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A B S T R A C T

We review the history of human-automation interaction research, assess its current status and identify future
directions. We start by reviewing articles that were published on this topic in the International Journal of
Human-Computer Studies during the last 50 years. We find that over the years, automated systems have been
used more frequently (1) in time-sensitive or safety-critical settings, (2) in embodied and situated systems, and
(3) by non-professional users. Looking to the future, there is a need for human-automation interaction research
to focus on (1) issues of function and task allocation between humans and machines, (2) issues of trust, incorrect
use, and confusion, (3) the balance between focus, divided attention and attention management, (4) the need for
interdisciplinary approaches to cover breadth and depth, (5) regulation and explainability, (6) ethical and social
dilemmas, (7) allowing a human and humane experience, and (8) radically different human-automation inter-
action.

1. Introduction

The concepts of automation, and mechanized and automated work
have been around for decades. According to the Britannica en-
cyclopedia, automation is “the application of machines to tasks once
performed by human beings or, increasingly, to tasks that would otherwise be
impossible. Although the term mechanization is often used to refer to the
simple replacement of human labour by machines, automation generally
implies the integration of machines into a self-governing system.”
(Groover, 2018).

The above definition of automation does not involve the require-
ment of a computer processor. However, many modern forms of auto-
mated (or sometimes: autonomous) machines, such as power plant
monitoring devices, automated cars, drones, robots, and chatbots, do
involve computers. These computer-automated systems are used by
humans, and humans are expected to remain essential contributors to
artificial systems and automated systems in the future (Stone et al.,
2016). The study of human-computer interaction, or more specifically
human-automation interaction, therefore continues to remain relevant
as automated systems are used to support more and more everyday
activities, overseen by non-technical and non-professional end-users.

In this special issue to celebrate the 50th anniversary of the
International Journal of Human-Computer Studies, and its predecessor
the International Journal of Man-Machine Studies (from now on

collectively referred to as IJHCS), we review the contributions that
IJHCS has made towards the study of human-automation interaction.
We therefore analyze published work from the journal to distill historic
trends. Our analysis shows that human-automation interaction is a field
that keeps expanding into new domains and contexts (what we refer to
as “breadth”), and also keeps improving its performance within do-
mains and contexts (what we refer to as “depth”). Given these expan-
sions, and the exposure to more contexts and to a wider and more di-
verse group of end-users, there is a potential for the broader human-
computer interaction community to contribute skills and knowledge to
create and evaluate safe, engaging, and productive automated systems.

We close our analysis by discussing eight trends that we deem of
particular relevance for this community, classified in two segments.
First, we discuss trends that have been around for a while but continue
to remain important: (1) function and task allocation between humans
and machines, (2) trust, incorrect use, and confusion, and (3) the bal-
ance between focus, divided attention and attention management.
Then, we discuss emerging themes: (4) the need for interdisciplinary
approaches to cover breadth and depth, (5) regulation and explain-
ability, (6) ethical and social dilemmas, (7) allowing a human and
humane experience, and (8) radically different human-automation in-
teraction.
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2. History of human-automation interaction

To gain an overview of the number of articles that were published
on the topic of human-automation interaction in IJHCS over its 50 year
existence, we conducted a Scopus search on January 14th 2019. We
collected all articles that had the word “automation”, “automated”, or
“autonomous” in either the title, abstract, or keywords. Table 1 reports
the number of articles that matched the search query per topic and
decade, together with the total number of articles that was published in
IJHCS that decade.

The topic of automation covers a substantial subset of the published
work in IJHCS: 4–11% of published articles in each decade, with
around 5–6% of the articles in the last two decades. These percentages
should be interpreted as approximate values, as the count is limited by
the keywords that authors used in their paper's title, abstract and
keywords section. There might be false alarms (papers that were re-
turned based on keywords, but that did not directly address research on
human-automation interaction) and misses (papers that are relevant for
the field of human-automation interaction, but did not include these
specific keywords).

To gain a richer understanding of the themes that are discussed in
IJHCS papers on human-automation interaction, our initial keyword
search was followed by a qualitative analysis. For this analysis, we
sorted the IJHCS papers on human-automation interaction by year of
publication. We then read the titles and abstracts of these papers to pick
up common themes per decade. This revealed four themes which align
well with more general trends in artificial intelligence (e.g., Russell and
Norvig, 2009, chapter 1) and human-computer interaction (e.g.,
Carroll, 2013). However, as the analysis method is subjective in nature,
and limited by the papers that were published in IJHCS, we do not
claim that we have identified all strands of human-automation inter-
action research that occurred over the last five decades. We do claim
that we identified relevant themes, which are discussed in more detail
next.

2.1. Start: automation for dedicated domains

Publications on automation in IJHCS largely started off with the
study of dedicated, domain specific systems. In the 1970s and 1980s a
large proportion of published work (around 25 papers) focused speci-
fically on the development and evaluation of automated psychological
tests (for overview papers, see e.g. Elithorn et al., 1982; Thompson and
Wilson, 1982). The widespread introduction of computers allowed
psychology researchers to conduct interactive tasks on computers, in-
stead of just pen-and-paper tests or subjective assessment. Nowadays,
digital testing is common in experimental studies involving human
participants, and has given rise to opportunities for conducting large-
scale studies using crowdsourcing platforms, like Amazon's Mechanical
Turk (see Gould et al., 2018 for a review). Given the rise and ubiquity of
personal computing devices, the idea of completing an online survey
would now hardly qualify as an example of “automation” anymore.

A second dedicated domain in which automation was researched is
knowledge acquisition (Feigenbaum, 1977). As reviewed in a previous
IJHCS special issue (Motta, 2013), one of the main aims within this
domain in the 1980s was to be able to develop methods to ‘extract’
knowledge from experts that can be represented in machines. Among
our dataset of papers on automation, the top-cited papers from the
1980s all proposed methods for knowledge elicitation (e.g., Belkin

et al., 1987; Diederich et al., 1987; Gruber and Cohen, 1987). Since the
1980s there has been a general shift in perspective that successful
knowledge acquisition and knowledge engineering requires more than
extracting knowledge. Considerations of systems engineering and al-
lowing smart inferences based on multiple sources (e.g., through the
internet) are now seen to be key, with modern day knowledge acqui-
sition research taking on a broad and multi-disciplinary perspective
(see also Motta, 2013; Gaines, 2013; Breuker, 2013).

2.2. Time-sensitive and safety-critical settings

Throughout the last five decades of IJHCS, automation research has
branched out into more domains and settings. One distinct class of re-
search is on tasks that are time-sensitive (i.e., require a response within
a finite, short time interval) and/or safety-critical (i.e., where an in-
correct action can have disastrous consequences). Work in this area has
been published in every decade, but particularly in the 1990s and early
2000s. The range of settings in which time-sensitive and safety-critical
tasks have been studied is diverse and varied: from monitoring dynamic
processes in factories (e.g., Lee and Moray, 1994), power plants (e.g.,
Vicente et al., 2001), and other professional settings (e.g., Bahner et al.,
2008; van Gigh, 1971), to flight monitoring (e.g., Singh et al., 1997;
Skitka et al., 1999, 2000), and semi-automated driving (e.g., Rajaonah
et al., 2008, Seppelt and Lee, 2007).

The diversity of domains (and the importance of preventing in-
cidents) has allowed an exploration of deep general topics throughout
the history of IJHCS, which remain relevant for today's research. They
include topics such as how to distribute or allocate tasks between hu-
mans and machines (Dearden et al., 2000; Hollnagel and Bye, 2000;
Press, 1971; Sheridan, 2000; de Vries et al., 2003; Milewski and Lewis,
1997), finding the right levels of workload to avoid under- and overload
(Van Gigh, 1971; Rajaonah et al., 2008), how to promote appropriate
levels of trust in automation (Dzindolet et al., 2003; Lee and Moray,
1994), and how to avoid incorrect use and (human) errors such as
through complacency (Bahner et al., 2008) or (human) biases (Skitka
et al., 1999, 2000). We will return to the current status of these topics in
more detail in our section on the future of human-automation inter-
action.

2.3. Embodied, situated agents

Since the 1990s there has been a gradual shift away from static
systems for specific domains (e.g., expert systems, systems for psycho-
logical testing) to systems that involve a dynamic intelligent agent that
performs a task (e.g., Milewski and Lewis, 1997; Zeng and Sycara,
1998). This continues in the 2000s, with a rise of papers on automated
systems that act in a dynamic, physical world. This parallels the po-
pularization in Artificial Intelligence (AI) research of embodied, si-
tuated agents (Pfeifer and Scheier, 2001): systems that have their own
sensors and that depend on interaction with the environment for per-
formance. For example, in the 2000s IJHCS published various studies
on physical robots (e.g., Kaber et al., 2006; Sakamoto et al., 2005) and
cars (Rajaonah et al., 2008; Seppelt and Lee, 2007). In parallel, there is
also research published on affective interaction with robots, and auto-
mated (emotion) feature detection (e.g., Bailenson et al., 2008; Brave
et al., 2005; Partala and Surakka, 2003). These topics continue in the
2010s, but also broaden out to include, for example, research on
human-robot interaction with multiple robots (Chien et al., 2018).

Table 1
Articles in IJHCS that self-identified as covering automation, per decade compared to the total number of articles that appeared in the journal that year.

Topic 1969–1979 1980–1989 1990–1999 2000–2009 2010–2019 Total

Articles on “automated”, “automation” or “autonomous” in IJHCS 13 82 37 49 37 218
Reference: total articles in IJHCS per decade 334 696 764 728 727 3249
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The relevance of considering embodied and situated robotics and
automation explicitly is that the actions of embodied, situated systems
(at least in part) depend on how the world is perceived through the
machine's sensors, and through the environment in which the machine
interacts (Pfeifer and Scheier, 2001). Different machines can (learn to)
act differently if either their sensors have different capabilities or if they
are trained in different kinds of environments.

Generalization to unknown settings, and adaptation to new settings,
requires extensive training for these embodied, situated robots.
Automated vehicles are an example of an embodied, situated robot that
acts in and adapts to unknown settings. For automated vehicles,
training typically consists of a combination of extensive experience
under real-world driving conditions, as well as extensive simulated
training sessions to learn how to act in other potential worlds
(Madrigal, 2017). By contrast, earlier simpler automated systems, such
as, closed-world factory systems, or virtual systems such as a digital
psychological test or expert system, require relatively less extensive
testing due to their reliance on the assumptions of a closed world.

2.4. Rise of the non-professional users

As chips get smaller and gain more capacity, smart and automated
technology is becoming more widely available for use by non-profes-
sional users. These users have often not been trained in how to use or
operate the system and often do not have a detailed technical under-
standing of how the automation works and the limitations on its suc-
cessful operation. The last trend that we observe is then that there has
been an increase in research on automation for use outside of profes-
sional settings. For example, the availability of smart phones and other
smart devices that are connected to the internet and allow users to
interact with automated systems and processes. Some examples that are
covered in IJHCS include electronic shopping (e.g., Hassanein and
Head, 2007), robots as social companions (e.g., Leite et al., 2013), and
control of semi-automated vehicles (e.g., Rajaonah et al., 2008; Seppelt
and Lee, 2007).

While many of the topics that apply to professional (skilled) users of
automated systems also apply to non-professional users, there are some
additional considerations that come into play for research on how non-
professional users interact with automated systems. For example, for
non-professional users one cannot rely on extensive training and ex-
perience with the technology, and the technology might be used in a
wider set of context than that which can be predicted by the profession.
Study of use by non-professional users is therefore an emerging setting,
discussed in more detail below that requires the full breadth of HCI
expertise. Moreover, the use by non-professional users requires further
consideration of more ethical topics such as human attitudes towards
and acceptance of autonomous systems (Złotowski et al., 2017) and
how to handle security and hacking (Chen et al., 2018; Ferreira and
Teles, 2019).

2.5. Summary of human-automation interaction research to date

In summary, our analysis of publications in IJHCS on the topic of
human-automation interaction shows that research has expanded be-
yond the use of automation in dedicated domains such as factory as-
sembly lines and automated psychological tests. In particular, there are
distinct research lines that investigate the use of automation in time-
sensitive or safety-critical settings, through embodied situated agents,
and by non-professional users.

Fig. 1 provides a Venn diagram with examples of automated systems
for each of these research lines. The Venn diagram also makes explicit
how these different areas fit together. Specifically, it identifies that
there are many domains and settings in which two or more of these
research lines come together. A prime example is the automated car,
which involves automation in the form of an embodied, situated agent,
which is used by non-professional users in a time-sensitive, safety-

critical context.
For embodied, situated systems some form of automation (or au-

tonomy) is almost always required (although by definition, humans can
also be considered embodied situated agents, Pfeifer and
Scheier, 2001). Hence in our Venn Diagram of Fig. 1, embodied, si-
tuated agents are represented as a subset of the larger automation ca-
tegory. Moreover, whether something is considered embodied and si-
tuated might at times be open to interpretation. For example, we opted
that a power plant monitoring system is not labeled as embodied and
situated, even though such systems can sense and act to maintain a
balance in the power plant's processes (e.g., increase or decrease
cooling). Our motivation for not including it as a fully embodied, si-
tuated agent was that—from our understanding—these systems tend to
rely on if-then rules and are less open to dynamic situations that our
other examples (e.g., cars and military drones) face.

3. Future of human-automation interaction: evergreen themes

We now turn our attention to the future of human-automation in-
teraction research, by describing themes that are important for future
work. We start by describing three themes that are “evergreens”:
themes that were also covered in the past, but that continue to be im-
portant areas for research. In particular, these themes require further
expansion due to the breadth of domains and users that are involved in
automated settings. After discussing these evergreen topics, we go on to
discuss five new topics in human-automation interaction that we expect
to increase in importance over the coming years.

3.1. Function and task allocation between humans and machines

The first theme that has had persistent attention in IJHCS research
on automation is the distribution or allocation of tasks between humans
and automated systems (e.g., Dearden et al., 2000; Hollnagel and Bye,
2000; Press, 1971; Sheridan, 2000; de Vries et al., 2003; Milewski and
Lewis, 1997). A simple, naive understanding of the introduction of
automation might be that automated systems take over the execution of
tasks from humans, and thereby simply ‘reduce’ the amount of work or
attention that humans need to dedicate to that task. A colloquial un-
derstanding is for example that people are better at some tasks (e.g., to
exercise judgment) and machines are better at other tasks (e.g., to
perform repetitive routine tasks; Fitts, 1951). However, as analyzed in
detail by Sheridan (2000), achieving such allocation in practice is a
hard problem, as researchers differ in what they set as appropriate
criteria for the function allocation.

In line with this view, it is important to consider the so-called “irony
of automation” (Bainbridge, 1983), which states that introduction of
automation can radically change how people perceive or act in a spe-
cific context. People do not merely reduce what they work on when
(part of) a task is automated, but use different strategies for working on
that task altogether. For example, one intention of semi-automated
vehicles is that the human driver is responsible for fewer basic control-
monitoring tasks (e.g., steering, pressing the gas), and can therefore
switch his or her attention to monitoring the traffic environment and
the vehicle. However, a meta-review of research on driving assistance
systems suggests that the introduction of automation increases the
likelihood that drivers perform non-driving related tasks, which reduces
their situational awareness and response time to alerts (de Winter et al.,
2014).

Although the problem of function allocation, and related themes,
such as the irony of automation, have been known for decades, the
associated research questions gain new urgency now that automation is
being used by non-professional users in time-sensitive and safety-cri-
tical contexts. An underestimation of user interaction in these domains
can lead to incidents, and non-professional users might lack the training
and experience to cope with system failures. Moreover, they might
underestimate risks or misplace their trust in the system. For example,
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in the first deadly incident with a Tesla model S (a partially automated
vehicle), the human driver had a prolonged period of visual distraction
shortly before the crash (Habib, 2017). Although the cause of this
distraction is unknown, misplaced trust in the automation might have
been a factor.

Automation might also change how, when, and where tasks are
performed. For example, if cars become more automated, will they turn
into mobile offices (Chuang et al., 2018), or areas of fun and play
(Kun et al., 2016)? That is, automation might be a radical disruptive
innovation that changes more than just the task itself.

3.2. Trust, incorrect use, and confusion

The second major theme of human-automation interaction to have
received persistent attention in IJHCS over the years is how to promote
appropriate levels of trust in automation (Dzindolet et al., 2003; Lee
and Moray, 1994), how to avoid incorrect use and (human) errors (e.g.,
Bahner et al., 2008; Skitka et al., 1999, 2000), and how to avoid con-
fusion.

Parasuraman and Riley (1997) introduced four distinct types of use
of automation that can impact a user's trust in a system. Initial use
might already depend on trust, but on top of that users and other sta-
keholders of automation might misuse the automation (i.e., show
overreliance, or too much trust), disuse it (i.e., under rely on the auto-
mation and distrust it, for example due to false alarms), or abuse it (i.e.,
introducing the automation without considering all the consequences of
it, in line with the irony of automation, Bainbridge, 1983). These four
forms of use, and their impact on trust are still relevant today. They are
particularly relevant now that non-professional users are using auto-
mation in more settings. As they lack the training and experience of
professional users, they might bring in incorrect expectations of the
capabilities of the automated system, resulting in misuse or disuse.

How a user uses automation, and how they perceive trust can also
be looked at more dynamically, based on a user's understanding of the
system's mode of operation over time. The mode, or state, of an auto-
mated system determines its response to user input and to changes in
the overall context of the system. For example, in automated vehicles,

cruise control and adaptive cruise control can be two automation
modes. When human drivers or operators engage adaptive cruise con-
trol, their vehicle will attempt to maintain a given speed, but will slow
down if there is slower traffic ahead; in contrast the same vehicle with
(non-adaptive) cruise control will not slow down for slower vehicles
ahead. The human operator needs to keep track of mode changes, and
also remember how the system will react to user input and context
changes in the current mode. Mode confusion (mode error) occurs when
the human operator is confused about the current mode of the system,
or cannot remember how the system will react in the current mode
(Sarter and Woods, 1992).

Mode confusion is highly consequential for safety-critical systems,
such as road vehicles, power plants, airplanes, robotic wheelchairs, and
flight control systems. In the above example, if the driver mistakenly
believes that the vehicle is in the adaptive cruise control mode, when it
is actually in (non-adaptive) cruise control (i.e., a form of misuse of
automation in Parasuraman and Riley's terms), the result can be a crash.
Janssen et al. (2019) discuss this issue in the driving domain by in-
troducing a probabilistic (Hidden Markov Model) framework that re-
lates driver beliefs of the system's mode to actual system modes. Such
frameworks make explicit in what system states mode confusion might
occur, and can aid in the (re-) design of safety-critical systems.

Mode confusion can also happen in other contexts.
Vicente et al. (2001) point out that power plants are highly complex
systems, which means that some part of the plant will always be under
repair or in a state of being modified. This effectively changes the mode,
or state, of the plant, and requires operators to act accordingly. Mode
confusion might result in a misinterpretation of alarms: depending on
the mode of the power plant, an alarm might indicate an actual problem
or an expected state of operation.

In the coming years, human interactions with automation will
continue to be subject to mode confusion. The reason is twofold. First,
automation is not the same as autonomy: our automated systems will be
very good at what they do, but in some difficult cases, or in legally
mandated situations, they will require human intervention. Second,
automated systems will continue to be applied in a variety of complex
situations—after all, that is where they are the most useful. However,

Fig. 1. Venn Diagram of current types of human-automation interaction research (not to scale). Automated systems are developed for use by non-professional users,
in time-sensitive or safety-critical systems. Embodied situated systems are a subset of automated systems that have seen a rise since the early 2000s.
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use in complex situations will result in multiple modes of operation
(Sarter and Woods, 1995). Researchers need to focus on creating
models of mode confusion for different application areas, (e.g.
Janssen et al., 2019). Such models can then be used in the design and
evaluation of systems that reduce the frequency, and the consequences,
of these errors.

3.3. Focus, divided attention, and attention management

A third theme that has had persistent attention in IJHCS research on
automation is creating appropriate workload levels for the human in-
teracting with automation so as to avoid under- and overload (Van
Gigh, 1971; Rajaonah et al., 2008). Taking a broader perspective, one
can say there is a need to understand focus, divided attention, and at-
tention management.

As automation continues to improve, automated tasks might require
less human attention and intervention. This allows humans to focus on
other activities, such as (other) work and play. At the same time, re-
searchers expect that humans will continue to play a role in automated
systems such as cars, even under higher levels of automation (e.g.,
Janssen et al., 2019; Lee et al., 2017; Noy et al., 2018; Stone et al.,
2016). For example, occasional human aid might be needed if the au-
tomated system encounters an off-nominal scenario. In such a case,
humans need to revert their attention to the automated task, even
though they might feel that their preceding task was more urgent to
them. These situations require a detailed understanding of multitasking
and interleaving processes (see also special issue in IJHCS,
Janssen et al., 2015), and a new view on attention management.

Focusing on automated vehicles, a large body of research has in-
vestigated the effectiveness of providing last-minute alerts to warn
drivers about situations where human assistance is needed. However, in
such automated circumstances, people's susceptibility to alerts is re-
duced (Van der Heiden et al., 2018; Lahmer et al., 2018; Scheer et al.,
2018). Moreover, even if an alert is processed, mode confusion might
limit the human driver's understanding of their role and limit their
ability to take the right action (Janssen et al., 2019). Novel perspectives
on attention management might be needed to minimize these dangers.
For example, in our own work we have investigated the use of earlier
warnings (pre-alerts) to warn drivers before their action is critical
(Van der Heiden et al., 2017; see also Borojeni et al., 2018). Beyond
simply providing warnings, more research is needed into how the
human and the machine can be partners in a task, instead of one taking
over the task of the other and only warning in case of emergency. The
success of such systems will rely both on the system's ability to assess
(e.g., model and predict) the human state and understanding, and also
on the human's ability to understand the system's functioning.

4. Future of human-automation interaction: emerging themes

To close, we discuss five themes that are emerging as important
topics in automation research, and which we expect to increase in
importance over the years to come.

4.1. Interdisciplinary studies to cover breadth and depth of domains and
users

Our review of the IJHCS literature has shown that over the past five
decades, research on human-automation interaction has broadened out
into different areas. We expect that automated systems will continue to
broaden out into new domains as the principles and methods behind
automated technologies aimed at professional users start to penetrate
the broader consumer market aimed at non-professional users. For ex-
ample, automated features from commercial airplanes might make it
over to non-commercial airplanes that are used by trained, but less
experienced pilots.

At the same time, even though technology branches out, in a sense

automated technology is often still specialized and limited, and its ac-
curacy can be improved. In the home environment there are dedicated
machines for vacuuming, lawn mowing, or playing music, but few de-
vices that combine such tasks. Personal virtual assistants like Amazon's
Alexa, Apple's Siri, or Google Assistant can aid in many tasks, but have
limited capabilities (e.g., Cohen et al., 2016; Cowan et al., 2017). On
the road, automated cars can tackle ever more complex and demanding
situations, but still have exceptions where human assistance is needed.
In other words, there are opportunities for improvements in both the
“depth” (i.e. improving performance on specific tasks) and the
“breadth” (i.e., how many tasks and contexts they can handle) of stu-
dies on automated systems.

As part of the branching out, automated systems will be used more
frequently by non-professional users and with this comes a set of im-
portant questions about human-automation interaction. For example,
how are users trained to work with automated safety-critical devices?
How are their skills on a task retained if it is not put to use frequently
(see also Casner et al., 2014)? How are different cultures, and different
norms, customs, and conventions facilitated? Will the adoption and use
of automated systems benefit a variety of user groups (e.g., automated
vehicles hold the potential for improved mobility for people who
cannot drive or do not have access to their own vehicle)?

4.2. Regulation and explainability

The regulatory landscape for automation depends heavily on the
application area. Thus, regulation is well-developed for established
fields, such as for relatively simple medical devices. However, new
interconnected medical devices present a challenge for regulation
(Sokolsky et al., 2011). Even more so, medical robotics, where auto-
mation can take on various forms, presents a significant challenge for
regulators—in fact, autonomous robots will not only be medical devices
but also entities that practice medicine, and it is not yet clear who
would be in charge of regulating them (Yang et al., 2017). Similarly,
regulation is still under development for cars, where automation is only
now making significant advances (Inners and Kun, 2017).

A large push on automation research comes from European legis-
lation on “explainability”. In the context of recent data protection laws,
European laws now require that decisions that are made for humans by
automated systems are explainable to the humans (European Union,
2016, 2018; see also Goodman and Flaxman, 2017). Automated system
and (machine learning) algorithms make many decisions, but the rea-
sons for these decisions might be opaque to the end user
(Burrell, 2016). Moreover, the (decision) models that the algorithms
create to inform their actions necessarily abstract away from some
details in the world. Such abstraction can result in ‘traps’ (Selbst et al.,
2018) such as an inability to take all of the relevant features into ac-
count in decision making (as some were left out in the abstraction) or to
transfer learned behavior to new settings (where other features are
perhaps more important).

Explainability is not always straightforward for embodied, situated
automated systems such as automated cars, as these systems make
many decisions over time. For example, at any given time there is an
explicit or implicit decision to accelerate or decelerate, and whether to
make a steering adjustment (i.e., Michon's control level; Michon, 1985).
Should cars be able to explain these decisions continuously? And should
this be done in real-time? Or should only more strategic decisions
(Michon, 1985) such as why particular routes were chosen be ex-
plainable? Or is only hindsight explanation needed surrounding (near-)
accidents? Although ideally a system should be able to make multiple
explanations, whether they do this can impact a user's attention, and
might also have impact on system performance (i.e., when dedicating
capacity to the storing of decisions). From a human-computer interac-
tion perspective, explainability of automated systems should at least be
present to avoid mode confusion (Janssen et al., 2019) and to avoid
alert fatigue and the so-called “cry-wolf effect” (Breznitz, 1983; Sorkin,
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1989).
Like humans, automated machines are not always “perfect”. The

algorithms behind automated systems often get trained on data, and the
resulting decision systems might be limited by the data (“Garbage in,
garbage out”). Specifically, through the training set, the algorithms
might pick up on biases or inequalities that exist in society, which can
have consequences for the end users. For example, if a gender classi-
fication algorithm is trained to classify people based on their physical
features, it might overlook that biological sex and self-identified gender
labels might not align, and the resulting misgendering might have ne-
gative impacts on mental health (Hamidi et al., 2018).

Humans might be able to help learning systems to overcome their
biases. For example, in recently proposed guidelines for human-AI in-
teraction, five of the eighteen guidelines focus on ways to help users
correct the mistakes of an AI system (Amershi et al., 2019). However, it
is an open question how to design such systems in practice, in particular
as there might be a disconnect between the low-level features that a
system needs to adjust to improve, and the high-level concepts that a
user (incorrectly) thinks they need to adjust (e.g., Kittley-Davies et al.,
2019).

From a legislative perspective, an important question is then also
who is to blame when an accident or incident occurs involving an au-
tomated system in a safety-critical setting. An initial thought might be
to think locally, with the human operator or the producer, programmer,
or seller of the technology. However, the introduction of automation is
sometimes motivated by a narrative to reduce the frequency or prob-
ability of accidents and incidents. Approaching these from a probabil-
istic viewpoint raises the question of what is an acceptable probability
of risk, and how this risk is spread over the population. The con-
sideration of risk at the population level, then turns the question of
“who is to blame” into a question that is probably larger than one in-
dividual.

4.3. Ethical and social dilemmas

As automated machines achieve more functionality, various ethical
and social dilemmas become more urgent and prominent. Our overview
of the history of IJHCS already touched on one such issue: are in-
creasingly autonomous systems socially accepted as equals
(Złotowski et al., 2017)?

Another ethical and social consideration is that of the future of work
and job security. A model by Frey and Osborne (2017) predicts that
low-skill and low-wage jobs, such as in transportation, logistics, and
office work, in particularly are likely to be replaced by automation.
Frey and Osborne predict that this will require a shift in skillsets by
human workers to tasks that require creativity or social skills. From our
perspective, it is unclear whether this prediction will hold, as our lit-
erature review of IJHCS articles indicates that research is already in-
vestigating topics such as emotion classification and social interaction
between humans and robots (e.g., Brave et al., 2005; Hassanein and
Head, 2007; Kapoor et al., 2007; Leite et al., 2013). Therefore, we ex-
pect that in the years to come there will be more progress on (partial)
automation of creative tasks and social interaction settings than an-
ticipated in the report by Frey and Osborne. If this happens, the ethical
and social question of job security will be plainly evident.

Moreover, automation might not increase at a steady, linear pace.
For example, Harari (2018) predicts that the pace of improvements in
automation might also accelerate as time goes on, thereby making it
ever harder for people to catch up with the increasing changes in au-
tomation and to adapt their skillset. How are humans then equipped for
these societal changes? How do we make sure that we create devices
that are there for human users? But also, how can technology help to
achieve a world that provides opportunity for all, and not just for a
fortunate minority?

Another ethical consideration is what decisions automated systems
should take in complex life-or-death situations that are imminent in

safety-critical scenarios. Survey research shows that humans would like
automated machines to make morally just decisions in principle, yet
they also want the system to deviate from this moral path if a moral
action would require sacrificing their own life or that of their family
members (Bonnefon et al., 2016). Moreover, the survey research shows
that there are individual and cultural differences in what is considered
morally just (Awad et al., 2018). Given that humans cannot agree on
moral conflicts, a lot more research is needed to guide the regulation of
automated systems. For example, the Ethics Commission on Automated
and Connected Driving, which was appointed by the German govern-
ment, has developed a set of twenty ethical rules related to the design,
deployment, legal issues, and use of automated vehicles
(Ethics Commission, 2017).

Taken together, the full set of social and ethical considerations also
poses a fundamental question: whether to automate at all or not? In
most safety-critical scenarios where automation is introduced, such as
automated driving, the intention is that introduction of automation or
automated support can save lives and reduce incidents. However, the
new technology can also introduce new problems and incidents. A
moral judgment is needed whether the benefits weigh up against the
challenges. Although the inclination of some researchers might be to
minimize new incidents, this might overlook the benefits of automation
(see also de Winter, 2019).

4.4. Continued and improved human and humane experiences

Implicit in the previously discussed trends is the need to consider
human experience. With automation improving, how can we continue
to maintain a fair and humane interaction (see also section on ethics)?
Which aspects of tasks do we automate, and which tasks do we leave to
the human? In line with the historical trend of automated testing (e.g.,
Elithorn et al., 1982; Thompson and Wilson, 1982) and expert systems
(Motta, 2013; Gaines, 2013; Breuker, 2013), we might expect more
software tasks to become automated in the coming few years. But which
parts are automated? How is creativity and expertise embedded cor-
rectly? If creativity is essential for human contributions to an auto-
mated task, how do we ensure that humans can contribute this, and
how do we know when and where it is needed? Or, if humans would
like to focus on other aspects of a task, apart from creativity, how do we
continue to allow them to do so? For example, in a world where au-
tomated vehicles have penetrated the market, will we allow occasional
human driving “just for fun”? How can this be done in a world where
other cars might rely on the predictability of non-human actions to
maintain a stable driving trajectory? If we do not allow humans to
contribute to such tasks and activities, how do we allow a humane
experience in other ways? The answers to these questions are not yet
clear, but needed.

4.5. Radical changes to human-automation interaction

As we look into the future, technological advances in human-ma-
chine interaction, automation, artificial intelligence, and related dis-
ciplines are likely to usher in dramatic change in how we live with
computing devices. Although such radical shifts are hard to predict
accurately, some suggestions and trends are noticeable.

One such change is imagined by Yuval Noah Harari in his book “21
lessons for the 21st century” (Harari, 2018)—he envisions a world in
which AI will become better than we are at many tasks. If this happens,
then one question for human-automation design will be how human
users can best use such super-smart AI. Will the humans enjoy the in-
teractions and engage in them? Will they engage with AI while having
the appropriate level of trust, taking into account both the benefits and
the potential costs of the interactions? Or will they act like the humans
in Asimov's (1954) novel “Caves of Steel,” where the people of the Earth
of about 1000 years in the future fear and reject robots, and the com-
forts that robots can provide humanity?
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Another dramatic change is envisioned by the futurist Mark
Pesce—he expects that we will be able to associate digital data with
physical objects and view this data through augmented reality glasses
(Pesce, 2019). Pesce expects that this will lead to the emergence of
what he calls ‘supertools’: tools that can allow us to interact with
computing objects, and thus with the automation around us, while
having at our disposal vast amounts of data about all aspects of the
work of automation. One significant question for human-computer in-
teraction design in this case is how to allow users to interact with this
vast amount of data. Simply put, there will be too much data available
for users to be able to handle it all, which means that human-computer
interaction design will need to create focused views of the data.

Turning to art again, and specifically the science fiction of Asimov:
imagine what it might be like to interact with automation if our in-
terface technologies can go beyond showing us information with aug-
mented reality! What if the interfaces could make us feel like the ma-
chine is an extension of our body? This is what it feels to operate an
advanced starship in Asimov's (1982) “Foundation's Edge”—the effort
required to accomplish something is about as much as to think about
the goal. Perhaps Asimov overestimated the probability that machines
will eventually be able to literally read our minds. But, we can still
expect that our minds and the machine automation will not always be
separated by keyboards, screens, and brittle speech interfaces. How will
radically more capable interfaces affect how we can control automa-
tion, and just as importantly, how we perceive automation and its place
in our lives?

As we contemplate the inevitable radical changes in human-auto-
mation interaction, it is important to keep asking questions. What are
the economic and societal forces that are driving the changes? How will
new technologies shape what is possible for these interactions? And
what are the economic and broad societal implications of these dra-
matic changes? The answers to these questions will be found through
interdisciplinary work that incorporates a clear understanding of
human-automation interaction, and leverages it effectively.

Many previous eras of human development have included radical
change in technology, but we expect the change to be faster than it had
been in the past. Where will this change lead us? For all of the themes
we mentioned in this document, except for this last one, we have rea-
sonably clear plans for how to move forward. For some of them, our
horizon extends relatively far, for others not that far.

In sum, human-automation interaction research has been an area of
exciting and impactful work for many decades. The readers of IJHCS,
and more broadly the scientific community, should expect this trend to
accelerate in the coming years.
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