionally MK-801 reduces the 

neuronal damage after prolonged seizures which may offer a therapeutic option. 

The activation of the NMDA receptor by glutamate is known to generate reactive 

oxygen species (ROS) and Zhu and Liu [49] suggested that ROS may mediate 

the effect of glutamate on Pgp expression. Generation of free radicals such as 

ROS has been suggested to play a key role in neuronal damage developing 

after SE. It is generally believed that excitotoxic cell death is due to excessive 

activation of NMDA receptors by glutamate, leading to excessive activation of 

calcium ion influx through the receptor’s associated ion channels and 

subsequent free radical production, including ROS. Based on this hypothesis, 

ROS is likely to be the link between seizures induced glutamate release and 

over-expression of Pgp. The data from these animal studies indicate that Pgp 
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overexpression is a result of sustained seizure activity but not of the processes 

underlying development of epilepsy. 

Brain inflammation and epilepsy 

It is widely accepted that neuronal dysfunctions are the cause of seizures and 

targeting of neuronal ion channels, GABA, and glutamate receptors has been, 

for decades, the mainstream pharmacological approach to eradicate seizures. 

Although the ultimate effectors of seizures are neurons, recent advances in 

experimental neurology have revealed that inflammation can precipitate seizures 

or sustain seizure activity [51]. Two distinct inflammatory processes have been 

linked to seizures. Neuroinflammation is present in epileptic brain where it 

exacerbates seizures or increases their frequency [52]. By contrast, systemic 

inflammation can cause epileptiform neuronal discharge via loss of ionic (e.g., 

potassium [53]) and neurotransmitter (e.g., glutamate [51, 54]) homeostasis. 

Although neuroinflammation directly affects neurovascular and glial function, the 

effects of systemic inflammation are mediated or facilitated by loss of BBB 

function [55]. BBB disruption can be triggered by a direct insult to the 

endothelium [56] or by systemic factors, including activation of circulating 

leukocytes and release of molecular mediators that increase vascular 

permeability [51, 57]. Pro-inflammatory and anti-inflammatory cytokines, 

chemokines, and prostaglandins are responsible for the production of an early 

immune response. Numerous studies have confirmed enhanced inflammatory 

signalling in chronic rodent models and in tissue from patients with TLE [58, 59]. 

Genetic and pharmacological modulation of the synthesis and secretion of 
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inflammatory mediators and of their receptors can influence seizure thresholds, 

severity and duration in mouse and rat TLE models [59]. Anti-inflammatory 

drugs, such as steroids and intravenous immunoglobulins, are useful in selected 

pharmacoresistant epileptic syndromes, whereas fever, immunization, and trivial 

infection can precipitate seizures, providing a solid link between inflammation 

and seizures [60]. In addition, inflammatory mediators seem to contribute to 

disease-associated alterations, which can exert an effect on antiepileptic drug 

responses. For instance, cytokines, such as interleukin (IL) - IL-1 β,IL-2, IL-6 

and tumor necrosis factor- α (TNF- α), can modulate the expression, sub-unit 

composition and functional state of antiepileptic drug targets [59, 61, 62].  

Pgp overexpression and brain inflammation 

Further downstream events in the signalling cascade have been identified and 

Bauer et al [63] have shown that cyclooxygenase-2 (COX-2) is a central factor of 

a cascade that drives the transcriptional activation of the Pgp-encoding gene in 

the epileptic brain. COX is an enzyme that is responsible for the formation of 

prostanoids, including prostaglandins, prostacyclin and thromboxane. These 

lipid mediators play important roles in inflammation and pain and in normal 

physiological functions.  Pharmacological inhibition of COX can provide relief 

from the symptoms of inflammation and pain. It has been proven that COX-2 

mediates Pgp regulation in response to excess glutamate concentrations such 

as those occurring during epileptic seizures [64]. It is known that glutaminergic 

signaling increases COX-2 expression and that at least in rat mesangial cells 

COX-2 activation leads to increased Pgp [65]. Furthermore, both the 
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nonselective COX inhibitor indomethacin as well as the selective COX-2 inhibitor 

celecoxib counteracted Pgp increase by glutamate exposure of isolated rat brain 

capillaries. Van Vliet et al. tested the efficacy of COX-2 inhibitors in a chronic 

rodent model, overexpressing Pgp [66, 67]. A sub-chronic 2-week treatment with 

the highly selective COX-2 inhibitor SC-58236 in the chronic epileptic state kept 

Pgp expression at control levels [68]. These data substantiate that COX-2 

inhibition can block repeated induction of Pgp by ongoing seizure activity, 

thereby allowing Pgp to return to control levels. Furthermore, enhanced Pgp 

expression in chronic epileptic rats was associated with a significant reduction in 

the brain penetration of the antiepileptic drug phenytoin. Importantly, the brain 

delivery of phenytoin was significantly enhanced by subchronic COX-2 inhibition 

in rats with recurrent seizure activity [68]. These data provided evidence that 

COX-2 inhibition may help to increase concentrations of AEDs at the target sites 

and that COX-2 inhibition could be a novel therapeutic concept to overcome 

pharmacoresistance in epilepsies [69].  

Genetic polymorphism and Pgp expression 

Several studies have tested for an association between Pgp expression in 

patients with epilepsy and polymorphism in drug transporter genes [70]. One of 

these, a single nucleotide polymorphism in exon 26 (C3435T) of the MDR1 gene 

is associated with altered expression, functionality and substrate specificity of 

the MDR1 product Pgp. Based on an initial report by Siddiqui [71], a series of 

studies supported the hypothesis that the C3435T polymorphism is associated 

with resistance to multiple AEDs [72]. Several recent genetic association studies 



16 
 

have also indicated an association of the 3435CC genotype with increased Pgp 

expression and drug resistant epilepsy [72]. In contrast however are other 

studies which did not find a link between ABCB1 and response to AEDs [72]. 

Two metaanalyses including 11 studies up to September 2007 involving 3371 

patients and including 22 studies up to February 2010 involving 6755 patients 

respectively provided no support for an association between 

pharmacoresistance and ABCB1 [73, 74].  The inconsistency between the 

studies might be caused by different inclusion criteria (definition of 

pharmacoresistance, co-morbidities, co-medication and population structure). A 

recent study pointed out the importance of stratification by patient age and 

aetiology of epilepsy [75]. Another issue is the selection of AEDs included in the 

studies as the inclusion of drugs which have not been confirmed as Pgp 

substrates will bias the data [69]. Another factor complicating genetic 

association studies is related to data indicating that the C3435T polymorphism 

might have contrasting consequences on Pgp expression in different ethnic 

subgroups. This is in line with the observation that an association in the opposite 

direction has been described in studies in Asian patients as compared to studies 

reporting an association in a Caucasian patient population [76]. 

Are antiepileptic drugs Pgp substrates? 

A central question of the transporter hypothesis is whether AEDs are substrates 

for Pgp. Only then, could overexpression of Pgp crucially contribute to 

pharmacoresistance in epilepsy. So far evidence has been reported that 

phenytoin, phenobarbital, lamotrigine, levetiracetam, topiramate, and 
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carbamazepine and oxcarbazepine metabolite are substrates of human Pgp [77-

79]. On the other hand data argue against a transport of valproic acid and 

carbamazepine [79, 80]. In addition, transport of AEDs has been evaluated in a 

human colon carcinoma cell line. In these in vitro assays no evidence was 

obtained that carbamazepine, vigabatrine, gabapentin, phenobarbital, or 

lamotrigine are substrate of Pgp [81, 82]. Moreover, Rivers et al. reported that 

carbamazepine, valproic acid, phenytoin, lamotrigin, and primidone are not likely 

to be substrates of Pgp based on their investigations in breast and cancer cell 

lines [83]. Although in vitro and in vivo transport assays have indicated that 

several antiepileptic drugs are substrates of Pgp, and that some AEDs are 

transported by ABC transporters, the data however is controversial. Although 

apparently a simple question, obvious difficulties exist in research evaluating the 

transporter substrate characteristics of AEDs. AEDs can pass the BBB 

efficaciously when efflux transporters such as Pgp are expressed at basal level. 

However, their brain penetration is limited once a relevant over expression 

occurs. Highly lipophilic compounds can rapidly diffuse through membranes of 

endothelial cells and might be less sensitive to an impact of active transports. 

Furthermore differences in the affinity to the transporter molecule might exist. 

Respective differences need to be taken into consideration when choosing an in 

vitro assay to explore the substrate specificities of AEDs. It has also been 

recently demonstrated that the transport of AEDs depends on concentration and 

it is therefore of particular relevance to test potential Pgp substrates at clinically 

relevant concentrations [84]. Additionally, recent data also suggests that the 

substrate recognition or transport efficacy by Pgp differs between human and 



18 
 

mouse for certain AEDs [85, 86]. Such differences might explain in part the 

controversial data which have been reported for AED transport by Pgp from 

different species [3]. 

Antiepileptic drugs induce Pgp overexpression 

Some studies have indicated that antiepileptic drugs might contribute to the 

induction of Pgp overexpression [69]. Lü et  al.  [87] showed in astrocyte cell 

cultures from postnatal Wistar rats that the antiepileptic drugs phenytoin, 

phenobarbital, carbamazepine, and valproic acid induced the overexpression of 

Pgp in astrocytes in a dose- and time-dependent manner. Significantly higher 

levels of Pgp staining were detected at therapeutic concentrations of certain 

antiepileptic drugs (20 microg/ml phenobarbital, 40 microg/ml phenobarbital, and 

20 microg/ml phenytoin) on day 30. Upregulation of Pgp was detected when 

using higher concentrations of phenytoin, phenobarbital, and valproic acid on 

day 20 and when using higher concentrations of any of the four antiepileptic 

drugs on day 30.  Similarily, Lombardo et al. [88] reported that carbamazepine, 

phenobarbital, and phenytoin induce Pgp and other transporters in rat brain 

endothelial cell lines via and interaction with the pregnane x receptor and the 

constitutive androstane receptor. In contrast Ambroziak el al. [89] did not 

observe effects of these AEDs on expression and functionality of Pgp. Therefore 

definite conclusions regarding the impact of AEDs require further future efforts 

[69]. 
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PRECLINICAL STUDIES OF PGP IN MTLE 

Preclinical epilepsy models 

Knockout mice and natural mutants 

Investigations in genetically deficient animals, which lack a functional form of 

one or more drug efflux transporter, have contributed to a significant extent to 

the current knowledge about the physiological and pharmacological function of 

these transporters. Genetically deficient mice have been generated by knockout 

technologies with the purpose of studying the role of specific transporters. 

Furthermore, subpopulations of animals with spontaneous mutations in 

multidrug transporter genes have been identified for different species. The in 

vivo impact of Pgp in the BBB has been intensely studied in knockout mice 

lacking the Pgp isoform mdr1a (mdr1a (-/-) mice) or mdr1a and mdr1b Pgp 

(md1a/1b (-/-) mice). Mdr1a knockout mice lack the mdr1a isoform of Pgp all 

over the body and in the brain capillary endothelial cells. The animals are viable 

and fertile but are more susceptible to developing a severe, spontaneous 

intestinal inflammation [11]. 

Animal models of epilepsy 

Animal models of epilepsy are a valuable tool to study models of seizure onset, 

neurologic changes during seizures, and new pharmacologic tools for seizure 

propagation or pharmacoresistance. For epilepsy research various animal 

models are available, each with their specific characteristics. Globally, these 

models are categorized into models of seizures and those of epilepsy [90]. 

Examples of seizures, or acute, models are the cortical stimulation model and 
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the maximal electroshock model. The amygdala kindling model is also an acute 

model, as most animals do not develop spontaneous epilepsy. The models of 

epilepsy, chronic models, can be subdivided into models of genetic epilepsy and 

models of acquired (symptomatic) epilepsy [91]. The first category includes both 

animals with spontaneous mutations and animals with induced mutations, 

resulting in epileptic symptoms and behavior. In animals of the acquired or 

symptomatic epilepsy models, status epilepticus (SE) is induced by electrical 

stimulation (amygdala, perforant path, and hippocampus) or through the 

administration of chemical convulsants (pilocarpine or kainic acid) in previously 

non-epileptic rats, which results in the development of spontaneous seizures 

after a latent period of days to weeks [92].  

Kindling model 

Since its introduction by Goddard in 1967 [93], the kindling model has been 

used extensively as an animal model of epilepsy. Kindling can be induced by the 

repeated administration of a mild electric stimulus to the rat brain via an 

implanted electrode into a limbic structure such as the amygdala, hippocampus, 

entorhinal cortex or other brain areas. Over a period of several stimulation 

session the rat reliably displays stage five seizures, according to the Racine 

scales [94]. The pathophysiology of kindling is very similar to that of human 

mTLE. For example, kindling leads to structural and functional changes 

characterized by neuronal cell loss, gliosis, neurogenesis and mossy fiber 

spouting [95, 96]. 
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Pilocarpine model 

The pilocarpine and the kainic acid model are probably the most commonly 

studied chemical-inductive models for mTLE. Pilocarpine, a potent muscarinic 

cholinergic agonist, is administered as a single high dose (300-380mg/kg) to rats 

or mice. It acutely induces sequential behavioral and electrographic changes, 

indicative of sustained epileptic activity, resulting in widespread damage to the 

forebrain. After 15-25 minutes this results in motorlimbic seizures and leads to 

SE within 50-60 minutes after pilocarpine administration that last for up to 12 

hours. After a silent period of a few days animals start exhibiting spontaneous 

recurrent seizures. Morphological analysis of the brain after pilocarpine-indcued 

SE demonstrates cell loss in the hippocampal subfields CA1 and CA3 and in the 

hilus of the dentate gyurs, in the septum, olfactory tubercle, amygdala, piriform 

cortex, neocortex and thalamic nuclei [97, 98]. 

Kainic acid model 

The excitotoxic glutamate analogue kainate can be systemically or 

intracerebrally injected into an animal and rapidly produce acute seizures. In 

rodents, large doses of the drug induce severe acute seizures with subsequent 

SE, which is followed by a quiescent period of usually several weeks [99]. This 

latent period is followed by the development of spontaneous recurrent seizures. 

Injections of kainic acid were shown to lead to cell death in the hippocampus, 

amygdala, entorhinal cortex and medial thalamic nuclei [100]. 
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Preclinical studies of Pgp in epileptic rats 

In animals, models of temporal lobe epilepsy, such as the kindling and kainate 

models, have been used to study the molecular mechanisms of 

pharmacoresistance. In these models a large group of kindled or epileptic rats is 

treated with AEDs. Subsequently subgroups of animals that either respond 

(pharmacosensitive/seizure-free) or do not respond (pharmacoresistant) to 

AEDs are selected.  Pgp is overexpressed in endothelial cells and ectopically in 

astrocytes, after induction of sustained limbic seizures in rodents [101]. 

Upregulation of the mRNA of the MDR1 gene was detected in rat brain during 

both acute and spontaneous seizures caused by status epilepticus. More 

recently Volk and Löscher [101] used a rat model of temporal lobe epilepsy to 

examine whether Pgp expression differs in AED responders from non-

responders rats. In this model, spontaneous recurrent seizures develop after 

status epilepticus is induced by prolonged electrical stimulation of the 

basolateral amygdala. They showed that phenobarbital-resistant epileptic rats 

exhibit significantly higher endothelial expression of Pgp in limbic brain regions 

compared to drug-responsive rates providing further support for the hypothesis 

of Pgp overexpression in pharmacoresistant epilepsy. Furthermore in another 

study with amygdala epileptic kindled rats significant upregulation of Pgp was 

reported in brain capillary endothelial cells of limbic brain regions. In these rats, 

brain-to-plasma concentration ratios of phenytoin in the hippocampus were 

about 30% lower than those measured in control rats [102]. When kindled rats 

were divided into phenytoin responders and non responders, non responders 

exhibited a significantly higher expression of Pgp in capillary endothelial cells in 
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the epileptogenic focus [103].  Moreover, no differences in Pgp expression were 

observed in the adjacent piriform cortex indicating that the Pgp expression 

between non-responders and responders are restricted to the kindled focus 

[103]. Rizzi et al. [46] reported that mdr1 mRNA is overexpressed in mouse 

hippocampus after the induction of limbic seizures. Then phenytoin was 

systemically administered to the mice, its brain-to-plasma ratio was 30% less 

than in mice not subjected to seizures thus indicating reduced drug-

concentrations on brain. 

Moreover, targeting Pgp by modulators can enhance the efficacy of AEDs. The 

co-administration of the unselective inhibitor verapamil proved to potentiate the 

anticonvulsant efficacy of the AED oxcarbazepine [104]. The third generation 

selective modulator tariquidar (TQD) increased the efficacy of phenytoin in a 

chronic rat model where spontaneous recurrent seizures where induced by 

electrical stimulation [105]. However, putative species differences in the 

substrate spectrum of the transporters need to be taken into account when 

extrapolating from rodent data to the clinical situation. 

CLINICAL STUDIES OF PGP IN MTLE 

Evidence for increased expression of Pgp has mainly been derived from 

epileptic tissues removed during epilepsy surgery from patients with 

pharmacoresistant epilepsy [3]. Tishler et al. [10] were the first to measure 

MDR1 expression in 19 patients undergoing resective epilepsy surgery, 15 of 

whom had mTLE receiving temporal lobeectomy for a mixture of pathologies 

(mostly hippocampus sclerosis). MDR1 mRNA level was found to be ten times 
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higher in 11 of the 19 resected samples compared with controls. In addition Pgp 

was detected by immunohistochemical staining in astrocytes where it is not 

normally present, suggesting novel expression. Following Tishler and 

colleagues’ report multiple follow-up studies have confirmed this initial finding in 

patients with different types of epilepsy and different pathologies. Dombrowski et 

al. [106] applied cDNA array and found overexpression of MDR1, MRP2 and 

MRP5 in endothelial cells isolated from temporal lobe blood vessels of brain 

specimens from five pharmacoresistant patients undergoing temporal 

lobeectomy. Sisodiya et al. demonstrated both Pgp and MRP1 in astrocytic 

cells, but not in capillary endothelial cells, in the hippocampus in cases of 

hippocampal sclerosis [8]. More recently Aronica et al. [107] performed detailed 

immunostaining studies in brain sections from 16 patients with hippocampal 

sclerosis and found upregulation for Pgp and MRP2 in capillary endothelium 

consistent with an enhanced barrier function. MRP1 was detected in glial foot 

processes around blood vessels, possibly functioning as a “second line” defence 

mechanism. In addition, novel expression of Pgp, MRP1 and MRP2 was found 

in reactive astrocytes within the hippocampus in the CA1 and hilar regions. A 

recent post-mortem study showed Pgp overexpression in the sclerotic 

hippocampus of individuals with pharmacoresistant epilepsy, but not in post 

mortem seizure-free individuals or non-epileptogenic tissue with electrode-

related injuries [108].  
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CLINICAL STUDIES OF PGP IN OTHER EPILEPSY SYNDROMES 

Previous studies have shown that Pgp is ectopically expressed in surgically-

resected specimens from patients with pharmacoresistant epilepsy with a variety 

of structural abnormalities; including malformations of cortical development such 

as focal cortical dysplasia (FCD) [109, 110]. FCD is one of the most common 

causes of pharmacoresistant epilepsy. Evidence for Pg expression in FCD has 

mainly been performed in epileptogenic human brain tissue resected during 

epilepsy surgery. Sisodiya et al. [111] were the first to show an overexpression 

of Pgp in FCD. They studied four samples of surgically resected FCD and 

compared the findings with normal necropsy brain tissue. They showed an 

overexpression of Pgp in abnormal giant dysplastic neurons, glial cells, and in 

perivascular distribution in epileptogenic tissue. The authors extended their work 

by increasing the number of patients and included 14 patients with FCD in their 

study [8]. Their findings confirmed their previous work demonstrating an 

overexpression of Pgp also in astrocytes, dysmorphic neurons and balloon cells 

of patients with FCD. These findings have since been confirmed in several other 

studies [110, 112-114]. Ak et al. included a higher number of patients than the 

previously reported and studied the expression of Pgp in the epileptic tissues 

resected surgically in 28 patients with FCD and compared the results with 10 

normal necropsy brain tissues [110]. Normal brain showed no Pgp expression in 

neurons and astrocytes. In contrast to normal brain Pgp is intensely expressed 

in both neurons and reactive astrocytes in the vast majority of dysplastic tissues 

and endothelial cells of patients with FCD. These findings supported the 

‘transporter hypothesis’ that overexpression of multidrug efflux transporters in 
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epileptogenic brain regions may lower drug concentrations and thereby reducing 

their antiepileptic effects, which may explain the refractoriness to AEDs in FCD. 

However, although increased multidrug efflux transporter expression has been 

demonstrated in human tissue of patients with FCD that had been resected in 

surgery it may not be functionally relevant. Therefore non-invasive brain imaging 

of multidrug efflux transporter function in pharmacoresistant epilepsy patients is 

a strategy to evaluate whether the overexpression of multidrug efflux 

transporters at the BBB as postulated in the ‘transporter hypothesis’ has any 

functional consequences that underlie pharmacoresistance in epilepsy.  

NEUROIMAGING OF PGP WITH PET   

Non invasive brain imaging of multidrug efflux transporter function in 

pharmacoresistant and seizure-free epilepsy patients is a strategy to evaluate 

whether the overexpression of multidrug efflux transporters at the BBB as 

postulated in the transporter hypothesis has any functional consequences that 

underlie pharmacoresistance in epilepsy. Additionally, PET tracers for multidrug 

efflux transporters could be useful to identify epilepsy patients with increased 

multidrug efflux transporter activity who will benefit from treatment with multidrug 

efflux transporter modulation drugs and therefore hold great promises for 

individualized medicine [115]. 

Functional neuroimaging with PET and SPECT in Epilepsy 

Positron emission tomography (PET) and single photon emission computed 

tomography (SPECT) are imaging techniques that can study CNS function in 

vivo. Thereby a radionuclide is synthetically introduced into a molecule of 
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biological relevance and administered to a patient or animal. PET and SPECT 

cameras monitor the distribution of these radiotracers over time. In PET the 

radioisotope undergoes positron decay and emits a positron, which interacts 

with an electron in situ, producing a pair of annihilation photons moving in 

approximately opposite directions which can be detected outside the body by a 

PET camera [116]. In contrast with PET, the radiotracers used in SPECT emit a 

single photon (gamma ray) that is detected directly using collimators. By 

detecting photons "coincident" in time, PET provides more radiation event 

localization information and, thus, higher resolution images than SPECT. 

Therefore the great advantage of PET over SPECT is a higher sensitivity, better 

temporal and spatial resolution and ability to provide a quantitative measure of 

radioactivity in tissues. 

Almost all efforts to develop multidrug efflux transporters ligands have focused 

on Pgp expressed at the BBB or in tumours. To date three different categories of 

imaging probes have been described to measure multidrug efflux transporters in 

vivo [117]. 1) Radiolabeled transporter substrates usually developed from drugs 

known to be substrates for Pgp. More recently 2) radiolabeled transporter 

inhibitors as well as 3) radiolabeled prodrugs. 

 Radiolabeled transporter substrates 

 [11C]verapamil  

[11C]verapamil (VPM) is the best validated PET tracer to image Pgp function to 

date. Verapamil, a calcium channel blocker, has been found to be a substrate 
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for Pgp at low concentrations (which are used in PET) but also inhibits the Pgp 

transporter ATP hydrolysis (which initiates substrate extrusion) at high 

concentrations [36]. As it is well characterised both pharmacologically and with 

regards to its metabolic pathways it was thought to be a suitable candidate for a 

PET tracer to quantify Pgp function in vivo non-invasively. In 1996 Elsinga et al. 

[118] were the first to use PET to study multidrug resistance and to measure 

Pgp function. They developed a method using racemic (±) verapamil as a PET 

radiotracer and studied its tissue distribution in vivo in rats and in vitro with 

seizure-free and pharmacoresistant human ovarian carcinoma cell lines [118]. 

The racemic (±) verapamil consists of two enantiomers, the (S) - and (R)- 

verapamil.  In vivo pharmacokinetics and pharmacodynamics of both 

enantiomers in animals and humans are different and the (S)-verapamil is more 

actively metabolised than the R-form, resulting in a 2.5 higher concentration of 

the (R)-enantiomer in plasma [119]. Furthermore (R)-verapamil exerts only 5-

10% of the calcium channel blocking activity of the (S)-enantiomer and (S)-

verapamil is ten times more potent in prolonging PR-intervals in humans [120]. 

As the enantiomers of verapamil have different pharmacokinetics, the 

quantification of racemic (11C)verapamil may be difficult. For this reason 

Luurtsema et al. developed a synthesis of (R)-[11C]verapamil and they found 

that the metabolism was slower than that of the racemic verapamil [121, 122]. 

(R)-[11C]verapamil is a high-affinity substrate of Pgp and is therefore very 

effectively transported by Pgp at the BBB. This results in low brain uptake of this 

radiotracer thus making it difficult to detect regional differences in cerebral Pgp 

function. A possible strategy to overcome the limitation of the low brain uptake of 
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Pgp substrate radiotracer is to perform PET scans after partial blockade by Pgp 

modulating drugs such as cyclosporine A (CsA) or tariquidar (TQD) [70]. The 

third-generation Pgp inhibitor TQD is safer than the non-selective CsA for use in 

human subjects and was shown to lack interaction with metabolism and plasma 

protein binding of (R)-[11C]verapamil [123, 124]. Blocking Pgp with an inhibitor 

allows the radiotracer to enter the BBB and hence increase its uptake and signal 

in the brain.  

Single tissue compartment model to measure Pgp function 

The function of Pgp can be quantified in vivo from dynamic PET data using 

standard compartmental models. Pgp mediates movement of substrates, such 

as verapamil, from brain to plasma. Since we administer the Pgp substrate PET 

tracer ¹¹C-verapamil intravenously, its entry into the brain is limited by P-gp 

activity, and the neteffect is measured as K₁, the transport rate constant from 

plasma to brain; a low net influx from plasma to brain, indicated by a low K₁ 

value, therefore indicates high efflux from the brain and, thus, high Pgp activity. 

As shown in rodent models of Pgp overactivity [125], partial Pgp inhibition 

increases (R)-[¹¹C]verapamil K₁, but this increase is attenuated in areas of high 

P-glycoprotein activity, since a fixed dose of Pgp inhibitor (2 or 3 mg/kg) inhibits 

a lower proportion of binding sites in areas of high P-gp activity than in areas of 

low activity. Therefore partial Pgp inhibition should be used, because if Pgp 

glycoprotein were fully inhibited, brain uptake of ¹¹C-verapamil K₁ would be 

driven by passive diffusion only and differences in Pgp activity could not be 

detected. 
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Preclinical imaging of Pgp function with [11C]verapamil  

PET analysis with [11C]-verapamil to assess Pgp function at the BBB within the 

intact CNS was first validated using mdr1a knockout mice and showed lower 

[11C]-verapamil uptake in the wildtype mice compared to those in the mdr1a 

knockout mice [126]. In addition it was possible to prove that the reversal of Pgp 

function, i.e. inhibiting Pgp and enabling Pgp substrates to cross the BBB, can 

be monitored by PET. The unselective Pgp inhibitor CsA increased the  [11C]-

verapamil accumulation to levels comparable in mdr1a knockout mice [126]. 

This concept was subsequently replicated in two further studies using the 

racemic [11C]-verapamil and the unselective inhibitor CsA at different doses 

resulting in dose dependent increases of [11C]verapamil by Pgp modulation after 

CsA [127, 128]. Furthermore Bankstahl et al. [124] performed paired (R)-

[11C]verapamil PET scans in a group of 7 healthy Wistar rats before and after 

administration of the new third-generation Pgp inhibitor TQD (15 mg/kg). After 

TQD administration, the distribution volume (DV = the brain-to-plasma ratio) of 

(R)-[11C]verapamil was 12-fold higher than baseline and the influx rate constant 

K1 of (R)-[11C]verapamil into the brain, was about eight-fold higher after TQD 

hereby, demonstrating that (R)-[11C]verapamil PET combined with TQD 

administration is a promising approach to measure Pgp function at the BBB. 

Recently Kuntner et al. used (R)-[11C]verapamil PET in rats before and after the 

administration of different doses of the selective Pgp inhibitors TQD  and 

elacridar [129]. They demonstrated that the median effective dose (the dose 

required to achieve 50% of the desired response in 50% of the population=ED 

50) for TQD is 3.0 +/- 0.2 mg/kg. Furthermore, PET scans after 3 mg/kg TQD 
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resulted in regionally different enhancement of brain activity distribution, with 

lowest distribution volume in cerebellum and highest distribution volume in 

thalamus pointing to regional differences in cerebral Pgp function and 

expression in rat brain. 

Preclinical imaging of Pgp function in pharmacoresistant epilepsy 

with [11C]verapamil 

Following the promising results of (R)-[11C]verapamil in healthy Wistar rats a 

proof of concept study was performed in rats 48 hours after pilocarpine-induced 

status epilepticus (SE). Both control and post-SE rats underwent (R)-

[11C]verapamil PET scans after administration of tariquidar at 3mg/kg [125]. 

Regional PET data was analyzed and Pgp expression was independently 

quantified in the same brain regions using immunohistochemical staining [125]. 

In brain regions with increased Pgp expression (cerebellum, thalamus, 

hippocampus) in SE rats the influx rate constants from blood to brain, K1, of (R)-

[11C]verapamil were significantly decreased relative to control animals, thereby 

supporting the hypothesis of regionally increased cerebral Pgp function in 

epilepsy.  

Clinical Imaging of Pgp function with [11C]verapamil 

Pgp function at the BBB of healthy humans has been imaged and quantified 

using [11C]-verapamil [130]. Recent studies have shown, however, that imaging 

of Pgp function at the BBB in humans may need to take into consideration a 

subject’s age and the genetic polymorphisms of Pgp. Bartels et al. [131] studied 

the Pgp function using [11C]-verapamil PET in 17 healthy volunteers with age 
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18-86. Analysis with statistical parametric mapping showed significantly 

decreased Pgp function in older subjects than in younger subjects in the internal 

capsule and corona radiata white matter and in orbitofrontal regions; thereby 

suggesting that Pgp function declines with increasing age.  Furthermore, 

haplotypes of nucleotide polymorphisms at positions 1236, 2677 snf 3435 of the 

MDR1 gene have been shown to alter Pgp activity in vivo and to alter substrate 

specificity in vitro. However, imaging studies with [11C]-verapamil show that 

pharmacokinetics were unaffected in healthy volunteers who expressed either 

the TTT or the CGC (wild-type) haplotype [132, 133]. 

The promising concept of performing (R)-[11C]verapamil PET scans after 

blockade of Pgp was  recently translated into healthy human subjects [123]. Five 

healthy volunteers underwent paired (R)-[11C]verapamil PET scans before and 

after intravenous administration of tariquidar (2 mg/kg of body weight). TQD 

administration resulted in significant increases in K1, +49% +/- 36% of (R)-

[11C]verapamil across the BBB. The data from this first human study were re-

analyzed region wise using an automated atlas approach to define 43 different 

brain regions as well as parametric maps. No regional differences in TQD-

induced Pgp inhibition were detected, suggesting that there were no regional 

differences in Pgp function in healthy human brain [134]. Shortly after, Eyal and 

co-workers confirmed the results in a study with [11C]-verapamil before and 

during infusion of CsA (2.5 mg x kg(-1) x h(-1)) [135]. Thereby K1 estimates 

were similar across gray-matter regions of the brain and the magnitude of Pgp 

inhibition was comparable across BBB-protected brain structures.   



33 
 

Clinical imaging of Pgp function in pharmacoresistant epilepsy with 

[11C]verapamil 

The use of PET to determine Pgp function in epilepsy patients has only started 

recently. A pilot study by Langer et al. [136] used PET and the radiotracer (R)-

[11C]verapamil to test for differences in Pgp activity between epileptogenic and 

non-epileptogenic brain regions of patients with pharmacoresistant unilateral 

mTLE. In this study of five subjects, there was a trend toward asymmetric 

uptake of (R)-[11C]verapamil, favoring the temporal cortex and hippocampus 

ipsilateral to the main seizure focus. Parameter asymmetries were most 

prominent in parahippocampal and ambient gyrus, amygdala, medial anterior 

temporal lobe and lateral anterior temporal lobe. In contrast to temporal lobe 

volumes of interest asymmetries were minimal in regions not involved in 

epileptogenesis located outside the temporal lobe. A caveat of (R)-

[11C]verapamil is that the peripheral metabolism of the radiotracer is significantly 

faster in epilepsy patients compared to healthy controls. This is most likely 

caused by hepatic cytochrome P450 enzyme induction of AEDs [137]. The 

difficulty is that these radiometabolites which are generated from the (R)-

[11C]verapamil are also taken up into the brain tissue independent of Pgp 

function and compromise the quantitative measurement of Pgp function 

especially when comparing different study groups such as patient and healthy 

controls. Additionally, VPM is a high-affinity substrate of Pgp and is therefore 

very effectively transported by Pgp at the BBB. This results in low brain uptake 

of this radiotracer thus making it difficult to elicit and detect regional differences 

in cerebral Pgp function. To overcome this limitation, dynamic PET scans after 
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partial blockade by Pgp modulating drugs such as cyclosporine A (CsA) or 

tariquidar (TQD) can be undertaken [70]. Using in-vivo PET experiments with 

the Pgp-substrate (R)-[11C]verapamil (VPM), we studied 14 pharmacoresistant 

mTLE patients and eight seizure-free mTLE patients due to unilateral 

hippocampal sclerosis (HS) as well as 13 healthy controls, testing the 

hypotheses that Pgp-activity is higher in pharmacoresistant than seizure-free 

mTLE patients and healthy controls, and that Pgp overactivity is most 

pronounced in the epileptic focus [138]. Despite minimising the effect of different 

VPM metabolism between controls and patients by only using the first ten 

minutes of data, we found a significant difference in VPM-K1 globally across all 

analysed brain regions. VPM-K1 values in whole brain were lower in healthy 

controls compared to pharmacoresistant mTLE patients but not different 

compared to seizure-free mTLE patients. Voxel-based SPM analysis showed 

that at baseline, compared to seizure-free patients, pharmacoresistant mTLE 

patients had significantly lower regional VPM-K1, which corresponds to 

increased Pgp activity, in temporal lobe regions. In pharmacoresistant mTLE 

patients, VPM-K1 correlated inversely with average monthly seizure frequency, 

measured at the time of the baseline PET scan (correlation for whole brain: r =-

0.651, p= 0.016; hippocampus: r =-0.604, p=0.029). Because of differences in 

VPM metabolism between mTLE patients and healthy controls we created 

individual VPM-K1 images, which were normalised for global whole brain 

differences in VPM-K1 arisen from this measure being a composite of parent 

VPM and its metabolites. These globally normalized images were then used for 

further analysis to detect regional differences between healthy controls and the 
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two mTLE patient groups. Voxel-based comparison of globally normalised 

images revealed lower VPM-K1 in pharmacoresistant mTLE patients in temporal 

lobe regions compared to healthy controls. Voxel-based SPM analysis before 

and after TQD showed significant differences in increases of VPM-K1 between 

pharmacoresistant mTLE patients and healthy controls with the maximum 

difference in the ipsilateral hippocampus, suggesting that there is regionally 

specific Pgp overactivity for the epileptogenic hippocampus which is functionally 

relevant.  

As it already has been discussed the direct evidence for increased expression of 

Pgp in humans at the BBB is limited to studies from post-mortem and from 

epileptic tissues removed during epilepsy surgery from patients with 

pharmacoresistant epilepsy [8, 10, 106-108], which have substantiated 

assumptions implicit in the transporter hypothesis that Pgp is likely to be the 

most important transporter in pharmacoresistant epilepsy at a structural level. 

However, the functional relevance of this increased expression in humans 

cannot be assessed ex vivo. We therefore compared the results of their VPM-

PET scans with their epileptic tissues removed during epilepsy surgery [138], 

testing the hypotheses that Pgp overactivity demonstrated with VPM-PET 

correlates with Pgp expression established in surgically-resected brain tissue. 

Pgp immunoreactivity was observed in the blood vessels, glia, and neurons in 

the hippocampus and temporal cortex of the five PET-scanned 

pharmacoresistant mTLE patients who underwent surgery. In three 

pharmacoresistant mTLE patients, increases in VPM-K1 after TQD were less 

pronounced, suggesting relatively higher Pgp activity, in the ipsilateral (sclerotic) 
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hippocampus than the ipsilateral temporal neocortex. In accordance with this 

observation, the same three pharmacoresistant mTLE patients also showed a 

higher percentage area of Pgp immunopositive labelling in the sclerotic 

hippocampus compared with the ipsilateral neocortex. Our in-vivo PET 

measurements of Pgp activity correlated with ex-vivo Pgp expression in the 

surgical temporal lobe specimens of those patients who had undergone surgery, 

in keeping with the hypothesis that there is localized Pgp overactivity in 

pharmacoresistant mTLE. This is the first study to date comparing in-vivo Pgp 

activity by using VPM-PET before and after Pgp inhibition with ex-vivo Pgp 

expression from pharmacoresistant mTLE patients who underwent temporal 

lobe resections. In particular, our study is the first study to assess whether this 

Pgp overexpression in pharmacoresistant mTLE is functionally relevant by 

combining in-vivo VPM-PET investigated Pgp activity with ex-vivo analysis of 

Pgp expression in surgically resected tissue. Recently Bauer et al. [139] 

examined seven patients with mTLE in a longitudinal study using VPM-PET 

before and after temporal lobe resections to assess whether postoperative 

changes in seizure frequency and AED load are associated with changes in Pgp 

function and correlated their in-vivo VPM-PET measurements of Pgp function 

with ex -vivo immunohistochemistry from surgical temporal lobe specimens.  

They only performed VPM-PET scans at baseline and did not perform PET 

scans after Pgp inhibition. The seven patients were followed up for a median of 

six years (range 4–7) after epilepsy surgery. They found that pharmacoresistant 

mTLE patients who became seizure-free after surgery had lower VPM-K1 

values, hence increased temporal lobe Pgp activity before surgery, increased 
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Pgp expression in their surgically resected hippocampal specimens, and 

reduced global Pgp activity postoperatively, i.e. higher VPM-K1 values 

postoperatively, compared with patients who continued to have seizures 

postoperatively and had a poorer surgical outcome.  Their results are consistent 

with our findings in seizure-free mTLE patients who have higher VPM-K1 values, 

i.e. reduced Pgp activity, compared to pharmacoresistant mTLE patients. A 

recent post-mortem study showed Pgp overexpression in the sclerotic 

hippocampus of individuals with pharmacoresistant epilepsy, but not in post 

mortem tissue of seizure-free individuals or non-epileptogenic tissue with 

electrode-related injuries [108] indicating that seizures are necessary, but not 

sufficient, for increased Pgp expression. These findings suggest that (i) there is 

measurable, localized Pgp overactivity in pharmacoresistant mTLE which is 

related to seizure activity; (ii) Pgp overexpression is not seen in seizure-

freedom. Pgp overactivity might thus explain why pre-treatment seizure density 

is one factor predicting poor response to AEDs.  

Genetic polymorphism of Pgp might play a role pharmacoresistant mTLE. Only 

two imaging studies have been performed so far to investigate the role of Pgp 

and of its polymorphisms in pharmacoresistant mTLE. In a pilot study with seven 

patients with mTLE no apparent relationship between the ABCB1 genotype and 

the R-[11C]verapamil efflux rate constant k2 could be described but the sample 

size was small [136]. On the other hand a SPECT study in patients with epilepsy 

the 3435CC genotype was associated with reduced brain uptake of 

(99mTc)sestamibi, which was correlated with drug resistance [140]. 
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Furthermore, phenobarbital concentration in the cerebrospinal fluid and 

CSF/serum phenobarbital concentration ratio were significantly lower in patients 

with the CC genotype than in patients with CT or TT genotypes of the ABCB1 

C3435T polymorphism. Additionally, the seizure frequency was also higher in 

CC homozygotes [141].  

 [11C]-N-desmethyl-loperamide 

The radiotracer [11C]-N-desmethyl-loperamide has the advantage that it is 

metabolised to a lesser extent than (R)-[11C]verapamil. It has been used in rats 

[142] as well as monkeys [143] and the first human studies using PET with [11C]-

N-desmethyl-loperamide at baseline [144] and after  Pgp inhibition with TQD 

[145] have been recently carried out. At baseline there is virtually no uptake of 

this radiotracer in the brain. After 2 mg/kg of TQD the brain uptake of 

radioactivity increased only slightly (approximately 30%). In contrast, 4 and 6 

mg/kg of TQD increased brain uptake two- and four-fold, respectively. Until now, 

[11C]-N-desmethyl-loperamide has not been used clinically to study disease in 

patients. On the other hand, [11C]-N-desmethyl-loperamide is a high affinity Pgp 

substrate that virtually shows no brain uptake which makes it unsuitable to map 

regional differences in Pgp function at baseline.  

Radiolabeled Antiepileptic drugs 

It is also possible to label AEDs with a positron emitter. [11C]phenobarbital and 

[11C]phenytoin have been shown to be weak substrates for Pgp and are 

expected to  have higher brain uptake than the high-affinity Pgp  substrate 

[11C]verapamil [79, 146]. They could therefore be better suited to assess 
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regional differences in Pgp function (Mairinger et al., 2011), in particular Pgp 

overexpression. A study in eight patients with pharmacoresistant partial epilepsy 

and two patients without epilepsy showed that [11C]phenytoin concentration 

ratios were lower in the visual cortex in epilepsy patients who had an average 

value of 1.32 (range 1.05-1.66) compared to 1.61 (1.34-1.87) in nonepileptic 

patients [147]. But whether phenytoin concentrations are lower within the 

epileptic focus was not addressed in this study [147]. 

Other radiolabeled Pgp substrates 

Several more radiolabeled drugs and radioligands have been investigated as 

PET tracers for Pgp. The radioligand [18F]MPPF has been developed as an 

alternative to short lived (11C)-labelled tracers for PET studies of  serotonin 5-

HT1A receptors. In microPET studies, treatment with CsA globally increases the 

uptake of [18F]MPPF in rat brain indicating that [18F]MPPF must be a Pgp 

substrate [148]. So far [18F]MPPF has been used in animal studies together with 

the third generation Pgp inhibitor TQD to study Pgp activity [149, 150]. By using 

[18F]MPPF with TQD Bartmann et al. [150] revealed differences in Pgp function 

between pharmacoresistant and seizure-free epileptic rats. TQD pre-treatment 

increased the magnitude of [18F] MPPF K1 in the hippocampus by a mean of 

142% in the non-responders, which significantly exceeded the 92% increase 

observed in the responder group.  The same treatment decreased the mean 

magnitude of [18F] MPPF k2 in the hippocampus by 27% in non-responders, 

without comparable effects in the responder group [150]. Additionally, Bartmann 

et al. [150] demonstrated that the percent reduction of seizure frequency in 
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response to phenobarbital negatively correlated with the impact of tariquidar on 

the hippocampal [18F]MPPF K1 (r = −0.5940; p < 0.05). Moreover, preliminary 

results obtained in a clinical study with ten mTLE patients showed that the Pgp 

inhibitor CsA significantly increased the [18F]MPPF binding potential (the ratio of 

receptor density and radioligand affinity [151]) by 14% in most brain regions, 

regardless of their involvement in seizure generation or propagation [152]. On 

the other hand, a recent study using [18F]MPPF PET in mice and non-human 

primates together with CsA [153] revealed discrepancies in the Pgp-mediated 

transport of [18F]MPPF between mice and non-human primates. Their in vitro 

data indicates that [18F]MPPF is not a substrate of human P-gp and that the 

effect of the Pgp inhibitor CsA on the brain transport of [18F]MPPF in non-human 

primate is related to an increase in the free fraction of tracer in the plasma, 

concluding that it is unlikely that the kinetics of [18F]MPPF brain transport and 

distribution are affected by Pgp activity in humans. In contrast in situ brain 

perfusion showed that Pgp restricted the permeability of the mouse BBB to 3H-

MPPF [153]. 

The PET radioligand [11C]flumazenil which is clinically used for the assessment 

of GABAA receptor mediated inhibition in epilepsy and to localize epileptic foci 

prior to epilepsy surgery has also been suggested to be a Pgp substrate [154, 

155]. [11C]flumazenil was recently used to detect regional differences in Pgp 

functionality in five different brain regions of control and kainate-treated rats, a 

model for TLE, before and after TQD administration.  The study showed that the 

GABAA receptor density (Bmax) was reduced in kainate-treated rats, compared 
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with controls and that there were region-specific Pgp differences, with the 

hippocampus showing the highest Bmax [156]. 

Furthermore, [11C]colchicine [157], [11C]daunorubicin (Elsinga et al., 1996), 

[11C]carvedilol [158], [11C]-GR218231 [159], [18F]paclitaxel [160], various 64Cu-

labeled copper complexes [161], 67Ga/68Ga radiopharmaceuticals [162], 

[11C]TMSX, [11C]MPDX, 11C]donepezil [154], [11C]carazolol and 

[18F]fluorocarazolol [163] have been used to study Pgp. However, only limited in 

vivo data have been reported so far and it is not yet clear if these radiotracers 

are useful for PET studies to image Pgp function in human. 

Radiolabeled transporter inhibitors 

Another complementary approach to assess the Pgp system with PET is the use 

of radiotracers which bind to Pgp without being transported. Such radiotracers 

would asses the transporter distribution and give a signal increase rather than a 

decrease (as will Pgp substrates) in brain regions that overexpress Pgp 

(Löscher and Langer, 2010). Several PET radiotracers based on the Pgp 

inhibitors have been reported to date: [11C]laniquidar, [11C]MC-18, [11C]quinidine 

[11C]elacridar and [11C]tariquidar [134, 164-166]. These new radiotracers have 

so far only been tested in animal models of naïve, transporter knock-out and 

epileptic rodents with rather surprising results. The cerebral uptake was lower 

than expected at baseline and increased several-fold rather than decreased 

after administration of unlabelled inhibitors [134, 164, 165]. These radioligands 

were administered at very low (tracer) concentrations and could behave 

differently than at high concentrations. It is hypothesized that the low brain 
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uptake, i.e. the rather substrate-like behaviour of these radiotracers, could be 

caused by other multidrug efflux transporters (such as BCRP) at the BBB 

transporting the radiotracers out of the brain [117].  

NEUROIMAGING OF PGP WITH SPECT 

[99mTc]sestamibi was originally developed as a K+ analog for imaging 

myocardial ischemia. It has been shown to be a substrate for Pgp [167]. In 

humans, [99mTC]sestamibi was reported to image Pgp efflux transport in 

multidrug resistant  cancers (Luker et al., 1997). However, it was found not to be 

an ideal substrate radioligand as it is not a selective substrate for Pgp  but also 

for other multidrug efflux transporters (such as MRP1) (Hendrikse et al., 1998). 

Furthermore in contrast to PET, SPECT does not enable quantitative 

measurements of uptake and efflux kinetics of Pgp substrates and thus has only 

limited use in studying Pgp function in the BBB (Löscher and Langer, 2010). 
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DISCUSSION AND FUTURE WORK 

Over the recent years molecular imaging techniques have helped to investigate 

mechanisms of pharmacoresistance in epilepsy. In particular PET has been 

used to evaluate the transporter hypothesis and demonstrated that Pgp is 

increased in pharmacoresistant epilepsy. Several open questions remain and 

molecular imaging techniques can help to enhance our understanding of 

underlying mechanisms for pharmacoresistance in epilepsy. 

Using non-ivasive imaging with PET enables us to identify individual patients 

where pharmacoresistance is caused by Pgp overactivity and potentially 

individualise treatment. Moreover, comparative studies between 

pharmacoresistant and seizure-free epilepsy patients can enable testing for a 

correlation between Pgp function and the pharmacoresponse. This imaging 

technique can also guide patient selection for future clinical studies. In particular, 

PET imaging of Pgp function may allow individualized application of approaches 

to overcome Pgp–associated pharmacoresistance. In the future combined 

imaging and clinical trials of novel treatment strategies, such as Pgp inhibitors or 

modulators of overexpression in patients who have Pgp overactivity on VPM-

PET could be employed. Targeting Pgp by modulators can enhance the efficacy 

of antiepileptic drugs. The compound verapamil is a substrate for Pgp at low 

concentrations (which is used in PET), but, like many substrates, verapamil is 

also an inhibitor for Pgp at high concentrations [130]. Verapamil was among the 

first identified inhibitors of Pgp and it may function to block Pgp–modulated 

efflux of AEDs in the brain, thereby raising the intracellular concentration of 
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AEDs [168]. The third-generation modulator TQD increased the efficacy of 

phenytoin in a chronic rat epilepsy model and helped to overcome 

pharmacoresistance to phenobarbital in chronic rat epilepsy models [169]. On 

the other hand, first- and second-generation inhibitors are not specific for Pgp 

alone and can exert additional pharmacodynamic and pharmacokinetic effects. 

Third-generation inhibitors are considered fairly specific.  But there is recent 

evidence for the third-generation inhibitor TQD that it can also affect the efflux 

transporter BCRP/ABCG2. Moreover, long-term inhibition of this transporter 

needs to take into account that Pgp serves as a protective mechanism and 

gatekeeper in several blood tissue barriers as well as hematopoietic cells [170]. 

In addition to limiting access of harmful xenobiotics to sensitive tissues or cells, 

Pgp also accelerates extrusion of xenobiotics based on its efflux function in the 

liver and kidneys. Therefore, alternate approaches that leave basal transporter 

expression and function unaffected might offer advantages for tolerability and 

safety issues. Preventing seizure-associated transporter upregulation might offer 

an intriguing alternate approach to overcoming transporter associated 

pharmacoresistance [69, 171].  

Of course, the ideal PET or SPECT radiotracer for studies in epilepsy patients 

would be a radiolabelled AED and could represent an alternative strategy for 

directly probing the clinical relevance in patients showing resistance to individual 

AEDs. Additionally, as postulated in the transporter hypothesis, the 

overexpression of efflux transporters restricts the entry of AEDs into the brain; 

thus AED concentrations in the affected areas should be lower. Even though 
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microdialysis for measurement of local brain AED concentrations in human 

epileptic brain tissue is feasible, ethical and methodological issues limit the use 

beyond experimental protocols [172] and not many data are available. PET 

experiments with a Pgp inhibitor and radiolabelled AEDs have not been done, 

but will important for direct assessment of brain concentration levels of AEDs in 

humans. 

PET is non-invasive and can study the contribution of efflux transporters in 

pharmacoresistant epilepsy in vivo. Thereby it can be applied to various different 

epilepsy syndromes. The mechanisms underlying pharmacoresistance have so 

far mainly been addressed in focal epilepsies, primarily in TLE [3, 8]. This is 

partly because temporal lobectomy is the commonest epilepsy surgical 

procedure performed and hippocampal or mesial sclerosis is the commonest 

pathologic finding in pharmacoresistant epilepsy [173]. It is therefore not 

surprising that temporal lobe pathologies, in particular hippocampal sclerosis, 

are the most studied epileptogenic lesions for the upregulation of multidrug 

efflux transporters [3]. It remains to be determined whether overexpressed 

multidrug efflux transporters are underlying mechanism of pharmacoresistance 

exclusive in focal epilepsies or also present in other epilepsy syndromes, such 

as generalised epilepsy.  

PET has the benefit to study the whole brain and hereby regional differences in 

pharmaoresistant epilepsy can be investigated beyond the seizure focus. It is 

currently unclear whether epilepsy, uncontrolled seizures or chronic treatment 

with AEDs stimulate a global rather than regional response of Pgp function. 
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Increased expression of Pgp in the region of the epileptic focus was found in 

patients with pharmacoesistant epilepsy [3]. However studies investigating Pgp 

overexpressions in human brain tissue have mainly been derived from “epileptic” 

brain tissues removed during epilepsy surgery and there is a lack of control 

regions from the same subject as well as “normal” controls for comparison [3]. In 

rat models of TLE the Pgp overexpression was restricted to the hippocampus 

and parahippocampal regions [67].  On the other hand in a recent PET study 

assessing Pgp function in a rat model of TLE there was an increase of Pgp in 

regions beyond the epileptogenic focus in the thalamus and cerebellum [125]. 

Thus in addition to examining regional differences, PET is also able to assess 

whether there are discrepancies in the expression and function of multidrug 

efflux transporters in pharmacoesistant epilepsy. 

PET can also be used to compare the expression and function of multidrug 

efflux transporters in different groups of AED responders such as 

pharmacoresistant, seizure-free and remitting-relapsing epilepsy patients. PET 

data in humans investigating Pgp overexpression in patients with seizure-free or 

remitting-relapsing epilepsy are lacking. Experimental data indicates that AED 

responders and non-responders differ in the extend of Pgp upregulation [69]. 

Additionally, neurobiological mechanisms of pharmacoresistance may be 

different in patients who have never responded to AEDs versus those who 

progressed to drug-resistance after they responded initially to therapy. 

Furthermore, the mechanisms of reversing pharmacoresistance may differ from 

those generating pharmacoresistance.   
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As PET is non-invasive thus several scans can be given to the same patient 

over the course of the disease. Therefore, the progression from naïve to acute 

and then to chronic seizures can truly be studied. Not only could the effect of 

seizures which causes an upregulation of Pgp [45, 101] be investigated but also 

the inherent severity model of epilepsy could be studied this way. PET allows 

the investigators to examine the living brain before the disease is induced and 

over the time course of symptoms and even therapies.  

Perhaps more importantly, new treatments can be evaluated in 

pharmacoresistant patients over time. The transporter hypothesis has gained 

interest in recent years, because it opens the possibility to discover potential 

therapeutical targets for drug resistance by either inhibiting or bypassing Pgp or 

other involved efflux transporters [70]. In this regards Lazarowski et al. recently 

suggested using add-on therapy by co-administering Pgp inhibitors, to overcome 

drug resistance and contribute to the effectiveness of AED treatment [174] . For 

example calcium channel blockers such as verapamil or nimodipine are 

substrates for Pgp but also competitively inhibit the efflux of other Pgp 

substrates such as AEDs. In paediatric refractory epilepsy cases with persistent 

sub therapeutic AED blood levels, nimodipine administration together with AEDs 

resulted in improvement of medical condition and blood levels of AEDs [174, 

175]. Similarly Ianetti et al. [176] described an 11-year old boy with status 

epilepticus which was unresponsive to treatment. On day 37 of continues SE 

treatment with verapamil was started. 1.5 hour after initiation of the verapamil 

infusion, the patient regained consciousness was able to breathe spontaneously 



48 
 

and the electrical SE promptly disappeared. Ultimately, PET could serve as a 

predictive tool for detection of Pgp mediated drug-resistance in epilepsy. By 

identifying patients with increased Pgp alternate therapeutic approaches or 

novel AEDs as well as straightforward decisions regarding non pharmacological 

treatment strategies, including epilepsy surgery.  

The next step in the future will be to combine imaging and clinical trials of novel 

treatment strategies, with Pgp inhibitors or modulators in patients who have Pgp 

overactivity on VPM-PET aimed at reversing drug resistance with selection of 

optimal patients and assessment of molecular targets. But further development 

of the approach needs to also consider tolerability issues specific to the different 

targets [69]. In particular more evaluation is needed in view of the controversial 

findings which AEDs are Pgp substrates and, thus, determine the penetration of 

which particular AEDs are affected by Pgp. Of course, evidence that some 

antiepileptic drugs are affected by the human Pgp isoform and that others are 

not substrates, needs to be considered when drawing conclusions about the 

future promises of any approach to modulate Pgp expression or function. 

Modulating Pgp might, therefore, only help to overcome resistance to selected 

antiepileptic drugs, but might not help to overcome multidrug resistance. More 

precise knowledge about substrate specificities is, therefore, crucial to guide the 

putative future application of respective diagnostics as well as therapeutic 

strategies to selected patients.  

Finally, although recent studies provided the proof of concept for the transporter 

hypothesis and show that there is functionally relevant Pgp overactivity in 
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pharmacoresistant mTLE [138], the critical question remains whether it sufficient 

to overcome Pgp overexpression as one putative mechanism of a multifactorial 

problem or that other mechanisms such as intrinsic disease severity, alterations 

in targets, different gene variants or network alterations need to be taken into 

account and in the future further investigated. Given the complexity of epilepsy, 

it is unlikely that pharmacoresistant epilepsy is caused by a single mechanism 

but instead is due to several mechanisms which may even occur in the same 

patient. Overcoming pharmacoresistance in epilepsy represents a challenge and 

will necessitate a multifactorial approach and the combined efforts of basic and 

clinical epilepsy researchers [177]. 

CONCLUSION 

Pharmacoresistance in epilepsy is a complex problem and several mechanisms 

are likely to contribute to therapeutic failure. Molecular imaging techniques in 

particular PET has provided evidence for the transporter hypothesis of 

overexpression of multidrug efflux transporters in pharmacoresistant epilepsy. 

Molecular imaging methods can help to further investigate mechanisms 

underlying pharmacoresistance in epilepsy. 
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