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Abstract 

During some investigations into the mechanism of nitric oxide consumption by brain 

preparations, several potent inhibitors of this process were identified. Subsequent tests 

revealed the compounds act by inhibiting lipid peroxidation, a trigger for a form of regulated 

cell death known as ferroptosis. A quantitative structure-activity study together with XED 

(eXtended Electron Distributions) field analysis allowed a qualitative understanding of the 

structure-activity relationships. A representative compound N-(3,5-dimethyl-4H-1,2,4-triazol-

4-yl)-10H-phenothiazine-10-carboxamide, (DT-PTZ-C) was able to inhibit completely 

oxidative damage brought about by two different procedures in organotypic hippocampal 

slice cultures, displaying a 30-100-fold higher potency than the standard vitamin E analogue, 

Trolox or edaravone. The compounds are novel, small, drug-like molecules of potential 

therapeutic use in neurodegenerative disorders and other conditions associated with 

oxidative stress. 

 

INTRODUCTION 

Lipid peroxidation is a key factor in numerous disease states where oxidative stress has 

been implicated, including neurodegenerative disorders (Hambright, Fonseca, Chen, Na, & 

Ran, 2017) such as motor neurone disease (Cacabelos et al., 2014), multiple sclerosis (Hu 

et al., 2018). Also other conditions such as cardiovascular disease, asthma and diabetes 
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(Ozbayer et al., 2018). Severe lipid peroxidation triggers, a form of regulated cell death that 

is initiated by oxidative perturbations of the intracellular microenvironment and which can be 

inhibited by iron chelators and lipophilic antioxidants (Galluzzi et al., 2018; Gaschler & 

Stockwell, 2017). Originally termed oxytosis (Tan, Schubert, & Maher, 2001) this has been 

shown to be identical to the pathway termed ferroptosis (Lewerenz, Ates, Methner, Conrad, 

& Maher, 2018). The reduced glutathione (GSH)-dependent enzyme glutathione peroxidase 

4 (GPX4), by catalysing the reduction of lipid peroxides to alcohols, is considered a key 

defence against oxytosis/ferroptosis (Friedmann Angeli et al., 2014). Depletion of GSH may 

also initiate oxytosis/ferroptosis, a process implicated in the cellular toxicity of glutamate 

mediated by inhibition of cystine uptake (Dixon et al., 2012). The brain is thought to be 

particularly susceptible to oxidative stress because of its high unsaturated lipid content and 

mitochondrial activity, amongst other factors (Cobley, Fiorello, & Bailey, 2018). 

 

Lipid peroxidation is initiated by radical species such as the hydroxyl radical (•OH ), 

which can abstract a hydrogen atom from unsaturated lipid, thus generating a lipid radical 

(L•) and H2O. The lipid radical can combine with O2, generating the lipid ‘peroxyl’ radical 

(LOO•), which can further react with unsaturated lipid. If allowed to progress unchecked, a 

damaging, self-propagating cascade of peroxidation results. Ultimately peroxidation alters 

membrane properties, including ion-channel activity and glucose transport, and can directly 

impair mitochondrial function to cause cell stress (Mattson, 1998). 

 

The •OH usually thought to initiate lipid peroxidation (Koppenol, 2001) can be formed 

by either the Haber-Weiss reaction (1), though this is probably too slow at neutral pH, or 

more rapidly by the transition metal-catalysed Fenton reaction (2): 

 

(1) O2
•- + H2O2 → O2 + OH- + •OH 

 

(2) Fe2+/Cu+ + H2O2 → Fe3+/Cu2+ + OH- + •OH 

 

We recently found that freshly isolated cell suspensions or homogenates from rat 

brain consume NO in a lipid peroxidation-dependent manner. Untreated, these preparations 

undergo spontaneous and continuous lipid peroxidation as they contain suitable 

concentrations of iron and ascorbate to initiate this reaction. NO consumption by this 

mechanism may be prevented by treatment with metal ion chelators (DTPA, EGTA), by 

ascorbate depletion (ascorbate oxidase), or by treatment with antioxidant compounds 

(Trolox and the lazaroid U-74389G) (Keynes, Griffiths, Hall, & Garthwaite, 2005). 
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Physiologically, other mechanisms of NO consumption are likely to dominate in the intact 

brain (C. N. Hall & Garthwaite, 2006), although the lipid peroxidation-dependent process 

may become important under pathological conditions. 

 

 We report here the identification of a novel series of small drug-like molecules based 

on a phenothiazine core that inhibit NO consumption and show that they do so by preventing 

lipid peroxidation with a high potency. Although phenothiazines are well known as anti-

oxidants, our unbiased screening method identified a sub-set of molecules with high potency 

that could not have been predicted from previous studies. An exemplar molecule, N-(3-

methyl-4H-1,2,4-triazol-4-yl)-10H-phenothiazine-10-carboxamide, DT-PTZ-C, (Fig. 1) 

compound 26, showed high potency and efficacy in protection of hippocampal slice cultures. 

 

The development of drugs with an anti-oxidant mechanism of action has not been 

straightforward with many failures reported (Steinhubl, 2008),(Ohlow, Sohre, Granold, 

Schreckenberger, & Moosmann, 2017).  The field has recently been given fresh impetus by 

the demonstration of clinical efficacy for edaravone in motorneurone disease and its 

approval in Japan and in the United States (Abe et al., 2017). The development of new and 

more efficacious therapies is therefore of interest. 

 

METHODS 

 

Compound sourcing, similarity and substructure searching 

The selection of compounds for testing consisted of two steps. The first search was 

performed using 2D fingerprint MACCS keys (Durant, Leland, Henry, & Nourse, 2002) 

similarity search against the ACD (Willett, Barnard, & Downs, 1998). The Tanimoto 

coefficient (Tanimoto, 1958) was set at 0.75. Once the phenothiazine was identified as a 

core scaffold this was used to further reduce the number of initial hits by sub-structure 

search. Compounds were sourced from diverse commercial suppliers and checked by LCMS 

for purity with a threshold of 95%. DT-PTZ-C is available from multiple chemical suppliers 

(Supplementary information).  

  

Molecular modelling and QSAR 

The MOE modelling package was used. Molecules were drawn using ISIS draw or 

Chemdraw and imported into MOE using sdf. All the available IC50 data was used (26 

compounds) in the analysis. The objective was obtain a good QSAR model representing the 

data, not to predict the activity of unknown compounds. In this case training and test set 

protocols were not utilised.  
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XED force field analysis.  

The 3D-QSAR software Cresset Forge V. 10. was used following the default procedures (T. 

Cheeseright, Mackey, Rose, & Vinter, 2006). Cresset uses a field point description of the 

molecules (Tedesco). This is based on 1) a field, which combines the electrostatic 

parameters (positive and negative fields) of the molecule(s) and the surface interaction field 

(Tim Cheeseright, Mackey, & Vinter, 2010) and  2) the points, which are the extreme values 

of the field (Tim Cheeseright et al., 2010). A probe is required for the comparison, so the 

field values can be determined. The field value consists of the interaction energy and the 

charged probe at the centre of the estimated point. The surface energy is represented by the 

van der Waals energy and the neutral probe (Tim Cheeseright et al., 2010).  

 

Brain homogenate preparation  

Whole brain homogenate (~20 mg protein/ml) was prepared from 8-day-old Sprague Dawley 

rats by sonication in 20 mM tris buffer (pH 7.4). The homogenate was either stored at –20 ºC 

until use or was further fractionated by centrifugation at 4 ºC. After an initial spin (10,000 g 

for 30 min) the pellet was discarded and the supernatant further spun at 100,000 g for 1 h. 

The resultant pellet was resuspended in tris buffer (20 mM) at 10 mg protein/ml while the 

supernatant was spun overnight at 2000 g through 10,000 kDa cut-off filters 

(CENTRIPLUS®, Millipore UK Ltd, Watford, England). This procedure was carried out to 

remove free haemoglobin without compromising NO consumption on recombination with the 

pellet. The 100,000 g pellet and filtered supernatant were stored at -20 ºC until use.  

 

NO consumption assay 

A modification of the standard oxyhaemoglobin assay (Livingston, 1996) was used to 

monitor NO consumption by brain preparations and subsequently detect inhibitors of this 

activity. Haemoglobin-coated beads (12-16 mg/ml) were triple washed in tris buffer (20 mM) 

before exposure to freshly prepared sodium dithionate (10 mM) for 20 min in air to reduce 

the haemoglobin to the ferrous (Fe2+) form Following a further 2 washes in tris, the beads 

were kept as a working stock at 1.2 mg/ml on ice until used. Brain pellet (0.1 mg/ml), 

supernatant (10 %) or in later experiments ascorbate (30 µM), and superoxide dismutase 

(SOD, 1000 U/ml) were incubated with tris buffer and haemoglobin beads (100 μl), in a final 

volume of 1 ml on a rotator at 37oC for up to 25 min. Inhibitor test compounds were added 

where appropriate. All test compound stocks were prepared in DMSO. After incubation, the 

bead mix was pelleted by centrifugation at 10,000 g for 5 min and resuspended in 300 µl tris. 

The degree of haemoglobin oxidation was determined by reading the absorbance ratio (401-

410 nm/410 nm).  
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Lipid peroxidation assay 

The levels of thiobarbituric acid-reactive species (TBARS) were determined using a 

published assay (Esterbauer & Cheeseman, 1990). The method is based on the reaction of 

lipid peroxidation breakdown products, mainly malondialdehyde, with thiobarbituric acid. A 

pink reaction product is produced and the absorbance is read at 532 nm. This assay is 

reliably used for comparison of antioxidant compounds, for example in rat brain 

homogenates (Callaway, Beart, & Jarrott, 1998) or phospholipid vesicles (Westerlund, 

OstlundLindqvist, Sainsbury, Shertzer, & Sjoquist, 1996). It has been reported that the 

TBARS assay can give misleading results (Forman et al., 2015) but the version we used, 

where protein is precipitated and removed prior to reaction, has been shown to be reliable 

and to correlate closely with direct measurements of malondialdehyde, the main lipid 

peroxidation breakdown product, in brain preparations,(Callaway et al., 1998). In addition, 

we show below that the results of the TBARS assay correlate closely with those for the NO 

consumption assay, which is the result expected if the two were independently measuring 

the degree of lipid peroxidation. 

 

Inhibitor test compounds were incubated with brain pellet (0.1 mg/ml), supernatant 

(10 %) or, in later experiments, ascorbate (30 µM), and SOD 1000 U/ml in tris buffer (20 

mM) in a final volume of 1 ml on a rotator at 37oC for up to 25 min. Samples were inactivated 

by addition to trichloroacetic acid (10 % w/v) at 4 °C and were centrifuged to remove 

precipitated protein (2000 g, 10 min). The supernatant was added to a mixture of 

thiobarbituric acid (0.67 % w/v) and butylated hydroxytoluene (10 % w/v) and was then 

heated to 90 °C for 30 min. After cooling to room temperature, the absorbance of the 

solution was measured at 510 nm and 532 nm and the absorbance ratio (532 nm – 510 

nm)/510 nm was calculated. The concentration was determined by reference to 

malondialdehyde standards. 

 

Monitoring NO consumption in cerebellar cell suspensions 

Acute cerebellar cell suspensions (20 x 106 cells/ml; 1.25 mg protein/ml) were prepared from 

8-day-old Sprague Dawley rats according to published procedures (Garthwaite & 

Garthwaite, 1987) except that the pups were not pre-treated with hydroxyurea.  The cell 

incubation medium contained (mM): NaCl (130), KCl (3), CaCl2 (1.5), MgSO4 (1.2), Na2HPO4 

(1.2), tris-HCl (15) and glucose (11) adjusted to pH 7.4 at 37 ºC.  
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 NO consumption by the cell suspension was studied following the addition of the NO 

donor diethylenetriamine/NO adduct DETA/NO (200 µM) (Alexis, Nottingham, U.K.) which 

was made in 10 mM NaOH and kept on ice until use. For measurements of NO 

concentrations, 1 ml samples were incubated in a stirred chamber (at 37°C) equipped with 

an NO electrode (ISO-NO, World Precision Instruments, Stevenage, Herts, U.K.) in the 

presence or absence of test compounds. All experiments contained superoxide dismutase 

(SOD, 1000 U/ml). Other stock solutions (from Sigma, Poole, Dorset, U.K.) were made up at 

1000 x concentration in DMSO so that the final DMSO concentration did not exceed 0.1 % . 

 

Hippocampal slice culture preparation 

Slice cultures were prepared according to a standard method (Stoppini, Buchs, & Muller, 

1991). Sprague-Dawley rat brains were immersed in ice-cold minimal essential medium 

supplemented with 10 mM tris, and penicillin/streptomycin (100 U/ml and 100 μg/ml 

respectively). Hippocampi were rapidly dissected out and 400 μm transverse sections 

prepared on a McIlwain tissue chopper (Mickle Laboratory Engineering Ltd, Surrey, UK). 

Slices were separated mechanically and randomised before being placed onto culture 

inserts (Millicell-CM: Millipore, Watford, UK, 4 slices per insert). Culture inserts were 

incubated in 6-well plates with 1 ml media consisting of minimal essential medium (50%), 

heat-inactivated horse serum (25%), Hank’s balanced salt solution (25%), and 

penicillin/streptomycin (as above), buffered to pH 7.3 with tris (5 mM) and NaHCO3 (0.35 

g/l). Cultures were incubated at 37 oC in 5% CO2 for 4 days and subsequently at 33 oC in 5% 

CO2 until use at 12-14 days in vitro. Inserts were transferred to fresh media after 1, 4, 7, and 

10 days. 

 

Slice culture toxicity model 

Hippocampal slice cultures (12-14 days old) were incubated in serum-free medium (SFM) 

consisting of: minimal essential medium without HEPES (74 %), Hank’s balanced salt 

solution (24%), B27 supplement without antioxidants (2 %) penicillin/streptomycin (as above) 

and glucose (0.5 g/l) for 2 h before exposure to freshly prepared ascorbate (500 µM) and 

FeSO4 (10 – 1000 µM). Alternatively cultures were exposed to 2,2'-azo-bis-amidinopropane 

(ABAP) (0.3 – 3 mM). Stock compounds Trolox and DT-PTZ-C were prepared at 1000-times 

final concentration in DMSO and were present in the SFM throughout the experiment when 

used. Neuronal damage was assessed by propidium iodide staining after 24 h according to 

the procedure published previously (Keynes, Duport, & Garthwaite, 2004).  
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RESULTS 

 

Identification of potent NO consumption inhibitors 

A modified oxyhaemoglobin assay was used to screen for compounds that inhibit NO 

consuming activity. The ability of test compounds to inhibit NO consumption was determined 

after 25 min and compared to the effect of the calcium chelator EGTA, which gave 100% 

inhibition (Keynes et al., 2005). The first two compounds tested, chosen on the basis of initial 

serendipitous observations, were calmodulin antagonists. Both compounds inhibited NO 

consumption with potencies similar to that of EGTA (Table 1).   

 

A further screen was undertaken of 40 compounds available in the laboratory, of which 7 

inhibited NO consumption with an IC50 under 100 µM (Table 2).  

 

Finally, a set of compounds based upon the phenothiazine structure of the most potent 

inhibitors (chlorpromazine, promethazine, methotrimeprazine) were selected using similarity 

and substructure searching. The compounds were screened and the summary data 

compares these compounds to control values (no inhibitor present) at the lowest 

concentration screened initially (0.4 or 1 µM). Of the 61 compounds tested, full IC50 values 

were subsequently determined for the best compounds (Supplementaryl Table 1).  The 

compounds are grouped into structural types N-carbonylphenothiazines, N-

alkylphenothiazines and diverse structures and phenothiazines unsubstituted on the ring 

nitrogen (Supplementary Table 1).  

 

NO consumption inhibitors are active in an intact cell system 

We have previously shown that intact cells isolated from the cerebellum consume NO by a 

mechanism at least partly explained by lipid peroxidation. This proportion of cellular NO 

consumption can be fully inhibited by the antioxidant Trolox (Keynes et al., 2005) with any 

residual consumption attributed to red blood cell contamination. We tested six of the most 

potent compounds (at 10 µM) for their ability to inhibit NO consumption in cerebellar cell 

suspensions. All the compounds tested substantially inhibited NO consumption in this model 

(Figure 1) such that the NO levels approached those attained in buffer, the residual 

“shoulder” seen after 1-2 min being due to red blood cells. 
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FIGURE 1 HERE 

 

Comparison with established antioxidants 

The link between cellular NO consumption and lipid peroxidation prompted direct studies of 

the antioxidant properties of the compounds. Earlier reports (Moosmann, Skutella, Beyer, & 

Behl, 2001; Yu et al., 1992) have investigated the structure-activity relationship of 

phenothiazine-based compounds as antioxidants. In both investigations it was reported that 

the absence of a substitution at N-10 of the phenothiazine ring was required for potent 

activity. Methylation of the ring at N-10 rendered the compound much less active. We tested 

the methylated and ‘native’ phenothiazine compounds alongside a range of potent NO 

consumption inhibitors (compounds 13, 15, 26, 27, 53 and 61), as well as the antioxidant 

Trolox and a clinically approved free radical scavenger edaravone (Green & Ashwood, 

2005). The mechanism of edaravone is thought to depend on the presence of the edaravone 

anion’s ability to neutralise radicals (Higashi, Jitsuiki, Chayama, & Yoshizumi, 2006). 

 

In addition to testing NO consumption by oxyhaemoglobin assay, the degree of 

inhibition of lipid peroxidation in the preparation was measuring in parallel using the TBARS 

assay (Esterbauer & Cheeseman, 1990). The unsubstituted phenothiazine and all novel 

compounds showed a very similar potency in both assays, and were up to 1000-times more 

potent than edaravone, Trolox and the N-methylated phenothiazine (Table 3). 

 

DT-PTZ-C is a potent antioxidant  

Such potent inhibitors of NO consumption (and lipid peroxidation) should protect intact tissue 

against cell death induced by oxidative stress. Hippocampal slice cultures were subjected to 

incubation with ascorbate (500 µM) and FeSO4 (10-1000 µM) and toxicity was assessed by 

PI staining after 24 h. A similar model has been used before (R. L. Liu, Liu, Doctrow, & 

Baudry, 2003). As the FeSO4 concentration increased, the percentage of cell death in all 

areas of the slice increased, such that by 100 µM FeSO4, death in CA1 was ~ 50 % (Fig 

2A,B). As seen previously with this preparation (Keynes et al., 2004) neuronal death was 

graded in different slice regions, in the order of CA1>CA3>dentate gyrus. Staining was 

maximum (100 % death) in all areas following treatment with 1 mM FeSO4. 

 

DT-PTZ-C (0.1 - 1 µM) and the reference antioxidant Trolox (1 - 100 µM) were tested 

in slices undergoing treatment with ascorbate (500 µM) and FeSO4 (1 mM). Both 

compounds prevented slice toxicity across all regions in a concentration-dependent manner. 

Measured as percentage death in CA1, IC50 values were 0.3 ± 0.1 µM for compound DT-

PTZ-C and 8 ± 1 µM for Trolox (Fig 2C). 
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In a second model of lipid peroxidation-induced neuronal death the ‘Azo’ initiator 

ABAP (0.3 – 3 mM) was administered to slice cultures for 24 h and death measured as 

above. Treatment with this compound elicited slice toxicity more selectively in CA1. 

Following 1 mM ABAP treatment, CA1 death was 44 ± 10 %, increasing to 82 ± 3 % with 3 

mM (Fig 3 A,B). Both test compounds prevented slice toxicity following a challenge with 3 

mM ABAP, with IC50 values of 0.2 ± 0.002 µM for DT-PTZ-C and 20 ± 5 µM for Trolox (Fig 3 

C). 

 

Compound 26 inhibits NO consumption with similar potency to other aromatic imines 

In common with the other potent inhibitors of NO consumption identified here DT-PTZ-C  is 

based upon a phenothiazine structure. A previous report found the aromatic imines 

phenothiazine, phenoxazine and iminostilbene were highly potent antioxidant compounds in 

several neuroprotective models (Moosmann et al., 2001). The ability of these compounds to 

inhibit NO consumption was tested using the oxyhaemoglobin bead assay and compared to 

compound 26. Compounds inhibited NO consumption with the following IC50’s: compound 

26, 80 ± 8 nM; phenothiazine, 105 ± 2 nM; iminostilbene 243 ± 33 nM and phenoxazine, 19 

± 3 nM (Fig 4A-D).  

 

Structure-activity relationships and electrostatic fields. 

In order to better understand the structural features important for activity we conducted a 

QSAR analysis of the dataset. The analysis utilised all the available IC50 data (see tables) 

and multivariate partial least squares (PLS) analysis produced a good model with a R-

squared (R2) of 0.907. The model (Fig. 5 panels A and B and 4) showed a high dependence 

on electronegative descriptors notably PEOE (Partial Equalization of Orbital 

Electronegativity) (Gasteiger & Marsili, 1980). The major descriptor, BCUT_PEOE_0 is 

considered a chemistry-space descriptor  where, BCUT is calculated from an eigenvalue of 

an adjacency matrix and PEOE is a partial charge (Pearlman & Smith, 1998). Two other 

types of PEOE descriptors also contribute to the model (Table 4). One descriptor 

BCUT_SLOGP_0, showed a lipophilicity contribution (0.62). Molecular shape was also a 

contributor as indicated by the chi descriptors. The importance of electronegativity was 

further highlighted by a molecular field analysis (Fig. 5 panels C and D) using the Cresset 

software XED force field. It is assumed that similar fields will belong to the molecules with 

similar properties (Tim Cheeseright et al., 2010). Cresset represents the molecule, using the 

four molecular fields (Rose & Vinter, 2007): positive electrostatic, negative electrostatic, van 

der Waals attractive (‘steric’), and hydrophobic. Comparison of the best active molecule DT-

PTZ-C with a weak active 41 (panel D) shows a clear qualitative difference between the 

electrostatic fields (negative field points – blue; positive field points– dark red). This model is 
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consistent with the ability of the molecules to generate a stable cation-radical species 

following SET by a reactive radical (vide infra).  

 

The oxyhaemoglobin bead assay is a simple test for antioxidant compounds 

Using a variation of the well-known oxyhaemoglobin assay (Livingston, 1996), compounds 

were systematically screened for antioxidant properties by measuring inhibition of NO 

consumption in the presence of brain fractions undergoing peroxidation. In agreement with 

results determined by other methods (Jeding et al., 1995; Moosmann et al., 2001; Yu et al., 

1992), phenothiazine based compounds were found to have antioxidant properties. To 

evaluate this novel use of a haemoglobin-based NO detection assay, the IC50’s for a number 

of compounds were compared with those determined using the TBARS assay (Fig. 6).    

  

It is evident from this comparison that inhibition of NO consumption detected by the 

oxyhaemoglobin bead assay is highly predictive of antioxidant potency for the range of 

phenothiazine compounds tested. The bead assay represents a simple, cheap and 

reproducible method of determining antioxidant properties, and one which does not require 

the use of hazardous chemicals.  

 

Discussion 

 

NO consumption inhibitors are potent antioxidants 

We tested six of the NO consumption inhibitors in an intact cellular model of lipid 

peroxidation (cerebellar cells, see Fig. 1) and found all to approach 100% inhibition at 10 

µM. In this model remaining NO consumption is likely due to red blood cell contamination 

(Keynes et al., 2005). The possibility that these compounds may protect intact brain tissue 

from cell death induced by oxidative stress was explored using hippocampal slice cultures. 

Of the most potent inhibitors identified, DT-PTZ-C was chosen for testing as it has no effects 

on the NO producing enzyme (nNOS) or on the activity of the guanylyl cyclase-linked NO 

receptor (also known as soluble guanylyl cyclase), and has only a slight tendency to be pro-

oxidant (oxidising haemoglobin beads with an EC50 of 1.1 µM) compared to its low nM 

potency at inhibiting NO consumption (data not shown). Under both test conditions 

(iron/ascorbate or ‘Azo’ initiated slice toxicity) DT-PTZ-C was extremely potent (IC50 < 300 

nM) compared to the Trolox control, and both compounds afforded complete protection of 

the slices. In comparison, a similar study by reported only a 50-70 % increase in slice 

survival with 20 µM of the SOD/catalase mimetic EUK-134 (R. L. Liu et al., 2003), though no 

control compound was included for comparison. 
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Novel use for an old structure 

 Since the antioxidant potential of the phenothiazine-based neuroleptic drugs 

chlorpromazine, promethazine and methotrimeprazine (Table 2) has been reported before 

(Jeding et al., 1995) the ability of other phenothiazines to prevent lipid peroxidation is 

perhaps not surprising. Jeding et al investigated the mechanism by which such 

phenothiazines act, finding that while none of the drugs reacted with O2
•-, chlorpromazine 

and methotrimeprazine were powerful (almost diffusion controlled) •OH scavengers, and all 

three compounds were powerful inhibitors of iron-dependent lipid peroxidation and peroxyl 

radical scavengers. In addition chlorpromazine showed some ability to bind iron ions. During 

the review process a referee highlighted the difference between the experimental systems 

(where the ability of anti-oxidants to intercept •OH is well known) and the in vivo situation 

where this may not be the case. Several studies report, for example the phenothiazine 

blockade of •OH as produced by 6-aminodopamine in a xanthine oxidase xanthine 

experimental system (Heikkila, Cohen, & Manian, 1975) and also with the Fenton reaction 

(Borges et al., 2010). Phenothiazines are lipophilic and partition preferentially into 

membranes, as electron transfer can occur over some distance, interception of •OH may not 

be impossible (Kuss-Petermann & Wenger, 2016). Of course administered drugs do not 

approach the concentration of bulk membrane and the formation of lipid peroxyl radicals 

from •OH may be the dominant pathway in vivo. 

 

An earlier study had investigated the structural basis upon which phenothiazine-

centred compounds may act as iron-dependent lipid peroxidation inhibitors (Yu et al., 1992). 

The authors varied many structural components, concluding that the most important 

determinant of potent in vitro lipid peroxidation inhibitory activity was the absence of a 

substitution at N-10 of the phenothiazine ring, since its methylation rendered the compound 

markedly less active. In addition, they found that the parent phenothiazine nucleus exhibited 

good inhibitory action. 

 

 A more recent study by Moosmann (Moosmann et al., 2001) investigated different 

aromatic amine and imine compounds for their neuroprotective action in several cell culture 

paradigms including clonal cell lines, primary cerebellar neurones and hippocampal slice 

cultures. They noted that antioxidant properties are increased when the two benzene rings 

are bridged with a sulphur or oxygen. Similarly to the study of Yu et al, (Yu et al., 1992) the 

authors found N-methyl-phenothiazine to be significantly less potent compared with 

phenothiazine alone. They concluded that the presence of at least one single NH-bond is an 

essential pre-requisite for antioxidant action, and the compound’s activity is likely to stem 

from the dissociation of this bond, leading to an imine radical. Moosmann et al reported that 
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three structurally similar compounds phenothiazine, phenoxazine and iminostilbene had 

IC50’s of 20 – 75 nM in their experimental paradigms. Separate studies on the radical 

trapping activity of unsubstituted N-10 phenoxazines demonstrated an ability to trap more 

two or more peroxyl radicals indicating the potential for this group of compounds (Farmer, 

Haidasz, Griesser, & Pratt, 2017; Lucarini et al., 1999).  

 

In agreement with the work of Moosmann we also found low nM potency for the 

effect of phenothiazine, phenoxazine and iminostillbene as inhibitors of NO 

consumption/lipid peroxidation (Fig. 4). Again in agreement with both Moosmann and Yu, we 

found the N-methylated phenothiazine was significantly less potent than phenothiazine alone 

(Table 3). The observation that compounds 26, 27, 40, 53 and 61 (and others in the series), 

all of which have N10-carbamoyl-substituents (see Tables) are highly potent was, however, 

entirely unpredictable from the present literature.  

 

In considering possible mechanisms of the antioxidant effect the ability of 

phenothiazines to donate electrons seems to be key. Likely mechanisms include both single 

electron transfer (SET) and hydrogen atom transfer (HAT) possibilities (Fig. 7). 

 

The radical-cation of phenothiazines is easily the lowest energy intermediate when 

compared with the phenothiazine radical. In addition, phenothiazines are not thought to be 

good hydrogen-atom donors (Zhu, Dai, Yu, Wu, & Cheng, 2008). The phenothiazine radical 

is little reported in the literature and when formed chemically it degrades to produce highly 

coloured degradation products (Hanson & Norman, 1973). Our favoured mechanism 

requires that the radical-cation be generated in lipids, phenothiazine radical cations have 

been observed in micelles (Nemcova, Novotny, & Horska, 1986) and in model membranes 

and mitochondria (Borges et al., 2010). The theoretical assumption is that a charged cation 

species is being generated in a non-polar environment (the lipid), however in reality 

membranes contain small polar molecules including water as well as other species such as 

cholesterol and proteins. If we draw the structure of DT-PTZ-C as the tautomer (Fig. 7) then 

it is apparent that further stabilisation of the radical cation or the radical form is possible. In 

the case of molecules such as phenols and enolates the most facile reaction available is the HAT 

(Jovanovic, Steenken, Boone, & Simic, 1999) and has also been invoked to explain the anti-

oxidant activity of phenoxazines (Farmer et al., 2017). It is clear that defining the mechanism of 

action of DT-PTZ-C will require further research, which is beyond the scope of this study. 
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How does the N10 carbamoyl group stabilise the proposed radical or radical-cation 

intermediate? Hammett values for electron withdrawing ability of carbamoyl indicate a σF 

value of 0.23 and σR of 0.12 this compares with 0.54 and 0.12 respectively for the 

electronegative group CN (Hansch, Leo, & Taft, 1991). In addition, we should consider that 

the best compound DT-PTZ-C is in fact hydrazide like and will therefore be even less 

electron withdrawing. Drawing the molecule in its tautomeric form (Fig. 7) highlights how 

extended conjugation could influence stability of the radical cation.  

 

Finally the structure-activity relationships could be quantitatively explained by a 

model that included chemical descriptors of electronegative properties.  

 

N-carbamoylphenothiazines may be superior antioxidants 

 Oxidative stress has been widely linked to many disease states, where ferroptosis 

regulated cell death is implicated. In particular chronic neurodegeneration such as 

Alzheimer’s disease (Behl & Moosmann, 2002), Parkinson’s disease, amyotrophic lateral 

sclerosis (ALS) (Pollari, Goldsteins, Bart, Koistinaho, & Giniatullin, 2014), and multiple 

sclerosis (Gilgun-Sherki, Melamed, & Offen, 2004), or more acute insults such as ischaemia 

(Green & Ashwood, 2005). While there is much evidence for the efficacy of direct acting 

antioxidants in animal models of these diseases the clinical evidence that antioxidant 

compounds can be neuroprotective has been relatively scarce (Gilgun-Sherki et al., 2004; 

Moosmann & Behl, 2002). However edaravone has recently been approved for acute 

ischemic stroke in Japan (Miyaji et al., 2015) and for the treatment of ALS, albeit in a well-

defined subset of patients (Abe et al., 2017). Edaravone must be delivered by intravenous 

infusion and blood brain barrier penetration may not be ideal (Fang et al., 2014). In our 

hands edaravone is a relatively weak anti-oxidant (Table 3).  N10-alkylphenothiazine drugs 

such as chlorpromazine and promethazine have been advanced as potential stroke 

therapies (S. M. Liu et al., 2015). Clearly there is considerable scope for improved 

compounds to advance to the clinic.  

 

The N-substituted phenothiazine antioxidant compounds outlined here are 100-fold 

more potent as anti-oxidants than N10-alkylphenothiazine drugs or edaravone, they are of 

low molecular weight (an advantage for blood brain barrier permeability) and have other 

drug-like chemical characteristics. We identified DT-PTZ-C as having high potency both in 

simple anti-oxidant systems and in hippocampal slice. This molecue also showed good 

selectivity with no observable activity against NO synthase or the guanylyl cyclase-linked NO 

receptor and minimal pro-oxidant properties. Optimised compounds may prove of value in 
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the treatment of neurodegenerative conditions and also of the host of conditions involving 

oxidative stress outside the central nervous system (Cobley et al., 2018).  
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Figure Legends 

Figure 1. Representative traces (A) and (B) and summary of the data (C) of NO consumption 

after addition of the NO donor DETA/NO (200 µM) to buffer or cerebellar cells (20 x 106 

cells/ml; 1.25 mg protein/mL) in the absence or presence of compound numbers 26, 27, 11, 

19, 15 and 91. Data are n = 2 +/- S.D. 

 

Figure 2 DT-PTZ-C inhibits iron/ascorbate toxicity with greater potency than Trolox. 

(A) Representative photomicrographs PI stained hippocampal slices 24 h following exposure 

to ascorbate (500 µM) and increasing concentrations of FeSO4 (0-1 mM). (B) Summary data 

(means ± SEM; n = 8 slices) is expressed as percentage death in the three major 

hippocampal regions (CA1, CA3 and dentate gyrus). (C) The concentration-dependent 

effects of DT-PTZ-C and Trolox were assessed against maximum slice toxicity (500 µM 

ascorbate + 1 mM iron), and are expressed as mean ± SEM % death in CA1, n = 8 slices.    

 

Figure 3 DT-PTZ-C inhibits ABAP toxicity with greater potency than Trolox 

(A) Representative photomicrographs of hippocampal slices stained with PI 24 h following 

exposure to ABAP (0.3 - 3 mM). (B) Summary data (means ± SEM; n = 8 slices) is 

expressed as percentage death in CA1. (C) The concentration-dependent effects of DT-

PTZ-C and Trolox were assessed against maximum slice toxicity (3 mM ABAP), and are 

expressed as mean ± SEM % death in CA1, n = 8 slices.   
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Figure 4 DT-PTZ-C inhibits NO consumption with a similar potency to aromatic imines 

Summary data (mean ± SEM; n = 4) of haemoglobin-coated bead absorbance following 

incubation for 25 min with pellet (0.1 mg/ml), supernatant (10 %) and DETA/NO (100 µM). 

Increasing concentrations (0.3 – 1000 nM) of (A) compound 26, (B) phenothiazine, (C) 

iminostilbene and (D) phenoxazine were included to determine their potency at inhibiting NO 

consumption. 

 

Figure 5 (A) QSAR model of anti-oxidant activity using calculated descriptors. (B). Details of 

the model. (C) DT-PTZ-C field analysis using Cresset. Negative field points – blue; positive 

field points– dark red; van der Waals surface field points – yellow, hydrophobic field points – 

gold/orange. (D) Field analysis of a weakly active compound 41. 

 

Figure 6 Comparison of IC50’s for phenothiazine-based compounds in the haemoglobin 

bead vs TBARS assays. (A) significant A correlation between the two assays was found 

(Pearson’s rank correlation coefficient, r = 0.92). 

 

Figure 7 Lipid peroxidation activity of phenothiazines proceeds via generation of a radical 

cation or potentially a radical (drawn as oxygen centred). Stabilisation of the structures is 

proposed to occur via the tautomeric form. 
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Tables 

 
Table 1 Calmodulin antagonists inhibit NO consumption with similar potency to 

EGTA 

Compound Structure 
IC50 

(µM) 

Molecular 

weight 
ClogP

EGTA 

 

16 380.4 -2.0 

Trifluoroperazine 

 

9 407.5 4.9 

Calmidazolium 

 

 

10 652.2 6.9 
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Table 2 Second round of screening for inhibitors of NO consumption 

Compound Structure IC50 (µM) Molecular weight ClogP 

Nifedipine 

 

70 346.3 3.1 

Clozapine 

 

17 326.8 3.6 

Desipramine 

 

15 266.4 4.5 

Bepridil 12 366.5 6.2 

Chlorpromazine 

 

7 318.9 5.5 

Promethazine 

 

7 284.4 4.6 

Methotrimeprazine 

 

4 328.5 5.0 
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Table 3. Comparison of compounds in NO consumption and TBARS assays 

 

Compound Structure 
NO consumption 

IC50 (µM) 

TBARS IC50 

(µM) 

Phenothiazine 

 

0.015 ±0.001 0.042 ±0.006 

N-Me-phenothiazine 

 

4.53 ±3.4 18.6 ±6.2 

Edaravone 

 

keto form 

 

Anion 

4.16 ±2.1 29.2 ±3.7 

Trolox 10.01 ±5.8 19.2 ±3.1 

(13) 

Structures in 

Supplementary Table 

1 

0.10 ±0.036 0.15 ±0.002 

(15) 0.084 ±0.023 0.23 ±0.01 

(26) * 0.014 ±0.013 0.10 ±0.01 

(27) * 0.099 ±0.065 0.30 ±0.058 

(53) * 0.030 ±0.004 0.038 ±0.002 

(61) * 0.023 ±0.004 0.087 ±0.006 

* = phenothiazine-based compounds with an N-10 substituent. All experiments carried out 

using the same drug solutions and membrane preparations. 
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Table 4. Relative importance of descriptors and typea 
Descriptor Brief description of properties 

0.62  BCUT_SLOGP_0 
BCUT descriptors using atomic contribution to logP (using 

the Wildman and Crippen SlogP method(Wildman & 
Crippen, 1999)) instead of partial charge. 

0.25  chi0 
Kier and Hall chi connectivity indices(L. H. K. Hall, L. B., 

2007) are calculated from the heavy atom degree di 
(number of heavy neighbors) and vi. These capture 

different aspects of molecular shape. Chi1v is an atomic 
valence connectivity index. 

0.31  chi0_C 
0.079  chi1v 

0.37  PEOE_PC- The descriptors implement the  Partial Equalization of 
Orbital Electronegativities (PEOE) method of calculating 

atomic partial 
charges(Gasteiger & Marsili, 1980) 

0.20 PEOE_RPC- 

0.27  BCUT_PEOE_3 BCUT descriptors (Pearlman & Smith, 1998) are 
calculated from the eigenvalues of a modified adjacency 
matrix. The diagonal takes the value of the PEOE partial 

charges. 

1.00  BCUT_PEOE_0 

0.18  BCUT_PEOE_1 

0.25  PEOE_VSA-4 
Descriptors of fractional polar van der Waals surface area. 0.16  PEOE_VSA-1 

0.14  PEOE_VSA-0 
 
a A brief description of the descriptors is given. More detail is available in the MOE 

application notes.  
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