
ChainSoft: Collaborative Software Development using
Smart Contracts

Michał Król, Sergi Reñé, Onur Ascigil and Ioannis Psaras

Dept. of Electronic & Electrical Engineering,

University College London

WC1E 7JE, Torrington Place, London, UK

{m.krol, s.rene, o.ascigil, i.psaras}@ucl.ac.uk

ABSTRACT
In recent years, more and more companies require dedicated
software to increase the efficiency of their business. How-
ever, with rapidly changing technologies it is often ineffi-
cient to maintain a dedicated team of developers. On the
other hand, outsourcing software development requires con-
siderable effort and trust between involved parties to ensure
the quality of the code and adequate payment.

We present ChainSoft - a platform for outsourcing soft-
ware development and automatic payments between parties
that distrust each other, by means of blockchain technol-
ogy. ChainSoft allows any developer to create software and
submit software, includes automatic code verification and
enforce users’ proper behavior. We implement our system
using Ethereum Smart Contracts and Github/Travis CI and
present first evaluation proving its security and low usage
cost.

1. INTRODUCTION
Software development and information technology (IT)

is a fast growing industry with a total revenue over
3.8 trillion dollars globally, and it continues to grow
each year [1]. In US alone, there are more than 100K
software and IT companies with 99% being small and
medium-sized firms with under 500 employees [2]. In
addition to the monetary worth, the industry is also
growing in terms of workforce every year—the US gov-
ernment predicts that the software development work-
force will grow by 22% over the next ten years [2].
Moreover, the industry is increasingly demanding spe-
cialised skills for possibly large range of domains and
specialty in particular software systems with consider-
able complexity. As a result, it is becoming increasingly
di�cult—especially for the small and medium compa-
nies that constitute the vast majority of the industry—
to form a team of developers with expertise in wide
range of domains. This leads to the development tasks
in such companies being increasingly outsourced to third-
party contractors, and at the same time larger compa-
nies seeking developers globally to meet the increasing
demand.

However, outsourcing software development currently
requires considerable e↵ort and resources to find ap-
propriate programmers for the task at hand. Develop-
ers and employers need to establish trust—developers
must ensure that the requirements of the task are clearly
stated and do not change after the agreement, and the
employers must ensure that all the requirements of task
are fulfilled. In this paper, we propose ChainSoft—
a Blockchain-based mechanism to automate outsourc-
ing of software development. ChainSoft brings together
mutually untrusted parties to collaborate on software
development on a per-task basis. The procedure in-
volves a software requestor first publishing a task to-
gether with a set of tests to verify that the code to
be provided by third-party contributors match the re-
quirements. Each published task is associated with a
reward, and the first contributor to post a solution (to
a code repository whose location is provided by the task
owner) that passes the tests automatically obtains the
reward. ChainSoft utilizes smart contracts to ensure
that a contract owner (the requestor) pays contributors
to achieve trust in a distributed software development
environment.

Examples of tasks that can be achieved through Chain-
Soft include writing a new piece of software as well as
adding new features, finding vulnerabilities (i.e., bugs)
in an existing software [3, 4], and so on. In the case of
discovering bugs, the owner publishes his software (ei-
ther the binaries or the code in the case of open source
software) and the contributors post specific tests that
trigger errors/failure conditions in the owner’s code.
The obvious challenge with this approach is the specifi-
cation of precise tests by the contract owners to verify
the correctness of the solution. However, existing soft-
ware development practices, e.g., continuous integration
(CI), involve iteratively testing code upon adding new
features or enhancements. Therefore, we do not con-
sider having to provide test program as a limitation.

Existing solutions for outsourcing software develop-
ment involve human-in-the-loop for the verification of
tasks, and therefore, lack an automated reward collec-
tion mechanism, which is crucial for mutually untrusted

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/219542131?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

parties to collaborate [5, 4]. ChainSoft’s automated
reward collection mechanism is built on existing sys-
tems including BlockChain-based smart contracts; CI
systems that automatically build, run tests and pub-
lishes test results upon commits by a contributor; and
a service called Oracle that enables a BlockChain con-
tract to interact with the outside world in a secure way,
i.e., make network requests from a contract to obtain
the result of tests.

The rest of the paper is organized as follows. First,
we present background on the existing technology that
enables ChainSoft in Section 2, followed by the threat
model and assumptions in Section 3. In Section 4, we
present an overview of the ChainSoft architecture and
in Section 5, we present the evaluation. This is followed
by the Related Work and conclusions in Sections 6 and
7, respectively.

2. BACKGROUND

2.1 Blockchain and Smart Contracts
The blockchain technology [6] implements a distributed,

append-only ledger in the form of connected blocks.
Once information is stored in the blockchain it can-
not be removed or altered. Network participants use
a consensus protocol to agree on current state of the
ledger. As long as the majority of participants are hon-
est, the integrity of the ledger is assured. Blockchain is
widely used to record transactions in multiple crypto-
currencies (i.e., Bitcoin [6], Ethereum [7]). A common
extension consists of scripting languages enables to in-
clude logic as part of the transaction and allows deploy-
ment of Smart Contracts - code submitted to blockchain
and executed by all miners. Solidity - the scripting
language of Ethereum is Turing-complete allowing to
implement wide range of applications running on the
blockchain.

2.2 Oracle
While turing-complete Smart Contracts allow to im-

plement any logic on top of blockchain, their usefulness
remains limited without an external source of informa-
tion. To improve their usefulness, Smart Contracts ad-
ditionally require access to data about real-world state
and events. Data feeds (also known as “oracles”) aim to
meet this need. Oracles (i.e. Oraclize [8], Town Crier
[9]) are contracts on the blockchain that contact trust-
worthy websites and serve data requests by other con-
tracts. However, smart contracts themselves lack net-
work access, and HTTPS does not digitally sign data
for out-of-band verification. At the same time, data
provided by oracles can determine behaviour of smart
contracts and money transactions and thus must be
trusted. Recently, TLS Notary was proposed as a so-
lution to this problem [10]. TLS Notary can provide

a proof that certain information were retrieved from a
trusted HTTPS server and ensure data integrity.

2.3 Travis CI
Tracis CI 1 is a Continuous Integration (CI) and de-

ployment system aimed at building and testing software
projects hosted at GitHub 2. Travis CI automatically
detects when a commit has been made and pushed to
a GitHub repository and tries to build the project and
run tests. Travis CI is configured by adding a YAML
[11] format text file specifying the programming lan-
guage used, the desired building and testing environ-
ment (including dependencies which must be installed
before the software can be built and tested). Travis CI
supports integration with Docker allowing to recreate
custom environments and various deployment platforms
(i.e. Heroku, AWS CodeDeploy). Travis CI checks out
the relevant branch and run the commands specified in
.travis.yml (later called environment file), which usu-
ally build the software and run any automated tests.
When that process has completed, Travis can notify
developers in the way it has been configured to do so,
for example, by sending an email containing the test re-
sults. The service expose also an API allowing to query
it with HTTPS requests.

3. THREAT MODEL AND ASSUMPTIONS
We consider that the following actors participate in

the transaction:

• Requestor - submits a software development task
to the network and makes the payment.

• Software Developer - develops and submits the re-
quested software for a specified reward.

• Payment System - a smart contract running on a
blockchain.

• Oracle - Github with Travic CI.

Our threat model assumes that when the Requestor
submits its task to the blockchain, it does not know
which Developer will execute it. We assume that for
the requestor, the value of the developed software (VRi

) is higher than the price she is willing to pay (PRi). At
the same time, the cost of developing the software (Ci)
is lower than the o↵ered price (PRi). Both parties wish
to finalise the transaction, but mutually distrust one
another. Each party is potentially malicious, i.e., they
may attempt to steal funds, avoid making payments,
and forge results if it benefits them. Any time each
party may drop, send, record, modify, and replay arbi-
trary messages in the protocol. Both the requestor and
the software developer trust the blockchain, their own
1https://travis-ci.org/
2https://github.com/

2

environments, and the oracle. The rest of the system,
such as the network between the parties and the other
party’s software stacks and hardware are untrusted. We
assume that anyone can submit a solution (software),
but only the first valid one will be rewarded. To pre-
vent parallel development by multiple parties, a simple
deposit scheme could be applied (similar to [12]).

4. OVERVIEW
ChainSoft is a platform for outsourcing software de-

velopment and automatic payments between mutually
distrusting parties. An overview of the system inter-
actions is presented on Fig. 1. A requestor, requiring
software first needs to create its description. The de-
scription consists of a set of tests the software needs to
pass in order to fulfil the requirements. The description
is submitted to a GitHub repository and made publicly
visible. The requestor then submits the task to the
smart contract including the reward and a pointer to
the GitHub repository. At this point, anyone can start
writing software that will pass all the specified tests.
Once a developer succeeds, he uploads the solution to
his GitHub repository cloning the set of tests from the
task description. He can now claim the reward from
the contract. Before making the payment, the contract
will verify that the solution includes all the tests from
the description and the build succeeds. If its the case,
the payment will be released and the money transferred
directly to the developer.

4.1 Contract
The smart contract running on top of the blockchain

is the main component of ChainSoft. It provides an
interface for users to interact with and communicates
with outside world using the oracle (Sec. 2). Listing 1
presents the interface of the contract. When a requestor
submits a new task, the transaction must contain funds
to be set as the reward and a GitHub repository with a
task description (Sec. 4.2). First, the contract checks if
the specified repository exists and contains an environ-
ment file. The environment file contains a description
for Travis CI on how to create the environment, com-
pile the project and run tests and is a required compo-
nent for the whole system. If the check is successful,
the contract creates a structure with the task descrip-
tion. At this point the task description and the reward
are publicly visible and developers can start working
on the project. We provide an additional function “ad-
dReward()” to increase the reward for completing given
task. Any user use this method to send more funds to
the contract and thus increase the incentive for develop-
ers to finish the project. Money sent to the contract by
the requestor or any other user remain lock and cannot
be manually retrieved. However, when a tasks is sub-
mitted it is possible to specify a deadline after which,

if no valid solution is submitted, the task will be with-
drawn and the founds returned to the requestor/partic-
ipating users.

Similarly to submitting tasks, when a developer sub-
mits a solution using “submitSolution()”, he must pro-
vide a link to a GitHub repository and an access token.
The contract checks its existence and verify if the solu-
tion passes all the tests and fulfil the specified require-
ments (Sec. 4.3). The name of the solution repository
must start with the account number of the developer,
to prevent someone else from stealing the reward. If the
check is successful, the reward is sent to the developer
and the task is marked as completed. The notified re-
questor, can now clone the solution and start using the
software. Only the first developer with a valid solution
can claim the reward.

We implement a set of events allowing users to sub-
scribe and be notified when one of occurs.

4.2 Task Description
Following the Test Driven Development (TDD) ap-

proach, a requestor defines the solution by writing a set
of tests. A submitted solution must pass all the tests in
order to be considered as a valid one. For our platform,
such an approach has two main benefits. First, devel-
opers are encouraged to write only minimal amount of
code satisfying the tests. Second, it formalises the re-
quirements description and allows to avoid disputes be-
tween requestors and software developers on what ex-
actly was supposed to be done.

While requestors should carefully write tests, the wide
range of testing frameworks together with the environ-
mental .yml file allow to create very specific sets of re-
quirements. The environmental file can set up a docker
image and thus recreate the target deployment platform
concerning the target OS, installed tools, libraries and
supported programming languages.

According to the complexity of the software devel-
oped, di↵erent types of testing are available for requestors
in order the check the code fulfils the design require-
ments, in terms on verification functionality, integra-
tion, performance, etc:

• Unit Tests: Requestors can make use of unit test-
ing to test small and individual software functions,
not depending on any other code or external re-
source, such as network or database. Unit tests
should essentially just give the function that is
tested some inputs, and then check what the func-
tion outputs is correct. Most of coding language
provide testing tools, such as JUnit [13] in Java,
or CppUnit [14] and Google Test C++ Frame-
work [15] in C++.

• Integration Tests: In order to verificate software
functions depending on other functions or exter-
nal software or systems, integration tests must be

3

Figure 1: ChainSoft Overview.

used. Integration tests can be used, for example,
to validate a database related test or for situations
where unit testing is not enough. Integration tests
can be written with the same tools as unit tests.

• Other Tests: There are also other types of test-
ing that can be considered and specified in the
environment file. These tests may include, for ex-
ample, performance tests, regression tests, secu-
rity tests, or any required type of testing neces-
sary to ensure and verificate the correctness and
functionality of the software. However there are
other types of test, such as some functional tests
or usability tests, that are not considered in the
Chainsoft development cycle, since it can be too
complex or subjective to be automatically tested
by the platform.

Once the developed software has been created, the
requestor can verify the code, specify more precise re-
quirements and submit a new task with a new reward.
Any developer can then take over and build on top of
the previously submitted code.

ChainSoft can also be used as an automatic bug bounty
platform. The requestor needs to write tests that will
succeed when the software fails, raises an exception or
provides an unexpected output. In this case, already
compiled binaries can be used, so the requestor does not
have to reveal its source code. When a bug is found, the
requestor should patch its software and publish a new
task, allowing other hackers to look for additional bugs.

4.3 Task Verification
We implement ChainSoft on top of the GitHub and

Travis CI development tools. A developer, submitting
its solution, prepares its own git repository with the
tests defined by the requestor, environment (.yml) file,
and the produced code. In order to determine if a so-
lution fulfils the specified requirements, the platforms
needs to:

• Compare if the included tests are the same as the
ones submitted by the requestor.

• Recreate the specified environment and compile
the whole project.

• Run the tests against the submitted solution.

Comparing the included tests is essential for the sys-
tem. Without it, a malicious developer could alter the
verification tests to accept any code and claim the re-
ward. However, downloading and comparing all the test
files on the smart contract is highly ine�cient and would
require a lot of resources. On the other hand, GitHub
and Travis have no knowledge of the task description.
To improve the performance, we add an additional pre-
compilation phase in the environment file. The section
creates a file containing a list of all the test files and
their checksums. The whole process is shown on Fig. 2.

Before compiling the project, Travis CI creates the
checksum file, computes its hash and checks it against
a static value defined by the requestor. If the hashes do
not match, the compilation is stopped and the whole
process fails. This approach assures that the solution
contains the same set of tests as the task description
and requires only minimal amount of work on the smart
contract that is independent from the number of test
files (see Sec. 5).

Figure 2: Creating the checksum file.

pragma s o l i d i t y ˆ 0 . 4 . 0 ;

cont rac t Software i s u s i ngOrac l i z e {
address owner ;

s t r u c t Task {
s t r i n g testRepo ;

4

uint reward ;

address r eque s to r ;

bool a c t i v e ;

s t r i n g so lut ionRepo ;

address deve loper ;

}

event taskAdded (u int id , s t r i n g

testRepo , u int reward) ;

event taskSo lved (u int taskId) ;

event so lut ionSubmitted (u int taskId) ;

event s o l u t i onRe j e c t ed (u int taskId) ;

f unc t i on submitTask (s t r i n g repo)

pub l i c payable r e tu rn s (u int) ;

f unc t i on addReward (u int taskID ,

s t r i n g testRepo)

pub l i c payable r e tu rn s (u int) ;

f unc t i on submitSo lut ion (s t r i n g repo ,

s t r i n g token)

pub l i c r e tu rn s (u int) ;

}

Listing 1: ChainSoft Smart Contract label

5. EVALUATION
We evaluate ChainSoft by performing a security anal-

ysis and running and investigating the behaviour of
the smart contract on a test Ethereum network. We
implement our solution using cpp-ethereum - a C++
Ethereum client3 on a Dell XPS 13 laptop.

5.1 Security Analysis
In this section, we provide the intuition behind the

security properties of the protocol. We defer formal
proofs of security to the extended version of the paper.

The logic implemented on the smart contract relies
heavily on the oracle. An oracle itself consist of an
immutable smart contract that communicates with the
GitHub/Travis CI. When returning a result of a query,
the oracle provides an verifiable proof based on TLS
Notary, confirming that the response came from the
valid HTTPS server. ChainSoft relies thus on GitHub/-
Travis CI being honest and correctly run the specified
tests. To improve the security, the smart contract could
query additional services providing similar functionality
4. A more secure alternative consist of running a ded-
icated server based on Intel SGX enclave. Even if the
GitHub/Travis CI are honest, their service can become
unavailable. Both requestors and developers should ver-
ify if the service is up before submitting their request.
If the service is unavailable, a user has to resubmit
the task/solution later on, paying additional transac-
tion fee.

3https://github.com/ethereum/cpp-ethereum
4
i.e. GitLab - https://gitlab.com

When a requestor creates a new task, it looses con-
trol over the submitted reward. The reward will be re-
turned if no valid solution is submitted within the spec-
ified deadline. Developers must thus carefully analyse
the task before committing to create the software. A
developer should work on the solution using a private
repository so no one can use the already created code to
claim the reward. When submitting the task, the user
provides a Travis CI access token to the contract. At
this point, anyone (including the contract) can see the
code and its status. This is a required step to prevent
the developer from getting the reward and not revealing
the code, but if an attacker intercepts the message and
completely isolates the developer from the network, he
can claim the reward himself.

ChainSoft does not allow to lock a task for a specific
developer. It is thus possible that multiple users will
concurrently work on the same solution and only the
fastest one will get the reward. However, a simple noti-
fication mechanism, where developers inform that they
are working on a project could help others to make a
better decision on whether on not commit to a project
and encourage cooperation between di↵erent coders. If
multiple developers/entities are involved in the software
development process, they must manually split the re-
ward between them.

5.2 Smart Contract
We analyse the cost of invoking each function of the

contract and its deployment (Tab. 1). The tests were
performed on the Rinkeby test network5. Ethereum al-
lows specifying a priority for newly submitted transac-
tions. The slow priority ones are processed within 10
minutes, standard priority within 5 minutes and the
fastest priority within 2 minutes. With faster process-
ing time comes increased transaction cost. With the
slowest transaction processing, the system is cheap to
exploit, keeping the cost much below 1$6 (to be fur-
ther split between requestors and developer). However,
with the fastest transaction, the cost increases up to al-
most 8$. The delay even up to 10 minutes and the cost
lower than 4$ are acceptable for a software development
project that usually takes days and significant amounts
of money to finish.

6. RELATED WORK
There are existing platforms to foster collaboration

between developers by providing incentives through re-
wards. The closest one to ChainSoft is the GitCoin [5]
platform, where entities called“bounty submitters”pub-
lish their open source codes along with tasks in the form
of GitHub issues to be resolved by third parties. Once
a developer submits a solution, the bounty submitter
5www.rinkeby.io
6
Costs calculated using https://ethgasstation.info/

5

Function Gas Ether Slow ($) Ether Standard ($) Ether Fast ($)

Deploy 4191210 0.00013 (0.057$) 0.01387 (6.324$) 0.03656 (16.673$)
submitTask 217410 0.00003 (0.013$) 0.00278 (1.267$) 0.00806 (3.675$)
addReward 38248 0.00001 (0.007$) 0.00145 (0.662$) 0.00421 (1.919$)

submitSolution 164241 0.00001 (0.002$) 0.00053 (0.241$) 0.00153 (0.698$)

Total per task 0.00006 (0.027$) 0.0064 (2.92$) 0.01688 (7.698$)

Table 1: Cost of invoking contract functions.

must manually accept the solution in order for a third
party developers to get their payments, which happen
through Ethereum-based contracts. However, we ar-
gue that having a human-in-the-loop for accepting solu-
tions defeats the purpose of trust establishment through
Ethereum-based smart contracts: there is no guarantee
that one gets a reward for resolving an issue.

Bounty0x [4] is another project aimed at building a
similar system where rewards (i.e., bounties) can be is-
sued for software tasks. The platform enables anyone
to post bounties, and disbursing payments to bounty
hunters (i.e., third-party developers). Bounty0x also in-
troduces human-in-the-loop for the verification of com-
pleted tasks by introducing third-party verifiers called
bounty sheri↵s. The sheri↵s collect rewards (tokens)
for verifying the accuracy and quality of bounty hunters’
submissions. A reputation system is introduced to eval-
uate trustworthiness of both the the hunters and the
sheri↵s in the platform. This project is currently is in
alpha stage and the details of the reputation system
are not clearly specified. For instance, it is not clear
whether collusions can be prevented between bounty
hunters and sheri↵s or between issuers and sheri↵s in
which case the platform can start rewarding dishonest
hunters or not reward honest hunters. Also, the plat-
form must provide su�ciently high reward for validation
of submissions, because this can be a heavy task by it-
self. We argue that the task issuer (as the employer)
is the only entity that should judge the quality of a
submission, because it is not clear what happens in the
event of a dispute between verifiers and issuers.

7. CONCLUSION AND FUTURE WORK
We presented ChainSoft, a new platform for secure

outsourcing software development. Our system allows
any user to submit tasks or solutions and enforces users’
proper behaviour using Smart Contracts and trusted or-
acles. Our solution is secure against rational adversary,
cost e�cient and introduces minimal overhead. In our
future work, we plan to extend our system by allow-
ing development outsourcing without making the code
public. We also plan to investigate multiple or trusted
oracles using trusted execution environments.

8. REFERENCES

[1] Gartner says global IT spending to reach $3.7
trillion in 2018. https:
//www.gartner.com/newsroom/id/3845563.

[2] Software job growth. https://software.org/
reports/2017-us-software-impact/.

[3] Hydra project. https://thehydra.io.
[4] Rewarding the token economy. white paper v1.0.

a trustless bounty hunting network with a staking
and token burning based review system for
submissions.
https://bounty0x.io/whitepaper_en.pdf,
January 2018.

[5] Gitcoin. grow open source. https://gitcoin.co.
[6] Satoshi Nakamoto. Bitcoin: A peer-to-peer

electronic cash system, 2008.
[7] Vitalik Buterin et al. Ethereum white paper, 2013.
[8] A scalable architecture for on-demand, untrusted

delivery of entropy. http://www.oraclize.it/
papers/random_datasource-rev1.pdf.

[9] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari
Juels, and Elaine Shi. Town crier: An
authenticated data feed for smart contracts. In
Proceedings of the 2016 aCM sIGSAC conference
on computer and communications security, pages
270–282. ACM, 2016.

[10] Tlsnotary - a mechanism for independently
audited https sessions.
https://tlsnotary.org/TLSNotary.pdf, 2014.

[11] Oren Ben-Kiki, Clark Evans, and Brian Ingerson.
Yaml ain’t markup language (yamlTM) version
1.1. yaml. org, Tech. Rep, page 23, 2005.

[12] Micha l Król and Ioannis Psaras. Spoc: Secure
payments for outsourced computations. In
Proceedings of the 2018 NDSS DISS workshop,
2018.

[13] Junit 5. the new major version of the
programmer-friendly testing framework for java 8
and beyond.

[14] cppunit test framework. http://www.myurl.com.
[15] Google’s c++ test framework.

https://github.com/google/googletest.

6

View publication statsView publication stats

