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Abstract
In identifying spectral outliers in near infrared calibration it is common to use a 
distance measure that is related to Mahalanobis distance.  However, different 
software packages tend to use different variants, which leads to a translation 
problem if more than one package is used.  Here the relationships between squared 
Mahalanobis distance D2, the GH distance of  WinISI, and the T2 and leverage (L) 
statistics of Unscrambler are established as D2 = T2  L*n  GH*k, where n and k are 
the numbers of samples and variables respectively in the set of spectral data used to 
establish the distance measure.  The implications for setting thresholds for outlier 
detection are discussed.  On the way to this result the principal component scores 
from WinISI and Unscrambler are compared.  Both packages scale the scores for a 
component to have variances proportional to the contribution of that component to 
total variance, but the WinISI scores, unlike those from Unscrambler, do not have 
mean zero. 

Introduction
One of the necessary steps in developing or applying near infrared (NIR) calibrations 
is to check for spectral outliers.  A common way to decide whether a given spectrum 
is an outlier is to calculate, using a distance measure that takes into account the 
pattern of spectral variability in the training set, its distance from the mean spectrum 
of that set.  This distance can then be compared with some threshold that is either 
based on an assumption of some statistical distribution or is simply a rule of thumb 
based on experience.
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So long as the user is faithful to one software package this approach is simple to 
apply.  Problems can arise however if more than one package is used, because 
different packages tend to use different variants of the same underlying measure, 
Mahalanobis distance [1, 2].  Then the sort of question that can arise is "A threshold 
of 3 for GH in WinISI works well for my applications, what is the corresponding 
threshold for a leverage from Unscrambler?"  The investigations reported here were 
carried out with the aim of answering some of these questions, by comparing the 
distance measures of WinISI and Unscrambler with Mahalanobis distances 
calculated from the same data set by Matlab code that implements the textbook 
formula.

An added complication is that the Mahalanobis formula involves the inversion of a 
variance matrix calculated from the spectra in the training set.  This inversion is 
unstable in high dimensions and so the spectra need to be projected onto a lower 
dimensional space before the distances can be calculated.  The obvious options are 
to use scores on either principal components (PCs) or partial least squares (PLS) 
factors.  The use of PCs has the advantage that one can use them to screen for 
outliers before developing calibrations.  PCs are also simpler to calculate and much 
more likely to match between different software packages, and so this is the 
approach adopted here.  Given that PC scores needed to be calculated in each of 
the three packages, the opportunity was taken to compare the scores also.

A priori the PC scores might be expected to differ between packages, because there 
is more than one option for scaling them, for example a vector of scores can be 
scaled to have length 1 or a squared length reflecting the contribution of the PC to 
total variance, to list just two of the most common options.  In addition the sign of the 
PC loadings, and hence of the scores, is arbitrary, because if v is an eigenvector of 
the matrix M then so is –v.  Different packages will often produce scores with 
different signs, and even using the same package the removal of one spectrum from 
the calculation can result in the sign of the PC flipping.  This is unimportant, but can 
be disconcerting when a plot appears to change completely after a very small 
change to the data.  None of this should matter so far as the distance calculations 
are concerned, since Mahalanobis distance is scale invariant, but it is still of interest 
to compare the scores from the three packages.

Materials and Methods
Data 

The data set used to compare the results on different software comprised 349 
spectra of liquid samples of subcutaneous fat of Iberian pigs, measured on a Foss-
NIRSystems 6500 monochromator.  The wavelength range was 400 to 2498nm in 
steps of 2nm, and thus the data matrix X was of dimension 349 x 1050. Since the 
purpose of the current investigation was simply to compare the software, no pre-
treatments were applied to the spectra.  The data were exported to a .csv file for 
transfer to Matlab, and to JCAMP-DX format for transfer to Unscrambler.

Software 
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The Matlab code in the appendices was run using version R2016b (The MathWorks 
Inc., Natick, MA, USA).  The WinISI software was version 4.8 (FOSS Analytical A/S, 
Hillerød, Denmark), and the Unscrambler software was Unscrambler X version 
10.4.1 (CAMO Software AS, Oslo, Norway).  Calculations with much earlier versions 
of Win ISI and Unscrambler (see the acknowledgement) gave equivalent results. 

Mahalanobis distance, Hotelling's T2, and leverage

Mahalanobis [3] invented the statistic that bears his name [1] as a way to measure 
the distance between two groups of observations in k-dimensional space while 
taking into account the fact that the k-variables may have differing scales and may 
be intercorrelated.  In this case the formula for the squared distance between the 
groups would be

D2 = (m1 - m2)TS-1(m1 - m2)

where m1 and m2 are the k x 1 vectors of means for the two groups and S is a k x k 
within-group variance matrix, all of these quantities being estimated from the data on 
the two groups.  This statistic is closely related to the subsequently developed 
Hotelling's T2, which is a multivariate version of the two-sample t-test.  The 
relationship when there are n1 observations in group 1 and n2 in group 2 is 

T2 = (n1n2/(n1 + n2)) D2

When the observations come from multivariate normal distributions, the distribution 
of T2, and hence that of D2, is known to be a multiple of an F distribution.  Full details 
of all the above can be found in almost any multivariate statistics textbook, for 
example the one by Krzanowski [2].

In NIR calibration a version of D2 is commonly used to measure the distance of a 
single spectrum, or more precisely the scores of this spectrum on a set of PCs or 
PLS factors, from the centre of the cloud of calibration set spectra.  Then the formula 
becomes 

D2 = (x - m)TV-1(x - m)                                                                                        (1)

where x is the k x 1 vector of spectral data for the observation of interest, and the k x 
1 mean vector m and k x k variance matrix V = XTX/(n-1) are both calculated from 
the n x k matrix X of spectral data for the calibration set.  

With m and V both calculated from the full calibration set of n observations, most of 
the random variability in this version of D2 comes from x.  If we assume x to be 
randomly sampled from the same multivariate normal distribution as the calibration 
set, and ignore that fact that m and V are sample estimates of population 
parameters, then the distribution of D2 will be approximately chi-squared on k 
degrees of freedom.  This distribution has a mean value of k.  This same 
approximate distribution applies regardless of whether x belongs to the calibration 
set or is a new observation.
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Leverage L is a statistic developed for identifying influential observations in multiple 
linear regression [4].  It is also used to identify outliers in NIR calibration [5, 6].  
Starting from the standard statistical definition its relationship with D2 should be

L = 1/n +D2/(n-1).                                                                                                  (2)

The factor of (n-1) arises because leverage uses (XTX)-1 in place of V-1 in a formula 
analogous to Equation 1, and the 1/n represents the influence of x on the mean m. 
Because of the context in which it was designed to be used, there is an assumption 
here that x is one of the n rows of X and so has contributed to the estimation of m.  
In cases where it is not, for example in comparing the spectra of prediction samples 
with those of a calibration set, it would make sense to omit the 1/n, though if this 
makes any practical difference the calibration set is too small.

PCA calculations

PCA scores were calculated in Matlab using the code in Appendix 1 with the scaling 
parameter 'scal' set to 1.  This uses the Matlab SVD function to decompose X and 
scales each vector t of scores so that its squared length tTt is equal to the 
corresponding eigenvalue of XTX.  In other words, the variance of the scores for a 
component is proportional to the contribution of that component to the total variance 
in X.  The columns of X are centered but not rescaled in the computation.  This 
would correspond to the 'covariance' option in most standard statistical packages.  In 
WinISI there are no options; in Unscrambler mean centering and the SVD algorithm 
were selected.

Distance calculations

Squared Mahalanobis distances D2 were calculated in Matlab using the code in 
Appendix 2.  This implements the textbook formula in Equation 1.  In WinISI and 
Unscrambler the desired statistics were selected from the appropriate menus, 
choosing to base the calculations on 10 PCs in each case.

Results and discussion
The aim of this investigation was to relate the formulas used by the packages 
compared, not to establish the accuracies of the computations.  Thus statements like 
'the scores matched' should be interpreted as meaning only that the correspondence 
was good enough to establish equivalence beyond reasonable doubt, not as a claim 
of identity to the level of machine precision.  In any case the rounding errors involved 
in the transfers of data probably dominate the errors in any internal computations.

Comparison of PC scores

As expected, there were differences in signs between some of the scores returned 
by the three programs.  With these differences resolved the scores produced by 
Unscrambler matched those from Matlab.  The scores from WinISI had the same 
scaling as those from the other two programs but, unlike the other two sets, were not 
centred on zero.  Figure 1 shows the Matlab and WinISI scores on the first two PCs 
after the directions of the Matlab scores have been reversed so that the plots match. 
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Figure 1.  Scatter plots of first 2 PC scores from Matlab (left) and WinISI (right). 

Further comparisons revealed that although WinISI centres the columns of X before 
carrying out the PCA, the scores it produces correspond to applying the loadings to 
an uncentred X.  Running the Matlab code in Appendix 1 and then calculating X*L 
reproduces the WinISI scores.  This is presumably done because it simplifies the 
calculation of scores for future samples by eliminating the need to subtract the mean 
spectrum of the set used to carry out the PCA.

Comparison of Mahalanobis and other distances

The T2 results from Unscrambler correspond to the squared Mahalanobis distances 
D2 from the Matlab program.  The leverages L correspond to D2/(n-1) + 1/n as in 
Equation 2.  The Unscrambler reference manual [7], which is generally quite precise, 
clearly defines leverage as the standard statistic, but is uncharacteristically vague 
about T2.

The relation between WinISI's GH and D2 was found to be

GH = (n/(n-1)).D2/k

where k is the number of PCs used for the calculation of D2 and GH.  The factor n/(n-
1) is presumably due to the use by WinISI of a divisor of n rather than the more usual 
n-1 in the calculation of the variance matrix in the Mahalanobis formula.  The division 
by k scales GH to have typical values of around 1 whatever the value of k.

Ignoring subtleties like factors of n/(n-1), which is 1.003 for the data set used here for 
example, the relationships may be summarised as 

D2 = T2  L*n  GH*k.                                                                                   (3) 
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Implications for thresholds

Using the approximate relationships in Equation 3, a threshold of TM for squared 
Malahanobis distance corresponds to thresholds of TM/k for GH, TM for 
Unscrambler's T2 statistic and TM/n for Unscrambler's leverage statistic. So, for 
example, the GH rule of thumb of 3 would convert to 3k for squared Mahalanobis 
distance or for T2, and to 3k/n for leverage.  In fact 3k/n, along with 2k/n, is a 
commonly suggested rule of thumb for leverage [6].

Figure 2.  Thresholds for GH at three probability levels based on a chi-squared 
distribution with k degrees of freedom for D2

The alternative to a rule of thumb is to base a threshold on a probability distribution. 
If we assume a multivariate normal distribution for the PC scores, the approximate 
distribution for D2 is chi-squared on k degrees of freedom.  Figure 2 shows 
thresholds at probability levels of 95, 99 and 99.9% for GH based on this distribution.  
While these probabilities should not be taken too seriously, since the normality 
assumption is unlikely ever to be correct, the figure does suggest that 3 is a sensible 
choice for a fixed threshold for GH, at least for modest k.  
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Appendix 1.  Matlab code for PCA
This function uses Matlab's singular value decomposition on the n x p matrix X, thus 
avoiding the need to compute the matrix product XTX.  The 'econ' option stops the 
decomposition when the number of eigenvalues extracted corresponds to the 
smaller of n and p, the maximum number of nonzero eigenvalues for a matrix of this 
size.  The PCA scores and loadings are easily computed from this decomposition.

function [S,L,v,m] = pcomp(X,k,scal)
% PCA 
% Usage [S,L,v,m] = pcomp(X,k,scal)
% Inputs 
%   X ..... n x p matrix of spectra (in rows)
%   k ..... number of components to return
%   scal .. scalar, options for scaling the scores
%           0 - orthonormal scores
%           1 - scores scaled to have squared length equal to
%                   the corresponding eigenvalue of X'X
% Outputs
%   S .... n x k matrix of scores
%   L .... p x k matrix of loadings
%   v .... k x 1 vector of eigenvalues of X'X
%   m .... 1 x p vector, column means of X
%
% Note: to calculate scores for a new data matrix M use
%       Scor = (M-ones(size(M,1),1)*m)*L
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%
% Tom Fearn, February 2019
%
m = mean(X,1);                % column means of X
Xc = X - ones(size(X,1),1)*m; % centre columns of X
[U,E,V] = svd(Xc,'econ');     % decompose Xc as U*E*V'
e = diag(E);                  % all the eigenvalues of X
e = e(1:k);                   % first k eigenvalues of X
v = e.^2;                     % first k eigenvalues of X'X
if scal==0
    S = U(:,1:k);             % k scores, orthonormal
    L = V(:,1:k)*diag(1./e);  % k loadings, scaled to give 
                              %    orthonormal scores
else
    S = U(:,1:k)*diag(e);     % k scores, scaled by eigenvalues
    L = V(:,1:k);             % k loadings, orthonormal
end
end

Appendix 2.  Matlab code for Mahalanobis distance
Two separate functions were used.  The first, MVinv, calculates the mean and 
inverse variance matrix from a set of data, the second takes these as inputs and 
calculates Mahalanobis distances.  To use the PCA function above and the two 
functions below to calculate Mahalanobis distances using k PCs from a data matrix 
X, the code would be

[S,L,v,mx] = pcomp(X,k,1);
[ms,Vi] = MVinv(S);
D = MD2(S,ms,Vi);

Function MVinv

function [m,Vi] = MVinv(X)
% Calculates mean vector and inverse variance matrix of data set X
% Usage[m,Vi] = MVinv(X)
% Input
%   X ... n x p matrix of data, cases in rows
%
% Outputs
%   m ... 1 x p vector, column means of X
%   Vi .. p x p symmetric matrix, inverse of covariance matrix of X
%
% Notes
% 1. If p is very large, and in particular if p>n-1, computing the 
%    inverse of the covariance matrix will give unstable results 
% 2. The divisor in the computation of the covariance matrix is n-1
%
% Tom Fearn, February 2019
%
m = mean(X);
V = cov(X);
Vi = inv(V);
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end

Function MD2

function D = MD2(X,x0,Vi);
% Calculates the squared Mahalanobis distance of each row of X from
%   each of the rows in x0 using the inverse covariance matrix Vi
% Usage D = MD2(X,x0,Vi)
% Inputs
%   X ... n x p, data matrix, observations in rows
%   x0 .. k x p, centres for calc of MD, in rows
%   Vi .. p x p, inverse variance matrix for calc of MD
% 
% Output
%  D ... n x k matrix, squared Mahalanobis distances between each 
%                      row in X and each row in x0       
%
% Notes
% 1.  To get distances from a calibration set mean set x0=m where
%     m is the 1 x p mean vector of the cal set as given by MVinv
% 2.  To get distances from several individual observations 
%     set these observations as the rows of x0
% 3.  This will obviously crash if the dimensions p of the inputs
%     do not match!
%
% Tom Fearn, February 2019
%
% make sure that if x0 is a vector it is a row vector
if size(x0,2)==1; x0=x0'; end;
%
% set up storage for results
n = size(X,1); k = size(x0,1);
D = zeros(n,k);
%
% loop over rows of x0
for i = 1:k
    m = x0(i,:);                 % set i'th row as as the centre
    Xc = X - ones(n,1)*m;        % center X
    D(:,i) = sum((Xc*Vi).*Xc,2); % calculate squared MDs
    % Note: The more obvious code would be diag(Xc*Vi*Xc') but 
    % this would be less efficient
end 
end
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Figure 1.  Scatter plots of first 2 PC scores from Matlab (left) and WinISI (right). 
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Figure 2.  Thresholds for GH at three probability levels based on a chi-squared distribution with k degrees of 
freedom for D2 
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