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Abstract

We assess whether a cardinal model can be used to relate neural observables to
stochastic choice behaviour. We develop a general empirical framework for relating any
neural observable to choice prediction, and propose a means of bench-marking their
predictive power. In a previous study, measurements of neural activity were made while
subjects considered consumer goods. Here, we find that neural activity predicts choice
behaviour, with the degree of stochasticity in choice related to the cardinality of the
measurement. However, we also find that current methods have a significant degree of
measurement error which severely limits their inferential and predictive performance.
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1 Introduction

Traditional economic methods for establishing a utility representation, such as revealed
preference, are now routinely used to identify the anatomical and functional character-
istics of “value” signals in the human brain (Fehr and Rangel 2011, Glimcher and Fehr
2013). This suggests a general strategy for eliciting preferences in situations when re-
vealed preference methods are problematic or choice data is unavailable: measurements
of neural activity can be used to assess valuations of choice alternatives in order to di-
rectly predict a subject’s choice behaviour (Knutson et al. 2007, Lebreton et al. 2009,
Krajbich et al. 2009, Tusche et al. 2010, Levy et al. 2011, Smith et al. 2014, Telpaz et al.
2015). Indeed, such prediction methods have not only been applied within-individual,
but also across individuals and across populations (Falk et al. 2012, Smith et al. 2014,
Telpaz et al. 2015, Genevsky and Knutson 2015, Genevsky et al. 2017).

The early prediction literature has proceeded along two avenues. The first estab-
lished the ordinal properties of the neural measurement within a deterministic choice
model (Tusche et al. 2010, Levy et al. 2011). In effect, it was assumed that the choice
alternative associated with the higher measurement of neural activity is always chosen.
The second relaxed this assumption of ordinality in an effort to better fit the choice
data. It is well-accepted that choice behaviour exhibits stochastic properties (Luce
1959), and cardinal methods allow the probability of choosing an item to depend on
the difference in measured neural activity between two choice alternatives (e.g. Knutson
et al. 2007, Smith et al. 2014, see Section 2 for a full review).

However, in the context of choice prediction, little attention has been paid to the
sources of stochasticity — in neural activity and its measurement— which lead to a
cardinal choice model. Of course, it is widely held in neuroscience that neural activity
is inherently stochastic and the cardinal properties of neural measurements have been
routinely described for over half a century (e.g. Rieke et al. 1997, Glimcher 2005). How-
ever the sources of this stochasticity, and at what stage of the choice process it might
arise, can have critical implications for how researchers relate stochastic neural data
to stochastic choice behaviour. In particular, our understanding of how the statistical
properties of neural measurements interact with the experimental paradigm is limited,
thus impacting both choice prediction and inference.

In economics, the class of Random Utility Models are routinely applied to capture
stochastic choice behaviour within a utility maximization framework (Becker et al.
1963, McFadden 1973, 1981, 2001). Many of these models have the inherently cardinal
feature that the probability of choosing an alternative is related to the differences in
utilities. Motivated by classic experiments which demonstrate that choice probabilities
vary with utility (e.g. Mosteller and Nogee 1951, Hey and Orme 1994), random utility
models have been widely applied to experimental data. However experimental studies
have also questioned the relevance of a cardinal model for individual stochastic choice
behaviour, at least in some cases, instead proposing that utilities might be random but
not cardinal (e.g. “random preference” models, Loomes 2005). For instance, Agranov
and Ortoleva (2017) present subjects with repeated choice sets over lotteries, and con-
sistent with previous literature, they find a large majority of subjects exhibit stochastic
choice. However, they also find no statistically significant relationship between the dif-
ference in the (estimated) Expected Utility of any two lotteries and the likelihood that
a subject switched their choice on repeated trials. How best to model stochastic choice
behaviour is still a question of much debate (Hey 2005).
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In this article, we aim to assess whether a cardinal framework can, and should, be
used to relate neural observables to stochastic choice behaviour. Below, we outline a
broadly applicable econometric framework for relating neural observables to stochas-
tic choice behaviour, which we call the Neural Random Utility Model (NRUM). The
NRUM extends familiar aspects of the random utility framework to neural observables,
including both the maximization of stochastic decision variables and the possibility that
differences in these variables contain information for choice prediction.

Additionally, the NRUM allows the development of hypotheses about the various
sources of error present in the measurement of neural activity, an issue that has not
been addressed by previous literature. We demonstrate how these errors interact with
stochastic decision variables in a choice prediction exercise, and we examine how fea-
tures of the experimental design allow separate estimation of measurement error from
the stochastic decision variable. This allows us to quantify the relative magnitudes
of these errors in a way that is not possible with an ordinal approach, providing an
estimate of the variance of measurement error in choice prediction experiments.

Because the model is general purpose, it can be employed with regard to any neural
observable to assess whether different experiments – or future measurement techniques
– provide true advances in choice prediction. To demonstrate this feature, we apply
it to a well-known dataset previously used to establish the ordinal properties of a
neural measurement (Levy et al. 2011). In the first stage of the experiment, subjects
were shown each of 20 consumer items while they were inside an fMRI scanner. For
each item, targeted measurements of neural activity in the medial Pre-Frontal Cortex
(mPFC) and Striatum were recorded. In the second stage, subjects were asked to make
choices between all pairs of the items, with all choice sets repeated twice. This dataset
thus has a crucial feature which can be used to test a cardinal choice model. Since the
measurements were made independently of the choice (over the course of an hour), the
scale on which the measurements were made must be (at least partially) maintained
over measurements for the dataset to have any predictive power. This would provide
evidence for one property of a cardinal measurement, namely that each measurement
is from a common scale.

The Levy et al. (2011) data also hints at a second property of a cardinal measure-
ment, namely that differences between measurements contain predictive information.
While the choice behaviour of subjects was relatively consistent, maintaining transitiv-
ity in 96% of eligible triplets, subjects did switch their choices in 9.3% of the repeated
choice sets they faced. This is a degree of choice stochasticity typically found in such
experiments (e.g. Telpaz et al. 2015). Even though the analysis in Levy et al. (2011)
consisted of an ordinal ranking of the BOLD activity for each item (Figure 1) — the
item with the higher ranking was always predicted to be chosen — the choice prediction
rate was highest for the pairs of items with the largest ordinal “distance” in ranking
(83% vs. an overall prediction rate of 56%, across all choice sets and all subjects).
This suggests that the distance between neural measurements matters. However the
analysis in this widely cited study highlights two issues typical of the neuroscientific
literature on choice:

• The sources of stochasticity in neural prediction variables are not modelled at
all. Note that the prediction exercise appears to perform worse than chance for
items with adjacent rankings – which is obviously impossible. This arises because
neural measures are constructed via multiple levels of analyses. The interaction
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between these random variables, the errors in their measurement, and the choice
prediction exercise can, and has, led to errors in inference.1

• An ordinal analysis does not account for some information, namely the difference
in neural activity, that may improve predictive performance for repeated choice
sets. For instance, while an ordinal model does not predict that a subject will
switch their preference, a cardinal analysis can vary the probability of choice
according to the difference in neural activity.

These issues can be addressed by applying the NRUM to this dataset. We find that
difference in the neural observable is significantly correlated with choice behaviour
— and has choice prediction power beyond chance — however we also find evidence
for a startling degree of measurement error in the neural data. This measurement
error biases model estimates towards zero, adversely affecting both prediction rates
and inference about which brain areas have predictive power. It also leads to puzzling
features of the choice data. The NRUM allows a partial correction for measurement
error, and we examine features of the experimental design which yields identification
of this source of error. Once measurement error is accounted for, the data is consistent
with the NRUM.

Finally, a means of benchmarking the predictive power of the measurements, with
regard to stochastic choice, is also proposed. Existing prediction methods treat each
choice trial independently, even if there are repeated trials from the same set. We
propose two methods for assessing the predictive performance of such repeated choice
paradigms, and demonstrate that the ordinal prediction methods used to date cannot
capture these basic features of the data. We also find that the neural measurements
found in Levy et al. (2011) yield in-sample choice prediction results barely on par
with standard observables (price and quality ratings), even after accounting for their
cardinal features. Combining the neural measurements with these standard economic
observables improves predictive performance. While this suggests that these two types
of observables contain orthogonal predictive information, it remains to be seen if im-
provements in measurement technology can achieve improved prediction rates.

2 Related Literature

2.1 Choice Prediction with Neural Observables

Much of the initial excitement in the field of neuroeconomics involved extracting value
signals from the vast amount of data produced by fMRI studies. Typically, these
studies measured the response in neural activity to some behavourial manipulation or
stimulus, such as willingness-to-pay or reward amount, and analyzed models of the
form:

NeuralActivity = βBehaviour + ε. (1)

1Each neural measurement is constructed from numerous independent scans, each comprised of a large
amount of data with a spatial and temporal structure, and each measurement is related to repeated choices
from one of

(
20
2

)
binary choice sets. The sources of stochasticity present in neural measurement, the ex-

perimental paradigm, and how they interact in choice prediction, is clearly an important aspect of any
econometric evaluation of such datasets (Harrison 2008).
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Here, neural activity is the dependent variable and β is the parameter of interest, in
particular, which brain regions significantly code value signals. Recent meta-analyses of
this literature (now amounting to over 200 independent datasets) identify that activity
in two brain areas, the ventral striatum and the mPFC, is tightly correlated with every
known economic method for estimating the values subjects place on choice objects —
ranging from consumable goods, to money lotteries, to charitable donations, to durable
goods, to social preferences, to political preferences (Levy and Glimcher 2012, Bartra
et al. 2013, Clithero and Rangel 2013).

Building on these advances, neuroeconomists began exploring whether this rela-
tionship could be reversed for the purpose of explaining choice behaviour.

Pr(Behaviour) = βNeuralActivity + ε. (2)

In this modelling approach, neural activity (causally) determines the choice probability,
and the strength of this relationship is governed by the parameter β. For example, in
a landmark study, Knutson et al. (2007) applied a Logit model to an fMRI dataset and
found that incentivized purchasing behaviour can be predicted by measures of neural
activity in the mPFC and the ventral striatum. Follow up studies have demonstrated
similar results in binary choice experiments over disparate objects (FitzGerald et al.
2009), and have even extended this analysis to market level outcomes (Falk et al. 2012,
Venkatraman et al. 2015, Genevsky and Knutson 2015, Genevsky et al. 2017).2

An obvious concern with (2) is that there are a large number of potential neural
variables in an fMRI dataset to use as predictors, much larger than the number of
choice observations. This suggests that many neural signals will be correlated with
choice by chance. The initial literature took a conservative approach to this issue by
defining regions of interest either a priori or via independent localization.3 In an effort
to improve prediction rates, more sophisticated methods for model selection have been
developed. For example, Smith et al. (2014) use a shrinkage estimator to determine
which voxels to include as predictors.4

Regardless of the estimation method, analysis based on the model (2) is inherently
cardinal. The parameter(s) β determine how choice probabilities change in response
to neural activity, and these probabilities can then be used to predict choices out-
of-sample. For instance, in Smith et al. (2014) the fitted probabilities P̂ from the
regression (2) are used to code a predicted choice then compared to the choices from
a holdout sample, yielding a neuro-choice prediction rate of 61% within-subject.5 The
estimates of β therefore determine the relative weights of different brain areas, voxels,

2See Berkman and Falk (2013) for a discussion of more applications of this approach.
3For instance, Levy et al. (2011) used an independent sample to identify the regions of the mPFC and

ventral striatum to include in the model.
4A Logit model comprised of all voxels is evaluated, but the model’s likelihood is penalized via a LASSO

regression to guard agains over-fitting. This penalization acts as a model selection criterion, with the resulting
estimates of β 6= 0 only for some voxels.

5Machine-learning algorithms can also be used to jointly analyze (or weight) regions of activity within
the mPFC to classify whether a particular item was chosen, or not, from a binary choice set (Kahnt 2017,
for a review). These weights can then be applied to a test dataset to predict choice behaviour. Krajbich
et al. (2009) use such methods to classify valuations in a public goods game with 60% accuracy, while Tusche
et al. (2010) observe classification rates upwards of 75% in a choice task over activities. However this binary
classification does not provide relative choice probabilities, only predicted outcomes. The former plays a
crucial role in modelling stochastic choice behaviour.
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or stimuli, in determining choice. We will use this cardinal framework to consider the
stochastic structure which underlies both behaviour and neural activity.

2.1.1 The Impact of Measurement Error

One useful example of why it is important to address the stochastic structure of a
choice model is the prevalence of measurement error in fMRI datasets. Since neural
activity is not typically observed directly, only an indirect measure of it is available for
prediction (say via the BOLD measure from fMRI). To model measurement error, we
follow the standard approach of appending a measurement error, µ, to our variable of
interest.6

NeuralMeasure = NeuralActivity + µ. (3)

In standard analyses based on equation (1), measurement error is somewhat innocuous:
any error in the measurement of neural data will simply end up in the error term of
the regression,

NeuralMeasure = (βBehaviour + ε) + µ

= βBehaviour + (ε+ µ) (4)

Though µ clearly adds noise to the model, thereby increasing standard errors, the
estimate of β is not directly affected. A number of methods have been proposed
to address this issue in standard fMRI analysis software, primarily relying on the
autocorrelation structure of the measurement error (e.g. Lund et al. 2006).

In the choice prediction model (2), however, the impact of measurement error is
more nefarious. Now the measurement error is embedded in the explanatory variables
of the model. We can observe this by directly substituting in equation (3).

Pr(Behaviour) = βNeuralActivity + ε

= βNeuralMeasure + (−βµ+ ε) (5)

= βNeuralMeasure + ∆ε. (6)

Because the error term ∆ε (which includes the measurement error) is now correlated
with the explanatory variable, a critical exogoneity assumption of the regression model
is violated. This “error-in-variables” problem biases the estimate of β towards zero
(Yatchew and Griliches 1985).7 Not only does this bias alter the predicted choice
probability given a change in the neural measure, but it also means that inference on β
for a given brain region or voxel will be too conservative. On average, this will lead to
fewer rejections of a false null hypothesis (i.e. increased “Type II Errors”). In Section
4, we will demonstrate how the NRUM can be used to address the measurement error
problem.

2.2 Models of Stochastic Choice

The literature on modelling stochastic choice consists primarily of two model classes
which fall under the technical definition of a Random Utility Model (RUM; Becker

6See Greene (2003) for a textbook treatment of measurement error.
7Also see Ramsey et al. (2010) for a discussion of this issue in dynamic causal modelling.
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et al. 1963). Consider a set of n items, indexed i = 1 . . . n. Denote Pi the probability
that alternative i is chosen from this set, or equivalently, the frequency with which i is
chosen on repeated trials.

A RUM posits the existence of a vector of random variables u, with element ui,
such that

Pi = Pr{ui > uj , ∀j 6= i}. (7)

Conditions placed on Pi determine whether observed behaviour is consistent with the
principle of utility maximization (Block and Marschak 1959, Falmagne 1978, McFadden
2005).

The two approaches to modelling stochastic choice, while both technically RUMs,
are distinct in interpretation. One class, known as random preference models, posit
that a choice is represented by a preference relation (or utilities u) stochastically drawn
from a set U which obeys some underlying axioms (Loomes and Sugden 1995, Gul
and Pesendorfer 2006). Each alternative in a choice set is processed simultaneously
according to this realized preference relation. This approach allows for preferences
to vary from trial to trial for different realizations of u, but in a manner which is
internally consistent with the axioms which determine membership in U . Such models
have important implications for both model-testing and normative analysis, since they
posit no violations of the underlying axioms due to stochasticity (see, for example,
Loomes 2005).

A second approach to modelling choice stochasticity derives from the long literature
on stochasticity in sensory perception (Fechner 1860, McFadden 2001).8 A Fechnerian
RUM holds that choices can be described by a single “core” valuation vi that is per-
ceived or represented with error εi for each item, such that ui = vi+ εi. The perturbed
value is then compared, and the number of choice errors (in violation of the ordering
given by vi) is governed by the magnitude of the difference vi − vj , ∀j 6= i. Therefore
the additive model is described as cardinal (Batley 2008).9 Empirical studies which
utilize the Fechnerian model include Hey and Orme (1994), Hey (1995), Buschena and
Zilberman (2000), Hey (2005), with the negative result found in Agranov and Ortoleva
(2017) previously noted. Review articles which contrast the behavioural evidence for
the two approaches can be found in Loomes (2005) and Wilcox (2008).10

Intriguingly, support for both Random Preference and Fechnerian approaches can
be found in the neuroscience evidence (in so far as neural evidence can be used to
support an economic model). It is widely held that the activity of a neuron is governed
by a fundamentally stochastic (thermodynamic) process, and this stochasticity extends
to the populations of neurons which act as basic computational units (Glimcher 2005).11

8See also Weber (1834), Stevens (1961), Falmagne (1985). For applications in the economics literature,
see (e.g. Hey and Orme 1994, Camerer and Ho 1994, Loomes 2005, Harrison and Rutstrom 2008, Johnson
and Ratcliff 2013, for reviews).

9A taxonomical issue currently exists between the theoretical and applied discrete choice literatures in
economics. The applied literature classifies the additive model as a RUM since it satisfies the definition (7).
However the theoretical literature does not since the stochasticity in the model leads to violations of the
axioms underlying membership in U . Here, we return to the standard definition from Becker et al. (1963)
used by the applied literature.

10See also Apesteguia and Ballester (2018) for critical issues with estimation.
11Neural activity shows significant variation even under conditions in which measurement error can be

shown to be near zero (Tolhurst et al. 1983, Churchland et al. 2010, 2011). It is widely held that this is
not simply a high dimensional signal of zero stochasticity projected imperfectly into a low dimensional space
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It has also been demonstrated empirically that the instantaneous perception of the
attributes of a stimulus is stochastic even when all properties of the stimulus and
state of the chooser are held constant (Stevens 1961). This stochasticity in subjective
perception has been shown to be an obligate feature at all levels of sensory processing
(see Glimcher 2011, for an overview; Beck et al. 2012, Woodford 2014, for relation to
optimality), and this would necessarily lead to stochasticity in preferences.12

However, the stochasticity of neural activity extends beyond sensory processing,
particularly to the neural circuitry necessary for comparison and implementation of
motor actions. A class of models of this process, referred to as Bounded Accumulation
Models (BAM), posit the dynamic accumulation of a decision signal to a threshold
given a value input.13 In the well-known drift diffusion model (Ratcliff 1978, Fehr
and Rangel 2011), the relative values of the alternatives determines the slope of the
accumulation, which determines the choice probabilities. A tight relationship exists
between these Bounded Accumulation models and the stochastic choice literature; the
choice probabilities of a BAM can be represented by a Fechnarian RUM, therefore
imply a cardinal random utility representation Webb (2018).14

The mixture of behavioural and neural evidence for both a Random Preference
and an Fechnerian RUM approach suggests that the least restrictive econometric spec-
ification should be composed of a stochastic valuation (which may be restricted by
a particular theory) and a subsequent error term which is, in essence, cardinal and
strictly welfare decreasing. We stress that it may, in some cases, be necessary to re-
strict the econometric problem to a model with only one (or a linear combination) of
these sources of stochastic choice for the purpose of identification, depending on the
nature of the data being analyzed. Indeed this will be the case for our current dataset.
However we present here the more general case as a starting point for theory, and note
explicitly our identification assumptions.

3 Neural Random Utility Model

We now adapt the standard framework for stochastic choice in economics, random
utility maximization, to a form that explicitly treats subjective value as a stochastic
neural observable. We present the model for a binary choice set {i, j}, and we observe
repetitions of all binary sets from the same subject. The extension of the model beyond
binary choice is straightforward, though we note special considerations.

The subjective value of item i on trial t is defined to be an observable random
variable vi,t ∈ R+, with the vector of subjective values denoted vt ∈ Rn+. In principle,

via limitations in measurement. For more on this issue, see Rieke et al. (1997) and Shadlen and Newsome
(1998).

12To take one example, variability in the valuation of a sweet tasting liquid can arise from variability in
the sensory experience of sweetness, even when the objective sugar concentration is held constant.

13Neural evidence for such dynamics in neural activity has been uncovered both in psychophysical and
economic choice tasks (Gold and Shadlen 2007, Basten et al. 2010, Hare et al. 2011), as well as behavioural
evidence for the role of decision dynamics and attention (Milosavljevic et al. 2010, Krajbich et al. 2010).

14This also clarifies the relationship between BAMs and the NRUM. Accumulation models place restrictions
on the form of the NRUM and will prove invaluable for exploring a more structural approach to modelling
decisions. However we do note that the NRUM brings a large econometric toolbox to bear for relating neural
observables to choice prediction and for testing the predictions of more structural approaches with weaker
assumptions on functional forms.
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vt is observable in the firing rate activity of value-related neurons.15 We assume vt
is independent over trials, but not necessarily over items. Although we do not yet
formally specify a distribution for vt, let us define ξi,t as the difference between vi,t and
its mean E[vi,t], for each item,

ξi,t ≡ vi,t − E[vi,t]. (8)

We emphasize that vi,t is the only observable in (8) and we provide a distributional
assumption shortly.16 Note that the distribution of vi,t puts no restrictions on the
covariances over items, allowing a random preference formulation.17 We discuss this
issue further in Section 7.

Once subjective values are instantiated in neural activity, they must be compared
and a choice executed. This additional neural process, which we refer to as the “choice
mechanism”, effectively compares subjective values in the requisite circuitry for pro-
ducing behaviour. The neural evidence suggests this comparison takes place via an
accumulation of vi,t to threshold in dorso-medial and parietal regions of cortex (Bas-
ten et al. 2010, Hare et al. 2011, Domenech et al. 2017). Webb (2018) demonstrates
this process is equivalent to a random utility formulation with an additive noise term
ηi,t ∈ ηt ∈ Rn+ which captures stochasticity in this maximization operation. This yields
the decision vector

ut = vt + ηt, (9)

For a binary choice trial t, the subject chooses i from the pair of items {i, j}t if

ui,t > uj,t

vi,t + ηi,t > vj,t + ηj,t.

yielding a probability of choosing i on trial t

Pij,t (vi,t, vj,t) = Pr {vi,t − vj,t > ηj,t − ηi,t}
= Pr {∆vij,t > ∆ηji,t} , (10)

where ∆vij,t ≡ vi,t − vj,t. The notation ∆·ij denotes the ijth item-pair difference
throughout. Since the differences in measurements of subjective value determine these
probabilities, this model now exhibits properties of cardinality (Batley 2008, p47).

Equation (10) is the conditional probability of choosing i given a measurement
of subjective value during a choice. Before we arrive at a specification suitable for
our empirical application, we must take two additional steps. First, we will need to
impose some distributional structure on ηt, therefore we assume that the difference

15Electrophysiological evidence for such observables can be found in Padoa-Schioppa (2013) and Rich and
Wallis (2016).

16One possible interpretation of E[vi,t] is a ‘core’ value, instantiated noiselessly by some biological mech-
anism, but represented with error in the neural substrate under observation. This is not a view compatible
with the biophysical properties of neural processes. Instead, we interpret E[vi,t] as simply the limiting quan-
tity of the sample mean of vi,t and our definition of ξi,t in an additive specification is for the purpose of
exposition.

17However we do restrict the variance to be constant over items. In addition, there is the question of
whether the central tendency of subjective value is stable or if it can be manipulated through contextual
effects; for the purposes of this experiment, we assume a stable mean over trials.
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in additive noise is independent over item-pair and trial, and distributed normally
∆ηji,t ∼ N (0, σ2

∆η).
18 This yields a probability of choosing i

Pij,t (vi,t, vj,t) = Φ

(
∆vij,t
σ∆η

)
, (11)

where Φ() is the standard normal CDF.
Second, our experimental application attempts to relate subjective value measures

in the absence of choice to subsequent choice behaviour. By design, we do not observe
the realization of subjective value vi,t on the trial t in which the choice was made,
therefore specification (11) is inappropriate for analysis. Though an observation of
vi,t in synchrony with the choice of our subjects would yield both the best predictive
results and sharpest inference, the choice probability can also be derived conditional
on the mean of subjective value E[vi,t], and not just its realization on a choice trial.

To demonstrate this, let us assume ξt ∼ N (0,Ωξ) with covariance matrix Ωξ. Since
our experiment uses a binary choice environment, the realizations of ∆ξij,t for different
item-pairs must occur on different trials t. Therefore the ∆ξij,t are independent over
ij due to independence over trials, even for different item-pairs that share an item.19

Therefore ∆ξij,t is distributed N (0, σ2
∆ξ), and this yields a probability of choosing i,

Pij,t (E[vi,t], E[vj,t]) = Pr {E[vi,t]− E[vj,t] > ξj,t − ξi,t + ηj,t − ηi,t}
= Pr {E[∆vij,t] > ∆ξji,t + ∆ηji,t} (12)

= Φ

(
E[∆vij,t]

σ∆ξ+∆η

)
, (13)

where σ∆ξ+∆η is the standard deviation of the sum of the two neural noise terms ∆ξt
and ∆ηt. This term reflects the degree of stochasticity in choice due to stochasticity
in neural activity. Clearly, predictive accuracy is worse under this specification since
σ∆ξ+∆η > σ∆η.

However E[vi,t] is not an observable, therefore equations (12) and (13) should be
viewed as the limiting probabilities given a sample mean that approaches E[vi,t]. The
sample analog, derived from repeated measurements of vi,t, is

Pij,t( (14)

Deltaj) = Pr
{

∆v̄ij > ∆ξ̄ij + ∆ξji,t + ∆ηji,t
}

(15)

= Φ

(
∆v̄ij

σ̄∆ξ+∆η

)
, (16)

where σ̄∆ξ+∆η → σ∆ξ+∆η as ∆ξ̄ij → 0. This is the specification we will work from in
our empirical setting.

18There is little known about the appropriate distribution of ηt at this level of aggregation, though Webb
(2018) provides a derivation directly from bounded accumulation models. The assumption of independence
over item-pair is only made for convenience, see footnote 19.

19The extension of the model beyond binary choice would have to account for a full covariance matrix
for the vector composed of the ∆ξij,t on each trial (similarly for the ∆ηij,t). In principle, a full covariance
matrix should be identifiable for such a dataset (Hausman and Wise 1978, Train 2009) and the results that
follow would have to be argued in terms of this full matrix. The assumption of normality for vt is again
made for convenience. To our knowledge no study has yet examined the distribution of the aggregate firing
rates that make up subjective value.
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4 Testing a NRUM with Behavioural and Neu-

ral Measurements

We now establish the NRUM as an econometric toolset for relating neural observables
to choice prediction in an experimental dataset. In section 4.1, we apply the model to
a combined dataset of choices and neural measurements from two brain regions known
to encode subjective value (mPFC and Striatum) and one control region (OCC). A
detailed description of the Levy et al. (2011) experiment, including the BOLD measure
of neural activity, can be found in Appendix 9.1. The role measurement error plays
in the relationship between the BOLD measure and choice behaviour is examined in
section 4.2.

In the analysis, we treat the item-pair and the two choices made in each pair as
the dimensions of our behavioural dataset, and pool item-pairs over subjects. For 12
subjects, this yields n = 4560 choices grouped into 2280 pairs.20 Essentially we are
treating different subjects viewing the same item-pairs as equivalent to the same subject
viewing different item-pairs. While this allows each subject’s preferences – therefore
subjective valuations – to be idiosyncratic, it does contain the implicit assumption
that the relationship between subjective valuation, the BOLD measure, and the choice
likelihood is the same across subjects. We relax this assumption in section 4.3 at the
expense of a reduced sample size.

4.1 A Cardinal Neural Observable

The random utility model specifies that the difference in utility influences choice like-
lihood, and therefore posits that utility is a cardinal quantity. To establish that our
neural observable is cardinal, we must establish that neural measurements are made on
some scale in which the difference between measurements is related to the likelihood
that a subject will switch their choice behaviour in repeated choice sets, and that this
difference predicts choices beyond a simple ordering.

In the Levy et al. (2011) experiment, measurements of BOLD activity from mPFC
and Striatum were taken on 11 scanning trials independently for each good over the
course of an hour. The measurements preceded — and were independent of — the two
choice trials of interest. We use the time index m to denote these measurement trials,
and use the general notation Bi,m to denote a measurement from one of these regions
(we will report results for each brain area separately).

We assume a linear form for the relationship between the BOLD measurement Bi,m
from a brain region and subjective value vi,m.

Bi,m = a+ γvi,m + µi,m.

The error term µi,m ∼ N(0, σ2
µ) reflects the error present in measuring neural

activity in an MRI scanner, therefore a neural measure of subjective value Bi,m has
two sources of variance: the fluctuation in subjective value on our measurement trials,
and measurement error. To arrive at a measure for predicting choice between items i

20Striatal activation was not recorded for one subject, so analysis on this brain area will use 4180 choices
grouped into 2090 pairs.
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and j on an independent trial t, we average over our 11 measurements and then take
the difference.

B̄i = a+ γv̄i + µ̄i (17)

∆B̄ij = γ∆v̄ij + ∆µ̄ij . (18)

Initially, we proceed under the assumption that there is no sampling and measure-
ment error, ∆B̄ij = γE[∆vij,t]. While this assumption is clearly not valid, it does lead
to some useful intuition for the full model in section 4.2. Specifically, assuming an
error-free measure of the mean of subjective value allows us to use specification (13).
Substituting in (18) yields a probability of choosing i,

Pij,t(E[∆vij,t]) = Φ

(
E[∆vij,t]

σ∆ξ+∆η

)
(13)

= Φ

(
γ−1

σ∆ξ+∆η
∆B̄ij

)
. (19)

Under this specification, the NRUM makes three predictions about the likelihood
our subject will choose item i. First, if behaviour was only determined by the ordinal
comparison vi,t > vj,t on a given choice trial, then the average measurement of each
good over repeated independent measurement trials should contain no predictive infor-
mation. By contrast, the NRUM predicts that as ∆B̄ij increases, the subject should
be more likely to choose item i on any given choice trial (see Figure 2.A).

Second, recall that subjects made choices over each item-pair twice. Therefore the
likelihood that a subject switches their choice upon repeated trials should decrease
with the absolute value of ∆B̄ij .

Third, if we segregate our item-pairs into those pairs in which the subject chose
item i twice, once, or never at all as a function of ∆B̄ij , the NRUM would predict
P (twice) > P (once) > P (never) for a positive difference in measured subjective value.
This prediction is depicted in the right panel Figure 2.A, in which choices were simu-
lated according to the NRUM, then the number of twice, once, and never observations
were fit using an Ordered Probit model.

Table 1 presents the estimates from bringing (19) to our dataset with the normal-
ization σ∆ξ+∆η = 1. This standard identification assumption means we are estimating
only the relative relationship between neural activity and the choice probabilities. We
also included a specification with a constant term c predicted to be zero by the model:

Φ
(
c+ γ−1

σ∆ξ+∆η
∆B̄ij

)
. For both the mPFC and the Striatum, the estimate for γ−1

is positive, therefore the relationship between the difference in neural measurement
(∆B̄ij) and the probability of choosing an item is indeed monotonic (see Figure 2.B for
the mPFC). As might be expected, no such relationship is found in the OCC control
region (Table 1).

To test the second prediction, we repeat the analysis conducted by Agranov and
Ortoleva (2017) on their lottery choice dataset. An indicator variable codes item-
pairs in which subjects switched their choice on repeated trials. Table 2 presents the
results of a random-effects GLS regression of this indicator variable on |∆B̄ij |. A
clear negative relationship between the magnitude of the difference in BOLD activity
and the likelihood of the subject switching their choice is observed in this sample.
This lies in contrast to the results from Agranov and Ortoleva (2017), which found no
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relationship between a behaviourally-established measurement of subjective value and
choice stochasticity.

However the third prediction of the NRUM does not fare as well, at least at first
glance. The fit of the Ordered Probit model to the number of observed choices has
a clear mis-ordering; subjects are more likely to choose an item twice, than never,
than once for positive ∆B̄ij . We observe too few once choices when ∆B̄ij is small,
too many when it is large, and far too many never choices when ∆B̄ij is large and
positive (similarly for twice when it is large and negative). This apparent contradiction
of the NRUM arises because we (like much of the neuroscience literature working with
choice data) have so far assumed no error in both our BOLD measurement and the
construction of our neural measure ∆B̄ij . The following section addresses this issue.

4.2 Accounting for Measurement Error

We can identify at least three source of measurement error in our dataset. First, since
we are not measuring subjective value during a choice trial, the realizations of vi,m
we do measure are not the ones related to choice on trial t. This component of our
measurement error is the sampling error present in v̄i and is denoted by ξ̄i in (8).
Second, we should also allow for error in the conservative procedure for identifying and
constructing a single neural time-series from the 250,000 we measured. The degree to
which the mean activity level of our measure captures the neural encoding of subjective
value for consumer items depends on our ex-ante restriction to the mPFC and Striatum
and the accuracy with which our first procedure identifies the relevant voxels. This
source of variability is captured in µi,m. A third source of noise doubtlessly results
from the technical limitations imposed by measuring neural activation with an fMRI
scanner (Logothetis 2002), which is also captured in µi,m

The effect of measurement error in non-linear models (such as the Probit) is larger
than in the linear model, but generally follows the same intuition: the data is over-
dispersed along the dimension of the independent variable and the slope parameter is
biased towards zero (Yatchew and Griliches 1985). Formally, we can no longer work di-
rectly from specification (13) since Pij,t(∆B̄ij) is no longer equivalent to Pij,t(E[∆vij,t]).
This means our estimate of γ−1 in section 4.1 is biased towards zero and the severity of
this bias increases in the degree of measurement error. Since our hypothesis predicts a
positive value for γ−1, inference performed on this biased estimate is still valid, though
pursuing a less biased estimate will yield improved inference and choice prediction.

Recalling equation (17), measurement error enters our specification as an item-
specific i.i.d. error term.21 If we proceed with a specification derived from substituting
in our measured neural activation into the sample analog (14), the conditional proba-
bility of choosing i is

P (yij,t = i | ∆B̄ij) = P
(
γ−1(∆B̄ij −∆µ̄ij) > ∆ξ̄ij + ∆ξji,t + ∆ηji,t

)
= P

(
γ−1∆B̄ij − eij > ∆ξji,t + ∆ηji,t

)
,

21This form of measurement error is referred to as “classical measurement error” since the error is additive
and independent of the unobserved quantity (Carroll et al. 2006). It specifies that our neural measurement
∆B̄ij has a larger variance than the unobserved quantity of interest, a natural assumption in the context of
measuring neural activity with a noisy fMRI signal.
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with the sources of measurement error grouped together in the variable eij ≡ γ−1∆µ̄ij+
∆ξ̄ij .

The fact that subjects chose between each item-pair twice means that eij is constant
over both choice trials. This means we have two independent choices for each realization
of the measurement error. Or said another way, the eij are (perfectly) correlated over
repeated choice trials. We can use this correlation pattern to achieve more efficient
(and less biased) estimates of γ−1 — as well as an estimate of the standard deviation
of the measurement error — provided we specify and integrate out a distribution for

eij . We assume eij
iid∼ N (0, σ2

e), therefore our specification takes the form of a random-
effects Probit model, however with two important caveats that differ from standard
applications.22

1. ∆B̄ij and eij are not independent. This means that the random-effects Probit
estimate of γ−1 will also be biased towards zero, though not as severely as a
Probit with no random-effect. Therefore, we can only partially correct for the
bias introduced by measurement error.

2. The eij are not independent over choice pairs. Since the neural measurement takes
place at the level of the individual item, when differencing the measurement for
an item-pair there is correlation in the random effect eij between item-pairs that
share an item. For instance, e12 and e13 are correlated because they share the
measurement of item 1. This means a random-effects estimate is inefficient, and
standard errors will be biased towards zero if not controlled for. In addition, the
estimate of σe will be biased positively (Wang et al. 1998).

To account for these issues, we pursue a hybrid approach in which we estimate the
random-effects model clustered at the level of the item-pair (to capitalize on the com-
mon measurement error over choice trials within an item-pair, partially reducing the
bias and achieving more efficient estimates), then correct our standard errors for in-
ference using a multi-way clustering approach (to account for the non-independence of
the differenced measurement errors). The item-pair level likelihood is then given by

P
(
yij,1, yij,2|∆B̄ij

)
=

∫ ∞
−∞

e−eij
2/2σ2

e

√
2πσe

[∏
t

F
(
yij,t,∆B̄ij

)]
deij , (20)

where

F (y, x) = Φ

(
γ−1 (x− eij)
σ∆ξ+∆η

)y [
1− Φ

(
γ−1 (x− eij)
σ∆ξ+∆η

)]1−y
.

We also include a specification with a constant term (predicted to be zero).
Including a correction for measurement error substantially increases the fit of the

NRUM (Table 1), with the log-likelihood(s) improving by nearly a factor of 1
3 . The es-

timated coefficients for γ−1 are also substantially higher than our baseline specification,
increasing by roughly a factor of 5 in both the mPFC and Striatum. This indicates
that the relationship between neural activity and choice probability is severely biased
when measurement error is unaccounted for. Figure 3 depicts the fitted probability of
choosing item i as a function of the difference in neural activity (generated under the

22A random-effect model is robust to the distributional assumption for the random-effect (here, measure-
ment error) provided it is not highly asymmetric (Neuhaus et al. 2011).
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assumption that the random-effect eij = 0). Accounting for measurement error yields
a significant increase in the magnitude of the relationship between neural activity and
choice probability compared to our earlier analysis in Section 4.1. Moreover, the differ-
ence in neural activity yields improved model fit compared to a simple ordinal ranking
of the BOLD activity, again establishing the cardinality of our neural measure.

In both mPFC and Striatum, the standard deviation of the measurement error
σe is estimated to be ∼ 4.7 times σ∆ξ+∆η. Therefore in both specifications, over
95% of the variance in the model is attributed to measurement error. To verify that
measurement error is generating the results observed in Section 4.1, we introduced
measurement error into the simulated data reported in Figure 2.A and repeated the
original analysis. These simulated results now match our empirical findings (Figure
2.C). Because measurement error has the effect of “smearing” the observed once choices
over the range of observed ∆B̄ij , a choice pair in which the distributions of subjective
value are close together (small E[∆vij,t]) – likely resulting in a once outcome – could
yield a large ∆B̄ij because of measurement error. This occurs because the degree of
measurement error has no effect on the number of once choices observed, only on where
they appear on the ∆B̄ij axis. While this degree of measurement error is striking, and
verified by simulation (Figure 2.C), we should note again that this estimate is based
on a misspecification of the random-effect.

4.3 Subject-Specific Analysis

In principle, a subject-specific analysis is useful to consider. Commensurate with exist-
ing data and previous fMRI studies (Logothetis 2003), it is likely that different subjects
have a steeper mapping between the BOLD measurement and neural activity than do
others. The bulk of this difference is typically held to reflect a technical feature of
the interaction between the scanner and the subject: the subject-specific coefficient
describing the coupling of neural activity to the blood flow rate measured by fMRI.
We can capture such heterogeneity by allowing equation 17 to vary by subject s,

Bs,i,m = a+ γsvi,m + µs,i,m (21)

∆B̄s,ij = γs∆v̄s,ij + ∆µ̄s,ij , (22)

The parameter γs is therefore a subject specific relationship between the neural mea-
surement and subjective value. We can estimate γ−1

s through a subject-∆B̄ij interac-
tion term using specification (20) on the full sample, however with only 380 observations
per subject.

Breaking up the sample into so few observations per subject reveals the limits
of discrete choice estimation methods in small samples. For the mPFC, six of the
subjects yield positive and significant estimates of γ−1

s , while six are not significantly
different from zero (Table 5). While under the null hypothesis we should only expect
one significant subject, rather than six, this is still a substantial degree of variance
in the model.23 Results from the Striatum display a similar pattern, though with a
somewhat larger amount of variation. Nine of eleven estimates are positive, though
only two significantly so at the .10 level. In both the mPFC and the Striatum, the

23Monte carlo simulations verify the loss in efficiency due to reducing observations. Simulated choice and
neural data with γ−1

s = 10 and measurement error from section 4.2 leads to ∼5% of the γ−1
s estimates less

than, but not significantly different from, zero (from a total of 1000 simulations).
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AIC is higher than for the pooled estimates, even after correcting for measurement
error. This suggests that a subject-specific estimate of the relationship between neural
activity and choice is limited in small samples, and that pooling data to estimate
this relationship yields improved fit (provided preferences are allowed to vary across
subjects).

5 Application: In-Sample Choice Prediction

The NRUM yields an estimated relationship between neural activity (or other observ-
ables) and choice behaviour. In the analysis that follows, we compare the performance
of three models:

• NRUM: subject specific estimates from (Table 1),

• NRUM w/ m.e. correction: subject specific estimates corrected for measurement
error (Table 5),

• NRUM + observables: corrected subject specific estimates with additional eco-
nomic observables included as regressors: the price of the item (a market-based
method) and its ‘Amazon star’ rating (a stated-preference method).24

The estimates from each of these models yields a fitted choice probability for each
choice pair P̂ij , and these probabilities can be combined with a prediction rule in
order to assess the model’s true predictive performance for any set of neurobiological
observables. Numerous methods have been proposed to evaluate the performance of
discrete choice models and the literature. For instance, to determine whether a cardinal
prediction rule captures stochastic choice behaviour, some method for pooling over
discrete choices is required (after all, we wish to compare a probability to a binary
outcome). The simplest way to achieve this is to average over repeated choices from
the same choice set.25 For this reason, we will examine the results from different
choice prediction rules when repeated choice trials are treated both independently and
jointly. For exposition, we will focus on in-sample prediction rates for measurements
from mPFC.

5.1 Treating each choice trial independently

We first examine in-sample predictive performance in which each trial is treated inde-
pendently, regardless of whether it comes from the same choice set, and consider the
following prediction rules:

24The ‘Amazon star’ rating is the aggregation of user ratings that can be found on the item’s description
on amazon.com. Both of these measurements have the drawback of being population level variables which
represent (to some degree) the aggregation of preference across all consumers, limiting their ability to predict
individual choices. However, both of them were significant predictors. The Amazon rating varied positively
with the choices of our subjects, suggesting some homogeneity in the preferences of New York University
undergrads, while prices varied negatively with choice. One might expect subjects to be choosing high priced
goods (which they receive at no monetary cost in the experiment), but likely reflects the popularity of the
CDs in our choice set, a relatively inexpensive item.

25For another method which pools “locally” over nearby choicesets with similar predicted probabilities
(see Smith et al. (2014)).
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• Bayes Classifier : This is the prediction rule typically reported in statistical soft-
ware. The fitted probabilities P̂ij codes a predicted choice ŷij,t = 1 if P̂ij > 0.5 ∀t,
ŷij,t = 0 otherwise. The prediction is then compared to the observed choice yij,t
and the rate of successful predictions reported. The Bayes Classifier essentially
nullifies the cardinality of the analysis, and magnifies the sign difference of the
neural observable (i.e γ̂−1∆B̄ij > 0⇒ P̂ij > 0.5) yielding a deterministic predic-
tion (i.e. all trials from the same choice pair will have the same prediction).

• Bernoulli Prediction Rate: The predicted probability of the observed outcome
for choice pair ij on trial t is yij,tP̂ij + (1 − yij,t)(1 − P̂ij). Averaging this pre-
dicted probability over all ij and t gives the proportion of successful predictions
if each trial is treated as an independent draw from a Bernoulli distribution with
probability P̂ij .

• Cramer’s λ: Let P̄+ and P̄− denote the average predicted probability on trials
in which yij,t = 1 and yij,t = 0 respectively. Then λ ≡ P̄+ − P̄− ∈ [0, 1] reflects
the ability of the model to discriminate between outcomes, and measures the
proportion of total variation in y that is ‘explained’ (Cramer 1999). A λ = 0
represents the null model predicting at chance, while λ = 1 represents perfect
discrimination.

Results from the prediction rules are presented in Figure 4. The improvement
granted by the correction for measurement error can be seen in the results for Cramer’s
λ. The correction improves the discriminability of the NRUM to 0.16, an improvement
of 0.10. Compared with the prediction rate of 55.7% in Levy et al. (2011), in-sample
prediction rates increase to 57.9% using the NRUM estimates corrected for measure-
ment error. The naive prediction rate for the NRUM estimates is 60.3%, with the
improvement over the Levy et al. (2011) analysis coming from the three subjects with
negative estimates of γ−1.26 This marginal improvement in prediction rates highlights
the limitations of assessing a cardinal model when each choice is treated indepen-
dently.27

Moreover, note that these prediction rates are still lower than those derived from
a model which only includes the price and quality observables (64.5% and 65.4%,
depending on the prediction rule). Combining the neural measurements with these
additional variables increases prediction rates further to 69.6% and 71.0% (depending
on the prediction rule), and significantly improves the discriminability of the model,
suggesting the individually-measured neural activity contains information orthogonal
to the aggregate observables.

5.2 Treating repeated choice trials jointly

To assess the ability of a cardinal model to capture stochastic choice behaviour, we
propose two possible methods for comparing predictive performance when repeated
choice sets are treated jointly.

26In comparison, Smith et al. (2014) report a 61.3% out-of-sample prediction rate, while the rate reported
here is in-sample. This improvement in their choice prediction likely arises from a more sophisticated
aggregation of the BOLD data than used in this study.

27All of these results are robust to reserving half of the sample for estimation, then implementing the
prediction exercise on the holdout sample.
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• Conditional on choice outcome: Let the vector zij ∈ {0, 1, 2} represent whether
item i was chosen never, once, or twice from a choice pair ij. Let N denote the

total number of choice pairs, and α2 =
∑

1zij=2

N the proportion of twice observed
in the dataset, with α1, α0 defined accordingly. The predicted probability of the
observed outcome for choice pair ij is given by P ∗ij ≡ (2 − |zij − 1|)P̂ zijij (1 −
P̂ij)

2−zij . Averaging this predicted probability conditional on the outcome then
gives a measure of how well the model predicts the sample of observed outcomes.

For example,

∑
{ij:zij=2} P

∗
ij

#{ij:zij=2} is the average probability of a correct prediction of

a twice outcome. However this approach ignores the fact that outcomes in the
sample occur in different proportions.28

• Conditional on choice prediction: Consider a predicted choice ẑij ∈ {0, 1, 2}
drawn from the binomial distribution of size 2, with probability of success P̂ij .
A correct prediction of, for example, ẑij = 2, would be observed with probability
P̂ 2
ij for choice pairs on which a twice outcome occurred, and 0 otherwise. Sum-

ming this prediction rate over all choice pairs, and dividing by
∑

ij P̂
2
ij , therefore

“weights” predicted probabilities by the proportion in which the outcomes are
observed in the data. For intuition, consider taking R draws of ẑij . The measure
is equivalent to calculating the number of correct predictions in this simulated
sample, conditional on the prediction being twice, once, or never.

The distinction between the two prediction rules is important, because for our entire
sample, the frequency of never is 46.0%, once is 9.3%, and twice is 44.8%. If each
individual choice were predicted at chance, we would predict never on 1

4 of trials, once
on 1

2 , and twice on 1
4 , and we would be correct on 1

4×46.0+ 1
2×9.3+ 1

4×44.8 = 27.4% of
trials. Therefore the prediction rates arrived at by chance depend on the distribution of
never, once, or twice in the dataset. In such a null model, P̂ij = 1

2 , and the predicted

probability of a twice outcome is P̂ 2
ij = 1

4 . Therefore the prediction rate conditional
on the prediction yields ∑

ij 1zij=2P̂
2
ij∑

ij P̂
2
ij

=
1
4

∑
ij 1zij=2∑
ij

1
4

=
1
4αN∑
ij

1
4

= α,

the proportion of twice outcomes observed in the sample. As the predictive power
of the model improves, this measure approaches 1.

However an ordinal prediction based solely on the ordered BOLD activity, such as
in Levy et al. (2011) predicts an item will be chosen either twice or never, and can
not account for trials in which an item was chosen only once. Since the NRUM uses
the cardinal difference in valuations to modulate the choice probabilities, it can be
combined with the above prediction rules to predict such behaviour.

28For a similar argument in the case of an independent binary choice trial in which the observed outcomes
are not in equal proportion, see Cramer (1999).
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The results from this exercise are reported in Table 4.29 We find that the NRUM
predicts 28.6% of such trials observed in the dataset, compared to 0% for the ordinal
model. Here, again, we see the (often overlooked) effect of measurement error in the
observable. Because our measurement error correction increases the discriminability of
the predicted probabilities, it reduces the number of a once outcomes predicted com-
pared to the uncorrected estimates and the null model. But because the correction
only measures the variance of the measurement error, as opposed to its realization on
any trial, there are still many once outcomes observed in which the predicted prob-
ability P̂ij is near 0 or 1, decreasing the prediction rate of once outcomes from its
upper bound of 50%. This improvement in discriminability, however, does improve the
number of twice and once predictions (45.0% vs. 30.8%), and was also more accurate
conditional on whether an item was predicted to be chosen never or twice from a pair
(56.8% vs. 51.8%, and 56.1% vs. 50.8%).

6 Application: Estimating Demand

One proposed advantage of neuroeconomic methods is a richer datasource on which
to assess the demand for new products (Ariely and Berns 2010). Consider a standard
demand forecasting exercise for a new product i. A researcher sets out to assess the
change in demand for this product from manipulating a characteristic (e.g. quality
or price). Assume that this manipulation increases the underlying valuation of this
product from vi to v′i. Section 4.2 details how the presence of significant error in neural
measurements will bias the estimates of these marginal effects.

To clarify this point, suppose the researcher has access to neural measurements Bi
and B′i to assess this manipulation. In addition, they make a neural measure for a
reference product j, which for the sake of argument we normalize to Bj=0. The true
change in demand, as a function of the neural measurements, is thus Pi(B

′
i) − Pi(Bi)

(Figure 6, solid black line). Note that the change in demand depends on the magnitude
of the measurement. This relation between the magnitude of the marginal effect and
the location of the measurement is a feature of any demand prediction exercise based
on a discrete choice model.

For instance, the NRUM provides a predicted choice probability, P̂i(Bi), as a func-
tion of the neural measure and the estimated marginal effect. Therefore the predicted
change in demand from the manipulation is given by P̂i(B

′
i)−Pi(Bi) (Figure 6, dashed

line). Even a small increase in neural response to the manipulation, B′i, will lead to
higher predicted demand P̂i(B

′
i)− Pi(Bi) > 0.

However the relation between the marginal effect and location of the measurement
is also why measurement error can impact a demand prediction exercise. In a “naive”
model which does not account for measurement error, the predicted probability is
constructed via an estimate γ̂−1 which is biased towards zero. In the absence of a
correction for this error, the predicted demand P̂i(B

′
i) is (weakly) smaller than the true

demand Pi(B
′
i). The magnitude of this gap also depends on the difference between the

neural measures. For some differences in the neural measurement the naive analysis
will underpredict the change in demand from the product manipulation (Bi to B′i).

29For comparison pruposes, we also consider the null model (randomly selecting one item from each choice
pair) and known benchmark model which sets the probability of choosing an item at 1 when it was chosen
twice, 0.5 when it was chosen once, and 0 when it was never chosen from a pair.
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But suppose the researcher further manipulates the product, yielding a larger neural
response B′′i . Now the naive analysis overpredicts the change in demand P̂i(B

′′
i )−P̂i(B′i)

relative to the true change Pi(B
′′
i )−Pi(B′i). Since the correction for measurement error

offered by the NRUM reduces the gap between the true and predicted probabilities, it
yields a predicted change in demand that is closer to the true demand.

Our experimental dataset provides an opportunity to quantify the degree of this
bias. The sample of choice objects contained five 50/50 lottery tickets over different
dollar amounts ($10, $15, $20, $25, and $30 if win, and $0 if lose), so we can analyze
the change in demand as the amount of the winning outcome is increased, relative
to the reference $10 lottery. Since the lottery amounts are monotonically increasing,
subjects with completely transitive preferences should always choose the higher lot-
tery (relative to the $10 reference lottery). Indeed, this is what we find in our data.
Figure 6 also reports the predicted probabilities from the NRUM with and without
the measurement error correction, taken at the average BOLD measurement for each
lottery (across measurement trials and subjects). As expected, the degree of bias due
to measurement error is large. For the baseline Probit model, the predicted change in
demand for the larger lotteries is minimal (2% in mPFC and 5% in Striatum), con-
siderably understating the change in demand for the larger lotteries. By contrast, the
NRUM with measurement error correction is larger (roughly 10% in mPFC and 20%
in Striatum).

This example illustrates a fundamental issue with predicting discrete choice out-
comes in the presence of measurement error. Given the degree of measurement error
we find in our neural measurement, it is paramount that prediction exercise account for
this bias in the estimated relationship between neural activity and choice behaviour.
At the very least, the bias correction proposed in Section 4.2 should be considered in
future prediction exercises.

7 Normative Implications: Distribution of Sub-

jective Value

The general formulation of a RUM places no a priori restriction on the distribution
of utilities (Becker et al. 1963). In this version of the NRUM, we have attempted to
formulate subjective value as generally as possible so that it might encompass the two
predominant views about stochastic choice in the economics literature.

The NRUM is general enough to allow for a random preference interpretation since
no restriction is placed on the distribution of vt, particularly its within-item covari-
ances. Therefore the stochastic valuations of each alternative can be correlated in
accordance with the requirements of a particular random preference formulation. Of
course, it is also possible to impose independence directly on vt, yielding a model in
which the stochastic valuation of each alternative is processed independently. Since
the NRUM renders the covariance matrix of vt empirically observable, it is possible
to differentiate between these views with an appropriate dataset. In this study, since
the subjective values of items were measured independently, in isolation, and on dif-
ferent trials; we can safely assume that vi,m and vj,n are independent over different
measurement trials m and n.30

30In an alternative dataset in which the subjective values of both items were measured simultaneously
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Even after allowing for a random preference specification for subjective value, how-
ever, the NRUM still incorporates a Fechnerian stochastic element, modelled via the
additive random vector ηt. This error term arises from stochasticity in the choice
process downstream from valuation regions. The distinction between these two neural
sources of stochasticity has critical normative implications. If σ∆η = 0, then all choice
stochasticity is due to variation in subjective value and choice can be defined as op-
timal (in the traditional economic sense) because choosers then act to maximize their
realized, albeit stochastic, subjective values. However, if σ∆η > 0, then some choices
can be classified as errors arising in the neural implementation of the maximization
operation and the execution of the choice behaviour. Thus the relative sizes of σ∆ξ

and σ∆η reflect the degree to which stochasticity in choice can be strictly viewed as
welfare decreasing in a given neural dataset. Evidence from perceptual neuroscience
(in which there is an objectively “correct” answer) identifies that most of the variance
in choice stochasticity can be attributed to brain areas encoding stimulus value, sug-
gesting less than 10% of choice stochasticity can be attributed to downstream neural
circuitry which implements the choice (Michelson et al. 2013, Drugowitsch et al. 2016).

We should note that in all likelihood, ξ and η are the product of realizations at
multiple points in the human nervous system. While we are unable to fully differentiate
between these two sources of variance in this specific study because we do not make
independent measurements at multiple stages along the pathways that represent sub-
jective value, we observe stochastic choice behaviour that has features of an additive
random utility specification: a larger difference in subjective value makes an item more
likely to be chosen. Our own conviction, which stems from an amalgamation of the eco-
nomic and neurobiological literature, is that a model which incorporates both classes of
stochasticity will most closely approximate the structure of human choice behaviour.
We note that anchoring our model to this conviction effectively posits a distinction
between the fraction of choice stochasticity that can be attributed to stochasticity in
preference and the fraction that can be attributed to errors induced by the choice
mechanism. This distinction has clear welfare implications that would necessarily be
of interest as more is learned about these sources of stochasticity in choice behaviour
(Bernheim 2009).

8 Conclusion

In this article, we have proposed a cardinal econometric framework, the Neural Ran-
dom Utility Model, for relating neural observables to stochastic choice behaviour. The
NRUM specifies the sources of stochasticity present in a measurement of neural activ-
ity, incorporating both the Random Preference and Fechnerian approach to modelling
stochastic choice behaviour, and examines how these sources interact within an exper-
imental paradigm for the purposes of choice prediction.

A concrete example of subjects choosing over consumer items was developed in
detail. We find that neural activity, measured in isolation, predicts subsequent choice
behaviour as has been previously argued, and that the magnitude of the difference in
neural activity is positively correlated with the degree of stochasticity in choice (mea-

(i.e. m = n), this assumption would not be feasible, thus random preferences should be accounted for in the
modelling. Examples of such studies include Chib et al. (2009) and Levy and Glimcher (2011).
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sured via the number of preference switches in repeated trials). These results establish
that neural measurements carry cardinal information relevant for choice prediction.

However, we also find that measurement error limits the effectiveness of the neu-
ral observables far more than has been acknowledged in the literature. Econometric
techniques available to the NRUM framework mitigate some of the impact of mea-
surement error – yielding less-biased model estimates – provided that the experiment
consists of repeated choice trials from the same choice sets. To assess the predictive
performance of these measurements, we examined previously proposed prediction rules
for choice trials treated independently, and propose new prediction rules appropriate
for repeated choice trials from the same choice set. When choice trials are treated in-
dependently, the NRUM yields marginal improvements in choice prediction, primarily
due to the correction for measurement error. However when repeated choice trials are
treated jointly, the cardinality of the NRUM allows the model to better capture the
distribution of choice outcomes compared to an ordinal model.

The measurement error correction we explore in this article utilizes a convenient
property of the Levy et al. (2011) dataset, namely that each choice was repeated
twice. This allows measurement error to be modelled as a random-effect which holds
constant over repeated choices. Apart from the improvement in model estimates, this
approach has the added benefit of providing identification of the standard deviation
of the measurement error. However there are limitations to this method. Since the
measurement error is correlated over trials, the random-effect is misspecified and the
measurement error estimate will be biased positively. For this reason, the estimate
σ̂e provided here should be considered an upper-bound, though we do confirm via
simulation that a considerable degree of measurement error is needed to match features
of the observed data. In principle, unbiased estimates should be feasible provided that
the correct structure of the random effect is specified. This would require devising an
estimator which relaxes the independence assumption used here.31

Even after the measurement error correction, choice prediction performance barely
matches two standard aggregate observables, the price and quality ratings of the items.
Combining neural measurements and standard observables further improves choice
prediction, suggesting that the neural observables provide subject-specific information.
Of course, this improvement comes at a high implementation cost for brain-scanning
technology (roughly $50,000 for Levy and colleagues to produce this dataset), limiting
the prevalence and usefulness of current neural measurements.

Our approach to modelling choice prediction from neural observables thus offers
four contributions to the literature. It establishes that neural measurements do carry
cardinal information about the relative values of alternatives. It establishes the positive
performance of neural measurements using fMRI technology, and defines clearly the
benchmarking process that will be required for future measurement techniques. It offers
a general framework for combined economic-neurobiological modelling from which both
richer, more restrictive specifications can be developed. And finally, it lays out the basic
welfare structure inherent in a neurobiological decision model.

31In addition, simulation-based techniques for an unbiased estimate exist in the bio-statistics literature
(Carroll et al. 2006, Chapter 5). Our simulation results (Figure 2) suggest σe is too large by roughly a factor
of 2 for them to be applicable, but may soon become practical as technology improves.
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mPFC (n=4560)

Coefficient
Probit Probit w/ m.e. correction

No Constant Constant No Constant Constant

γ−1 0.24 0.24 1.16 1.16
(0.10) (0.10) (0.52) (0.51)

c -0.01 -0.06
(0.08) (0.37)

σe
4.73 4.73

(0.37) (0.37)
LL -3140.46 -3140.22 -2272.22 -2272.09
BIC 6290 6297 4561 4570

Striatum (n=4180)

Coefficient
Probit Probit w/ m.e. correction

No Constant Constant No Constant Constant

γ−1 0.69 0.69 3.32 3.32
(0.17) (0.17) (0.83) (0.85)

c -0.01 -0.02
(0.08) (0.38)

σe
4.67 4.67

(0.40) (0.40)
LL -2841.03 -2840.98 -2063.05 -2063.04
BIC 5690 5699 4143 4151

OCC (n=4560)

Coefficient
Probit Probit w/ m.e. correction

No Constant Constant No Constant Constant

γ−1 0.05 0.05 0.25 0.25
(0.08) (0.08) (0.36) (0.36)

c -0.01 -0.06
(0.08) (0.37)

σe
4.76 4.76

(0.37) (0.37)
LL -3159.22 -3158.96 -2282.65 -2282.50
BIC 6327 6335 4582 4590

Table 1: NRUM estimates with and without a correction for measurement error. Clustered
standard errors are in brackets.
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cipital cortex prediction levels were around chance level for all
activation rank distances. The difference between the areas can be
clearly seen when all choices are pooled together (supplemental
Fig. 4, available at www.jneurosci.org as supplemental material).
The overall prediction rate using activation from the MPFC was
56 ! 3% (SEM across subjects), and a similar percentage of cor-
rect predictions was achieved using activation from the striatum
(55 ! 2%) and combining the MPFC and the striatal activation
(56 ! 3%). These percentages were significantly different from
chance in the striatum and in the combined ROI ( p " 0.05,
1-tailed t test) and close to significance in the MPFC ( p # 0.07),
while the percentage of correct predictions based on occipital
activation was not different from chance (50 ! 3%, p # 0.5).

Several factors could lead to a discrepancy between how much
subjects valued a certain item compared to other items and
whether they chose the same item over those other items. For
example, subjects may have already owned some of the items,
which might be interpreted to mean that they valued them highly,
but would never choose them in the choice task. Similarly, other

items might have been completely unfamiliar to subjects, in
which case ambiguity about the goods might also make an anal-
ysis of value in the absence of choice problematic. To assess these
complicating factors, at the end of the experiment we asked sub-
jects to indicate for each item whether they owned it and whether
they had heard of it before the experiment. We then recalculated
the percentages of correct predictions, limiting our predictions to
choices between items that were familiar to subjects but not
owned by them (supplemental Fig. 4, available at www.jneurosci.
org as supplemental material). This had the effect of increasing
the accuracy of our predictions slightly (MPFC: 57 ! 3%; stria-
tum: 58 ! 3%; combined: 57 ! 3%, p " 0.05 for all ROIs). The
percentage of correct predictions based on occipital activation,
however, remained at chance level under these conditions (51 !
3%, p # 0.4).

One final confounding factor we explored was the possibility
that the correct predictions we made were driven mainly by the
lotteries, whose ranking might be assumed to be identical across
subjects. We therefore recalculated the predictions excluding
pairs in which both items were lotteries. The prediction accuracy
was almost identical to the original accuracy (supplemental Fig.
4, available at www.jneurosci.org as supplemental material).

Discussion
Using fMRI we show here that in the absence of active choice (the
kind that neoclassical economics posits is the only marker for
utility) the activity of two brain areas previously associated with
value representations, the MPFC and the striatum, can be used to
predict later consumer choices in individual subjects. This is a
finding which explicitly lies outside the domain of traditional
economic approaches, but which nonetheless can be related to
utility through choice.

Neural activations in predefined brain areas were measured
while subjects viewed 20 different goods inside the scanner. Im-
portantly, subjects did not make active choices during either the
functional localizer or the goods task, nor did they know that they
would later be asked to make such choices. The sampled activa-
tions were then used to construct an ordinal neural ranking of the
20 items. Subjects were next removed from the scanner and asked
to make all possible pairwise choices among the same goods.
These choices were used to create an ordinal choice preference
ranking of the 20 items. These two sets of rankings, the neural
ranking and the behavioral ranking, were significantly correlated
in our subjects. Moreover, using the neural ranking to predict
each pairwise choice for each subject we found that prediction
accuracy increased as a function of the neural rank distance be-
tween the objects in the pair, peaking at above 80% correct for the
greatest neural rank distance. Finally, the effect was specific to
value-related areas: activation measured from a region in occip-
ital cortex could not be used to predict choice. These results imply
that the same “subjective values” (Glimcher, 2009) that can be
deduced from choices are also generated in the absence of choice,
at least at the level of the BOLD signal, by the same neural mech-
anisms that are active during choice.

Value-related areas
Converging evidence suggests that the striatum and MPFC are
part of a general valuation system that represents value under
many different conditions. Activity in the striatum is correlated
with the magnitude of unexpected rewards and punishments
(Delgado et al., 2000; Kuhnen and Knutson, 2005), as well as with
the amount (Breiter et al., 2001; Knutson et al., 2001a, 2003), the
probability (Hsu et al., 2009), the expected value (Hsu et al., 2005;

Figure 5. Choice predictions based on activation from the predefined ROIs. Items were
ranked according to the amplitude of the BOLD response they gave rise to, and percentages of
correct predictions were calculated separately for each ordinal distance. Error bars, binomial
SEM across all choices.
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Figure 1: Choice prediction results (across subjects) from ordinal analysis of mPFC activity
(Levy et al. 2011). BOLD activity for each item was ranked (within subject). Choice sets
with an ordinal distance of 19 consist of the two items with the highest and lowest BOLD
measurement, while choice sets with an ordinal distance of 1 consist of items that are adjacent
in the ranking.

mPFC (n=2280)
Estimate p-value

constant .103 0.00
|∆B̄ij| -.031 0.01

Striatum (n=2090)
Estimate p-value

constant .102 0.00
|∆B̄ij| -.040 0.09

OCC (n=2280)
Estimate p-value

constant .087 0.00
|∆B̄ij| .013 0.50

Table 2: Estimates of random-effects GLS of stochastic choice indicator on difference in
BOLD activity, as in Agranov and Ortoleva (2017). The random-effect and clustered stan-
dard errors are implemented at the subject level.
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Figure 2: Analysis of (A) a simulated NRUM, (B) the mPFC activity from the experimental
dataset, and (C) a simulated NRUM w/ measurement error. Left Panes: The fit of the
Probit model from (19), assuming no measurement error (i.e. ∆B̄i = γE[∆vij,t]). Right
Panes: Fit of an Ordered Probit model for the probability of observing the ith item in an ij
pair chosen twice, once, and never. The NRUM was simulated with γ−1 = 10, σ∆ξ+∆η = 1,
and σe = 0 or σe = 5 (A or C, respectively).
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mPFC (n = 4560)
Coeff Est. Std. Err. P-Val Coeff Est. Std. Err. P-Val

c1 0.03 1.14 0.98 γ−1
1 -1.17 1.07 0.27

c2 -0.15 1.25 0.91 γ−1
2 0.66 2.89 0.82

c3 -0.07 1.27 0.95 γ−1
3 -3.25 2.36 0.17

c4 -0.34 1.17 0.77 γ−1
4 10.14 2.90 0.00

c5 0.08 1.22 0.95 γ−1
5 1.39 0.57 0.02

c6 -0.07 1.22 0.95 γ−1
6 -3.23 2.50 0.20

c7 -0.14 1.30 0.91 γ−1
7 2.78 3.30 0.40

c8 0.41 1.22 0.73 γ−1
8 10.39 3.53 0.00

c9 -0.18 1.18 0.88 γ−1
9 4.98 2.38 0.04

c10 0.69 1.24 0.58 γ−1
10 5.01 1.39 0.00

c11 0.07 1.23 0.95 γ−1
11 2.61 3.18 0.41

c12 -0.44 1.14 0.70 γ−1
12 13.04 3.80 0.00

σe 4.53 0.38
LL = -2197.56, AIC = 4605

Striatum (n = 4180)
Coeff Est. Std. Err. P-Val Coeff Est. Std. Err. P-Val

c1 -0.05 1.21 0.97 γ−1
1 1.23 2.23 0.58

c2 -0.20 1.32 0.88 γ−1
2 5.66 4.67 0.23

c3 0.07 1.31 0.96 γ−1
3 2.88 5.26 0.58

c4 0.06 1.27 0.96 γ−1
4 9.44 4.59 0.04

c5 0.45 1.33 0.74 γ−1
5 4.53 1.47 0.00

No Striatal Data for Subject 6
c7 -0.08 1.34 0.95 γ−1

7 3.55 1.82 0.05
c8 0.01 1.30 0.99 γ−1

8 -4.60 5.44 0.40
c9 -0.01 1.15 0.99 γ−1

9 5.43 3.65 0.14
c10 -0.00 1.28 1.00 γ−1

10 3.24 1.90 0.09
c11 0.03 1.27 0.98 γ−1

11 -0.19 3.10 0.95
c12 -0.12 1.16 0.92 γ−1

12 3.52 4.02 0.38
σe 4.60 0.48

LL = -2046.42, AIC = 4301

Table 3: Subject-specific estimates from the NRUM (after correcting for measurement error).
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Figure 3: The probability of choosing an item depends on the difference in mPFC activity
between items. The fitted probabilities are generated using a standard Probit estimate
for γ−1, an estimate for γ−1 corrected for measurement error (assuming the random-effect
is zero), and a standard Probit estimate of choice on the ordinal difference in the BOLD
ranking. The shaded areas depict the fitted probabilities derived from the 95% confidence
intervals of the estimates.

Prediction Rate (%)
Conditional on prediction Conditional on choice outcome

Avg Never Once Twice Never Once Twice

null 27.4 46.0 9.3 44.8 25 50 25

Levy et al. (2011) 51.1 51.2 - 50.5 56.3 0 56.2
NRUM 31.6 51.8 9.3 50.8 30.8 47.0 29.7

NRUM w/ m.e. correction 42.8 56.8 9.3 56.2 45.0 28.6 43.2
NRUM + observables 59.5 72.4 11.5 64.8 64.7 20.0 62.2

known 95.2 100 95.1 100 50 100

Table 4: Comparison of choice prediction results for repeated choice trials.
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Figure 5: Effect of measurement error on product demand prediction.
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win and loss outcome trials (n ! 12, p " 0.05, FDR corrected)
revealed significant activation in the MPFC, the striatum, and the
posterior cingulate cortex (PCC) (Fig. 1, bottom). In single sub-
jects (Fig. 2) the most consistent results of the same contrast were

found in the MPFC (n ! 12, p " 0.05,
uncorrected, spatial extent # 100 mm 3)
and the striatum (n ! 11, p " 0.05) and
we therefore focused on these areas in
subsequent stages of the analysis. Note
that our localizer task was specifically de-
signed to not distinguish between out-
come values and reward prediction errors;
these two quantities are perfectly corre-
lated on each trial in our design. There-
fore, some of the observed activation
could have been specific to RPE rather
than to value per se. We use the term
“value-related areas” here in the broadest
sense, to include any area whose activa-
tion is higher for higher values. Impor-
tantly, the location of the activation foci
(MPFC, mean Talairach coordinates: x,
0 $ 3; y, 48 $ 10; z, 20 $ 9, mean volume:
2000 $ 1200 mm 3, striatum, mean Ta-
lairach coordinates: x, 1 $ 10; y, 7 $ 4; z,
8 $ 7, mean volume: 900 $ 1000 mm 3)
was similar to that reported in previous
studies in our lab for subjective value in
the context of choice (Kable and Glim-
cher, 2007; Levy et al., 2010).

Viewing of goods in the scanner in the
absence of choice
Subjects viewed images of 20 different
goods (CDs, DVDs, books, posters, sta-
tionary items, and 5 monetary lotteries)
in the scanner (Fig. 3a). Each item was
viewed 12 times. To maintain subject
alertness, on a few random trials (one rep-
etition of each item) they were asked to
choose between the presented item and an
unpredictable amount of money. One of
these trials was randomly selected at the
end of the experiment and subjects re-
ceived their choice on that trial. Those few
within-scanner question trials were ex-
cluded from further analysis. Subjects
were not told that they would later per-
form a choice task outside of the scanner.

Choices outside the scanner
Following removal from the scanner sub-
jects were asked to perform a choice task,
in which each item they had seen in the
scanner was paired with all other items,
and each pair was repeated twice. At the
end of the experiment one trial from the
choice task was also randomly selected
and subjects were given the item they had
chosen on that trial. Subjects were mostly
consistent in their choices, making the
same choice in repetitions of the same pair
(90 $ 1% SD), and largely maintaining

transitivity (96 $ 2% transitive triplets, i.e., triplets in which if
item A was preferred to item B and item B was preferred to item
C, item A was also preferred to item C). To verify that the random
amounts of money used in the question trials in the scanner did

Figure 2. Localization of value-related areas with a functional localizer task in three example subjects (S1, S2, S3). Areas in the
MPFC and the striatum that were significantly more active for wins than for losses in the functional localizer task were used as ROIs
in the main experiment.

Figure 3. Experimental design for the goods task. a, Passive viewing of items in the scanner (top). To maintain subjects’ alertness, on a few
random trials they were asked to choose between the item and a varied sum of money (bottom). These trials were not included in the analysis. b,
Outsideofthescanner,subjectswereaskedtomakepairwisechoicesbetweenthesameitemsthatwerepresentedtotheminthescanner.

Levy et al. • Value-Related Activation in the Absence of Choice J. Neurosci., January 5, 2011 • 31(1):118 –125 • 121

Figure 6: Region-of-interest localizations for subjects 1, 2, and 3. Activity from these regions
were used to define Bs,i,m.

Subject mPFC Striatum

1 1985 1258
2 2019 1111
3 370 138
4 130 346
5 1953 415
6 2640 -
7 3040 168
8 1340 410
9 3272 971
10 3262 432
11 3611 604
12 600 284

Table 5: Number of voxels in each ROI.
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9 Appendix

9.1 The Levy et al. (2011) Experiment

The laboratory experiment was divided into three stages. The first two stages were
performed inside an MRI scanner. In the first stage, subjects passively viewed the
outcome of a series of small lotteries over changes to their wealth. The purpose of
this stage was to identify the areas of the brain which encoded the subject’s subjective
values, vi,t. In the second stage, subjects passively viewed 20 consumer items while
intermittently performing an incentivized task so as to maintain subject engagement.
The purpose of this stage was to repeatedly measure the subjective values of these
items. Immediately after the second stage, subjects performed a third stage outside of
the scanner in which they made all possible binary choices over this set of items in an
incentive compatible fashion. Before leaving the subject also received a $25 show-up
fee in cash.
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9.1.1 Localization of Subjective Value in Medial Prefrontal Cortex

The first stage of the experiment was designed to identify an area in the brain of
each subject which encodes subjective value. For brain measurements, we employed
functional MRI (fMRI) using standard techniques (as in Caplin et al. 2010, Levy et al.
2011). These techniques indirectly measure brain activity over a 2 second interval in
each of about 250,000 3mm×3mm×3mm cubes (voxels) tiling the human brain. The
product of this process is thus a time-series, in 2 second increments, of activation levels
in each voxel.

The measure of activation is derived from the paramagnetic properties of the
hemoglobin molecule and is known as the Blood-Oxygenation Level Dependent (BOLD)
signal. This measurement has been demonstrated to be strictly monotonic in the av-
erage of the neural activity within the voxel, and most studies indicate that BOLD
approximates a linear transformation of neural activity (Logothetis et al. 1999, 2001,
Kahn et al. 2011).

A statistical challenge arises from the sheer number of time-series fMRI generates
imposed by determining which voxels/timeseries to study (Vul et al. 2009). This study
restricted analysis to regions of the brain known to encode subjective value-like signals,
the medial prefrontal cortex (MPFC) and Striatum.32 An initial experiment aimed
at independently ‘localizing’ subjective value encoding voxels within the mPFC and
Striatum, with the intention of conducting the analysis of the main experiment upon
a time-series derived by averaging over these localized voxels.

In this initial stage of the experiment each subject was endowed with $40. On
ensuing trials a lottery with equal probability of gaining or losing $2 was presented
visually to the subject in the scanner. The outcome of the lottery was then revealed
to the subject and the result was added to or deducted from the subject’s wealth. In
total, 128 trials of this kind were presented.33 For each mPFC voxel, the difference in
average activity between winning and losing was calculated. For each subject, voxels
which showed a statistically significant difference were identified as our region of interest
for encoding subjective valuation.

9.1.2 Recording the Subjective Value of Items

Immediately following the first stage, subjects completed a second stage in the scanner
intended to measure the subjective values of 20 consumer items. Subjects completed
six 7-minute brain scans over the course of 45 minutes, each consisting of 40 trials, for
a total of 240 trials. In each of these trials, subjects passively viewed an image of one
of 20 different items, including four DVD movies, two books, four art posters, three
music CDs, two pieces of stationery, and five monetary lotteries represented by pie
charts. Each lottery offered a 50% chance of receiving a designated amount of money
($10, $15, $20, $25, $30) and a 50% chance of receiving $0. All items were presented 12
times in a random order to each subject. Subjects were instructed that when they saw
an item they should think about how much it was worth to them in a dollar amount.

To keep subjects alert, on 20 randomly selected trials (one for each of the 20 items),
subjects were asked whether they preferred the item they had just seen or a randomly

32For reviews relating mPFC and Striatal activity to subjective value see (Levy and Glimcher 2012, Bartra
et al. 2013, Clithero and Rangel 2013)

33This task is a non-choice version of the task previously developed in Caplin et al. (2010).
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selected amount of money (ranging from $1 to $10). Subjects were told that one of
these question trials would be randomly realized at the end and they would receive
their selection on that trial - the item or the money. These 20 question trials were
excluded from all behavioural and neural analysis. During the scanning stage, subjects
did not know they would subsequently be offered an opportunity to choose between
these same items after the scanning process was complete.

9.1.3 Choice Task

Following the second scanning stage, subjects were asked to perform a choice task out-
side of the scanner. Subjects were presented with a complete series of binary choices
between the 20 items previously presented in the scanner. Each possible binary com-
parison (190 choices) was presented twice (switching the left-right location on each
repetition), in random order, for a total of 380 choices. The result of one of these
choices was randomly selected for realization.

The choices of subjects were largely consistent, with 96 ± 2% of triplets transitive
and subjects switching their selection in only 9±1% of choice repetitions. Choices were
also highly idiosyncratic across subjects such that the individual preferences of a given
subject could not be predicted from preferences exhibited by other subjects (mean
correlation of ranking between pairs of subjects, excluding lotteries: r = 0.1± 0.3).34

9.2 Comparison with Standard Latent Variable Modelling

The NRUM decomposes the uncertainty present in the standard RUM into biophysi-
cally distinct sources, yielding the observable variable v on which to base choice predic-
tion. This allows us to investigate, as a benchmark for our measurement, the potential
benefit of using neural data to predict choices compared to a dataset of only standard
economic observables. In particular, we focus on specification error in the standard
approach due to the modeller’s inability to observe all the attributes (of alternatives
and decision makers) that make up utility (Manski 1977).

To cement ideas, suppose on a given trial the econometrician only observes a par-
tition, Xi,t ∈ Rk, of the full vector of attributes, Zi,t ∈ Rl, which make up subjective
value (or utility) for item i (i.e. k < l). In the standard formulation of the RUM,
this partitioning matters since the econometrician does not observe the utility of item
i, instead the latent variable ui,t must be indirectly specified. The components of
subjective value that are observed, Xi,t, are related to this latent variable as a linear
combination, Xi,tβ, while the components of ui,t that are unobserved are bundled in
to an error term εi,t.

Given our NRUM, we can decompose εi,t into three sources. For the sake of this
argument, we follow the standard approach and assume that subjective value is related
to the arguments Z or X through the linear function V (Xi,t;β) = Xi,tβ + ξi,t.

35 The

34We also verified that the random amounts of money used in the question trials in the scanner did not
bias subjects’ choices outside of the scanner.

35In practice, this function must be non-linear because the neural activity which encodes v is bounded
above and below. Additionally, there is evidence that V () takes the entire vector X as its argument, yielding
subjective values which depend on the composition of the choice set (Louie et al. 2011, Webb et al. 2016).
Both of these issues result in misspecification error if unaccounted for. While the first issue can be easily
dealt with in a standard RUM, the second requires careful attention (Webb et al. 2016). Regardless, both
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difference between the full specification V (Zi,t;β) and the partitioned specification
V (Xi,t;β), which we will refer to as specification error, is denoted ωi,t. Together with
the stochasticity in subjective value and the choice mechanism, this yields a decision
variable in which εi,t ≡ ξi,t+ωi,t+ηi,t bundles together the three sources of uncertainty
in our NRUM as follows:

vi,t = V (Zi,t, β)

vi,t = V (Xi,t, β) + ωi,t

vi,t + ηi,t = Xi,tβ + ξi,t + ωi,t + ηi,t

ui,t = Xi,tβ + ξi,t + ωi,t + ηi,t.

As before, we can derive choice probabilities after imposing normality assumptions to
arrive at the familiar textbook specification of the Probit model,

P (yij,t = 1 | Xij,t) = P (Xi,tβ + ∆ωij,t > ∆ξji,t + ∆ηji,t) (23)

= P (Xij,tβ > ∆εij,t)

= Φ

(
Xij,tβ

σ∆ε

)
, (24)

where the variable ∆εij,t aggregates all of the differenced error terms and σ2
∆ε = σ2

∆ω +
σ2

∆ξ+∆η.
An obvious implication is that the latent variable model with non-zero specification

error (24) will have the worst predictive power relative to the two neural specifications
(11) and (13) since σ2

∆η ≤ σ2
∆ξ+∆η < σ2

∆ε. The latent variable formulation introduces
error into the specification due to an inability of the modeller to fully explain subjective
value with observables in the dataset (Manski 1977). Observing a neural measure of
subjective value removes this source of error, provided we can obtain a suitable neural
measurement.

of these issues disappear if v is observed directly.
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