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Abstract 
 

 

Antibody-based products have become the main drug class of approved 

biopharmaceuticals, with over 60 drugs on the market and many more in clinical 

development. However, many never reach the market because protein aggregates form 

during manufacturing and storage, which lower the efficacy of the product and may cause 

immune responses in patients. To date, very little is known about the structural 

conformers that initiate aggregation. Stability of the humanized fragment antigen-binding 

(Fab) A33 was first studied using molecular dynamic (MD) simulations under two 

stresses, low pH and high temperature. Results revealed different unfolding pathways, 

with CL domain partially unfolding at low pH, and CL and VH at high temperature. These 

conformational changes exposed different predicted aggregation-prone regions (APR), to 

suggest different aggregation mechanisms. Further salt bridge analysis provided insights 

into the ionizable residues likely to get protonated first. Mutational study with FoldX and 

Rosetta predicted that the constant domain interface can be stabilized further, backed by 

packing density calculations. To experimentally characterize the aggregation-prone 

conformers, solution structures of Fab A33 under different conditions of pH and salt 

concentration, were solved using small angle X-ray scattering (SAXS). SAXS revealed 

an expanded conformation at pH 5.5 and below, with an Rg increase of 2.2% to 4.1%, that 

correlated with accelerated aggregation. Scattering data were fitted using 45,000 

structures obtained from the atomistic MD simulations under the same conditions, to 

locate the conformational change at low pH to the CL domain. The approach was then 

validated using intra-molecular single-molecule FRET with a dual-labelled Fab as an 

orthogonal detection method. The conformational changes were found to expose a 

predicted APR, which forms a mechanistic basis for subsequent aggregation. Overall, 

these findings provide a means by which aggregation-prone conformers can be 

determined experimentally, and thus potentially used to guide protein engineering, or 

ligand binding strategies, with the aim of stabilizing the protein against aggregation.  
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Impact Statement 
 

 

The work performed in this PhD thesis falls under the umbrella of stabilization of 

therapeutic antibody products and characterization of protein aggregation mechanisms. 

The methodologies and results found here, could be of interest and applicability to both, 

academic and industrial sectors. To understand the impact of this work, we need to put it 

into context. Currently, antibody-based products are the most rapidly growing class of 

pharmaceuticals, because of their high specificity towards their targets (e.g. biomarkers 

on the surface of cancer cells). Unfortunately, they tend to aggregate during all stages of 

product development, which leads to decreased efficiency and could elicit an 

immunological response. Methods for improving the stability of therapeutic antibodies 

are generally done during the development phase, by trial and error of the composition of 

the formulated product, which are both costly and time consuming. There is great demand 

and potential for identifying the drivers of instability across different stress conditions, 

early in the discovery phase, which will enable the rational engineering of protein 

scaffolds that are inherently manufacturable. In this context, the first section of this thesis 

elucidated the stability-limiting regions of the antibody fragment Fab A33 using several 

computational tools: atomistic molecular dynamics simulations, in-silico mutational 

analysis by FoldX and Rosetta, predictors of aggregation-prone regions, packing density 

calculators and analysis of existing Fab sequences. My results identified mutations to 

those regions that have the potential to stabilize Fab fragments to both thermal and pH-

stresses simultaneously. The methodology used here, could greatly improve the 

developability screening of candidate antibody products for many diseases, such as 

cancer, chronic inflammatory diseases, infectious diseases, and cardiovascular medicine. 

These research findings are currently in preparation for submission to the journal PLOS 

Computational Biology. 

 

The second major research finding in this PhD thesis provided molecular-level 

insights into the early stages of the aggregation mechanism of Fab A33. Small-angle X-

ray scattering revealed that the aggregation of Fab A33 correlated with a slight expansion 

of native state upon acidification. Little is known about the structures of native 

conformers that initiate aggregation. Here, I used SAXS analysis at the very limits of its 

capability, by fitting the data to full molecular dynamics simulations under the same 
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conditions, to obtain atomistic structural information. This revealed the regions of the Fab 

undergoing conformational fluctuations. Additionally, I used single-molecule FRET on 

dual-labelled Fabs as an orthogonal detection method, to confirm the displacement of 

local regions in Fab under low pH. Finally, the conformational changes were found to 

expose a predicted aggregation-prone region (APR) as a likely aggregation mechanism. 

This research highlights the promise of SAXS combined with molecular dynamics 

simulations to resolve aggregation-prone conformers within native ensembles, 

particularly for large proteins that are less accessible by NMR. The findings also confirm 

the importance of combining predictors of aggregating-regions with structural changes in 

the protein, and adds further evidence to the importance of local unfolded states in the 

aggregation mechanisms of globular proteins. This work was published in the Journal of 

Molecular Biology (2019). In a more general picture, protein aggregation also plays a 

central role in human diseases such as Alzheimer’s and Parkinson’s diseases. Thus, an 

understanding of the aggregation-prone conformers and regions involved in protein 

aggregation is of importance both for stabilizing protein therapeutics and for devising 

strategies to prevent in vivo aggregation, either via protein engineering or formulation, or 

for the design of drugs that bind to and stabilize proteins against aggregation.



vi 
 

Publications 
 
 
 
Codina, N., Hilton D., Zhang C., Chakroun N., Ahmad S. S., Perkins S. J., and Dalby P. 

A. (2019) An expanded conformation of an antibody Fab region by X-ray 

scattering, molecular dynamics, and smFRET identifies an aggregation 

mechanism. Journal of Molecular Biology, https://doi.org/10.1016/j. 

 

Codina, N., Zhang C., Chakroun N., and Dalby P. A. (2019) Insights into the stability of 

a therapeutic antibody Fab fragment by molecular dynamics and its stabilization 

by computational design. [In preparation for submission to PLOS Computational 

Biology]. 

 
 
 
 

Presentations and abstracts 
 
 
Codina, N., Hilton D., Zhang C., Perkins S. J., and Dalby P. A. Elucidation of an 

expanded aggregation-prone conformation of Fab using SAXS, MD simulations 

and smFRET. 32nd Annual Symposium of The Protein Society. 9-12th July 2018, 

Boston, Massachusetts. (Poster). Winner of travel award. 

 

Codina, N., Perkins S. J., and Dalby P. A. Elucidation of an expanded aggregation-prone 

conformation of Fab using SAXS, MD simulations and smFRET. Royal Society 

of Chemistry Protein and Peptide Subject Group Early Stage Researcher Meeting. 

20th July 2018, Southampton, United Kingdom. (Oral) 

 

Codina, N., Hilton D., Zhang C., Chakroun N., Perkins S. J., and Dalby P. A. Insights 

into the stability and mechanism of unfolding of a therapeutic fragment antibody 

by SAXS and MD simulations. PEGS Europe: Protein & Antibody Engineering 

Summit. 12-16th November 2018, Lisbon, Portugal. (Poster). 

 

 

 



vii 
 

Acknowledgements 
 

 

Firstly, I would like to thank my PhD supervisor, Prof Paul Dalby, for his guidance 

and support during my studies at UCL. I am very grateful for his mentoring, his 

approachability, his vast knowledge, and his encouragement and motivation during all 

the projects undergone in this thesis. I also want to thank our collaborator, Prof Steve 

Perkins, for his detailed guidance in technical aspects, such as data analysis, and in 

preparing scientific manuscripts. Looking back, I feel privileged to have had the 

opportunity to work with both of them, (I will miss them), and I take many great lessons 

on performing scientific research with me. 

 

My time at UCL has been greatly formative. I felt very welcome at both 

departments I worked at, the department of Biochemical Engineering and the department 

of Structural and Molecular Biology, where I met many motivated and inspirational 

researchers. I would like to thank Dr Cheng Zhang, for his mentoring in protein 

expression and purification and computational tools, including molecular dynamics. I also 

want to thank Dr David Hilton and Dr Nesrine Chakroun for laying the basis where my 

worked followed. I also want to thank Valentina Spiteri for helping me get started in X-

ray scattering and many insightful discussions. I extend the gratitude to all my labmates, 

including Dr Samir Aoudjane, Dr Haoran Yu, Dr Weiluo Lee, Henry Wilkinson, and Gar 

Kay-Hu. Their camaraderie and friendship made my PhD experience very enjoyable, and 

I cherish the time spent together with them. 

 

I would like to thank my thesis committee, Dr Robin Curtis and Dr Konstantinos 

Thalassinos, for their time and dedication in reviewing this thesis. 

 

I am particularly thankful to the Centres for Doctoral Training (CDT) within the 

Engineering and Physical Sciences Research Council (EPSRC) for the financial support 

and for giving me the opportunity to come and pursue my studies at UCL. 

 

Last but not least, a heartfelt thanks to my loving family, my supportive friends and Cam. 

 



viii 
 

Contents 
 

Declaration ii 

Abstract iii 

Impact Statement iv 

Publications vi 

Presentations and abstracts vi 

Acknowledgements vii 

Contents viii 

List of Figures xii 

List of Tables xv 

List of Abbreviations xvi 

List of Units xix 

Chapter 1      Introduction     1 

  1.1        Antibody and fragment antigen-binding (Fab) 2 

          1.1.1        Brief history of antibodies 2 

          1.1.2        Antibody structure 3 

          1.1.3        Antibody isotypes and subtypes 6 

          1.1.4        Antibody effector functions 8 

          1.1.5        Humanization 9 

          1.1.6        Antibody fragments 10 

          1.1.7        Fab A33 sequence and structure 12 

          1.1.8        Market of antibody-based products      15 

  1.2        Protein Aggregation 17 

          1.2.1        Why is it important to study protein aggregation? 17 

          1.2.2        Mechanisms of protein aggregation 19 

          1.2.3        Protein stability 21 

          1.2.4        How solution conditions affect protein stability 22 

          1.2.5       Characterization of aggregation-prone conformations 24 

          1.2.6       Aggregation process 26 

Chapter 2          Materials and Methods 28 

  2.1        Methods for protein structure determination 29 

           2.1.1        Small-angle X-ray scattering (SAXS) 29 



ix 
 

                    2.1.1.1        SAXS experiment – data acquisition 30 

                    2.1.1.2        SAXS data analysis 34 

          2.1.2        Single-molecule FRET (smFRET) 39 

                   2.1.2.1        Background to single-molecule FRET 39 

                   2.1.2.2        Confocal single-molecule detection 42 

  2.2        Computational methods for predicting protein stability 46 

          2.2.1        Homology modelling 46 

          2.2.2        Molecular dynamic simulations 47 

          2.2.3        Computational prediction of protein ΔΔG upon mutation 50 

          2.2.4        Predicting aggregation-prone regions 51 

  2.3        Cloning and protein expression 53 

          2.3.1       Cloning and site-directed mutagenesis 53 

                 2.3.1.1         CPEC as cloning method 53 

                 2.3.1.2        Site-directed mutagenesis 58 

          2.3.2       Protein expression and purification 61 

                 2.3.2.1        Expression of Fab A33 WT and mutants 61 

                 2.3.2.2        Purification of Fab A33 WT and mutants 62 

Chapter 3        Stability of Fab A33 at low pH and high temperature by  

                          molecular dynamics simulations and its stabilization by             

                          computational design  

 

64 

  3.1        Summary 65 

  3.2        Introduction 66 

  3.3        Methods 72 

          3.3.1        Fab A33 homology model 72 

          3.3.2        Molecular dynamics simulations 72 

          3.3.3        Analysis of MD trajectories 73 

          3.3.4        Aggregation-prone regions (APR) predictions 74 

          3.3.5        Mutational study and ΔΔG calculations by FoldX and Rosetta 74 

          3.3.6        Packing density 75 

          3.3.7        Sequence entropy of Fab sequences 75 

  3.4        Results and discussion 76 

          3.4.1        Interface contacts, RMSD of individual domains and structural 

                          alignments revealed different unfolding pathways at low pH and 

                          high temperature 76 



x 
 

          3.4.2        Loss in β-strand secondary structure confirms regions of 

                          unfolding 82 

          3.4.3        Salt bridge analysis identifies key stabilizing salt bridges 85 

          3.4.4        Solvent exposure of different aggregation-prone regions 

                          promotes different aggregation pathways for low pH and high 

                         temperature 88 

          3.4.5        FoldX, Rosetta and packing density calculations predict sub- 

                          optimal stability of CL and the CL-CH1 interface 93 

          3.4.6        Comparison to natural sequence variations in Fab 101 

  3.5        Conclusions 104 

Chapter 4        X-ray scattering and atomistic modelling identify and            

                         expanded conformation of Fab A33 at low pH that reveals an 

                         aggregation mechanism  
 

106 

  4.1        Summary 107 

  4.2        Introduction 108 

  4.3        Methods 110 

          4.3.1        Cloning, site-directed mutagenesis, expression and purification 

                          of Fab A33 110 

          4.3.2        Acquisition of small-angle X-ray scattering data  110 

          4.3.3        Analysis of small-angle X-ray scattering data 111 

          4.3.4        MD simulations to generate Fab A33 conformations at different 

                          pH 111 

          4.3.5        Atomistic modelling of SAXS data using SCT  112 

          4.3.6       Aggregation-prediction regions software 113 

  4.4        Results and discussion 114 

          4.4.1        SAXS identified and expanded aggregation-prone conformation 

                          of Fab A33at acidic pH  114 

          4.4.2        Correlation of Fab A33 radius of gyration and aggregation rate 119 

          4.4.3        Molecular dynamic simulations captured pH-induced unfolding 120 

          4.4.4        Atomistic modelling of SAXS data to characterize the expanded 

                          conformation 123 

          4.4.5        Identification of aggregation-prone regions (APRs) suggest an 

                          aggregation mechanism  131 

  4.5        Conclusions 135 



xi 
 

Chapter 5        Characterization of the aggregation-prone conformation of 

                          Fab A33 at low pH using single-molecule FRET as an 

                          orthogonal technique   137 

  5.1        Summary 138 

  5.2        Introduction 139 

  5.3        Methods 143 

          5.3.1        Cloning to generate Fab A33 mutants for smFRET                            143 

          5.3.2        Expression and purification of Fab A33 mutants 147 

          5.3.3        Site-specific labelling of Fab A33 147 

          5.3.4        Acquisition of smFRET data using confocal fluorescence 

                          spectroscopy 149 

         5.3.5         Analysis of smFRET data 149 

  5.4        Results and discussion 151 

          5.4.1        Characterization of Fab A33 mutants using mass spectrometry 

                          and UV-Vis absorption 151 

          5.4.2        smFRET controls by unfolding Fab A33 using GdmCl as 

                          denaturant 155 

          5.4.3        smFRET to confirm CL domain displacement at low pH  159 

          5.4.4        Compare FRET efficiencies to distances obtained using SAXS 

                          and MD simulations 161 

  5.5        Conclusions 162 

Chapter 6        Summary and future work 164 

  6.1        Summary 165 

  6.2        Future work 167 

References 170 



xii 
 

List of Figures 
 

Figure 1.1 Antibody structure 5 

Figure 1.2 Antibody classes or isotypes 6 

Figure 1.3 IgG antibody subclasses 7 

Figure 1.4 Antibody modes of action 8 

Figure 1.5 Progressive humanization of antibodies 10 

Figure 1.6 Antibody fragments constructs 12 

Figure 1.7 Structure of Fab A33 13 

Figure 1.8 Fab A33 sequence 14 

Figure 2.1 Schematic representations of a SAXS experiment 32 

Figure 2.2 Schematic of the steps performed by SCT to identify the best 

atomistic models that fit the experimental SAXS curves 37 

Figure 2.3 Schematic of donor and acceptor spectra’s overlap for FRET to 

occur 40 

Figure 2.4 Example of the relation between the transfer efficiency and the 

distance donor-acceptor (r) for a given pair of fluorophores 40 

Figure 2.5 FRET efficiency histograms for the identification of different 

protein conformations 41 

Figure 2.6 Confocal single-molecule set-up to detect FRET of freely 

diffusing molecules 44 

Figure 3.1 Fab A33 structure with interface contacts highlighted 69 

Figure 3.2 Interface contacts, RMSD of individual domains and structural 

alignments for simulations at pH 7.0, 4.5 and 3.5 (all 300 K) 78 

Figure 3.3 Interface contacts, RMSD of individual domains and structural 

alignments for simulations at pH 7.0 and temperatures 300 K, 340 

K and 380 K 81 

Figure 3.4 Loss of secondary structure for each of the 32 β-strands of Fab 

A33 83 

Figure 3.5 Secondary structure (SS) of each residue in Fab A33 with 

simulation time, calculated using DSSP 85 

Figure 3.6 Salt bridge analysis 87 

Figure 3.7 Prediction of aggregation-prone regions (APR) in Fab A33 using 

sequence-based predictors 89 



xiii 
 

Figure 3.8 Aggregation prone regions in Fab A33 90 

Figure 3.9 Fab A33 predicted APRs that increase its solvent accessibility at 

low pH and high temperature 92 

Figure 3.10 Stabilizing mutations predicted by FoldX and Rosetta 94 

Figure 3.11 Predicted residues that can be stabilized further by FoldX and 

Rosetta-ddG 97 

Figure 3.12 Normals used to calculate the packing of each atom in Fab A33 

using Occluded Surface software 98 

Figure 3.13 Packing density of every residue in Fab A33, computed using 

Occluded Surface 99 

Figure 3.14 Sequence entropy of Fab sequences 
102 

Figure 4.1 SAXS Guinier analyses 115 

Figure 4.2 pH and ionic strength dependence of the P(r) curves 118 

Figure 4.3 Aggregation rates as a function of pH 119 

Figure 4.4 Correlation between the Rg values and aggregation rates v 120 

Figure 4.5 MD simulations of native Fab A33 at 300 K 122 

Figure 4.6 Comparison of the SAXS data with the MD simulations 125 

Figure 4.7 Alignment of the best-fit Fab A33 structures at pH 7.0 127 

Figure 4.8 Alignment of the best fit Fab A33 structures at pH 7.0 and 3.5 128 

Figure 4.9 Alignment of the SAXS best fit structures at pH 7.0, 5.5 and 3.5 129 

Figure 4.10 Location of the inter-domain distances studied in Table 4.1, in the 

Fab A33 structure 130 

Figure 4.11 Aggregation prone regions in Fab A33 134 

Figure 5.1 Structure on the nonstandard amino acid p-azido-l-phenylalanine 

(pAzF) 142 

Figure 5.2 Map of the plasmid pEVOL-pAzF 144 

Figure 5.3 Schematic of the cloning steps followed to sub-clone Fab A33 

gene into pET-29a(+) 

 

145 

Figure 5.4 Fluorophore structures 148 

Figure 5.5 Reactions for the site-specific attachments of fluorophores to the 

protein 

 

148 

Figure 5.6 Cartoon representation of dual-labelled Fab A33 constructs 151 

Figure 5.7 ESI mass spectrometry to confirm the labelling steps 153 



xiv 
 

Figure 5.8 ESI mass spectrometry and UV-Vis absorption spectrum of the 

two double-labelled Fab A33 constructs for smFRET 154 

Figure 5.9 Inter-photon delays by smFRET to follow the unfolding of Fab 

A33 with increasing guanidium chloride concentration 

 

156 

Figure 5.10 FRET efficiency histograms to follow the unfolding of Fab A33 

by GdmCl 158 

Figure 5.11 Inter-photon delay times by smFRET for double-labelled Fab A33  

159 

Figure 5.12 FRET efficiency histograms of the two dual-labelled Fab A33 at 

pH 7.0 and 3.5 160 

Figure 5.13 Measured distances for the two dual-labelled Fab at pH 7.0 and 

3.5, using SAXS atomistic modeling and MD simulations 

 

161 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



xv 
 

List of Tables  
 
Table 2.1 Primers used to clone Fab A33 into pET-29a(+) using CPEC 55 

Table 2.2 PCR setup for amplification of insert and vector containing CPEC 

overlapping sequences 55 

Table 2.3 PCR conditions for amplification of insert and vector containing 

CPEC overlapping sequences 56 

Table 2.4 CPEC setup 57 

Table 2.5 CPEC conditions 57 

Table 2.6 Sequencing primers to confirm the cloning of Fab A33 into pET-

29a(+) 58 

Table 2.7 Primers used to introduce mutations via site-directed mutagenesis 59 

Table 2.8 PCR setup for site-directed mutagenesis reactions 60 

Table 2.9 PCR conditions for site-directed mutagenesis reactions 60 

Table 2.10 Sequencing primers to confirm the generation of Fab A33 mutants 60 

Table 3.1 Residues located in the interface between light and heavy chains 

in Fab A33 70 

Table 3.2 SASA of the APRs in Fab A33 during simulations and SASA 

differences between unfolding simulations and the reference 

simulation 91 

Table 3.3 List of the most stabilizing mutations identified by FoldX and 

Rosetta-ddG 95 

Table 3.4 Packing indicated by the occluded surface packing (OSP) value of 

the residues located in β-strands within domain interfaces (VL-VH 

and CL-CH1) of Fab A33 homology model 100 

Table 3.5 Comparison between the mutations in existing human and mouse 

Fabs and the stabilizing mutations suggested by FoldX and 

Rosetta 103 

Table 4.1 Inter-domain distance differences between the best SAXS fit 

structures at pH 7.0 and 3.5, using one cysteine in each domain 

(VL, VH, CL and CH1) 131 

Table 4.2 Comparison of the solvent accessible surface area (SASA) for the 

most aggregation-prone regions in Fab A33 between pH 7.0 and 

pH 3.5 133 



xvi 
 

List of Abbreviations 
 

3D Three dimensional 

aaRS Aminoacyl-tRNA synthetase 

ADC Antibody drug conjugate 

ADCC Antibody dependent cellular cytotoxicity 

AF Alexa Fluor 

APD  Avalanche photodiode 

APR Aggregation-prone region 

BLAST Basic local alignment search tool 

CDC Complement dependent cytotoxicity 

CDR Complementarity-determining regions 

CH Constant domain of the heavy chain 

CL Constant domain of the light chain 

CPEC Circular polymerase extension cloning 

cryo-EM Cryo-electron microscopy 

DIBO Dibenzocyclooctyne 

Dmax Maximum particle diameter 

DNA deoxyribonucleic acid 

DOT Dissolved oxygen tension 

DSSP dictionary of protein secondary structure 

E. coli Escherichia coli 

Eapp Apparent FRET transfer efficiency 

ELISA Enzyme-linked immunosorbent assay 

ESI mass spec Electrospray ionization mass spectrometry 

ESRF European Synchrotron Radiation Facility 

Fab Fragment antigen-binding 

Fc  Fragment crystallisable 

FcRn Neonatal Fc receptor 

FDA Food and drug administration 

FPLC Fast protein liquid chromatography 

FRET  Förster resonance energy transfer 

GdmCl Guanidinium chloride 

HAMA Human anti-mouse antibody 



xvii 
 

HC Heavy chain 

HPLC High performance liquid chromatography 

Ig Immunoglobulin 

IPTG Isopropyl β-D-1-thiogalactopyranoside 

IS Ionic strength 

LB Lysogeny broth or Luria broth 

LC Light chain 

mAb Monoclonal antibody 

MD Molecular dynamics 

N.A. Not applicable 

NEB New England Biolabs 

NMR Nuclear magnetic resonance 

NSAA Nonstandard amino acid 

ORI Origin of replication 

OS Occluded surface 

OSP Occluded surface packing value 

pAzF p-azido-l-phenylalanine 

PBS Phosphate buffered saline buffer 

PCR Polymerase chain reaction 

PDB Protein Data Bank 

PEG Polyethylene glycol 

pI Isoelectric point 

PPG Polypropylene glycol 

R0 Förster radius 

Rg Radius of gyration 

REU 

RMSD 

Rosetta Energy Unit 

Root-mean-square deviation 

RMSF Root mean square fluctuation 

SAS  Small-angle scattering 

SASA Solvent accessible surface area 

SAXS Small angle X-ray scattering 

scFv Single-chain variable fragments 

SD Standard deviation 

SEC Size-exclusion chromatography 



xviii 
 

SEM Standard error of the mean  

smFRET 
Single-molecule Förster resonance energy 

transfer 

SS Secondary structure 

TBE Tris/Borate/EDTA buffer 

TCEP Tris(2-carboxyethyl)phosphine 

Tm Melting temperature 

tRNA Transfer RNA 

UV Ultraviolet 

VH Variable domain of the heavy chain 

Vis Visible 

VL Variable domain of the light chain 

VMD Visual molecular dynamics 

WT Wild type 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 



xix 
 

List of Units 
 

°C   degree Celsius 
Å   Angstrom 
cm   centimetre 
fL   femtolitre 
fs   femtosecond 
g   gram 
h   hour 
K    Kelvin 
kb   kilobase 
kcal   kilocalorie 
kDa   kilo Dalton 
keV   kiloelectronvolt 
L   litre 
m   meter 
µg   microgram 
µL   microliter 
µm   micrometre 
µM   micromolar 
μs   microsecond 
μW   microwatts 
mA   milliampere 
mg   milligram 
mL   millilitre 
mM   millimolar 
ms   millisecond 
min   minute 
M   molar (mol/L) 
mol   mole 
ng   nanogram 
nm   nanometre 
ns   nanosecond 
pM   picomolar 
pmol   picomol 
ps   picosecond 
rpm   revolutions per minute 
s   second 
V   volt 
 



1 
 

 
 
 

Chapter One 

 

 

Introduction



2 
 

1.1  Antibody and fragment antigen-binding (Fab) 
 

1.1.1 Brief History of Antibodies 

 

The history of antibodies is linked to that of vaccines. In 1798, Edward Jenner 

realized that milkmaids that had previously caught cowpox, would later not develop the 

very similar but more serious disease smallpox. He believed that exposure to cowpox 

provided protection against smallpox. And thus, in the first vaccination event, Edward 

Jenner gave fluid from a pustule of a cow infected with cowpox to a young boy, giving 

him protection to smallpox, and proving that immunity can be gained once a patient has 

already encountered a pathogen (Riedel 2015). It was not until the 1890 that the 

mechanism of protection provided by vaccination began to be understood. Emil von 

Behring and Shibasabura Kitasato demonstrated that serum from infected animals can be 

used to treat and prevent infection in other animals, in particular they studied diphtheria 

and tetanus (Kantha 1991). Emil von Behring would later win the Nobel prize in 1901, 

for the development of serum therapy (Kaufmann 2017). In 1900, Paul Ehrlich proposed 

the “side-chain theory”, in which he hypothesized that cells express a variety of side-

chains that can be shed into the blood to bind pathogens. Paul Ehrlich is considered one 

of the fathers of modern immunology (Winau et al. 2004). He also proposed a model for 

an antibody molecule in which the antibody was branched and consisted of multiple sites 

for binding to foreign material, known as antigen, and for the activation of the 

complement pathway (Davies & Chacko 1993). Paul Ehrlich won the Nobel prize in 1908 

in recognition for his work on immunity. This model agreed with the “lock and key” 

hypothesis for enzymes proposed by Emil Fischer (Lemieux & Spohr 1994). In 1948, 

Astrid Fagreaus discovered that B cells, in the form of plasma cells, generated antibodies 

(Silverstein 2004). Further work focused on solving the antibody structure, and Gerald 

Edelman and Rodney Porter were jointly awarded the Nobel Prize in 1972 for 

independently discovering the molecular structure of antibodies (Pauling 1940; Porter 

1959). The first atomic resolution structure of an antibody fragment was published in 

1973 (Poljak et al. 1973). This was quickly followed by the invention of monoclonal 

antibodies in 1975 by Georges Köhler and César Milstein, who would later win the Nobel 

prize in 1984 for the discovery of production of monoclonal antibodies (Köhler & 

Milstein 1975). This marked the start of the modern era of antibody research and 

discovery. 
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1.1.2 Antibody Structure 

 

Before introducing the fragment antigen-binding (Fab) of an antibody, it is 

necessary to introduce full-size antibodies. Antibodies are glycoproteins belonging to the 

immunoglobulin superfamily that are secreted by B cells to identify and neutralize foreign 

organisms or antigens. Antibodies circulate in the blood, and when they find an unfamiliar 

foreign object, such as a virus or bacteria, they bind tightly to its surface. Coating might 

be enough to prevent infection, if not, antibodies act as markers to alert the immune 

system and activate the other defensive mechanisms (Davies & Metzger 1983). The basic 

functional unit of an antibody is an immunoglobulin (Ig) monomer, as is the case for IgG, 

typically used as prototype to explain the structure of all antibodies (other antibody 

classes can be multimeric). Antibodies are “Y”-shaped proteins (Figure 1.1), and their 

structure helps explain their binding specificity and their biological activity (Harris et al. 

1992). Antibodies are formed by four chains, two identical long heavy chains (H; 50 kDa 

each) and two identical short light chains (L; 25 kDa each), linked by disulphide bonds 

and non-covalent interactions. Each light chain pairs with a heavy chain, and each heavy 

chain pairs with another heavy chain. The total molecular weight of an IgG is 

approximately 150 kDa, and its size about 10 nm. The arms of an antibody molecule 

contain the antigen-binging sites of the antibody, and thus are called fragment antigen-

binding (Fab), whereas the stem of the antibody, interacts with effector cells within the 

immune system to elicit a physiological response, and is called fragment crystallisable 

(Fc). Thus, an antibody contains two identical Fab fragments (50 kD), with two identical 

antigen-binding sites at the tips of the Fab arms, and one Fc fragment (50 kD) (Alzari et 

al. 1988).  

 

By comparing many antibody amino acid sequences, it was found that each light 

and heavy chain are comprised of a region of high variability at the amino terminal (about 

110 first amino acids), called the variable (V) region, and the remaining large region in 

the carboxyl terminal end was constant in different types of antibodies, called the constant 

(C) region (Wang et al. 2007). The variable regions contain the antigen-binding site, and 

varies greatly from one antibody to another. Specifically, variability is concentrated in 

regions called complementarity-determining regions (CDRs) or hypervariable regions. 

There are three CDRs in each chain, moving from the amino terminal end they are called 

CDR1, CDR2, and CDR3, each about 10 amino acids in length. The more conserved 

amino acids between the CDRs are called framework residues, and compose about 85% 
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of the variable region. Framework residues define the positioning of the CDRs, and hold 

them in place. The variable region folds so that the CDRs are exposed on the surface of 

the chain. When the light and heavy chains are joined, the CDRs of the chains form a cleft 

that serves as the antigen-binding site. Changes in amino acid residues at the position of 

this cavity change its shape and thus its specificity, generating millions of antibodies with 

slightly different antigen-binding sites. This enormous diversity of antibody CDRs on the 

antigen-binding fragments allows the immune system to recognize an equally wide 

variety of antigens. 

 

The three-dimensional structure of antibodies is divided in domains, called 

immunoglobulin domains. Each domain contains about 70-110 amino acids. Each domain 

has a characteristic tertiary structure consisting of two layers of β-sheets, an inner β-sheet 

and an outer β-sheet, in a sandwich shape. Each domain contains a disulphide bridge near 

the center of the domain (Morea et al. 2000). The light chain of IgG has two domains 

called VL and CL. The heavy chain of IgG has four domains, one VH and three in the CH 

region (CH1, CH2, and CH3). Extensive non-covalent interactions occur in the interface 

between domains VL and VH, CL and CH1. Where the arms meet, the stem of the Y 

(between CH1 and CH2 domains), is known as the hinge region. The hinge region allows 

segmental flexibility, which means that the two Fab regions can move relative to one 

another on antigen binding. There are several disulphide bonds in an antibody molecule, 

the total number depends on the antibody class. As we have seen, there are disulphide 

bonds located within chains stabilizing the β-barrel domain fold, and the other disulphide 

bonds link the different chains, the two heavy chains and the heavy chain to the light 

chain. Antibodies are glycoproteins, thus they contain carbohydrates, situated within its 

Fc region, at conserved residues (Maverakis et al. 2015). The attached glycans determine 

the effector functions (Wright & Morrison 1998). The structure of the glycans determines 

the affinity of antibodies for Fc receptors, which directs the appropriate immune response 

for each different type of foreign object they encounter. 
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Figure 1.1. Antibody structure. (a) Cartoon representation of a full-size antibody (PDB 

ID: 1igt). Antibodies have two identical light (L; yellow) and heavy (H; magenta) chains. 

The arms of an antibody are termed fragment antigen-binding (Fab) and the stem is called 

fragment crystallizable (Fc). The flexible regions connecting Fabs and Fc are the hinge 

regions (gray). The antigen-binding region at the complementary determining regions 

(CDRs; blue), are located at the tips of the Fabs. The glycans are located at the CH2 

domain (green). (b) Schematic representation of a full-size antibody, divided by domains. 

Each chain is divided into two regions, the variable (V) and constant (C) regions. Light 

chains have two domains (VL and CL) and heavy chains have four domains (VH, CH1, CH2 

and CH3).  
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1.1.3 Antibody Isotypes and Subtypes 

 

Antibodies themselves can be immunogenic, for example, if humans are 

immunized with mouse antibodies, our immune system recognizes them as a foreign 

complex glycoprotein, and we generate antibodies against them. Thus, antibodies contain 

antigenic determinants that allow us to classify them (Schroeder & Cavacini 2010). The 

antigenic determinants that divide antibodies into classes are called isotypic determinants. 

Isotypic determinants are located on the heavy chain, and divide antibodies into classes 

or isotypes. Humans have five antibody isotypes: IgG, IgA, IgM, IgD, and IgE (Figure 

1.2). Specifically, they have different types of crystallizable fragments (Fc) (Woof & 

Burton 2004). IgG, IgD, and IgE are monomeric (one Ig unit), IgA is either monomeric 

or dimeric (two Ig units), and IgM is pentameric (five Ig units). Their location in the body, 

half-life, abundance and function, differ between them. IgG is the most abundant antibody 

in the blood (70-75% abundance), and has the longest half-life (20-24 days). IgG can 

enter tissue spaces (for instance the placenta), where it coats antigens, speeding their 

uptake. IgA (10-15% abundance), concentrates in body fluids to guard the entrances of 

the body and protect against pathogens. IgA is found in mucous, saliva, tears, milk and 

intestinal juice. IgM (10% abundance) is the largest antibody, and it tends to remain in 

the blood, where acts in the early stages of immune response, and it can efficiently kill 

bacteria (Collins et al. 2002). IgD (1% abundance) remains bound to the membrane of B 

cells and regulates the activation of cells like basophiles and mast cells. IgE is found in 

trace amounts in the blood (0.002% abundance) and protects against parasitic worms and 

allergic reactions. 

 

 
Figure 1.2. Antibody classes or isotypes. Schematic representation of the five 

immunoglobulin classes or isotypes in humans: IgG, IgA, IgM, IgD, and IgE. 
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Other isotypic heavy-chain determinants define differences within a class, 

generating antibody subclasses. IgG has four subclasses, called IgG1, IgG2, IgG3, and 

IgG4 (Figure 1.3). IgG isotypes differ in the hinge region and the location and number of 

disulphide bonds. IgG1 and IgG4 contain two inter-chain disulphide bonds in the hinge 

region, IgG2 has four and IgG3 has eleven. In humans, IgG1, IgG2, IgG3, and IgG4 are 

found in normal serum in the approximate proportions of 65, 25, 5, and 5%, respectively.  

 

 
Figure 1.3. IgG antibody subclasses. Schematic representation of the four IgG 

subclasses: IgG1, IgG2, IgG3, and IgG4. Disulphide bonds are colored green. 

 

Antigenic determinants on light chains classify them as either kappa (κ) or lambda 

(λ) chains. Light-chain antigenic determinants are not useful in determining antibody 

class, because κ and λ chains can be associated with any class of heavy chain (all classes 

and subclasses). A κλ chain combination never occurs on the same antibody molecule.  

 

There are more specific antigenic determinants, called allotypic and idiotypic 

determinants. Allotypic determinants are carried by only some individuals within a given 

species and are inherited in a Mendelian fashion (Vidarsson et al. 2014). The genetic 

variation in allotypic determinants is due to individuals having different alleles. Idiotypic 

determinants are individual-specific and are located in the antigen-binding site of the 

antibody, in variable regions of the heavy and light chains. 
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1.1.4 Antibody Effector Functions 

 

Whereas the Fab arms of the antibody, and specifically the small CDR loops, 

determine the specificity of the antibody, the Fc region determines the effector functions 

(Wang et al. 2018). Antibody effector functions can be divided into four major 

mechanisms: blocking, complement dependent cytotoxicity (CDC), antibody dependent 

cellular cytotoxicity (ADCC) and phagocytosis (Figure 1.4) (Lu et al. 2018). Blocking 

refers to binding to block parts of the surface of a bacterial cell or virus to render its attack 

ineffective. Antibodies alone cannot directly destroy a foreign organism, instead, 

antibodies mark them for destruction by other defense systems. One option for antibodies 

to cause cell lysis is by activating the classical complement pathway (CDC). Many 

antibodies cluster together and interact with C1q of the C1 complex, recruiting the 

complement membrane attack complex. Antibodies in an antibody-coated target cell also 

can interact with Fc receptors on effector cells (natural killer cells, macrophages, 

monocytes and eosinophils) to engage in antibody dependent cellular cytotoxicity. Once 

Fc receptors in the surface of effector cells bind to the Fc region of an antibody, a 

signaling pathway is triggered that results in the secretion of cytokines (lytic enzymes, 

perforin, granzymes and tumour necrosis factor) by the effector cell, which mediate the 

destruction of the target cell. Lastly, antibodies can stimulate the removal of an antibody-

coated target cell by engulfment of a phagocyte (also called opsonization). 

 

 
 

Figure 1.4. Antibody modes of action. Antibody effector functions include: blocking, 

complement dependent cytotoxicity (CDC), antibody dependent cellular cytotoxicity 

(ADCC) and phagocytosis. 
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1.1.5 Humanization 

 

The first FDA-approved antibody to treat a human disease was a mouse antibody, 

in 1986, to treat kidney transplant rejection. However, it was soon realized that they 

presented a short serum half-life, they were not able to trigger human effector functions, 

and more problematic, our immune system recognized the mouse antibody as a foreign 

protein, and raised a human anti-mouse antibody (HAMA) response (Hwang & Foote 

2005). Thus, it was necessary to humanize antibodies by engineering them, to be able to 

use them as therapeutic agents. The first attempts consisted in human constant domains 

(CL and CH) and mouse variable domains (VL and VH), which received the name of 

chimeric antibodies (about 66% human) (Figure 5.5) (Boulianne et al. 1984; Morrison et 

al. 1984). Removal of the mouse constant domains removed the most immunogenic part 

of the antibody, however, chimeric antibodies were still able to generate HAMA 

responses. In a further attempt to reduce the immunogenicity, only the CDRs of mouse 

antibodies were grafted onto the human variable region framework, creating humanized 

antibodies (about 90% human) (Figure 1.5) (Jones et al. 1986; Cheetham et al. 1998). In 

humanized antibodies, anti-antibody responses have still been noted in patients, however 

the severity of the response was reduced. Humanized antibodies have been approved and 

are in the market to treat diseases, such Zenapax (daclizumab), used to prevent organ 

transplant rejection (Przepiorka et al. 2000). Lastly, fully human antibodies are being 

engineered using two techniques, phage display and transgenic mice. In phage display, a 

library of human antibodies is expressed on the surface of phage and subsequently 

selected and amplified in E. coli (McCafferty et al. 1990). In transgenic mice, mice 

expressing a human antibody repertoire are used. These transgenic mice were generating 

by replacing the mouse antibody encoding genes with human versions, and the antibodies 

produced are fully human (Green et al. 1994; Nelson et al. 2010). 
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Figure 1.5. Progressive humanization of antibodies. A schematic representation of the 

advancement from fully mouse antibodies (green), to chimeric antibodies (~66% human), 

to humanized antibodies (~90% human), and human antibodies (blue). 

 

 

1.1.6 Antibody Fragments 

 

Full-size antibodies are not always desired for therapeutic applications, and there 

are advantages in using smaller antibody fragments. One main drawback of full-size 

antibodies, especially true for anti-cancer antibodies, is that due to their large size, they 

have difficulties penetrating some tissues, like the physical barriers of solid tumours 

(Christiansen & Rajasekaran 2004). The use of smaller fragments of these antibodies 

allows a deeper penetration into these tissues (Nelson 2010). Antibody fragments do not 

contain the Fc domain, and thus, do not induce Fc-mediated responses. Antibody 

fragments act by binding and blocking ligands or receptors. In some instances, the Fc 

mediated effects might not be required or even desired, such as for the treatment of 

autoimmune disorders, where activation of Fc receptor-expressing cells might be 

unwanted because of the toxicity associated with cytokine release. In addition, antibody 

fragments are not glycosylated, which allows their easier and less costly expression in 

prokaryotic systems (Holliger & Hudson 2005). The Fc domain allows the FcR-mediated 

recycling, which gives full-size antibodies their long half-life of 7-21 days. In contrast, 

antibody fragments are rapidly degraded in humans and have shorter elimination half-

lives of only hours to days. This shorter circulation half-life can be useful in imaging 

applications, when the exposure of healthy tissues to radioisotope must be limited, and in 

cancer therapy, to reduce the prolonged exposure of radiolabelled antibodies (Brekke & 

Løset 2003). Alternatively, several strategies have been developed to extend the half-life 
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of antibody fragments, including conjugation to proteins such as albumin and PEGylation 

(Chapman et al. 1999), which was applied to the FDA approved anti-TNFα Fab, 

certolizumab pegol.  

 

Manufacture of antibody fragments began in 1980s. Initially fragments were 

generated by proteolysis of full-size antibodies using enzymes. The enzyme papain 

cleaves the antibody molecule into two Fab fragments and a Fc fragment. The enzyme 

pepsin cleaves below the hinge region, generating a F(ab')2 fragment (Figure 1.6), and a 

pFc' fragment. Later, genetic engineering was used to generate diverse therapeutic 

antibody fragments (Enever et al. 2009).  

 

Fab fragments were the first antibody fragments to be generated as therapeutics. 

Fab fragments are monovalent and approximately three times smaller than full antibodies 

(50 kD). Each Fab is composed of one light (the entire light chain) and one heavy chain 

(part of the heavy chain), each comprising a variable (VL and VH) and a constant (CL and 

CH1) domain (Figure 1.6). The variable domains contain the antigen-binding site at their 

complementary determining regions (CDRs), formed by three loops in VL and three loops 

in CL. There are five disulphide bonds in Fab, four of them intra-domain and the last one 

between the light and heavy chains at the hinge region. 

 

The next fragments to be developed were single-chain variable fragments (scFv) 

(Huston et al. 1988; Monnier et al. 2013). First, only the variable region (Fv) of antibodies 

was used, consisting of the variable domain of the heavy (VH) and the variable domain of 

the light chain (VL). However, the domains would dissociate, thus introduction of a 

flexible linker uniting them was necessary, forming a single polypeptide, called single-

chain variable fragments (scFv) (Figure 1.6). The peptide linker connects the VH and VL 

domains. scFv are half the size of the Fab fragment (~28 kDa). Due to their small size, 

scFv have low stability and tend to multimerize (Wilkinson et al. 2009). For this reason, 

even though scFv retain the antigen binding site of the antibody, its low stability means 

that Fabs are more often used. 

 

Smaller fragments, such as a single VH domain, were also tried, however, they 

rarely retain the affinity of their parent antibody and due to their small size are poorly 

soluble and prone to aggregation. 
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Molecular engineers have continued to innovate by creating multimeric fragments 

with multi-specificity, mainly based on Fab fragments or scFv as building blocks (Cuesta 

et al. 2010). They have generated diabodies, which can either be bivalent or bispecific 

(Figure 1.6) (Holliger et al. 1993), and complementary scFvs themselves produced as a 

single chain (tandem scFvs) among others. Additionally, conjugation of antibodies and 

fragments to external molecules, such as drugs, forming antibody drug conjugates 

(ADCs) is also being explored (Dan et al. 2018). 

 

 

 
Figure 1.6. Antibody fragments constructs. Schematic representation of some of the 

most common antibody fragments: Fab, F(ab')2, scFv, bivalent diabody, bispecific 

diabody and VH. 

 

 

1.1.7 Fab A33 sequence and structure 

 

Fab A33 fragment was derived from a murine monoclonal antibody (MAb) A33, 

by UCB Celltech (Slough, UK). Fab A33 and murine Mab A33 recognize a protein 

expressed on the surface of colon cancer cells. The antigen is expressed on several human 

tumour cell lines, including Colo205, ASPC-1 and SW1222 cell lines. Initial studies 

revealed that murine Mab A33 generated human anti-mouse antibody (HAMA) responses 

in patients. Thus, murine Mab A33 was humanized and Fab A33 was generated by 

recombinant DNA technology, cloning into a human kappa light chain and the human 

heavy chain, IgG1 (King et al. 2001). The original Fab A33 contained a free thiol group 

in the hinge region, which was mutated to a serine to avoid dimer formation. In this thesis, 

I refer to Fab A33 C226S, as wild-type Fab A33.  
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Fab A33 is 442 amino acids in length and has a molecular weight of 47,378 Da. 

No crystal structure of Fab A33 was available, and a homology model was generated (see 

Materials and Methods section). Figure 1.7 shows the cartoon representation of the Fab 

A33 homology model. The sequence of Fab A33 is shown in Figure 1.8. Fab A33 has an 

estimated pI of 8.76, and an extinction coefficient of 67,435 M-1 cm-1 at 280 nm, based 

on calculations from the Expasy ProtParam tool (https://web.expasy.org/protparam/).  

 

 
Figure 1.7. Structure of Fab A33. Fab is composed of light (magenta) and heavy 

(yellow) chains. Each chain contains variable (VL and VH) and constant (CL and CH1) 

domains. The antigen-binding region at the complementary determining regions (CDRs; 

blue), are located in the variable domains. There are five disulphide bonds (gray 

highlights), four of them being intra-domain in VL, VH, CL and CH1, and the fifth is at the 

C-terminus between the light and heavy chains.  
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Figure 1.8. Fab A33 sequence. Fab A33 amino acid sequence separated by domains (VL, CL, VH, CH1 and hinge region). The six CDRs in the VL and 

VH domains are highlighted in red. 

 

          
 
 
                 10         20         30         40         50         60         70         80         90         100          
     VL   ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|... 

DIQMTQSPSS LSASVGDRVT ITCKASQNVR TVVAWYQQKP GKAPKTLIYL ASNRHTGVPS RFSGSGSGTD FTLTISSLQP EDFATYFCLQ HWSYPLTFGQ GTKVEIKR  
        
           110        120        130        140        150        160        170        180        190        200        210         
     CL   .| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| .... 

TV AAPSVFIFPP SDEQLKSGTA SVVCLLNNFY PREAKVQWKV DNALQSGNSQ ESVTEQDSKD STYSLSSTLT LSKADYEKHK VYACEVTHQG LSSPVTKSFN RGEC  
 
              220        230        240        250        260        270        280        290        300        310        320        330         
     VH   |....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....  

EVQLVE SGGGLVQPGG SLRLSCAASG FAFSTYDMSW VRQAPGKGLE WVATISSGGS YTYYLDSVKG RFTISRDSSK NTLYLQMNSL RAEDTAVYYC APTTVVPFAY WGQGTLVTVS SAST 
                                     
              340        350        360        370        380        390        400        410        420         
     CH1  |....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|....| ....|.... 

KGPSVF PLAPSSKSTS GGTAALGCLV KDYFPEPVTV SWNSGALTSG VHTFPAVLQS SGLYSLSSVV TVPSSSLGTQ TYICNVNHKP SNTKVDKKV 
  
         430        440 
   Hinge  | ....|....| .. 

E PKSCDKTHTS AA  
 
 
 
 
 
 
 

!
!
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1.1.8 Market of antibody-based products 

 

Mainly due to their high specificity and affinity for their targets, full-size 

antibodies and antibody-based products have been used successfully in the last 30 years 

to treat many human diseases (Ecker et al. 2015). Antibody products became an attractive 

choice as therapeutic agents, compared to small molecules, because they are highly 

specific to their targets and have fewer adverse side-effects (small molecule therapeutics 

frequently have non-specific interactions) (Smith 2015; Leader et al. 2008). In addition, 

full-size antibodies have long half-lives in serum due to FcRn recycling (Wang et al. 

2008). In terms of modes of action, antibodies bind antigens on the surface or exterior of 

cells. After binding, the mode of action can include just blocking the function of the 

antigen by preventing its action. This is the mode of action of antibody fragments, which 

for example can bind cell surface receptors preventing dimerization and uncontrolled 

proliferation. Full-size antibodies, upon binding, can recruit the host immune system 

through the antibody effector functions, to kill the target cells. Alternatively, the 

antibody-based products can be conjugated with small molecule toxins or radiolabelled 

isotopes (Chames et al. 2009). This concept was already introduced by Paul Ehrlich, who 

named them as “magic bullets”, by having antibody-products deliver a cytotoxic payload 

to the diseased cell specifically on target binding (Strebhardt & Ullrich 2008). 

 

When used for therapeutic purposes, we use monoclonal antibodies (mAbs), 

which consist of identical antibody molecules (with the same amino acid sequence). The 

first mAb to be approved by the FDA was in 1986, a murine mAb for the treatment of 

kidney transplant rejection. Since then, antibody-based products have grown steadily to 

become the main drug class for new approvals in the pharmaceutical industry. To date, 

over 60 antibody-based drugs have been approved for therapeutic use (Carter & Lazar 

2018). There are over 550 antibodies in clinical development, including more than 50 

antibodies in phase III clinical trials. The market for antibody-based products had 

worldwide revenues of nearly $89 billion in 2016. It is estimated that by 2020, there will 

be more than 70 antibody products in the market, with world-wide sales of nearly $125 

billion (Elvin et al. 2013; Nelson et al. 2010). 

 

Antibody-based products are approved for the treatment of a variety of diseases. 

At least 30 antibody drugs are indicated for use in oncology, including for the treatment 

of many prevalent solid and haematological tumours (Weiner et al. 2010; Nelson 2010). 
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An approximately similar number of antibodies are approved for the treatment of chronic 

inflammatory or autoimmune diseases (Chan & Carter 2010). A few antibody drugs are 

being used to treat patients in other areas of medicine including cardiovascular disorders, 

infectious and ophthalmic diseases, osteoporosis, as well as transplantation. Additionally, 

antibody-based products are also being used as diagnostic tools, such as for imaging, 

guide surgeries and detection of cancers (Weiner 2015). 

 

Of the approved antibody-based drugs, IgG is the main molecular format. The 

remaining approved antibody-based drugs include antibody fragments, bispecific 

antibodies and antibody conjugates (including those conjugated to cytotoxic drugs, 

radioisotopes or polyethylene glycol (PEG)). Interestingly, the proportion of antibodies 

with non-IgG formats is higher for antibodies in early clinical development (Beck et al. 

2010). Currently, there are six Fab fragments approved by the FDA for therapeutic 

applications. ReoPro (abciximab) is a chimeric IgG1 Fab fragment, approved in 1994, 

which binds to the glycoprotein II3/IIIa receptor on human platelets and inhibits platelet 

aggregation, for the treatment of blood clot prevention. Lucentis (ranibizumab) is a 

humanized IgG1 Fab fragment, approved in 2006, which inhibits vascular endothelial 

growth factor A (VEGF-A), for the treatment of age-related macular degeneration. 

CroFab (crotalide) is a polyvalent immune Fab (standardized mixture of four different 

monospecific Fab fragments), approved in 2000 for the treatment of envenomation by 

four species of North American pit vipers. DigiFab is an anti-digoxin Fab fragment, 

approved in 2001, for the treatment of digoxin intoxication. Digibind, another digoxin 

immune Fab, was also approved as digoxin antidote. Lastly, Cimzia (Certolizumab 

pegol), is a humanized IgG Fab, approved in 2009, which targets TNFα for the treatment 

of Crohn’s disease. There are also examples of Fab fragments being used for diagnostic 

applications. MyoScint (Imiciromab), is a murine Fab, approved in 1996, which binds 

human cardiac myosin for imaging myocardial infarction. CEA-scan (Arcitumomab), is 

a murine Fab, approved in 1996, which binds human CEA for the detection of colorectal 

cancer. 
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1.2  Protein Aggregation 
 

1.2.1 Why is it important to study protein aggregation? 

 

Protein therapeutics offer many advantages over small molecule drugs, such as 

high target specificity and affinity, which has the advantages of high activity at lower 

concentrations and fewer adverse side effects. There are challenges, however, for proteins 

to be approved as commercial products due to their low thermodynamic stability (Wang 

1999). The thermodynamic stability of the native protein conformation is only about 5-

20 kcal/mol in free energy more stable than unfolded, biologically inactive conformations 

(Chi et al. 2003). Because of this, small changes to the system experienced during the 

manufacturing process, such as an increase in temperature, a change in pH, a change in 

salt concentration, shear force through shaking and stirring, or freezing and/or thawing, 

makes them susceptible to degradation, both chemical and physical (Manning et al. 2010). 

Chemical degradation involves modifications to covalent bonds, such as deamidation, 

oxidation, and disulphide bond shuffling (Daugherty & Mrsny 2006). Physical 

degradation includes protein unfolding, undesirable adsorption to surfaces and 

aggregation (Wang et al. 2010). The most commonly encountered and troubling 

manifestation of protein instability is protein aggregation, since it is observed at all stages 

of product development and aggregates are thought to be the dominant cause of 

immunogenicity (Wang et al. 2012). In the initial phase of protein production, aggregates 

are often observed when large amounts of recombinant protein are expressed, and receive 

the name “inclusion bodies”. These are aggregates of misfolded protein, which represent 

significant yield losses and the need to be solubilized and refolded to obtain functional, 

soluble protein. Aggregation is also encountered during the later stages of the 

manufacturing process, including purification, sterilization, shipping, and storage. The 

explanation being that relatively small changes of external variables can destabilize the 

structure of the protein and induce its unfolding, favouring consequent aggregation (Jahn 

& Radford 2008).  

 

The presence of aggregates causes two major problems for pharmaceuticals, (i) it 

lowers the potency and efficacy of the therapeutic dose, and (ii) more problematically, 

trace amounts of aggregates can be hazardous to patients as they may cause severe 

inflammation or even fatal immune responses (Hermeling et al. 2004). The 
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immunogenicity of protein aggregates may arise from the formation of new epitopes, 

either from new quaternary structures in the aggregates, from newly exposed regions due 

to unfolding (previously buried inside the native protein), or from the formation of 

repetitive complexes to which the immune system is especially sensitive. Aggregation 

levels as low as 1% (often not visible to the naked eye) over a 2-year shelf life can render 

a product clinically unacceptable (Frokjaer & Otzen 2005). For these reasons, protein 

aggregation represents an unsolved and crucial challenge for the biotechnology industry 

to address. Currently, our molecular knowledge of the mechanism of protein aggregation 

is still limited. In order to improve the stability of a therapeutic molecule, screens over 

many formulation mixtures are performed by varying pH, buffer type, and ionic strength, 

as well as the addition of excipients, such as sucrose, sorbitol, arginine and mannitol 

(Parkins & Lashmar 2000). This approach is both expensive and time consuming. A better 

understanding of the molecular mechanisms of protein aggregation could lead to more 

efficient and reliable methods to prevent aggregation. For example, proteins could be 

engineered to be more robust to aggregation or the search for formulation excipients can 

be performed more rationally. By preventing aggregation, we hope that more therapeutic 

candidates will be able to reach the market.  

 

Protein misfolding and aggregation also play a central role in many diseases such 

as Alzheimer's, Parkinson's, Huntington's, amyotrophic lateral sclerosis (ALS) and prion 

diseases (Chiti & Dobson 2017; Ross & Poirier 2004). In these diseases, a specific peptide 

or protein that is normally soluble, is deposited as insoluble aggregates (Knowles et al. 

2014). For example, in the case of Alzheimer's disease two proteins are involved amyloid-

β and tau protein, for Parkinson's is α-synuclein, and for spongiform encephalopathies are 

prion proteins. The aggregates formed usually consist of the specific misfolded protein in 

an ordered arrangement of β-sheets, forming fibres. This structure is known as cross-β 

structure or amyloid (Nelson et al. 2005). Thus, these diseases receive the name 

amyloidosis, because the common characteristic is the presence of these fibrillary 

deposits. Even though much has been discovered about these diseases in the past 50 years, 

the causes (how these protein misfolding diseases initiate) and the mechanisms of how 

fibrillary aggregates form and how they cause harm in the cell, are still largely unclear. 

Thus, a better understanding of protein aggregation will help design drug candidates to 

reverse or inhibit disease.  
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1.2.2 Mechanisms of protein aggregation 

 

The journal nature describes protein aggregation as “the process by which 

misfolded proteins adopt a conformation that cause its polymerization into aggregates and 

organized fibrils”. It is becoming clear that aggregation involves at least two steps, 

conformational changes to the protein native state and assembly of protein molecules into 

higher order aggregates (Chi et al. 2003; Roberts 2014). In the first step, the native state 

of the protein undergoes a conformational change to form an aggregation-prone state 

(Calamai et al. 2005). This intermediate or native-like state is believed to expose 

aggregation-prone regions, which are normally protected in the native protein, not able to 

initiate polymerization (Pawar et al. 2005; Khurana et al. 2001). Upon protein unfolding, 

the aggregation-prone regions increase its solvent exposure, such that in the second and 

subsequent steps the intermediate is driven by the hydrophobic effect or the propensity of 

exposed sequences to form cross-β sheets, to associate with other molecules. Different 

numbers of monomers may associate to form oligomers of various sizes, with the 

monomer conformations remodelled within oligomers in different ways. Oligomers may 

in turn grow into larger aggregates, whether amorphous or highly-structured as in the case 

of amyloid fibrils (Chiti & Dobson 2006; Stefani & Dobson 2003). 

 

The conformational stability of the native protein plays a crucial role in 

aggregation. The first step, conformational changes to the protein native state, is 

controlled by the conformational stability of the native protein relative to aggregation-

prone states. Energetically, this step is controlled by the free energy of unfolding, ΔGunf, 

which is the thermodynamic stability of the native protein conformation relative to the 

thermodynamic stability of the aggregation transition state, though this is often probed 

indirectly by the free energy of unfolding of the native protein relative to the fully 

unfolded state. As examples to help illustrate the point, most of the mutations associated 

with hereditary forms of protein misfolding diseases have been shown to decrease the 

conformational stability of the globular native fold (ΔGunf) and thus, promote aggregation 

(Chiti et al. 2003). Addition of chaotropes, such as urea or guanidinium chloride (GdmCl), 

also destabilize the conformational stability of the native protein, increasing the 

aggregation rate. On the contrary, by stabilizing the native state, which can be done by 

protein engineering with stabilizing mutations or the addition of stabilizers such as 

sucrose to the solution, increases ΔGunf and stabilizes the proteins against aggregation. 
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The second step, assembly into aggregates, is controlled by the half life or relative 

population of aggregation-prone states, their ability to form specific intermolecular 

interactions, and their colloidal stability in terms of intermolecular attractive and 

repulsive forces, the later reflected in the values of the osmotic second virial coefficient 

(B22). Assembly processes occur because of attractive intermolecular interactions 

(Roberts et al. 2014; Arzenšek et al. 2012). The osmotic second virial coefficient (B22) is 

a thermodynamic solution parameter that directly quantifies overall protein-protein 

interactions on the molecular level, which include hard-sphere, electrostatic, van der 

Waals’ forces, and all other short-range interactions (Neal et al. 1999). Positive B22 values 

indicate repulsive forces between protein molecules (protein-solvent interactions are 

favoured over protein-protein interactions). Negative B22 values reflect overall attractive 

forces (protein-protein interactions being favoured over protein-solvent interactions). 

Thus, another way to prevent aggregation is by using solution conditions that increase 

B22, such as pH and ionic strength. As an example, when proteins are highly charged, 

repulsive interactions between proteins stabilize protein solution colloidally, making 

assembly processes such as aggregation energetically unfavourable (Chakroun et al. 

2016). However, the protein might not be active under these conditions. 

 

Two major contributions to interactions between protein molecules in aqueous 

solutions are Coulombic electrostatic interactions and van der Waals’ interactions. The 

total energy of the interaction is the sum of the repulsive electric double-layer and the 

attractive van der Waals’ forces, modulated by electrolyte concentration (Chi et al. 2003; 

Roberts et al. 2014). When two protein molecules with the same charge approach each 

other, there is an energy barrier they need to overcome to come together. At distances 

shorter than the energy barrier, the molecules experience attractive forces, resulting in 

their aggregation. If the energy barrier is high, the molecules remain kinetically stable. If 

the energy barrier is small or negative, particles are colloidally unstable and they come 

together. This can be achieved by adding high salt concentration, which screens the 

double-layer repulsion between protein molecules. This can also be achieved when the 

pH of the solution is near the isoelectric point (pI) of the protein. 

 

Protein aggregation is thus controlled by both, conformational stability and 

colloidal stability, and depending on the solution conditions either could be rate limiting.  
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1.2.3 Protein stability 

 

The stability of a protein is defined as the tendency to maintain its native structure 

(Dobson 2003). For globular proteins in physiological conditions, the thermodynamic 

stability of the native protein conformation is only about 5-20 kcal/mol in free energy 

more stable than unfolded, inactive conformations. Thus, although the native structure is 

energetically favorable, proteins are only marginally stable structures. This small net 

conformational stability arises from a balance between large stabilizing forces and large 

destabilizing forces. The driving energy for protein folding is the energetic cost of 

allowing amino acids with hydrophobic side chains to be exposed to the solvent. As non-

polar molecules cannot participate in hydrogen bonding or ionic interactions, water 

molecules form organized, and thus energetically costly structures around these amino 

acid side chains to minimize contact. Burying the hydrophobic residues inside the protein 

core to limit solvent exposure, provides a large gain in configurational entropy of water 

molecules, which don't have to form these highly organized structures. On average, for 

protein folding, 85% of non-polar side chains are buried (Lesser & Rose 1990). The other 

forces contributing to the free energy of folding are hydrophobic interactions, hydrogen 

bonding, van der Waals’ forces, electrostatic forces, disulfide bonds and intrinsic 

propensities (local peptide interactions). The main force opposing protein folding is the 

protein’s conformational entropy, both local entropy (translational, rotational, and 

vibrational degrees of freedom on the molecular scale) and non-local entropy (excluded 

volume and chain configurational freedom), which are reduced in the folded state (Kumar 

et al. 2011).  

 

The low thermodynamic stability of the native state of proteins can be understood 

in the context that proteins need to be able to move to fulfil their functions. Protein 

dynamics range from small atomic fluctuations around an average structure to large-scale 

reorganizations and conformational changes, which occur on time-scales of femtoseconds 

to seconds. For instance, proteins such as enzymes need to catalyze reactions, receptors 

need to bind their ligands and transmit information, or membrane protein channels that 

only allow certain molecules to go through, cannot be rigid structures, rather they need to 

be flexible and dynamic entities. The protein native conformation is flexible, and there 

exists an ensemble of native states. 
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1.2.4 How solution conditions affect protein stability 

 

Protein aggregation has been found to depend strongly on the protein’s solution 

environment, such as temperature, pH, salt type and concentration, (cosolutes, 

preservatives, and surfactants), as well as the relative thermodynamic stability of the 

protein native state.  

 

Solution pH has a strong influence on the aggregation rate. pH affects electrostatic 

interactions, and the solution pH determines the total charge of the protein. Proteins are 

often only stable over narrow pH ranges, and outside these ranges aggregation is 

accelerated. pH affects both, the conformation of the protein and the electrostatic 

interactions between protein molecules (Chi et al. 2003). First, we consider the effect on 

the protein conformation. At pH near the isoelectric point (pI) of the protein, the net 

charge of the protein is almost zero, and proteins possess both positively and negatively 

charged groups. There are specific interactions, such as salt bridges, that generally 

stabilize the native state of the protein. At pH far from the pI, the number of charged 

groups in the protein is increased, resulting in increased charge repulsion that destabilizes 

the folded conformation, because the charge density on the folded protein is greater than 

on the unfolded protein (pH-induced unfolding). When the effect of pH on interactions 

between protein molecules is considered, these effects are reversed. At pH near the pI, 

anisotropic charge distribution on the protein surface could give rise to dipoles, 

potentially leading to aggregation. At pH far from the pI, proteins are highly charged, and 

repulsive interactions between proteins stabilize the protein colloidally, making assembly 

processes such as aggregation energetically unfavourable (Olsen et al. 2009). However, 

in this last case, even though protein aggregation is not favoured, the folded native state 

of the protein was lost. Thus, final formulations of therapeutic proteins are generally at 

pHs close to the pI of the protein. 

 

The thermodynamic stability of the native protein conformation, characterized by 

the free energy of unfolding (ΔGunf), typically shows a parabolic profile as a function of 

temperature. Protein unfolding can occur at both, high and low temperatures (Mahler et 

al. 2009). The process of cold denaturation is complex and not well understood. High 

temperatures provide enough energy to the system to promote aggregation. High 

temperature affects both, the conformation of the protein and the reaction kinetics (Chi et 

al. 2003). Increasing the temperature increases the thermal kinetic energy of the reactants, 
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resulting in increased diffusion, increased frequency of collisions, and collisions with 

enough energy to overcome activation energies. High temperatures also perturb the native 

protein conformation (Milardi et al. 1994). Initial studies at high temperatures suggested 

that aggregation takes place from the fully unfolded state of the protein, however, more 

recent evidence suggest that unfolding can also occur from partially unfolded 

conformations of the protein. This hypothesis is supported by recent work on Fab A33, 

where it was found that the melting temperatures (Tm) of the protein under different 

conditions were only correlated with aggregation kinetics that were determined at 

temperatures elevated to just below the Tm of the protein, where aggregation from the 

unfolded state therefore predominated. By contrast, Tm did not correlate with the 

aggregation kinetics determined at lower storage temperatures, indicating that global 

unfolding was no longer the cause of aggregation (Chakroun et al. 2016). Additionally, it 

is usually observed during heating that aggregation starts at temperatures below the 

equilibrium melting temperature of the protein, where complete unfolding has not yet 

occurred. For multi-domain proteins, such as antibodies and Fab fragments, thermal 

denaturation can be domain specific, as different domains have different stabilities 

(Vermeer & Norde 2000). 

 

Salt type and salt concentration also influence the stability of the protein 

formulation. Ions modulate the strength of electrostatic interactions between the charged 

groups. They affect both, conformational stability of the protein by affecting intra-

molecular charge-charge interactions, and assembly processes by affecting inter-

molecular charge-charge interactions. At low concentrations, the main effect of ions in 

solution results from charge shielding, which reduces electrostatic interactions, rather 

than destabilizing the native protein conformation. At high concentrations of certain salts, 

in addition to the charge-shielding effects, preferential binding of ions can occur, which 

can destabilize the native state (Arakawa & Timasheff 1982). Salts can be characterized 

depending on their interactions with water, as kosmotropes (oder-making) and chaotropes 

(disorder-makers). Kosmotropes tend to be small and have high charge density, which 

causes water molecules to favourably interact, which also stabilizes proteins. In contrast, 

chaotropes are larger and poorly hydrated, and have the opposite effect, they disrupt the 

structure of water, which may cause the denaturation of proteins (Curtis et al. 1998). The 

effect of different types of salts on the solubility of proteins was studied by Franz 

Hofmeister, who discovered that certain cations and anions had consistent effects, 

generating the Hofmeister series (Baldwin 1996; Collins 2004). The series classifies ions 
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in order of their ability to salt out or salt in proteins. The mechanisms are not entirely 

clear; however, recent simulation studies seem to indicate that the water molecules 

directly contacting the proteins may play a crucial role. 

 

Binding ligands, excipients, preservatives or surfactants are also often added to 

the final formulation of therapeutic proteins, to guarantee its stability. There are certain 

solutes (sugars, polyols, certain salts such as ammonium sulphate) that stabilize the native 

protein conformation, whereas there are other solutes (urea and guanidinium chloride 

(GdmCl)) that favour its unfolding. A proposed explanation for these different effects of 

solutes on protein conformation, is the differential binding of these solutes towards the 

folded or unfolded states of the protein. Denaturants such as urea and GdmCl exhibit 

greater binding to the denatured state of the protein than to the native state, favouring 

unfolding and aggregation. In contrast, stabilizers such as sucrose and glycerol, are 

preferentially excluded from the surface of a protein molecule. Preferential exclusion can 

be interpreted as negative binding. During unfolding, protein surface area increases, 

leading to more preferential exclusion. The net effect of greater negative binding to the 

unfolded state is to favour the native state. 

 

 

1.2.5 Characterization of aggregation-prone conformations 

 

Many proteins aggregate with first-order kinetics, implying a unimolecular rate-

limiting step linked to conformational changes or partial unfolding, rather than a rate-

limiting bimolecular association of two protein molecules (Chi et al. 2003). It is therefore 

important to characterize the nature of any conformational changes in the native state that 

can promote aggregation. These states are believed to expose aggregation-prone regions 

in the protein, which causes the protein to aggregate. For many years, experiments have 

tried to characterize the states that precede aggregation. Initial studies suggested that 

aggregation takes place from the fully-unfolded state of the protein, drawn from early 

observations of proteins at elevated temperatures. However, increasing evidence suggests 

that, at temperatures below the melting temperature (Tm) of the protein, aggregation takes 

place from near-native states, where only partial or transient local-unfolding of the protein 

occurs (Chakroun et al. 2016). 
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Many studies have reported the presence of near-native states of proteins that are 

aggregation-prone (Bemporad & Chiti 2009; Bemporad et al. 2012; Zhuravlev et al. 2014; 

Uversky et al. 2001; Khurana et al. 2001). Back in 1998, Kendrick et al. studied the 

aggregation of recombinant human interferon-γ (rhIFN-γ) and elucidated that aggregation 

proceeds through a transiently expanded conformational species within the native state 

ensemble (Kendrick et al. 1998). First, they observed experimentally that rhIFN-γ follows 

a first-order aggregation kinetics and that addition of sucrose stabilizes the protein against 

aggregation. By combining kinetic analysis with solution thermodynamics, they inferred 

that only a small (9%) expansion of the native state surface area is needed to form the 

intermediate state that precedes aggregation. This conformational expansion is only about 

30% of that required for the complete unfolding of rhIFN-γ. Additionally, they suggested 

that sucrose stabilizes rhIFN-γ against aggregation by shifting the equilibrium within the 

ensemble of rhIFN-γ native conformations to favor the most compact native species over 

the transiently expanded native species. Similar results were found for human granulocyte 

colony stimulating factor (rhGCSF), in which the expanded intermediate state preceding 

aggregation represented only 15% of the change in surface area observed for the 

completely unfolded conformation (Webb et al. 2001). Furthermore, they did hydrogen-

deuterium exchange experiments, which very often show that amide hydrogens buried in 

the interior of a native protein can exchange with the solvent, result of internal hydrogen 

bonds breaking and exposing backbone amides to solvent. Interestingly, they observed 

that the addition of sucrose reduced the rate of H-D exchange for rhGCSF. More recently, 

only transient local unfolding was found necessary to show faster aggregation for variants 

of human lysozyme, using hydrogen-deuterium exchange experiments (Canet et al. 

2002). Studies on hyperthermophilic acylphosphatase, superoxide dismutase 1, 

transthyretin, 2-microglobulin and Fyn SH3 also showed that global unfolding was not 

necessary, and that aggregation could be initiated from locally unfolded states (Chiti & 

Dobson 2009). NMR was able to resolve a structural folding intermediate of the 6.4 kDa 

Fyn SH3 domain that was more aggregation-prone than the native state (Neudecker et al. 

2012). However, this relied upon mutations that stabilized the folding intermediate, and 

so the use of NMR to characterize directly pre-aggregational states in unmutated native-

ensembles remains very challenging, particularly for larger proteins such as the 48 kDa 

humanized antibody fragment Fab A33.  
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1.2.6 Aggregation process 

 

Up until now, we have considered the mechanism and driving forces in the initial 

stages of aggregation. To form protein aggregates, monomer proteins need to come 

together and form high molecular weight assemblies. Protein aggregates, either 

amorphous or fibrillar, are characterized by a high content in β-sheet structures. 

Aggregates form regardless the secondary structure of the native protein conformation, 

and the stress experienced (such high temperature, low pH, addition of denaturants, stress 

to the system) (Hartl & Hayer-Hartl 2009). If aggregation is initiated from near-native 

aggregation-prone states, the early oligomers formed would retain native-like structure. 

If aggregation is initiated from fully unfolded or largely unfolded conformations, the 

initial oligomers formed will be disordered structures. As aggregation proceeds, both 

types of oligomers experience internal reorganizations to form the β-sheet structure 

present in the late aggregates (Orte et al. 2008). The stability of these species increases 

with time, to ultimately form stable fibrils. Amyloid fibrils are thread-like protein 

aggregates with a core region formed by repetitive arrays of β-sheets oriented 

perpendicularly to the fibril axis forming a structure known as cross-β (Nelson et al. 

2005). 

 

Protein aggregation has been characterised as a nucleation and growth mechanism 

(Invernizzi et al. 2012; Frieden 2007; Bemporad & Chiti 2012; Tanaka & Komi 2015). 

Two stages can be differentiated, an initial lag phase, where nucleation takes place, and 

an exponential phase, where accumulation and fibril growth occurs. During the initial lag 

phase, the soluble species (usually monomers) associate to form a nuclei, a poorly 

characterized state which formation influences the overall kinetics of the amyloid 

reaction. There is an energy barrier for nucleation (thermodynamically disfavoured 

phase), and once this energy is overcomed, growth of the nucleus occurs. It is known that 

seeding with pre-formed aggregates, reduces the lag time and promotes aggregation. The 

oligomers formed at this stage are a highly heterogeneous ensemble of species (Yang et 

al. 2018). During this phase, the solution remains clear. The lag phase comprises the 

conversion steps to the first species to display β-sheet conformation. Growth of these 

oligomers can happen through addition of monomers or polymeric association. The 

growth phase consists of multiple stages by which soluble species are progressively 

arranged at the ends of preformed β-sheet rich structures in a thermodynamically 

favourable process, until eventually the solubility limit is reached, and they precipitate 
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out of solution. Preformed fibrils can catalyse the formation of new fibrils by 

fragmentation, branching and/or nucleation on the fibril surface. During the manufacture 

and storage of therapeutic proteins, soluble aggregates can form. These are not visible to 

the eye, but if they form a nucleus, it can foster rapid assembly into large aggregates, 

regarding the product not usable. 
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2.1  Methods for protein structure determination 
 

Protein structures can be determined using methods including X-ray 

crystallography, nuclear magnetic resonance (NMR), cryo-electron microscopy (cryo-

EM) and small-angle scattering (SAS) techniques of X-rays (SAXS) or neutrons (SANS) 

combined with atomistic modelling. As of March 2017, the structures deposited in the 

Protein Data Bank (http://www.rcsb.org) (Westbrook et al. 2003), were determined 89% 

by crystallography, 9% by NMR, 1% cryo-EM, and <1% by other techniques (Gore et al. 

2017). X-ray crystallography, NMR and cryo-EM provide atomic-resolution (0.1 - 0.3 

nm) detail of the solved structures. X-ray crystallography provides structures of proteins 

of all sizes, however, formation of ordered crystals is necessary, to study their diffraction. 

Certain proteins have proven difficult to crystallize, such as flexible proteins, proteins 

with large surface carbohydrates and membrane proteins (Nogales & Scheres 2015). 

NMR allows the study of protein structure in solution, however, NMR encounters 

problems with macromolecules of high molecular mass (> 30-40 kDa) (Markwick et al. 

2008; Frueh et al. 2013; Poppe et al. 2013). Cryo-EM allows the study of proteins in their 

native state by quickly freezing them hydrated, and allows the study of large, complex 

and flexible structures (Murata & Wolf 2018; Wang & Wang 2017). SAS techniques 

determine the solution structures of proteins, from sizes approximately above 15 kDa, but 

they are low resolution techniques (2 - 4 nm). However, by combining the scattering data 

with atomistic models, a precision of 0.5 - 1.0 nm can be obtained (Perkins et al. 2008). 

In this thesis, I used small-angle X-ray scattering (SAXS) combined with atomistic 

modelling and single-molecule FRET, to study the structure and conformational changes 

of Fab A33 in different solution conditions, and this will be reviewed in more detail in 

this chapter. 

 

 

2.1.1 Small-angle X-ray scattering (SAXS) 

 

SAXS is a diffraction technique that characterizes the structure of proteins in 

solution. SAXS is normally used when proteins cannot be crystallized or where solution 

conditions affect the protein structure (Perkins et al. 2008). In this thesis, SAXS allows 

to study differences in the structure of Fab A33 under different solution conditions, of pH 

and ionic strength. 
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2.1.1.1 SAXS experiment - data acquisition 

 

In short, in a SAXS experiment, a focused and monochromatic beam of X-rays 

(wavelength of 1 Å) traverses a sample of the target protein in solution, and the X-ray 

photons are scattered by the electrons of the atoms of the protein, which are then detected 

by a 2D X-ray detector. X-ray photons are scattered by the electrons within the sample. 

X-ray photons cause electrons to oscillate at the same frequency as the incident wave. 

These oscillating charges become a dipole, which give rise to a spherical wave being 

emitted of the same energy and wavelength (elastic scattering). The resulting scattering 

pattern contains information about the size and shape of the protein (Mertens & Svergun 

2010).  

 

In X-ray crystallography, the beam of radiation is diffracted by the electrons in 

the crystal following Bragg's Law (! = 2$ sin()); where λ is the wavelength, d is the 

spacing between the planes in the atomic lattice, and 2θ is the angle between the incident 

ray and the diffraction planes). In SAXS, the protein molecules are randomly orientated 

in solution. Thus, the diffraction gives a radially-symmetric pattern, and in this case, is 

described as scattering. Bragg’s Law can be adapted to describe scattering, in terms of Q, 

the scattering vector, which is the difference between the scattered vector (ks) and the 

incident vector (ki), ks - ki (|,-| = |,.| = 2//!). The magnitude of the scattering vector 

is measured as: 

 

1 = 4/ sin())/!                                                                                                   (Eq. 2.1) 

 

where 2θ is the scattering angle and λ is the wavelength. The units of Q are nm-1 (inverse 

of the wavelength) (Perkins et al. 2008). Scattering experiments depend on elastic 

coherent scattering. Elastic scattering implies that the scattered beam has the same energy 

as the incident beam, but the direction of propagation has changed. Coherent scattering 

means that scattered waves interfere to give a single wave in a given direction, for 

example from two point scatters (Figure 2.1a), which contains information about the 

structure of the protein. The scattering signal is comprised of the sum of the contributions 

made by all pairs of scatterers to the scattering pattern. The scattered X-rays are then 

detected by a 2D flat X-ray detector situated behind the sample.  
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In a SAXS experiment, the intensities, I(Q), of the scattering curve are measured 

as a function of the scattering vector Q (Figure 2.1b). The radial average of the scattering 

pattern about the position of the direct main beam, gives a 1D SAXS profiles via 

integration, corresponding to the scattering curve I(Q) in reciprocal space. I(Q) can be 

interpreted as the Fourier transform (from real space to the reciprocal space) of the 

distance distribution of the point scatterers. The scattering curve of the protein alone is 

obtained by subtracting the low-scattering curve of the buffer to the high-scattering curve 

of the protein in the same buffer. If the sample is composed of monodisperse identical 

molecules, the scattering intensity is the average of a single molecule scattering over all 

orientations.  

 

In a typical SAXS scattering curve, I(Q) drops off quickly as Q values increase 

(Svergun & Koch 2002). Smaller scattering angles and smaller Q, correspond to lower 

resolution, where large distances between scatterers are detected allowing to see the shape 

of the protein. Higher scattering angles and higher Q, provide higher resolution structural 

information, corresponding to shorter distances between scatterers. Because X-rays 

interact with electrons, the scattering intensity is proportional to atomic number. At a 

scattering angle of zero, the intensity of scattering I(0) is proportional to the molecular 

mass of the molecule. If the concentration of the protein is high, this leads to interference 

between X-rays scattered from different molecules, known as inter-particle interference, 

visible at low angles (Q < 1 nm-1). 
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Figure 2.1. Schematic representations of a SAXS experiment. (a) An incident beam 

of monochromatic X-rays is scattered by two point scatterers (•) within a protein. The 

diffracted beams are in phase with each other but out of step by λ at the scattering angle 

2θ, causing constructive interference. The accumulation of these events at low angles 

values gives rise to the scattering pattern of the molecule. (b) Generation of a 

characteristic 1D scattering curve, ln I(Q) as a function of Q. The scattering from multiple 

molecules in random orientations, results in a characteristic intensity distribution in 

reciprocal space, which for monodisperse solutions of non-interacting molecules is 

equivalent to a single molecule averaged over all orientations. The scattering curve can 

be converted back to real space using an inverted Fourier transformation. Dmax and M 

correspond to the maximum dimension of the molecule and the most occurring distance 

between point scatterers. 

 

 

The intensity at each Q can be calculated by the Debye equation, which describes 

the geometrical relationship between individual scatterers within the molecules, and takes 

into account the differential orientations of the particles via rotational averaging in space: 

 

3(1) = 	∑ ∑ 6768
9:;(<=>?)

<=>?
87                                                                                   (Eq. 2.2) 

 

where fp and fq are the scattering lengths of the electrons at points p and q within the 

biomolecule, separated by a distance, @78 (Yang 2014). 

 

SAXS measurements are measured very close to the primary beam, at small 

angles (typically 0.1 - 10º). This angular range contains information about the shape and 

size of macromolecules. The scattering of sample and buffer is very similar except for the 

lowest angles. For scattering experiments, intense beams of X-rays are necessary, because 

the probability of a diffraction event when an X-ray approaches an electron is very low 

(10-25). Currently, there are many powerful X-ray synchrotrons, such as ESRF (Grenoble, 

France) and Diamond (Oxfordshire, UK). 
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2.1.1.2 SAXS data analysis 

 

Prior to data analysis, the collected scattering curves need to be pre-processed 

(Boesecke 2007). This includes monitoring for radiation damage and only merging scans 

that have not been damaged, and buffer subtraction. Two types of data analyses are 

typically performed first, to obtain the radius of gyration (Rg, being a measure of 

macromolecular elongation) and the intensity at zero Q (I(0)), this later proportional to 

the molecular weight (Mw). These analyses are Guinier analysis of low Q values, and 

distance distribution function analysis P(r) from the Fourier transformation of the full 

I(Q) scattering curve. 

 

X-ray scattering reveals the hydrated dimensions of the macromolecule. This 

means that SAXS observes the hydration layer, the layer of water molecules in direct 

contact with the protein. The electron density of this bound water is higher than that of 

bulk water, making this detectable by SAXS in the scattering of the protein. Previous 

work measured a mass ratio of approximately 0.3 gram of bound water per gram of 

protein (Perkins 1986). Consequently, the molecule appears larger by the presence of this 

hydration layer. 

 

By taking into account larger Q, more information about the structure of the 

protein can be extracted. This will be done by combining atomistic models of Fab A33 

generated using molecular dynamics simulations under the same experimental conditions, 

and comparing them to the experimental SAXS data. In this way, the models that best fit 

the data under each condition will be elucidated. 

 

 

Guinier Analysis 

 

The low Q region of the scattering curve contains information about the overall 

dimension of the molecule. Guinier realized that a Maclaurin series expansion could be 

used to describe the scattering curve. At low Q values, the higher order terms of that 

expression could be neglected, and the series could be approximated to the first two terms. 

By rearranging the expression, it takes the form: 

 

ln 3(1) = ln 3(0) −	DE
F1F/3                                                                              (Eq. 2.3) 
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where plotting ln I(Q) as a function of Q2, gives a straight line, with the slope being 

proportional to the radius of gyration (Rg) and from the extrapolated intercept at zero Q 

we can obtain I(0). This received the name Guinier approximation, and for it to hold true, 

it can only be used at low Q values, between Q*Rg of approximately 0.5 and 1.5 (Perkins 

et al. 2008). 

 

The linearity of the Guinier approximation informs about the monodispersity of 

the sample. Intermolecular interactions or aggregation are possible to detect in the lowest 

Q values, where the curve would curve upwards deviating from the straight line. From 

the I(0) values, information about relative molecular weights can be obtained. To confirm 

that no aggregation has taken place, monitoring I(0)/c (c is concentration) as a function 

of concentration or different solution conditions, should reveal a constant I(0)/c value, 

and not a dependence with concentration or solution condition (Nan et al. 2013). 

 

 

Distance distribution function analysis P(r) 

 

Using the full Q range of the scattering curve, an inverse Fourier transformation 

of the I(Q) scattering curve can be generated, to convert the curve from reciprocal space 

(nm-1) to real space (nm). The resulting curve receives the name distance distribution 

function, P(r). P(r) corresponds to the distribution of all the distances r between all the 

volume elements within the macromolecule, equivalent to a histogram of distances 

between pairs of points within the molecule. The P(r) curve allows a more direct 

visualization of the solution structure, which provides information about its maximum 

dimensions (Dmax, when P(r) becomes zero at large r) and shape. The maximum value of 

the curve corresponds to the most common distance occurring within the molecule. If a 

protein is spherical, the shape of the P(r) curve would be bell-shaped and its maximum 

would be approximately at Dmax/2, whereas if a protein contains several domains, the P(r) 

curve would display several shoulders that correspond to intra- and inter- subunit 

distances (Mertens & Svergun 2017). Additionally, the Rg and I(0) can also be measured 

from the P(r) curve, providing an alternative confirmation to these values, which should 

agree with the values calculated with the Guinier analysis. 
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H(@) = 	
I

FJK
∫ 3(1)1@MNO(1@)$1
P

Q
                                                                         (Eq. 2.4) 

 

The program used to calculate the P(r) function is GNOM software (Franke et al. 

2012). P(r) function involves integrals with infinite upper limits. In practice, the 

experimental scattering curve does not contain infinite values and data points close to the 

beam stop at low Q are missing. Thus, these integrals are constrained at the molecules 

maximum diameter, Dmax.  

 

 

Atomistic modelling of SAXS data 

 

The atomistic modelling of full SAXS curve to large Q values enables additional 

information about the solution structure of proteins to be obtained beyond the low 

resolution Rg and I(0) analyses. One option is ab initio modelling, where bead models are 

created to fit the experimental scattering curve, with resolutions of 2 - 4 nm (Svergun & 

Koch 2002). The combination of experimental scattering curves with atomistic models, 

allow resolutions of 0.5 - 1.0 nm to be obtained, and elucidation of the best models that 

fit the experimental data (Perkins & Bonner 2008; Perkins et al. 2009; Perkins et al. 2016). 

 

In this work, the software SCT was used for the atomistic modelling of the SAXS 

data (Wright & Perkins 2015). In brief, a large number of atomistic models of the target 

protein need to be generated first spanning different conformations. These atomistic 

models are transformed into a lower-resolution model (coarse grained), and a theoretical 

X-ray scattering curve is calculated for each of the models using the Debye equation 

adapted to spheres. To compare the theoretical scattering curves to the experimental 

curves, an R-factor is calculated, where models with the lowest R factors can be 

identified, representative of the average solution structure (Figure 2.2). 
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Figure 2.2. Schematic of the steps performed by SCT to identify the best atomistic 

models that fit the experimental SAXS curves. First, thousands of atomistic structures 

of the target protein spanning different conformations are generated. A grid 

transformation is performed on each structure to produce a lower-resolution (coarse- 

grained) sphere mode with an added hydration layer. A theoretical scattering curve is 

calculated for each sphere model using the Debye equation adapted to spheres. 

Theoretical curves are compared to experimental curves using the R factor. Low R factors 

represent good fits, and are inferred to represent the average solution structure. Figure 

obtained from (Wright & Perkins 2015). 

 

 

A large library of atomistic structures in different conformations of the target 

protein need to be generated first. The starting structure can be either a crystal structure 

or a structure generated using homology modelling. Libraries of structurally varied 

models can then be generated using molecular dynamics simulations or Monte Carlo 

simulations. Whilst a theoretical scattering curve can be calculated from an atomistic 

structure, this remains a computationally expensive task. SCT reduces the computation 

demand by converting the initial atomistic model into a coarse-grained structure. This 

transformation is done by substituting several atoms in the atomistic structure by bigger 

spheres of diameter less than the resolution of the scattering experiment. A grid of equal 

divisions is created that contains all atoms within the input structure. If more atoms than 

a specified cutoff number (usually four) are found inside a grid box, a sphere with a radius 

of half the grid box, substitutes these atoms in the final sphere model. A layer of water 
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molecules in the surface of the protein needs to be added in X-ray scattering experiments, 

because the hydration layer is visible by SAXS. To generate hydrated sphere models, 

every sphere in the protein surface is surrounded by hydration spheres of the same radius. 

Excess hydration spheres are then removed to match the hydrated volume of the protein, 

calculated from its sequence. 

 

Theoretical scattering curves from hydrated sphere models are calculated using 

the Debye equation adapted to spheres. This equation calculates all the distances from 

each sphere to the remaining spheres and sums the results. First, a histogram of the 

distances d between all spheres is constructed. Then, I(Q) curve as a function of Q is 

obtained from the Debye equation: 

 

3RSTU<(1) =
V(?)

V(Q)
= W(1) XOYI + 2OYF ∑ [\
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_
\`I a	                                      (Eq. 2.5) 

 

where dj is the distance between spheres represented by the jth histogram bin, Aj the 

number of distances that fall into bin j, m the number of bins in the histogram and n the 

number of spheres in the model. The squared form factor g(Q) is given by: 

 

W(1) = 	
[c(9:;?<Y?< de9?<)]K

?g<g
                                                                                     (Eq. 2.6) 

 

where r is the radius of the spheres in the model. If the diameter of the spheres is smaller 

than the resolution of the experiment, the squared form factor g(Q) becomes almost 

unchanged in the Q range of interest (Perkins et al. 2008). 

 

Lastly, theoretical scattering curves are compared to the experimental curves in 

the same Q range, to identify the best fits. To quantify the goodness of the fit, SCT uses 

the parameter R factor, by analogy with crystallography, using the formula: 

 

D = 	
∑hiVjk=l(?)iYm‖Vopqrs(?)‖h

∑iVjk=l(?)i
t	100                                                                       (Eq. 2.7) 

 

where η is a scaling factor used to match the theoretical curve to the experimental I(Q). 

The R factor is expressed as a percentage, with lower values representing better fits. 

Graphs of the R factor versus Rg values are of great utility in assessing the progression of 
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a modelling fit analysis. The Rg values of the models can be calculated from Guinier fits 

of the theoretical scattering curve in the same Q range that used experimentally. The 

models that better reproduce the experimental data are identified as representative of the 

average solution structure.  

 

 

2.1.2 Single-molecule FRET (smFRET) 

 

2.1.2.1 Background to single-molecule Förster Resonance Energy Transfer 

 

In microscopy, the diffraction limit states that it is not possible to focus a laser 

beam to a spot smaller than about λ/2, which is 200 nm in the far blue (400/2) and 350 

nm in the far red (700/2). Thus, in optical microscopy it is not possible to resolve objects 

that are closer than 200 nm. A typical protein, such as Fab A33 is 10 nm in size, which 

makes conformational changes not possible to be observed directly. However, they can 

be detected indirectly using FRET.  

 

In the late 1940s, Theodor Förster proposed the phenomenon now known as 

Förster resonance energy transfer (FRET). FRET is a mechanism of energy transfer 

between two light-sensitive molecules (Schuler 2013). It involves a donor and an acceptor 

molecule. First, the donor fluorophore is excited to an excited electronic state, which can 

then transfer the energy to a nearby acceptor fluorophore through a non-radiative process 

(Figure 2.3a). The transfer is based on the concept of treating an excited fluorophore as 

an oscillating dipole that can undergo an energy exchange with a second dipole having a 

similar resonance frequency. The efficiency of this energy transfer is inversely 

proportional to the sixth power of the distance between donor and acceptor (Eq. 2.8), 

making FRET extremely sensitive to small changes in distance (Deniz et al. 1999). 

Consequently, FRET measurements can be utilized as an effective “molecular ruler” for 

determining distances between biomolecules labeled with an appropriate donor and 

acceptor fluorophore when they are within 2 and 10 nanometers of each other. For FRET 

to take place, the emission spectra of the donor need to overlap the absorption spectra of 

the acceptor (Figure 2.3b). The efficiency of the energy transfer is a measure of the 

fraction of photons absorbed by the donor that are transferred to the acceptor, and has a 

dependency with the distance donor-acceptor as shown in Eq. 2.8 (Figure 2.4). R0 is the 
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Förster radius, the characteristic distance for a given pair of fluorophores that results in a 

transfer efficiency of 50% (Joo et al. 2008). 

 

v(@) = 	
wx
g

wx
gy<g

                                                                                                        (Eq. 2.8) 

 

 

 

 

Figure 2.3. Schematic of donor and acceptor spectra’s overlap for FRET to occur. 

(a) FRET visualized through a Jablonski diagram. Donor absorbs a blue photon and gets 

to the excited state. Donor can loose energy either by emitting a green photon through 

fluorescence, or by transferring energy to a nearby acceptor through the non-radiative 

process of FRET. This transfer of energy can only take place if the donor emission 

overlaps the acceptor excitation. (b) Absorption (dashed lines) and emission (continuous 

lines) spectres of donor and acceptor fluorophores. The spectral overlap between donor-

emission and acceptor-excitation is shown in gray. Images obtained from (Schuler 2013). 

 

 

Figure 2.4. Example of the relation between the transfer efficiency and the distance 

donor-acceptor (r) for a given pair of fluorophores. 
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Experimentally, FRET transfer efficiencies can be determined in different ways 

(Roy et al. 2008). The more common in smFRET experiments are using fluorescent 

intensities and fluorescent lifetimes (average time that a fluorophore spends in the excited 

state before returning to the ground state by emitting a photon). Fluorescent intensities 

are calculated from the number of photons emitted from the donor and the acceptor 

fluorophores, nD and nA respectively, and the transfer efficiency is calculated as shown in 

Eq. 2.9. Equivalently, transfer efficiency can be calculated from the fluorescence lifetime 

of the donor in the presence (tDA) and absence (tD) of the acceptor, as shown in Eq. 2.10.  

 

v =
z{

z{yz|
                                                                                                              (Eq. 2.9) 

v = 1 −	
}|{
}|

                                                                                                       (Eq. 2.10) 

 

In a typical smFRET experiment a protein is labelled with a donor and an acceptor 

fluorophore, such that the distance between them is less than 10 nm. In a solution of 

diffusing single-molecules, if a folded protein resides in the volume illuminated by the 

focused laser beam, excitation of the donor dye will result in rapid energy transfer to the 

acceptor dye because the dyes are in close proximity. Consequently, the majority of the 

fluorescence photons are emitted by the acceptor. Upon unfolding of the protein, the 

average distance between the donor and acceptor dyes will typically increase. As a result, 

the energy transfer rate is decreased, and the fraction of photons emitted by the acceptor 

is lower (Figure 2.5). The changes in fluorescence intensity from donor and acceptor can 

thus be used to distinguish between different conformational states of a protein (Borgia 

et al. 2011; Muller-Spath et al. 2010; Hofmann et al. 2010; Merchant et al. 2007). 
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Figure 2.5. FRET efficiency histograms for the identification of different protein 

conformations. When the protein is folded (N), donor and acceptor fluorophores are near 

and the FRET energy transfer between them is high. Upon unfolding of the protein (U), 

the distance between fluorophores increases and less photons from the acceptor are 

detected, decreasing the FRET efficiency. At a FRET efficiency of zero, the population 

of molecules without an active acceptor fluorophore is shaded in gray. Image adapted 

from (Schuler 2013).     

 

 

FRET combined with single-molecule detection, allows the detection of different 

conformations of the protein in solution. The challenge to detect a single molecule, is the 

presence of a huge excess of solvent molecules (~1022 water molecules in 1 ml) that 

contribute to the background, especially by scattering. Detection of a single molecule can 

be achieved by combining spatial selection and spectral selection. Spatial selection refers 

to reducing the observation volume as much as possible, as the background is proportional 

to the number of molecules illuminated. This is achieved by using confocal detection. In 

a confocal microscope, a pinhole is used to reject out-of-focus light which leads to a 

detection volume below 1 femtoliter. Spectral selection refers to selecting a detection 

method with high selectivity for the molecule of interest. Fluorescence allows the 

selection of a specific molecule by specific absorption and Stokes-shifted emission. For 

instance, a given fluorophore can be observed by its excitation at a specific wavelength 

and detection of its emitted light at longer wavelength (Schuler & Hofmann 2013).  
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2.1.2.2 Confocal single-molecule detection 

 

Given the interest for single-molecule FRET experiments, commercial 

microscopes have been developed to perform this type of experiments, such as the 

MicroTime 200 microscope (PicoQuant, Germany). In single-molecule experiments, 

pulsed picosecond diode lasers are used to excite the fluorophores. The series LDH from 

PicoQuant emit pulses as short as 50 ps. The lifetime of a fluorophore is on the order of 

1-10 ns, so the pulses are much shorter. The laser repetition rate and intensity can be 

adapted. Typical repetition rates are 40 MHz (25 ns) and 20 MHz (50 ns), this is to 

guarantee that there is enough time between pulses to collect even the longest times the 

fluorophore still emits a photon (Wang et al. 2005).  

 

The pulsed laser is directed to the sample for excitation (Figure 2.6a). First, the 

light goes through the main dichroic that separates excitation light from emission light. 

Shorter wavelengths will be reflected, whereas longer wavelength traverse through. Light 

is focused through a high numerical aperture microscope objective to a diffraction limited 

spot. Emission fluorescent light is then collected through the same objective and goes 

through a pinhole, to reject out-of-focus light. The combined used of the high numerical 

aperture objective and the pinhole generate a confocal volume below 1 fL.  

 

Fluorescently labeled proteins, with a FRET donor and acceptor, need to be 

diffusing in solution at very low concentration, 10-100 pM (10-9-10-11 M), to ensure that 

the probability of two molecules residing in the confocal volume at the same time is 

negligible (Schuler 2013). When a labeled protein enters the laser beam, the donor dye 

will get excited and the fluorescence from donor and acceptor will be collected. 

Fluorescence light from donor and acceptor is separated by wavelength using a dichroic 

mirror. Finally, fluorescence light is detected using very sensitive detectors capable of 

counting individual photons, known as avalanche photodiodes (APDs). State-of-the-art 

counting electronics record the arrival time of every photon with picosecond time 

resolution (Figure 2.6a).  

 

Each protein is detected as a “burst” of photons, which lasts for about a 

millisecond, corresponding to the time the protein lasts in traverse the confocal volume 

(Figure 2.6b). This means that bursts from hundreds to thousands of individual molecules 
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are typically collected in several minutes to hours. For every detected photon, we know 

the wavelength and the time of emission relative to the excitation pulse.  
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Figure 2.6. Confocal single-molecule set-up to detect FRET of freely diffusing 

molecules. (a) Components of a smFRET microscope. The excitation pulsed laser is 

reflected in the main dichroic and goes to the objective where it is focused on the sample. 

Emitted fluorescent light is collected back through the objective and passes through the 

main dichroic. Next, it goes through the pinhole and it is separated by wavelength in 

donor and acceptor emissions with another dichroic mirror. Emission photons are 

furthered filtered using band-pass filters for detection with avalanche photodiodes 

detectors. (b) Example of the data record for an smFRET experiment. Each bursts of 

photons represents a single molecule traversing the confocal volume. 

 

 

To analyze smFRET data, bursts of photons corresponding to a single-molecule 

traversing the confocal volume need to be identified first. When a single-molecule 

traverses the detection volume, a large number of photons with short times between them 

are emitted. In contrast, when no single molecule is present in the detection volume, 

background is characterized by less photons with longer times between them. This allows 

the identification and classification of single-molecule events (Ingargiola, Lerner, et al. 

2016). For every single-molecule burst identified, first several corrections are applied 

before calculations of transfer efficiencies. Bursts need to be corrected for background, 

differences in quantum yields and detection efficiencies of donor and acceptor, cross-talk 

between the channels, and direct excitation of the acceptor. Lastly, for every single-

molecule event, FRET transfer efficiencies are calculated using equation 2.9, where nD 

and nA are the corrected numbers of donor and acceptor photons in the burst, respectively.  
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2.2  Computational methods for predicting protein 

stability 

 
In this section, I summarize the main bioinformatics tools used to study the 

stability of Fab A33. This include molecular dynamic simulations to explore Fab 

dynamics under different solution conditions, in silico mutational studies to calculate 

free-energies and predict stabilizing mutations, and tools to predict the more aggregation-

prone regions in Fab A33. 

 

 

2.2.1 Homology modelling 

 

When no crystal structure of the target protein is available from experimental 

techniques (X-ray crystallography or NMR), homology modelling offers a computational 

solution to generating an atomic-resolution model of the protein. Homology modelling 

constructs the new structure from the amino acid sequence of the target protein and an 

available experimental structure of a related homologous protein, called a template. It 

also receives the name template-based modelling (Ginalski 2006). Homology modelling 

have been successfully used when sequence identity is greater than 30% (Venselaar et al. 

2010). When no amino acid sequence with high similarity is available, it is possible to 

predict the 3D structure of a protein from scratch, also called ab initio (or de novo) 

modelling. It has been shown that protein tertiary structure is better conserved than amino 

acid sequence. Evolutionarily, protein structure is conserved longer than amino-acid 

sequence and much longer than the corresponding DNA sequence. This implies that 

proteins with significant sequence identity, generally show high structural similarity. 

 

Generation of a homology model follows four steps, (i) selection of the template 

protein structure, (ii) alignment of the amino acid sequences of target and template 

proteins, (iii) construction of the 3D structure model and (iv) assessment of the quality of 

the model (Muhammed & Aki-Yalcin 2019). Normally, the first and second steps are 

done at the same time, by finding an available protein structure with high sequence 

identity, by using sequence alignment algorithms, such as BLAST, and searching the 

PDB database. The choice of template structure is important, as the quality of the final 
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homology model depends on the sequence alignment. The alignment should be inspected 

manually after to ensure that the most conserved residues are well aligned. Then, 

homology models can be created using software such as Modeller (Eswar et al. 2006), 

SWISS-MODEL (Schwede et al. 2003), Phyre2 (Kelley et al. 2015) and Rosetta (Leaver-

fay et al. 2011). Generally, sequence identities of 70% and higher, generate RMSDs of 

~1-2 Å between the Cα of target and template structures, and this decreases with sequence 

identity, to only RMSDs of 2-4 Å at 25% sequence identity. Loop regions show 

particularly high RMSDs, due to their flexibility and the higher sequence variability in 

these regions. The final homology model can be further studied using molecular dynamics 

simulations and verified using experimental data. 

 

 

2.2.2 Molecular dynamic simulations  

 

Molecular dynamics (MD) are computational simulations that allow to study the 

dynamic evolution of the system, such as a protein in solution, by studying the motion of 

its atoms. MD simulations provide insights into protein stability, protein conformational 

changes, protein folding and interactions between molecules (for proteins, DNA, 

membranes or ligands). MD simulations can also be applied to drug design and structure 

prediction by simulating folding of the polypeptide chain from random coil (ab initio) 

(Hospital et al. 2015; Toofanny & Daggett 2012). 

 

Usually, for large molecules such as proteins, simulations based on classical 

Newtonian mechanics are used. Quantum mechanics based modelling is also possible, 

however, it is normally used for small molecules, as it becomes computationally 

prohibitively expensive for large molecules. The concept behind MD simulations is that 

the position and velocity of each atom in the protein can be determined by solving 

Newton’s equations of motion and by using a force field. First, energy functions (force 

fields) are stablished, which allow us to calculate the force experienced by any atom given 

the positions of the other atoms, using the equation: 

 

~(t) = 	−�Ä(t)                                                                                                 (Eq. 2.11) 
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where x represents coordinates of all atoms, and U is the potential energy function. Once 

the forces acting on individual atoms are obtained, classical Newton’s laws tell us how 

those forces will affect the motions of the atoms. Using Newton’s second law:  

 

~ = ÅÇ                                                                                                                (Eq. 2.12) 

 

where F is force on an atom, m is mass of the atom, and a is the atom’s acceleration. From 

the acceleration it is possible to calculate the velocity of the atom, and with the velocity 

we can update the atom positions. These equations can only be solved using numerical 

approaches. A time step shorter than the fastest movements in the protein should be used. 

Normally, time steps of 1 and 2 femtoseconds (10-15 s) for atomistic simulations are used. 

Thus, the basic algorithm for MD simulations is that at each time step (1 or 2 fs), forces 

acting on each atom are solved using a force field, and the atoms are moved by updating 

their velocity and position solving Newton’s laws of motion.  

 

A force field (potential function) describes all the interactions between atoms, 

using mathematical expressions to describe the potential energy (Weiner et al. 1984; 

Hagler et al. 1974). These include bond lengths (described as springs), bond rotations 

(described as springs), dihedral angles (described as periodic functions), improper angles 

(described as springs), van der Waals interactions (described by the Lennard-Jones 

potentials) and electrostatic interactions (described by Coulomb’s law). They consist of 

both, bonded components, which includes stretching, bending, torsion and improper 

interactions, and non-bonded components, which includes both electrostatic and Van der 

Waals. The parameters in these expressions (such as atomic radius, atomic charge, 

equilibrium bond length, angle and dihedral) are obtained from comparisons of the force 

field with both, experimental and quantum mechanical data. Many force fields are 

available to generate MD simulations, and they differ in the way they are parameterized. 

Three major force fields are used for MD simulations, CHARMM (Brooks et al. 2009), 

AMBER (Case et al. 2005) and OPLS-AA (Kaminski et al. 2001). Not to confuse with 

the software packages available to perform MD simulations, which include CHARMM, 

AMBER, Gromacs (Abraham et al. 2015) and NAMD (Phillips et al. 2005). The dominant 

package for visualizing the results of the simulations is Visual Molecular Dynamics 

(VMD) (Humphrey et al. 1996). 
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There are two types of solvent, explicit and implicit. In an explicit solvent (such 

as the TIP3P, SPC/E and SPC-f water models), water molecules and ions are included, 

whereas in an implicit solvent the water effect is modelled (mathematical model to 

approximate the average effects of the solvent). An explicit solvent is more accurate, but 

it is more computationally expensive because it adds many more molecules to the 

simulation. In contrast, an implicit solvent is less accurate but faster. In an implicit 

solvent, certain phenomena such as conformational changes which reorient water dipoles, 

bridging water molecules and hydrogen bond fluctuations are neglected (Kleinjung & 

Fraternali 2014). In an explicit solvent, usually periodic boundary conditions are used, 

which imply that a water molecule that goes off the left side of the simulation box will 

come back in the right side.  

 

MD simulations are normally carried out to nanoseconds (10-9 s) or microseconds 

(10-6 s). Structural changes in proteins can take place in nanoseconds, microseconds, 

milliseconds or even longer. However, many time steps need to be calculated for 

nanoseconds or microseconds trajectories (millions to trillions), which demand a high 

amount of computational power. Until recently, simulations of 1 microsecond were rare. 

Advances in computer power have enabled microsecond simulations, but simulation 

timescales still remain a challenge (Hospital et al. 2015). 

 

Molecular mechanics force fields are inherently approximations, which cause MD 

simulations to have limitations. For example, hydrogen bonds have a partially quantum 

mechanical nature, however, they are described as Coulomb interactions of atomic point 

charges. Every atom is assigned a fixed partial charge at the beginning of the simulation, 

whereas electron clouds are constantly shifting according to their environments, so that 

partial charges would be better represented as dynamic. Additionally, covalent bonds 

cannot break or form during (standard) MD simulations, which implies that the 

protonation state of acid and basic groups does not change during the simulations. 
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2.2.3 Computational prediction of protein ΔΔG upon mutation 

 

Computational programs were developed to be able to predict the effect of 

mutations on the stability of proteins. Specifically, these methods calculate the changes 

in Gibbs free energy due to a point mutation, ΔΔG, which correspond to the difference 

between the ΔG of the protein carrying the mutation minus the ΔG of the WT protein. 

These software allow the prediction of beneficial mutations to enhance protein stability, 

from point mutations that reduce the free energy of the protein. Among the best known, 

are FoldX (foldx.crg.es) (Zhang et al. 2012) and Rosetta (www. rosettacommons.org) 

(Kellogg et al. 2011) software.  

 

Both software require the 3D structure of the protein. Thus, the quality of the 

protein structure is crucial for accurate calculations. Then, they use energy functions to 

calculate the Gibbs free energy. FoldX and Rosetta differ in that Rosetta uses a physical 

energy function to simulate the forces between atoms, whereas FoldX uses statistical 

potentials and the parameters in the energy calculation were determined in laboratory 

experiments (from datasets of experimentally characterized protein mutants). Both 

software are better at predicting stability trends than quantitatively estimating the value 

of the stabilization; where total energies are not able to predict experimental results. 

Additionally, the accuracy of these algorithms remains low, that is why they are often 

combined to find coincident stabilizing mutation predictions (Buß et al. 2018; Wijma et 

al. 2014). 

 

There are several reasons as to why the accuracy of computational approaches for 

stability engineering remains low (Magliery 2015). The key forces that underlie protein 

stability are well understood, such as the burial and tight packing of hydrophobic residues, 

the ejection of ordered solvent, and the formation of hydrogen bonds and other 

electrostatic interactions, conformational entropy, and bond strain. But some of them are 

hard to calculate. For example, the gain in solvent entropy that largely underlies the 

hydrophobic effect is not explicitly included in these calculations. Further, solvation is 

hard to consider due to the challenge of polarizability. The free energy of folding, ΔG, 

between the folded state and the unfolded state, is also challenging to calculate due to the 

difficulty in modeling the unfolded state. It is also very difficult to model the effects of 

misfolding, or to account for alternative conformations. Yet, many examples exist where 

these algorithms have been successfully applied to predict stabilizing mutations that have 
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been confirmed experimentally. These findings suggest that existing energy functions 

take into account important stabilizing effects. Core packing is believed to be the 

dominant factor, which is also correlated to incomputable factors such as solvent entropy. 

 

 

2.2.4 Predicting aggregation-prone regions 

 

The β-sheet structure typical of aggregates, is composed of hydrophobic amino 

acids with a high β-sheet propensity and a low net charge. The regions in proteins capable 

of forming these β-sheet structure are termed aggregation-prone regions (APRs) (Ventura 

et al. 2004; Pawar et al. 2005). APRs are generally short sequence segments (5-15 amino 

acids) that display high hydrophobicity, low net charge and a high tendency to form β-

structures (De Baets et al. 2014). Also, generally APRs are located in the interior of 

proteins, protected from the solvent. And if they were to become exposed, they could 

trigger aggregation by self-associating. 

 

Several methods have been developed to identify APRs in proteins. These 

methods can be separated in sequence-based and structure-based methods. Sequence-

based APR predictors only use the protein sequence as input, equivalent to the fully 

unfolded state. Predictions are based on either the intrinsic properties of amino acids, or 

their compatibility with protein structural features in known amyloid fibril structures. 

Examples include TANGO (Fernandez-Escamilla et al. 2004), AGGRESCAN 

(Conchillo-Solé et al. 2007), PASTA (Walsh et al. 2014), MetAmyl (Emily et al. 2013), 

FoldAmyloid (Garbuzynskiy et al. 2010), FishAmyloid (Gasior & Kotulska 2014) and 

Waltz (Maurer-Stroh et al. 2010). They all consider the hydrophobicity, charge and 

secondary structure propensity of short sequences of the amino acid sequence. TANGO 

additionally looks at the propensity to form β-sheet structures instead of other structures 

such as α-helix, β-turn, β-strand and random coil. AGGRESCAN has an aggregation 

propensity scale for each of amino acid, calculated from the relative solubility of point 

mutants of amyloid β-peptides in E. coli. FoldAmyloid considers the packing density, 

where regions with a strong packing density are considered amyloidogenic. PASTA is 

based on the assumption that β-strands constituting the amyloid fibril have a preference 

for an in-register parallel or anti-parallel arrangement with minimal energy. Creating a 

dataset with these strictly defined secondary structures allowed the calculation of a 

pairing energy for each possible pair of residues, which is then used to score all possible 
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stretches. Lastly, as these predictions do not always agree, Amylpred2 was built which is 

a consensus from up to eleven existing algorithms (Tsolis et al. 2013). 

 

Sequence-based APR predictors identify the APR regions in proteins. However, 

these APRs need to become exposed to the solvent in order to trigger aggregation, either 

by structural dynamics or partial unfolding. Thus, structure-based methods were 

developed, which take into account the 3D structure of the protein and identify the APRs 

likely to become exposed. Examples of structure-based APR predictors include 

AGGRESCAN 3D (Zambrano et al. 2015), AggScore (Sankar et al. 2018), SAP 

(Chennamsetty et al. 2009) and Solubis (Van Durme et al. 2016). AGGRESCAN 3D 

combines the information provided by AGGRESCAN with structural information to 

identify spatially proximal aggregation-prone regions. Additionally, AGGRESCAN 3D 

allows fast simulations to explore the flexibility and dynamic regions of the protein. 

AggScore uses the distribution of hydrophobic and electrostatic patches on the surface of 

the protein, and additionally taking into account the intensity and relative orientation of 

these patches to predict the APRs. Lastly, SAP uses atomistic molecular dynamics 

simulations in combination with a new way to calculate aggregation propensity, which 

they termed spatial aggregation propensity (SAP). SAP measures the exposed 

hydrophobicity of certain patches on the protein surface, and this can be monitored during 

the simulations. SAP identifies the extent of aggregation prone hydrophobic patches 

exposed on the surface of the protein, which could be natively exposed, exposed due to 

dynamic fluctuations or due to conformational changes. 
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2.3  Cloning and protein expression 
 

2.3.1 Cloning and site-directed mutagenesis 

 

2.3.1.1 CPEC as cloning method 

 

In this thesis, I used the method circular polymerase extension cloning (CPEC) to 

clone Fab A33 into the new expression plasmid pET-29a(+). CPEC is a sequence-

independent cloning method, in which overlapping flanking regions are created in the 

insert(s) and vector using PCR, followed by the CPEC reaction (Quan & Tian 2011). In 

a typical CPEC reaction, linear double-stranded insert(s) and vector are first heat-

denatured, and the resulting single strands are then annealed with their overlapping ends 

and extended using each other as a template to form double-stranded circular plasmids.  

 

For a successful CPEC, the overlapping regions are designed to have a high and 

close melting temperatures (within 60-70 °C and ± 2 °C), which eliminates vector 

reannealing and concatenation of inserts. CPEC primers were designed using the 

Gibson/Assembly option in SnapGene software (from GSL Biotech; available at 

snapgene.com), and purchased from Eurofins (Wolverhampton, UK) (Table 2.1). Stock 

solutions of primers at 100 µM were first prepared, and then aliquots of 10 µM (10x 

working solution) were prepared and stored at -20 oC. Primer Tm’s were measured using 

the calculator:  

http://www.basic.northwestern.edu/biotools/oligocalc.html 

 

First, insert and vector carrying the overlapping sequences are prepared using 

PCR (Tables 2.2 and 2.3). The annealing temperature for Q5 polymerase was selected as 

the Tm of the primer with lowest melting temperature +3 °C. The extension time was 

measured as 20 s per kilobase of the final product (7.425 kb). The finished PCR product, 

5 µL, were run in a 8% agarose gel containing SYBR safe stain (provided as a 10.000x 

solution), at 120 V for 40 min, in 1X TBE buffer (Sigma Aldrich, USA). I loaded 2 µL 

of the amplified reaction with the corresponding 6X loading dye (NEB, USA). 1 Kb 

ladder (NEB, USA) was used as a size reference. Bands were visualized under UV at 302 

nm (Alphaimager mini, Protein simple, USA). The molecular weight of the amplified 

product were confirmed. 
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Insert DNA was purified, first excised using a scalpel and then digested using 

QiaQuick gel purification kit (Qiagen, Holland). Vector DNA, was first treated with Dpn 

I enzyme to digest the original pET-29a(+) empty vector (methylated DNA). 1 µL of 

DpnI enzyme was added to the PCR amplified vector and incubated at 37 °C for 10 min, 

and heat inactivated at 80 °C for 20 min. Lastly, purification of the vector was done with 

E.Z.N.A. Cycle Pure Kit (Omega). DNA concentrations were measured for absorbance 

at 280 nm on a Nanodrop 2000 (Thermoscientific, USA). 
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Table 2.1. Primers used to clone Fab A33 into pET-29a(+) using CPEC. Overlap is indicated in blue color. 
 

Primer name Sequence (5’-3’) Tm PCR amplification (°C) Tm CPEC overlap (°C) 

Insert.REV GGCTTTGTTAGCAGCGATATGACGACAGGAAGAGTTTGTAGAAACG 60.4 
63 

Vector.REV TTCCTGTCGTCATATCGCTGCTAACAAAGCCCGAAAGG 56.7 

Insert.FOR TGATGTCGGCGATACCATCGGAAGCTGTGGTATGG 56.3 
62.8 

Vector.FOR CAGCTTCCGATGGTATCGCCGACATCACCGATGGG 58.6 

 

 

Table 2.2. PCR setup for amplification of insert and vector containing CPEC overlapping sequences. 
 

 Insert Vector 

Reagents Vol (µL) Final amount Vol (µL) Final amount 

MilliQ water 32.5  2.5  

5x Q5 Buffer 10 1x 10 1x 

DNA (Insert 50 ng/µL; Vector 10 ng/µL) 1 50 ng 1 10 ng 

Forward primer (10 µM) 2.5 (Insert.FOR) 0.5 µM 2.5 (Vector.FOR) 0.5 µM 

Reverse primer (10 µM) 2.5 (Insert.REV) 0.5 µM 2.5 (Vector.REV) 0.5 µM 

dNTPs (10 mM) 1 200 µM 1 200 µM 

Q5 DNA Polymerase 0.5 1 unit 0.5 1 unit 

Total 50  50  
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Table 2.3. PCR conditions for amplification of insert and vector containing CPEC 

overlapping sequences. 

 

Step Cycles Insert Vector 

Initial denature 1 98 °C, 30 s 98 °C, 30 s 

1. Denature 

2-31 

98 °C, 10 s 98 °C, 30 s 

2. Anneal 59 °C, 30 s 60 °C, 30 s 

3. Extend 72 °C, 60 s 72 °C, 60 s 

Final extension 32 72 °C, 5 min 72 °C, 5 min 

Hold  4 °C, µ 4 °C, µ 

 

 

Insert and vector were then combined to assemble the final product, where they 

serve as template of each other. Parameters that can be varied in this reaction are the 

concentration of vector DNA (typically 5-10 ng/µL), the ratio of insert to vector (typically 

1-30:1 insert to vector) and the number of cycles (typically 5-30 cycles) (Speltz & Regan 

2013). We used  a concentration of 2 ng/µL of vector DNA, and the ratio that best worked 

for us was 30:1 insert to vector (Table 2.4). We had a vector stock of 100 ng/µL, and we 

added 1 µL to the reaction to add 100 ng, which correspond to 0.024 pmol of vector DNA. 

We calculated the µL necessary to add 30 times more mols of insert than vector using Eq. 

2.13. Then, we used 10 cycles, through 98 °C denature, 55 °C annealing of the primer 

homologous sequences and finally 78 °C (Table 2.5).  

 

!"#$
%& =

(#)(	+,-./0	1	2333
4567	!5896	1	:;3	<5$=#)6                                                                              (Eq. 2.13) 

 

After the CPEC reaction, the double-stranded circular plasmids with one nick in 

each strand can be directly transformed into competent host cells, and host DNA repair 

enzymes seal the nicks in vivo. 5 µL of the CPEC reaction were directly used to transform 

via heat-shock NEB 10b E.coli competent cells (New England Biolabs, Ipswich, US), 

and plated overnight on 50 µg/mL Kanamycin LB agar plates to form colonies. The 

following day many colonies grew and some of them were picked to check the CPEC 

reaction.  
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The chosen colonies were grown over night in 5 mL of LB media in a 50 mL 

falcon tube containing 50 µg/mL of kanamycin, incubated at 200 rpm and 37 °C. Part of 

the overnight culture was used to prepare glycerol stocks and part of the culture to extract 

the plasmid DNA. To make a glycerol stock, 500 µL of the overnight culture was then 

mixed with 500 µL of a 50% glycerol solution (v/v) and stored at -80 °C. For plasmid 

extraction, the overnight culture was first centrifuged at 5000 g for 10 min at 4 °C. The 

supernatant was discarded, and plasmid DNA was extracted from the cell pellet using 

QIAprep spin miniprep kits (Qiagen, Holland) and the plasmid was stored at -20 °C. DNA 

plasmid was also used for sequencing using Source Bioscience (UK) pre-paid voucher 

Sanger sequencing using a 100 ng/µL and 5µL sample per reaction, using the sequencing 

primers (Table 2.6).  

 

Table 2.4. CPEC setup. 

 I:V, 30:1  

Reagents (initial concentration) Vol (µL) Final amount 

MilliQ water 12.5  

5x Q5 Buffer 10 1x 

Vector DNA (100 ng/µL) 1 100 ng 

Insert DNA (100 ng/µL) 15  

dNTPs (10 mM) 1 200 µM 

Q5 DNA Polymerase 0.5 1 unit 

Total 50  

 

 

Table 2.5 CPEC conditions. 
 

Step Cycles Conditions 

Initial denature 1 98 °C, 30 s 

1. Denature 

2-11 

98 °C, 10 s 

2. Anneal 55 °C, 30 s 

3. Extend 72 °C, 2min 29s 

Final extension 12 72 °C, 5 min 

Hold  4 °C, µ 
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Table 2.6. Sequencing primers to confirm the cloning of Fab A33 into pET-29a(+). 
 

Primer name Sequence (5’-3’) Tm (°C) 

pET29Fab_for AGGAATGGTGCATGCAAGG 51.1 

pET29Fab_mid AGTGGAAGGTGGATAACGC 51.1 

T7 term CTAGTTATTGCTCAGCGG 48 

 

 

 

2.3.1.2 Site-directed mutagenesis 

 

Mutations were made using the QuickChange Lightning Site-Directed 

Mutagenesis Kit (Agilent Technologies, Santa Clara, USA). Mutations were introduced 

one at a time. Primers were designed using the mutagenesis option in Snapgene, and 

purchased from Eurofins (Wolverhampton, UK) (Table 2.7). A single point mutation was 

introduced in a supercoiled double-stranded DNA, using two primers, each 

complimentary to opposite strands of the vector, where both contain the desired mutation. 

The primers were first extended in a PCR reaction using PfuUltra HF DNA polymerase 

(Tables 2.8 and 2.9). The final PCR product was first treated with Dpn I enzyme for 5 

min at 37 °C, to digest the original vector that does not contain the mutation and is 

methylated. The products were run on an agarose gel to check that the PCR worked. 

Lastly, the final nicked plasmid containing the mutation was transformed into NEB 10b 

E.coli competent cells via heat-shock. The introduction of the mutations was confirmed 

by sequencing, using the sequencing primers (Table 2.10). To form the double mutants, 

an additional mutation was incorporated using one of the previous single-mutants and the 

same PCR conditions as in Tables 2.8 and 2.9. The incorporation of the double mutations 

was finally confirmed using primers in Table 2.10. 
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Table 2.7. Primers used to introduce mutations via site-directed mutagenesis. The desired mutation is highlighted in red color. 

 

Mutation Sequence (5’-3’) Tm (°C) Tm each side (°C) 

LC-K126pAzF 
AAA to TAG 

(a376t_a377a_a378g) 

CCATCTGATGAGCAGTTGTAGTCTGGAACTGCCTCTG 
67.8 48 46 

CAGAGGCAGTTCCAGACTACAACTGCTCATCAGATGG 

LC-S156C 
TCG to TGC 

(c467g_g468c) 

GGATAACGCCCTCCAATGCGGTAACTCCCAGGAG 
69.2 46 45 

CTCCTGGGAGTTACCGCATTGGAGGGCGTTATCC 

HC-S117pAzF 
TCT to TAG 

(c350a_t351g) 

CACTGGTGACAGTGTCTTAGGCCTCAACGAAGGGC 
69.1 47 47 

GCCCTTCGTTGAGGCCTAAGACACTGTCACCAGTG 
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Table 2.8. PCR setup for site-directed mutagenesis reactions.  
 

Reagents Vol (µL) Final amount 

MilliQ water 40.3  

10x Reaction buffer 5 1x 

DNA: pET-29a(+) with Fab (112 ng/µl) 0.5   50 ng 

Forward primer (10 µM) 2.5 11 pmol (125 ng) 

Reverse primer (10 µM) 2.5 11 pmol (125 ng) 

dNTPs (10 mM) 1 200 µM 

Quick Change Enzyme 0.5 1 unit 

Total 50  

 

 

Table 2.9 PCR conditions for site-directed mutagenesis reactions. 
 

Step Cycles Conditions 

Initial denature 1 95 °C, 2 min 

1. Denature 

2-19 

95 °C, 20 s 

2. Anneal 60 °C, 10 s 

3. Extend 68 °C, 3 min 43s 

Final extension 20 68 °C, 5 min 

Hold  4 °C, µ 

 

 

Table 2.10. Sequencing primers to confirm the generation of Fab A33 mutants. 
 

Primer name Sequence (5’-3’) Tm (°C) 

Mutations_LC TCATCTATTTGGCCTCCAAC 49.7 

Mutations_HC TGTGCAGCATCTGGATTC 48 
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2.3.2 Protein expression and purification 

 

2.3.2.1 Expression of Fab A33 WT and mutants 

 

Plasmid vector pTTOD containing Fab A33 WT (C226S) was transformed via 

electroporation into W3110 E. coli electro-competent cells for protein expression. For 

Fab A33 mutants to be used in smFRET, plasmid pET-29a(+) (containing Fab gene) and 

plasmid pEVOL-pAzF (Young et al. 2010), were co-transformed into C321.DA.exp 

(“amberless)” E. coli (Lajoie et al. 2013) competent cells via the heat shock method, for 

expression. Colonies were first grown in agar plates, followed by growth of individual 

colonies in overnight liquid cultures, and storage as glycerol stocks. 

 

Expression of Fab A33 was done in bioreactors, as they allow for the control of 

pH, temperature, dissolved oxygen and nutrient concentration, thus reaching much higher 

cell densities than in shake flasks. First, a pre-culture was grown in 2xPY complex media 

(16 g/L of phytone, 10 g/L yeast extract and 5 g/L NaCl). In the case of Fab WT, 10 

μg/mL of tetracycline were added (to maintain pTTOD plasmid). For Fab A33 mutants, 

they contained 50 μg/mL kanamycin (to maintain pET-29a plasmid) and 34 μg/mL 

chloramphenicol (to maintain pEVOL-pAzF plasmid). These pre-cultures were grown in 

20 mL in 250 mL shake flasks, inoculated with the respective glycerol stock, and grown 

at 37 ºC, 250 rpm for approximately 4 h, until the OD600 reached 1-2. Then, 2 mL of these 

cultures were transferred into SM6G defined media (5.2 g/L NaH2PO4, 3.3 g/L Na2HPO4, 

4.4 g/L KCl, 1.04 g/L MgSO4, 4.16 g/L citric acid, 0.25 g/L CaCl2, 112 g/L glycerol, 10 

ml/L SM6 elements). As before, the corresponding antibiotics were added. Additionally, 

2.5 μg/mL of D-biotin were added to the expression of Fab mutants, because the 

C321.∆A.exp strain is auxotrophic for D-biotin, and needs to be supplemented in minimal 

media. These cultures of 20 mL in 250 mL shake flasks, were incubated at 30 ºC, 200 

rpm, for 12-16 h, until an OD600 of 4-5 was reached.  

 

Fermentation was done in 250 mL DASbox Mini Bioreactors (Hamburg, 

Germany). 20 mL of the over-night pre-culture were used to inoculate 150 mL of SM6G 

media (in a total volume of 170 mL). For Fab A33 WT, no antibiotics were added. For 

Fab A33 mutants, antibiotics were added (50 μg/mL kanamycin and 34 μg/mL 

chloramphenicol) to guarantee the maintenance of both plasmids, together with 2.5 

μg/mL D-biotin. During the fermentation, a homogeneous internal environment was 
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maintained at 30 ºC, pH 6.95 and pO2 above 30%. pH of 6.95 was maintained by the 

addition of dilute acid and base (10% v/v sulphuric acid or 15% v/v ammonium hydroxide 

respectively) all coordinated by a Biostat digital control unit. Aeration of the culture 

medium was sustained by sparging with of sterilized air at 20 L/min ensuring a dissolved 

oxygen tension (DOT) 30% (assuming the oxygen concentration of the atmosphere is 

equivalent to 100%). When inadequate aeration levels were reached with a peak impeller 

rotation rate of 1400 rpm, the feed gas was blended with pure oxygen in a 60:40% v/v 

ratio respectively. Foaming was mitigated through the addition of polypropylene glycol 

(PPG) 2000, again controlled using the BIOSTAT digital control unit.  

 

Once an OD600 of 40 was reached, a 150 mL magnesium shot (1M Magnesium 

sulphate heptahydrate solution) was added to the vessel, and the culture temperature 

reduced to 25 ºC. At this point, for Fab A33 mutants, the nonstandard amino acid pAzF 

was added to a final concentration of 1 mM (Chem-Impex International, Wood Dale, US). 

For Fab WT, once the carbon source within the media was finished, indicated by a spike 

in DOT, fermentation was switch to fed-batch, where 80 %w/w glycerol solution was 

continually added to the fermenter at 0.7 mL/h. Fab WT expression was induced with 

addition of 0.2 mM IPTG (final concentration), and the culture was harvested 

approximately 24 hours post induction. For Fab A33 mutants, no spike in DOT was 

observed. Thus, once an OD600 of 100 was reached, expression of Fab A33 mutants was 

induced by addition of 0.2 mM IPTG and 0.2% (w/v) and L-(+)-arabinose (inducer for 

pEVOL-pAzF), (final concentrations). Cells were harvested approximately 24 hours post 

induction. All cells were pelleted by centrifugation at 10,000 rpm and 4°C for 1h 30 min, 

before storage of the cell pellet at -20 ºC. 

 

 
2.3.2.2 Purification of Fab A33 WT and mutants 

 
The recovery of soluble Fab A33 from the E. coli periplasm was done via chemical 

extraction with Tris/EDTA buffer (100 mM Tris pH 7.4, 10 mM EDTA), which 

destabilize the outer membrane and cell wall while leaving the inner membrane largely 

intact. Cell pellets were re-suspended in 150 mL of this lysis buffer, and let to react over 

night at 50 ºC and 100 rpm. A centrifugation step of 1.5 h and 13000 rpm followed, and 

the Fab A33 rich supernatant was collected for purification.  
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Fab A33 was purified using the AKTA purifier FPLC system, installed with a 

XK50 column. The column was packed with Sepharose fast flow protein G resin (GE 

healthcare), to purify Fab A33 from the other E. coli proteins using affinity 

chromatography. The column was equilibrated with 25 mM sodium phosphate, pH 7.4. 

The filtered heat lysate was passed through the column, and a washing step was carried 

out with 3 column volumes of equilibration buffer, followed by two column volumes of 

equilibration buffer plus 5% v/v isopropanol to remove any hydrophobically bound 

impurities. Finally, Fab A33 was eluted using 60 mM sodium citrate at pH 3.5, and 

quickly neutralized by addition of 1 M Tris-HCl, pH 8.5. Fab A33 was buffer-exchanged 

into the corresponding buffer  and concentrated using 10 kDa cut-off centrifugal filters 

(Merck, Kenilworth, UK). Protein concentration measurements were made using a 

spectrophotometer, and calculated using the Beer-Lambert law, ! = #/(&'), where A is 

the absorbance at 280 nm, l corresponded to the cuvette path length (typically 1 cm), c 

the unknown protein concentration in mol/L, and ε the molar extinction coefficient of the 

protein. 
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Chapter Three 

 

Stability of Fab A33 at low pH and high 

temperature by molecular dynamics 

simulations and its stabilization by 

computational design
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3.1  Summary 
 

Protein-based drugs are widely used for the treatment of numerous human 

diseases. Their development into successful products largely depends on their stability in 

addition to their specific mode of action. Thus, knowledge about their stability against 

different stresses, specially early in the development process, is crucial to engineer more 

stable proteins. In this chapter, I study the structural robustness of Fab A33 using 

atomistic molecular dynamics (MD) simulations under two stresses, low pH and high 

temperature. Results revealed that interface contacts between domains were the first to 

break, prior to domain unfolding. Contacts in the constant interface (CL-CH1), were lost 

quickly during the simulations under both stresses. Notably, FoldX and Rosetta, both 

agreed that the residues in Fab A33 that can be stabilized the most, were located in this 

interface. Further support was provided by packing density calculations, which revealed 

that these residues were under-packed compared to all other inter-domain residues. 

RMSD calculations and structural alignments showed that at low pH, CL domain unfolded 

first, while at high temperature, both CL and VH unfolded, revealing different unfolding 

pathways. These conformational changes exposed different predicted aggregation-prone 

regions (APR), to suggest different aggregation mechanisms. Salt bridge analysis 

identified two salt bridges, Glu165-Lys103 and Glu195-Lys149, which possibly drive the 

conformational change at low pH. They were the most persistent salt bridges at pH 7.0, 

were not present at pH 3.5, and are both located in the CL domain. At high temperature, 

salt bridges broke and reform much quicker and not always with the same partner, 

contributing to Fab destabilization. Sequence entropy analysis of existing Fab sequences 

confirmed that there is room for Fab engineering, where certain natural mutations agreed 

with FoldX and Rosetta predictions. Overall, results from this chapter identified the early 

stages of unfolding and stability-limiting regions of Fab A33, which can be mutated to 

engineer more stable Fab fragments.  
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3.2  Introduction 
 

In the last 30 years, monoclonal antibody products have become the main drug 

class for new approvals in the pharmaceutical industry (Ecker et al. 2015). To date, over 

60 antibody-based drugs are on the market, representing half of the total sales, with over 

550 further antibodies in clinical development (Carter & Lazar 2018). They are used as 

therapeutic drugs to treat human diseases, mainly in oncology, auto-immune diseases and 

cardiovascular diseases. The use of antibody fragments, such as the antigen-binding 

antibody fragment (Fab) studied here, brings additional advantages, including deeper 

tissue penetration due to their smaller size, which has proven beneficial to treat tumours 

(Nelson 2010). In addition, Fab fragments lack the Fc domain, and thus are not 

glycosylated which allows simpler and less costly manufacture due to their expression in 

prokaryotic systems (Enever et al. 2009). However, the lack of the Fc domain leads to 

their more rapid clearance in humans than for full antibodies.  

 

The stabilization of therapeutic proteins against aggregation remains one of the 

biggest challenges facing their approval as biopharmaceutical products (Manning et al. 

2010; Wang et al. 2010; Wang 2005). Not only their mode of action, but protein stability 

is a crucial factor to their becoming successful products. Novel antibody products such 

as Fabs, single-chain variable fragments (scFvs) and bi-specifics are currently being 

developed and their properties remain largely unknown. Knowledge about the stability of 

these pharmaceutical products, specially early in the development process, would aid in 

their engineering and the design of antibody fragments that are aggregation resistant. 

 

Native protein conformations are only marginally stable, and are highly dynamic, 

hence they are more realistically described as a native ensemble. There is increasing 

evidence to suggest that under native conditions, aggregation takes place primarily from 

partially unfolded native-like state (Chiti & Dobson 2009; Neudecker et al. 2012; Canet 

et al. 2002; Kendrick et al. 1998; Chakroun et al. 2016). Small changes to their 

environment (e.g., temperature, pH, salt type, salt concentration, cosolutes, preservatives) 

can destabilize the structure of the protein, and induce unfolding. A loss of the native 

protein structure, may expose aggregation prone-regions (APR) in the protein, that would 

normally be shielded in the interior of the protein, and promote aggregation. Different 

structural regions in the protein may resist differently the destabilization of the external 
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variable. Thus, determining the conformational changes that a protein experiences under 

a given set of conditions is important for its stabilization (De Baets et al. 2014; Codina et 

al. 2019). 

 

Typically, high temperatures perturb the native conformation of the protein to a 

sufficient degree to promote aggregation. It is observed that aggregation starts at 

temperatures well below the equilibrium melting temperature (Tm) of the protein, 

suggesting that partially unfolded conformations are also aggregation-prone (Chi et al. 

2003). In addition to their effect on protein conformation, temperature also affects the 

reaction kinetics, increasing the collision frequency and the number of collisions with 

enough energy to overcome activation energies, favouring aggregation. Regarding pH, 

proteins are often stable over narrow ranges of pH, and changes in pH affect the 

electrostatic interactions. Specific charge interactions, such as salt bridges, that stabilize 

the native conformation, might be lost, causing a conformation change. In the situation at 

pH far removed from the isoelectric point (pI) of the protein, an unfolded state of the 

protein would be favoured where the charge density is lower than in the folded state. pH 

also has an effect in colloidal stability, where highly charged proteins will repulse each 

other, not favouring aggregation (Chakroun et al. 2016). In this chapter, I only study the 

effect of pH and temperature on protein conformation. 

 

Molecular dynamics (MD) simulations have been extensively used to study 

protein stability (Lindorff-Larsen et al. 2012; Rocco et al. 2008; Salimi et al. 2010; 

Settanni & Fersht 2008; Collu et al. 2018; Patel & Kuyucak 2017). MD simulations offer 

atomic resolution to the early conformational events that take place under different 

conditions. To date, not many studies on antibody fragments have been reported. MD 

simulations were used to study the potential aggregation liabilities of an antibody Fab 

fragment, from a human IgG1k antibody, via multiple elevated temperature MD 

simulations at 300 K, 450 K and 500 K (Buck et al. 2013). Results revealed that domain 

interfaces deformed prior to the unfolding of individual domains, and from the analysis 

of the structural changes, they identified two potential aggregation liabilities in the VH 

domain of that Fab. Structural deformations in that domain increased the solvent-

accessible surface area of the APRs in these regions. The unfolding process of an antibody 

Fab fragment was also studied using an elastic network model, to reveal that the constant 

regions are more flexible than the variable regions, and they unfolded earlier (Su et al. 

2015). MD simulations at 450 K and 500 K were also used to study the stability-limiting 
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regions of an antibody single-chain variable fragment (scFv) (Wang & Duan 2011). They 

found that disruption of the VL-VH interface was the first event leading to the unfolding 

of the native structure of the protein. In contrast to the other works, they found VH domain 

to be more thermally resistant than the VL domain. 

 

Each Fab is composed of one light and one heavy chains (Figure 3.1). Each chain 

contains a variable (VL and VH) and a constant (CL and CH1) domains. Each domain has 

the secondary structure of a β-barrel, also called an immunoglobulin fold, with two layers 

of β-sheets. Constant domains are formed of seven β-strands and variable domains have 

two additional β-strands. The variable domains contain the antigen-binding site, also 

called complementary determining regions (CDRs), formed by three loops in VL and three 

lops in CL. There are five disulphide bonds in Fab, four of them intra-domain and the last 

one between the light and heavy chains. Individual domains interact with one another, VL 

with VH form the variable region interface (VL-VH), and CL with CH1 form the constant 

region interface (CL-CH1). Interface contacts are shown in Figure 3.1 and the residues 

involved in the contacts are listed in Table 3.1. The variable region interface is mainly 

formed by aromatic side chains that are tightly packed and located at the centre of the 

interface (six Tyr, two Trp and two Phe), forming hydrophobic interactions. However, 

less aromatic side chains are involved in the constant region domain interface (four Phe), 

and no contacts were found between the β-strand 177-180 in CL domain and the CH 

domain at 3.5 Å in our Fab A33 homology model (Figure 3.1).  
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Figure 3.1. Fab A33 structure with interface contacts highlighted. Fab is composed 

of light (magenta) and heavy (yellow) chains. Each chain contains variable (VL and VH) 

and constant (CL and CH1) domains. The antigen-binding region at the complementary 

determining regions (CDRs; blue), are located in the variable domains. There are five 

disulfide bonds (gray highlights). Contacts between heavy and light chains within 3.5 Å 

are indicated with green dashed arrows. β-strand 177-180 in CL domain does not have 

contacts with CH domain, zoom in right-inset. 

 

 

 

 

 

 

 

 

 



70 
 

Table 3.1 Residues located in the interface between light and heavy chains in Fab 

A33. 

 

VL VH CL CH Hinge 

V32 E215 F116 F340 K432 

Y36 V251 F118 P341 K436 

Q38 Q253 P119 L342 A441 

A43 G258 S121 A343 A442 

P44 L259 D122 P344  

K45 E260 E123 S345  

T46 W261 Q124 S346  

Y49 T264 T129 T353  

L50 Y273 S131 A354  

H55 L275 V133 A355  

T56 Y309 L135 L359  

G57 T313 N137 K361  

F87 T314 Q160 H382  

L89 V315 S162 T383  

H91 P317 V163 F384  

Y94 A319 T164 P385  

P95 Y320 S174 V387  

L96 W321 S176 Q389  

F98 G322 T178 S397  

Q100 Q323 G212 V399  

  E213 T401  

   S404  

   K427  
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Here, I report the early unfolding events of Fab A33 at high temperature and low 

pH, using all-atom MD simulations. A common feature to both stress conditions was that 

unfolding was initiated by the loss of interfacial contacts between neighboring domains, 

and that domain unfolding occurred later. However, my results revealed different 

unfolding pathways for the two stress conditions, leading to partial unfolding of only the 

CL domain at low pH, compared to destabilization of both CL and VH domains in the high 

temperature condition. These conformational changes exposed different predicted 

aggregation-prone regions (APR), which would additionally support divergent 

aggregation mechanisms. Salt-bridge analysis provided insights into the location of those 

that were broken most rapidly due to protonation in the low pH simulation, and also 

showed that high temperature led to an increased fluctuation of salt bridge formation and 

breaking, more generally throughout the structure. An in-silico mutational analysis by 

both FoldX and Rosetta, predicted that the constant domain interface had the greatest 

potential for further stabilization, a finding that was also supported by lower packing-

density calculations. Taken together, these results determined the stability-limiting 

regions at low pH and high temperature for Fab A33, and also identified those with the 

greatest potential for mutations that simultaneously improve stability under both low pH 

and high temperature conditions. 
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3.3  Methods 
 

3.3.1 Fab A33 homology model  

 

Fab A33 homology model was built by Dr Cheng Zhang (Zhang et al. 2018), and 

the method followed is summarized here. The homology model of wild-type Fab A33 

was built using Rosetta method “minirosetta”, from the crystal structure of human 

germline antibody 5-51/O12 (PDB ID: 4KMT) and the amino-acid sequence of Fab A33 

(Figure 1.7), (Chivian & Baker 2006; Raman et al. 2009). The C226S heavy-chain variant 

was used to avoid the formation of linked Fab dimers. After residue replacement, 6,811 

out of 20,000 structure models retained the five disulphide bonds intact. From these, 1000 

structures with the lowest Rosetta Energy Units were selected, and clustered based on 

their similarities. The largest category in the clustering step contained 573 structures, and 

the structure with the lowest score in this category was selected as the homology model 

of Fab A33.  

 

 

3.3.2 Molecular dynamics simulations 

 

Molecular dynamic (MD) simulations on the Fab A33 homology model were 

conducted in Gromacs v5.0 (Abraham et al. 2015). MD simulations were carried out at 

neutral pH and room temperature (pH 7.0 and 300 K) and under two stresses, low pH (pH 

3.5 and pH 4.5 at 300 K) and high temperature (pH 7.0 at 340 K and 380 K). Many high 

temperature simulations are performed at relatively high temperatures (e.g. 500 K), to 

achieve complete denaturation of the protein, however, in this case, I aimed to partially 

unfold Fab A33 and detect the regions prone to early unfolding. Simulations were carried 

out using the OPLS-AA/L all-atom force field (Kaminski et al. 2001; Kortkhonjia et al. 

2013; Hu & Jiang 2010; Smith et al. 2015; Yu & Dalby 2018; Yu et al. 2017; Zhang et 

al. 2018). The Fab PDB file was first converted to a topology file with its five (four intra-

chain and one inter-chain) disulphide bonds retained. The protonation state of each 

residue was entered manually, and these were determined at each pH using the PDB2PQR 

server, which performed the pKa calculations by PropKa (Li et al. 2005). This gave the 

following total charges: +9 (pH 7.0), +18 (pH 4.5) and +35 (pH 3.5).  The Fab A33 

structure was centred in a cubic box with a layer of water up to at least 10.0 Å from the 
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protein surface. The box was solvated with SPC/E water molecules, Cl- added to 

neutralize the net charges, and NaCl added to an ionic strength of 50 mM for all 

simulations. The system was energy minimized using the steepest descent algorithm 

(2000 steps) followed by the conjugate gradient method (5000 steps). The solvent and 

ions around the protein were equilibrated in two phases of position-restricted simulations 

of the heavy atoms of the protein. First, the desired temperature was reached with 100 ps 

under NVT ensemble (constant number of particles, volume and temperature) using the 

velocity rescaling thermostat (based on kinetics energies). In this step, velocity generation 

took place, using random seeds to generate different initial velocities. Thus, from the 

same starting structure, different simulations were conducted. Next, the pressure was 

stabilized to atmospheric pressure with 100 ps under NPT ensemble (constant number of 

particles, pressure and temperature) using the Parrinello-Rahman barostat. Lastly, MD 

simulations were carried out for 50 ns in triplicates under the five conditions (pH 7.0 and 

300 K; pH 4.5 and 300 K; pH 3.5 and 300 K; pH 7.0 and 340 K; pH 7.0 and 380 K). Jobs 

were submitted to the UCL Legion High Performance Computing Facility. The time step 

of the simulations was set to 2 fs and trajectories were saved every 10 ps. 

 

 

3.3.3 Analysis of MD trajectories 

 

MD trajectories were saved reduced, every 0.2 ns (total of 250 frames). Interface 

contacts over simulation time were calculated using the native contacts extension of the 

visual molecular dynamics (VMD) program (Humphrey et al. 1996). A cutoff distance of 

4 Å was used in the calculations. Variable domain contacts (VL-VH) were calculated 

between residues 1-108 (VL) and 215-334 (VH). Constant domain contacts (CL-CH1) were 

calculated between residues 109-214 (CL) and 335-442 (CH1). RMSD of individual 

domains during the simulations were calculated using the RMSD trajectory tool in VMD. 

All the structures of the trajectory were first aligned and the RMSD was calculated (no 

hydrogens included). Domains were VL (1-108), VH (215-334), CL (109 to 214) and CH1 

(335 to 429). Averages and SEM of three independent repeats are shown. Structural 

alignments of the last 30 ns of the trajectories were also performed using VMD. 

Secondary structure (SS) assignments of each residue along the trajectory were done 

using the DSSP module (Touw et al. 2015; Kabsch & Sander 1983). To analyse the loss 

in β-strand structure, I monitored the percentage of β-sheet SS per residue. These values 

were summed for each of the 32 β-strands in Fab A33 and differences were calculated 



74 
 

between the unfolding simulations and the reference simulations (pH 7 and 300 K). 

Lastly, salt bridges were calculated along the trajectories using VMD and a cutoff 

distance between O and N groups of 3.2 Å. From these, the occurrence (%) of each salt 

bridge during the simulation was calculated, and averaged for the three independent 

repeats at each condition. 

 

 

3.3.4 Aggregation-prone regions (APR) predictions  

 

Aggregation prone regions (APR) of Fab A33 were predicted using PASTA 2.0 

(Walsh et al. 2014), TANGO (Fernandez-Escamilla et al. 2004), AGGRESCAN 

(Conchillo-Solé et al. 2007) and MetAmyl (Emily et al. 2013), using the protein sequence 

as input. The regions in which three out of the four software identified an APR were 

selected, resulting in seven APRs (Tsolis et al. 2013). Amylpred2 consensus tool was 

used to confirm the presence of these APRs (Tsolis et al. 2013). A consensus was created 

between the four sequence-based software, (Normalized TANGO * 1/4 + Normalized 

PASTA 2.0 * 1/4 + Normalized AGGRESCAN * 1/4 + Normalized MetAmyl * 1/4), to 

visualize the aggregation propensity of each residue on Fab A33 structure. To calculate 

the solvent accessible surface area (SASA) of each APR during the trajectories, the 

average area per residue over the trajectory was calculated first, using Gromacs analysis 

tool “sasa”, then summed for each APR. 

 

 

3.3.5 Mutational study and ΔΔG calculations by FoldX and Rosetta 

 

The effect of mutations on the stability of Fab A33 was studied using FoldX 

(foldx.crg.es) (Zhang et al. 2012) and the Rosetta method “ddg_monomer” (www. 

rosettacommons.org) (Kellogg et al. 2011). Both tools predicted the difference in folding 

free energy, ΔΔG, between the protein carrying a point mutation and the wildtype. Each 

of the 442 residues in the Fab A33 were mutated to the other 19 possibilities, totalling 

8398 single mutants. FoldX was used as a plugin in the graphical interface YASARA 

(van Durme et al. 2011). The “Repair” command was used first to energy minimize the 

homology model of Fab A33, by rearranging the amino acid side chains. Next, the 

“BuildModel” command was used to introduce the point mutations, optimize the structure 

of the new protein variant, and calculate the stability change upon mutation. Calculations 
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using the Rosetta “ddg_monomer” method were performed by Dr Cheng Zhang. An 

example of mutation and option files, listing the parameters of the executable, can be seen 

in previous work (Zhang et al. 2018). Jobs were submitted to the UCL Legion High-

Performance Computing Facility. 

 

 

3.3.6 Packing Density 

 

Occluded surface (OS) program was used to calculate the atomic packing of Fab 

A33 (Pattabiraman et al. 1995; Fleming & Richards 2000). The occluded surface packing 

(OSP) values are useful for identifying regions of loose packing in a protein. OSP value 

for each residue are calculated from the collection of extended normals (ray-lengths) that 

extend outward from the molecular surface until they intersect neighbouring van der 

Waals surface. Analysis of these normals, their respective lengths and the surface area 

involved in the interaction, defines the packing of each atom in the protein. 

 

 

3.3.7 Sequence Entropy of Fab sequences 

 

Fab sequences were retrieved from the Protein Data Bank (PDB) (Rose et al. 

2013), totalling one hundred light chains and one hundred heavy chains. For light chains, 

kappa (κ) and lambda (λ) chains were included. For κ light chains, λ light chains and 

heavy chains, sequences from the species human and mouse were used. Sequence 

alignment and calculation of the sequence entropy for each residue were calculated using 

Bioedit (Hall 1999); sequences were aligned using ClustalW within Bioedit. The 

maximum entropy for 21 possible amino acids (including stop codon) is 3.04 and zero 

represents a fully conserved residue. 
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3.4  Results and discussion 
 

3.4.1 Interface contacts, RMSD of individual domains and structural alignments 

revealed different unfolding pathways at low pH and high temperature 

  

To determine which domains of Fab A33 are more susceptible to unfolding under 

low pH and high temperature, I first followed the RMSD of each individual domain (VL, 

VH, CL and CH1) along the simulations, as changes in RMSD are indicative of a 

conformational change. Simulations in the unfolding trajectories (pH 3.5 and 4.5 at 300 

K, for low pH; pH 7.0 at 340 K and 380 K, for high temperature) are compared to the 

simulations in the native trajectory (pH 7.0 at 300 K). For every condition of pH and 

temperature, three independent simulations were performed, and their average RMSD 

and SEM are shown here. Additionally, structures from the unfolding trajectories (pH 3.5, 

for low pH; 380 K, for high temperature) are aligned to structures from the native 

trajectory (pH 7.0 at 300 K), to visualize the structural changes that induvial domains 

experienced. For each domain alignment, ten structures were taken every 3 ns from each 

simulation repeat, from the 20-50 ns range at which the RMSD had stabilized. Thus, a 

total of thirty structures from each stress condition were compared to thirty from the 

native trajectory. I also monitored the number of interface contacts between domains (VL-

VH and CL-CH1) during the simulations using a cutoff of 4 Å, to understand the temporal 

relationship between breakage of contacts in each interface, and the unfolding of each 

domain.  

 

First, the effect of low pH upon Fab A33 structure was considered (Figure 3.2). 

Regarding the number of interfacial contacts, almost no change was observed in the 

variable region (VL-VH) between pH 7.0, maintaining 333 ± 24 contacts (discarding the 

first frame), and pH 3.5, maintaining 309 ± 24 contacts (Figure 3.2a). By contrast, a loss 

of interfacial contacts in the constant region (CL-CH1) was observed between pH 7.0, 335 

± 17 contacts, and pH 3.5, 265 ± 12 contacts (Figure 3.2b). Interestingly, this loss of 

constant region interfacial contacts at low pH takes place very quickly, with pH 7.0 

retaining 384 ± 14 contacts after 5 ns of the simulation, while simulations at pH 3.5 only 

retained 270 ± 11 contacts. This could be attributed to the lack of a well-defined 

hydrophobic core in the CL-CH1 interface, resulting in numerous early-disrupted contacts. 

Notably, CL was the only domain to show a noticeable conformational change at low pH, 
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revealed as an increase in RMSD from 1.8 ± 0.1 Å at pH 7.0 (calculated between 20-50 

ns of the simulation), to 2.2 ± 0.1 Å at pH 3.5 (Figure 3.2e). This domain displacement 

occurred in the first 20 ns, after many interface contacts had already been lost with respect 

to pH 7.0, which suggests that destabilization of the CL-CH1 interface preceded and 

potentially accelerated the unfolding of the CL domain. The other domains (VL, VH and 

CH1) did not unfold significantly during the low pH simulations (Figure 3.2c,g,i). 

Structural alignments confirm this result, showing remarkable good alignments between 

structures of VL, VH and CH1 at pH 7.0 and 3.5 (Figure 3.2d,h,j). Alignments of the CL 

domain at pH 7.0 and pH 3.5 revealed a slight displacement at low pH, especially visible 

in the loop regions (Fig 2F). These findings agreed with previous experimental work, 

which combined SAXS, atomistic modelling and smFRET to reveal the displacement of 

the CL domain in Fab A33 at low pH (Codina et al. 2019). 
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Figure 3.2. Interface contacts, RMSD of individual domains and structural alignments for simulations at pH 7.0, 4.5 and 3.5 (all 300 K).
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Figure 3.2. Interface contacts, RMSD of individual domains and structural 

alignments for simulations at pH 7.0, 4.5 and 3.5 (all 300 K). (a,b) Contacts between 

light and heavy chains within 4.0 Å with simulation time, for variable (VL-VH) and 

constant (CL-CH) regions, respectively, pH values as labelled. (c, e, g, i) RMSD of 

individual domains with simulation time for VL, VH, CL and CH1, respectively, pH values 

as labelled. In all cases, the average of three independent simulations is shown with the 

SEM. (d, f, h, j) Alignments of structures from simulations at pH 7.0 and 3.5 for VL, VH, 

CL and CH1, respectively. Ten structures from the last 30 ns of each simulation were used, 

totalling thirty structures from pH 7.0 and thirty from pH 3.5. 

 

 

Next, the effect of high temperature on Fab A33 was studied (Figure 3.3). MD 

simulations are commonly run at temperatures as high as 500 K to attempt to fully 

denature the protein. Here, I aimed to capture the early thermal unfolding events of Fab 

A33, which involve only partial unfolding of the protein. For this reason, and to reflect 

experimental conditions more closely, lower temperatures of 340 K and 380 K were used 

in the simulations. Interfacial contacts were found to break across both the variable and 

the constant regions, with high temperature (Figure 3.3a,b). At 380 K, contacts in the 

variable interface only averaged 220 ± 24 contacts and in the constant interface 204 ± 13 

contacts. Contacts in the constant domains were found to break earlier than the variable 

domains, with only 218 ± 14 present after 5 ns of the simulations at 380 K. This is 

consistent with previous reports, which also found the constant region interface lose a 

larger fraction of its total interface contacts consistently faster than the variable region 

interface at high temperature, and also that domain unfolding occurred later than the loss 

of interfacial contacts. Overall, more contacts were broken at both interfaces with high 

temperature than with low pH (Buck et al. 2013). While VL and CH1 experienced only 

small domain displacements (Figure 3.3c,i), clear domain unfolding was observed for CL 

and VH (Figure 3.3e,g). At 380 K from 20 to 50 ns, the VH domain displayed an increase 

in the RMSD from 2.4 Å at pH 7.0 to 3.2 Å at pH 3.5, and CL from 1.8 Å at pH 7.0 to 2.4 

Å at pH 3.5 (all average ± 0.1 Å). In these cases, many interface contacts were also lost 

with respect to pH 7.0 and 300 K, before the unfolding of individual structural domains, 

again consistent with destabilization of the interface contributing to the loss of stability 

of the individual domains. For both VL and CH1 structures from the simulations at 300 K 

and 380 K aligned well (Figure 3.3d,j), whereas for the VH and CL (Figure 3.3h,f) the 
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domains were structurally perturbed at the higher temperature. The VH domain 

experienced a displacement of the loops on the N-terminal region, including the three 

CDR loops (Figure 3.3h). Differences in the CL domain at high temperature were found 

in the loops and within an internal β-strand (Figure 3.3f). This was consistent with 

previous work which identified instability and structural changes in the VH domain of 

another Fab at high temperature (Buck et al. 2013). Taken together, these findings suggest 

a different unfolding pathway for Fab A33 at low pH and at high temperature. 
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Figure 3.3. Interface contacts, RMSD of individual domains and structural alignments for simulations at pH 7.0 and temperatures 300 K, 

340 K and 380 K. 
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Figure 3.3. Interface contacts, RMSD of individual domains and structural 
alignments for simulations at pH 7.0 and temperatures 300 K, 340 K and 380 K. (a,b) 

Contacts between light and heavy chains within 4.0 Å with simulation time, for variable 

(VL-VH) and constant (CL-CH) regions, respectively, temperature values as labelled. (c, e, 

g, i) RMSD of individual domains with simulation time for VL, VH, CL and CH1, 

respectively, temperature values as labelled. In all cases, the average of three independent 

simulations is shown with the SEM as error. (d, f, h, j) Alignments of structures from 

simulations at temperatures of 300 K and 380 K for VL, VH, CL and CH1, respectively. 

Ten structures from the last 30 ns of each simulation were used, totalling thirty structures 

from 300 K and thirty from 380 K.  

 

 
3.4.2 Loss in β-strand secondary structure confirms regions of unfolding 
 

The unfolding of individual domains was also followed by their loss in secondary 

structure (SS); specifically, I monitored the change in β-strand structure. Fab domains 

have a β-barrel structure with two layers of β-sheets, an inner β-sheet and an outer β-

sheet, each composed of several β-strands. Constant domains are composed of seven β-

strands named A to G, while variable domains contain two more strands, a total of nine, 

with the two additional strands termed C' and C'' (Figure 3.4a). To calculate the loss in β-

strand structure for each of the strands, the secondary structure of each residue in Fab 

A33 was followed first during the simulations (Figure 3.5). From this, the percentage of 

β-strand per residue was calculated, and summed for each of the 32 β-strands in Fab A33. 

This value was averaged for each of the three repeats at each condition. Lastly, a 

percentage change in β-strand SS was calculated, to analyze the loss with regards to the 

reference simulations (pH 7 and 300 K). 
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Figure 3.4. Loss of secondary structure for each of the 32 β-strands of Fab A33. (a,b) Strand order shown by lettering (A-G) for variable and 

constant domains, respectively. (c, d, e, f) Percentage increase/decrease in β-strand secondary structure for each strand in Fab during the 

simulations, respect to pH 7.0 and 300 K, for (c) pH 4.5 and 300 K, (d) pH 3.5 and 300 K, (e) pH 7.0 and 340 K, and (f) pH 7.0 and 380 K. Error 

bars are the same and equal for positive and negative values.
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At pH 4.5, there are no significant losses in β-strand SS in any of the domains, to 

the exception of the β-strand C'' of the VL domain (Figure 3.4c). This strand also showed 

a big error, representative of high variability between repeats. C'' is the shortest strand, 

and is located at the extreme of the outer β-sheet connecting the CDR-2 loop; which 

suggests this is a flexible region and it might have lost its SS in some simulations. At pH 

3.5, the CL domain had an overall loss in secondary structure content, confirming the 

results found in the previous section (Figure 3.4d). Strands F (-13 ± 3 %) and G (-12 ± 7 

%) of the CL domain showed the highest β-sheet structure loss, both located in the outer 

β-sheet. Strands B (-8 ± 6 %), C (-6 ± 4 %) and E (-8 ± 6 %) also experienced significant 

losses.  

 

At pH 7.0 and 340 K, the losses in β-strand SS are small, however, the regions 

more likely to destabilize as the temperature increases, can start to be identified. Strand 

D (-6 ± 3 %) in the CL domain and F (-7 ± 4 %) in the VH domain, displayed significant 

losses. At 380 K, these losses were more noticeable, and located in the CL and VH 

domains, consistent with the unfolding described in the previous section. Many strands 

in CL domain show significant losses, A (-7 ± 2 %), C (-8 ± 3 %), D (-16 ± 12 %) and G 

(-5 ± 1 %), located at the extremes of the inner and outer β-sheets. The VH domain also 

showed high losses of β-strand SS. However, of these strands A (-18 ± 17 %) and G (-8 

± 9 %) also showed high variability between repeats. Interestingly, these same two strands 

in VH were previously to deform at high temperature in a different Fab (Buck et al. 2013). 

Strand C'' (-13 ± 4 %) of the VH domain also showed a significant loss of β-strand content.  
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Figure 3.5. Secondary structure (SS) of each residue in Fab A33 with simulation 

time, calculated using DSSP. Representative SS evolution are shown for (a) pH 7.0 and 

300K, (b) pH 3.5 and 300K and (c) pH 7.0 and 380 K, secondary structure type as 

indicated in the legend. 

 

 

3.4.3 Salt bridge analysis identifies key stabilizing salt bridges 

 

To identify the ionisable residues that drive the conformational change at low pH, 

a salt bridge analysis was performed. Salt bridges were identified over the simulation time 

for all the MD simulations carried out, using an O-N bond distance cutoff of 3.2 Å. From 

these, the occurrence (%) of each salt bridge during the simulation was calculated, and 

averaged for the three independent repeats at each condition. Lastly, the most persistent 

salt bridges at each condition were highlighted in the Fab A33 structure (Figure 3.6). 

 

At pH 7.0 and 300 K, a total of 36 salt bridges were present. Interestingly, many 

of these salt bridges were flexible and able to form with different partners during a single 

trajectory, such as Asp122 which partnered with both Lys126 and Lys436, or Asp304 

which paired with both Arg252 and Arg281. This is consistent with previous work, which 

found that salt bridges break and reform, and not always with the same partner 

(Kortkhonjia et al. 2013). The most persistent (as % of time present) salt bridges at pH 

7.0 were Glu165-Lys103 (67 ± 4 %), Glu195-Lys149 (65 ± 4 %), Asp82-Arg61 (61 ± 14 

%), Asp151-His189 (58 ± 24 %), and Asp304-Arg252 (55 ± 27 %) (Figure 3.6a,d,g). At 

low pH, pH 3.5 and 300 K, a total of 27 salt bridges were observed, but most of them 

were very short lived. The more persistent salt bridges at pH 3.5 were Asp151-His189 

(86 ± 6 %), Asp82-Arg61 (78 ± 11 %), Asp122-Lys126 (73 ± 1 %), Asp362-Lys335 (56 
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± 6 %) (Figure 3.6b,e,h). The protonation state at the end of the pH 3.5 simulations was 

calculated again using these Fab conformations, which revealed these salt bridges to be 

still present due to predicted pKa values for these aspartates of below 3.5. Comparison of 

the salt bridges at pH 7.0 and 3.5, indicated the presence of two salt bridges that 

potentially trigger the conformational change observed at low pH, and thus the loss of 

Fab A33 stability. Glu165-Lys103 and Glu195-Lys149, were the most persistent contacts 

at pH 7.0, but were not present at pH 3.5. Glu165-Lys103 bridges the CL domain to the 

VL domain, and Glu195-Lys149 bridges the outer β-strands C and F of the CL domain. 

Loss of these salt bridges at low pH, would therefore destabilize the CL domain, and 

promote the observed CL domain displacement. 

 

At high temperature, pH 7.0 and 380 K, a total of 45 salt bridges were observed. 

The greater number than at 300 K, reflects an increased conformational flexibility of 

many salt bridges at higher temperature, in which they often broke, but then reformed 

with a different partner. Indeed, at the high temperature, salt bridges broke and reformed 

much faster (Figure 3.6c). At 380 K, the total time present for the most persistent salt 

bridges observed at 300 K, had decreased to 47 ± 9 % for Glu165–Lys103, 58 ± 3 % for 

Glu195-Lys149, 21 ± 7 % for Asp151-His189, and 43 ± 22 % for Asp304-Arg252. 

However, Asp82-Arg61 increased in occurrence to 70 ± 3 % (Figure 3.6c,f,i). These 

findings indicate that the increased dynamics at high temperature, results in constant 

rupture and formation of salt bridges, and this transient disruption leaves Fab A33 more 

susceptible to unfolding. 
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Figure 3.6. Salt bridge analysis. (a, b, c) Salt bridges formed during the simulation time for 

representative MD simulations at (a) pH 7.0 and 300 K, (b) pH 3.5 and 300 K and (c) pH 7.0 

and 380 K. Presence of a salt bridge is indicated in white and absence in black. (d, e, f) List of 

salt bridges and its occurrence (%) for simulations at (d) pH 7.0 and 300 K, (e) pH 3.5 and 300 

K and (f) pH 7.0 and 380 K. Values shown are the average of three independent simulations 

with their SEM as error. The more persistent salt bridges are highlighted for pH 7.0 (green), 

pH 3.5 (red) and pH 7.0 and 380 K (blue). (g, h, i) The more persistent salt bridges are mapped 

into the Fab A33 structure. Two key stabilising salt bridges (Glu165-Lys103 and Glu195-

Lys149) are highlighted in a dashed circle.  
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3.4.4 Solvent exposure of different aggregation-prone regions promotes different 

aggregation pathways for low pH and high temperature 

 

The aggregation pathways of Fab A33 at low pH and high temperature at pH 7.0, 

are already known to result in different aggregate morphologies (Chakroun et al. 2016). 

Here I explored whether the two conditions also exposed different aggregation-prone 

regions (APRs). Computational biology tools were used to predict the regions in proteins 

most likely to form and stabilize the cross-b structure characteristic of aggregates. These 

aggregation-prone regions (APRs) are mostly hydrophobic, possess a low net charge, and 

have a high propensity to form b-sheets. Several methods have been developed to predict 

the presence of APRs in a protein. The first methods only used the protein sequence as 

input, this being equivalent to the fully unfolded state. Predictions were based on either 

the intrinsic properties of amino acids, or their compatibility with protein structural 

features in known amyloid fibril structures. Examples include TANGO (Fernandez-

Escamilla et al. 2004), AGGRESCAN (Conchillo-Solé et al. 2007), PASTA (Walsh et al. 

2014), MetAmyl (Emily et al. 2013), FoldAmyloid (Garbuzynskiy et al. 2010), 

FishAmyloid (Gasior & Kotulska 2014) and Waltz (Maurer-Stroh et al. 2010). As these 

predictions do not always agree, Amylpred2 generates a consensus from up to eleven 

existing algorithms (Tsolis et al. 2013). However, it is known that APRs are frequently 

buried inside the hydrophobic core of globular proteins, and so their ability to trigger 

aggregation would depend upon solvent accessibility, i.e. the potential of the APR to 

become solvent exposed through structural dynamics or partial unfolding. Thus, more 

recent methods include aspects of the protein structure to predict APRs, including 

AGGRESCAN 3D (Zambrano et al. 2015), AggScore (Sankar et al. 2018), SAP 

(Chennamsetty et al. 2009) and Solubis (Van Durme et al. 2016). 

 

Here, I want to compare the solvent accessibility of APRs in Fab A33, between 

the MD simulations at the unfolding conditions and at the reference trajectory. Thus, I 

used sequence-based APR predictors to determine the APRs in Fab A33, and determined 

their solvent accessible surface area (SASA) in the simulations, for relative comparisons. 

Four sequence-based APR predictors were used in total, PASTA 2.0, TANGO, 

AGGRESCAN and MetAmyl, to predict the APRs in Fab A33. APRs, where three out of 

the four predictors identified an aggregation-prone sequence and were selected (Figure 

3.7a). Seven segments showed the highest aggregation propensity values, namely 

residues 31-36, 47-51, 114-118 and 129-139 in the light chain and residues 261-165, 325-
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329 and 387-402 in the heavy chain.  Additionally, these APRs were confirmed using 

Amylpred2, which identified the same APRs in addition to others (Figure 3.7a). 

 

To display the aggregation propensity of every residue in Fab A33, a consensus 

was created between the four sequence-based methods. Each aggregation propensity was 

normalized between 0 and 1, and weighted equally (Figure 3.7b). The consensus 

aggregation propensities were mapped into the Fab A33 homology as shown in Figure 

3.8. Red represented high aggregation propensities and blue low aggregation propensities. 

The seven APRs were co-located as three regions of largely buried b-strands within the 

folded structure, and all were protected from the solvent. 

 

 

 

Figure 3.7. Prediction of aggregation-prone regions (APR) in Fab A33 using 

sequence-based predictors. (a) The aggregation propensity for each residue in Fab A33 

was predicted using PASTA 2.0, TANGO, AGGRESCAN and MetAmyl  algorithms. 

These are colour-coded as shown. The sequence regions in which three out of the four 

predictors agreed, were selected and highlighted with asterisks. Additionally, fifteen 
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APRs were predicted with the consensus software Amylpred2, shown as red horizontal 

lines on top of the graph. (b) Consensus score for the four algorithms, where the four 

scores were each normalised, then summed with equal weights. The asterisks highlight 

the seven most aggregation-prone regions in Fab A33 in the light chain (residues 31-36, 

47-51, 114-118 and 129-139) and in the heavy chain (residues 261-165, 325-329 and 387-

402). 

 

 

Figure 3.8. Aggregation prone regions in Fab A33. The consensus aggregation 

propensity values of residues in Fab A33 were added as B-factors to the PDB file for the 

Fab A33 homology model. Regions with greater aggregation propensities are shown in 

red and reduced propensities in blue. 

 

 

Exposure of one of these APRs as a result of a conformational change by an 

environmental stress, has the potential to trigger aggregation. Thus, the SASA of each 

APR during the simulations was calculated, as well as the difference in solvent 

accessibility, ΔSASA, between unfolding conditions and the reference simulation (Table 

3.2).  
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Table 3.2 SASA of the APRs in Fab A33 during simulations and SASA differences between unfolding simulations and the reference 
simulation. Solvent accessible surface area of the seven aggregation-prone regions in Fab A33 during all simulations, and relative differences 

(ΔSASA) between the unfolding trajectories (pH 3.5 and 4.5 at 300 K, for low pH; pH 7.0 at 340 K and 380 K, for high temperature) and the 

reference trajectory (pH 7.0 and 300K). 

 

APR 
Fab 

domain 

SASA (Å2) 
pH 7.0 
300K 

SASA (Å2) 
pH 4.5 
300K 

ΔSASA 
(Å2) 

pH(4.5-
7.0) 

SASA (Å2) 
pH 3.5 
300K 

ΔSASA 
(Å2) 

pH(3.5-
7.0) 

SASA (Å2) 
pH 7.0 
340K 

ΔSASA 
(Å2) 

T(340K-
300K) 

SASA (Å2) 
pH 7.0 
380K 

ΔSASA 
(Å2) 

T(380K-
300K) 

31-36 VL 118 ± 4 112 ± 5 -5 ± 7 115 ± 16 -3 ± 17 120 ± 8 3 ± 9 106 ± 4 -12 ± 6 

47-51 VL 100 ± 1 104 ± 7 4 ± 13 115 ± 20 15 ± 23 101 ± 6 1 ± 13 96 ± 7 -4 ± 13 

114-118 CL 125 ± 4 121 ± 7 -4 ± 8 110 ± 7 -15 ± 8 112 ± 2 -13 ± 5 120 ± 13 -5 ± 13 

129-139 CL 152 ± 8 147 ± 11 -5 ± 13 151 ± 12 0 ± 14 165 ± 10 13 ± 13 172 ± 14 20 ± 16 

261-265 VH 14 ± 2 13 ± 0 -1 ± 2 13 ± 1 -1 ± 3 19 ± 1 5 ± 3 29 ± 5 15 ± 6 

325-329 VH 122 ± 16 115 ± 14 -7 ± 21 119 ± 7 -3 ± 17 88 ± 10 -34 ± 19 120 ± 22 -1 ± 27 

387-402 CH1 552 ± 21 547 ± 25 -5 ± 33 609 ± 12 57 ± 25 544 ± 7 -9 ± 22 489 ± 48 -15 ± 21 
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At low pH, only one APR (residues 387-402), was found to increase its solvent 

accessibility significantly at pH 3.5, with an increase of 57 ± 25 Å2 (10 % increase), (Table 

3.2). This APR is located in the CH1 domain and its exposure can be explained by the CL 

domain displacement observed at low pH (Figure 3.9a). At high temperature, two APRs were 

found to increase their solvent accessibility, APR 261-265 located in VH and APR 129-139 

located in CL (Figure 3.9b). APR 261-265 increased its SASA 15 ± 6 Å2 (107 % increase) and 

APR 129-139 increased its SASA 20 ± 16 Å2 (13 % increase). The location of these APRs 

agrees with the domains found to unfold previously at high temperature. Notably, the APRs 

exposed at low pH and high temperature are different, suggesting the potential to follow 

different aggregation mechanisms depending on the stress applied. 

 

 
Figure 3.9. Fab A33 predicted APRs that increase its solvent accessibility at low pH and 

high temperature. (a) APR 387-402 increases its SASA at pH 3.5 and (b) APR 261-265 and 

APR 129-139 increase its SASA at 380 K (Table 3.2). All mapped in red in Fab A33 homology 

structure. 
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3.4.5 FoldX, Rosetta and packing density calculations predict sub-optimal stability of 

CL and the CL-CH1 interface 

 

Computational tools such as FoldX and Rosetta-ddG (Zhang et al. 2012; Kellogg et al. 

2011) predict the relative changes in folding free energy (ΔΔG) between the Gibbs free 

energies (ΔG) of the wild-type protein and the protein carrying a simulated point mutation, to 

find those mutations that will most significantly reduce the free energy of the protein. These 

approaches are often also combined to find consensus predictions (Wijma et al. 2014; Buß et 

al. 2018). To predict stabilizing mutations in Fab A33, we calculated the ΔΔG with both FoldX 

and Rosetta-ddG, of all possible single-mutant variants when accessing all 19 other 

substitutions across the 442 residue positions in Fab A33, totalling 8398 mutations, using the 

Fab A33 homology model. FoldX identified 1879 of these mutations as stabilizing (22.4 %), 

while Rosetta-ddG identified 2386 (28.4 %). Stable mutations predicted by both software were 

956 (11.4 %), this corresponds to 51% of the mutations identified by FoldX and 40% of the 

mutations identified by Rosetta. Figure 3.10 shows the correlation between the mutations 

predicted by FoldX and Rosetta, and Table 3.3 lists the 25 most stabilizing mutations predicted 

by both algorithms, with their respective ΔΔG values. FoldX reports ΔΔG values in kcal/mol 

and Rosetta in Rosetta Energy Unit (REU). 
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Figure 3.10. Stabilizing mutations predicted by FoldX and Rosetta. Correlation between 

FoldX and Rosetta predictions. Mutations predicted by both software to be most stabilizing are 

shown in magenta and highlighted in a gray square on the bottom left. Mutations predicted 

only by FoldX to be stabilizing are shown in green and mutations predicted only by Rosetta in 

yellow.  
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Table 3.3 List of the most stabilizing mutations identified by FoldX and Rosetta-ddG. 

Mutation and ΔΔG of the 25 most stabilizing mutations predicted by FoldX and Rosetta. 

 

FoldX Mutation FoldX ΔΔG (kcal/mol) Rosetta Mutation Rosetta ΔΔG (REU) 

S395L -4.35 N137L -9.36 

S267P -3.97 L275H -8.98 

S395M -3.82 S176W -8.84 

S176M -3.75 T72Y -8.73 

S176W -3.68 K103Y -8.30 

N137L -3.65 T349W -8.03 

S395R -3.55 S12F -7.85 

N137M -3.54 S12Q -7.84 

S397I -3.21 V226Y -7.84 

S397L -3.19 K103F -7.50 

S176R -3.18 S203H -7.50 

S395I -3.16 D426N -7.40 

A254P -2.99 T180W -7.40 

H382F -2.98 K103T -7.24 

G336P -2.86 T180Y -7.24 

S159R -2.86 S397W -7.22 

S176L -2.85 S159F -7.21 

S176Y -2.72 N415Y -7.17 

N137I -2.71 D70I -7.06 

S397V -2.63 D70F -6.98 

S12Y -2.63 V316Y -6.93 

S12F -2.61 S374H -6.93 

S171G -2.56 S121P -6.93 

T180Y -2.51 S345P -6.89 

S395V -2.50 T283F -6.87 
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Figure 3.11a compares the greatest stabilization predicted by FoldX and Rosetta, at 

each of the 442 residues in Fab A33, regardless of the specific mutation selected by each 

algorithm. The residues in which both software, FoldX and Rosetta-ddG, agree that could be 

stabilized the most, are located on the bottom-left of the graph, highlighted in magenta. These 

residues correspond to S176, N137, S397, S159, S12 and T180. All the predicted mutations 

are to more hydrophobic amino acids, such as Trp, Leu, Ile, Phe and Tyr (Figure 3.10 and Table 

3.3). Four of these six mutations, (S176, N137, S397 and T180), are located in the constant 

domain interface, between CL and CH1 domains (Figure 3.11b). These findings suggest that 

there is room for further stabilization of the CL-CH1 interface. Furthermore, S159 is in the CL 

domain, interacting with an outer β-strands, and S12 is in the VL domain interacting with the 

CL domain (Figure 3.11b). Thus overall, the CL domain has a relatively high potential for 

stabilization, through repacking of the CL-CH1 interface, within the CL domain itself, and also 

through improved interaction between CL and VL. This is consistent with the MD simulations 

which found the displacement of CL away from the interface with CH, and subsequent unfolding 

of the CL domain, to be critical steps in early or partial unfolding.  

 

Lastly, other mutations predicted only by FoldX are highlighted in green, which 

correspond to S395 and S267. S395 is also located in the CL-CH1 interface. S267 is in the VH 

domain and belongs to CDR2, and so not a good candidate for general framework stabilization 

due to its role in antigen binding. Mutations predicted only by Rosetta-ddG are highlighted in 

yellow, these being K103 and T72. These were both located in the VL domain, but K103 also 

interacts with the CL domain, further suggesting that the interactions within and around the CL 

domain are the least optimized for stability. 
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 Figure 3.11. Predicted residues that can be stabilized further by FoldX and Rosetta-ddG. (a) Correlation between FoldX and Rosetta 

predictions. Residues predicted by both software to be most stabilizing are shown in magenta on the bottom left. Residues predicted only by FoldX 

to be stabilizing are shown in green and residues predicted only by Rosetta in yellow. (b) Residues predicted to be stabilized further the most are 

mapped in Fab A33 structure, following the same colour scheme as in (a). 
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The packing density of each residue in Fab A33 was calculated using the package 

occluded surface (OS) software, which calculates occluded surface and atomic packing 

(Pattabiraman et al. 1995; Fleming & Richards 2000). The occluded surface packing 

value of each atom is calculated from normal vectors that extend outward from the atom 

surface until they intersect a neighbouring van der Waals surface (Figure 3.12). This value 

is 0.0 for completely exposed residues and 1.0 where 100% of molecular surface is in 

contact with other van der Waals surface.  Thus, the OSP value allows to identify regions 

of loose packing in the protein. The average OSP for all 28 β-strand residues within 

domain interfaces (VL-VH and CL-CH1) was 0.49 ± 0.01 (OSP values shown in Table 3.4). 

By contrast, the average OSP of the five constant-domain interface residues (S176, N137, 

S397, T180, and S395), identified by FoldX and Rosetta as having high stabilization 

potential, was 0.41 ± 0.05 (OSP values shown in Table 3.4). This can be visualized in 

Figure 3.13, where OSP values were mapped in the structure of Fab A33, with red to 

indicate high packing density, and blue to indicate low packing density. β-strand residues 

within domain interfaces were highlighted as sticks (Figure 3.13a). Residues in the 

constant interface (CL-CH1) were lighter colored than residues in the variable interface 

(VL-VH), indicating less tight packing of the constant interface. An insight of the residues 

identified by FoldX and Rosetta is provided in Figure 3.13b, where a lighter color than 

the residues in the variable interface was also observed. This result shows that the 

predicted residues are under-packed, and therefore have the potential to be mutated to 

pack the CL-CH1 interface more tightly. 
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Figure 3.12. Normals used to calculate the packing of each atom in Fab A33 using 

Occluded Surface software. To calculate the occluded surface packing (OSP) value for 

each residue, normals that extend from the surface outward until they intersect a 

neighboring van der Waals surface are used. The normals used to calculate the OSP value 

of the inter-domain residues identified by FoldX and Rosetta (S176, N137, S397, T180, 

and S395), are shown. 

 

 

 
 

Figure 3.13. Packing density of every residue in Fab A33, computed using Occluded 

Surface. (a) The occluded surface packing (OSP) values were added as B-factors to the 

PDB file for the Fab A33 homology model. High packing values are shown in red and 

low values in blue. Residues in β-strands within domain interfaces (VL-VH and CL-CH1) 

are highlighted in sticks and ball representation. (b) Residues identified by FoldX and 

Rosetta that could be stabilised further (S176, N137, S397, T180, and S395) are 

highlighted in sticks and ball, and sphere representation. 
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Table 3.4. Packing indicated by the occluded surface packing (OSP) value of the 

residues located in β-strands within domain interfaces (VL-VH and CL-CH1) of Fab 

A33 homology model. OSP values were calculated using the occluded surface software. 
 

Domain Residue OSP value 

VL 

Y36 0.524 
Q38 0.468 
T46 0.518 
Y49 0.488 
F87 0.529 
L89 0.596 

CL 

F116 0.408 
F118 0.494 
T129 0.425 
S131 0.437 
V133 0.469 
L135 0.535 

N137 * 0.486 
S174 0.576 

S176 * 0.464 
T178 0.384 

T180 * 0.201 

VH 

V251 0.558 
Q253 0.477 
W261 0.598 
T264 0.571 
Y309 0.569 

CH1 

F340 0.495 
P341 0.420 
L342 0.493 
A354 0.385 
A355 0.540 
L359 0.461 
K361 0.437 

S395 * 0.435 
S397 * 0.440 
V399 0.555 
T401 0.344 

 

*, residues identified by FoldX and Rosetta in the constant domain interface that can be 

stabilized further. 
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3.4.6 Comparison to natural sequence variations in Fabs 

 

The natural variability of Fab sequences was identified from within one hundred 

light chains and one hundred heavy chains curated from those available in the Protein 

Data Bank (Rose et al. 2013). Sequence alignment and sequence entropy calculations for 

each residue were obtained using Bioedit (Hall 1999). An entropy of zero indicates a fully 

conserved residue, whereas 3.04 is the maximum entropy, originating from 21 

possibilities (all amino acids plus the stop codon). There is significant positional bias in 

the sequence variability of Fabs due to the hypervariability of the CDRs, the presence of 

kappa (κ) and lambda (λ) light chain isotypes, allotypic diversity across individuals, and 

idiotypic variability within the variable domains of individuals. The sequence entropy 

analysis (Figure 3.14) clearly shows this, with the highest sequence entropy (>2), for the 

six CDRs, and a slightly lower variability on average within the CH domain. Similarly, 

the higher sequence entropy on average for the CL domain, compared to the CH domain 

results from the grouping of kappa (κ) and lambda (λ) light chain isotypes.   

 

Even though framework residues have more restricted variability, many natural 

variations are observed that may affect stability. Except for the fully conserved S176, the 

sites predicted as having the most potential for stabilizing mutations by both FoldX and 

Rosetta, had natural variations, with sequence entropy values of N137: 0.74, S397: 0.15, 

S159: 0.96, S12: 0.96, T180: 0.43. This was also true for mutations identified only by 

FoldX (S267: 1.69 and S395: 0.69), and only by Rosetta-ddG (K103: 0.16, T72: 0.91). 

Comparisons between the existing mutations and the stabilizing mutations suggested by 

FoldX and Rosetta are shown in Table 3.5. In general, the mutations found in existing 

Fabs were conservative changes to residues with properties similar to the original residue. 

For instance, S397 and S395 are only naturally mutated to Thr, whereas T180 can also be 

Ser, and K103 can be Arg. By contrast, FoldX and Rosetta predictions were typically 

from polar to more hydrophobic residues, typically to Ile, Leu, Trp, Val, and Tyr. A few 

suggested mutations were also found naturally, such as N137I, S12Y, and S267P. S159 

also shows the potential to be mutated to more hydrophobic residues, Val and Met. 

Overall, this analysis shows that despite their low natural variability, many residues in 

the constant domains had significant scope for stabilization through non-natural 

mutations. 
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Figure 3.14. Sequence entropy of Fab sequences. (a) Entropy (Hx) of one hundred Fab 

light chains, including κ and λ light chains. (b) Entropy (Hx) of one hundred Fab heavy 

chains. Light and heavy chains are from human and mouse species. Alignment and 

entropy calculation were done with Bioedit. Variable domains are indicated with a (V) 

and constant domains with a (C), separated by a vertical line. CDRs are indicated in red. 
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Table 3.5 Comparison between the mutations in existing human and mouse Fabs and the stabilizing mutations suggested by FoldX and Rosetta.  

 

Original 

Residue 

Light chain Heavy Chain 
Suggested mutation by 

FoldX and Rosetta 
Kappa (κ) Lambda (λ) 

Human Mouse 
Human Mouse Human Mouse 

S176 - - - - N.A. N.A. W, M, R, L Y 

N137 - - - T, I N.A. N.A. L, M, I 

S397 N.A. N.A. N.A. N.A. - T I, L, W, V 

S159 - V V M N.A. N.A. R, F 

S12 - Y, P, A, T - T N.A. N.A. F, Q, Y 

T180 - - S - N.A. N.A. Y, W 

S395 N.A. N.A. N.A. N.A. - T L, M, R, I, V 

S267 N.A. N.A. N.A. N.A. P, W, Y, T, G, D, N, A P, I, G, N, D, Q, L P 

K103 R - - - N.A. N.A. Y, F, T 

T72 S S S A N.A. N.A. Y 

 

N.A. (Not Applicable), mutation does not apply to the chain (light or heavy); -, no existing mutations were found on that chain. 
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3.5  Conclusions 
 

Antibody-based products are the main class of approved biopharmaceuticals, due 

to their high target specificity. However, there are many barriers to their successful 

development into therapeutics, with protein aggregation being perhaps the most common 

and challenging to prevent. There is a need to identify potential instabilities of therapeutic 

proteins during their early development, particularly against stresses that they will 

encounter during manufacture, storage and delivery. This would allow their early 

elimination from further development, or otherwise rational mutagenesis into more stable 

products. In this context, I have elucidated the first unfolding events that take place on a 

humanized Fab A33 using atomistic MD simulations, and compared these to predictions 

of potentially stabilising mutations using computational tools.  

 

Simulations showed that contacts at the interface between domains (VL-VH and 

CL-CH1) were lost before individual domains unfolded. Interfacial contacts in the constant 

domain specifically, were the least stable, which were lost very quickly during the 

simulations under both stresses, low pH and high temperature. In line with these results, 

FoldX and Rosetta agreed that the residues that can be stabilized the most, are located in 

the constant domain interface. Further validation was provided by packing density 

calculations, which revealed that the residues identified by the stability predictors, were 

under packed relative to the other residues located in the interface between domains. 

Based on these findings, I speculate that improvement of Fab A33 stability should start 

at the constant domain interface. Only one of the top mutations suggested by FoldX and 

Rosetta, N137I was found to be present in the analysis of natural variation within existing 

Fab sequences. However, there was significant scope for improvement through mutating 

the interfacial residues S176, N137, S397, T180, and S395, to the suggested hydrophobic 

residues. 

 

The further goal could be to improve the stability of the individual domains. The 

CL domain was found to unfold at both, low pH and high temperature. Salt bridge analyses 

identified two key salt bridges that can be at the heart of this domain unfolding at low pH, 

Glu165-Lys103 and Glu195-Lys149. Glu165-Lys103 bridges the CL domain to the VL 

domain, and Glu195-Lys149 is located in outer β-strands of the CL domain, bridging the 

β-strands C and F. FoldX and Rosetta also identified stabilizing mutations in the CL 
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domain. To stabilize the interaction between the CL and VL domain, S12 and K103 were 

identified to be mutated to hydrophobic residues. Interestingly, the mutation S12 to Tyr 

is found naturally. In the CL domain, S159 was identified, which interacts with an outer 

β-strand, suggesting this interaction can also be improved. Lastly, the CH1 domain was 

also found to unfold at high temperature. The only mutation identified in this domain is 

S267, to a Pro, which notably is found naturally. Overall, the results found with MD 

simulations and stabilizing software predictors strongly agree in the domains of Fab A33 

that can be stabilized further.  

 

In order to gain insights into the mechanisms by which aggregation might occur, 

APRs in Fab A33 were identified, and their solvent accessibilities were compared. All 

APRs in Fab A33 are located in the interior of the protein, however, at low pH and high 

temperature the SASA of certain APRs increased. Notably, different APRs were exposed 

under both stresses, suggesting that different aggregation mechanisms occur under each 

stress. This result stresses the importance of identifying the stability of a protein under 

the different stresses it might encounter. Taken together, this work provides insights into 

the stability and robustness of the therapeutically relevant Fab A33, and offers a path to 

the engineering and design of a more aggregation resistant antibody fragment. 
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Chapter Four 

 

X-ray scattering and atomistic modelling 

identify an expanded conformation of 

Fab A33 at low pH that reveals an 

aggregation mechanism
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4.1  Summary 
 

To prevent aggregation, the mechanism of protein aggregation needs to be 

understood. This begins with elucidation of the conformational states that lead to 

aggregation; however, very little is known about the structures of native conformers that 

initiate aggregation. While several structures of final aggregated states - notably amyloids 

- are available in the literature, very little is known about the structures of native-like 

states predicted to mediate the onset of aggregation. Here, I combined small-angle X-ray 

scattering (SAXS) and atomistic modeling, to characterize an aggregation-prone state of 

Fab A33 at low pH. SAXS showed that Fab A33 adopted a more expanded conformation 

at acidic pH (5.5, 4.5 and 3.5) compared to neutral pH (7.0 and 9.0), with radius of 

gyration increases of between 2.2% and 4.1%. The same conditions lead to accelerated 

aggregation, indicating that the expanded conformations were more aggregation-prone. 

To maximize the resolution of SAXS, I took a novel approach that fitted the data to 45,000 

structures obtained from fully atomistic molecular dynamics simulations of the entire 

molecule under the same conditions. This revealed the regions of the Fab undergoing 

conformational fluctuations, and located the conformational changes in the native state to 

the constant domain of the light chain (CL). Lastly, the conformational changes were 

found to expose a predicted aggregation-prone region (APR) which forms a mechanistic 

basis for subsequent aggregation. The structural elucidation of aggregation-prone native-

ensemble conformers using SAXS atomistic modelling provide a means by which 

aggregation-prone conformational states can be readily determined experimentally, and 

used to guide rational approaches to stabilize proteins against aggregation. 
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4.2  Introduction 
 

Aggregates are the manifestation of the protein’s physical instability, and are 

problematic because they lower the activity of the therapeutic drug and increase its 

immunogenic potential (Manning et al. 2010; Wang 2005). The most widely accepted 

aggregation mechanism involves two steps: (i) a conformational change to the protein’s 

native state and (ii) assembly of protein molecules into aggregates (Chi et al. 2003). In 

the first step, the native state of the protein experiences a conformational change to form 

an aggregation-competent specie. This intermediate is believed to expose aggregation-

prone regions, which are normally shielded from the solvent in the native protein (De 

Baets et al. 2014). In the second and subsequent steps, the intermediate is driven by the 

hydrophobic effect or the propensity of exposed sequences to form cross-β sheets to 

associate with other protein molecules (Roberts 2014). Energetically, the first step is 

controlled by the conformational stability of the native protein relative to aggregation-

prone states, though this is often probed indirectly by the free energy of unfolding ∆Gunf 

of the native protein relative to the fully unfolded state. The second step, assembly into 

aggregates, is controlled by the persistence time, or relative population of aggregation-

prone states, their ability to form specific intermolecular interactions, and their colloidal 

stability in terms of intermolecular attractive and repulsive forces. Over the years, it has 

been found that many of the proteins studied in the desired solution conditions follow a 

first order aggregation kinetics. This implies that the rate-limiting step in these conditions 

is unimolecular, such as a conformational change, rather than a bimolecular reaction (Chi 

et al. 2003). Thus, based on these findings, elucidating the conformational states that lead 

to aggregation is crucial to preventing protein aggregation. 

 

Initial studies on protein aggregation suggested that aggregation takes place from 

the fully unfolded state, derived from studies at elevated temperatures. Increasing 

evidence suggests that, at temperatures below the melting temperature (Tm) of the protein, 

aggregation takes place from near-native states, where only partial unfolding of the 

protein has taken place (Robinson et al. 2018). This hypothesis is supported by recent 

work on Fab A33, which found that the Tm of the protein is only a good predictor of 

aggregation rate at temperatures close to the Tm of the protein, where aggregation from 

the unfolded state predominates (Chakroun et al. 2016). At temperatures below the Tm of 
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the protein, Tm was not a good predictor of aggregation rate, since global unfolding is not 

necessary for aggregation to happen. 

 

Over the years, many studies have reported on the presence of near-native states 

of proteins that are aggregation-prone. A combined analysis of kinetics and solution 

thermodynamics of recombinant human interferon-g, found that only a 9% expansion of 

the native-state surface area was necessary to form the intermediate state that preceded 

aggregation (Kendrick et al. 1998). Similar results were found for human granulocyte 

colony stimulating factor, in which they found that the expanded intermediate state 

preceding aggregation represented only a 15% of the surface area of the completely 

unfolded conformation (Krishnan et al. 2002). More recently, only transient local 

unfolding was found necessary to show faster aggregation for variants of human 

lysozyme, using hydrogen/deuterium exchange experiments (Canet et al. 2002). Studies 

on hyperthermophilic acylphosphatase, superoxide dismutase 1, transthyretin, 2-

microglobulin and Fyn SH3 also showed that global unfolding was not necessary, and 

that aggregation could be initiated from locally unfolded states (Chiti & Dobson 2009; 

Neudecker et al. 2012). NMR was able to resolve a structural folding intermediate of the 

6.4kDa Fyn SH3 domain that was more aggregation-prone than the native state 

(Neudecker et al. 2012). However, this relied upon mutations that stabilized the folding 

intermediate, and so the use of NMR to characterize directly pre-aggregational states in 

unmutated native-ensembles remains very challenging, particularly for larger proteins 

such as the 48 kDa humanized antibody fragment Fab A33.  

 

While hydrogen-deuterium exchange by NMR or mass spectrometry can map 

changes in native ensemble dynamics, it remains challenging to characterize the structural 

conformers being sampled, particularly for large proteins. In this chapter, I characterized 

an aggregation prone species of Fab A33 at low pH, using small angle X-ray scattering 

(SAXS) in combination with atomistic structures generated using Molecular Dynamic 

(MD) simulations. SAXS is a diffraction technique used to characterize macromolecules 

in solution. It is particularly useful to study changes in protein structure due to different 

solution conditions. Results showed that the room temperature aggregation of Fab A33 

occurred through local unfolding into more expanded native-like conformers. The 

intermediate state preceding aggregation was very similar in structure to the native state 

but, it was more expanded, it had local regions with increased flexibility and had 

increased exposure of hydrophobic residues that favor aggregation. 
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4.3  Methods 
 

4.3.1 Cloning, site-directed mutagenesis, expression and purification of Fab A33  

 

The gene coding for Fab A33 was generously supplied by UCB Celltech (Slough, 

UK) in the plasmid pTTOD in E. coli W3110. The original gene contained an unpaired 

cysteine at position 226, in the hinge region. To avoid formation of Fab dimers, this 

cysteine was mutated to a serine, C226S, and I refer to this variant as wild-type Fab A33. 

WT Fab A33 was expressed and purified as described in previous works (Chakroun et al. 

2016; Hilton 2015). 

 

 

4.3.2 Acquisition of small-angle X-ray scattering data 

 

Data acquisition was performed by Dr David Hilton (Hilton 2015), and it is 

summarized here. Scattering data was collected for Fab A33 at 1.0 mg/ml and 20 °C, for 

a range of pH and ionic strengths (IS). Specifically, five pH 3.5, 4.5, 5,5. 7.0 and 9.0, and 

four IS 20, 50, 150 and 250 mM. Buffers at pH 3.5, 4.5 and 5.5 were 20 mM sodium 

acetate, at pH 7.0 in 20 mM sodium phosphate, and at pH 9.0 in 20 mM Tris.HCl buffer. 

The ionic strengths of each buffer were modulated through the addition of sodium 

chloride (NaCl), to the exception of IS 20 mM were no NaCl was added. 

 

Small-angle X-ray scattering measurements were carried out on beamline BM29 

at the European Synchrotron Radiation Facility (ESRF), Grenoble, France. The beamline 

energy ranged from 7 - 15 keV with a storage ring current between 166 mA to 195 mA. 

Scattering data, I(Q), was collected using a 2D Pilatus detector located 2.867 m from the 

sample, which combined with a wavelength of 0.09919 nm enabled a Q-range of 0.025 - 

5nm-1 to be accessed. Samples were stored at 20 °C and loaded in 50 µL portions using a 

quartz flow-through capillary (diameter 1.833 mm, wall thickness 0.02 mm). Between 

samples the capillary was automatically washed with ddH2O, then detergent before 

flushing with ddH2O. Data were collected in 10 successive 1 second frames, to minimize 

the effects of radiation damage, with pre- and post- sample pure buffer measurements for 

subsequent background subtraction. The 2D data were automatically normalized to an 

absolute scale, calibrated using the scattering profile of water, and azimuthally averaged 
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to obtain a 1D intensity profile. Profiles with observable radiation damage were discarded 

prior to averaging and buffer subtraction. Basic manipulations of the experimental small 

angle scattering profiles were performed using PRIMUS. This included the subtraction 

of buffer profiles from those of their corresponding protein samples and averaging of 

triplicate scattering data. 

 

 

4.3.3 Analysis of small-angle X-ray scattering data 

 

In a SAXS measurement, intensities I(Q) of the scattering curve are measured as 

a function of Q (where ! = 4$ sin())/,; 2 θ is the scattering angle and l is the 

wavelength). Two analyses were performed afterwards. They both found the radius of 

gyration (Rg) of the protein and the molecular weight from the forward scattered intensity 

at zero angle I(0). Guinier analyses only use the data at low Q values, up to a Q*Rg of 

1.5 for globular proteins (where the approximation is still valid). Guinier analyses consist 

in plotting ln I(Q) as a function of Q2, and performing a linear fit. 

 

ln .(!) = ln .(0) −	234!4/3                                                                              (Eq. 4.1) 

 

The second analysis, uses the full Q range of the scattering data. It consists on the 

Fourier transformation of the scattering data I(Q) in reciprocal space into real space, to 

give the distance distribution function P(r). P(r) curve represents all the distances between 

all the volume elements in the protein. For example, the maximum in the curve 

corresponds to the most commonly occurring distance, and the maximum r represents the 

length of the protein. I used the program GNOM for the calculation of P(r) curves and 

obtain Rg and I(0) (Franke et al. 2012). 

 

 

4.3.4 MD simulations to generate Fab A33 conformations at different pH 

 

Molecular dynamic (MD) simulations on the Fab A33 homology model were 

carried out using Gromacs v5.0 (Abraham et al. 2015) and the OPLS-AA/L all-atom force 

field (Kaminski et al. 2001; Kortkhonjia et al. 2013; Hu & Jiang 2010; Smith et al. 2015; 

Yu & Dalby 2018; Yu et al. 2017; Zhang et al. 2018), as in the previous chapter. MD 
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simulations were carried at five pH, 3.5, 4.5, 5.5, 7.0 and 9.0, all at an ionic strength of 

50 mM. These simulations were generated at three temperatures, 300 K, 340 K and 380 

K, to increase the range of energy to the system and generate more variable structures. In 

addition, three independent simulations were carried out for all conditions. The 

protonation state of each residue were determined at each pH using the PDB2PQR server, 

which performed the pKa calculations by PropKa (Li et al. 2005). Calculated total charge 

of Fab A33 at each pH were: +35 (pH 3.5), +18 (pH 4.5), +12 (pH 5.5), +9 (pH 7.0) and 

+5 (pH 9.0). As described in the previous chapter, Fab A33 was placed in a cubic box, 

solvated with water molecules, and ions were added to neutralize the system and adjust 

the ionic strength. The system was energy minimized and equilibrated under NVT and 

NPT ensembles. Lastly, 50 ns MD simulations were performed on the UCL Legion High 

Performance Computing Facility. The time step of the simulations was set to 2 fs, 

trajectories were saved every 10 ps, and analyses were performed using standard Gromacs 

tools. To generate atomistic structures to use in combination with the SAXS data, 

snapshots were saved for every 50 ns simulation, every 10 ps, totaling 5,000 structures 

per trajectory. At each pH, every simulation was performed in triplicate and at three 

different temperatures. Thus, in total, 45,000 models were generated for each pH value to 

be compared to the SAXS experimental data. 

 

 

4.3.5 Atomistic modeling of SAXS data using SCT  

 

SCT is an open source software designed for the comparison of experimental X-

ray scattering curves to generated plausible structures of the protein in solution (Wright 

& Perkins 2015). SAXS is a low resolution diffraction technique, where, if no constraints 

are applied, the structural resolution is 2 - 4 nm. However, when SAXS is combined with 

atomistic models that provide structural constraints, the resolution is improved to 0.5 - 

1.0 nm. The approach consists in computing theoretical SAXS curve for each generated 

model, and these are compared to the experimental curves. A subset of best-fit models is 

identified to represent the average solution structure. 

 

I used the structures generated during MD simulations, to compare to 

experimental SAXS data. A theoretical X-ray scattering curve was calculated for each of 

the models (45,000 models per pH). First, a coarse-grained model needs to be constructed 

from the atomistic structures, to ease demand of processing power. This was done by 
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placing the models in a grid of boxes and replacing it with spheres. I used a standard box 

side of 0.54 nm and a cutoff of 4 atoms (selected using a structure at the end of a pH 3.5 

simulation, one of the most extended models). After, a hydration shell of 0.3 g of water 

per gram of protein was added to the models because SAXS visualizes the layer of water 

in contact with the protein. Second, theoretical scattering curve were calculated using the 

Debye’s Law adapted to spheres (computing all the distances r from each sphere to the 

remaining spheres and summing the results). Third, experimental and theoretical curves 

were compared using the R factor (by analogy with crystallography, ow R factors 

represent the better fit structures). Q range: 0.37-1.6 nm-1. 

 

2 = 	
∑789:;<=(>)8?@‖9BCDEF(>)‖7

∑89:;<=(>)8
G	100                                                                    (Eq. 4.2) 

 

 

4.3.6 Aggregation-prediction regions software 

 

Aggregation-prone regions (APR) of Fab A33 were predicted using the sequence-

based APR predictors PASTA 2.0 (Walsh et al. 2014), TANGO (Fernandez-Escamilla et 

al. 2004), AGGRESCAN (Conchillo-Solé et al. 2007) and MetAmyl (Emily et al. 2013), 

and Amylpred2 consensus tool (Tsolis et al. 2013) was used to confirm the presence of 

these APRs, as in Chapter 3. The difference in solvent accessibility of the APRs in the 

SAXS best-fit structures at pH 7.0 and pH 3.5 were analysed using Pymol software. 
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4.4  Results and discussion 
 

The small-angle X-ray scattering data presented in this chapter was collected by 

Dr David Hilton (Hilton 2015). I have performed the analysis of this data. 

 

4.4.1 SAXS identified an expanded aggregation-prone conformation of Fab A33 at 

acidic pH  

 

Small-angle X-ray scattering (SAXS) is a diffraction technique that characterizes 

the structure of a protein in solution (Perkins et al. 2009). By studying the protein in 

different solution conditions, it is possible to elucidate changes in its conformation due to 

solution conditions. In this chapter, I investigated the effect of pH and salt concentration 

upon Fab A33 structure. X-ray scattering curves were acquired for Fab A33 at 1 mg/ml 

in 20 different solution conditions; five pH: 3.5, 4.5, 5,5. 7.0 and 9.0 and four NaCl 

concentrations: 0, 50, 150 and 250 mM. Scattering data was first analyzed to obtain the 

radius of gyration (Rg) and the intensity at zero Q (I(0)), the latter being proportional to 

the molecular weight. Rg and I(0) can be obtained using two analyses, Guinier analysis 

of the low Q region and pair density distribution P(r) analysis from the Fourier transform 

of the full scattering curve. Both analyses found consistent results (Figure 4.1 and 4.2).  

 

Guinier plots from the low Q region of the scattering curve revealed the presence 

of minor amounts of aggregates, specially for the samples below pH 7.0 (red; Figure 

4.1a). The presence of these aggregates can be seen at the lowest Q values, where I(Q) 

intensities increase and curve upward. Notably, it was also observed that if the data was 

fitted to larger Q values (green; Figure 4.1a), linear non-aggregated Guinier plots with 

satisfactory Q*Rg ranges were identified that were distinct from the Guinier fits for 

aggregated Fab A33. This analysis was confirmed by monitoring I(0)/c of the non-

aggregated Guiniers (larger Q region) (Figure 4.1b), (I(0) obtained from extrapolation of 

the line fit in the Q range of 0.37-0.5 nm -1 (green)). The molecular weight of the species 

present in the sample is proportional to I(0)/c, thus, if no aggregates are present, I(0) 

should be the same for all the conditions measured. Figure 4.1b showed I(0)/c to be 

similar at around 40 (39 ± 3) (mg/ml)-1 for almost all 20 solution conditions. This outcome 

indicated that the Rg values of monomeric Fab A33 could be determined independently 

from its aggregation. In this way, two ranges were fitted: a larger Q range to determine 
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the radius of gyration of Fab A33 in solution, 0.37-0.5 nm-1, and a shorter Q range to 

estimate the amount of aggregation present in the samples, 0.14-0.3 nm-1. The parameter 

used to monitor the amount of aggregate in the sample was ∆I(0)/c [= (I(0)Q: 0.14-0.3 nm -1 – 

I(0)Q: 0.37-0.5 nm -1)/c], as previously used (Nan et al. 2013), to subtract the non-aggregated 

Guiniers from the aggregated Guiniers and gain an estimate of the amount of aggregation 

that had taken place. 
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Figure 4.1. SAXS Guinier analyses. Twenty experimental conditions were studied for 

Fab A33 using five pH (3.5, 4.5, 5.5, 7.0, 9.0) and four ionic strengths (20, 50, 150, 250 

mM).  (a) Guinier plots of ln I(Q) vs. Q2 gave the Rg and I(0) values. Five representative 

fits are shown for each of pH 3.5, 4.5, 5.5, 7.0 and 9.0 in an ionic strength of 50 mM. The 

fits for native Fab A33 were determined using the Q range of 0.37-0.5 nm -1 (green) and 

those for aggregated Fab A33 was determined from the Q range of 0.14-0.3 nm-1 (red). 

(b) I(0) values for native Fab A33, where I(0)/c is proportional to the molecular weight, 

and error bars are the SEM of three measurements. (c) Rg values for native Fab A33 for 

each of the 20 experimental conditions studied, with error bars are the SEM of three 

measurements. (d) The amount of aggregate present was determined from ΔI(0)/c, 

defined as (I(0)Q: 0.14-0.3 nm -1 – I(0) Q: 0.37-0.5 nm -1)/c. 

 

 

SAXS showed that Fab A33 adopted a more expanded conformation at acidic pH 

(5.5, 4.5 and 3.5) compared to neutral pH (7.0 and 9.0) (Figure 4.1c). The radius of 

gyration increased from 2.62 nm at pH 7.0 and 2.64 nm at pH 9.0, to 2.70 nm at pH 3.5, 

2.73 nm at pH 4.5, and 2.71 nm at pH 5.5 (mean SEM of 0.01 nm). These correspond to 

Rg increases of between 2.2 % and 4.1 % from neutral pH (7.0 and 9.0) to acidic pH (5.5, 

4.5 and 3.5). In addition, SAXS data allowed the study of the effect of pH and salt 

concentration upon protein conformation. Results showed that pH had a bigger effect on 

the conformation of Fab A33 than salt concentration. Whereas a change from neutral pH 

to acidic pH, induced unfolding of Fab A33 to a more expanded conformation, an increase 

in IS from 0 to 250 mM had little effect on Rg (e.g., Rg increased at pH 7.0 from 2.60 nm 

to 2.64 nm, and at pH 4.5 from 2.72 nm to 2.73 nm (mean SEM of 0.01 nm)). These 

results are consistent with previous reports, which suggest that pH had a bigger influence 

on the conformation of the protein (Sahin et al. 2010).  

 

I used ∆I(0)/c as a reporter of protein aggregation. SAXS detected the presence of 

small amounts of aggregates in the samples at acidic pH (5.5, 4.5 and 3.5), in contrast to 

the samples at neutral pH (7.0 and 9.0) where no aggregates were found (Figure 4.1d). 

The same conditions that found an expanded conformation of Fab A33 lead to accelerated 

aggregation, indicating that the expanded conformation of Fab A33 is aggregation-prone. 

Interestingly, no aggregates were detected in the pH 3.5 samples at a low IS of 20 mM, 

unlike for the pH 4.5 and 5.5 samples. This is probably due to the fact that at pH 3.5 Fab 
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A33 is highly positively protonated, and these charges prevent aggregation of protein 

molecules, stabilizing Fab A33 colloidally. When salt concentration is increased (Figure 

4.1d, pH 3.5 and IS of 50, 150 and 250 mM), the long-range repulsions between charged 

Fab molecules become shielded, which favors aggregation. These results are consistent 

with the Fab A33 aggregation kinetics observed previously (Chakroun et al. 2016), for 

which the pH 3.5 samples at low IS also aggregated much more slowly than at higher pH 

or IS. These findings also suggest that the addition of salt mainly contributes to charge 

shielding, and does not destabilize the native conformation sufficiently to induce global 

unfolding.  

 

The distance distribution functions P(r) also provided an alternative route for 

calculating the Rg and I(0). Figure 4.2b showed I(0)/c to be similar at around 40 (mg/ml)-

1, for almost all 20 solution conditions, further indicating that the Rg values of monomeric 

Fab A33 could be determined independently from its aggregation. P(r) analysis found 

consistent results to the Guinier analyses, where A33 adopted a more expanded 

conformation at acidic pH (5.5, 4.5 and 3.5) compared to neutral pH (7.0 and 9.0). The 

radius of gyration increased from 2.62 nm at pH 7.0 and 2.64 nm at pH 9.0, to 2.71 nm at 

pH 3.5, 2.70 nm at pH 4.5, and 2.70 nm at pH 5.5 (mean SEM of 0.01 nm), (Figure 4.2c). 
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Figure 4.2. pH and ionic strength dependence of the P(r) curves. Twenty experimental 

conditions were studied using five pH values (3.5, 4.5, 5.5, 7.0, 9.0) and four ionic 

strengths (20, 50, 150, 250 mM). (a) Representative examples of the P(r) curves at five 

pH values as labelled; the five curves correspond to an ionic strength of 50 mM. The P(r) 

curves were calculated using the Q range of 0.3-2 nm-1. (b, c) The I(0) and radius of 

gyration Rg values for Fab A33 are shown for each of the 20 experimental conditions 

studied. Errors are the SEM of three repeats. 
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4.4.2 Correlation of Fab A33 radius of gyration and aggregation rate  

 

SAXS elucidated the presence of a more expanded conformation of Fab A33 at 

pH below 7.0, that correlated with the presence of small amounts of aggregates also 

detected by SAXS. To corroborate if the presence of this expanded conformation 

correlates with aggregation propensity, I combined the results obtained for the radius of 

gyration of Fab A33 using SAXS with previously reported aggregation kinetics in our 

lab, for the same experimental conditions (pH 3.5, 4.5, 5.5, 7.0 and 9.0; Ionic Strength: 

20, 50, 150 and 250 mM; at 23 ˚C) (Chakroun et al. 2016). Aggregation kinetics were 

obtained by monitoring monomer loss using SEC-HPLC. Here, we show the initial rates 

of aggregation (v), measured from the first 20% of Fab A33 monomer loss. The initial 

rates of monomer loss as a function of pH and ionic strength were increased to 0.027 

0.003 % day-1 at pH 3.5-5.5, compared to rates of 0.009 0.0018 % day-1 at pH 7-9 (Figure 

4.3).  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Aggregation rates as a function of pH. The initial rates of aggregation v in 

units of % day-1 for Fab A33 at 23 ºC were reported using SEC-HPLC for twenty 

experimental conditions based on five pH values of 3.5, 4.5, 5.5, 7.0 and 9.0 and four 

ionic strengths of 20, 50, 150, 250 mM. Errors are the SEM of three experimental repeats. 

 

As found previously with SAXS, I found a correlation between Rg and 

aggregation rate. The experimental conditions that cause an increase in Rg (pH 3.5, 4.5, 

and 5.5) also resulted in faster aggregation rates than at neutral pH (7.0 and 9.0) (Figure 

4.4). These results confirm that the expanded conformation of Fab is more aggregation-

prone. 
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Figure 4.4. Correlation between the Rg values and aggregation rates v. For each pH 

(see inset), the averaged Rg values for native Fab A33 and the aggregation rates v are 

shown for the four ionic strengths. Error bars are the SEM.   

 

 

4.4.3 Molecular Dynamic simulations captured pH-induced unfolding 

 

Fab A33 homology model was used as the starting structure for MD simulations 

using Gromacs. MD simulations of 50 ns were carried at five pH, 3.5, 4.5, 5.5, 7.0 and 

9.0, and one IS, 50 mM. Total charge and protonation state of the ionizable residues at 

each pH were determined using propKa software (which predicts the pKa value of the 

ionizable groups based on the protein structure) (Li et al. 2005). Based on the homology 

model of Fab A33, propKa determined the following total charges at each pH: +35 (pH 

3.5), +18 (pH 4.5), +12 (pH 5.5), +9 (pH 7.0) and +5 (pH 9.0). In addition, simulations 

were performed at three different temperatures, 300 K, 340 K and 380 K. In this section, 

I present the results of the simulations at 300 K. For all conditions, three independent 

simulations were carried out. 

 

Rg of the protein and solvent accessible surface area (SASA) were monitored as a 

function of simulation time for all the pH (Figure 4.5a,b). For each pH, the three 

simulation repeats were averaged at every time point of the simulation (10 ps) to show 

the variability between repeats, and are shown with transparency. These averages were 

smoothed by window averaging consecutive data, and they are shown in darker color. 
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Results showed that the simulations were able to capture the increase in the Rg and SASA 

as the pH decreased, in agreement with SAXS data. The values of Rg derived from 

simulations were smaller than the Rg values reported previously with SAXS, because no 

account was taken of the hydration shell visible by SAXS, nonetheless the trends were 

clear. MD simulations also found an increase in Rg as the pH became more acidic. The 

MD simulations at pH 7.0 and 9.0 gave an Rg of 2.52 nm and 2.51 nm (mean SEM of 

0.01 nm), respectively, whereas at pH 3.5 this increased to 2.58 nm ± 0.02 nm. At pH 4.5 

and 5.5, the increase in Rg from simulations was not as noticeable as the increase observed 

experimentally with SAXS. MD simulations do not update the protonation state of 

molecules continuously as the protein structure unfolds, and this would limit the rate of 

structural change during simulation, most critically at pH 4.5-5.5, which overlaps the pKa 

range of acidic residues. Results for SASA followed the same trend that for Rg. As the 

pH of the solution decreased, the solvent accessible surface area of Fab A33 increased. 

SASA started at a value of 210 nm2 for pH 7.0 and 9.0, and finished at a value of 220 nm2 

for pH 3.5. 

 

The MD simulations also provided information about protein dynamics 

potentially down to the level of individual residues. The flexible regions of Fab A33 were 

assessed using the root mean square fluctuation (RMSF), this being the average distance 

that a residue moves during the simulation. The RMSF for the last 30 ns of each 

simulation (20-50 ns) were averaged for each residue, and visualized by color in Figure 

4.5c and Figure 4.5d for pH 7.0 and pH 3.5 respectively. Less flexible residues are shown 

in blue and more flexible residues in red. For pH 7.0, the most flexible regions were found 

to be the loop regions, followed by the α-helical regions, then the b-strand regions. The 

highest flexibility was seen in the CDR loops, the C-terminus of the heavy chain, and 

several loops and α-helices. The b-strands of the CL and CH1 domains were more flexible 

than the VL and VH domains. For pH 3.5, Fab A33 was seen to be more flexible than at 

pH 7.0. In addition to the regions seen to be flexible at pH 7.0, which were also flexible 

at pH 3.5, both the CL and CH1 domains showed increased flexibility at low pH. Taken 

together, MD simulations found that at low pH, Fab A33 adopted an expanded 

conformation, with increased solvent surface area and regions with increased flexibility. 

These are characteristics expected of aggregation-prone conformers.
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Figure 4.5. MD simulations of native Fab A33 at 300 K. (a, b) The Rg values and solvent accessible surface area (SASA) of Fab A33 are shown 

as a function of simulation time for five pH values as labelled, using an ionic strength of 50 mM for each. For each pH, three simulation repeats 

were averaged at every time frame, from which a window average is shown in a darker colour. (c, d) The root mean square fluctuation (RMSF) of 

the simulations at pH 7.0 and pH 3.5 respectively are shown in blue (low values) and red (high values) to highlight the dynamic regions in the 

structure. The RMSF values were added as notional B-factors to the PDB file for the Fab A33 homology model.  
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4.4.4 Atomistic modelling of SAXS data to characterize the expanded 
conformation 

 

The full X-ray scattering curve contains additional information about the structure 

of the protein in solution, beyond the radius of gyration. One way to extract this 

information is to combine SAXS data with atomistic models of the protein in different 

conformations. A theoretical X-ray scattering curve can be calculated from each of the 

atomistic models, and these curves can be compared to the experimental X-ray scattering 

curve. From these, the curves that best fit the experimental SAXS curve are identified. 

The structures corresponding to these theoretical best curves are accepted as 

representative of the average solution structure. This has been applied to a range of protein 

structures (Wright & Perkins 2015; Walker et al. 2017; Rayner et al. 2015). 

 

Each MD simulation above recorded 5,000 structural snapshots of the 50ns 

simulations at every 10 ps, i.e. 45,000 structural models for each pH value. A theoretical 

scattering curve was calculated for each of the models from the simulations, and the 

theoretical curves were compared to an experimental SAXS curve at the same pH and 

NaCl concentration. To measure how good the fit between theoretical and experimental 

curves is, the parameter R factor was used, by analogy with crystallography, which 

monitors the agreement between the curves. The better the fit, the lower the R factor. R 

factors were calculated by comparing theoretical and experimental curves in the Q range 

0.37-1.6 nm-1. Graphs of R factors (goodness of fit) versus Rg values are very helpful to 

oversee how well the atomistic models are reproducing the experimental data. Thus, 

theoretical radius of gyrations were also calculated from the theoretical scattering curves, 

by performing Guinier Analysis on the same Q range that the one used on the 

experimental curves, Q range 0.37-0.5 nm-1. 

 

Figure 4.6a shows, for each pH, an example of R factor versus Rg graph, which 

allows us to see how well the 45,000 models compared to that experimental curve. First, 

all R factor values were below 5%, which indicated very good fits, and thus, models 

generated during the simulations were close in structure to the Fab A33 solution structure 

found experimentally. The presence of a minimum at all pH indicated that enough 

conformations of Fab A33 had been sampled. Interestingly, at pH 5.5, simulations at 

higher temperature were necessary to characterize the minimum. This was suggested in 

the previous section, where it was found that simulations at pH 5.5 and 300 K did not 
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capture the conformational change observed experimentally. The ten best fit models for 

each pH were highlighted in the graphs and shown in yellow, with R-factors below 2%. 

Rg found experimentally for each pH are indicated as vertical lines in the graph, with all 

minima being within one standard deviation of the experimental Rg values, indicating 

very good fits had been obtained. Notably, minimums of best fit structures were reached 

at different radius of gyration for each pH. As found previously, Fab A33 had a more 

compact structure at pH 7.0 and 9.0, and partially unfolded to a more expanded 

conformation at pH 5.5, 4.5 and 3.5.  

 

To visualize how well the best fits models compare to the experimental data, the 

X-ray scattering curves of the best models and experimental curves were overlapped 

(Figure 4.6b). The P(r) curves from the models were also calculated and overlapped to 

the experimental curves, and are shown on the upper-hand corner. Visual inspection 

showed very good fits between the X-ray experimental I(Q) (circles) and best-fit 

modelled I(Q) curves (red lines), and experimental P(r) curves (black lines) and best 

models (red lines). 
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Figure 4.6. Comparison of the SAXS data with the MD simulations. 
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Figure 4.6. Comparison of the SAXS data with the MD simulations. (a) Comparison 

of the experimental X-ray scattering curve for native Fab A33 with the structures 

generated from the MD simulations for the five pH values as shown. MD simulations 

were carried out using an ionic strength of 50 mM at three temperatures of 300 K (green), 

340 K (purple) and 380 K (grey). In total, each experimental SAXS curve was compared 

against 45,000 simulated structures per pH value. The goodness of fit was monitored 

using R-factors (Methods). The vertical lines represent the experimental Rg values with 

their experimental errors (SEM). The Rg value of each model was calculated from the 

theoretical scattering curve using the same Q-range used experimentally. The 10 best fit 

models with the lowest R-factors are highlighted in yellow. (b) Comparison of each 

experimental SAXS scattering curve (black) with its best-fit modelled curve (red). The 

inset shows the comparison between the experimental and best fit modelled P(r) curves. 

 
 

To gain insights into the molecular structure of the Fab A33 expanded 

conformation at low pH, alignments of the sets of ten best-fit structures were performed. 

First, the ten PDB structures from MD simulations that best fitted the SAXS experimental 

data for pH 7.0 and IS of 50 mM were considered (Figure 4.7). I observed that the overlap 

was not perfect, which means that Fab A33 is dynamic in solution and we can gain 

information about the more flexible regions in its structure. The RMSD of each Fab 

domain was calculated relative to the structure that best fitted the SAXS experimental 

data at pH 7.0, as reference. As expected from their antigen-binding role, the CDR loops 

showed high flexibility, with a median RMSD of 0.18 nm and an interquartile range of 

0.13-0.21 nm. Interestingly, the CH1 domain also showed high flexibility with an RMSD 

of 0.17 nm and range of 0.10-0.19 nm. In particular, the CH1 C-terminal -strand connected 

to the hinge peptide showed wide conformational variability. In the full-length antibody, 

the hinge is attached to the Fc region, which may provide additional stability. The VH and 

CL domains showed RMSDs and ranges of 0.15 nm (0.14-0.16 nm) and 0.10 nm (0.09-

0.12 nm) respectively. The VL domain showed the least variability with a RMSD and 

range of 0.08 nm (0.08-0.09 nm) and good alignment of all the β-strands.  
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Figure 4.7. Alignment of the best-fit Fab A33 structures at pH 7.0. The ten best-fit 

simulated structures determined for pH 7.0 and an ionic strength of 50 mM are aligned in 

a cartoon representation. (a) Alignment of the light chain; (b) Alignment of the heavy 

chain. 

 

 

I next aligned the ten best fit structures at pH 7.0 to the ten best fit structures at 

pH 3.5 (Figure 4.8). These alignments provided structural information about the pH 

induced conformation change. The RMSDs at pH 3.5 were also calculated relative to the 

reference best fit structure at pH 7.0. Notably, the CL domain was the only domain to 

show a significant increase in RMSD as the pH was decreased. The RMSD and range of 

the CL domain increased to 0.16 nm (0.13-0.17 nm) at pH 3.5, compared to 0.10 nm (0.09-

0.12 nm) at pH 7.0. The structure alignments revealed a displacement of this domain at 

low pH (magenta; Figure 4.8a), being more open to solvent at pH 3.5. This pH-dependent 

domain displacement was clearly visualized in two loops (light chain residues 150-159 

and 198-205; arrowed in Figure 4.8a) which connect CL β-strands. The α-helix at residues 

183-188 of the CL domain was displaced. The α-sheet structure was lost in 8 out of 10 of 

the CL best structures at pH 3.5 in residues 144-147, which suggests an increased 

flexibility in this segment.  
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Figure 4.8. Alignment of the best fit Fab A33 structures at pH 7.0 and 3.5. The ten best-fit simulated structures determined for pH 7.0 are shown in 

cyan and those for pH 3.5 are shown in magenta; both at an ionic strength of 50 mM. (a) Alignment of the light chain in which the CL domain is 

highlighted to show its loop and helix displacements at low pH in three views. (b) Alignment of the heavy chain, in which a side view of the CH1 domain 

is shown.
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No corresponding systematic displacements were found at pH 3.5 for the other 

three domains, even though these showed comparable RMSDs and ranges of 0.10 nm 

(0.09-0.10 nm) for the VL domain, 0.17 nm (0.16-0.17 nm) for the VH domain and 0.18 

nm (0.16-0.20 nm) for the CH1 domain, each relative to the best fit Fab A33 structure at 

pH 7.0. As seen at pH 7.0, the CH1 domain was relatively flexible in sampling a wide 

range of conformations, particularly in the C-terminal -strand connected to the C-terminal 

hinge (Figure 4.8b). The hinge itself was highly extended at pH 3.5, and adopted a range 

of conformations. Additional views of the best-fit structures at pH 7.0, 5.5 and 3.5 in 

Figure 4.9 provide further visual support for the conformational shift at low pH in the CL 

domain. 

 

 
Figure 4.9. Alignment of the SAXS best fit structures at pH 7.0, 5.5 and 3.5. The top 

ten PDB structures that best fit the SAXS curves at three pH values are superimposed 

upon each other (cyan, pH 7.0; orange, pH 5.5; and magenta, pH 3.5), all for an ionic 

strength of 50 mM. (a) Alignment of the 30 light chains only, in which the CL domains 

are highlighted with a dashed circle to show the displacement of this domain with pH. 

Back and side views of this domain are also presented. (b) Alignment of the 30 heavy 

chains. 
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In order to obtain a better picture of the displacements experienced by the whole 

Fab A33 molecule at low pH, distances between the four domains were also measured, 

using one cysteine in each domain. Six distances were monitored in total (VL-VH, CL-

CH1, VL- CL, VH- CH1, VL-CH1 and VH- CL), using the four cysteines located in outer ß-

strands (C23, C194, C236, C414), (Figure 4.10). The six distances were calculated for 

the ten best SAXS fit structures at pH 7.0 and the ten best SAXS fit structures at pH 3.5, 

and their averages and SEM are reported (Table 4.1). Results confirmed that the 

displacement at low pH occurred in the CL domain, given that the only inter-domain 

distances that increased between pH 7.0 and 3.5, were the distances where the CL domain 

was involved. Distances increased between the outer ß-strand cysteines of VL-CL (0.29 

0.07 nm), VH-CL (0.27 0.03 nm) and CL-CH1 (0.05 0.02 nm). By contrast, the distances 

between the other domains did not change significantly.  

 

 
Figure 4.10. Location of the inter-domain distances studied in Table 4.1, in the Fab 

A33 structure. Six distances were measured between the four Fab domains (VL-VH, CL-

CH1, VL- CL, VH- CH1, VL-CH1 and VH- CL) using the four cysteines located in outer ß-

strands (C23, C194, C236, C414), for the ten best fist SAXS structures at pH 7.0 and 3.5. 
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Table 4.1 Inter-domain distance differences between the best SAXS fit structures at 

pH 7.0 and 3.5, using one cysteine in each domain (VL, VH, CL and CH1). Six distances 

were monitored between the four Fab domains (VL-VH, CL-CH1, VL- CL, VH- CH1, VL-

CH1 and VH- CL) using the four cysteines (C23, C194, C236, C414) located in the outer 

ß-strands. These are shown in the Fab A33 structure in Figure 4.10. Averages and SEM 

shown. 

 

Distance (nm) pH 7.0 pH 3.5 ∆pH (3.5 - 7.0) 

C23 (VL) - C236 (VH) 3.00 ± 0.02 2.95 ± 0.01 -0.05 ± 0.03 

C194 (CL) - C414 (CH1) 2.47 ± 0.02 2.52 ± 0.01 0.05 ± 0.02 

C23 (VL) - C194 (CL) 4.18 ± 0.02 4.47 ± 0.06 0.29 ± 0.07 

C236 (VH) - C414 (CH1) 4.11 ± 0.07 4.09 ± 0.06 -0.02 ± 0.09 

C23 (VL) - C414 (CH1) 4.68 ± 0.06 4.64 ± 0.02 -0.05 ± 0.06 

C236 (VH) - C194 (CL) 4.99 ± 0.02 5.26 ± 0.02 0.27 ± 0.03 

 

 

 

4.4.5 Identification of aggregation-prone regions (APR) suggests an aggregation 

mechanism 

 

APRs in Fab A33 were determined using sequence-based APR detectors (done in 

Chapter 3), as I have already identified the experimental solution conformations of Fab 

A33 in different solution conditions via SAXS atomistic modelling. Thus, the APR 

predictions were combined with the best experimentally identified structures at pH 7.0 

and 3.5 to identify differences in their solvent exposure. Four sequence-based APR 

predictors were used, PASTA 2.0 (Walsh et al. 2014), TANGO (Fernandez-Escamilla et 

al. 2004), AGGRESCAN (Conchillo-Solé et al. 2007) and MetAmyl (Emily et al. 2013), 

and their findings were confirmed with the consensus tool Amylpred2 (Tsolis et al. 2013). 

Seven APRs were identified in Fab A33 namely residues 31-36, 47-51, 114-118 and 129-

139 in the light chain and residues 261-165, 325-329 and 387-402 in the heavy chain.   
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To display the aggregation-prone regions on the Fab A33 homology model as 

shown in Figure 4.11a, each aggregation propensity was normalized between 0 and 1, and 

weighted equally. Red represented high aggregation propensities and blue low 

aggregation propensities. The seven APRs were co-located as three regions of largely 

buried b-strands within the folded structure, and all were protected from the solvent. Next, 

the difference in solvent accessibility of the APRs in the SAXS best-fit structures at pH 

7.0 and pH 3.5 were analysed. The solvent accessibility of one APR visibly increased at 

pH 3.5 due to the displacement of the CL domain (circled; Figure 4b,c). Quantitatively, 

the SASA of the seven APRs were calculated for the ten best-fit structures at pH 7.0 and 

pH 3.5, and summed (Table 4.2). While most APR showed small decreases in solvent 

accessibility, the APR at residues 387-402 increased by 83 Å2 from 536 ± 43 Å2 at pH 

7.0 to 619 ± 39 Å2 at pH 3.5 (3% increase), due to the displacement of the CL domain at 

low pH. These data illustrate the potential of combining biophysical methods that 

determine conformational changes, with sequence-based APR prediction tools, for 

determining aggregation hotspots. For Fab A33, the aggregation prediction tools 

suggested a possible molecular explanation for the observed increase in aggregation at 

low pH as the result of structural instabilities. 
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Table 4.2 Comparison of the solvent accessible surface area (SASA) for the most aggregation-prone regions in Fab A33 between pH 7.0 
and pH 3.5. The SASA of the seven most aggregation-prone regions were computed using PyMol for the top ten SAXS best fit structures at each 

of pH 7.0 and pH 3.5. The Table reports absolute and relative solvent accessible surface areas, and the differences between the average SASA at 

the two pH values. 

 

APR Fab 
domain 

SASA (Å2) 
pH 7.0 

SASA (Å2) 
pH 3.5 

∆SASA (Å2) 
pH(3.5-7.0) 

SASA (%) 
pH 7.0 

SASA (%) 
pH 3.5 

∆SASA (%) 
pH(3.5-7.0) 

31-36 VL 111 ± 20 92 ± 10 -18 12 ± 2 10 ± 1 -2% 

47-51 VL 107 ± 23 90 ± 17 -17 12 ± 3 10 ± 2 -2% 

114-118 CL 115 ± 19 90 ± 12 -25 14 ± 2 12 ± 2 -3% 

129-139 CL 158 ± 12 140 ± 10 -18 9 ± 1 8 ± 1 -1% 

261-265 VH 10 ± 4 14 ± 5 4 1 ± 0 2 ± 1 1% 

325-329 VH 139 ± 18 134 ± 14 -6 23 ± 1 15 ± 2 -8% 

387-402 CH1 536 ± 43 619 ± 39 83 22 ± 2 25 ± 2 3% 
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Figure 4.11. Aggregation prone regions in Fab A33. (a) The consensus aggregation 

propensity of residues in Fab A33 was determined using PASTA 2.0, TANGO, 

AGGRESCAN and MetAmyl software. Using the native Fab A33 homology model, 

regions with greater aggregation propensities are shown in red and reduced propensities 

in blue. (b, c) Aggregation propensities in the SAXS best-fit structure for pH 7.0 and 3.5, 

respectively, are shown using a CPK spheres representation. The circled residues 

highlight the increase in SASA of APR 387-402 at pH 3.5 compared to pH 7.0.  
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4.5  Conclusions 
 

Characterization of the aggregation competent states is necessary to develop a 

rigorous understanding of the aggregation mechanism and to provide insights into 

possible approaches to rationally design candidate therapeutics. However, such 

aggregation-prone conformations for near-native solution conditions have proven most 

challenging to characterize over the years, and have remained elusive within unmutated 

native-protein ensembles. In this chapter, I characterized the structural perturbations that 

take place within the native ensemble of the humanized antibody Fab A33 over a range 

of different pH and ionic strengths, using SAXS atomistic modelling. Our data inferred 

the existence of an expanded aggregation-prone conformation of Fab A33, which adopted 

a more expanded conformation at acidic pH (5.5, 4.5 and 3.5) compared to neutral pH 

(7.0 and 9.0), with an increase in the Rg of between 2.2% and 4.1%. The presence of this 

expanded conformation coincided with accelerated aggregation, as small amounts of 

aggregates were also detected by SAXS and Rg values correlated with previously 

measured aggregation kinetics, indicating that this expanded species is aggregation prone. 

To gain insight into the structure of the expanded conformation, SAXS data was 

combined with atomistic structures generated using MD simulation at the same 

conditions. Results revealed a displacement of the constant domain of the light chain (CL) 

at low pH. This finding adds to the increasing amount of evidence suggesting that 

aggregation at near native conditions takes place through a state that is only slightly 

perturbed in structure relative to the native state.  

 

To explain the increased aggregation propensity of the expanded conformations 

of Fab A33, I used online software to predict the aggregation-prone regions (APR) that 

are more likely to form cross-β structures found in aggregates. Results showed that all 

predicted APR were buried in the interior of the protein; however, the SASA of one of 

them increased with the displacement of CL at low pH. Based on these findings, I propose 

an aggregation mechanism for Fab A33. Aggregation takes place through the formation 

of an aggregation-pone intermediate first, which is characterised by being native-like in 

structure but expanded relative to the native state (Chiti & Dobson 2009; Bemporad & 

Chiti 2009). This aggregation-prone intermediate has regions with increased flexibility 

and increased total SASA. The initial oligomers formed would thus retain high structure 

similarity to the native state. We hypothesize that in later stages of the aggregation 
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process, a structural re-arrangement takes place to form the typical cross-β structure of 

amyloids, as indicated in previous studies (Krishnan et al. 2002; Orte et al. 2008; Iljina et 

al. 2016). Future work to confirm this proposed aggregation mechanism, could include 

reducing the aggregation propensity of the exposed APR. Results from this chapter also 

provided experimental confirmation to the findings from molecular dynamic simulations 

in Chapter 3. There are several strategies to stabilize the CL domain, such as mutation of 

the salt bridges identified by MD simulations (Glu165-Lys103 and Glu195-Lys149), 

stabilize the constant domain interface as suggested by FoldX and Rosetta to more 

hydrophobic residues, or lower the aggregation propensity of the predicted exposed APR.  

 

Collectively, this work provides compelling evidence of how local unfolding can 

lead to transiently-formed structural conformers within the native ensemble that promote 

aggregation. It also highlights the promise of SAXS combined with molecular dynamics 

simulations to resolve aggregation-prone conformers within native ensembles, 

particularly for large proteins that are less accessible by NMR. This also provides a new 

route to gaining molecular level knowledge of potential target sites for the rational 

engineering of more stable proteins, either via protein engineering or formulation, or for 

the design of drugs that bind to and stabilize proteins against aggregation in vivo. 
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Chapter Five 

 

 

Characterization of the aggregation-

prone conformation of Fab A33 at low 

pH using single-molecule FRET as an 

orthogonal technique 
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5.1  Summary 
 

In this chapter, the CL domain unfolding observed at low pH in Fab A33 by MD 

simulations and atomistic modelling of SAXS data, was confirmed using single-molecule 

Forster Resonance Energy Transfer (smFRET), as an orthogonal method. The non-

radiative energy transfer between donor and acceptor fluorophores in FRET is very 

sensitive to distance changes, specially in the 2 to 10 nm range, which makes smFRET 

suited to study conformational changes in proteins. Two dual-labelled Fab A33 constructs 

were generated to probe an intra-CL separation and a separation between the CL domain 

and the heavy-chain linker. Specifically, these were (Dist 1) LC-K126pAzF + LC-S156C, 

and (Dist 2) HC-S117pAzF + LC-S156C. Each construct contained one nonstandard 

amino acid (p-azido-l-phenylalanine) and one solvent-exposed cysteine, to attach the 

fluorophores Alexa Fluor 488 DIBO Alkyne (donor) and Alexa Fluor 594 Maleimide 

(acceptor), respectively. The confocal detection of freely diffusing molecules was used to 

obtain the apparent transfer efficiency histograms (Eapp) of Fab A33 at pH 7.0 and 3.5. 

smFRET revealed that Dist 1 was unchanged between pH 7.0 and 3.5, while the distance 

between CL and the heavy chain linker (Dist 2) increased at pH 3.5, with a decrease in 

FRET efficiency from Eapp = 0.87 at pH 7.0 to Eapp = 0.78 at pH 3.5, confirming the partial 

unfolding of Fab A33 at low pH. Additionally, the values obtained for apparent transfer 

efficiencies were highly correlated with distances measured from the best models derived 

from SAXS and MD simulations. Both methods found that Dist 1 did not change with 

pH, being 2.5 nm at pH 7.0 and pH 3.5, while Dist 2 increased from 2.8 nm at pH 7.0 to 

3.5 nm at pH 3.5. Taken together, the displacement at low pH of the CL domain was 

validated by three independent detection methods. 
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5.2  Introduction 
 

As mentioned in the previous chapters, characterizing the conformational changes 

in the native state that give rise to aggregation-prone species, is crucial to understanding 

the mechanisms of protein aggregation. This will allow the search for protein aggregation 

inhibitors to be done in a rational way, and to ultimately design proteins more robust to 

aggregation. SAXS revealed that at ambient temperature Fab becomes conformationally 

expanded in acidic solutions, showing a 2.2% to 4.1% increase in the Rg of the species at 

pH 5.5 and below; with the presence of these species coinciding with accelerated 

aggregation. Atomistic modeling of SAXS data and MD simulations revealed that 

aggregation proceeded through a transient partial unfolding of the native state located on 

the light chain constant domain (CL) of Fab A33. To validate these findings, in this 

chapter I used confocal single molecule detection of FRET-labelled Fab A33 to 

characterize the partially unfolded aggregation-prone conformer at low pH, as the 

combined used of single molecule detection and FRET, enables conformational changes 

in single molecules to be elucidated.  

 

FRET, which stands for Förster resonance energy transfer (or fluorescence 

resonance energy transfer), involves the energy transfer from an excited donor 

fluorophore to an acceptor fluorophore through a non-radiative dipole-dipole coupling 

(Schuler 2013). The efficiency of this energy transfer is inversely proportional to the sixth 

power of the donor-acceptor distance, thus making FRET extremely sensitive to small 

changes in the 2 to 10 nm distance range. FRET often receives the name “molecular 

ruler”, and it is useful to study conformational changes in proteins. The use of single-

molecule detection offers the possibility to observe molecules one at a time, and thus, 

capture molecules that only represent a small fraction of the total number of molecules 

present, or species that might only be populated briefly (Lerner et al. 2018).  

 

A typical smFRET experiment entails labelling the protein with a donor and 

acceptor fluorophores at specific locations in the protein, so the distance between them 

can be monitored (Roy et al. 2008). A very small detection volume (<1 fL) is generated 

by combining a high numerical aperture objective that focuses the excitation laser beam 

to a diffraction-limited focal spot, with confocal detection. Very dilute concentrations of 

the protein are used (10-100 pM), to guarantee that statistically no more than one protein 
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molecule is present in the detection volume at the same time. During an experiment, 

protein molecules diffuse freely in solution. When a protein molecule traverses the 

detection volume, the donor fluorophore is excited, which can transfer energy to the 

acceptor dye, and both emit fluorescence photons. Donor and acceptor photons are 

separated by wavelength and detected using single-photon avalanche diode (SPAD) 

detectors. From the resulting photon record, donor and acceptor fluorescence intensities 

for each transit event can be extracted, and energy transfer efficiencies calculated. Energy 

transfer efficiencies can then be related to the distance between the fluorophores, and to 

different conformational states of the protein (Schuler & Eaton 2008; Hillger et al. 2007). 

 

Not many studies exist on the application of smFRET to study aggregation. Most 

of these studies have focused on the early sensitive detection of disease related 

aggregates, and the characterization of the aggregation process by looking at the time-

dependent distributions of oligomers, and how this was altered by additional factors. 

However, few studies exist on the identification and characterization of misfolded 

proteins as precursors of aggregation. The existing works have focused on disease-related 

proteins, such as α-synuclein, an intrinsically disordered protein linked with Parkinson’s 

disease. One study on the characterization aggregation-prone states of α-synuclein found 

that different aggregation conditions affected α-synuclein differently. Low pH promoted 

the collapse of the C-terminus as indicated by high efficiency between a FRET pair in 

this region, while positively charged molecules (also shown to promote aggregation) 

showed only minor effects, suggesting an influence later in the aggregation process 

(Trexler & Rhoades 2010). Another study found that the binding of α-synuclein to 

membranes modulated conformational transitions between a natively unfolded state and 

multiple α-helical structures, which implied that two folded structures are pre-encoded by 

the α-synuclein amino acid sequence (Ferreon et al. 2009). Lastly, a study comparing 

wild-type α-synuclein to a disease-associated point mutant of α-synuclein, found that they 

populated different ensembles, with the wild-type adopting an elongated structure at mM 

SDS concentrations and the mutant was more flexible and less structures, which may have 

implications to why this mutant leads to disease (Ferreon et al. 2010). 

 

FRET analysis of protein conformational changes requires a pair of donor and 

acceptor fluorophores to be attached to the protein at specific locations. Proteins are made 

of 20 amino acids, and only two of them present sufficient reactivity, the sulfhydryl group 

of cysteine and the amino group of lysine and the N-terminal amino acid. Most proteins 



141 
 

contain many lysine residues, which makes lysine not suitable for smFRET experiments 

as proteins would contain multiple labels on them. Cysteine is the most common group 

used for site-specific fluorophore attachment. Many proteins do not contain any cysteine, 

what implies that upon introduction of one, a single fluorophore can be attached at that 

position. If the protein already contains cysteine groups, there are two scenarios. One 

scenario is that the cysteine groups are not essential for the structure of the protein, and 

can be mutated to serine groups. Then, a new engineered cysteine can be introduced for 

labeling. In the second scenario, and the case for Fab A33, many cysteine groups are 

present in the protein and are important to the structure. In this case nonetheless, 

advantage can be taken of the different reactivities that cysteines in different locations on 

the protein possess. Fab A33 contains five disulfide bonds. Four of them are intra-domain 

(stabilizing the fold of VL, VH, CL and CH1), and thus are located in the interior of Fab 

and are not solvent exposed. The fifth disulfide bond bridges the light and heavy chains, 

and is located at the C-terminal of the constant domains, before the hinge region. In this 

work, I incorporated an additional solvent exposed cysteine in Fab A33 to attach the 

acceptor fluorophore. Site-specific labelling was achieved by using mild denaturant 

conditions, which reduce the solvent-exposed cysteine and potentially the inter-chain 

disulfide bond, however, by providing time to the protein to re-form the inter-chain 

disulfide bond after removal of the denaturant and addition of the fluorophore, the correct 

labelling of Fab A33 was achieved. 

 

To site-specifically attach the donor fluorophore, a reactive nonstandard amino 

acid (NSAA) was incorporated into Fab A33, p-azido-l-phenylalanine (pAzF) (Figure 

5.1). To incorporate a 21st amino acid into a protein, several microbiology components 

need to be re-engineered (Liu & Schultz 2010). In the cell, translation of mRNA into a 

protein is done through adapter molecules called transfer RNA (tRNA), which in one end 

recognize the DNA triplet codon and on the other have attached the corresponding amino 

acid. Attachment of the amino acid to the tRNA molecule is facilitated by a protein called 

aminoacyl-tRNA synthetase (aaRS), which recognizes the specific tRNA to its specific 

amino acid and binds them together. Thus, to incorporate a 21st amino acid, an engineered 

aaRS / tRNA pair that incorporates the new NSAA in response to a reassigned codon, are 

needed. To reassign a codon for the new NSAA, we used the amber stop codon (UAG). 

Amber stop codon is the least used stop codon in E. coli (approx. 7% of the time), and it 

has been shown that cells still grow well after reassignment of this codon to encode a new 

NSAA. However, in this work I used the engineered E. coli C321.∆A.exp (ID: 49018), 
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where all 321 UAG terminations have been removed, and replaced by UAA (Lajoie et al. 

2013). An orthogonal aaRS / tRNA pair needs to be engineered, where the tRNA is not 

aminoacylated by any endogenous aaRS and the new aaRS does not aminoacylate any of 

the endogenous tRNAs. The most successful approach has been to import the pair from a 

different domain of life, since they have different identity elements. The most commonly 

used pair is aaRS / tRNATyr from Methanococcus jannaschii. First, the tRNA anticodon 

loop is mutated to CUA. Next, tRNA is engineered to not cross react with any endogenous 

aaRS. This is achieved by creating a library of mutant tRNA (aa that do not directly 

interact with aaRS) and submitting them to rounds of positive and negative selection to 

identify orthogonal tRNA. Finally, aaRS is engineered to only recognize the UAA. This 

is achieved as well by creating a library of mutant aaRS (randomize residues in the aa 

binding site) and submitting them to rounds of positive and negative selection.  

 

 
Figure 5.1. Structure on the nonstandard amino acid p-azido-l-phenylalanine 

(pAzF). pAzF was used for the site-specific labelling of Fab A33 via click chemistry with 

a fluorophore containing an alkyne moiety. 

 

In this chapter, an aggregation-prone conformer of Fab A33 at low pH was 

characterized using smFRET. Two dual-labelled Fab A33 constructs were generated, by 

recombinant incorporation of an additional solvent exposed cysteine and the NSAA 

pAzF, in each construct. The correct incorporation of one donor and one acceptor 

fluorophore at each construct were confirmed with ESI mass spectrometry and UV-vis 

absorption. Unfolding of Fab A33 was first studied using the denaturant guanidinium 

chloride (GdmCl), as a control for smFRET studies. Then, the two constructs were studied 

at pH 7.0 and 3.5, to confirm the displacement of CL at low pH. Notably, the apparent 

transfer efficiencies (Eapp) obtained here correlated highly with the distances obtained 

from SAXS and MD simulations. 
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5.3  Methods 
 

5.3.1 Cloning to generate Fab A33 mutants for smFRET 

 

Fab A33 mutants with one nonstandard amino acid (NSAAs), p-azido-l-

phenylalanine (pAzF) (Figure 5.1), and one engineered solvent-exposed cysteine were 

generated to allow attachment of donor and acceptor fluorophores. Two different 

constructs were generated: (i) LC-K126pAzF + LC-S156C and (ii) HC-S117pAzF + LC-

S156C. To incorporate pAzF, two plasmids need to be co-transformed into E. coli, the 

plasmid pTTOD encoding for Fab A33 and the plasmid encoding for the machinery 

necessary to incorporate pAzF (aaRS / tRNA pair). I used the plasmid pEVOL-pAzF 

(Plasmid ID: 31186) (Addgene, Cambridge, USA), which encodes an engineered tyrosyl-

tRNA synthetase (aaRS) and an amber suppressor tRNA (tRNACUA), derived from 

Methanococcus jannaschii, to incorporate pAzF in response of the amber stop codon 

(Figure 5.2) (Young et al. 2010; Lim et al. 2015). In order for both plasmids to remain in 

the dividing E. coli cells, the antibiotic resistance and origin of replication (ORI) of both 

plasmids need to be different. As pTTOD and pEVOL-pAzF had the same origin of 

replication, p15A, the tac promoter and Fab A33 gene from pTTOD were sub-cloned into 

pET-29a(+), which has a ColE1 origin of replication, using circular polymerase extension 

cloning (CPEC) (Figure 5.3) (Quan & Tian 2011). The gene for Fab A33 encodes light 

and heavy chains separately, and each chain contains an ompA signal sequence in the N-

terminal, to allow translocation of the protein to the cellular periplasm (once there, the 

signal sequence is cleaved by peptidases). CPEC primers were designed using the 

Gibson/Assembly option in SnapGene, and were (Eurofins, Wolverhampton, UK): 

(Insert.REV) 

GGCTTTGTTAGCAGCGATATGACGACAGGAAGAGTTTGTAGAAACG  

(Vector.REV) TTCCTGTCGTCATATCGCTGCTAACAAAGCCCGAAAGG  

(Insert.FOR) TGATGTCGGCGATACCATCGGAAGCTGTGGTATGG  

(Vector.FOR) CAGCTTCCGATGGTATCGCCGACATCACCGATGGG.  
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Figure 5.2. Map of the plasmid pEVOL-pAzF (Plasmid ID: 31186 from Addgene). It 

encodes two copies of an engineered tyrosyl-tRNA synthetase (aaRS) one under control 

of an arabinose inducible promoter and the other constitutively expressed, and a single 

copy of the amber suppressor tRNA (tRNACUA) a p15A origin of replication, the 

chloramphenicol acetyltransferase marker (CmR), and the araC repressor gene (araC), to 

incorporate pAzF in response of the newly introduced amber stop codon. Image obtained 

from (Young et al. 2010). 
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Figure 5.3. Schematic of the cloning steps followed to clone Fab A33 gene into pET-

29a(+). The insert is 2428 bp and contains the tac promoter and Fab A33 gene (RBS, 

ompA, LC and RBS, ompA, HC). The vector is 5055 bp and contains the kanamycin 

resistance gene and ColE1 ORI. Image generated with SnapGene software (from GSL 

Biotech). 
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The insert and vector were amplified by PCR using the CPEC primers and purified 

using QiaQuick gel purification kit (Qiagen, Hilden, Germany). Final assembly was 

achieved mixing insert and vector with overlapping fragments in a 30:1 (insert:vector) 

ratio, with 100 ng of vector and 10 cycles. The assembled product was directly 

transformed into NEB 10β competent cells (New England Biolabs, Ipswich, US). Final 

assembly was confirmed by sequencing using Source Bioscience (UK), and the following 

primers (Eurofins, Wolverhampton, UK): 

(pET29Fab_for) AGGAATGGTGCATGCAAGG 

(pET29Fab_mid) AGTGGAAGGTGGATAACGC 

(T7 term) CTAGTTATTGCTCAGCGG 

 

Following cloning, site-specific mutations were introduced using QuickChange 

Lightning Site-Directed Mutagenesis (Agilent Technologies, Santa Clara, USA) to form 

the double mutants: (i) LC-K126pAzF + LC-S156C and (ii) HC-S117pAzF + LC-S156C. 

In order to incorporate pAzF, I mutated the native codon to the amber stop codon (TAG). 

Primers for site-directed mutagenesis were designed using the mutagenesis option in 

SnapGene, and were (Eurofins, Wolverhampton, UK):  

(LC-K126pAzF (AAA to TAG).FOR) 

CCATCTGATGAGCAGTTGTAGTCTGGAACTGCCTCTG 

(LC-K126pAzF (AAA to TAG).REV) 

CAGAGGCAGTTCCAGACTACAACTGCTCATCAGATGG 

(LC-S156C (TCG to TGC). FOR) 

GGATAACGCCCTCCAATGCGGTAACTCCCAGGAG 

(LC-S156C (TCG to TGC). REV)  

CTCCTGGGAGTTACCGCATTGGAGGGCGTTATCC 

(HC-S117pAzF (TCT to TAG).FOR) 

CACTGGTGACAGTGTCTTAGGCCTCAACGAAGGGC 

(HC-S117pAzF (TCT to TAG).REV) 

GCCCTTCGTTGAGGCCTAAGACACTGTCACCAGTG 

 

Lastly, introduction of the mutations was confirmed by sequencing using Source 

Bioscience (UK), and the following primers (Eurofins, Wolverhampton, UK): 

(Mutations_LC) TCATCTATTTGGCCTCCAAC, 

(Mutations_HC) TGTGCAGCATCTGGATTC 
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5.3.2 Expression and purification of Fab A33 mutants 

 

As an expression host, I used the genomically engineered "amberless" E. coli 

(C321.∆A.exp) (ID: 49018), from Addgene (Cambridge, MA). C321. ∆A.exp was created 

to improve the incorporation of nonstandard amino acids, by recoding E. coli MG1655 

strain to have all 321 UAG terminations removed (replaced by UAA) and the release 

factor 1 (RF1) gene deleted. (Lajoie et al. 2013) Thus, NSAA incorporation does not 

compete with the termination of translation anymore and it doesn't interfere with cellular 

process. I co-transformed C321.∆A.exp with pEVOL-pAzF and pET-29a containing 

mutant Fab A33. Then, Fab A33 WT and mutants were expressed and purified as 

described in Chapter 2 (Materials and Methods) section 2.3.2 (Protein expression and 

purification). 

 

 

5.3.3 Site-specific labelling of Fab A33 

 

Fab A33 was buffer-exchanged into PBS using 10 kDa cut-off centrifugal filters 

(Merck, Kenilworth, UK) and adjusted to 0.5 mg/mL. The donor fluorophore 

dibenzocyclooctyne Alexa Fluor 488 (Thermo Fisher Scientific, Waltham, USA), (Figure 

5.4a), was reacted using click chemistry at a 5:1 molar ratio (fluorophore:protein) for 24 

h at room temperature with gentle shaking in the dark (Figure 5.5a). To attach the acceptor 

to the Fab solvent-exposed cysteine using maleimide-thiol chemistry, TCEP was added 

to 0.5 mM (50-fold molar excess of TCEP to Fab) and incubated for 1.5 h at room 

temperature (Jevševar et al. 2012). This step regenerates the free cysteine. TCEP is then 

removed by buffer exchange into PBS and incubation for 24 h to allow reconstitution of 

the correct disulfide-bridges. Maleimide-activated Alexa Fluor 594 (Figure 5.4b) was 

added in a 5:1 molar ratio of fluorophore:protein, and incubated for 16-18 h at room 

temperature (Figure 5.5b). 10 kDa centrifugal filters were used to remove the unreacted 

dye. The correct labelling of constructs i and ii was confirmed using ESI mass 

spectrometry and UV-vis absorption. 
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Figure 5.4. Fluorophore structures. (a) Alexa Fluor 488 DIBO alkyne (donor); (b) 

Alexa Fluor 594 C5 Maleimide (acceptor). 

 

 
Figure 5.5. Reactions for the site-specific attachments of fluorophores to the protein. 

(a) click azide/DIBO reaction, where D symbolizes the donor fluorophore; (b) 

maleimide/thiol reaction, via Michael-type conjugate addition, to form a thioether. A 

symbolizes the acceptor fluorophore. Reactions drawn with ChemDraw software. 
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5.3.4 Acquisition of smFRET data using confocal fluorescence spectroscopy 

 

Single-molecule fluorescence measurements were carried out on a MicroTime 

200 confocal microscope (PicoQuant, Germany). For excitation, a diode laser at the donor 

excitation wavelength was used (LDH-D-C-485, PicoQuant, Germany), at 20 MHz (laser 

pulse every 50 ns) and a laser power of 100 μW at the back aperture of the objective. The 

laser was focused into the sample solution with an UPlanApo 60x/1.20W objective 

(Olympus). Measurements were performed by placing the confocal volume 50 μm into 

the solution relative to the cover slide surface. The fluorescence signal was collected by 

the same objective and filtered with a 485/595 dual-band dichroic mirror (Chroma 

Technology). Afterwards, the photons passed through a 100 μm pinhole. Donor and 

acceptor photons were separated by a second dichroic mirror, 585 DCXR, and further 

filtered by band-pass filters, ET525/50M for donor, and ET645/75M for acceptor (all 

Chroma Technology). Finally, photons were detected using two single-photon avalanche 

photodiodes (SPAD) (PicoQuant). The arrival time of every detected photon was 

recorded with a HydraHarp 400 counting module (PicoQuant).  

 

Single-molecule measurements were acquired at a protein concentration of <100 

pM. The measurements were performed in 20 mM sodium phosphate buffer pH 7.0 and 

20 mM sodium citrate buffer pH 3.5, both 50 mM final ionic strength adjusted with NaCl. 

Despite the low pH, the fluorescence quantum yields of the dyes remained the same 

(Hofmann et al. 2013). Each sample was measured for 30 min at room temperature.  

 

 

5.3.5 Analysis of smFRET data 

 

First, the raw data was converted to the Photon-HDF5 file format (.h5) using the 

open source software Photon-HDF5 (Ingargiola, Laurence, et al. 2016). Next, single-

molecule FRET data was analyzed using the open source software FRETBursts 

(Ingargiola, Lerner, et al. 2016). I followed the steps for background estimation, burst 

search, burst selection and computation of FRET efficiency histograms. Background rates 

were calculated first, by plotting a histogram of inter-photon delay times in windows of 

30 s. Signal from single-molecules can be differentiated from background because single 

molecules show short delay times whereas background signal follows a Poisson process 

that is exponentially distributed. By fitting the long delay times to an exponential, the 
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background rates were calculated. After background calculation, bursts corresponding to 

single-molecules traversing the excitation volume were identified. A burst was identified 

if the rate of photons was 6 times faster than the local background rate, and I used 10 

consecutive photons to compute the local count rate. For this calculation, all photons were 

taken into account (donor and acceptor). After burst identification, corrections were 

applied. Bursts were corrected for background and donor leakage into the acceptor 

channel, the later was calculated to be 8%. No acceptor direct excitation and γ-factor 

correction were applied, thus the conversions of FRET efficiencies to distances was not 

possible. In this study, I refer to the calculated FRET efficiencies as apparent FRET 

efficiencies (Eapp) (Roy et al. 2008; Majumdar et al. 2007; Roy et al. 2009), which allowed 

the relative comparison between Fab A33 constructs and solution conditions. A size filter 

was applied to the previous bursts found, where only bursts with more than 30 photons 

were kept. Lastly, apparent transfer efficiency histograms were calculated for each burst 

using the expression !"## = %&/(%& + %*); where nD and nA are the corrected numbers 

of donor and acceptor photons in the burst, respectively, and apparent FRET efficiencies 

were fitted to Gaussian functions. 
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5.4  Results and discussion 
 

5.4.1 Characterization of Fab A33 mutants using Mass Spec and UV-Vis 

absorption 

 

I generated two constructs to probe the distance intra-CL domain and between CL 

and the heavy chain. Specifically, the constructs were (Dist 1) LC-K126pAzF + LC-

S156C, with both fluorophores attached to the CL domain, and (Dist 2) HC-S117pAzF + 

LC-S156C, with one fluorophore in the CL domain and one in the heavy chain linker 

between variable and constant domains (Figure 5.6). Each construct contained one 

nonstandard amino acid, pAzF, and one solvent-exposed cysteine, to attach the 

fluorophores Alexa Fluor 488 (donor) and Alexa Fluor 594 (acceptor), respectively. 

Certain requirements were taken into consideration when selecting the labelling positions. 

Fluorophores should initially be positioned at a shorter distance than the Forster radius 

(R0, distance at which the energy transfer efficiency is 50%) for that pair of fluorophores, 

so that an increase in distance due to unfolding can still be captured. The Forster radius 

for the pair AF-488/AF-594 is 6 nm, and the separation between dyes (Dist 1 and Dist 2) 

was chosen to be between 2-3 nm. Additional considerations were that the labelling 

positions were solvent exposed, to increase the labelling efficiency and minimize the 

effect to the native structure of the protein, and lastly, the selected residues to be mutated 

did not participate in stabilizing interactions in Fab A33. 
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Figure 5.6. Cartoon representation of dual-labelled Fab A33 constructs. (a) (Dist 1) 

LC-K126pAzF + LC-S156C, to probe an intra-CL separation. Fab A33 labelled with the 

donor fluorophore AF-488 DIBO (green) at LC-K126pAzF and the fluorophore acceptor 

AF-594 maleimide (red) at LC-S156C. The fluorophores are shown in an arbitrary 

orientation. (b) (Dist 2) HC-S117pAzF + LC-S156C, to probe the distance between CL 

and the heavy-chain linker region. Fab A33 labelled with the fluorophore donor AF-488 

DIBO (green) at HC-K117pAzF and the acceptor fluorophore AF-594 maleimide (red) at 

position LC-S156C. The fluorophores are shown in an arbitrary orientation. 

 

 

First, the expression of wild-type C226S Fab A33 was confirmed using ESI mass 

spectrometry, at the expected mass of 47,385 g/mol (Figure 5.7a). Incorporation of p-

azidophenylalanine was confirmed in the mutant LC-K126pAzF Fab A33 (Figure 5.7b), 

where the mass increase to 47,445 g/mol corresponded to the mutation of a lysine to 

pAzF. To confirm the labelling of double-labelled constructs, two experiments were set 

up. In both, I used the construct termed Dist 1, where Fab A33 was labelled with the 

fluorophore AF-488 DIBO (donor) at position LC-K126pAzF and the fluorophore AF-

594 maleimide (acceptor) at position LC-S156C. Most probably, the additional solvent-

exposed cysteine added to Fab A33 was cysteinylated during cell disruption, and thus 

reduction with a reducing agent is necessary to reconstitute the free thiol group for 

labelling. The risk of mild reduction is that the disulfide bond bridging light and heavy 

chains, before the hinge region, might get reduced too, due to its solvent accessibility. 

This was confirmed in the first scenario, where fluorophore AF-594 maleimide was added 

at the same time to Fab A33 as the reducing agent TCEP (Figure 5.7c). AF-594 maleimide 

reacted with the cysteines of the inter-chain disulfide bond, thus separating the light and 

heavy chains, and resulting in peaks of mass around 25 kDa (Figure 5.7c). To avoid this, 

in the second scenario, a certain time (24 h) was given after the removal of the reducing 

agent and prior to the addition of AF-594 maleimide, for the inter-chain disulfide bond to 

re-form, which should happen quickly due to its spatial proximity (Pepinsky et al. 2011). 

Chain separation was now not observed, hence leading to peaks around 50 kDa (Figure 

5.7d). This method is used to produce, among other products, mono-PEGylated Fabs, 

using a single hinge cysteine, located in the hinge region, after inter-chain disulfide 

bridge. 
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Figure 5.7. ESI mass spectrometry to confirm the labelling steps. (a) Wild-type 

C226S Fab A33 spectrum; (b) The spectrum of LC-K126pAzF Fab A33 to confirm the 

incorporation of the nonstandard amino acid p-azidophenylalanine; (c, d) Fab A33 was 

labelled with the fluorophore AF-488 DIBO (donor) at position LC-K126pAzF and the 

fluorophore AF-594 maleimide (acceptor) at position LC-S156C. In (c) AF-594 

maleimide was added at the same time as TCEP to Fab A33, resulting in the labelling of 

the cysteines that formed the inter-chain disulfide bond, and the separation of light and 

heavy chains. In (d) AF-594 maleimide was added after TCEP removal and time was 

provided for the re-formation of the inter-chain disulfide bond, resulting in labelling of 

only the solvent-exposed cysteine. 
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Labelling of Fab A33 with only one donor and one acceptor fluorophores was first 

confirmed in the mass spectrum of Dist 1 and 2, at the expected mass of 49 g/mol (Figure 

5.8a,c). The three peaks observed in the spectrums corresponded from left to right to Fab 

A33 with no label (~47 g/mol), Fab labelled with one fluorophore (donor or acceptor) 

(~48 g/mol), and Fab labelled with both fluorophores (~49 g/mol). Further confirmation 

was provided by the UV-vis absorption spectra (Figure 5.8b,d), where absorption of Fab 

A33 was seen around 280 nm, absorption of AF-488 at around 488 nm and absorption of 

AF-594 at around 594 nm, confirming the attachment of both fluorophores to Fab A33. 

 

 

 
 

Figure 5.8. ESI mass spectrometry and UV-Vis absorption spectrum of the two 

double-labelled Fab A33 constructs for smFRET. (a, b) (Dist 1) Fab A33 labelled with 

the fluorophore AF-488 DIBO (donor) at LC-K126pAzF and the fluorophore AF-594 

maleimide (acceptor) at LC-S156C. (a) ESI mass spectrometry (same graph as Figure 

5.7d, zoomed), and (b) UV-Vis absorption spectrum. (c, d) (Dist 2) Fab A33 labelled with 

the fluorophore AF-488 DIBO (donor) at HC-K117pAzF and the fluorophore AF-594 

maleimide (acceptor) at position LC-S156C. (c) ESI mass spectrometry and (d) UV-Vis 

absorption spectrum. 
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5.4.2 smFRET controls by unfolding Fab A33 using GdmCl as denaturant 

 

FRET is the radiationless transfer of energy from a donor to an acceptor 

fluorophore, with the efficiency of this energy transfer being very sensitive to changes in 

distance in the 2-10 nm range. Every time a single molecule of Fab A33 labeled with 

donor and acceptor fluorophores, diffused through the detection volume of the confocal 

microscope, a burst of fluorescent photons was emitted. These photons were first 

separated into donor and acceptor emissions, and later detected with time-correlated 

single-photon counting electronics that recorded the arrival time of each photon. For 

every burst of photons, an apparent FRET efficiency (Eapp) was calculated, which 

measures the fraction of photons absorbed by the donor that have been transferred to the 

acceptor. Lastly, apparent FRET transfer efficiency histograms were built from recording 

many individual events, which display maxima that correspond to subpopulations present 

in the sample. The peaks, which correspond to the Eapp of that population, were measured 

from fitting the histograms to Gaussian functions. Apparent FRET efficiencies can then 

be related to the separation between the two fluorophores.  

 

The unfolding of Fab A33 was first followed using the denaturant guanidinium 

chloride (GdmCl), as a control for smFRET experiments. The two dual-labelled Fab A33 

constructs were diluted to 100 pM in 20 mM phosphate buffer pH 7.0 containing six 

different concentrations of GdmCl: 0, 1, 2, 4, 6 M and 6 M with 50 µM TCEP. Raw data 

with no corrections, is first shown in the form of distributions of inter-photon delays (time 

between two consecutive photons) (Figure 5.9). Two processes can be identified from 

these graphs, labelled Fab A33 traversing the detection volume generate the high count 

signal at short inter-photon delays, while lower count signal at long inter-photon delays 

originates from the background (detector dark counts, afterpulsing, out-of-focus 

molecules, sample scattering and impurities). The unfolding of Fab A33 with increasing 

concentration of GdmCl was observed through the decrease in the acceptor signal at low 

inter-photon delay times. Decrease in the signal detected from the acceptor fluorophore 

and an increase in the signal detected by the donor, related to an increase in the distance 

between fluorophores, result of the unfolding of Fab A33. 
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Figure 5.9. Inter-photon delays by smFRET to follow the unfolding of Fab A33 with 

increasing guanidium chloride concentration. The raw data with no corrections applied 

are shown in the form of inter-photon delay (time between two consecutive photons) 

distributions for (a) Dist 1 (Fab A33 labelled at LC-K126 + LC-S156); (b) Dist 2 (Fab 

A33 labelled at HC-S117 + LC-S156), for six concentrations of GdmCl, top to bottom: 

0, 1, 2, 4, 6 M and 6 M with 50 µM TCEP. Photons from the donor are colored green and 

photons from the acceptor are in red.  
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Histograms of apparent FRET efficiencies of dual-labelled Fab A33 with 

increasing GdmCl concentration are shown in Figure 5.10. The peaks at a FRET 

efficiency of zero correspond to molecules with no active acceptor fluorophore, and these 

peak backgrounds are in gray. The peaks at high FRET efficiencies correspond to Fab 

A33 molecules with one donor and one acceptor. To determine their mean transfer 

efficiencies, these were fitted to Gaussian peak functions (black lines). In the graph with 

no added GdmCl, the peaks at high efficiency (Eapp = 0.975 for construct Dist 1 and Eapp 

= 0.87 for construct Dist 2) correspond to folded Fab molecules (Figure 5.10a,b top). For 

both constructs, as the denaturant concentration increased, new peaks with lower apparent 

transfer efficiencies appeared, corresponding to unfolded states. In Fab A33 labelled at 

Dist 1, folded and unfolded conformations were detected at GdmCl concentrations of 1 

and 2 M. At GdmCl 4 M, only the unfolded state was present, and this peak shifted to 

lower transfer efficiencies at GdmCl 6 M, indicating an expansion of the unfolded state. 

When TCEP was added, no peaks were observed, suggesting complete unfolding. In Fab 

A33 labelled at Dist 2, a slow unfolding of the folded state up to GdmCl 4 M was 

observed, with a decrease in the transfer efficiency of unfolded state with increased 

GdmCl concentration. At GdmCl 6 M, complete unfolding of Fab A33 was observed.  
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Figure 5.10. FRET efficiency histograms to follow the unfolding of Fab A33 by 

GdmCl. Apparent FRET efficiency (Eapp) histograms of (a) Fab labelled at Dist 1 (LC-

K126 + LC-S156) and (b) Fab labelled at Dist 2 (HC-S117 + LC-S156) for six 

concentrations of GdmCl, top to bottom: 0, 1, 2, 4, 6 M and 6 M with 50 µM TCEP. At a 

FRET efficiency of 0.0, a population of donor-only protein (no acceptor dye) is present, 

and has been shaded. At higher FRET efficiencies, a population is present that 

corresponds to Fab A33 with both fluorophores. This population was fitted with a 

Gaussian function, and the peak is shown by a vertical line.  
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5.4.3 smFRET to confirm the CL domain displacement at low pH 

 

Confocal detection of freely diffusing molecules was also used to obtain the 

apparent transfer efficiency histograms of Fab A33 at pH 7.0 and 3.5 in an ionic strength 

of 50 mM each. As before, raw data are first shown in the form of distributions of inter-

photon delays (Figure 5.11). The signature of two processes was observed. At low inter-

photon delay times, the presence of labelled Fab A33 is detected, whereas the tail of the 

distribution corresponds to the background (Ingargiola, Lerner, et al. 2016). 

 

 
 

Figure 5.11 Inter-photon delay times by smFRET for double-labelled Fab A33. The 

raw data with no corrections applied are shown as inter-photon delay (time between two 

consecutive photons) distributions for (a, b) Dist 1 (Fab A33 labelled at LC-K126 + LC-

S156) and (c, d) Dist 2 (Fab A33 labelled at HC-S117 + LC-S156), for each of (a, c) pH 

7.0 and (b, d) 3.5 as labelled. Photons from the donor are colored green and photons from 

the acceptor are in red.  
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smFRET showed that the intra-CL distance (Dist 1) did not change with pH, as the 

same FRET efficiency value (Eapp = 0.97) was found at pH 7.0 and pH 3.5 (Figure 5.12). 

In contrast, the distance between CL and the heavy chain linker (Dist 2) increased at pH 

3.5, with a decrease in FRET efficiency from Eapp = 0.87 at pH 7.0 to Eapp = 0.78 at pH 

3.5 (Figure 5.12). These results confirmed the displacement of the CL domain and the 

partial unfolding of Fab A33 at low pH. 

 

 
 

 

Figure 5.12. FRET efficiency histograms of the two dual-labelled Fab A33 at pH 7.0 

and 3.5. Apparent FRET efficiency (Eapp) histograms of (a, b) Fab labelled at Dist 1 (LC-

K126 + LC-S156) (green), and (c, d) Dist 2 (residues HC-S117 and LC-S156) (gray), at 

(a, c) pH 7.0 (dark color) and (b, d) pH 3.5 (light color). At a FRET efficiency of 0.0, the 

population of molecules without an active acceptor fluorophore is shaded in gray. At 

higher FRET efficiencies, there is a population that corresponds to Fab A33 containing 

both fluorophores. This population was fitted with a Gaussian function and the peak is 

shown with a vertical line. 
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5.4.4 Compare FRET efficiencies to distances obtained using SAXS and MD 

simulations 

 

FRET efficiencies were compared to the distances found using atomistic 

modelling of the SAXS data and MD simulations. For SAXS, the average and SD of Dist 

1 and Dist 2 were measured for the ten best fit structures at pH 7.0 and the ten best fit 

structures at pH 3.5, using pymol (Figure 5.13a). Dist 1 was unchanged with pH, being 

2.5 ± 0.1 nm at pH 7.0 and pH 3.5. However, Dist 2 increased from 2.8 ± 0.4 nm at pH 

7.0 to 3.5 ± 0.1 nm at pH 3.5, corresponding to an increased separation between CL and 

the heavy chain linker. 

 

Dist 1 and Dist 2 were also monitored during the MD simulations at pH 7.0 and 

3.5 (Figure 5.13b). Dist 1 was unchanged during the simulation, while Dist 2 increased 

from 2.9 ± 0.3 nm at pH 7.0 to 3.3 ± 0.2 nm at pH3.5. Both the atomistic SAXS modelling 

and the MD simulations confirmed the experimentally observed displacement at low pH 

of the CL domain by smFRET.  

 

Figure 5.13. Measured distances for the two dual-labelled Fab at pH 7.0 and 3.5, 

using SAXS atomistic modeling and MD simulations. (a) The averaged Dist 1 and 2 

separations and their SD were measured from the ten best-fit SAXS structures at each of 

pH 7.0 (cyan) and pH 3.5 (magenta). (b) The Dist 1 (green) and Dist 2 (gray) separations 

as a function of simulation time for pH 7.0 (dark color) and 3.5 (light color) are shown 

from the MD simulations. Three simulation repeats were averaged at every time frame, 

from which a window average is shown in a darker color. 
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5.5  Conclusions 
 

A better mechanistic understanding, in particular the elucidation of pre-

aggregational conformational states, is needed to improve protein engineering and 

formulation strategies for minimizing aggregation. However, very little is known about 

the structures of native-like states predicted to mediate the onset of aggregation. In 

chapter 4, we elucidated using SAXS that at ambient temperature Fab A33 becomes 

conformationally expanded in acidic solutions, and that an increase in the population of 

these species coincided with a rise in the systems aggregation kinetics suggesting that the 

expanded conformation is aggregation prone. To elucidate the structural origin of the 

conformational expansion, I combined SAXS data with atomistic structures of Fab A33 

generated using MD simulations, to reveal that the conformational change at low pH takes 

place in the constant domain of the light chain (CL). To validate this approach, in this 

chapter, I used confocal single-molecule FRET to study the protein conformational 

changes through the position-specific incorporation of fluorescent dyes in Fab A33. 

FRET is the radiationless transfer of energy from a donor fluorophore to an acceptor in a 

range of 2-10 nm distances. This transfer of energy is highly sensitive to changes in 

distance, allowing the study of the separation between the donor and acceptor. By looking 

at each protein individually, smFRET has the ability to provide insights into the early 

stages of protein aggregation, such as the nature of the aggregation-prone conformer. 

 

Two dual-labelled constructs of Fab A33 were successfully generated, to monitor 

the separations termed Dist 1 (residues LC-K126 and LC-S156) and Dist 2 (residues HC-

S117 and LC-S156). Dist 1 monitored an intra-CL separation and Dist 2 a separation 

between the CL domain and the heavy-chain linker. Dist 1 and Dist 2 constructs, each 

contained one nonstandard amino acid (p-azido-l-phenylalanine) and one solvent-

exposed cysteine, to attach the donor (Alexa Fluor 488) and acceptor (Alexa Fluor 594) 

fluorophores. I reported the apparent FRET transfer efficiency (Eapp), which measures the 

fraction of photons absorbed by the donor that have been transferred to the acceptor, and 

was used to report the separation between the fluorophores. smFRET results confirmed 

the unfolding of CL at low pH. Dist 1 did not change with pH, with an Eapp = 0.97 at both 

pH 7.0 and 3.5, however, Dist 2 decreased from Eapp = 0.87 at pH 7.0 to Eapp = 0.78 at pH 

3.5, result of the partial unfolding of Fab A33 in this domain. Notably, the values obtained 

for apparent transfer efficiencies agreed with the with distances measured from the best 



163 
 

models derived from SAXS and MD simulations. SAXS best fits found a distance of 2.5 

± 0.1 nm for Dist 1 at both pH, while Dist 2 increased from 2.8 ± 0.4 nm at pH 7.0 to 3.5 

± 0.1 nm at pH 3.5. Similarly, MD simulations found Dist 1 to be unchanged during the 

simulation, while Dist 2 increased from 2.9 ± 0.3 nm at pH 7.0 to 3.3 ± 0.2 nm at pH 3.5. 

 

These results highlight the power of single molecule measurements in elucidating 

the structural changes that take place in the native state that precede aggregation. At low 

pH, Fab A33 experiences a conformational change to form a partially unfolded 

intermediate, native-like in character, which is the first step to aggregation, from this 

aggregation-competent conformation. Thus, results of this work provide a better 

mechanistic understanding of how aggregation is initiated and propagated, and ultimately 

provide the tools to protein engineers to design proteins more robust to aggregation and 

allow the search for protein aggregation inhibitors to be done in a rational way.  
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Chapter Six 

 

 

 

Summary and Future Work 
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6.1  Summary 
 

In this thesis I have studied the stability and aggregation-prone conformations of 

a humanized antibody Fab fragment A33, under multiple stresses of pH, ionic strength 

and temperature, using a combination of computational tools (atomistic molecular 

dynamics simulations, in-silico mutational analysis by FoldX and Rosetta, predictors of 

aggregation-prone regions, etc.) and experimental methods (X-Ray Scattering and single-

molecule FRET).  

 

The stability and dynamics of Fab A33 was first studied using computational 

tools, with the aim to elucidate the early unfolding events and stability-limiting regions 

of this antibody fragment, under stresses it might encounter during its development, such 

as low pH and high temperature. Results found with MD simulations and stabilizing 

software predictors strongly agreed in the regions of Fab A33 that can potentially be 

stabilized further. MD simulations revealed that many contacts were lost in the interface 

between constant domains (CL-CH1) very early in the simulations, under both stresses of 

low pH and high temperature. Supporting this, calculations by FoldX and Rosetta also 

both agreed that mutations at this interface had the greatest potential for increasing the 

stability of Fab A33. Further validation was provided by packing density calculations, 

which revealed that the residues identified by the stability predictors, were under-packed 

relative to the other residues located in the interface between domains. At low pH, the CL 

domain was found to partially unfold during the simulations, while at high temperature, 

CL and VH were found to unfold, revealing different unfolding pathways depending on 

the stress experienced. Salt bridge analysis identified the presence of two salt-bridges 

located in the CL domain, which probably contribute to the unfolding observed of this 

domain at low pH, upon protonation. At high temperature, salt bridges broke and 

reformed very quickly and did not always reform with the same partner, indicative of a 

different mechanism for Fab A33 destabilization. Overall, my analysis revealed some 

regions that were common to both thermal and low-pH unfolding, and provided targets 

for mutation using FoldX and Rosetta that agreed with certain mutations found in existing 

Fabs.  

 

To experimentally characterize the aggregation-prone conformations, solution 

structures of Fab A33 under different conditions of pH and salt concentration, were solved 
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using small angle X-ray scattering (SAXS). SAXS revealed a slight expansion of the 

native state upon acidification, with an Rg increase of 2.2% to 4.1%. Consistent with 

previous reports, I found pH to have a bigger effect on the conformation of Fab A33 than 

salt concentration, which instead, seemed to mainly contribute to charge shielding. 

Interestingly, the presence of the expanded conformation of Fab A33 coincided with 

accelerated aggregation, indicating that this conformation was more aggregation-prone. 

Scattering data were fitted using 45,000 structures obtained from the atomistic MD 

simulations under the same conditions, and located the conformational change at low pH 

to the CL domain. The results were then verified using a complementary method, single-

molecule FRET (smFRET) with two dual-labelled Fabs. smFRET confirmed the increase 

in distance between the CL domain and the heavy chain linker at pH 3.5 respect to pH 7.0. 

Lastly, in order to gain insights into the mechanisms by which aggregation might occur, 

I used online tools to predict the aggregation-prone regions (APR) that are more likely to 

form the cross-β structures found in aggregates. All APRs in Fab A33 are located in the 

interior of the protein. However, the displacement of the CL domain at low pH exposed a 

predicted APR, which forms a mechanistic basis for subsequent aggregation. Overall, 

these findings provide a means by which aggregation-prone conformers can be 

determined experimentally and add further evidence to the importance of partially 

unfolded states to the aggregation mechanisms of globular proteins. 
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6.2  Future Work 
 

Based on the findings within this thesis, there are several areas worth exploring in 

future work; among others, the ideas highlighted below. 

 

Rational mutagenesis of Fab A33 to improve its stability (protein engineering) 

Based on the findings presented here, I speculate that stabilization of Fab A33 

should start at the constant domain interface (CL-CH1). The most stabilizing mutations 

predicted by FoldX and Rosetta were located in this interface. Only one of the top 

suggested mutations, N137I, was found to be present in my analysis of natural variation 

within existing Fab sequences. However, there was significant scope for improvement 

through mutating the interfacial residues S176, N137, S397, T180, and S395, to the 

suggested hydrophobic residues (Table 3.5). Next, the CL domain was found to unfold at 

both low pH and high temperature. Notably, the remaining top stabilizing mutations 

found by FoldX and Rosetta were located in this domain. Two mutations were suggested 

to improve the interaction between CL and VL domain, S12 and K103, with S12Y 

mutation found naturally. In the CL domain, S159 was identified, which interacts with an 

outer β-strand, suggesting this interaction can also be improved (Table 3.5). Lastly, the 

CH1 domain was found to unfold at high temperature. The only mutation identified in CH1 

domain was S267, identified by FoldX, to S267P, which notably is also found naturally. 

Interestingly, the mutations suggested here have the potential to stabilize Fab A33 to both, 

pH and thermal stresses. Not only the effect of single mutations, but the additive effect of 

combining double and triple mutations will also be interesting to explore. 

 

Experimental proof of the proposed Fab A33 aggregation mechanism 

To explain the increased aggregation propensity of the expanded conformations 

of Fab A33, I used online tools to predict its aggregation-prone regions (APR). APRs are 

hydrophobic sequences with low net charge and a strong β-sheet propensity, which have 

the potential to trigger aggregation. At low pH, the unfolding of the CL domain was found 

to increase the solvent accessibility of a predicted APR in this region, likely triggering 

aggregation. To confirm this proposed aggregation mechanism, future work could include 

the mutation of residues involved in the exposed APR (residues 387-402), to reduce its 

aggregation propensity, and/or mutagenesis of the ionizable residues that drive the pH-

induced change. Here, two salt bridges were identified to to be at the heart of this domain 
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unfolding at low pH, Glu165-Lys103 and Glu195-Lys149. Glu165-Lys103 bridges the 

CL domain to the VL domain, and Glu195-Lys149 is located in outer β-strands of the CL 

domain, bridging β-strands C and F. Site directed mutagenesis of the mentioned residues 

would ultimately provide insights into their function and role in Fab A33 aggregation. 

 

Characterization of aggregation-prone states of other Fabs and antibody structures 

The generality of the results found in this thesis could be studied by elucidating 

the local changes in the native conformation of other Fabs, that promote protein 

aggregation. The results would reveal whether the findings found in this thesis are specific 

to Fab A33, or they have the potential to stabilize a wider range of therapeutic Fab 

fragments. Additionally, it would be interesting to investigate other antibody-based 

products, such as F(ab’)2 fragments, single-chain variable fragments (scFvs), single 

domain antibodies (sdAb), bi-specifics and full antibodies. The results would provide 

insights into the stabilities and aggregation mechanisms of antibody products due to 

different molecular weights. 

 

Design of excipients and/or ligands that bind and stabilize Fab A33 against 

aggregation (formulation) 

This work has provided the structures of aggregation-prone conformations of Fab 

A33, which potentially allows the design of ligands that will bind and stabilize Fab A33 

against aggregation. Rational drug design is increasingly being done using computer-

aided drug design, which requires the accurate structure of the target protein. From there, 

several computational approaches exist to discover ligand candidates, such as virtual 

screening (structure- or ligand-based design), de novo design, molecular docking, 

molecular dynamics simulations, etc. Large number of candidates are then tested in 

screening libraries for binding. Alternatively, the effect of molecular additives (e.g. 

formulation excipients) on Fab A33 structure under different solution conditions can be 

studied using computational tools, such as molecular dynamic simulations or docking 

software, and experimental techniques such as NMR and hydrogen-deuterium exchange 

mass spectrometry; as the molecular mechanisms through which excipients stabilize 

proteins against aggregation remain unclear. 

 

smFRET to follow the aggregation process 

smFRET can also be used to study the protein aggregation process, for instance 

by characterizing the species formed in the oligomerization process. It was seen in this 
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work that aggregation of Fab A33 at near native conditions proceeds through a partially 

unfolded expanded conformation that is native-like in structure. Thus, the initial 

oligomers formed probably retain high structure similarity to the native state. As found 

in previous studies, in later stages of the aggregation process, a structural re-arrangement 

might take place to form the typical cross-β structure of amyloids. Oligomers could be 

distinguished from single-molecules because they have higher fluorescence intensities. 

Based on the average intensity from a monomer, the approximate number of monomers 

per oligomer could be extracted. Kinetics of oligomer formation could then be followed, 

as well as the size of the oligomeric species. Additionally, the internal reorganization 

experimented by oligomers, from a more native conformation to forming the stable cross-

β structure, could be studied in a change in its FRET signature. 

 

Check that antigen-binding activity is retained while engineering Fab A33 

The successful development of therapeutic proteins depends critically on 

achieving stability under a range of conditions, while retaining their specific mode of 

action. The information available about the antigen of Fab A33 is limited. Fab A33 

recognizes a protein expressed on the surface of colon cancer cells. The antigen is 

expressed on a number of human tumor cell lines, including Colo205, ASPC-1 and 

SW1222 cell lines. Antigen binding assays could be performed using cells from these 

human colorectal tumor cell lines. Cells could be incubated in the presence of engineered 

Fab A33 fragments, and detected by further incubation with a FITC-conjugated antibody 

that recognizes Fab, and by detection in the FACScan analyser (Becton Dickinson). 

Alternatively, ELISAs could be developed to test that the antigen-binding activity of Fab 

A33 was retained. 
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