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ABSTRACT
Intensity mapping experiment treats the 21 cm radio emission as a diffuse source and al-
lows smaller and relatively cheaper radio antennas with short baselines to be used in such
experiments. However, the technique is restricted by the precise subtraction of the foreground
continuum signal from Galactic and extragalactic radio sources. Furthermore, the signal is
subjected to direction-dependent effects, particularly the primary beam, as it modulates the
intensity as a function of the sky position. In addition, due to the imperfections in the antenna
feeds, a portion of the polarized foreground tends to find its way into the total intensity, making
it a major obstacle to detect the H I signal. In the case of dish arrays, this will be dominated
by the instrument mispointings and polarization leakage. To estimate this contamination, we
use OSKAR to simulate ‘dish-like’ primary beams and then perturb these primary beams by
introducing gain, phase, and surface distribution errors. We then simulate the foregrounds with
these modelled beams to determine the errors in Stokes I and also observe the amount of |Q
+ iU| that corrupts I. Our simulation shows that the H I signal power can be measured at a
multipole moment of l = 100 if we do not correct for any polarization leakage of the beam
and at a multiple moment of l = 25 if we correct for the beam from I, assuming the beam is
not known to the extent to which we have considered in this paper.

Key words: methods: statistical – techniques: interferometric – diffuse radiation –
cosmology: observations.

1 IN T RO D U C T I O N

Over the last two decades, the optical spectroscopic data released
from the 2-degree-Field Galaxy Redshift Survey (2dF1) and Sloan
Digital Sky Survey (SDSS2) has been used to produce 3D maps of
the large-scale structure of the Universe. These optical galaxy red-
shift surveys are done by detecting millions of individual galaxies,
determining the redshift for each and then using these to estimate
their power spectrum (Santiago et al. 1995, 1996; Peterson et al.
2009).

Meanwhile, recent work in radio astronomy on 21 cm in-
tensity mapping (IM) (Wyithe 2008a; Santos et al. 2015;

� E-mail: philusnarh@gmail.com
1http://www.2dfgrs.net/
2http://www.sdss3.org/

Wolz et al. 2014, 2015) suggests that the power spectrum
of the full intensity field T(f, θ , φ), defined in terms of
frequency f and sky position (θ , φ), can be measured directly, with-
out actually localizing the individual galaxies. This observational
technique has the advantage of measuring the joint emission of neu-
tral hydrogen originating from a region, including radiation from
faint sources, and from the diffuse intergalactic medium (IGM),
which at high redshifts cannot be detected. These intensity maps
have the advantage of containing spatial information that can be
used to further understand the processes of structure formation as
a cosmological probe since the fluctuations are correlated with un-
derlying dark matter density fluctuations (Bass et al. 2009, p. 366).
Furthermore, the observational data from different frequencies will
enable us to remove the foreground from 21 cm observations. This is
possible since the foregrounds are smooth as a function of frequency.
In addition, present and ‘under construction’ IM instruments such as
the Green Bank Telescope (GBT) (Masui, McDonald & Pen 2010),
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Baryon acoustic oscillations In Neutral Gas Observations (BINGO)
(Battye et al. 2013), and the Canadian Hydrogen Intensity Map-
ping Experiment (CHIME) (Bandura et al. 2014; Newburgh et al.
2014) and the capabilities of the next generation of telescopes such
as dense aperture arrays for the Square Kilometre Array (SKA)
(Faulkner 2011; de Vaate & Faulkner 2012) and the under develop-
ment Hydrogen Intensity and Real-time Analysis eXperiment (HI-
RAX) (Newburgh et al. 2016) make prospects only more promising.
IM experiments can be carried out at different redshifts in autocor-
relation mode, that is single dish observations as planned by BINGO
(Battye et al. 2013) or interferometric observations as planned by
CHIME (Newburgh et al. 2014).

Crucially, observations using the IM technique require the ac-
curate subtraction of the foreground continuum signal from our
Galaxy as well as extragalactic sources, since the H I signal is sev-
eral orders of magnitude weaker. Existing foreground-subtraction
techniques rely on the smoothness of this signal as a function of fre-
quency. In the absence of instrumental corruptions, this assumption
is perfectly valid. However, real-life observations are affected by
direction-dependent (DD) effects, that is variations in gain ampli-
tude and phase over the field of view (FoV), as well as polarization
leakage. These are primarily caused by the ionosphere (in the case of
phase effects) and by variations in the primary beam (PB) response
of the antennas. Some of these sources of error are time-dependent:
The ionosphere over the array evolves as a function of time, while
the beam (of an alt-azimuthally mounted telescope) rotates with
respect to the sky and is also subject to pointing offsets and defor-
mations of the dish surface induced by the wind and gravitational
load on the dishes, differential heating, etc. Problems posed by the
ionosphere are especially severe at lower frequencies and with large
interferometric arrays such as LOFAR (Wijnholds et al. 2010; van
Haarlem et al. 2013). This work concentrates rather on the effects
of the PB and in particular, DD polarization leakage. ‘Polariza-
tion leakage’ refers to a fraction of the signal from one orthogonal
polarization mode being registered by the receptor measuring the
other mode. In terms of Stokes parameters, it produces an unwanted
transfer of signal between the Stokes I and QUV measurements. It
is a particular problem for IM observations because polarized fore-
ground signals are generally not smooth as a function of frequency
(due to Faraday rotation of the QU vector). Leakage, therefore,
results in a non-smooth foreground component being introduced
into Stokes I, one that is not amenable to traditional foreground-
subtraction techniques. Correcting for leakage is a challenge since
it varies both as a function of time and as a function of frequency;
hence, it is expected to limit observations with the existing as well
as upcoming radio telescopes presently under construction (Bhat-
nagar et al. 2008a). Existing approaches for mapping out DD effects
such as DD solutions (Smirnov 2011) are not directly applicable,
since individual galaxies are not mapped out by this experiment.
Therefore, a new approach for mapping out DD effects in a statis-
tical sense needs to be developed. This work seeks to quantify two
effects: (a) the contribution of polarization leakage to the measured
H I power spectrum, given some more or less realistic PBs and (b)
the uncertainty on the estimate of (a) introduced by unmodelled
differences in the PB.

The paper is organized as follows: Section 2 defines the beam
modelling techniques used in this work. Here, the OSKAR3 package
is used to simulate an interferometer array of stations, each of which
is an aperture array of dipoles such that this aperture array is sim-

3http://www.oerc.ox.ac.uk/ska/oskar2/

ply a convenient model for the seven-dish Karoo Array Telescope
(KAT-7)4 that can be perturbed in known ways. In addition, we
validate these modelled beams with holography-measured beams
of the Karl G. Jansky Very Large Array (VLA5) in order to estimate
the perturbation inaccuracies of the OSKAR beam model. Section 3
discusses briefly the components of the Galactic foregrounds and
their contribution to polarization measurements. This section also
continues to present a simulation of the IM experiment using con-
volution techniques and then presents on angular power spectrum
estimation in the spherical harmonic domain. Results and analy-
sis are outlined in Section 4. Finally, a summary of this paper is
presented in Section 5.

2 PR I M A RY B E A M MO D E L L I N G

Various techniques and software packages for modelling the pri-
mary beam response of an antenna have been developed over the
years. These range from simple geometrical ray tracing imple-
mented in cassbeam6 – a Cassegrain antenna simulator (Brisken
2003), to sophisticated EM-modelling techniques incorporated in
the commercially available GRASP7 and FEKO8 software suites. The
latter two options produce the most accurate results but are quite
expensive in computational and commercial terms.

Since the purpose of this work is to study the observational effects
of PB distortion, there is the need to develop a recipe for computing
both an ideal beam pattern and a set of many perturbed patterns
representing deformations of the antenna. This is technically pos-
sible to do with GRASP or FEKO, but impractically expensive for
our purposes (primarily because of the many perturbed patterns re-
quired). On the other hand, a physically precise model of the KAT-7
primary beam is not actually needed, since future IM observations
will not be carried out by KAT-7. KAT-7 is a notional example that
is adopted for the purposes of this study. What is rather needed
is a relatively cheap way to compute ideal and perturbed beams,
with perturbations that are representative of those seen in actual
telescopes.

The OSKAR package (Dulwich et al. 2009) was developed to sim-
ulate primary beams of (and observations with) aperture arrays. It
can compute the PB response of aperture array stations that are
specified as a collection of dipoles. OSKAR is open source and takes
advantage of graphics processing unit (GPU) acceleration to com-
pute such patterns relatively quickly. Below, we show that OSKAR

can be used to compute ‘dish-like’ PBs, by generating a geometric
dipole distribution that mimics the aperture illumination function
(AIF) of a dish. We stress that the resulting beam pattern is com-
pletely notional, and cannot be treated as a physically accurate
model of the KAT-7 beam. It is, however, broadly representative of
the dish beam. Furthermore, perturbations with respect to this ideal
notional beam can be readily generated by perturbing the dipole
distribution. The OSKAR approach gives us a practical way of gen-
erating such ideal and perturbed beams. As pointed out above, this
is sufficient for the purposes of our work. Later in this section, we
compare the PB perturbations produced by our approach with those

4http://public.ska.ac.za/kat-7/
5http://www.vla.nrao.edu/
6https://github.com/ratt-ru/cassbeam
7http://www.ticra.com/products/software/grasp
8https://www.feko.info/product-detail/overview-of
-feko
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Figure 1. The aperture illumination of the dish-like surface is modelled using 80 000 dipoles. Left-hand plot: The ‘flat-top Gaussian’ radial distribution of
dipole positions, mimicking a realistic aperture illumination where the dipoles get less dense towards the edge of the dish. Right-hand plot: The resulting 2D
dipole distribution with a mask applied to mimic aperture blockage.

seen in holographic measurements of VLA antennas and show that
the simulated perturbations are also broadly representative.

2.1 OSKAR beam model

KAT-7 was produced as a forerunner to the 64-dish MeerKAT9

radio telescope array and demonstrated South Africa’s ability to
host the SKA (Woudt et al. 2013). The MeerKAT instrument is
currently fully operational and approaching the completion of its
commissioning programme (Booth & Jonas 2012; Foley et al. 2016).
When KAT-7 was in operation with only seven 12 m dishes scattered
over a 200 m baseline, it was considered a compact radio telescope,
in terms of both resolution and sensitivity, but now it is opposed by
MeerKAT and the SKA, which occupy much larger areas. Its L-band
radio receivers had cryogenically cooled front ends to about 70 K
(−203 ◦C) in order to increase the system’s sensitivity. In addition,
its configuration was superb for observing nearby galaxies, which
emitted radio waves on a large scale.

In order to generate a ‘dish-like’ PB model using OSKAR, we
aim to mimic the AIF of a KAT-7-like dish by a 2D distribution of
dipole positions. There are two important features of the AIF that
we need to model: a tapering off towards the edge of the dish (due
to the illumination pattern of the feed) and aperture blockage by the
centrally mounted feed and its four supporting struts.

To mimic illumination tapering, we generate a random distribu-
tion of 2D positions with a density that tapers off towards the edges
of the dish. We do this by computing a set of positions as xd =
Rcos (ψ) and yd = Rsin (ψ), where ψ is drawn from a uniform
random distribution over [0, 2π ), and R is drawn from a 1D radial
probability distribution f(R) with suitable properties. For the latter,
we adopt a generalized normal (GN) distribution (Decker 1994;
Pogany & Nadarajah 2009):

f (x) =
√

s

2σ�
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s

) exp
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s)
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9http://www.ska.ac.za/gallery/meerkat/

where σ is the standard deviation, s is the peak factor, and � is
the standard gamma function defined as �(a) = ∫ ∞

0 ya−1 e−y dy.
The corresponding cumulative distribution function (CDF) is
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F (x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�
(

1
s , { x

σ
√

2
}s
)

2�
(

1
s

) , if x ≤ 0

1 − �
(

1
s , { x

σ
√

2
}s
)

2�
(

1
s

) , if x > 0

. (2)

We then draw a random number u from a uniform distribution over
[0,1), and compute the sample R as R = |F−1(u)|. This results in
a ‘flat-top Gaussian’ radial density distribution as shown in Fig. 1,
left. The parameters of the GN distribution, σ and s, control the
width of the distribution and the aggressiveness of the taper. We
have adopted values of σ = 0.82 and s = 12.0 to produce the radial
distribution in the figure.

To mimic aperture blockage, a mask is simply applied to the 2D
positions. This ultimately results in the dipole distribution shown
in Fig. 1, right. This dipole distribution is then fed into OSKAR as
the ‘station layout’. For a given set of observational parameters
(in particular, pointing at zenith), OSKAR then computes the station
PB response. 10 The resulting Jones matrix elements are shown in
Fig. 2. Note how the beam pattern is broadly similar to that expected
from a prime-focus dish. In particular, the first side-lobe shows the
four-fold symmetry caused by the strut blockage. The presence
of the phase component in Fig. 2 clearly shows that the so-called
ideal beam is not that perfect since we are randomly placing the
dipoles in the KAT-7 dish-like form; hence, the nominal X and Y
dipoles are not directly orthogonal. In effect, we get the maximum
rmse ≈ 0.10 per cent perturbed inaccuracies on the dish surface as
reported in Fig. 3.

2.1.1 Jones and Mueller matrices

The Jones (Jones 1942, 1948) formalism, originally formulated do
describe optical polarization, was adapted to radio interferometry

10This takes ≈3 min on a Tesla K40 GPU.
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Figure 2. Jones matrix representation of the KAT-7-like beams produced by OSKAR and shown at 1 GHz: (a) real part; (b) imaginary part. The intensity of
the imaginary parts increases with fewer dipoles and becomes smaller when more dipoles are used. The four panels in (a) and (b) show XX (top left), XY (top
right), YX (bottom left), and YY (bottom right). Note that the notations X and Y denote the horizontal and vertical linear polarised beams.

Figure 3. Histogram plots of the imaginary components in Fig. 2 showing the distribution of inaccuracies on the KAT-7 dish-like surface.
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by Hamaker, Bregman & Sault (1996) and extended to direction-
dependent effects by Smirnov (2011). Here we use the derivations
of the latter two works.

An electromagnetic plane wave propagating along axis z can be
described, at any point in space and time, by two complex ampli-
tudes, ex and ey. Conventionally, we arrange these into a column
vector, e = [ex, ey]T . A single-dish observation aims to measure
the pairwise coherencies of these amplitudes:

x =

⎡
⎢⎢⎢⎢⎢⎣

〈exe
∗
x〉

〈exe
∗
y〉

〈eye
∗
x〉

〈eye
∗
y〉

⎤
⎥⎥⎥⎥⎥⎦ = 〈e ⊗ e∗〉, (3)

where 〈 · 〉 represents the average over a time/frequency interval,
and ⊗ is the outer (or Kronecker) product operator. From these
measured coherencies, the Stokes parameters IQUV (written as a
column vector s) may be derived, by definition, as (Born & Wolf
1980):

s =

⎡
⎢⎢⎢⎢⎣

I

Q

U

V

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

〈exe
∗
x〉 + 〈eye

∗
y〉

〈exe
∗
x〉 − 〈eye

∗
y〉

〈exe
∗
y〉 + 〈eye

∗
x〉

−ı(〈exe
∗
y〉 − 〈eye

∗
x〉)

⎤
⎥⎥⎥⎥⎥⎦ . (4)

We can rewrite this in terms of a 4 × 4 conversion matrix S−1 as11

s =

⎡
⎢⎢⎢⎢⎣

1 0 0 1

1 0 0 −1

0 1 1 0

0 −ı ı 0

⎤
⎥⎥⎥⎥⎦ x = S−1x. (5)

What the instrument actually measures is a set of pairwise cor-
relations between two voltages induced by the EM field on two
orthogonal mode feeds, va and vb. The Jones formalism assumes
that these are linearly related to the EM field (i.e. that all signal prop-
agation effects are linear). This can be written as v = Je, where v

is a column vector of the two voltages, and the 2 × 2 Jones matrix J
describes signal propagation. The measured coherency x′ can then
be written as

x′ = 〈v ⊗ v∗〉 = (J ⊗ J∗)〈e ⊗ e∗〉 = (J ⊗ J∗)x, (6)

and the measured Stokes parameter vector s′ relates to the original
Stokes vector via the so-called Mueller matrix M:

s′ = Ms = S−1(J ⊗ J∗)Ss. (7)

For the purposes of this work, we ignore all propagation effects
except the primary beam. In the context of this paper, the Mueller
matrix refers to the Mueller matrix of the primary beam. This matrix
is direction dependent (i.e. each direction of arrival will have its own
matrix associated with it). The total Stokes flux measured by a single
dish observation is then an integration over the FoV:

s′
tot =

“
lm

M(l, m)s(l, m)dldm, (8)

11This follows Smirnov (2011) in defining S as the conversion matrix be-
tween Stokes vectors and coherency vectors, v = Ss. Conversely, S−1 op-
erates in the opposite direction. Note that Hamaker et al. (1996) use T to
refer to S−1.

where the integration is, in principle, over the entire celestial sphere,
but in practice, since the Mueller matrix becomes negligibly small
outside of a certain FoV, it can be replaced by a 2D integral over
the tangent plane lm.

The Mueller matrix M(l, m) corresponding to our KAT-7-like
dish (Fig. 4a) can be derived from the Jones matrix J(l, m) of
Fig. 2. Note the physical meaning of the matrix elements. The on-
diagonal terms of the Jones matrix describe the sensitivity of each
feed, as a function of direction, to its matched EM field component.
The off-diagonal terms describe leakage, i.e. the sensitivity of the
feed to the nominally orthogonal EM field component. This leakage
is due to mechanical and electronic imperfections in the antennas
and feeds. The diagonal terms of the Mueller matrix describe the
sensitivity of the measured Stokes IQUV components to their true
counterparts, as a function of direction. The off-diagonal terms de-
scribe spurious leakage between the measured Stokes components.
We can schematically write this as

M =

⎡
⎢⎢⎢⎣

I → I ′ Q → I ′ U → I ′ V → I ′

I → Q′ Q → Q′ U → Q′ V → Q′

I → U ′ Q → U ′ U → U ′ V → U ′

I → V ′ Q → V ′ U → V ′ V → V ′

⎤
⎥⎥⎥⎦ .

Fig. 4(a) displays the KAT-7-like modelled beams produced from
OSKAR in Mueller matrix form. For example, the elements I
→ Q, U, V in the 4 × 4 images describe how much of the
Stokes I intensity leaks into the polarization components Q, U,
V while Q↔U, Q↔V, U↔V are the cross-polarization leakage
terms.

These modelled beams are then corrupted with two kinds of er-
rors. The first type was to introduce systematic and time-variable
gain and phase errors. The nominal purpose of this in OSKAR is
to simulate per-element gain and phase error before the beam for-
mer so that the beam-forming weight Bw, for a particular beam
direction (θbm, φbm), with dipole position (x, y, z) and time t
becomes

Bw(u) = Bw
geo(u)(G0 + Gerror) exp(j [φ0 + φerror]) (9)

where u = (θbm, φbm, x, y, z, t), Gerror and φerror are pseudo-random
values at each time-step t using a Gaussian distribution with stan-
dard deviations Gstd and φstd respectively. The complex multiplica-
tive factor applied to each element is denoted by the parameters
gain G0 and phase φ0, respectively. This complex factor joins
with the geometric beam-forming weight Bw

geo to produce the array
factor to evaluate the station beam at each source position. For the
purpose of our ‘disk-like’ simulation, we introduced 5◦ phase error
and 10 per cent gain error into the beam-forming weight to distort
the beams as shown in Fig. A1(a). These sorts of errors represent
imperfections in the parabolic reflector surface (which, in real life,
result in amplitude and phase errors over the aperture). The sec-
ond error introduced was to uniformly change the orientation of
the dipoles to create systematic error feed angle displacement as
presented in Fig. A1(b). Figs 4(b) and (c) show the beam errors
produced by computing the differences between the true modelled
beams in Fig. 4(a) and the two distorted beams in Figs A1(a) and
(b), respectively. The on-diagonal components of these beam er-
rors represent the residual leakages and the off-diagonals show
the residual systematic leakages. The maximum residual leakages
produced in Figs 4(b) and (c) are �20 per cent and 10 per cent,
respectively.

In order to see whether the level of beam distortion introduced in
this manner is realistic, we compare the beam patterns obtained via
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Figure 4. Mueller matrix representations of full polarization beams produced at 1 GHz. (a) 4 × 4 images of KAT-7 uncorrupted OSKAR beams. (b) Fractional
differences between the uncorrupted OSKAR beams in Fig. 4(a) and the gain and phase error beams in Fig. A1(a). (c) Fractional differences between uncorrupted
OSKAR beams in Fig. 4(a) and the dipole orientation error beams in Fig. A1(b). (d) Fractional differences between VLA holography-measured beams in
Figs A2(a) and (b).

holography measurements of two different VLA dishes as presented
in Figs A2(a) and (b). The measurement technique employed in
producing these beams is based on the EVLA Memo (Perley et al.
2015), which consists of the utilization of the Fourier transform
relation between the complex far-field (i.e. amplitude and phase)
radiation pattern of an antenna χ (u, v) and the complex aperture
distribution ζ (l, m):

χ (u, v) =
∫+∞∫
−∞

ζ (l, m) exp{i2π(lu + mv)}dldm (10)

where u = x/λ and v = x/λ denote the rectilinear coordinates in
wavelength, in the aperture plane. The coordinates (l, m) are the
direction cosine with respect to the aperture plane. The difference
between the two holography measurements in Fig. 4(d) corresponds
to the real-life differences between the PB patterns of two nomi-
nally identical dishes. Note how these beam errors give a maximum
residual leakage of �10 per cent. This demonstrates that our beam
distortion procedure, using the error values we have adopted, results
in physically realistic PB distortion levels.

Having thus armed ourselves with an instrumental model, we
now proceed to discuss the nature of our simulated sky.

MNRAS 481, 2694–2710 (2018)
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3 SIMULATION

The synchrotron emission from the Galaxy dominates at low mi-
crowave frequencies (� 30 GHz), whilst that of thermal dust
emission is at higher frequencies (� 70 GHz). Between these two
components in frequency lies the thermal free–free and non-thermal
dust emissions, which are formed as a result of spinning dust grains
(Planck Collaboration VIII 2016b). Detailed discussion of the com-
ponents of the Galactic foregrounds, paying particular attention to
their contributions to the polarization measurements, can be found
in Alonso et al. (2015), Kiyotomo (2014), Jelić et al. (2010), Santos
et al. (2015), and Wolz et al. (2014).

Future 21 cm experiments will operate in a window that is sam-
pled sparsely by current observations. In particular, we are inter-
ested in the properties of the unpolarized and polarized foregrounds
at small frequency separations, but existing full-sky observations
around 1 GHz are generally low resolution, unpolarized, and sep-
arated by large frequency intervals. For simulations to be a useful
tool, they need to produce sufficiently challenging foregrounds,
not only reproducing the properties we see in observations, but
also incorporating unobserved structure of small angular and fre-
quency scales, as well as the spectral variations of the polarized
sky caused by emission at varying Faraday depth through the
Galaxy.

Low-frequency all-sky polarization data is limited, though up-
coming surveys like GMIMS (Wolleben et al. 2009) will change
this. The most useful full-sky polarization measurements come from
1.4 GHz surveys (Wolleben et al. 2006; Testori, Reich & Reich
2008) and the WMAP 23 GHz (Bennett et al. 2013) and Planck
30 GHz maps (Planck Collaboration VIII 2016a). However, be-
cause of the uncertain amount of instrumental depolarization in the
former and the much higher frequencies of the latter, these are more
useful to tell us about the general properties of the polarized sky
(such as the high galactic latitude polarization fraction; see Kogut
et al. 2007) and less about the specific realization on the sky. With
these limitations in mind, we aim not to reproduce existing polar-
isation, but to include the relevant difficulties for 21 cm intensity
mapping.

To generate the foreground simulations used in this paper (shown
in Fig. 5), we use the CORA package12, which is described in Shaw
et al. (2014, 2015). In brief, the procedure used to produce the
simulations is as follows:

(i) A 3D base map for the unpolarized sky is produced by ex-
trapolating the 408 MHz Haslam et al. (1982) map to the requested
set of frequencies using the spectral index of the map of Miville-
Deschênes et al. (2008a), which was produced by comparing the
Haslam map with WMAP 23 GHz polarization data, assuming that
both are dominated by synchrotron emission. This produces a map
with power-law spectral behaviour with angular fluctuations on
scales �1◦.

(ii) Angular and spectral fluctuations are added into the 3D maps
according to an angular power spectrum.

C�(ν, ν ′) ∝
(

�

�0

)−2.8(
νν ′

ν2
0

)−2.8

exp

[
−1

2

(
ln ν/ν ′

4

)2]
, (11)

taken from Santos, Cooray & Knox (2005). We use position-
dependent scaling on large scales to ensure the fluctuations match
their observed variance across the sky (La Porta et al. 2008), and
ensure that we don’t add in additional fluctuations on scales con-

12https://github.com/radiocosmology/cora/

strained by the Haslam map by projecting out the the dominant
eigenmodes on these scales.

(iii) To simulate the polarized sky, we use the ideas of Faraday
rotation measure synthesis (Brentjens & de Bruyn 2005) and a sim-
ple model of the distribution of emission in Faraday depth across the
full sky, which we then integrate over to generate the polarized out-
put at each desired frequency. To produce the emission in Faraday
space, we use the rotation measure map of Oppermann et al. (2012)
to indicate the characteristic scale of the distribution of emission
in Faraday depth. We tune the amplitude and correlation properties
in Faraday space to crudely reproduce the polarization fraction in
the WMAP 23 GHz map and the 1.4 GHz surveys. The polarization
directions are generated as a Gaussian random field at each Faraday
depth. For the interested reader, more details of this are found in
Shaw et al. (2015).

(iv) Known bright point sources on the sky are included explic-
itly, with their polarizations Faraday rotated to the desired frequen-
cies using the Oppermann et al. (2012) map. Faint sources (S < 10 Jy
at 151 MHz) are randomly generated.

The smoothed foreground maps in Fig. 5 are represented
by a sample of Hierarchical Equal Area isoLatitude Pixelation
(HEALPix13) (Górski et al. 2005a) of the sphere at a resolution of
Nside = 512. Other techniques for simulating full-sky radio emission
are presented by de Oliveira-Costa et al. (2008a), Geil, Gaensler &
Wyithe (2011), Jelić et al. (2008), the Polarbear Collaboration: P. A.
R. Ade et al. (2014), Tucci et al. (2002). This paper also considered
the synchrotron emissions to be intrinsically linearly polarized and
therefore, ignored the Stokes V part in Fig. 5 and all other V terms
in the full polarization beams discussed in Section 2.

3.1 Full-sky convolution

To perform an IM experiment, the radio telescope(s) is pointed at
different patches of the sky so that the instrument can measure the
overall intensity emerging from patches from the autocorrelation
of the radio signal, as a function of frequency. In order to emulate
this observation technique in our IM simulation, the discrete con-
volution in equation (12) is used to measure the intensities of the
full-sky synchrotron maps in Fig. 5. Let (θ , φ) denote the celestial
coordinates of the foregrounds of the sky such that B are the fully
polarized beams and fsky are the foregrounds of the sky. We can
then model the convolved foregrounds to be

Fconv(θ, φ) = B(θ, φ) ⊗ fsky(θ, φ)

=
∑

(θ ′,φ′)=� (θ,φ) �
B(θ ′ − θ, φ′ − φ). fsky(θ ′, φ′) (12)

where (θ
′
, φ

′
) ≤ npix and the symbol � � denotes the nearest pixels.

The measured foreground pixel values Fconv(θ, φ) of the discrete
function Fconv for any particular (θ , φ) follows by multiplying each
foreground pixel value fsky(θ, φ) of the discrete function fsky with
a beam B(θ ′ − θ, φ′ − φ) between a particular (θ

′
, φ

′
) and varying

(θ , φ). Thus, each pixel value Fconv(θ, φ) of the function Fconv

is a weighted mean of the pixel values fsky(θ, φ) with weights
B(θ ′ − θ, φ′ − φ) defined by the function B. If we take the mod-
elled beams B in Fig. 4(a) to convolve the full-sky polarization maps
( fsky) in Fig. 5, we obtain the convolved maps Fconv in Fig. 6. The
same approach is repeated using the distorted beams in Figs A1(a)
and (b) and also, the holography-measured beams in Figs A2(a) and

13http://healpix.sourceforge.net/
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Intensity mapping experiments 2701

Figure 5. 1000 MHz full-sky synchrotron maps simulated by using m-mode formalism. These synchrotron maps characterize the full-sky polarization maps
for our low-resolution simulated observations and are presented here in the Mollweide projection form defined by equatorial coordinates in terms of Stokes
parameters I, Q, U, and V.

Figure 6. Convolved full-sky polarization maps using the non-distorted OSKAR beams. For example, we used the mII beam in Fig. 4(a) to convolve Stokes I
in Fig. 5 and produce the convolved map I → I. Then we used the mQI beam to convolve Stokes Q to obtain the convolved map Q → I. Also, using the mUI

beam to convolve Stokes U we produced the convolved map U → I. The other convolved maps are produced in the same manner using their respective beams.
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2702 T. Ansah-Narh et al.

(b) to produce their respective convolved maps.Note how the origi-
nal spatial distributions of the foregrounds in Fig. 5 are maintained
in the diagonals of the convolved maps displayed in Fig. 6. These
happen when we simulate the full-sky maps with the gain terms in
the diagonals of our beams.

In IM experiments, what we are actually interested in is mea-
suring the total intensity of a signal. Therefore, in Section 3.2, we
present a mathematical model of the convolved power spectrum
using the angular power spectrum approach to describe the spatial
distribution of the measured foregrounds in a spherical harmonic
domain.

3.2 Angular power spectrum

In CMB studies (White 1998; Saha, Jain & Souradeep 2006;
Souradeep, Saha & Jain 2006; Wolz et al. 2015; Abitbol, Hill &
Johnson 2016; Krachmalnicoff et al. 2016), it is a common practice
to characterize the distribution of flux in a sphere with the angular
power spectrum. The same approach is employed in this paper to
describe the diffuse foreground intensity over spherical harmonics
Yl,m.

Consider the foreground of the sky is emitted by our own Galaxy
or the distribution galaxies emitting 21 cm with an intensity equiva-
lent to T (σ̂ ). We can measure the total source emission temperature,
T (σ̂ ), in each sky pixel and represent the distribution as an expan-
sion in 2D spherical harmonics:

T (σ̂ ) =
∞∑

l =0

l∑
m=−l

almYlm(σ̂ ) (13)

where σ̂ ≡ (ψ, ξ ) is the unit vector in some direction in the sky
and Ylm(σ̂ ) are the spherical harmonic functions evaluated in the
direction σ̂ such that they form a complete orthonormal set on the
unit sphere and can be expressed as

Ylm(ψ, ξ ) = (−1)m
√

2l + 1

4π

(l − m)!

(l + m)!
P m

l (cos ψ)eimξ (14)

In equation (14), the indices l = 0, . . . , ∞ and −l < m < l with P m
l

denoting the Legendre polynomials. l is known as the ‘multipole’,
which denotes a given angular scale γ in the sky, where γ � 180◦/l.
The coefficients alm in equation (13)

alm =
∫ π/2

ψ=−π/2

∫ 2π

ξ=0
Tlm(σ̂ )Y ∗

lm(σ̂ )dξdψ (15)

are related to what we normally do in the Fourier space.
Consider any two pixels; then the correlation function of the

temperatures is expressed as;

Ccr (�) = 〈T (σ̂i)T (σ̂j )〉 , � = σi.σj (16)

where the brackets 〈 〉 denote averaging over 2l + 1 values of m.
Equation (16) strictly relies on the separation angle between two
sources as discussed in Schramm & Galeotti (1997, p. 78) and
therefore can be rewritten in terms of Legendre polynomials:

Ccr(�) =
∑
l =0

2l + 1

4π
ClPl(cos �). (17)

From equation (17), we can estimate the statistical distribution of
the angular power spectrum Ĉl of the entire sky in terms of alm:

Ĉl = 1

2l + 1

∑
m

| ˆalm|2 , −l < m < l. (18)

In this paper, we used anafast in the HEALPix library to compute
the autopower spectrum Ĉl of foregrounds of the sky in Section 3.1
by executing an approximate discrete point-set quadrature on a
sphere sampled at the HEALPix pixel centres. Spherical harmonic
transforms are then computed using recurrence relations for Leg-
endre polynomials on co-latitude ψ and fast Fourier transforms on
longitude ξ .

4 R ESULTS AND ANALYSI S

The measured full-sky maps of {IT, QT, UT}
(reported in row 1), {IGP, QGP, UGP} (reported in row 2),
and {IXY, QXY, UXY} (reported in row 3) in Fig. 7 are generated by
convolving both the true (in Fig. 4) and perturbed model beams (in
Figs A1a and b, respectively) with the foregrounds and then adding
up the respective maps in each row of the convolved Stokes terms.
Note the similarities between these measured maps: If we compute
the differences between the maps in the first and second rows and
also, the first and third rows, we obtain the corresponding error
maps in rows 4 and 5, respectively. Obviously, these simulated
maps in Fig. 7 are not the same and this is even confirmed by
the systematic differences presented in Fig. 8, between the true
convolved maps in Fig. 6 and the corrupted maps due to errors
introduced in the gain and phase of the PBs. We then repeat
the same approach using the VLA measured beams displayed in
Fig. A2 to obtain the systematic error terms in Fig. B1 and the
overall measured full-sky maps reported in Fig. B2. In this paper,
the idea to use the VLA holography beams to also convolve the
full-sky polarization maps is to compare the error we make in the
power spectrum estimation if a model beam is considered, whilst
the foreground is actually convolved with a ‘real’ beam.

The autopower spectra presented in Fig. 9 estimate the density of
the measured foregrounds at different multipole moments. Note how
the beam power in each plot of both OSKAR and the holographic-
measured beams is normalized to 1. It is computed by finding the
quotient of the power spectrum of the convolved sky map and the
original sky map. In addition, note also in all cases the PB effect
of the convolved power spectrum. The OSKAR beam power plots in
Stokes I, Q, and U converge at a multipole moment of l = 60. This
value relates to an angular scale of 3.0◦ on the sky whilst the power
spectra of the VLA beams converge just at a multipole moment of
l = 90, giving an angular scale of 2.0◦ on the sky. The change in
the value of multipole moments is because of different dish sizes,
which also results in producing different beamwidths. Furthermore,
the angular scales computed are equivalent to the beam sizes used to
convolve the original maps in Fig. 5. Note, even though we used two
different aperture sizes for the simulation, the effect of these two
PBs on the convolved power spectra of Stokes I, Q, and U remains
unaltered. This shows that in IM experiment, where we measure
the collective emission from many sources, smaller and relatively
cheaper instruments can be used. In this study, the measured values
for the convolved power spectra of Stokes I, Q, and U in both cases
are 10, 0.1, and 0.1 mK2, respectively. Observe carefully how these
values in Fig. 9 actually predicted the foreground’s temperature of
the true sky. Hence, the power spectrum of the corresponding errors
in I, Q, and U due to perturbation of the beams are ≈0.01, 10−4,
and 10−5 mK2, respectively.

In IM experiments, the H I signal is measured in Stokes I, so
we are particularly interested in the total intensity and the leakages
from polarization into Stokes I (i.e. |Q + iU | −→ I ). Fig. 10 shows
how |Q + iU | −→ I and the error in the Stokes I map affect the H I

signal. Here, a spherical power spectrum of the simulated model of
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Intensity mapping experiments 2703

Figure 7. The first-row maps depict the measured foregrounds of Stokes I, Q, and U for using the non-distorted fully polarized beams in Fig. 4(a) whilst the
second and third rows represent the corrupted measured foregrounds due to gain and phase and dipole orientation errors introduced into the beams, respectively.
The next two maps are the corresponding errors in I, Q, and U.

21 cm brightness temperature at z≈ 0.67 produced from the CRIME14

fast-simulation software and described by Alonso, Ferreira & Santos

14http://intensitymapping.physics.ox.ac.uk/CRIME.
html

(2014) is generated and then compared with the spectra plots of the
Galactic foregrounds. The H I signal power on the right side of the
plot is higher than |Q + iU | −→ I at a multipole moment of l =
100, which is about 4 orders of magnitude greater at lower scales.
This occurs when we do not correct the beam errors (i.e. gain, phase,
and orientation) in Stokes I at all. The fractional leakage of |Q +
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2704 T. Ansah-Narh et al.

Figure 8. Systematic errors of full-sky maps produced by computing the relative error between the absolute of the convolved true sky maps and the corrupted
sky maps due to gain and phase error beams.

Figure 9. Convolved angular power spectra estimation of foreground maps. First row: Stokes I spectra plots for using simulated beams and holography-
measured beams. Second row: Stokes Q spectra plots for using simulated beams and holography-measured beams. Third row: Stokes U spectra plots for using
simulated beams and holography-measured beams.
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Intensity mapping experiments 2705

Figure 10. The spectra plots compare the effect of recovering the cosmological 21 cm signal by calibrating for the beam errors in Stokes I to when there is no
beam correction at all. The solid circular spectrum is the simulated 21 cm brightness temperature described by Alonso et al. (2014) at z ≈ 0.67. Left-hand plot:
Here, we show how to estimate the 21 cm signal when we correct the errors in Stokes I. Right-hand plot: We quantify the amount of leakages into Stokes I
when we do not perform any beam correction. The spectrum (|Q + iU|T), is the intrinsic leakage in I when we adopt true modelled beams as shown in Fig. 4(a).
The other plots (|Q + iU|GP, |Q + iU|XY, |Q + iU|VLA) are the leakages in I when we use perturbed modelled beams (i.e. gain, phase, and main dish surface
orientation errors) and holography-measured beams, respectively.

iU|/I is computed to give ≈1.0 per cent for the intrinsic case (i.e.
|Q + iU|T) where a true model of the beam is known. The spectra
plots reported in the other plot try to correct the columns that feed
into Stokes I (i.e. Q −→ I , U −→ I , and I −→ I ) by assuming
the corresponding beams (i.e. mQI, mUI, and mII) are not known to
the extent to which they have been assumed in this paper. In this
case, the power spectrum of the H I signal can be observed at a
multipole moment of l = 25. We conclude that if the knowledge of
the beam is of a similar quality than the one assumed in this paper,
then we will be able to recover the cosmological H I signal without
great problems and without further calibration on scales larger than
l = 100. However, this work suggests that if polarization calibration
is performed correctly then results can be improved and we can
recover scales above l = 25. In either case, given the strength of the
foregrounds in the Galactic Centre we will not be able to recover
scales less than that (i.e. l < 25).

The spectra plots in Fig. B3 evaluate the systematic effects of
beam errors on Stokes I, Q, and U. These residuals are determined
as a result of the respective differences between the distorted and
non-distorted measured full-sky maps. We then compute the stan-
dard errors of these residual plots to estimate the uncertainties in
the angular power spectra when modelled beams are assumed whilst
the foreground maps are convolved with the measured beams (VLA
holography beams). Table B1 in Appendix B shows the correspond-
ing inaccuracies in the power spectrum estimation. For instance, the
standard errors introduced in Q −→ I are ≈0.015 (due to gain and
phase errors) and 0.014 (due to the main dish surface orientation er-
rors). Also, those of U −→ I are ≈0.005 and 0.0045, accordingly.
The uncertainties in the spectra plots are a result of the inaccuracies
on the surface of the modelled dish presented in Fig. 3.

5 C O N C L U S I O N S

The study introduces an application of the OSKAR software as a rel-
atively cheap technique to produce realistic PBs and perturbations
(using gain, phase, and main dish surface orientation errors) for
IM experiments. These fully polarized modelled beams are then
used to simulate the full-sky polarization maps by the method
of convolution in order to compute the intensities of the diffuse
Galactic foregrounds and determine the amount of signal that has
seeped from linear polarization into total intensity. The simulation is
repeated using the holography-measured beams and then compared
with the modelled beams in order to estimate the error introduced in
the power spectrum when modelled beams are used. The following
are the key findings of the research:

(i) We use 80 000 dipoles to model the distribution of the dish-
like surface of the antenna. This produces ≈0.10 per cent perturbed
inaccuracies on the dish surface due to the random placement of
the dipoles, which are not exactly phased up. The value of the
perturbed inaccuracies will increase if the number of dipoles is
�80 000.

(ii) The perturbed inaccuracies due to the imperfections in the
nominal orientation of the dipoles introduce fractional errors of
0.08 for Stokes I, 0.03 for Q, and 0.07 for U in the convolved power
spectrum estimation. Note that these occur when we assume to use
modelled beams whilst we convolve the foregrounds with measured
beams.

(iii) Furthermore, if we construct a model of a beam and then
carry out polarization rotation and calibration of the phase in order
to correct the beam in Stokes I, then the power of the H I signal can
be estimated at a multipole moment of l = 25. But, if we don’t do
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2706 T. Ansah-Narh et al.

any correction at all for the beam, then the power spectrum of the
H I signal is measured at a multipole moment of l = 100. This makes
the latter multipole moment be ≈4 orders of magnitude higher than
when we correct the error in the beam.

(iv) Finally, if a true model of the beam is assumed, then the
intrinsic fractional leakage of |Q + iU |T −→ I is ≈1.0 per cent.

In summary, the outputs of this research have shown how OSKAR

can be used for beam pattern simulations and also introduce pertur-
bations such as gain, phase, and surface orientation errors. Hence,
with the fully polarized modelled beams produced from OSKAR

and the convolution technique for foreground simulations, we can
estimate the amount of foregrounds that have leaked from intensity
into polarization and vice versa. Our future work is to implement
a similar approach with MeerKAT holography-measured beams to
investigate the effects on MeerKAT H I IM observation.

AC K N OW L E D G E M E N T S

The authors acknowledge with profound gratitude full finan-
cial support from the South African Square Kilometre Array
(SKA-SA) Project. The research of O. Smirnov is supported by
the South African Research Chairs Initiative (SARChI) of the De-
partment of Science and Technology and National Research Foun-
dation. We also express our appreciation to the entire Radio Astron-
omy Techniques and Technologies (RATT) team for their immense
contribution, particularly Dr. Griffin Foster. F.B. Abdalla acknowl-
edges the support of the Royal Society via a University Reserach
Fellowship (URF).

RE FERENCES

Abitbol M. H., Hill J. C., Johnson B. R., 2016, MNRAS, 457, 1796
Alonso D., Ferreira P. G., Santos M. G., 2014, MNRAS, 444, 3183
Alonso D., Bull P., Ferreira P. G., Santos M. G., 2015, MNRAS, 447,

400
Bandura K. et al., 2014, in Stepp M. L., Gilmozzi R., Hall H. J., eds,

Proc. SPIE Vol. 9145, Ground-Based and Airborne Telescopes V. SPIE,
Bellingham, p. 914522

Bass M., DeCusatis C. M., Enoch J. M., Lakshminarayanan V., Li G.,
MacDonald C., Mahajan V. N., Van Stryland E., eds, 2009, Handbook of
Optics: Geometrical and Physical Optics, Polarized Light, Components
and Instruments. McGraw Hill Professional, New York, US

Battye R. A., Browne I. W. A., Dickinson C., Heron G., Maffei B., Pourtsidou
A., 2013, MNRAS, 434, 1239

Bennett C. L. et al., 2013, ApJS, 208, 20
Bhatnagar S., Cornwell T. J., Golap K., Uson J. M., 2008a, A&A, 487,

419
Booth R., Jonas J., 2012, African Skies, 16, 101
Born M., Wolf E., 1980, Principles of Optics Electromagnetic Theory of

Propagation, Interference and Diffraction of Light. Pergamon Press,
Oxford

Brentjens M. A., de Bruyn A. G., 2005, A&A, 441, 1217
Brisken W., 2003, A Cassegrain Antenna Simulator, a Program for

Cassegrain Antenna Modelling. http://packages.ubuntu.com/lucid/cass
beam

de Oliveira-Costa A., Tegmark M., Gaensler B. M., Jonas J., Landecker T.
L., Reich P., 2008a, MNRAS, 388, 247

de Vaate J. G. B., Faulkner A. J., 2012, Electromagnetics in Advanced
Applications (ICEAA), p. 618–621

Decker F.-J., 1994, 6th Workshop on Beam Instrumentation, Beam Distri-
butions Beyond RMS. Stanford University, Standford

Dulwich F., Mort B. J., Salvini S., Zarb Adami K., Jones M. E.,
2009, Proceedings of Wide Field Astronomy & Technology for the

Square Kilometre Array (SKADS 2009). p. 31, http://pos.sissa.it/cgi-
bin/reader/conf.cgi?confid=132

Faulkner A. J., 2011, Dense Aperture Arrays for Square Kilometre Array,
URSI General Assembly and Scientific Symposium XXX, 30, 1–4,
IEEE, Istanbul, Turkey

Foley A. et al., 2016, MNRAS, 460, 1664
Geil P. M., Gaensler B. M., Wyithe J. S. B., 2011, MNRAS, 418,

516
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APPENDI X A : MODELLED AND MEASURED
BEAMS

The Mueller matrix representations in Fig. A1 show the differ-
ent perturbation methods (i.e. gain, phase, and surface orientation
errors) used to corrupt the OSKAR beam model. Note that the distor-
tions in Fig. A1 are clearly visible at the upper and lower diagonals
of the beams. These perturbed beams are then compared with the
errors produced from ‘real’ measured beams of the VLA in Fig. A2.
The PBs presented in Fig. A2 are taken from two different stations
(i.e. antennas 5 and 6) whose fractional differences (refer to Fig. 4d)
are relatively higher than those of any other pair of stations.

Figure A1. Fully polarized distorted primary beams of KAT-7. (a) Due to gain and phase errors. (b) Due to dipole orientation errors.
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Figure A2. 1 GHz holography-measured Mueller beams of VLA. (a) Antenna 5. (b) Antenna 6.

APPENDIX B: MEASURED FULL-SKY MAPS

Figs B1 and B2 represent the respective systematic error maps and
the overall full-sky convolved maps simulated with the holography-
measured beams of the VLA in Fig. A2. The latter maps are used
to produce the convolved power spectrum of the VLA as presented
in Fig. 9.

Table B1 displays the errors recorded in the angular power spec-
trum estimation when modelled beams are assumed, whilst the fore-
grounds are actually convolved with real measured beams. These
errors are tabulated from the absolute differences of the standard
errors reported in Fig. B3.
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Figure B1. Systematic differences of the full-sky polarization maps produced by computing the relative error between the convolved sky using VLA PBs in
Fig. A2.

Figure B2. Measured Stokes I, Q, and U for holography-measured beams of the VLA with corresponding errors terms.
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Table B1. Error introduced in the power spectrum estimation.

I Q U Total
GP XY GP XY GP XY GP XY

I 0.0640 0.0640 0.0151 0.0137 0.0050 0.0045 0.0841 0.0822
Q 0.0010 0.0008 0.0221 0.0224 0.0007 0.0055 0.0238 0.0287
U 0.0007 0.0007 0.0194 0.0341 0.0354 0.0362 0.0555 0.0710

Figure B3. These are the spectra plots of the systematic errors as shown in Fig. 8. The notations GP and XY in the legends denote the residuals for gain-phase
and surface orientation errors in the OSKAR beams; HB depicts the errors in the holography beams. These errors are then used to estimate the imperfections in
the simulation by computing the expected value of the standard deviations of the sampling distributions of the residual maps to produce Table B1.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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