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Extracellular interface between APP and Nicastrin
regulates Ab length and response to c-secretase
modulators
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Abstract

c-Secretase complexes (GSECs) are multimeric membrane
proteases involved in a variety of physiological processes and
linked to Alzheimer’s disease (AD). Presenilin (PSEN, catalytic
subunit), Nicastrin (NCT), Presenilin Enhancer 2 (PEN-2), and Ante-
rior Pharynx Defective 1 (APH1) are the essential subunits of
GSECs. Mutations in PSEN and the Amyloid Precursor Protein (APP)
cause early-onset AD. GSECs successively cut APP to generate
amyloid-b (Ab) peptides of various lengths. AD-causing mutations
destabilize GSEC-APP/Abn interactions and thus enhance the
production of longer Abs, which elicit neurotoxic events underlying
pathogenesis. Here, we investigated the molecular strategies that
anchor GSEC and APP/Abn during the sequential proteolysis. Our
studies reveal that a direct interaction between NCT ectodomain
and APPC99 influences the stability of GSEC-Abn assemblies and
thereby modulates Ab length. The data suggest a potential link
between single-nucleotide variants in NCSTN and AD risk. Further-
more, our work indicates that an extracellular interface between
the protease (NCT, PSEN) and the substrate (APP) represents the
target for compounds (GSMs) modulating Ab length. Our findings
may guide future rationale-based drug discovery efforts.
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Introduction

c-Secretase intramembrane proteases (GSECs) play multifaceted

roles in physiology and disease. Of great relevance is their critical

involvement in Alzheimer’s disease (AD) pathogenesis, where

altered cleavage of the Amyloid Precursor Protein (APP; Fig 1A),

and concomitant, relative increase in the generation of longer vs.

shorter amyloid-b (Ab) peptides, has been proposed to underlie the

disease (Selkoe & Hardy, 2016; Szaruga et al, 2017). GSEC activity

is exerted by a group of heteromultimeric, membrane-embedded

complexes composed of Presenilin (PSEN1 or PSEN2; Li et al,

2000), Nicastrin (NCT) (Yu et al, 2000), Presenilin Enhancer 2

(PEN-2; Francis et al, 2002), and Anterior Pharynx Defective 1

(APH1A or APH1B; Francis et al, 2002; Goutte et al, 2002) in a

1:1:1:1 stoichiometric ratio (Lazarov et al, 2006; Sato et al, 2007;

Bai et al, 2015b). PSEN bears the catalytic center of the enzyme (De

Strooper et al, 1998; Steiner et al, 1999; Wolfe et al, 1999; Ahn

et al, 2010), while the other “non-catalytic” subunits of the protease

are required for the complex assembly, activation, structural stabil-

ity/turnover, and trafficking (Thinakaran et al, 1996; Kim et al,

2003; Luo et al, 2003; Takasugi et al, 2003; Zhang et al, 2005). Once

the quartet has been assembled, PSEN undergoes auto-endoproteo-

lytic cleavage, which yields an active pentameric protease complex,

with the catalytic center located at the interface between the N- and

C-terminal fragments (NTF vs. CTF) of PSEN (De Strooper, 2003;

Edbauer et al, 2003; Selkoe & Wolfe, 2007).

In addition to the proteolytic processing of APP, the cleavage of

many other type I membrane proteins, such as Notch, ErbB4, and

N-Cadherin (reviewed in Haapasalo and Kovacs 2011), positions

GSEC activity as a regulator of several key physiological events

during embryonic development, hematopoiesis, and normal func-

tioning of the nervous and immune system, as well as of disease

processes, such as cancer (Jurisch-Yaksi et al, 2013; McCarthy et al,
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2017). Interestingly, the GSEC substrates are remarkably different in

their amino acid sequences and lack any obvious common struc-

tural features (Beel & Sanders, 2008; Lleó, 2008). In fact, the only

known prerequisite for GSEC cleavage is the removal of protruding

ectodomains (when present) from type I membrane proteins by

protein sheddases (Struhl & Adachi, 2000; Kopan & Ilagan, 2004), a

step that generates C-terminal transmembrane domains (TMDs)

with short ectodomains—the immediate GSEC substrates—that may

only then undergo GSEC-mediated proteolysis.

APPC99 is the most studied substrate of GSECs due to its genetic

and biochemical link to AD pathogenesis. Extensive research has

revealed a rather unique mechanism by which APPC99, the C-terminal

fragment generated by b-secretase-mediated APP ectodomain shed-

ding, is sequentially cut by GSECs (Qi-Takahara, 2005; Yagishita et al,

2008; Takami et al, 2009). The first GSEC-mediated endopeptidase (e)
cleavage releases a soluble cytosolic fragment (APP intracellular

domain, AICD) and generates a transmembrane fragment (Ab48 or

Ab49), which is successively cut by carboxypeptidase-like (c) cleav-

ages, along the following product lines: Ab49 ? Ab46 ? Ab43 ?
Ab40 ? Ab37 or Ab48 ? Ab45 ? Ab42 ? Ab38 (Fig 1A). The

release of an Abn peptide into the luminal/extracellular environment

ends the sequential process (Takami et al, 2009). Importantly, the

position of the e-cleavage on APPC99 defines the type of Ab products

(product line), while the efficiency of the sequential c-cleavages
(number of cuts per substrate molecule, so-called GSEC processivity)

determines the length of the N-terminal Ab products.

Of note, mutations in both GSEC (enzyme, E) and APP (sub-

strate, S) lead to early-onset familial AD (FAD; Goate et al, 1991;

Sherrington et al, 1995). Importantly, disease-causing mutations in

PSEN1 and PSEN2 genes consistently impair the efficiency of the

c-cleavages, shifting Ab profiles toward the generation of longer

amyloidogenic peptides (Chávez-Gutiérrez et al, 2012; Fernandez

et al, 2014; Moore et al, 2015; Veugelen et al, 2016). This so-

called “GSEC dysfunction” promotes—as demonstrated by the

analysis of post-mortem brain samples from FAD patients (Szaruga

et al, 2015)—the production of longer Ab≥42 peptides, which trig-

ger neurotoxic events underlying AD (Karran & De Strooper, 2016;

Selkoe & Hardy, 2016). Furthermore, many but not all FAD-

causing PSEN variants (Chávez-Gutiérrez et al, 2012; Fernandez

et al, 2014; Szaruga et al, 2015) impair the initial GSEC

A

B

Figure 1. Schematic representation of APP processing and structural model (PDB: 5FN3) of the potential enzyme–substrate interface.

A In the amyloidogenic pathway, the ectodomain shedding of the full length APP (flAPP) by BACE yields the immediate GSEC substrate, APPC99. GSEC endopeptidase
cleavage of APPC99 generates APP intracellular domain (AICD50-99 or AICD49-99) and a “de novo” generated Ab substrate (Ab48 or Ab49, respectively). While the AICDs
are released, the Ab48 and Ab49 are subjected to subsequent GSEC proteolysis (carboxypeptidase-like c-cleavages).

B GSEC structure with co-purifying helical peptide (PDB: 5FN3) is presented. PSEN1 is shown in light brown, PEN-2 in dark brown, APH1A in gold, NCT in green, and the
co-purifying helical peptide in red. The topology of the helical peptide (putative GSEC substrate) is indicated by the amino and carboxyl terminal groups. The interface
between the N-terminal part of the helical peptide, the NCT ectodomain and PSEN1 is magnified, and NCT side chains are shown.
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endopeptidase (e-) cleavage and thus may have detrimental effects

on GSEC-mediated signaling cascades.

Importantly, our recent studies (Szaruga et al, 2017) have shown

that the relative stabilities of the GSEC-APP/Abn (E-S) complexes,

formed during the sequential cleavage of APPC99 by GSEC, control

the efficiency of the sequential proteolysis and thereby define the

length of Ab products. In addition, they have demonstrated that

pathogenic mutations in PSEN1 and in APP destabilize the GSEC-

APP/Abn interactions, leading to the “premature” release of longer,

more hydrophobic Abs (Szaruga et al, 2017). Of note, a remarkable

correlation between the magnitude of the mutant-induced weaken-

ing of the stability of the E-S complexes and the corresponding age

of disease onset (Szaruga et al, 2017) places the generation of longer

Ab≥42 peptides central to AD pathogenesis. The novel link between

the E-S complex (structural) stability and AD pathogenicity

prompted us to investigate the molecular mechanisms securing

GSEC-APP/Abn interactions. Here, we applied a structure-based

functional approach to determine the molecular strategies that

anchor APP/Abn during GSEC-mediated proteolysis. Our analyses

reveal that a direct interaction between the NCT ectodomain and

APPC99/Abn modulates the stability of GSEC-APP/Abn interactions

and therefore regulates Ab product length. In fact, the data raise the

intriguing possibility that AD-causing or protective single-nucleotide

variants (SNVs) may exist in the NCSTN gene. Furthermore, our

analysis implicates the extracellular interface formed between GSEC

(NCT, PSEN) and APPC99 in the regulation of the response to small

compounds, referred to as GSEC modulators (GSMs). Collectively,

these insights may guide future drug discovery efforts and the devel-

opment of innovative strategies targeting safely and efficiently the

destabilized GSEC-APP/Abn assemblies in AD.

Results

Structural data reveal a potential direct, short-distance
interaction between NCT and the substrate

We departed from the PDB:5FN3 high-resolution GSEC structure to

investigate the structural determinants securing E-S complexes and

thus controlling Ab length. We hypothesized that this structure of

GSEC (Fig 1B) (Bai et al, 2015a), which contains a co-purifying heli-

cal peptide (putative substrate), depicts the interaction between

GSEC and a “de novo” generated long Ab substrate, just before it

engages into the next catalytic turnover. In our working model, orig-

inally presented in Szaruga et al (2017) and discussed in-depth here,

key interactions between GSEC and the extracellular part of the

putative substrate play a critical role in the stabilization of the E-S

assemblies during the sequential proteolysis of Abn substrates.

Accordingly, we explored the presumed E-S co-structure to define

interactions that could contribute directly to the regulation of the

strength of the GSEC-APP/Ab interactions. Interestingly, we found

potential contact sites between the extracellular part of the helical

co-purifying peptide and the NCT ectodomain (amino acid (aa) resi-

dues 242–243 in human or 241–242 in mouse NCT (mNCT); please

note that residue numbering used in this report corresponds to the

sequence of mNCT unless specified otherwise; Fig 1B, zoom-in) as

well as with the first extracellular loop of PSEN1. While our recent

analysis of FAD-linked PSEN1 variants (Szaruga et al, 2017) has

demonstrated the participation of the first extracellular loop of

PSEN1 in the (de)stabilization of GSEC-APP/Ab interactions, the

involvement of the ectodomain of NCT in the strength of E-S inter-

actions has not been shown before and, if true, would provide novel

insights into the roles of the “non-catalytic” GSEC subunits in the

regulation of GSEC processivity of APP (Ab length). Therefore, we

investigated the contribution of NCT ectodomain to the stability of

GSEC-APP/Abn interactions, which defines enzyme processivity.

NCT ectodomain—aa 241-244—regulates GSEC processivity
of APPC99

To challenge the potential involvement of the NCT-241-242 region

in the regulation of the GSEC processivity of APPC99, we performed

Ala/Phe mutagenic scanning of the region of interest and of the two

neighboring amino acids on each side (NCT-F239A/F, NCT-S240A/

F, NCT-I241A/F, NCT-N242A/F, NCT-P243A/F and NCT-E244A/F),

followed by functional evaluation of the GSEC complexes in cell-

based assays. To this end, we used NCT knock-out (KO) mouse

embryonic fibroblasts (MEFs; Li et al, 2003) stably expressing either

wild-type or mutant NCT and transiently expressing wild-type

APPC99 substrate. Importantly, SDS–PAGE/Western blot analysis

showed that all mutants restored the assembly, maturation and

activity of GSEC, as indicated by the levels of mature NCT and PEN-

2 as well as the endoproteolytic generation of PSEN1-NTF and

PSEN1-CTF fragments (Fig EV1A). To determine the effects of the

tested mutant NCTs on GSEC processivity of APP, we quantified

secreted Ab38, Ab40 and Ab42 peptides by multi-spot enzyme-

linked immunosorbent assay (MSD-ELISA) and Ab43 by standard

ELISA. In line with our previous studies, Ab43 was produced at low

levels relative to the other (Ab38/Ab40/Ab42) peptides in wild-type

or mild destabilizing (such as FAD-linked V89L and R269H PSEN1)

conditions (Veugelen et al, 2016; Fig EV2). We, therefore, used the

Ab (38 + 40)/42 ratio (product/substrate ratio of the 4th GSEC cata-

lytic turnover) to estimate the overall processivity of GSEC toward

APP. Importantly, we included the FAD-linked PSEN1-L166P,

PSEN1-V89L and PSEN1-R269H mutant cell lines (Psen1�/�/
Psen2�/� MEFs (Nyabi et al, 2002) stably expressing respective

PSEN1 mutants) transiently expressing APPC99 as reference samples

in the analyses. The PSEN1 pathogenic variants were selected based

on their differential location in the PSEN1 structure and distinct clin-

ical ages of disease onsets (24, 48.6 and 55 years, respectively; Cruts

et al, 2012). In line with the reported detrimental effects of the FAD-

linked PSEN1 mutations on GSEC processivity of APP (Chàvez-

Gutièrrez et al, 2012; Fernandez et al, 2014; Veugelen et al, 2016),

all tested pathogenic mutant GSECs lowered the Ab (38 + 40)/42

ratio relative to the wild-type enzyme. The results thus validate the

use of the Ab (38 + 40)/42 ratio for the detection of changes in the

sequential GSEC-mediated cleavage of APP.

With regard to NCT, Ala/Phe substitutions of aa NCT-I241, NCT-

N242 and NCT-E244 significantly altered the Ab (38 + 40)/42 ratio,

supporting the involvement of NCT ectodomain in the regulation of

the sequential GSEC cleavage of APP (Fig 2A). Interestingly, substi-

tutions at these positions shifted enzyme processivity in both direc-

tions, with the NCT-I241A substitution, and to a lesser extent the

E244A and E244F mutants, enhancing the efficiency of the sequen-

tial GSEC cleavages on APP, and the NCT-N242F mutation hindering

the successive proteolysis. Notably, the NCT-N242F substitution
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reduced GSEC processivity of APP to the levels similar to those

exhibited by the FAD pathogenic PSEN1-V89L variant (Fig 2A).

Based on these data, we selected positions NCT-241, NCT-242

and NCT-244 for further analysis. In the second round of site-

directed mutagenesis, we replaced the hydrophobic isoleucine at the

position 241 with polar aa of small–medium size (Ser and Gln) or

with differentially charged side chains (Asp, Glu and Lys). As

shown in Fig 2B, all generated mutants reconstituted active GSEC

complexes. Our analysis revealed that the introduction of negatively

charged residues (Asp or Glu) resulted in a (mean � SD)

2.66 � 0.45 and 2.1 � 0.26 fold elevation in the Ab (38 + 40)/42

ratio, respectively (Fig 2C), while other tested mutations at this

position did not significantly alter this ratio. Furthermore, the dif-

ferential effects of the I241E vs. I241Q mutants on the Ab (38 + 40)/

42 ratio suggest that a charge–charge interaction underlies the acti-

vation of the sequential GSEC-mediated proteolysis observed for the

NCT I241E substitution. To test whether the introduction of a nega-

tive charge next to I241 would also increase GSEC processivity, we

mutated NCT-N242 to Asp or Glu. To investigate further the role of

position N242 on GSEC processivity of APP, we introduced bulky

residues with polar (Tyr, Trp) or charged (Lys) side chains at this

position, generated mutant cell lines, and tested them in cell-based

GSEC activity assays. The analysis showed that all mutants at posi-

tion 242 rescue GSEC complex formation (Fig 2B) and that introduc-

tion of a bulky aromatic group at position NCT-242 is detrimental

for GSEC processivity (Fig 2C). Furthermore, it revealed that the

NCT-N242E/D mutations, in contrast to Asp/Glu residues at posi-

tion 241, result in mild increments in the Ab (38 + 40)/42 ratio,

indicating that a charge–charge interaction with activating effects on

GSEC processivity of APP is optimally established with negatively

charged NCT residues at position 241. Of note, mutagenesis of the

E244 residue did not reveal any additional substitutions affecting

GSEC processivity in a significant manner. In conclusion, the data

demonstrate that residues 241, 242, and to a lesser extent 244, in

NCT ectodomain contribute to the mechanism(s) governing the effi-

ciency of the successive GSEC-mediated cleavage on APP and thus

modulate the length of Ab product peptides.

Residues 241-242 in NCT ectodomain regulate the stability of
GSEC-APP/Ab interactions

We then investigated whether the observed effects of mutations at

positions NCT-I241 and NCT-N242 on GSEC processivity of APP are

mediated by changes in the stability of GSEC-APP/Ab complexes.

To this end, we evaluated temperature-mediated destabilization of

GSEC-APP/Ab interactions in wild-type and mutant NCT MEF cell

lines, transiently expressing APPC99 substrate, cultured at 42°C.

Importantly, we first determined that prolonged incubation at 42°C

does not affect cell viability of wild-type MEFs (Fig 3A) and that the

Ab (38 + 40)/42 ratio was sensitive to detect temperature-induced

changes in the stability of wild-type and FAD-linked PSEN1 L166P,

V89L and R269H GSEC-APP/Ab assemblies. Clearly, the elevated

temperature significantly affected the efficiency of the 4th APP cleav-

age mediated by the wild-type enzyme, as demonstrated by the Ab
(38 + 40)/42 ratio (95% CI: 78–86% relative to 37°C, indicated with

a blue box), and further enhanced the proven E-S destabilizing

effects (Szaruga et al, 2017) of the FAD-linked PSEN1 mutants

(Fig 2C vs. 3B, Ab (38 + 40)/42 ratio (mean � SD) = 9.2 � 1.3%,

59.9 � 4.9%, and 80.8 � 6.8% at 37°C vs. 7.3 � 0.66%,

41.9 � 6.1%, and 70.4 � 4.9% at 42°C for PSEN1 L166P, V89L and

R269H mutants, respectively). These data validate the use of the

cell-based GSEC thermoactivity assay to assess the (de)stabilizing

nature of structural variants in the GSEC complex on the APPC99
sequential proteolysis. Thus, we employed this assay to evaluate the

potential stabilizing or destabilizing effects of mutant NCT-I241E,

NCT-N242E or NCT-N242Y on E-S interactions. The cell-based ther-

moactivity assay revealed that the NCT-I241E and NCT-N242E

mutants counteract the detrimental effect of temperature on the Ab
(38 + 40)/42 ratio, indicating that their effects on GSEC processivity

are mediated by the stabilization of GSEC-APP/Ab interactions

(Fig 3B). On the contrary, the NCT-N242Y substitution, similar to

FAD-linked PSEN1 mutations, enhanced the detrimental effect of

temperature on Ab (38 + 40)/42 ratio. These results demonstrate

that the aa residues 241–242 within the NCT ectodomain influence

Ab generation by modulating the strength of GSEC-APP/Ab interac-

tions.

NCT residue 241 establishes a direct, short-distance interaction
with the APP/Ab substrate

To gain insights into the structural basis underlying the (de)stabiliz-

ing effects of NCT ectodomain on GSEC-APP/Ab interactions, we

performed molecular dynamics (MD) simulations with the APP-

derived Ab49 substrate bound to human GSEC as the co-purifying

peptide in the PDB:5FN3 structure (Fig 4A and I). Interestingly, the

simulations suggested that human hNCT-I242 (I241 in mNCT) and

APPC99-K28 are in close proximity to each other (mean Ca-Ca
distances of approx. 10 Å during the 3 ls sampling time). A nega-

tively charged residue present at position hNCT-242 induced the

formation of a salt bridge between hNCT-I242E (GSEC) and APPC99-

K28 in 34% of all sampled frames, while in 24% of all observations,

the two side chains were bridged by a water molecule (Fig 4A, II

and III). Subsequently performed post-processing free energy

calculations using molecular mechanics Poisson–Boltzmann surface

area (MMPBSA) method (Genheden & Ryde, 2015) indicated

that hNCT-E242 indeed stabilizes GSEC-APP/Ab interactions by

2.90 � 0.13 kcal/mol (mean � SEM, with N = 1,500). Further-

more, the simulations supported the importance of the interactions

between APP ectodomain and the first extracellular loop of PSEN1

(residues 109–118), a region reported previously to be involved in

the substrate recognition (Takagi-Niidome et al, 2015) and mutated

in FAD.

Based on the theoretical analysis, we speculated that the forma-

tion of a salt bridge between positions 241 in mouse NCT and K28

in APPC99 could explain the increments in the GSEC processivity of

APP observed for the NCT-I241E/D mutants (Figs 2C and 4B, I vs.

II). To challenge this possibility experimentally, we “inverted” the

putative salt bridge between NCT-I241 and APPC99-K28. If our

hypothesis were correct, the “inverted” salt bridge (NCT-I241K and

NCT-K28E) would also enhance GSEC processivity. Of note, previ-

ous studies have shown that K28 in APPC99/Ab critically regulates

Ab length by an unknown mechanism (Ren et al, 2007; Kukar et al,

2011; Ousson et al, 2013; Jung et al, 2014). Accordingly, the single

K28E APPC99 mutation shifted Ab profiles (generated by the wild-

type GSEC) toward the generation of shorter Ab peptides, relative to

the wild-type substrate (Fig 4B, I vs. III). Yet, the inclusion of the
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“inverted” salt bridge (I241K–K28E) further enhanced GSEC proces-

sivity of APPC99 (Fig 4B, III vs. IV), supporting a stabilizing role of

the ionic interaction between NCT and APP/Ab substrates.

ELISA analysis of Ab profiles revealed a strong enhancement of

the GSEC-mediated generation of Ab37 and Ab38, at the expense of

their precursors Ab40 and Ab42 in mutant NCT MEFs expressing

A

B

C

Figure 2.
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mutant APPC99-K28E substrates. Therefore, we included the contri-

bution of the Ab37 peptide in the estimation of GSEC processivity of

APP by calculating the ((Ab 37/40) + (Ab 38/42)) ratio. The results

clearly showed that the GSEC processivity of the mutant APPC99-

K28E was further enhanced when a positive charge was introduced

at the position NCT-241 (I241K) (Fig 4C, NCT-WT–APPC99-K28E vs.

NCT-I241K–APPC99-K28E). This additive effect provides experimen-

tal evidence in support of a site-specific interaction between NCT-

I241 and APPC99-K28, with functional consequences on the effi-

ciency of the sequential GSEC proteolysis.

To further verify the interaction between the aa at the positions

241 in NCT and 28 in APPC99, we performed chemical cross-linking

experiments using the heterobifunctional cross-linker N-b-maleimi-

dopropyl-oxysuccinimide ester (BMPS) that presents amine- and

thiol-reactive groups connected by a 5.9 Å spacer arm (Fig 5A). To

this end, we generated mutant NCT-I241C and stably expressed it in

the Ncstn�/� MEFs. SDS–PAGE/Western blot analysis of the GSEC

complexes in the generated cell line showed the presence of the

mature, fully glycosylated NCT as well as PEN-2 and an efficient

endoproteolytic generation of PSEN1-NTF and PSEN1-CTF, relative

◀ Figure 2. NCT ectodomain regulates GSEC processivity toward APPC99.

A Ala/Phe substitutions of aa 239-244 were introduced in the NCT ectodomain to evaluate the role of this region in the regulation of GSEC processivity. Ab38, Ab40 and
Ab42 levels present in the conditioned medium collected from KO NCT MEF cells rescued with WT or respective mutant NCT GSECs and transiently expressing with
APPC99 were quantified by ELISA. Ab(38 + 40)/42 ratio was calculated to determine GSEC processivity toward APPC99. DKO PSEN1/PSEN2 MEFs rescued with the
indicated FAD PSEN1 mutant and transduced with APPC99 were used as references.

B Representative SDS–PAGE/Western blot analysis of CHAPSO-solubilized membranes from KO NCT MEF cell lines stably expressing WT or mutant NCT subunits. The
presence of mature, glycosylated NCT, N-terminal and C-terminal fragments of the endoproteolyzed PSEN1 and PEN-2 (compared to NCT knock-out (KO) cells)
indicates that WT and mutated NCTs reconstitute GSEC complexes. Arrowheads indicate the position of molecular weight markers.

C Quantification of the effects of the indicated substitutions of aa 241, 242 and 244 in NCT on GSEC processivity of APPC99, estimated as indicated above by the Ab
(38 + 40)/42 ratio. Fig EV1B shows the corresponding Ab42/40 ratios.

Data information: Data are presented as mean � SD, N ≥ 4 independent experiments. One-way ANOVA followed by Dunnett’s post hoc test in comparison with WT was
used to determine statistical significance of all tested NCT mutants; *P > 0.05, **P > 0.01, ***P > 0.001, ****P > 0.0001, F(DFn, DFd): F(27, 230) = 84,22.
Source data are available online for this figure.

A B

Figure 3. The NCT ectodomain contributes to the stability of GSEC-APP/Abn complexes and accordingly modulates Ab product length.

A (Top) Representative bright-field microscopy images show MEF cells stably expressing WT or NCT mutant GSECs after 24-h incubation at 37°C and 42°C. 25 lm scale
bar is shown. (Bottom) Cell viability determined at the indicated time points is not affected by prolonged (≥ 24 h) incubation at 42°C. Data are presented as
mean � SD of 4 replicates.

B Relative GSEC-APP/Abn stabilities were assessed in cell-based GSEC thermoactivity assays, which evaluate changes in GSEC processivity (Ab(38 + 40)/42 ratio) upon
incubation at 42°C for 24 h, relative to 37°C. Ab peptides in the conditioned medium collected from the indicated MEF cell lines (transiently expressing APPC99) were
quantified and the Ab(38 + 40)/42 ratios determined. The data are shown as mean � 95% CI, as % of the WT GSEC cell line incubated at 37°C for 24 h, N = 6
independent experiments. One-way ANOVA followed by Dunnett’s post hoc test in comparison with WT was used to determine the statistical significance (F(DFn,
DFd): F(6, 46) = 100); ****P > 0.0001 compared to WT at 37°C, and #P > 0.05, ##P > 0.01 and ####P > 0.0001 compared to WT at 42°C. Note: Ab profiles (including
Ab43 levels) normalized to total Ab quantified in the cell-based thermoactivity assays with the different mNCT WT/mutants are shown in Fig EV2.
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to the wild-type condition (Fig EV3A), indicating that the mutant

NCT-I241C rescues GSEC complex formation and activity. Next, we

expressed transiently the wild-type APPC99 substrate in the wild-type

and the NCT-I241C cell lines. In addition, we included non-trans-

duced cell lines as controls. To enhance the formation of the E-S

complexes and prevent their dissociation due to proteolysis, we

treated the cells overnight with 1 lM GSEC inhibitor X, a transition

state analog that halts substrate turnover but allows substrate bind-

ing to GSEC (Shearman et al, 2000). Then, we harvested the cells,

prepared total membrane fractions, and subjected these fractions to

a 2-step cross-linking protocol using BMPS. To evaluate the cross-

linking products, we detergent-extracted membrane proteins and

performed SDS–PAGE/Western blot analyses using 82E1

anti-APPC99 (binds to the N-terminus of APPC99/Ab) and anti-NCT

antibodies (Fig 5B). Immunoblotting with the anti-APPC99 antibody

confirmed the expression of the substrate in the transduced cells

(Fig 5B, lanes 3 and 4, bottom panel) and revealed the presence of a

higher molecular weight band (~100 kDa) exclusively in the cross-

linked extracts prepared from the NCT-I241C cell line overexpress-

ing the APPC99 substrate (Fig 5B, lane 4 vs. 3, top panel). Further

analysis with an anti-NCT antibody showed that the electrophoretic

mobility of the “high molecular weight” APPC99/Ab-positive band

(cross-linked NCT-APPC99/Ab complex) is slightly shifted toward a

higher molecular mass, relative to the mobility of the mature, glyco-

sylated NCT (Figs 5C and EV3C). The observed shift supports the

cross-linking of the wild-type APP/Ab substrate and mature mutant

NCT-I241C and furthermore indicates that the Cys241 in NCT is at

least within 5.9 Å distance from a free amine group on the substrate,

likely K28 in APPC99.

Based on the apparent short distance between NCT and APPC99,

and to confirm the involvement of K28 in the direct interaction with

NCT-241, we tested the potential formation of a disulfide bond

between these positions (Fig 5D). To this end, we expressed the

APPC99-K28C substrate in the NCT-I241C cell line, prepared total

membranes, and analyzed SDS-extracted membrane proteins in

SDS–PAGE/Western blot with anti-APPC99/Ab and anti-NCT anti-

bodies under reducing and non-reducing conditions (Figs 5E and

EV3D). The presence of a high molecular weight APPC99/Ab-positive
band (~100 kDa) under non-reducing conditions demonstrated the

spontaneous formation of a disulfide bond between the NCT-I241C

and APPC99-K28C mutants (Fig 5E and F). Quantification of the inte-

grated densities of the high molecular weight band corresponding to

the NCT-APPC99/Ab on the anti-Ab immunoblot revealed that ~15%

(mean � SD: 15.4 � 5.7%, N = 3) of the substrate got cross-linked

to NCT (Fig EV3B). In conclusion, our analyses demonstrate that

the direct, short-distance interaction between NCT-241 and APPC99-

28 modulates Ab product profiles by stabilizing GSEC-APP/Ab inter-

actions.

NCT ectodomain (residue 242) mediates the response to
imidazole-based GSEC modulators

Previous studies highlight K28 in APPC99 as a critical determinant of

GSEC processivity of APP (Ren et al, 2007; Page et al, 2010; Kukar

et al, 2011; Ousson et al, 2013; Jung et al, 2014) and show that, in

addition to their effects on Ab length, mutations at this position alter

the response to GSMs (Page et al, 2010; Ousson et al, 2013; Jung

et al, 2014), but the underlying mechanisms remain unknown.

These intriguing findings and the short-distance interaction between

positions 28 in APPC99 and 241 in NCT prompted us to test the

response of mutant (de)stabilizing NCT GSEC complexes to GSMs

belonging to different classes (acidic vs imidazole-based, Fig 6A).

For this purpose, we transduced wild-type and mutant (NCT-I241E,

NCT-N242Y and NCT-N242F) MEF cell lines with wild-type APPC99,

as described before, and treated the cell cultures with 0.3 lM, 1 lM
GSM or vehicle control (0.1% DMSO) overnight. To evaluate the

response of wild-type and mutant GSEC complexes toward GSMs,

we collected the cell media and quantified Ab37, Ab38, Ab40 and

Ab42 levels by ELISA and determined Ab profiles (Figs 6B and

EV4A) as well as the Ab37/Ab40 and Ab38/Ab42 ratios (Fig EV4B

and C). The results revealed that the acidic GSM activates exclu-

sively the Ab42 ? Ab38 cleavage (Fig 6C, P-values for WT in

columns 1 and 4), while the imidazole-based GSMs II and III

strongly activate both GSEC product lines, which is in agreement

with previous findings (Page et al, 2010; Ousson et al, 2013). The

GSMs II and III thus shifted Ab profiles toward the production of the

Ab37 and Ab38 peptides (blue and orange bars in Fig 6B, respec-

tively), with concomitant reduction in the Ab40 and Ab42 species

(green and purple bars in Fig 6B, respectively).

Our analysis revealed that wild-type as well as mutant GSEC

complexes responded markedly to GSM I treatment (right upper

panel in Fig 6B), with the exception of the NCT-N242Y GSEC

mutant which showed a partial response (Figs 6C and EV4, P-values

for N242Y in column 4). Most importantly, we observed that the

NCT-N242Y and NCT-N242F mutant GSECs did not respond to GSM

II, as indicated by the Ab profiles (Fig 6B) showing that Ab40 (green

bar) remains the major Ab peptide produced by these mutant cell

lines in the presence of 1 lM GSM II. In fact, statistical analysis on

the Ab37/Ab40 and Ab38/Ab42 ratios reveals no significant dif-

ferences between the processivities of the NCT-N242Y and NCT-

N242F mutant cell lines treated with vehicle (DMSO) or 1 lM GSM

II (Fig 6C, P-values for N242F and N242Y in columns 2 and 5). In

◀ Figure 4. Direct, short-distance interaction between positions hNCT-242 and APP/Ab-28 regulates GSEC processivity toward APPC99.

A Molecular dynamics simulations superimposing the cryo-EM-determined GSEC structure (PDB: 5FN3) with an NMR Ab structure (PDB: 1IYT) on the co-purifying
helical peptide (I) present hNCT-I242 and APPC99-K28 at the NCT ectodomain–APP interface, and modeling of the NCT I242E mutant suggests a direct (II) or indirect
(bridged by H2O, III) interaction between the NCT -E242 and the APPC99 -K28 side chains.

B Ab profiles (% contribution of individual Ab37, Ab38, Ab40 and Ab42 peptides to the total Ab levels (Ab37 + 38 + 40 + 42)) in the conditioned medium collected from
WT or mutant (NCT) MEF cells lines co-expressing WT or mutant APPC99 substrates were assayed by ELISA. Schematic models of the tested GSEC-APP complexes are
shown.

C To account for the increased production of Ab37 and Ab38 at the expense of Ab40 and Ab42 in the tested conditions, the ratio of ((Ab 37/40) + (Ab 38/42))/2 was
determined and used to estimate GSEC processivity of APPC99. All the data are presented as mean � SD, N ≥ 3; unpaired, two-tailed Student’s t-test was used to
determine the statistical significance. **P > 0.01 and ****P > 0.0001. Calculated T- and Df values were as follows: T = 11,63, Df = 16 (I241-K28 vs I241E-K28);
T = 11,37, Df = 14 (I241-K28 vs. I241-K28E); T = 4,572, Df = 8 (I241E-K28 vs I241-K28E); T = 4,497, Df = 5 (I241-K28E vs. I241K-K28E); and T = 2,561, Df = 7.
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contrast, the NCT-N242A GSEC mutant responded similarly to WT

toward GSM II (Fig 6B and C, P-values for N242A in columns 2 and

5). All together, these data demonstrate that bulky residues at the

NCT-242 position not only impair the stability of GSEC-APP/Ab
assembly (and therefore enzyme processivity, as shown in Fig 2C)

but also have an impact on the activation of GSEC by the imidazole-

based GSM II. These results could be explained by the contribution

of residue NCT-242 to the binding pocket of GSM II or to its partici-

pation in the allosteric mechanisms triggered upon GSEC-GSM inter-

action. We then reasoned that analysis of the mutant responses to

another imidazole-based compound could enable to distinguish

between these two scenarios. Interestingly, we found that the NCT-

N242Y and NCT-N242F mutant GSECs did respond to GSM III, as

indicated by the relative increments in Ab37 (blue bars) in the right

lower panel of Fig 6B and the significant changes in the Ab 37/40

and Ab 38/42 ratios for DMSO- vs. 1 lM GSM III-treated mutant cell

lines (Fig 6C, P-values for N242F and N242Y in columns 3 and 6).

These findings thus demonstrate that the mechanisms underlying

GSEC processivity of APP remain intact in the mutant NCT-N242F

and NCT-N242Y protease complexes, and point toward an altered

binding of imidazole-based GSM II to NCT-N242Y and NCT-N242F

GSECs. Furthermore, our studies also reveal a reduced response of

the NCT-N242Y, NCT-N242F and NCT-N242A mutant GSEC

complexes to GSM III in the presence of 0.3 lM GSM III compared

to the wild-type protease (Fig EV4). In conclusion, the differential

responses of GSEC complexes bearing NCT-N242A, NCT-N242Y and

NCT-N242F mutants toward imidazole-based GSM II and III (Fig 6B

and C) suggest partially distinct binding sites for these compounds.

Our studies therefore assign a direct and active role to the ectodo-

main of NCT in the GSEC modulation by GSMs.

Discussion

We have recently demonstrated that the stability of GSEC-APP/Abn
substrate interactions controls the length of Ab product peptides

and thereby affects the risk for AD. Notably, our previous findings

show that FAD-causing mutations destabilize GSEC-APP/Ab (E-S)

complexes and the magnitudes of their detrimental effects

remarkably correlate with age of disease onset (Szaruga et al,

2017). The novel pathogenic link motivated us to investigate the

intermolecular interactions that secure GSEC-Abn assemblies during

the sequential GSEC-mediated proteolysis. We departed from the

high-resolution structure of GSEC in complex with a co-purifying

helical peptide (PDB:5FN3, Bai et al 2015a). We hypothesize that

this structure depicts the interaction between GSEC and the frag-

ment generated after the initial proteolytic cleavage of the trans-

membrane domain of the substrate (de novo generated long Ab from

APPC99), just before it engages into the next catalytic turnover. The

putative substrate occupies the substrate binding site, but in

contrast to APPC83 (Zhou et al, 2019), only the most N-terminal part

of its transmembrane domain remains in a helical structure, while

its unstructured C-terminal part extends along the substrate binding

channel to reach the active site. We actually proposed that the first

endopeptidase-mediated backbone break exerts a strong destabiliz-

ing effect on the helical structure of APPC99, leading to this configu-

ration. In our model, further unwinding of the N-terminal helix of

the substrate must occur upon each GSEC cut, in order to provide

the length of the substrate to fill the S10–S30 enzyme pockets (Bolduc

et al, 2016b) during the stepwise catalysis. The sequential unwind-

ing of the N-terminal helix progressively destabilizes the E-S assem-

bly, increasing the probability of its dissociation and consequent

release of Abn. This “unwinding model”—originally proposed in

Szaruga et al (2017)—suggests that the interactions established

between the N-terminal helical structure of the substrate and the

protease “anchor” the E-S complex and thereby define the length of

the N-terminal products (Ab from APP). Interestingly, our analysis

identified a potential contact site between the ectodomains of NCT

(aa residues 241–242 in mNCT) and the co-purifying peptide (puta-

tive substrate). Accordingly, we hypothesized that the potential

“NCT-APP/Ab” interface could directly contribute to the stability of

E-S interactions and thereby modulate the length of Ab products.

Note that the established role of the non-catalytic subunits (NCT,

PEN-2 and APH1) of the protease in PSEN/GSEC function and turn-

over (Gertsik et al, 2015; Carroll & Li, 2016) supports their contribu-

tion to the stability of GSEC-APP/Ab complexes.

Our studies revealed differential contributions of residues 241–

242 in NCT to GSEC-Abn interactions, implicating for the first time

◀ Figure 5. Short-distance interaction between NCT 241 and APPC99 K28.

A Chemical structure of the BMPS hetero-bifunctional (amine- and thiol-reactive groups) cross-linker.
B Introduction of Cys at position 241 in NCT allows chemical cross-linking of NCT and APPC99 with BMPS. Representative SDS–PAGE/Western blot shows cross-linked

NCT-APPC99, NCT and APPC99 bands in detergent-extracted membrane proteins from BMPS cross-linker-treated membranes prepared from MEF cell lines expressing
the indicated WT or mutant NCT GSEC complexes together with APPC99 or in the absence of the substrate. Orange, black and white arrows indicate the NCT-APPC99/
Ab cross-linked, mature NCT and immature NCT bands, respectively. Arrowheads indicate the position of molecular weight markers.

C Analysis of the Western blot density profiles in panel (B) shows that co-migration of NCT (orange arrow) with APPC99 shifts the cross-linked band toward a higher
molecular weight than the observed for mature NCT (black arrow). Immature NCT is indicated with an open (white) arrow. Full-range molecular weight density
profiles are shown in Fig EV3C.

D Schematic representation of the GSEC-APPC99 complex modified at NCT-I241 and APP-K28 by the introduction of Cys substitutions.
E Representative SDS–PAGE/Western blot presents NCT-APPC99, NCT and APPC99 expression in detergent-extracted membranes prepared from MEF cell lines co-

expressing the mutant NCT-I241C GSEC complex with the APPC99-K28C substrate. As negative control, the same sample was supplemented with b-mercaptoethanol
(BME) to reduce all disulfide bridges. A full-range molecular weight Western blot is shown in Fig EV3B. Orange, black and white arrows indicate the NCT-APPC99/Ab
cross-linked, mature NCT and immature NCT bands, respectively. Arrowheads indicate the position of molecular weight markers.

F Analysis of the integrated density profiles of the respective Western blot bands supports the spontaneous formation of a disulfide bond between NCT-I241C and
APPC99 K28C (mature NCT and immature NCT are indicated with black and white arrows, respectively). The filled orange arrow points at the high molecular weight
APPC99/Ab density (cross-linked NCT-APPC99/Ab band). Note that peak amplitudes for the cross-linked NCT-APPC99 and the mature NCT band were normalized to
similar values for clarity purposes. Full-range molecular weight density profiles are shown in Fig EV3D.

Source data are available online for this figure.
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Figure 6. GSECs destabilized by the N242F and N242Y NCT mutations do not respond to imidazole-based GSEC modulators.

A Chemical structures of acidic GSEC modulator (GSM I) and imidazole-based GSM II and GSM III (GSM B in Szaruga et al 2017).
B Ab profiles (% contribution of individual Ab37, Ab38, Ab40 and Ab42 peptides to the total Ab levels (Ab37 + 38 + 40 + 42)) in the conditioned medium collected from

vehicle (DMSO) or GSM-treated (1 lM final concentration) MEF cells co-expressing respective WT or mutant NCT GSEC with APPC99 were determined by ELISA. Data
generated using 0.3 lM GSM-treated MEF cells are shown in Fig EV4. Data are presented as mean � SD, N ≥ 3 independent experiments.

C Ab 37/40 and Ab 38/42 ratios were calculated to evaluate the efficiency of the GSEC-mediated cleavage of APPC99 (Fig EV4) and statistical analysis (P-values) (two-
way ANOVA with Sidak’s post hoc test) for the effect of GSMs on WT and mutant complexes is presented (response to GSM normalized to the corresponding vehicle
condition).
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the ectodomain of NCT in the mechanisms controlling Ab length.

Interestingly, we showed that aromatic substitutions at the position

NCT-242 (N242F/W/Y) significantly reduce GSEC processivity of

APP to the levels similar to those exhibited by FAD pathogenic

PSEN1 variants (Figs 2C and EV1B), while the presence of nega-

tively charged residues at the position NCT-241 promotes the

production of shorter Ab peptides. Further, cell-based GSEC ther-

moactivity analysis demonstrated that the mutant NCT induced

shifts in Ab profiles by influencing the stability of GSEC-APP/Abn
interactions (Fig 7).

The theoretical GSEC-Ab model (developed here) pointed toward

the existence of a positively charged residue in the APP substrate

and suggested a direct interaction between positions I242 in hNCT

and K28 in APPC99, which was confirmed in cross-linking experi-

ments. Of remark, the spontaneous formation of a disulfide bond

between NCT and APP (when Cys residues were introduced at posi-

tions 241 in mNCT and 28 in APPC99) defined it as a short-distance

interaction surrounded by an aqueous environment, and thus likely

located in the extracellular/luminal environment (Rehder & Borges,

2010).

During the preparation of this report, the co-structures of the

GSEC with the Notch or APPC83 substrate became available (Yang

et al, 2018; Zhou et al, 2019). Interestingly, the GSEC–Notch

complex shows an extracellular interface between the ectodomains

of the NCT subunit and Notch, with the NCT-241–242 aa located at

the E-S interface (Fig EV5A). The GSEC-APPC83 complex shows the

APP-K12 residue (corresponding to K28 in APPC99) in the proximity

to the NCT-241 residue; however, since the interface in the GSEC-

APPC83 structure is not fully resolved, it is possible that the cross-

linking of GSEC (PSEN1-Q112C) to the APPC83 V8C substrate affected

this region in the atomic model (Fig EV5B). The functional data

presented here, together with the novel GSEC–substrate co-struc-

tures (Yang et al, 2018; Zhou et al, 2019), suggest a conserved mech-

anism for the stabilization of GSEC–substrate interactions and may

support the involvement of NCT ectodomain in the substrate recog-

nition by the GSEC complex, by stabilizing the initial GSEC–substrate

assembly. Of note, the ectodomain of NCT was initially proposed to

act as a substrate receptor in the protease, with the anionic NCT-

E322 residue and the free N-terminal amine group of the substrate

interacting (Shah et al, 2005). However, the model has been chal-

lenged by biochemical studies (Chávez-Gutiérrez et al, 2008; Zhao

et al, 2010) and the recent E-S structural data finally disproved it.

The currently accepted model for NCT function assigns to its ectodo-

main a rather passive role in the “substrate selection”, in which it

restricts—by steric hindrance—the access of substrates presenting

large ectodomains (Bolduc et al, 2016a). Our data provide compel-

ling evidence for additional, novel implications of the NCT ectodo-

main, i.e., its active role in the regulation of the GSEC processivity of

APP and the modulation of the response to GSEC modulators

(GSMs). Previous reports have shown that APP-K28 mutations exert

profound effects on Ab generation via an unknown mechanism (Ren

et al, 2007; Kukar et al, 2011) and alter the response to GSMs (Page

et al, 2010; Ousson et al, 2013; Jung et al, 2014). Here, we demon-

strate that the effects of K28 on APP processing are explained in part

by its interaction with the ectodomain of NCT.

The proven direct, short-distance interaction between K28 in

APPC99 and position 241 in NCT ectodomain (Fig 5) and their

shared implication in the regulation of GSEC processivity motivated

us to investigate the effects of the (de)stabilizing mutations at posi-

tions NCT-241/242 on the GSEC response to GSMs. Remarkably,

our data revealed that the substitutions in NCT-242 that destabilize

GSEC-APP/Ab interactions (N242F and N242Y, as demonstrated in

Fig 3) also had strong deleterious effects on the response to imida-

zole-based GSM II in both production pathways (> 90% reduction

for the mutant NCT-N242F and NCT-N242Y cell lines at 1 lM GSM

II relative to the wild-type GSEC, Fig EV4). Clearly, GSM II

promoted the conversion of Ab40 into Ab37 and Ab42 into Ab38 by

the wild-type protease but failed to engage the NCT-N242F/Y

mutant GSEC complexes on these specific cuts. The similar

responses of the wild-type and NCT-N242A mutant GSECs indicate

that bulky substitutions at position NCT-242 not only destabilize

GSEC-APP/Ab interactions, and accordingly change Ab product pro-

files, but also impair drastically the response to GSM II. The results

could be explained by the contribution of residue NCT-242 to the

formation of the binding pocket for GSM II or by its participation in

the allosteric mechanisms triggered upon GSEC-GSM interaction. In

this regard, our studies revealed that the NCT-N242F/Y mutant

GSEC complexes largely respond to GSM III. These observations

support the contribution of NCT to the formation of the binding

pocket for imidazole-based GSMs, rather than its participation in the

mechanisms underlying the response. Of note, the binding site of

another imidazole-based GSM (ST2038, structurally similar to the

GSM II) has been located to the first extracellular loop of PSEN-NTF

(Takeo et al, 2014), which according to structural data is in proxim-

ity to the identified NCT-APP interface. Furthermore, the novel

GSEC-Notch/APPC83 co-structures place the substrate in between

the studied NCT region and the first extracellular loop of PSEN1

(Fig EV5) supporting our conclusions. Finally, a cross-competition

study between the imidazole-based GSM (ST2038) and the acidic

GSM I shows that pre-treatment with GSM I substantially decreases

the affinity labeling of the GSEC complex by the ST2038 GSM

(Takeo et al, 2014), suggesting partially overlapping binding pock-

ets for acidic and imidazole-based GSMs. The lack of response of

the mutant NCT-N242Y to GSM I observed here supports a similar

conclusion.

Of potential clinical significance, the marked impact of the aa

substitutions within NCT ectodomain on APP processing suggests

the potential existence of AD-causing or protective single-nucleotide

variants (SNVs) in the NCSTN (i.e., NCT encoding) gene. The data

specifically highlight the position 242 in NCT, where a single-

nucleotide change—N242Y substitution—lowers GSEC processivity

to the levels associated with pathogenic PSEN1 mutations. Intrigu-

ingly, no AD pathogenic or protective mutations have been identi-

fied so far in NCT or in any of the non-catalytic subunits of the

GSEC complex. It should be noted that in clinical practice, genetic

testing varies between different centers and generally involves test-

ing specifically for known genetic causes of dementia syndromes

(Koriath et al, 2018). However, a high proportion of the genetic risk

for AD remains uncharacterized. Rare highly penetrant mutations in

PSEN1, PSEN2 and APP are thought to account for only 5-10% of

all early-onset AD (EOAD, onset < 65 y) cases, while the heritability

of EOAD has been estimated to range from 92 to 100%, thus leaving

90–95% of the affected families with an unidentified genetic cause

for the disease (Cacace et al, 2016). In late-onset AD, which has a

heritability of 70–80%, five new genetic risk loci have recently been

identified, with pathway analysis implicating immunity, lipid
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metabolism, tau binding proteins and APP metabolism (Kunkle

et al, 2019). Furthermore, the enrichment of rare variants in the

APP metabolism in this study suggests that additional rare variants

remain to be identified.

Collectively, the presented data demonstrate for the first time the

existence of an extracellular NCT-APP interface implicated in the

modulation of the strength of GSEC-APP/Ab interactions (and thus

Ab length) as well as in the response of E-S complexes to GSMs (E-S

stabilizers). Based on our original findings, the novel E-S structural

data (Yang et al, 2018; Zhou et al, 2019) and the literature, we

propose that the extracellular GSEC (NCT-PSEN)-APP interface

encompassing the aa region 241-242 in NCT ectodomain, K28 in

APP and the first extracellular loop of PSEN plays a critical role

in the stabilization of GSEC-APP/Abn interactions and is involved in

the binding of selected imidazole-based GSMs. Notably, the idea of

selectively targeting APP processing with substrate targeting

compounds (Kukar et al, 2008) has been raised in the past but has

been abandoned due to studies, showing that potent pharmaceutics

modulating Ab length bind rather to the protease complex. Our stud-

ies may conciliate these views.

Conclusions

This study demonstrates that NCT plays an active role in the regula-

tion of the efficiency of the sequential GSEC cleavage of APP by

establishing a direct interaction with the APP/Abn substrate. The

results of the cross-linking experiments of NCT and APPC99 validate

the position of the co-purifying helical peptide in the PDB:5FN3

GSEC structure as the substrate binding site for APP, and thus put

this co-structure as a suitable model for the investigation of the

structural–functional relationships existing within the GSEC-Abn
complexes. Our results also suggest that an extracellular interface

between GSEC and APP could be the target for GSMs (E-S stabiliz-

ers). These novel insights may conciliate different views on the loca-

tion of GSM binding pocket(s) and guide future efforts to develop

safe therapies targeting GSEC-APP/Ab assemblies, i.e., the genera-

tion of GSEC stabilizing compounds (GSSCs). Finally, this study

raises additional considerations with potential implications for the

clinic, as the remarkable involvement of NCT in the regulation of

the Ab product length suggests a potential link between single-

nucleotide variants in NCSTN and AD risk.

Materials and Methods

Antibodies and compounds

Following antibodies were used in the study: anti-FLAG M2 (F3165)

from Sigma-Aldrich, anti-PSEN-CTF (MAB5232) from Merck, anti-

human PSEN-NTF (MAB1563) from Millipore, anti-NCT (#612290)

from BD Biosciences, horseradish peroxidase (HRP)-conjugated

anti-mouse (#1721011) and anti-rabbit IgG (#1721019) from Bio-

Rad, HRP-conjugated anti-rat IgG (#P0450) from Agilent and anti-

human amyloid-beta (N) (82E1, #10323) from IBL. Anti-mouse

PSEN-NTF (B19.3), PSEN-PEN-2 (B126.2) and PSEN-APP-CTF (B63)

antibodies were made in-house. Antibodies used in the ELISA and

GSMs were obtained through collaboration with Janssen Pharma-

ceutica NV (Beerse, Belgium). The ELISA capture antibodies were

JRD/Ab37/3 for Ab37, JRF AB038 for Ab38, JRF/cAb40/28 for Ab40
and JRF/cAb42/26 for Ab42, and the detection antibody was JRF/

AbN/25 raised against the N-terminus of Ab. Acid-based GSM I (2-

[(1R,2S)-1-[4-methyl-1-[4-(trifluoromethyl)phenyl] pentyl]-2-[4-

(trifluoromethyl)phenyl]-4-piperidyl] acetic acid) and imidazole-

based GSM II (N-[2-fluoro-5-(trifluoromethyl)phenyl]-5-[3-methoxy-

4-(4-methylimidazol-1-yl) phenyl]-2-methyl-1,2,4-triazol-3-amine)

and GSM III ((3R)-3-methyl-7-(4-methyl-1H-imidazol-1-yl)-2-{[1-

methyl-5-(trifluoromethyl)-1H-indol-3-yl]methyl}-1H, 2H, 3H, 4H,

6H-pyrido [1,2-a] pyrazine-1,6-dione) were synthesized as described

previously (Crump et al, 2011; Velter et al, 2014). GSEC inhibitor X

(#565771) was purchased from Calbiochem.

Figure 7. Proposed model for GSEC-mediated cleavage of APP and its modulation by GSMs.

Once the E-S complex is formed, the first endopeptidase cut strongly destabilizes the helical transmembrane domain of APPC99, leading to the unwinding of the most C-
terminal helical part of the Ab substrate and providing the length to the “de novo” generated Ab substrate to reach the active site (model originally proposed in Szaruga et al
(2017)). The further unwinding of the Ab substrate with each sequential cleavage stretches the substrate and provides the length to fill the catalytic pockets but weakens the
GSEC-Abn interaction, until the eventual E-S dissociation triggers Ab release. Here, we propose that the extracellular interface that includes NCT (241/242), APP (K28) and the
first extracellular loop of PSEN1 anchors GSEC-APP/Abn complexes during the sequential proteolytic mechanism, and the E-S interface is the target of selected imidazole-
based GSMs.
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Generation of stable cell lines

Ncstn�/� (Li et al, 2003) and Psen1�/�Psen2�/� (Nyabi et al, 2002)

mouse embryonic fibroblasts (MEFs) were cultured in Dulbecco’s

modified Eagle’s medium (DMEM)/F-12 (Life Technologies)

containing 10% fetal bovine serum (FBS) (Life Technologies).

Ncstn�/� MEFs were transduced with retroviruses, carrying

pMSCVpuro plasmids encoding respective wild-type or mutant

(F239A, S240A, S240F, I241A, I241C, I241D, I241E, I241S, I241F,

I241K, I241Q, I241W, N242A, N242D, N242E, N242F, N242K,

N242W, N242Y, P243A, P234F, E244A, E244D, E244F, E244K

and E244Q) NCTs, using a replication-defective recombinant

retroviral expression system (Clontech). Human PSEN1 MEF cell

lines were generated by rescuing PSEN expression in knock-out

Psen1�/�Psen2�/� MEFs with either wild-type human or mutant

PSEN1 (V89L, L166P, R269H) variants. Briefly, retroviruses were

generated by co-transfecting HEK293T cells with pMSCVpuro wild-

type or mutant NCT or human PSEN1-encoding plasmids and the

PIK helper plasmids, as reported previously (Chávez-Gutiérrez et al,

2008). Viral particles were harvested 48 h post-transfection and

used to infect Ncstn�/� or Psen1�/�Psen2�/� fibroblasts plated at

30–40% confluency. Culture medium was supplemented with 5 lg/ml

puromycin (Sigma-Aldrich) to select clones stably expressing PSEN

or NCT, which were further maintained in DMEM/F-12, 10% FBS

and 3 lg/ml puromycin. NCT and PSEN1 expression levels and the

reconstitution of the functional GSEC complexes in the different cell

lines were analyzed by SDS–PAGE/Western blot.

Transduction of MEF cell lines with adenoviruses carrying
APP-encoding plasmids for cell-based activity assays

Mouse embryonic fibroblast cell lines were transduced with recom-

binant adenoviruses carrying plasmids encoding APPC99, as

described previously (Chávez-Gutiérrez et al, 2008). Briefly, MEF

cells stably expressing either WT or mutants mNCT/hPSEN1 were

plated at the density of 1 × 105 cells/well into 12-well plates and

16 h later transduced with recombinant adenoviruses Ad5/CMV-

APP. Seven hours post-transduction, the medium was refreshed

with low-serum medium (DMEM/F-12 medium containing 0.2%

serum). The cells were then incubated for 24 h at 37°C or 42°C,

respectively, and the conditioned medium was collected for Ab anal-

ysis (Szaruga et al, 2017). When indicated, the low-serum culture

medium was supplemented with 0.3 lM or 1 lM GSMs (GSM I,

GSM II and GSM III) or vehicle control (0.1% DMSO final concentra-

tion).

MEF electroporation with plasmids encoding wild-type or
mutant APPC99-3xFLAG substrates

Mouse embryonic fibroblast cell lines were electroporated with 5 lg
pSG5**APPC99-3xFLAG-WT or pSG5**APPC99-3xFLAG-K28E plas-

mids using the NEPA21 super electroporator transfection system

(Nepagene). Freshly trypsinized cells were set to a concentration of

1.5 × 106 cells/ml in OPTI-MEM (Thermo Fisher Scientific) and

100 ll of the cell suspension was mixed with 5 lg of DNA, and

transferred to a Nepa 2 mm gap cuvette (#EC-002S, Nepagene) for

electroporation (poring pulse (voltage = 140V, length = 7.5 ms,

interval = 50 ms, # of pulses = 2, decay rate = 10% and

polarity = +); transfer pulse (voltage = 20V, length = 50 ms, inter-

val = 50 ms, # of pulses = 5, decay rate = 40% and polarity = +/�)).

The electroporated cells were mixed with 400 ll DMEM/F-12

medium containing 10% FBS and 3 lg/ml puromycin immediately

after the electroporation and plated into 24-well plates. The medium

was refreshed with low-serum medium 12 h post-electroporation

and collected 36 h later for the Ab quantification.

Quantification of Ab production by (MSD) ELISA

To determine the GSEC processivity of APP, Ab37, Ab38, Ab40,
Ab42 and Ab43 levels in conditioned medium (cell-based assays)

were measured. To quantify the concentration of Ab37, Ab38, Ab40
and Ab42 peptides, Multi-Spot 96-well MSD-ELISA plates pre-coated

with anti-Ab37-, anti-Ab38-, anti-Ab40- and anti-Ab42-specific anti-

bodies using the multiplex Meso Scale Discovery (MSD) technology

were used. Non-specific protein binding to the plates was blocked

with 150 ll/well blocking buffer (PBS supplemented with 0.1%

casein) for 1.5 h at room temperature (while shaking at 600 rpm),

and the blocked plates were rinsed 5 times with 150 ll/well wash-

ing buffer (PBS supplemented with 0.05% Tween-20). 25 ll of

SULFO-TAG JRF/AbN/25 detection antibody diluted in blocking

buffer was mixed with 25 ll of standards (synthetic human Ab1-37,
Ab1-38, Ab1-40 and Ab1-42 peptides at known concentrations) or

25 ll analyzed samples, both diluted in blocking buffer, and the

mix (50 ll/well) was loaded on the plate for ELISA analysis. After

overnight incubation at 4°C, the plates were rinsed 5 times with

washing buffer and developed by the addition of 150 ll/well of the

2 × MSD Read Buffer T (Tris-based buffer containing tripropy-

lamine). The signals were read immediately on a Sector Imager

6000 (Meso Scale Discovery). To quantify the concentration of the

Ab43 peptide in cell-based assays, conditioned medium samples

were loaded on the ELISA plates pre-coated with anti-human Ab (1-

43) rabbit IgG, supplied with the human amyloid-b (1-43) (FL) assay

kit (IBL) and peptide levels were measured following the supplier’s

protocol.

Cross-linking in MEFs

Mouse embryonic fibroblast cells stably expressing either wild type

of I241C mutant mouse NCT were plated into 10 cm tissue culture

dishes at the density of 1.5 × 106 cells/dish and transduced with

recombinant adenovirus Ad5/CMV-APP bearing human APPC99, as

described above. 36 h post-transduction, the cells were collected

by scraping in ice-cold PBS and total membranes prepared. To

induce the cross-linking between free sulfhydryl groups (i.e.,

cysteines), 30 lg membrane protein resuspended in 50 mM MES

and 100 mM NaCl pH 6.5 was mixed with N-b-maleimidopropyl-

oxysuccinimide ester (BMPS, Thermo Fisher Scientific) at a final

concentration of 10 lM and incubated for 2 h on ice. The excess

of the cross-linker was removed by washing the membrane pellets

in buffer B. To promote the reaction with free amine groups,

membranes were then resuspended in 100 mM HEPES and

100 mM NaCl pH 7.5 and incubated again on ice for 2 h. Cross-

linked membranes were pelleted by ultracentrifugation, solubilized

in 4 × sample buffer (NuPAGE LDS, Thermo Fisher Scientific)

supplemented with 4% b-mercaptoethanol (BME) and analyzed by

SDS–PAGE/Western blot.
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To test for the potential formation of a disulfide bridge between

NCT-I241C and APP-K28C mutants, NCT-I241C MEF cell line was

electroporated with 7.5 lg of pSG5**APP-C99-3xFLAG-K28C plas-

mid per 1 × 106 cells. The medium was refreshed with low-serum

medium containing GSEC Inhibitor X (1 lM) 12 h post-electropora-

tion and cells were harvested 24 h later. Membrane fractions were

prepared from the electroporated cells and resuspended in 50 mM

MES and 100 mM NaCl pH 6.5. 30 lg protein (measured by Brad-

ford protein assay) was resolved by SDS–PAGE under reducing (4%

BME in sample buffer) or non-reducing (no BME in sample buffer)

conditions. The presence of the cross-linked products was evaluated

by Western blot.

Molecular dynamics simulations

The NCT-I242E mutant molecular dynamics (MD) simulation

conducted for this study was based on a 3000-ns-long simulation of

the APP-derived substrate Ab49 in complex with WT (human)

GSEC, part of a computational study of GSEC-Abn complexes

(Hitzenberger & Zacharias, 2019). The structures were based on

PDB entries 5FN2 (Bai et al, 2015a) (GSEC) and 2LP1 (Barrett et al,

2012) (APPC99). To make sure that the substrate remains in a confor-

mation that is cleavable during the sampling, a transition state-like

geometry (Singh et al, 2009) at the interface between the cleavage

(C99-V46 and C99-I47) and the active site (PSEN-D257 and PSEN-

D385) was stabilized by the use of appropriate harmonic restraints

with weak force constants (for details, cf. to the previous study;

Hitzenberger & Zacharias, 2019). The complex of GSEC-I242E and

GSEC-Ab49 was placed in a bilayer of 301 POPC molecules and

solvated in a 0.15 M KCl solution containing 53,829 water mole-

cules. Periodic boundary conditions were employed, and the rectan-

gular simulation box had a volume of approx. 2,200,000 Å3. Lipids,

water and proteins were described by the Lipid14 (Dickson et al,

2014), the TIP3P (Mark & Nilsson, 2001) and AMBER14SB (Maier

et al, 2015) force fields, respectively. The target temperature was set

to 303.15K by the use of the Langevin thermostat (Goga et al, 2012)

with a collision frequency of 1 ps�1. The desired pressure of 1.0 bar

was maintained by the Monte Carlo barostat (Åqvist et al, 2004).

Non-bonded interactions were described up until a distance of 8 Å,

and the particle mesh Ewald method (Darden et al, 1993) was used

to describe long-range effects. To allow for 4.0 fs time steps, the

SHAKE algorithm (Ryckaert et al, 1977) and the hydrogen mass

repartitioning method (Hopkins et al, 2015) were employed. The

simulations were performed using the CUDA (Nickolls et al, 2008)

version of PMEMD (Götz et al, 2012; Le Grand et al, 2013; Salomon-

Ferrer et al, 2013), which is part of the AMBER16 simulation pack-

age (Case et al, 2016). For evaluation, a 3000-ns-long simulation

trajectory was generated. Trajectory analysis was carried out using

CPPTRAJ (Roe & Cheatham, 2013) and VMD (Humphrey et al,

1996), which was also utilized to render the simulation snapshots.

For free energy calculations, the molecular mechanics Poisson–

Boltzmann surface area (MMPBSA) (Genheden & Ryde, 2015) post-

processing method as implemented in the MMPBSA.py program

(Miller et al, 2012) has been employed. In order to account for the

effects of the POPC bilayer, an implicit lipid model with a permittiv-

ity of e = 2.0 has been used. The membrane slab was assumed to be

34 Å in thickness so that it covers the same region as the lipid tails

in the explicit treatment. The head group region was assumed to be

part of the aqueous layer (e = 80.0) in order to ensure a realistic

treatment of the electrostatics at the lipid–water interface where

E242 and K28 are located (this region was populated by a high

amount of water molecules—especially in the cavity region between

NCT and PSEN, which is void of lipids). The implicit lipid slab was

centered around the mean center of mass (COM) of the explicit

bilayer in the simulation. The (internal) permittivity of the protein

was assumed to be e = 1.0 and the salt concentration was set to

0.15 M. In order to estimate the influence of the I242E mutation to

DDGbind, 1,500 frames of the simulation generated for this study

were compared to the same amount of frames of the previously

performed WT GSEC-Ab49 simulation (Hitzenberger & Zacharias,

2019). Due to the large system sizes and the enormous computa-

tional effort involved in estimating changes of entropy upon bind-

ing, only PBSA-intrinsic solvation entropies have been considered.

Statistical analysis

All statistical analyses were performed using the GraphPad Prism 7

or 8 software. One-way ANOVA with Dunnett’s post hoc test was

used to test the significance of the changes between groups unless

indicated otherwise. In Fig 4, an unpaired, two-tailed Student’s

t-test was used to test the significance between tested groups. In

Fig 6, two-way ANOVA with Sidak’s post hoc test was used to

determine the response to the pharmacological treatments.

P-value < 0.05 was used as a pre-determined threshold for statistical

significance. All statistical analyses are described in the

corresponding figure legends.

Expanded View for this article is available online.
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