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Abstract

In this thesis theoretical studies of hybrid quantum systems composed

of solid-state superconducting microwave resonators, mechanical oscil-

lators, and gas-phase Rydberg atoms are described. The thesis begins

with an overview of the current state of the field of hybrid quantum in-

formation processing. An introduction to the physics of Rydberg atoms

and the preparation processes of circular Rydberg states follows, includ-

ing a review of the associated literature. Three main new research results

are then presented. These include (1) numerical studies of static electric

dipole interactions in strongly polarized gases of Rydberg atoms. The

understanding and characterization of these interactions is essential to

maximize the quantum-state preparation procedures required for the hy-

brid systems studied in the thesis; (2) analytical and numerical studies of

quantum-state preparation and cooling in coplanar superconducting mi-

crowave resonators using beams of atoms in circular Rydberg states; and

(3) studies of coupled Rydberg-atom—mechanical-oscillator systems. The

results presented in each of these areas are of interest for hybrid quan-

tum information processing and quantum computation, and optical-to-

microwave photon conversion for quantum communication.
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Chapter 1

Introduction

In recent years the development of quantum technologies has made con-

siderable progress. The ability to control the quantum dynamics in ex-

periments with atoms and trapped ions has been greatly enhanced and

culminated in the award of the Nobel Prize in Physics to Serge Haroche

and David J. Wineland in 2012 for their work in cavity quantum electrody-

namics [47, 119]. In addition to this discipline within quantum optics, the

development of superconducting quantum electrical circuits [124, 31, 113]

in the last two decades and the proposal to, i.e., employ such systems as

quantum simulators for light-matter interactions [12], has further been aid-

ing the progress of the field of quantum information processing because

of their scalability and control. Other systems have also been emerg-

ing as promising candidates as quantum bits for quantum information

processing due to their long coherence times, such as ensembles of elec-

tron spins [120], nitrogen-vacancies (NV) in diamonds [7], and quantum

dots in semiconductors [90]. Additionally, the use of micro- and nanome-

chanical oscillators, i.e., in the form of microtoroidal resonators, carbon
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nanotubes or membranes, and the ability to reach the quantized regime of

their mechanical motion have been offering new possibilities for tests of

fundamental quantum physics [15, 74, 25], and for quantum information

processing [96]. All of these individual quantum systems, that contain

qubits and resonators, offer distinct advantages and disadvantages, as

outlined in Table 1.1 and Table 1.2.

n = 70 Optical Electronic SC Transmon

Rydberg atom Ion spin ensembles qubit

Energy ∼ 20 GHz 105 GHz − ∼ 1 − 10 GHz ∼ 5 − 10 GHz

gap f 106 GHz

Coherence ∼ 600 µs ∼ 1 − 35 s ∼ 1 ms − 1 s ∼ 5 − 20 µs

time T2

Coupling ∼ 25 MHz ∼ 10 kHz ∼ 100 Hz − ∼ 150 MHz

rate g/2π 1 MHz

Table 1.1: Important properties for different systems that can be used as

qubits [49, 57, 80, 81, 83, 121].

At present there is considerable interest in the development of hybrid

approaches to quantum information processing.

These involve combining two or more distinct quantum systems, where,

for example, one is being employed as the quantum memory, i.e. a quibit,

and coupled to another quantum system, i.e. a resonator, to perform gate

operations, in order to take advantage of the most favorable aspects of
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Figure 1.1: Overview of hybrid quantum systems. Each individual sys-

tem is positioned according to its excitation frequency and coherence time,

with possible couplings between them indicated by arrows. From [65].

each. These may include, for example, coherence times, scalability or the

timescales on which states can be prepared or manipulated. Within the

last decade, hybrid approaches to quantum information processing have

been proposed and realized in various ways. One such proposal is the

use of ensembles of cold polar molecules acting as a long-lived quantum

memory coupled to a circuit QED setup consisting of a superconducting

cooper pair box strongly coupled to a stripline resonator [94]. Another

proposal is the magnetic coupling of a Bose-Einstein condensate of rubid-

ium atoms to the nanomechanical motion of a cantilever [110]. Examples
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for the experimental realization of strongly coupled hybrid quantum sys-

tems are the coupling of electron spin ensembles to a superconducting

transmission-line [100] as well as the emergence of circuit quantum acous-

todynamics where a superconducting qubit has been coupled to trapped

on-chip acoustic wavepackets [76].

Optical Coplanar wave- Si Nanobeam

cavity guide resonator Mechanical oscillator

Frequency ∼ 105 GHz ∼ 2 − 8 GHz ∼ 4 GHz

range

Coupling strength ∼ 100 MHz > 300 MHz ∼ 1 MHz

g/2π

Quality > 106
∼ 105

− 108
∼ 105

factor Q

Table 1.2: Important properties for different types of resonators [57, 42,

81, 63, 25].

In this context the work described in this thesis is related to the investiga-

tion of chip-based approaches to exploiting Rydberg atoms in hybrid quan-

tum information processing [122, 98, 72, 89, 88]. The long-term objetives of

this work are to coherently couple gas-phase atoms in highly excited Ry-

dberg states to solid-state superconducting qubits. The coupling between

the two systems will be mediated, resonantly or near-resonantly through

coplanar superconducting microwave resonators. Because of the possibil-
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ity of implementing fast quantum gates (g/2π ≈ 100 MHz) when using

superconducting qubits and the inherent scalability of chip-based struc-

tures [58], superconducting microwave circuits appear to be ideal solid-

state candidates for the realization of quantum approaches to computation

and simulation. However, superconducting qubits suffer from compar-

itively short coherence times (τ ≈ 10 µs). They are therefore not ideally

suited as long coherence-time quantum memories. With this in mind efforts

are being directed toward the development of hybrid approaches to quan-

tum information processing in which rapid state manipulation could be

performed in these solid-state circuits while a gas-phase sample of atoms,

molecules or ions is used as a long coherence-time memory [94]. From

this perspective, atoms in highly excited Rydberg states are well suited to

act as the gas-phase component of such a hybrid system. Rydberg states

can exhibit comparitively long coherence times (≈ 100 ms) and because of

their large electric dipole moments for transitions at microwave frequen-

cies they are compatible with coupling to microwave circuits. A realization

of such a hybrid system would open up possibilities for several new appli-

cations such as long-coherence-time quantum memories [104], or enabling

the coupling between optical and microwave photons [13] in a control-

lable medium for microwave-to-optical conversion [38]. Other possiblities

include using Rydberg atoms coupled to superconducting circuits for pho-

ton number state preparation as has been done in large three-dimensional

cavities [111], and long distance quantum entanglement distribution [27]

in spatially separated quantum circuits coupled via transmission lines. In

approaching the goal of strongly coupling gas-phase Rydberg atoms to
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superconducting microwave circuits, a chip-based architecture for com-

prehensive control of the translational motion and internal quantum states

of Rydberg atoms has recently been developed [66, 67, 51]. This archi-

tecture allows ensembles of Rydberg atoms to be accelerated, decelerated

and transported in travelling electric traps located directly above copla-

nar electrode structures that are suitable for microwave transmission. The

same electrode structures can act as coplanar microwave resonators and

electrostatic traps for Rydberg atoms located above them [68].

In this thesis, theoretical studies are reported upon which those experi-

mental developments will build. They include (1) studies of static electric

dipole interactions within ensembles of Rydberg atoms which play an im-

portant role in the preservation of coherence over long timescales in these

samples, (2) analysis of a scheme to use beams of Rydberg atoms to cool

selected resonator modes, and (3) the extension of this cooling scheme to

cool selected modes of other solid-state systems, such as nanomechanical

oscillators.

In Chapter 2 the theoretical description of hydrogen atoms in Rydberg

states and its extension to helium atoms is reviewed. Then, the proper-

ties of Rydberg atoms in circular states are discussed, the general method

to prepare atoms in such circular states is reviewed, and extended to the

preparation of helium atoms in circular Rydberg states. In Chapter 3

the role of static electric dipole-dipole interactions between helium Ryd-

berg atoms, which lead to mean-field energy shifts in an atomic ensemble,

is investigated. The general quantization procedure of superconducting

transmission line resonators is then discussed in Chapter 4, and the open
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quantum systems approach to quantifying the dissipation within these ar-

chitectures when coupled to a thermal bath such as a coplanar waveguide

used for measurements is then outlined. Chapter 5 deals with the general

theory of quantum reservoir engineering and how it is applied to a beam

of Rydberg atoms interacting with a transmission line resonator. Within

this context an original cooling scheme for hybrid quantum systems with

Rydberg atoms is presented and an analytic solution is given for the diag-

onal elements of the resonator density matrix. Chapter 6 improves upon

this idea by introducing a numerical method that provides an even more

effective cooling mechanism as well as more insights due to the calcula-

tion of the full density matrix of the resonator. Chapter 7 introduces an

additional hybrid quantum system including a nanomechanical oscillator,

whose quantum states are controlled via quantum reservoir engineering

by an atomic beam. Finally, in Chapter 8 open problems and the outlook

of this research are discussed.
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Chapter 2

Rydberg Atoms

Rydberg atoms are atoms excited to states with very high principal quan-

tum number n. They have been of importance in the derivation of Bohr’s

quantum mechanical orbital model of the electronic structure of atoms,

and have played a key role in the development of quantum optics, quan-

tum information and many-body physics due to the possibility of realiz-

ing strong electric dipole coupling to single microwave photons [18] and

strong dipole-dipole interactions [6] between pairs of Rydberg atoms. In

this chapter some of the properties of Rydberg atoms, and methods of

Rydberg state preparation relevant to the topic of this thesis are described.

2.1 Hydrogen atoms in Rydberg States

The simplest atoms to be theoretically described are the hydrogen and

hydrogen-like atoms. These are two-particle quantum systems, which can

be approximately described as consisting of a positively charged nucleus

and one electron. The electrostatic interaction between these two particles
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is expressed by the Coloumb potential

V(r) = −
Ze2

4πε0r
, (2.1)

where the charge of the nucleus is Ze, e is the charge of the electron, ε0

is the electric permittivity of the vacuum, and r is the distance between

the electron and the nucleus. The wavefunction of the electron Ψ can be

described via the Schrödinger equation [28](
−
~2

2µ
∇

2
−

Ze2

4πε0r

)
Ψ = EΨ, (2.2)

where ~ is the reduced Planck constant, and µ = meM
me+M is the reduced

mass of the electron-nucleus system with me and M being the mass of the

electron and nucleus, respectively. The energy of the electronic eigenstates

is denoted by E. Switching from Cartesian coordinates (x, y, z) to spherical

coordinates

r =
√

x2 + y2 + z2, (2.3)

θ = arccos
z
r
, (2.4)

φ = arctan
y
x
, (2.5)

Eq.(2.2) can be seperated1 into radial and angular components. Hence, the

wavefunction is factorizable as [11]

Ψ(r, θ, φ) = R(r) · Y(θ, φ). (2.6)

If both the radial and angular parts of the Schrödinger equation are equal

but with opposite signs, they cancel each other, leading to a nontrivial

1The Laplace operator transforms as ∇2 = 1
r2
∂
∂r

(
r2 ∂
∂r

)
+ 1

r2 sinθ
∂
∂θ

(
sinθ ∂

∂θ

)
+ 1

r2 sin2 θ
∂2

∂ϕ2
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solution. By defining this separation constant [45] as `(` + 1), two self-

consistent eigensystems follow:

• Angular equation[
1

Y(θ, φ) sinθ
∂
∂θ

(
sinθ

∂
∂θ

)
+

1
Y(θ, φ) sin2 θ

∂2

∂φ2

]
Y(θ, φ) = −`(` + 1).

(2.7)

The solutions to this equation are the fatorizable normalized spherical

harmonic functions Y`,m(θ, φ) = f`,m(θ)gm(φ), where the azimuthal

quantum number m is introduced as another separation constant

analogous to the factorization of the electron wavefuntion above.

The generating function for the spherical harmonics is

Y`,m(θ, φ) = (−1)m

√
(2` + 1)(` −m)!

4π(` + m)!
P`,m(cosθ)eimφ

= Y∗`,−m(θ, φ),

(2.8)

with m ≥ 0, and where P`,m(cosθ) are the associated Legendre poly-

nomials.

• Radial equation[
d
dr

(
r2 d

dr

)
+

2µr2

~2

(
E +

Ze2

4πε0r

)
− `(` + 1)

]
R(r) = 0. (2.9)

By substituting y(r) = rR(r), one arrives at a form of a well known

equation whose orthonormal set of analytical solutions is related to

the associated Laguerre functions La
b(x). The solution for the eigen-

states is [44]

Rn,`(r) =

√(
2Zµ

nmea0

)3 (n − ` − 1)!
2n[(n + `)!]3 e−

Zµr
nmea0

(
2Zµr
nmea0

)`
L2`+1

n−`−1

(
2Zµr
nmea0

)
(2.10)
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where a0 = 4πε0~2/(mee2) is the Bohr radius and the bound states are

categorized by the principal quantum number n = 1, 2, 3, . . . and the

angular momentum quantum number 0 ≤ ` ≤ n − 1.

The eigenenergies follow from the solution to the radial equation and give

the Rydberg formula

En = −
Rhc

n2 =
−13.6 eV

n2 (2.11)

where the Rydberg constant for an electron bound to an infinitely heavy

positive point charge can be expressed in terms of the fundamental con-

stants

Rhc =
Z2e4me

16π2ε2
0~

2
=

Z2~2

a2
0me

(2.12)

Several properties of low-`Rydberg states follow from this treatment of the

structure of the hydrogen atom. Especially interesting are the scaling laws

of the atomic properties with the principal quantum number n. For higher

Rydberg states, i.e., large n, the binding energy of the electron decreases

with n−2. The energy difference between adjacent eigenstates decreases

by n−3. Hence, the radiative lifetime of such transitions increases with

n3. The large electric dipole transition moments, ~p, for transitions where

∆n = n′ − n = ±1, scale as p ∝ 〈n′`′|e · ẑ|n`〉 ∝ n2. This is a consequence of

the large orbital radius of Rydberg states, which scales with n2. All these

properties mean that atoms in high-n Rydberg states are well suited to

applications in quantum information processing [36].
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2.2 Helium atoms in Rydberg states

For helium atoms where one electron is excited to a high energy state

the Rydberg formula Eq. (2.11) needs to be adjusted by introducing the

quantum defect δn`. This empirical parameter accounts for the fact that the

electron excited to a Rydberg state interacts with what can be viewed as

an ion core whose nuclear charge is screened by the surrounding second

electron, as can be seen in Fig. 2.1. Consequently, the Coloumb potential

of the ion core is perturbed as it is no longer spherically symmetric. It

is also possible that the inner electron is polarized by the outer electron

in the Rydberg state. Therefore, the difference in binding energy for the

hydrogen case can be accounted for by replacing the principal quantum

number n by an effective quantum number [36] n∗ = n − δn`. The adjusted

Rydberg formula for helium is

En = −
RHe hc

(n − δn`)2 (2.13)

where RHe =
R∞µHe

me
is the Rydberg constant for the helium atom. As can be

inferred from Fig. (2.2), the deviation from our model of the ion core and

the inner electron as one composite ion core with charge Z = +1 is bigger

for the outer electron in Rydberg states closer to the positive core. Thus,

the quantum defect, δn`, decreases for Rydberg states with higher quantum

numbers n and `.

2.3 Atoms in Circular Rydberg States

Rydberg states which are of particular interest as qubit states in hybrid

cavity QED are those which possess maximum angular momentum and
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Electron in high n, ℓ 
Rydberg state 

Inner electron and 
ion core 

Figure 2.1: The helium atom in a high n Rydberg state. The outer electron

"sees" the ion core and inner electron as one central field with charge

Z = +1. The Coloumb potential associated with the He2+ nucleus is

screened by the inner electron.

magnetic quantum numbers ` and m`, respectively, for a particular value

of n. Such states are called circular Rydberg states and exhibit unique

properties. The first of these are their long radiative lifetimes. Since the

Einstein A coefficients describing the transition rate from an initial state i

to a final state f , i.e., the decay rate of an excited state, can be written as a

sum of the Einstein A coefficients of the decay into all possible final states.

The lifetime of the excited state is then the inverse of this decay rate, and
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Figure 2.2: The effect of the quantum defects δn,` on the binding energy

of the atomic states for non-hydrogenic atoms compared to the hydrogen

atom. From [53].

thus

τ =
1∑

f A f i
=

∑
f

2ω3
i f

3ε0~c3

`max

2`i + 1
|~p f i|

2


−1

, (2.14)

where A f i is proportional to the cube of the energy (frequency) difference

between the initial and final states, and the square of the transition dipole

moment [33].

In the case of circular Rydberg states, the excited state has ` = m` = n − 1.

Due to the electric dipole selection rules allowing up to first order only

transitions satisfying `′ = ` − 1 and m′` = m` or m′` = m` ± 1, it follows that
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decay can only occur to final states `′ = n − 2. Consequently, the initial

excited circular state can only decay to one unique final state, n′ = n − 1,

`′ = n − 2, |m′`| = |m`| − 1. Therefore, circular Rydberg states are a very

good approximation to 2-level systems. Within the dipole approximation

this quasi two-level characterization only breaks down on long timescales

since the lower n′ = n − 1 circular state can itself decay to the next higher-

lying circular state with n′′ = n − 2. However, in an electromagnetic

environment that is appropriately engineered such that no vacuum mode

exists at the frequency of the n − 1 → n − 2 circular-state to circular-

state transition, this additional decay channel can be eliminated [59]. The

transition energy between the two states making up the quasi two-level

system is En,n−1 ∝ n−3, while their electron dipole transition moment scales

as 〈n−1,n−2|~r|n,n−1〉 ∼ n2. Therefore, it follows for the radiative lifetime

of circular Rydberg states

τ f i ∝
1

(n−3)3(n2)2 = n5. (2.15)

Hence, circular Rydberg states exhibit greatly enhanced radiative lifetimes

compared to low-` states with the same values of n. The properties dis-

cussed above are listed in Tab. (2.1) for two examples of Rydberg states of

Helium, showing an increased fluorescence lifetime in the case of circular

Rydberg states when compared to states with low orbital angular momen-

tum.

Circular Rydberg states cannot be directly photoexcited from an atomic

ground state because of the selection rules for electric dipole transitions.

However, two methods have been developed and implemented experi-
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Table 2.1: Comparison between some of the properties of low- and high-

angular-momentum Rydberg states.

mentally to prepare them. The first of these involves adiabatic microwave

transfer from an initially laser photoexcited low-` (low-m`) Rydberg state

with the absorption of approximately n microwave photons [60, 69].

The second method to produce circular Rydberg states is known as the

crossed-fields method, and was first proposed by Delande and Gay [29].

By applying a constant magnetic field crossed perpendicularly with an ad-

justable electric field, one is able to very efficiently prepare atoms in circular

Rydberg states by laser photoexcitation to approppriate `- and m`-mixed

states which then evolve into circular states when the electric field strength

is adiabatically reduced towards zero. The Hamiltonian associated with a

single Rydberg electron in weak crossed electric ~F = (Fx, 0, 0) and magnetic

~B = (0, 0,Bz) fields can be written in atomic units to first order as

H = −
p2

2
−

1
r︸   ︷︷   ︸

Hc

+
Bz m`

2
+ Fx x︸         ︷︷         ︸

W

, (2.16)

whereHc is the Coulomb-interaction Hamiltonian and W the pertubation

due to the applied fields. The crossed-fields approach to the preparation of
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circular states is based on the SO(4) symmetry of the Coulomb interaction,

Hc, with the generators Łi j [87], where

Łi j = εi jk · Lk,

Łi4 = Ai.
(2.17)

Here εi jk is the fully antisymmetric tensor, ~L is the angular momentum

vector and ~A is the Runge-Lenz vector. One suitable choice of eigenbasis

for this Hamiltonian is the subgroup chain SO(4) ⊃ SO(3)λ ⊃ SO(2)m,

which preserves the rotational invariance in real space. Their associated

eigenfunctions
(
~λ
)2

andλz, derived from the operator ~λ = (Ł14,Ł24,Ł12), are

solutions to the Coulomb problem. The corresponding energy eigenvalues

of the hydrogen atom in atomic units are

E(0)
n = −

1
2n2 (2.18)

The perturbation due to the applied fields W can be diagonalized for each n

atomic shell. After replacing the operator x = −(3/2)n ·Ax [87], one obtains

Wn = ωLLz + ωSAx

=
√
ω2

L + ω2
S
~λ · ~u, (2.19)

HereωL = Bzm`/2 andωS = (−3/2)nFx are the Larmor and Stark frequencies

in atomic units, and ~u = (sinα, 0, cosα) can be interpreted as a rotation of

the operator ~λ in the xz-plane by the angle α = tan−1 (ωS/ωL).

From Eq. (2.18) and Eq. (2.19) it can be seen that the eigenfunctions ofHc,

(~λ)2, and W commute, so they can be chosen as the eigenfunctions of the

total Hamiltonian, whose eigenenergies are

En = −
1

2n2 + k
√
ω2

L + ω2
S, (2.20)
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Figure 2.3: Adiabatically switching off the electric field, ~F, leads to a

rotation of the vector operator ~λ. This is equivalent to the evolution of

the upper state’s parabolic ellipse, with angular momentum m = 0, to a

circular trajectory with m = Lz = n − 1.

where k is the eigenvalue of the (λ · ~u)-operator. Circular Rydberg states

can therefore be prepared by starting out in the Stark limit ωS � ωL,

optically exciting the outermost Stark state with maximum eccentricity

kmax = n − 1 = λx = Ax, as illustrated in Fig. (2.3). This is possible because

the projection of the angular momentum vector in the direction of the

applied electric field is Lx = 0 = m. In this case the vector ~λ is directed

along the x-axis (electric field axis), because α ≈ π
2 , which is the angle

between the z-axis and ~λ. By slowly switching off the electric field, the

system evolves adiabatically to the limit in which ωL � ωS, i.e., α ≈ 0, and

a circular Rydberg state λ = Lz = n − 1 = mmax, while remaining in the

upper sublevel, kmax = n− 1, because the magnitude of the vector operator

|~λ = n − 1〉 is conserved since the upper sublevel is a coherent state of the

SO(3)λ subgroup.

Using this crossed-fields method a circular Rydberg state results, as the

electron evolves into the state with |kmax,mmax〉. Even though this method

is described here for the case of the hydrogen atom, as long as the upper
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state Lx = 0 can be selectively prepared by either laser photoexcitation

from the ground state or by optical-microwave double resonance methods,

it can be used to efficiently produce circular Rydberg states of any atomic

species, such as helium [127]. It has also been applied in the preparation

of Rydberg states in hydrogen [73], rubidium [16], cesium [59], and other

atoms [82, 26, 5].

2.3.1 Helium Atoms in Circular Rydberg States

Helium atoms are well suited to hybrid quantum information processing

with Rydberg atoms and transmission line resonators because of their low

adsorption rates onto cryogenic chip surfaces which in turn minimizes the

build-up of time-varying stray electric fields [109]. In these experiments

it is desirable to operate the superconducting circuits at frequencies be-

low ∼20 GHz. At such frequencies resonators with higher quality factors

can be realized. To achieve this therefore requires atoms in circular Rydberg

states with n ≥ 70. However, the preparation of circular Rydberg states

with these high values of n is particular challenging due to the high sen-

sitivity of the photoexcitation phase of the crossed-fields method to stray

electric fields. For non-hydrogenic atoms such as helium the standard ap-

proach to circular state preparation using the crossed-fields method is to

initially excite the outermost positively shifted Stark state with m` = 0, with

respect to the electron field quantization axis, at the first avoided crossing

of this state with a low-` state at the Inglis-Teller limit. The advantage of

this approach is that at this avoided crossing the target outer Stark state

can possess a significant fraction of the character of the low-` state, mak-
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Figure 2.4: The energy level diagrams for steps 2-4 in the preparation

process of circular Rydberg states for n = 70 in Helium as described in the

text. From [80].

ing laser photoexcitation more efficient. However, for high values of n, the

avoided crossings of these sublevels can be so small that the transitions to

the individual states are not resolvable during the laser photoexcitation.

To overcome this problem, the usual crossed-fields method, introduced in

the previous section, can be modified [80].

Regarding notation, the circular states for specific values of n are denoted
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here by |nc±〉 for values of m` = ±(n − 1). To prepare the helium atoms

in high-n circular Rydberg states, e.g. the |70c+〉 circular state, a resonant

two-photon laser excitation via an intermediate level is first performed in

a weak electric field to transfer atoms from the metastable triplet |2s〉 state

to the |73s〉 Rydberg state. In the second step of the process illustrated in

Fig. (2.4) the electric field strength is adiabatically increased to polarize the

|73s′〉 atoms, where the prime indicates an `-mixed Stark state with in a

nonzero electric field, such that they have a static electric dipole moment

of similar magnitude and orientation as the target outer Stark state with

n = 70, i.e., the |70c′+〉 state. This is achieved in a field just beyond the first

avoided crossing of the |73s〉 state in the Stark map of the triplet Rydberg

states of He. Due to the large overlap of the wavefunctions of this state and

the |70c′+〉 state, the corresponding large electric dipole transition moment

allows for fast and efficient population transfer to the |70c′+〉 state by apply-

ing a resonant microwave pulse. Once the |70c′+〉 state has been prepared,

the fourth and last step of the circular state preparation process is to slowly

reduce the electric field strength so that the atoms evolve adiabatically in

the presence of the magnetic field into the final |70c+〉 circular state. The

transition between the |70c+〉 and |71c+〉 circular Rydberg states possesses

an electric dipole transition moment of 3477ea0, allowing for single photon

coupling strengths on the order of g/(2π) ≈ 5 MHz [80] to two-dimensional

superconducting microwave resonators.

Circular states, such as these, are particularly well suited for hybrid cavity

QED because they possess long coherence times (∼ 100 ms), low sensi-

tivity to stray electric fields and possess large electric dipole transition
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moments and transition frequencies in the microwave regime. Therefore,

in the theoretical studies of involving Rydberg-atom–resonator coupling

in Chapters 5, 6 and 7 of this thesis, the interaction of these high-n circular

Rydberg states will be considered.
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Chapter 3

Electrostatic Dipole Interactions

in Polarized Rydberg Gases

The preparation of circular Rydberg states using the crossed fields method

described in Chapter 2 requires the initial laser photoexcitation of Rydberg

states with strong linear Stark shifts, and hence large static electric dipole

moments. These states are then adiabatically converted into circular states

in a zero electric field. To achieve quantum-state–selective preparation of

a large number of circular Rydberg atoms the applied fields must be care-

fully controlled and interactions between the excited atoms in each phase

of the preparation process must be minimized. When the circular prepara-

tion process is complete the dominant type of interaction between pairs of

excited atoms is the van der Waals interaction that scales with R−6, where

R is the distance between the atoms. However, the large static electric

dipole moments of the Rydberg-Stark states initially laser photoexcited in-

teract through the stronger static electric dipole-dipole interactions, which

depend on R−3. A wide range of studies, both theoretical and experimen-
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tal, have been carried out on van der Waals and resonant dipole-dipole

interactions between Rydberg atoms [35, 9, 34]. These interactions, and

the associated excitation blockade mechanisms, are exploited in, e.g., the

entanglement of pairs of atoms [91, 118], and in applications of Rydberg

atoms in quantum simulation [61, 79]. However, there has been little com-

parable study on the large static electric dipole interactions relevant to the

circular state preparation processes discussed in Chapter 2. For this reason,

and with the aim of elucidating the role of such interactions in Rydberg-

Stark deceleration and trapping experiments, described in this chapter

are the results of experiments and calculations of effects of static electric

dipole interactions in dense gases of strongly polarized helium Rydberg

atoms. The work described in this chapter was published in Zhelyazkova,

Jirschik, and Hogan, Physical Review A 94.5: 053418 (2016) [128]. The text

here follows closely the content of the published article, with adaptations

to fit the structure of this thesis. The experiments described in Sections 3.1

and 3.2 were performed by Dr. Valentina Zhelyazkova while I carried

out the calculations described in Section 3.3. Dr. Valentina Zhelyazkova

and I both contributed to the preparation of the text of the published article.

The static electric dipole moments of Rydberg atoms and molecules can

exceed 10000 D for states with values of n ≥ 50 and scale with n2. These

dipole moments give rise to strong linear Stark shifts in external electric

fields [36], and allow for control of the translational motion of a wide range

of neutral atoms and molecules [54], composed of matter [123, 114, 52, 55]

and antimatter [30], using inhomogeneous electric fields. When prepared

45



in states with these large dipole moments, gases of Rydberg atoms can also

exhibit strong electrostatic dipole-dipole interactions [37, 125, 117]. These

inter-particle interactions cause energy shifts of the Rydberg states, and,

as demonstrated here, can modify the dielectric properties of the gases.

The observation, and spectroscopic characterization, of the effects of these

electrostatic interactions opens opportunities for using beams of Rydberg

atoms or molecules as model systems with which to study many-body pro-

cesses [23], including, e.g., resonant energy transfer [103], or surface ioniza-

tion [50, 70, 40]. It is also of importance in the elucidation of effects of dipole

interactions in Rydberg-Stark deceleration and trapping experiments [101],

in experiments involving long-range Rydberg molecules [43, 10] possess-

ing large static electric dipole moments [14], and in applications of Rydberg

states as microscopic antennas for the detection of low-frequency electric

fields [125, 78].

Microwave spectroscopy of the effects of van der Waals interactions [95,

86, 106], and resonant dipole-dipole interactions [2, 85] in cold Rydberg

gases have been reported previously and provided important insights into

these interacting few-particle systems. The electrostatic interactions that

occur between Rydberg atoms in the outermost Stark states with the largest

electric dipole moments, µmax ' (3/2)n2ea0, represent the extreme case of

the dipole-dipole interaction for each value of n. The interaction potential,

Vdd, between a pair of atoms with electric dipole moments, µ1 = |~µ1| and

µ2 = |~µ2|, aligned with an electric field, ~F, can be expressed as [37]

Vdd =
µ1µ2

4πε0R3

(
1 − 3 cos2 θ

)
, (3.1)

where R = |~R| is the inter-atomic distance, θ is the angle between ~R and ~F,
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and ε0 is the vacuum permittivity. For an isotropic, aligned ensemble of

dipoles the average interaction energy is non zero, and leads to mean-field

energy-level shifts within the ensemble.

The microwave spectroscopic studies reported here represent a direct

measurement of these mean-field shifts in gases of helium (He) excited

to Rydberg states with n = 70 and electric dipole moments up to µ1 =

µ70 = 12 250 D. In the highest density regions of these gases, the dielectric

properties differ from those in free space and give rise to changes in the

microwave spectra which reflect the emergence of macroscopic electrical

properties of the medium. This work is complimentary to recent studies of

effects of electrostatic dipole interactions on particle motion in laser cooled

samples of rubidium [108], and observations of optical bistability arising

from mean-field shifts in gases of Rydberg atoms interacting via resonant

dipole interactions [22].

3.1 Experiment

The experiments were performed in pulsed supersonic beams of metastable

helium. The He atoms in these beams had a mean longitudinal speed of

∼ 2000 m s−1 with a spread of ±50 m s−1 [126]. The atoms were prepared in

the metastable 1s2s 3S1 level in an electric discharge at the exit of a pulsed

valve. This valve has operated at a repetition rate of 50 Hz [46]. After col-

limation by a 2 mm diameter skimmer and the deflection of stray ions pro-

duced in the discharge, the beam entered between a parallel pair of 70 mm

× 70 mm copper electrodes. The electrodes were separated by 8.4 mm

in the z dimension, as indicated in Fig. 3.1(a). At the mid-point between
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Figure 3.1: (a) Schematic diagram of the photoexcitation and detection re-

gion of the experimental apparatus. The position of laser photoexcitation

and the approximate spatial extent of the Rydberg atom ensemble in the y

dimension during microwave interrogation are indicated by the red circle

and dashed rectangle, respectively. (b) Sequence of events in each experi-

mental cycle, including laser photoexcitation, Rydberg state polarization,

microwave interrogation, and state-selective electric field ionization (not

to scale). From [128].
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these electrodes the atomic beam was crossed at right-angles by two co-

propagating, frequency stabilized, cw laser beams. These lasers were oper-

ated at wavelengths ofλUV = 388.975 nm andλIR = 785.946 nm to excite the

metastable atoms to Rydberg states by the 1s2s 3S1 →1s3p 3P2 →1s70s 3S1

two-photon excitation scheme. The laser beams were focussed to full-

width-at-half-maximum (FWHM) beam waists of ∼ 100 µm. By applying

a pulsed potential, V1, to the upper electrode in Fig. 3.1(a) to bring the

atoms in the photoexcitation region into resonance with the lasers for 3 µs

[see Fig. 3.1(b)], 6 mm-long ensembles of Rydberg atoms were generated

in each cycle of the experiment.

After photoexcitation, the electric field was switched again to polar-

ize the 1s70s 3S1 atoms [see Fig. 3.1(b)]. Interactions within the excited

ensemble were then probed by microwave spectroscopy on the single pho-

ton transition at ∼ 37 GHz between the states that evolve adiabatically to

the 1s70s 3S1 and 1s72s 3S1 levels in zero electric field. These states have

quantum defects of δ70s ' δ72s ' 0.296 664 [32] and exhibit quadratic Stark

energy shifts in weak electric fields. Because the laser photoexcitation

process was separated in time from microwave interrogation, the Rydberg

atom number density, nRy, could be adjusted by controlling the IR laser

intensity, without affecting any other experimental parameters. After trav-

eling 20 mm from the position of laser photoexcitation, the Rydberg atoms

were detected by state-selective ramped-electric-field ionization beneath

a 3 mm-diameter aperture in the upper electrode [see Fig. 3.1(a)]. This

ionization step in the experiments was carried out by applying a slowly-

rising ionization potential, V2, to the lower electrode. The electrons from
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Figure 3.2: Stark structure of the triplet m` = 0 Rydberg states of He

with values of n ranging from 70 to 72. Experiments were performed

following laser photoexcitation of the 70s state in zero electric field and

the subsequent polarization of the excited ensemble of atoms in fields

of (i) 18 mV cm−1, (ii) 358 mV cm−1, and (iii) 714 mV cm−1 as indicated.

From [128].
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the ionized Rydberg atoms were detected on a microchannel plate (MCP)

detector located above this electrode. The rise time of the pulsed ionization

electric field was selected to separate in time the electron signal from the

n = 70 and n = 72 states.

3.2 Results

The mean-field energy-level shifts in the ensembles of polarized Rydberg

gases were observed directly by microwave spectroscopy. To achieve this,

reference measurements were first made in which the polarizing electric

field was switched after photoexcitation from 0±1 mV cm−1 to 18 mV cm−1,

inducing electric dipole moments of µ70 = 380 D in the 1s70s 3S1 atoms.

Here, and in the following, the dipole moments referred to represent the

absolute value of the first derivative of the Stark energy shift with respect

to the electric field. The n = 70 → n = 72 transition (µ72 = 470 D),

indicated by the dashed line labelled (i) in Fig. 3.2, was then driven by a

1 µs-long microwave pulse [see Fig. 3.1(b)]. The corresponding Fourier-

transform-limited spectrum of the integrated electron signal associated

with the n = 72 state is displayed in Fig. 3.3(a-i) (continuous curves). In

order to identify and characterize the mean-field energy-level shifts in the

ensembles of excited atoms measurements were performed at two Rydberg

atom densities. The low (high) density data were recorded following the

excitation of NRy (16 NRy) Rydberg atoms, and are displayed in blue (red)

in the figure. For the small electric dipole moments induced in this case,

no density-dependent energy-level shifts were observed.

To enhance the effects of electrostatic dipole interactions within the
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Figure 3.3: Experimentally recorded (continuous curves) and calculated

(dashed curves) spectra of transitions between the Stark states that evolve

adiabatically to the 1s70s 3S1 and 1s72s 3S1 levels in zero electric field. The

experiments were performed at low (blue curves) and high (red curves)

Rydberg atom number densities, and spectra were recorded in polarizing

electric fields of (i) 18 mV cm−1, (ii) 358 mV cm−1, and (iii) 714 mV cm−1, for

whichµ70 = 380 D, 7250 D, and 12250 D (µ72 = 470 D, 8650 D, and 14050 D),

respectively. The calculated spectra are presented (a) without, and (b)

with effects of the local polarization of the medium on the macroscopic

dielectric properties accounted for. The relative microwave frequencies on

the horizontal axes are displayed with respect to the transition frequencies

[(i) 37.2413 GHz, (ii) 37.1068 GHz, and (iii) 36.8094 GHz] recorded at low

Rydberg atom number density. From [128].
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Rydberg gases, subsequent spectra were recorded with further polariza-

tion. Increasing the electric field to 358 mV cm−1 (714 mV cm−1) resulted

in induced electric dipole moments of µ70 = 7250 D (µ70 = 12250 D), and

µ72 = 8650 D (µ72 = 14050 D). In the spectra recorded in these fields, and

displayed in Fig. 3.3(a-ii) and (a-iii), respectively, a significant dependence

on the Rydberg atom density was observed. Comparison of the spectra in

Fig. 3.3(a-ii) and (a-iii) with those in Fig. 3.3(a-i) reveals four notable fea-

tures. When the atoms are more strongly polarized the spectral profiles:

(1) become significantly broader than those in Fig. 3.3(a-i), even at low

density; (2) exhibit density-dependent frequency shifts; (3) become asym-

metric at high density with a sharp cut-off in intensity at higher microwave

transition frequencies; and (4) display signatures of spectral narrowing at

high density, in particular in Fig. 3.3(a-iii).

3.3 Simulations

To aid in the interpretation of the spectra, Monte Carlo calculations were

performed in which the electrostatic dipole-dipole interactions within the

many-particle system were treated. In these calculations, ensembles of

Rydberg atoms were generated with randomly assigned positions. These

ensembles had Gaussian spatial distributions with a FWHM of 100 µm

(50 µm) in the x (z) dimension, and flat top distributions with a length of

3 mm in the y dimension. These distributions represent the spatial intensity

profile of the laser beams in the z dimension, the spatial distribution of

atoms with Doppler shifts within the spectral width (∆νFWHM ' 15 MHz)

of the 1s2s 3S1 →1s3p 3P2 transition in the x dimension, and half of the
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length of the ensemble of atoms excited in the y dimension.

For each atom in the calculation the difference between the sum of the

dipole-dipole interaction energies with all other atoms when it was (1) in

the n = 70 state, i.e., µ1 = µ2 = µ70, and (2) in the n = 72 state, i.e., µ1 = µ72,

and µ2 = µ70, was determined. To account for the sharp cut-off in the

spectral profiles at high transition frequencies in the data recorded at high

density in Fig. 3.3(a-ii) and (a-iii), it was necessary to impose a lower limit,

Rmin, on the nearest-neighbor spacing between pairs of Rydberg atoms in

the calculations. This minimum inter-atomic spacing is a consequence

of the expansion of the pulsed supersonic beams as they propagate from

the valve to the photoexcitation region in the experiments, a distance of

210 mm, and reflects the collision-free environment characteristic of these

beams [102, 71]. From a global fit to all of the experimental data in Fig. 3.3,

carried out by calculating and subsequently minimizing the root mean-

squared error between the experimental data and the models obtained for

different values of Rmin, the most appropriate value of Rmin was found to

be 11.5 µm.

We note that because the C6, van der Waals coefficient of the 1s70s 3S1

level in He is ∼ 9.9 GHzµm6, blockade at laser photoexcitation does not

play a major role at the laser resolution in the experiments for atoms sep-

arated by more then ∼ 3.5 µm and therefore does not dominate this value

of Rmin. Under these conditions, the distribution of n = 70→ n = 72 tran-

sition frequencies was determined for each set of electric dipole moments

(i.e., for each electric field strength) for atoms located within ±0.75 mm of

the center of the ensemble in the y-dimension to avoid edge effects. The
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resulting data were convoluted with a Gaussian spectral function with a

FWHM of 1 MHz corresponding approximately to the Fourier transform

of the microwave pulses.

When the polarization of the individual atoms is increased they become

more sensitive to low-frequency electrical noise [126]. This sensitivity led

to the broadening of the resonances in the low-density regime in Fig. 3.3(a-

ii) and (a-iii). The effect of this spectral broadening was introduced in the

calculations as a perturbing electric field which caused a relative shift in

the energy of the n = 70 and n = 72 Stark states, proportional to their

electric dipole moments. The spectra calculated following the generation

of low density samples containing NRy = 2 813 atoms and including the

contributions from this electric field noise are displayed in Fig. 3.3(a) (blue

dashed curves). Comparing the experimental data with the results of these

calculations indicates that the broadening observed was commensurate

with white noise with a root-mean-square amplitude of Fnoise = 2 mV cm−1.

In the more polarized gases, increasing the Rydberg atom density is

seen to shift the resonant microwave transition frequencies by ∼ +3 MHz

and ∼ +5 MHz in Fig. 3.3(a-ii) and (a-iii), respectively, from those recorded

at low density. These density-dependent changes indicate that atom-atom

interactions dominate the spectral broadening caused by Fnoise. The mean-

field shifts in transition frequency were found to agree with those seen

in the results of the calculations upon increasing the number of excited

atoms by a factor of 16, matching the experiments, to NRy = 45 000 [red

dashed curves in Fig. 3.3(a)]. The positive shifts in transition frequency

with increasing density are a consequence of the predominantly repulsive
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electrostatic dipole interactions within the elongated ensemble of Rydberg

atoms in the experiments, and the larger energy shift of the more polar,

n = 72 state under these conditions.

However, the spectral narrowing observed at high density in the ex-

perimental data is not seen in the calculations in Fig. 3.3(a). To account for

this it was necessary to consider the contribution of the local polarization

of the Rydberg gases on their dielectric properties [84]. In a simple model

of the dielectric Rydberg gas, the local polarization Ploc = nloc µ70 (nloc is

the Rydberg atom number density obtained in the numerical calculation

within a sphere of radius 25 µm surrounding each atom) can be consid-

ered to shield each atom from the laboratory electrical noise, reducing it to

Floc = max({0,Fnoise−SκPloc/ε0}), where Sκ is a constant factor that accounts

for the geometry of the ensemble of atoms in the experiments. This shape

factor is a fitting parameter associated with the proportion of local Rydberg

atoms affected by the dielectric screening of the noise, which varies with

Rmin and accounts for the arbitrary choice of the radius of the sphere in

which the local atom density is calculated. For Sκ = 0.1, there is excellent

agreement between the results of the calculations and the experimental

data as can be seen in Fig. 3.3(b). This indicates the emergence of macro-

scopic electrical properties of the Rydberg gas when strongly polarized.

In the experiments, free He+ ions, generated by photoionization of Ryd-

berg atoms, would give rise to spectral broadening, or, if they increase the

strength of the local electric fields within the ensembles of atoms, shifts

of the spectral features toward lower transition frequencies (see Fig. 3.2).

They are not expected to contribute to spectral narrowing such as that
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observed in Fig. 3.3(a,ii-iii) and (b,ii-iii). For these reasons, and because

we do not observe free ions or electrons in the process of ionization of the

Rydberg atoms, we conclude that they do not contribute significantly to

the experimental observations.

Further comparisons of experimental and calculated spectra of the most

polarized atoms [Fig. 3.3(b,iii)] over a range of Rydberg atom densities are

presented in Fig. 3.4. From these data, it can be seen that the experimental

spectra, recorded upon increasing NRy by factors of 5, 9.5 and 16 [Fig. 3.4(b),

(c) and (d), respectively] from the initial low density case [Fig. 3.4(a)],

agree well with the calculated spectra containing equivalent proportions

of atoms, i.e., NRy = 2 813, 14 063, 26 719, and 45 000. From the results

of the calculations the mean Rydberg atom number densities, nRy, within

the samples could be determined to range from nRy = 7.5 × 107 cm−3 to

3.3 × 108 cm−3, as indicated. In these strongly polarized gases the labo-

ratory electric field noise, Fnoise, is completely screened when SκPloc/ε0 ≥

2 mV cm−1, i.e., when nloc ≥ 4.5 × 108 cm−3, and the absolute energy-level

shift of each atom is ∼ 20 MHz.

3.4 Conclusions

In conclusion, we have carried out spectroscopic studies of mean-field

energy-level shifts in strongly polarized Rydberg gases by driving mi-

crowave transitions between Rydberg-Stark states with similar electric

dipole moments. The resulting spectra yield detailed information on the

spatial distributions of the atoms. Spectral narrowing observed at high

number density is attributed to changes in the local dielectric properties
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within the medium from those in free space, and reflects the macroscopic

electrical properties of the atomic samples that emerge under these con-

ditions. From these results, it is seen that for atoms prepared in states

with static electric dipole moments on the order of 10000 D dipole-dipole

interactions result in frequency shifts in excess of 10 MHz for atom-atom

separations of / 10 µm. To ensure that such frequency shifts remain below

this value, and hence, are not detrimental to quantum-state–selective circu-

lar state preparation the number densities of excited atoms in experiments

must be maintained below 108 cm−1.
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Chapter 4

Superconducting Transmission

Line Resonator

In the development of hybrid approaches to quantum optics and quantum

information processing superconducting circuits and qubits are uniquely

scalable systems with high gate operation rates but short coherence times

[115]. On the other hand, atoms in Rydberg states offer lower gate opera-

tion rates for similar transition frequencies but, being in the gas phase, can

possess significantly longer coherence times [97]. The key component re-

quired for coupling these two qubits is a high quality microwave resonator.

To maintain scalability, transmission line resonators offer particular advan-

tages in such hybrid system setups.

In this chapter the characteristic properties of superconducting transmis-

sion line resonators are described. These properties are then employed in

the theoretical studies in the following chapters.
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Figure 4.1: Simple LC-circuit electrical oscillator: (a) In order to derive

a Lagrangian where the single degree of freedom is the charge, q, the

usual sign convention for the flow of the current, I, from −q to q can be

used. (b) The sign convention in the text, where the positive and negative

signs of the charge, Q, have been flipped with respect to the current, leads

to the magnetic flow as the single degree of freedom in the Lagrangian

describing the LC-circuit. From [41].

4.1 Quantization of a 1D Transmission Line Res-

onator

A one-dimensional transmission line resonator can be modelled as a series

of harmonic LC-circuits. This electric circuit element consists of an inductor

with inductance L and a capacitor with capacitance C. The resonant circuit

is described by the potential energy, EC, stored in the capacitor

EC =
CV2

2
, (4.1)
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where V is the voltage across the capacitor, and the kinetic energy stored in

the magnetic field, EL, which is induced by the current I, flowing through

the inductor

EL =
1
2

LI2. (4.2)

The inductor current I = Q̇ is the rate of change of capacitor charge with

time. The magnetic flux Φ can be expressed in terms of the applied voltage

using Faraday’s law of inductance,

Φ(x, t) =

∫ t

0
dτ V(x, τ). (4.3)

Considering the definition of the inductance, i.e., L = Φ/I, the energy

stored in the capacitor has the form of a kinetic energy and the energy

stored in the inductor is analogous to the potential energy of a particle in

one-dimensional space. Consequently, the Lagrangian for the LC-circuit

can be written in terms of the magnetic flow as

LLC =
1
2

CΦ̇2
−

1
2L

Φ2. (4.4)

The conjugate momentum to this single degree of freedom, Φ, is therefore

∂L

∂Φ̇
= CΦ̇ (4.5)

= Q, (4.6)

and hence the capacitator charge Q. Thus, the Hamiltonian for the LC-

circuit is derived as

HLC = QΦ̇ − L

=
C
2

(
dΦ

dt

)2

+
1

2L
Φ2,

(4.7)
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which is the electronic version of a single-mode harmonic oscillator.

The analogous lumped circuit element model of a 1D transmission line is

a series of linearly coupled LC-circuits. The Hamiltonian associated with

the transmission line can therefore be written as a discretized sum of N

inductively coupled LC-circuits

HTL =

N∑
j=1

C
2

(
dΦ

dt

)2

+

N∑
j=2

1
2L

(
Φ j −Φ j−1

)2
. (4.8)

This expression has the same form as a harmonic chain. In the continuum

limit, a capacitance per unit length, c, and inductance per unit length, l, can

be defined. For a transmission line of length d, the Lagrangian can then be

written as [12]

LTL =

∫ d

0
dx

[ c
2

(∂tΦ)2
−

1
2l

(∂xΦ)2
]
, (4.9)

which leads to the Euler-Lagrange equation(
d2

dt2 −
1
lc
∂2

∂x2

)
Φ = 0. (4.10)

This is the equivalent of a wave equation with velocity v = 1
√

lc
. In order

that the transmission line acts as a resonator which stores an electromag-

netic field in form of standing waves, series capacitances are implemented

at each end of the transmission line to impose open-circuit boundary con-

ditions such that
∂Φ
∂x

∣∣∣∣∣
x=0

=
∂Φ
∂x

∣∣∣∣∣
x=d

= 0. (4.11)

The boundary conditions are time-independent. Hence, the magnetic flux

field can be factorized

Φ(x, t) =

∞∑
n=0

fn(t)φn(x) (4.12)
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where the amplitude fn(t) of each field mode n depends only on time and

φn(x) are the normalized spatial eigenfunctions, whose derivatives vanish

at the boundaries. These normal modes are expressed as

φn(x) =

√
2
L

cos (knx) (4.13)

where kn = nπ
L with n ∈N. The properties of these normal modes, i.e., that∫ L

dxφn(x)φm(x) = δnm, (4.14)

and hence ∫ L

dx∂xφn(x)∂xφm(x) = k2
nδnm, (4.15)

permit their use as an orthonormal basis in which to diagonalize the La-

grangian in Eq. (4.9),

LTL =
c
2

∞∑
n=0

[
(∂t fn)2

− ωn f 2
n

]
, (4.16)

where the wavevector is defined as kn = ωn/v. This Lagrangian, and

subsequently the Hamiltonian, constitute a sum of independent simple

harmonic oscillator normal modes, where the momentum conjugate to the

amplitude fn(t) is

qn =
∂L

∂(∂t fn)
= c∂t fn. (4.17)

This set of independent normal modes can be promoted to quantum op-

erators by imposing the commutation relation
[
q̂n, f̂m

]
= −i~δn,m. Since the

classical Hamiltonian, which follows from Eq. (4.16),

HTL =

∞∑
n=0

{ 1
2c

qn +
c
2
ω2

n f 2
n

}
, (4.18)
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has a form that resembles the free electromagnetic field, and its quantiza-

tion can be performed in a similar fashion [116]. The quantum operators

q̂n, f̂m are expressed in terms of creation and annihilation operators

f̂n =

√
~

2ωnc

(
â†n + ân

)
, (4.19)

and

q̂n = i

√
~ωnc

2

(
â†n − ân

)
, (4.20)

lead to the quantization of the magnetic flux and charge density via

Eq. (4.12) and (4.17). These operators obey the standard field commu-

tation relation [
q̂(x), Φ̂(x′)

]
= −i~

∞∑
n

φ(x)φ(x′)

= −i~δ(x − x′).

(4.21)

Ultimately, the quantum Hamiltonian for the transmission line resonator

with finite length d is

HTL =

∫ d

0
dx

{ 1
2c

q̂2 +
1
2l

(∂xφ̂)2
}
, (4.22)

and can therefore be simplified by expressing it in terms of the ladder

operators, taking the familiar form,

ĤTL =

∞∑
n=0

~ωn

(
â†â +

1
2

)
. (4.23)

4.2 Dissipation from a 1D Transmission Line Res-

onator

Consider a circuit quantum electrodynamic system composed of a super-

conducting transmission-line resonator coupled to a co-planar waveguide
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which acts as an input/output channel. We aim to derive an expression

for the quality factor of the transmission line resonator using a full quan-

tum treatment of the coupled resonator-waveguide system. The classical

Figure 4.2: The resonator-waveguide system and its lumped circuit ana-

logue. The resonator and waveguide can be considered as a sum of

harmonic LC-circuits, where coupling capactiances at each end impose

boundary conditions.

Lagrangian of this system can be written as a sum of the resonator and

waveguide Lagrangians, with the addition of the capacitive coupling be-

tween them [64], i.e.,

LTot = LRes +LWG +LC, (4.24)

where

LRes =
1
2

Ccφ̇
2
0 +

1
2

n∑
ν=1

crdzφ̇2
ν −

(
φν − φν−1

)2

lrdz

 +
1
2

Ccφ̇
2
n, (4.25)

LWG =
1
2

CcΦ̇
2
0 +

1
2

N∑
µ=1

cwdzΦ̇2
µ −

(
Φµ −Φµ−1

)2

lwdz

 +
1
2

CcΦ̇
2
N, (4.26)
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and

LC = −Cc · φ̇n · Φ̇0. (4.27)

Here Cc is the coupling capacitance at each end of the resonator denoted

by the subscript r, cr,w and lr,w are the capacitance and inductance per unit

length of the resonator, cr and lr, and waveguide, cw and lw, respectively,

and φn (Φn) is the magnetic flux at each point n in the respective lumped

circuit element sequences associated with the resonator (waveguide), as

indicated in Fig. 4.2. These expressions can be significantly simplified

following diagonalization. An important approximation in the derivation

of the corresponding Hamiltonian is the assumption that

Cc

cr,wLr,w
� 1. (4.28)

This criterion is generally fulfilled since the coupling capacitances must be

small to allow for an appropriate build-up and storage of an electromag-

netic field inside the resonator. Writing the conjugate momenta ξn,Ξn of

the variables qn,Qn leads to the Hamiltonian

HTot =
1
2

∑
n=0

[
q2

n + ω2
nξ

2
n

]
+

1
2

∑
m=0

[
Q2

m + Ω2
mΞ2

n

]
+ Cc ·

∑
n=0

ϕn(0)qn

∑
m=0

ψm(0)Qm.

(4.29)

This expression describes two harmonic oscillators capacitively coupled

at each end. Using the standard quantization procedure of a harmonic

oscillator as shown in the previous section and by selectively exciting a

single resonator mode, one obtains

Ĥ = ~ωâ†â + ~
∑

n

Ωnb̂†nb̂n − ~
∑
k=0

gk

(
b̂†k − b̂k

) (
â† − â

)
, (4.30)
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where the coupling strength gk can be expressed in terms of experimental

parameters only, such that

gk = Cc

√
1

crLr

1√
1 + 2 Cc

crLr
+ C2

cZ2
rω2

√
1

cwLw

1√
1 + 2 Cc

cwLw
+ C2

cZ2
wΩ2

k

√
ωΩk,

(4.31)

where Zr,w is the impedence of the resonator and waveguide, respec-

tively. It is known that the coupling strength should be proportional

to the coupling capacitance and the impedance of the waveguide, since

the influence of the transmission line on the resonator is generally due to

its impedance [56]. In addition, the higher the energy of the mode ex-

cited/supported by the resonator and waveguide, the higher the strength

with which they couple to each other. Assuming they are made from the

same material, and that all terms ∝ C2
c are negligible, the coupling constant

in Eq.(4.31) then simplifies significantly to

gk ≈
C2

c

ωr
Z0π
√

k, (4.32)

with the the characteristic impedence of the transmission line Z0. This

approximation of the coupling strength gk has the correct dimension of a

frequency, i.e., Hz, and is in accordance with what we would expect for

the simplified case described here.

Following the standard quantum Langevin approach for a harmonic os-

ciallator coupled to a collection of electromagnetic reservior oscillators, i.e.,

the waveguide taken to be in thermal equilibrium, under the RWA, one

arrives at a decay rate [39]

γ = 2π
∑

n

g2
nδ (ω −Ωn)→ 2π

∫
dn
∆n

g2
nδ (ω −Ωn) . (4.33)
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The frequency modes of the waveguide are defined by a transcendental

equation that follows from the wave-equation and boundary conditions of

the Euler-Lagrange equations of motion. The solution of these equations

can be obtained by a Taylor expansion up to first order, under the previous

assumption Eq.(4.28), such that

Ωn =
π · n(

2 Cc
cwLw

+ 1
)

Lw
√

cwlw

. (4.34)

If the waveguide and resonator are considered to be composed of the same

material, cr = cw = c and lr = lw = l, and the waveguide is a semi-infinite

transmission line, Lw →∞, for example, acting as a measurement channel,

the resonator’s quality factor, Qext = ω/γ, can be written as

Qext =
2Cc

(
1 + C2

cZ2ω2) + cL
(
1 + C2

cZ2ω2)2

C2
cZω

. (4.35)

where Z =
√

l/c is the characteristic impedance. This quality factor is ideal-

ized and therefore tends to infinity as the coupling capacitances approaches

zero. However, if one wants to precisely match the true experimental pa-

rameters, an intrinsic saturation of the resonator’s quality factor towards

which the idealized Q-factor tends [42] must be considered. A saturation

occurs because of the presence of additional input (drive) and ouput (mea-

surement) decay channels not considered in the theoretical treatment so

far, which is phenomenologically accounted for via

1
Q

=
1

Qint
+

1
Qext

, (4.36)

by introducing an empirical quality factor saturation limit Qint.
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(a) The calculated Q-Factor (b) The measured Q-Factor. From [42].

Figure 4.3: Comparison of the here calculated Q-factor and the measure-

ment by Goeppl et al. Both curves show qualitatively similar behavior,

whereas the precise values differ because the details of the experimental

parameters of the waveguide could only be estimated from the published

information.

ω0 resonator fundamental angular frequency 14.7215 GHz

Lr length of the resonator 28.449 mm

cr, cw capacitance per unit length 1.27 · 10−10 F/m

lr, lw inductance per unit length 4.53 · 10−7 H/m

Qint intrinsic quality factor 2.3 · 105

Table 4.1: The values used for the theoretical calculation of the Q-factor

as published by Goeppl et al. [42].

Taking this into account and using the values listed in the table above for

the waveguide and resonator parameters, the dependence of the resonator

quality factor, Q, on the coupling capacitances, Cc, are obtained and dis-
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played in Fig. 4.3 (a). This result is in excellent qualitative agreement with

the experimental data and calculation by Goeppl et al. [42] as shown in

Fig. 4.3 (b). The discrepencies between the calculation and experimental

findings can be explained by the fact that it was necessary to estimate some

of the parameters of the waveguide that were not explicitely stated in the

article.
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Chapter 5

Cooling a transmission-line

resonator with a beam of Rydberg

atoms

A hybrid quantum system composed of atoms prepared in circular Ryd-

berg states coupled to a transmission line resonator offers new opportu-

nities for processing and storing quantum information. However, it also

offers possibilities for exploiting the Rydberg atoms or the resonator to

engineer particular quantum states of interest of the other partner system.

For example, the Rydberg atoms can be employed to add or remove pho-

tons from a complementary resonator mode on, or near, resonance with the

Rydberg transition frequency in order to prepare particular Fock states of

the resonator. Another possibility is to generate entanglement by exploit-

ing a sequential interaction of multiple atoms with a selected resonator

mode.
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In this, and the following chapter, the first of these schemes is studied.

First by using an analytical method and then using a numerial approach

in order to improve the scheme’s efficiency.

5.1 The atomic beam as an engineered quantum

reservoir

Recently, one particular focus of hybrid quantum system research has

been the quantum state preparation of an individual system with the help

of another quantum system [1].

To investigate the extent to which Rydberg atom beams can be employed

to manipulate, and in particular cool, a selected mode of a transmission-

line resonator, we now consider a beam of atoms prepared in circular

Rydberg states crossing the resonator and thus interacting with its thermal

electromagnetic field via their electric dipole transition moments. In this

treatment we consider two selected circular Rydberg states with values of

n differing by 1 in each atom. The lower selected state is considered as the

ground state |g〉, while the higher state is the excited state |e〉.

First we consider the internal dynamics of the atom-resonator system, in

an analogous way implemented by Pielawa et al. [92]. Additionally, we

include an open quantum system approach by accounting for thermal

heating and dissipation of the resonator due to its coupling to a thermal

bath. The problem will be studied on a coarse-grained time scale, ∆t, where

∆t is significantly longer than the average atom-resonator interaction time

τ. If the arrival rate of atoms in state |g〉 in the resonator is defined as
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r, then in order to ensure that at most one atom at a time interacts with

the resonator, we must assume that rτ � 1. The product r∆t � 1 gives

the average number of atoms flying over the resonator during the time-

interval studied. To characterize and analyze the dynamics of this system,

we need to distinguish between two cases:

1) In the case of an atom being present above the resonator, the internal

dynamics of the resonator-atom system is governed by the Jaynes-

Cummings Hamiltonian [62]

Ĥ = ~ωc

(
σ̂z

2
+ â†â

)
︸           ︷︷           ︸

Ĥ0

+ ~
∆

2
σ̂z + ~g

(
σ̂†â + â†σ̂

)
︸                     ︷︷                     ︸

Ĥ1

, (5.1)

where the population difference operator is σ̂z = |e〉〈e| − |g〉〈g|, and

σ̂ ≡ |g〉〈e| and σ̂† ≡ |e〉〈g| are the pseudo-spin operators of the two-

level atom – its lowering and raising operator, respectively. The

field mode creation and annihilation operators are â†, â. The average

interaction strength mediated by the electric dipole coupling is g, and

∆ = ω0 −ωc describes the detuning between the transition frequency

of the atom and the fundamental frequency of the resonator. We

define the system and interaction Hamiltonian as above so that the

commutator between them vanishes, i.e.,[
Ĥ0, Ĥ1

]
= 0. (5.2)

Taking advantage of a vanishing commutator simplifies the Baker-

Campbell-Hausdorff formula [24], eẐ = eĤ0eĤ1 , with

Ẑ = ln (eĤ0eĤ1) (5.3)

= Ĥ0 + Ĥ1 +

∞∑
m=2

Zm(Ĥ0, Ĥ1), (5.4)
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where the Zm(Ĥ0, Ĥ1) are homogeneous Lie polynomials, which are

linear combinations of nested commutators of Ĥ0 and Ĥ1, and equal

zero in this case. This allows us to write the unitary time-evolution

operator as

Û(t) = e−iĤt/~

= e−iĤ0t/~e−iĤ1t/~. (5.5)

2) The second case of interest is that which arises if no atom is present

above the resonator. In this situation the interaction between atom

and transmission line resonator can be considered "switched off".

Both the resonator and atom evolve independently according to the

system Hamiltonian

Û(t) = exp (−iĤ0t). (5.6)

Taking both cases into account, we can quantify the evolution of the density

matrix on a coarse-grained timescale, ∆t, without an atom present as

ρ̂0(t + ∆t) = e−iĤ0(∆t)ρ̂(t)eiĤ0(∆t), (5.7)

and with an atom interacting with the resonator for a time τ� ∆t as

ρ̂1(t + ∆t) = e(−iĤ0∆t)
[
exp (−iĤ1τ)ρ̂(t) exp (iĤ1τ)

]
e(iĤ0∆t). (5.8)

Given the density matrix at time t, the total system evolves under the

Hamiltonian Ĥ0 over a time step ∆t. The probability of this situation

occuring is (1 − r∆t), and corresponds to the situation in which there is no

atom interacting with the resonator. On the other hand, the probability r∆t
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of an atom being above, and thus interacting with, the resonator marks the

situation where the density matrix undergoes a change described by the

Hamiltonian Ĥ1 during the interaction time τ. Therefore, transforming the

problem into an interaction picture with respect to the system Hamiltonian

Ĥ0, the change in the internal evolution of the density matrix due to the

interaction with an atom during time step ∆t may be expressed as

ρ̂tot(t + ∆t) = ρ̂tot(t) · (1 − r∆t) + r∆t
∫

dτP(τ) e−iĤ1τ/~ρ̂tot(t)eiĤ1τ/~, (5.9)

where ρ̂tot(t) is the evolution of the density matrix up to a time t, which

represents the beginning of the time step to be evaluated . The probability

distribution P(τ) in Eq. (5.9) represents the distribution of interaction times

that arise because in a realistic experimental setting a typical ensemble of

circular Rydberg atoms do not all move with the same velocity across the

resonator. Therefore we have to integrate over all possible interaction

times weighted by their probility of occurance, P(τ).

Equ. (5.9) can be rearranged to yield an expression for the evolution of the

total density matrix during each time interval ∆t

ρ̂tot(t + ∆t) − ρ̂tot(t)
∆t

= r∆t
∫

dτP(τ) e−iĤ1τ/~ρ̂tot(t)eiĤ1τ/~ − rρ̂tot(t). (5.10)

This resembles the discrete form of the derivative of the reduced density

matrix, giving its equation of motion on a coarse-grained time scale ∆t

during which the interaction with a beam of atoms can occur. Since the

atom is initially prepared in the ground state and both Hilbert-spaces

are uncorrelated before the atom-resonator interaction, the initial density

matrix can be factorized as a product of the reduced density matrix of the

resonator, ρc(t), and the initial density matrix of the atom when entering
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the resonator, which can be assumed to be in the ground state, ρtot(0) =

ρc(0) ⊗ |g〉〈g|. Provided no atom is present above the resonator, the total

density matrix of the system evolves as ρtot(t) = ρc(t) ⊗ |g〉〈g|.

However, if there is an atom present, the time-evolution operator takes on

the form given in Eq. (5.5). Therefore we need to evaluate the effect of the

interaction Hamiltonian on the time-evolution of the atomic ground state

|g〉 to obtain an expression for the evolution of total density matrix in terms

of the reduced density matrix ρc(t) when an atom is present. In order to

evaluate the time-evolution operator in the interaction picture, the series

expansion of the exponential function needs to be applied,

exp (−igĤ1τ)|g〉 =

∞∑
k=0

(−igĤ1τ)k

k!
|g〉, (5.11)

which requires the individual calculation of all higher-order terms of the

interaction Hamiltonian, Ĥn
1 . The first six orders of the expansion are

Ĥ1 = âσ̂† + â†σ̂ +
∆

2g
σ̂z, (5.12)

Ĥ3
1 = (ââ†)âσ̂† + (â†â)â†σ̂ +

(
∆

2g

)2

Ĥ1 +
∆

2g

(
ââ†|e〉〈e| − â†â|g〉〈g|

)
, (5.13)

Ĥ5
1 =

(
ââ†

)2
âσ̂† +

(
â†â

)2
â†σ̂ −

(
∆

2g

)4

Ĥ1 + 2
(

∆

2g

)2

Ĥ3
1

+
∆

2g

((
ââ†

)2
|e〉〈e| −

(
â†â

)2
|g〉〈g|

)
, (5.14)

Ĥ2
1 = ââ†|e〉〈e| + â†â|g〉〈g| +

(
∆

2g

)2

, (5.15)

Ĥ4
1 =

(
ââ†

)2
|e〉〈e| +

(
â†â

)2
|g〉〈g| + 2

(
∆

2g

)2

Ĥ2
1 −

(
∆

2g

)4

, (5.16)

Ĥ6
1 =

(
ââ†

)3
|e〉〈e| +

(
â†â

)3
|g〉〈g| + 3

(
∆

2g

)2

Ĥ4
1 − 3

(
∆

2g

)4

Ĥ2
1 +

(
∆

2g

)6

.

(5.17)
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For the expressions in Eq. (5.12) to (5.17) a re-occuring pattern for all the

equations with even exponents can be identified, yielding a generating

function in terms of a binomial series

Ĥ2n
1 =

n∑
k=0

(
n
k

) (
∆

2g

)2k [(
ââ†

)n−k
|e〉〈e| +

(
â†â

)n−k
|g〉〈g|

]
. (5.18)

Using this expression, we can also determine a generating function for

the interaction Hamiltonian with odd exponents via the matrix product

Ĥ2n+1
1 = Ĥ2n

1 Ĥ1, which leads to

Ĥ2n+1
1 =

n∑
k=0

(
n
k

) (
∆

2g

)2k [(
ââ†

)n−k
(
âσ̂† +

∆

2g
|e〉〈e|

)
+

(
â†â

)n−k
(
â†σ̂ −

∆

2g
|g〉〈g|

)]
.

(5.19)

To further simplify the expressions in Eq.(5.18) and (5.19), the binomial

expansion (x + y)n =
∑n

k=0
(n

k

)
xn−kyk can be used, leading to,

H2n
1 =

ââ† +

(
∆

2g

)2n

|e〉〈e| +

â†â +

(
∆

2g

)2n

|g〉〈g|, (5.20)

Ĥ2n+1
1 =

ââ† +

(
∆

2g

)2n (
âσ̂† +

∆

2g
|e〉〈e|

)
+

â†â +

(
∆

2g

)2n (
â†σ̂ −

∆

2g
|g〉〈g|

)
.

(5.21)

Ultimately, we obtain for the series expansion of the time-evolution oper-

ator

exp (−igacĤ1τ)|g〉 =

∞∑
k=0

(−igĤ1τ)k

k!
|g〉, (5.22)

=

∞∑
k=0

(−igτ)2k

(2k)!

â†â +

(
∆

2g

)2k

|g〉

−

∞∑
k=0

(−igτ)2k+1

(2k + 1)!

â†â +

(
∆

2g

)2k
∆

2g
|g〉

+

∞∑
k=0

(−igτ)2k+1

(2k + 1)!

ââ† +

(
∆

2g

)2k

â|e〉. (5.23)
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Using the series expansion for sin x =
∑ (−1)n

(2n+1)!x
2n+1 and cos x =

∑ (−1)n

(2n)! x2n,

this can be further simplified to

exp (−igĤ1τ)|g〉 = cos

gτ

√
â†â +

(
∆

2g

)2
|g〉

−i
∆

2g

sin
(
gτ

√
â†â +

(
∆
2g

)2
)

√
â†â +

(
∆
2g

)2
|g〉

−i
sin

(
gτ

√
ââ† +

(
∆
2g

)2
)

√
ââ† +

(
∆
2g

)2
â|e〉. (5.24)

After taking the effect of the interaction Hamiltonian on the factorized

total density matrix into account, we calculate the partial trace of the to-

tal density matrix with respect to the atomic degrees of freedom ρ̂c (t) =

Tra
{
ρ̂tot (t)

}
. In the limit of small discrete time steps, this yields a differential

equation, ∂ρ̂c/∂t, from Eq. (5.10).

In addition to the resonant/near-resonant interaction with the atoms, the

transmission-line resonator is also subject to dissipation. However, be-

cause of the small decay rate of the resonator with typical Q-factors of

∼ 106 as has been shown in Chapter 4, this can be neglected if a compar-

itively short interaction time between a single atom and the resonator is

considered. In this limit we can linearly add [20] the contribution of the

resonator-dissipation due to its coupling to a thermal bath with tempera-

ture T,

Dth =
γ

2
[n̄r(ωc,T) + 1]

(
2âρ̂câ† − â†âρ̂c − ρ̂câ†â

)
+
γ

2
n̄r(ωc,T)

(
2â†ρ̂câ − ââ†ρ̂c − ρ̂cââ†

)
,

(5.25)
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where γ is the photon dissipation rate of the resonator, to the equation

of motion of the internal dynamics. This yields the master equation of

the reduced density matrix of the resonator coupled to a beam of Rydberg

atoms initially prepared in the circular ground state |g〉, and a thermal bath,

which obtained to be

dρ̂c

dt
=r

∫
dτP(τ)

{
cos

(
τ
2

√
4g2â†â + ∆2

)
ρ̂c(t) cos

(
τ
2

√
4g2â†â + ∆2

)

+ ∆2
sin

(
τ
2

√
4g2â†â + ∆2

)
√

4g2â†â + ∆2
ρ̂c(t)

sin
(
τ
2

√
4g2â†â + ∆2

)
√

4g2â†â + ∆2

+ i∆
sin

(
τ
2

√
4g2â†â + ∆2

)
√

4g2â†â + ∆2
ρ̂c(t) cos

(
τ
2

√
4g2â†â + ∆2

)

− i∆ cos
(
τ
2

√
4g2â†â + ∆2

)
ρ̂c(t)

sin
(
τ
2

√
4g2â†â + ∆2

)
√

4g2â†â + ∆2

+ 4g2
sin

(
τ
2

√
4g2ââ† + ∆2

)
√

4g2ââ† + ∆2
âρ̂c(t)â†

sin
(
τ
2

√
4g2ââ† + ∆2

)
√

4g2ââ† + ∆2

}
− rρ̂c(t)

+
γ

2
[n̄r(ωc,T) + 1]

(
2âρ̂câ† − â†âρ̂c − ρ̂câ†â

)
+
γ

2
n̄r(ωc,T)

(
2â†ρ̂câ − ââ†ρ̂c − ρ̂cââ†

)
.

(5.26)

The probability distribution P(τ) represents the disitribution of interaction

times that arise because the atoms do not all move with the same velocity

across the resonator. Therefore we have to integrate over all possible

interaction times weighted by their probility of occurance, P(τ).
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While the first two terms in the integral kernel describe the excitation of

the resonator state due to the interaction with the atomic beam, the third

and fourth part show the effect of the accumulation of phase differences

between each resonator state resulting from this interaction. The fifth,

and last, term describes the coherent decay of the resonator state |n + 1〉

to |n〉 as the atoms in their ground state are excited and subsequently

carry away the excitation. This coherent atom-resonator interaction can be

exploited to remove photons from a selected resonator mode, effectively

cooling the resonator. The factors in the last two lines in Eq. (5.26) are the

Lindblad operators accounting for the thermal decay and heating processes

affecting the resonator because of its coupling to the environment, e.g. a

waveguide to connect the resonator to a measurement device, as described

in Chapter 4.

5.2 Resonator De-Excitation

In the hybrid quantum electrodynamics experiments with gas-phase Ry-

dberg atoms and microwave circuits pertaining to the work here, it is of

interest to de-populate a selected resonator mode and consequently lower

the resonator’s effective temperature. The goal of such a cooling process

is to establish a non-equilibrium steady-state between the atomic beam

carrying away excitations from the resonator and the heating due to the

coupling to the local environment via a waveguide. This method of res-

onator cooling is expected to be achievable experimentally because many

of the individual components necessary to realize this proposed scheme

are already in place [66, 67, 51].

81



To investigate this approach to resonator cooling it is necessary to charac-

terize the probability of the population of each Fock state in the resonator,

p(n). This is done by considering the diagonal elements of the reduced

density matrix in the photon number basis, p(n) = ρnn = 〈n|ρ̂|n〉. For this

treatment, and without loss if generality, we assume that interaction times

of the individual atoms in the beam with the resonator mode of interest

follow a Gaussian distribution, P(τ), centered on an average interaction

time τ̄, such that

P(τ) =
1

√
2πσ2

e−
(τ−τ̄)2

2σ2 . (5.27)

The time-evolution of these probabilities in the combined atom-resonator

system is described by a set of coupled differential equations of the form

ṗ(n) = Anp(n) + Bn+1p(n + 1) + Cn−1p(n − 1), (5.28)

where the prefactors are evaluated [17] to be

An = r
[2g2n + ∆2 + 2g2n e−

1
2σ

2(4g2n+∆2) cos
(
τ̄
√

4g2n + ∆2
)

4g2n + ∆2 − 1
]

︸                                                                    ︷︷                                                                    ︸
An(r)

−γ
[

(2n̄T + 1) n + n̄T

]
︸                  ︷︷                  ︸

An(γ)

,

(5.29)

Bn = r
2g2n

(
1 − e−

1
2σ

2(∆2+4g2n) cos
(
τ̄
√

4g2n + ∆2
))

4g2n + ∆2 + γ (n̄T + 1) n, (5.30)

Cn = γn̄T(n + 1). (5.31)

These prefactors can be interpreted as rates describing the transitions be-

tween different Fock states of the resonator. As depicted in Fig. 5.1, Bn

corresponds to the rate of depopulation of the selected resonator mode

because of the interaction with the atomic beam, i.e., Bn ∝ r, and the decay
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Figure 5.1: The population transfer rates An, Bn and Cn among three

consecutive Fock states in the resonator. It can be seen that Bn corresponds

to a de-excitation of the resonator from the Fock state |n〉 to the Fock state

|n − 1〉, whereas Cn describes an excitation from the state |n〉 to the state

|n + 1〉. The total rate of de-population of the Fock state |n〉 is therefore

An = Bn + Cn. Together with the competing transfer rates Bn+1 and Cn−1

populating the |n〉 Fock state, the rate of change of the population of that

state |n〉 can be calculated according to Eq. (5.28).

of the resonator photons into the waveguide, i.e., Bn ∝ γ. The effective res-

onator cooling rate results from the competition between Bn and Cn, which

represents the excitation of the resonator by thermal photons entering it

from the waveguide. The set of coupled differential equations described

in Eq.(5.28) can be written in matrix form as

ṗ(t) = Mp(t), (5.32)

83



where p(t) is a vector, the elements of which correspond to the occupation

probability of the respective Fock state, and M is the corresponding matrix

containing the transfer rates, i.e.,

p(t) =



p0(t)

p1(t)

p2(t)

p3(t)

...

pn−2(t)

pn−1(t)

pn(t)



, M =



A0 B1

C0 A1 B2

C1 A2 B3 0

C2 A3 B4

. . .

0 Cn−3 An−2 Bn−1

Cn−2 An−1 Bn

Cn−1 An



, (5.33)

with the general solution

p(t) = pss + eMt [p(0) − pss
]
. (5.34)

This depends on the non-equilibrium steady state solution pss, which is

the state the system ends up in as t → ∞, and on the initial state of the

resonator p(0), which is generally assumed to be the thermal state of the

system under consideration being in thermal equilibrium with the local

environment.
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5.2.1 Steady State Solution

We first solve for the steady state, i.e., the resonator mode of interest in

dynamic equilibrium resulting from the competing processes of the intro-

duction of photons from the thermal bath, and excitations being carried

away by the atoms. The probability of zero photons in the resonator can

be obtained analytically

p0 =( ∞∑
n=1

n∏
x=1

γn̄T
(
4g2x + ∆2)

2g2r
(
1 − e−

1
2σ

2(∆2+4g2x) cos
(
τ̄
√

4g2x + ∆2
))

+ γ (n̄T + 1)
(
4g2x + ∆2

)
+ 1

)−1

.

(5.35)

The steady state photon number distribution in the transmission line res-

onator can be calculated via the recursive relation

pn = p0

n∏
j=1

C j−1

B j
. (5.36)

Considering the |n = 70〉 ↔ |n = 71〉 transition between the circular

Rydberg states, which occurs at a transition frequency of ν = 18.78 GHz,

a resonator coupling strength of g/(2π) = 4.25 MHz is assumed. This is

experimentally achievable for Rydberg atoms positioned at a distance of

10 µm above the center conductor [80].

The assumed resonator’s quality factor of Q ≤ 106 leads to a dissipation

rate of γ ≥ 20 kHz. Note that currently experimentally achievable quality

factors for the here given initial temperature T = 4 K of the resonator are

on the order of Q . 105 [8] because the condition for the resonator material

to be fully superconducting, Tc � T, is not fulfilled at this temperature.
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Figure 5.2: Distribution of the photon occupation number for a fundamen-

tal frequency of ν = 18.78 GHz. The red dots mark the occupation proba-

bility of the Fock state |n〉 of the resonator in the non-equilibrium steady

state. The Planck distribution for an effective temperature Teff = 360 mK

is plotted (blue line), showing the qualitative fit with the steady state

photon distribution.

Assuming an average interaction time of the atoms with the resonator of

τ̄ = 50ns, there are two distinct cases to be considered. First a coherent

beam of atoms is considered, where the atomic velocities are all equal, and

therefore their interaction time distribution can be modelled by a dirac

delta function P(τ) = δ(τ − τ̄) with

δ(τ − τ̄) =


+∞, τ = τ̄

0, τ , τ̄.
(5.37)

86



Coherent Beam

No Atom Beam

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

Photon Number n

p
(n
)

Figure 5.3: Depletion of the fundamental mode of the resonator. The

thinner red bars represent the occupation probability distribution of the

Fock states |n〉 at T = 4 K. This results in an average photon occupation

number of 〈n〉th = 3.96. The thicker blue bars represent the photon num-

ber distribution after the interaction with an atomic beam with a fixed

atom-resonator interaction time τ̄, leading to a thermal photon number

distribution with an average number of photons 〈n〉ss = 0.122.

For the case in which the atomic transition frequency is resonant with

the fundamental mode of the resonator, i.e. ∆ = 0, we calculate the pho-

ton number probability distribution in the nonequilibrium steady state.

Assuming an atomic rate of r = 106 atoms per second, the Fock state occu-

pation probability follows a thermal photon number disitribution for this

selected mode, as can be seen in Fig. 5.2. Therefore, a fitted parameter

87



representing the effective temperature of the resonator Teff [93]

pth(n) =
1

〈n〉th + 1

(
〈n〉th
〈n〉th + 1

)n

, (5.38)

where

〈n〉th =
1

exp ( hν
kBTeff

) − 1
. (5.39)

is introduced. From this calculation, it can be seen in Fig. 5.3 that the av-

erage number of photons, and thus the effective temperature, of a selected

resonator mode can be reduced significantly by coupling the resonator to

a continuous beam of flying atoms. The initial state of the resonator when

cooled cryogenically using liquid helium may be described by the thermal

photon number distribution at T = 4 K, as indicated by the red bars in

Fig. 5.3. The average number of photons contained in the resonator is

therefore 〈n〉th = 3.96. After allowing atoms, prepared in the lower circular

Rydberg state, to cross the resonator at a rate r = 106 s−1, this average pho-

ton number can be reduced since the atoms will continuously carry away

excitations. Assuming a coherent atomic beam with a constant interaction

time τ, the average number of photons in the non-equilibrium steady state

can be reduced to 〈n〉ss = 0.122, corresponding to an effective temperature

of the resonator of Teff = 0.36 K. This method of cooling a selected resonator

mode depends on several experimental parameters that affect its efficiency.

These are studied here to identify optimal experimental conditions under

which to implement this cooling process. In doing this, the fidelity of the

vacuum state of the resonator, F0 = 〈0|ρ̂|0〉, is calculated. This fidelity is

assumed to be a valid measure of the resonator de-excitation.

First, the dependence of the ground state fidelity on the detuning of the

atomic transition frequency from the frequency of the fundamental mode
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Figure 5.4: The dependence of the |0〉 Fock state fidelity on the detuning

of the atomic transition frequency and the resonator resonance frequency

of the selected fundamental mode.

of the resonator is investigated. The observed behavior, which can be seen

in Fig. 5.4, is strongly dependent on the velocity distribution of the atomic

beam. As can be seen in the figure, for the case of a coherent beam of atoms

that has been considered up to now, for which the interaction time of the

atoms with the resonator is assumed to be constant, the dependence of the

ground state fidelity on the detuning is described by the Fourier transform

of a square signal pulse.

The alternative case, also considered in Fig. 5.4, is that of an incoherent

beam of atoms, in which the interaction times follow a normal distribution

with a broad width, chosen here to be σ = τ̄/3. Since 99.7% of all val-

ues lie within three times the standard deviation, this assumption ensures

that only 0.15% of all possible values for the individual interaction time
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Figure 5.5: The dependence of the resonator ground state fidelity on

the atom-resonator coupling strength. A coherent beam (solid blue line)

reaches local minima for specific values of the interaction strength, one

being at g = 62.82 MHz. The minima represent trapping states. The

incoherent atomic beam (dashed red line) does not exhibit such behavior,

with a roughly constant fidelity of F0 ≈ 0.85 for values of g ≥ 80 MHz.

of each atom with the resonator are mathematically τ ≤ 0, and hence not

physical, justifying the assumption of such a probability distribution. The

corresponding calculation for this case shows that the dependence of the

ground state fidelity on the atom-resonator detuning follows a Lorentzian

function. This is the Fourier transform of an exponential signal. One can

therefore postulate that measuring the dependence of the ground state

fidelity on the detuning can, for example, provide information on the in-

teractions between the atoms and the resonator and thus about the velocity

distribution of a given beam of atoms.
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Second, the ground state occupation probability of the resonator is inves-

tigated as the coupling strength between the Rydberg atoms and the mi-

crowave resonator is adjusted. In this case the observed behavior shows a

fundamental difference between a coherent and incoherent beam of atoms.

The former exhibits the existence of trapping states [77], because the con-

stant interaction time leads to situations in which the average photon

number in the resonator approximately fulfills the condition for a full Rabi

cycle for all atoms,

gτ
√
〈n〉 ≈ 2π · k, (5.40)

where k ∈ N. This renders the preparation of the vacuum state of the

resonator highly inefficient because ground state atoms entering the res-

onator will leave the resonator again when being close to the ground state,

and thus do not carry away any significant amount of resonator excita-

tions. The photon number distribution of this anomalous steady state for

an atom-resonator coupling value of g = 62.82 MHz is compared to that for

a thermal state with the same average photon number 〈n〉 in Fig. 5.6. The

non-equilibrium steady state achieved in this way is almost entirely an even

statistical mixture between the |0〉 and |1〉 Fock states, where p(n = 0) ≈ 0.5

and p(n = 1) ≈ 0.4, with the occupation probability of other states being∑
n=2 p(n) . 10%. This shows the possibility of controlled state prepara-

tion of the resonator by choosing appropriate experimental parameters.

In the latter case of an incoherent atomic beam, however, such trapping

states are not observed. Due to the wide spread, σ = τ̄/3, in interaction

times, instances for which the average number of photons enhancing the

interaction strength leads to a full Rabi oscillation do not occur for a consid-
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Figure 5.6: Photon number distribution corresponding to the annomalous

trapping state that arrises for an atom-resonator coupling strength of

g = 62.82 MHz.

erable amount of atoms whose interaction times differ significantly from

the mean value τ̄ = 50 ns. The interactions of these atoms eventually carry

away excitations leading to a dephasing of these trapping states. It should

be mentioned here that the observation of such trapping states would re-

quire experimtal developments beyond those currently realized for hybrid

cavity QED with circular Rydberg states coupling to transmission line res-

onators.

As previously mentioned, another important experimental factor affect-

ing the efficiency of the de-excitation of the resonator is its quality factor.

The dependence of the average number of photons in the non-equilibrium

steady state is plotted in Fig. 5.7. It illustrates the high sensitivity of the av-

erage steady state photon number on the change in quality factors between
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Figure 5.7: The dependence of the steady state average photon num-

ber ,〈n〉ss, on the resonator quality factor, Q. The product rτ � 1 ensures

the approximation of at most one atom interacting with the resonator is

fulfilled.

Q = 104 and Q = 106. Significant de-excitation to a steady state average

photon number of 〈n〉ss ≤ 0.5 can be achieved with the here proposed

method for a quality factor of Q ≥ 5 · 105.

The final state of the resonator after the interaction with the atomic beam

is a non-equilibrium steady state which is determined by the competing

processes between the thermal heating of the resonator, which is caused by

the introduction of photons from the thermal bath at T = 4K, and the rate at

which atoms carry away excitations. This leads to a detailed balance for a

specific average photon number 〈n〉 in the resonator. Therefore, the rate at

which atoms cross the resonator, r, is the main experimentally controllable
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parameter that has to be studied in order to optimize the efficiency of

populating the vaccuum state of the resonator. Phenomenologically, the

more excitations that can be carried away before a thermal photon re-enters

into the resonator due to its coupling to the environment, the lower the final

effective temperature that can be achieved. Fig. 5.8 shows the exponential

relationship between the average photon number in the steady state, 〈n〉ss,

and the rate at which the atoms cross the resonator. From this figure it

can be seen that the higher the atomic beam rate, the more efficient the

cooling process. This behavior is qualitatively similar for different average

interaction times τ̄. However, the region in Fig. 5.8 in which the results are

indicated by the dashed curves are beyond the limits of the approximation

made in the calculation. These graphs therefore only give an indication of

the powerful effective cooling that may be studied if the calculations are

extended beyond the one-atom approximation made in this chapter.

If the atomic beam is replaced with a dense pulsed beam for which the

calcuations need to allow for more than one atom interacting with the

resonator at the same time, we expect that it will be possible to prepare

the resonator at much lower effective temperatures which will persist for a

sufficient period of time to allow strong coupling experiments with much

less than 1 thermal photon present in the resonator. This is the case that

will be considered numerically in Chapter 6.

5.2.2 Time-Resolved Solution

In order to obtain a realistic estimate of how long it takes for a system being

cooled by an atomic beam to reach its steady state using this approach,
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Figure 5.8: Dependence of the average photon number 〈n〉 of the nonequi-

librium steady state of the resonator on the rate of atoms crossing the

resonator with different average interaction times τ̄ as indicated. The

continuous curves represent the values for r that fulfill the approximation

rτ � 1, where the probability of having two or more atoms interact with

the resonator at the same is less than 0.25%. The dashed curves represent

the region in which this approximation breaks down because the proba-

bility that two or more atoms interact with the resonator at the same time

is not negligible anymore.

we obtain a time-dependent solution of Eq. (5.34). The matrix M in this

equation is a tridiagonal matrix. A useful property of such matrices is that

Mn,n+1Mn+1,n = Bn+1Cn ≥ 0, (5.41)
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which guarantees their eigenvalues to be real.

The elements of M in Eq.(5.33) can be expressed as

Mn,m = δn,mAn + δn,m+1Cn−1 + δn,m−1Bn+1. (5.42)

Since the steady-state of a system is defined as being unchanged under the

evolution over time, the application of the matrix generating the dynamics

of the system in the steady-state is Mpss = 0, which we can use to obtain

ṗ(t) = Mp(t)

= Mp(t) −Mpss,
(5.43)

or equivalently

ṗ(t) = M
(
p(t) − pss

)
. (5.44)

This leads to the solution

p(t) = pss + eMt [p(0) − pss
]
, (5.45)

where the matrix exponential must be calculated using eX =
∑
∞

k=0
1
k!X

k. This

calulation can be carried out by diagonalizing the matrix M according to

D = UMU−1
→ eD = UeMU−1, where U is a block matrix containing the

eigenvectors of M, allowing for a unitary transformation of the matrix, and

D is a diagonal matrix containing the corresponding (negative) eigenval-

ues.

It can be shown that the solution obtained in this way is valid, since the

derivative of Eq. (5.34) is

ṗ(t) = M
(
eMt [p(0) − pss

]
+ pss

)
︸                      ︷︷                      ︸

=p(t)

−Mpss︸︷︷︸
=0

= Mp(t),

(5.46)
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and therefore a solution to Eq. (6.1).

The reason to incorporate pss into this solution, even though in the prob-

lem it simply means adding a zero vector, 0, is that it is necessary to

ensure that a non-trivial steady-state solution exists. Without including

the steady-state vector, any solution generated is going to produce a trivial

steady-state solution pss = 0. However, because all the eigenvalues of M

are real and negative, as shown above, a unique and stable solution of the

system’s state must exist [105]. Hence, by finding any solution by solving

the equation of motion, given its initial state at t = 0 and resproducing its

steady-state for t→∞, we have found the unique solution to the problem.

Since we assume that the initial state p(0) respresents the thermal distri-

bution of the resonator mode at time t = 0, and the steady-state solution

pss is readily calculated as seen in the previous section, the full solution of

p(t) at all times t can be obtained.

As can be seen from the previous investigation of the experimental param-

eters, the most effective cooling is achieved for zero detuning, i.e., ∆ = 0,

and a coherent beam of atoms, so that

An =
r
2

[
cos

(
2gτ̄
√

n
)
− 1

]
− γ

[
(2n̄T + 1) n + n̄T

]
, (5.47)

Bn = −
r
2

[
cos

(
2gτ̄
√

n
)
− 1

]
+ γ (n̄T + 1) n, (5.48)

Cn = γn̄T(n + 1). (5.49)

The time evolution of the average photon number of the resonator is plot-

ted in Fig. 5.9. The non-equilibrium steady state with 〈n〉ss = 0.122 is

reached within approximately 100 µs.

After having cooled the system close to its steady-state, it is also of interest
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Figure 5.9: Time-dependent evolution of the average photon number

〈n〉 of the resonator. The initial state of the resonator with a fundamental

frequency of ν = 18.78 MHz is assumed to be a thermal state at Tenv = 4 K.

The atoms on resonance, ∆ = 0, cross the resonator at a rate r = 106 s−1

and couple to it for a constant interaction time τ̄ = 50 ns with a coupling

strength g = 26.66 MHz.

to know how quickly the system heats up again after the atomic beam is

switched out of resonance, which is accounted for by changing the pa-

rameter r = 0. This is the time during which, in principle, experiments

with an initially empty resonator could be performed. In Fig. 5.10 it can

be seen that for a time t . 5µs the resonator contains less than 〈n〉 = 0.5

photons. This is sufficient to perform gate operations within the context

of this experimental setup.
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Figure 5.10: Time resolved reheating of the resonator.

It is important to note that the result arrived at in this chapter requires

restricting the calculations to at most one atom interacting with the res-

onator at any time. This is a significant limitation of the cooling process.

Once the atomic rate r grows so high that the probability of two or more

atoms interacting with the resonator at the same time cannot be neglected,

our calculation must be modified.

99



Chapter 6

Atomic Beam Interaction:

Numerical Approach

The analytical approach to investigating the cooling of selected resonator

modes using beams of Rydberg atoms presented in Chapter 5 provides

and accurate description of the dynamics of the system when there is at

most one atom interacting with the resonator. However, this restriction

on the number of interacting atoms places a limit on the rate, r, at which

atoms can cross the resonator and in turn limits the effective cooling of the

microwave resonator’s fundamental frequency mode.

To extend the analysis of the proposed hybrid system beyond this limit,

we develop a numerical approach in this chapter that allows several atoms

to interact with the microwave resonator at the same time, as illustrated in

Fig. 6.1, permitting access to a parameter range that leads to much more

efficient cooling of the resonator mode.
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Figure 6.1: A schematic diagram of the experimental setup, allowing for

more than one atom to interact with the microwave resonator at any given

time t.

6.1 Modeling the Beam of Atoms

In order to numerically model a realistic experimental setting, it is neces-

sary to account for random arrival times of atoms at the microwave res-

onator. This in turn leads to a random number of atoms interacting with

the microwave resonator at any given time. To study the time-evolution in

this situation, the dynamics are investigated in very small time steps. After

each such time step, ∆t, the probabilty of a new number n atoms arriving

at the resonator is calculated, as well as the probabilty of any atom that
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has been interacting with the resonator during that time step to leave the

resonator. A sketch of the algorithm created to model such behavior is

shown in Fig. 6.2.

The probability of one atom interacting with the resonator within each

time step can be expressed as

P(∆t) = r · ∆t, (6.1)

where r is the rate of atoms crossing the resonator per unit time, and ∆t is

the time step size.

In principle this probability P(∆t) can be infinitely large, as the time step is

arbitrarily chosen. However, over the duration T of an experiment, which

covers N time steps, this effect is canceled out if the rate r is uniformly

distributed, and therefore constant, during the experiment. This can be

seen shown by

N̄atoms =

∫ T

0
r dt

=

∫ T/N

0
r dt +

∫ 2T/N

T/N
r dt + . . . +

∫ T

(N−1)T/N
r dt

= N
∫ T/N

0
r dt︸     ︷︷     ︸

=P(∆t)

= r · T,

(6.2)

where N time steps occur with intervals ∆t = T/N. The probability of

an atom interacting with the resonator during each time step is given in

Eq. (6.1). Following from this definition of the probability of a single atom

arriving at the resonator, we can extend this to the probability of two, three
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Figure 6.2: The flow chart of the numerical approach. Within each time

step ∆t the number of atoms leaving the microwave resonator is calculated

(orange arrows) after having interacted over a time tint. This depends on

how many atoms remain within the resonator, and how many new atoms

enter the microwave resonator (black arrows), based on their arrival prob-

ability Pn(∆t). The black arrows from subsequent orange atom number

boxes, have been omitted for clarity of the sketch.

or even n atoms arriving at the same time as

Pn(∆t) = (r · ∆t)n, n ≥ 1. (6.3)

Therefore we need to estimate the error resulting from the need to introduce

a limit on the maximum number of atoms considered to simultaneously

interact with the microwave resonator at any given time step to ensure
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computational feasibility. To obtain an order of magnitude estimate of

the error, we compare the exact probability of zero atoms arriving at the

resonator P0(∆t) within a given time step to the probability based upon the

above approximation.

1. Exact:

P0(∆t) = 1 −
∞∑

k=1

(r∆t)k

=
1 − 2r∆t
1 − r∆t

.

(6.4)

2. Truncation to N atoms:

P0(∆t) ≈ 1 −
N∑

k=1

(r∆t)k

=
1 − 2r∆t
1 − r∆t

+ ε.

(6.5)

The sums in Eq.(6.4) and (6.5) are solved as converging geometric series

for r∆t < 1. The error resulting from the truncation that arises from the

consideration of at most N atoms interacting with the microwave resonator

at any given time can be quantified as

ε ≈
(r∆t)N

1 − r∆t
. (6.6)

The larger the atomic rate r and/or the time step ∆t, the bigger the error

will be. On the other hand, the more atoms N that are considered, the more

exact the simulation is. For our purposes, an atomic rate of r = 20, a time

step size of ∆t = 0.01 and a truncation to N = 5 atoms leads to an error of

ε ≈ 0.04% in reproducing the probability of having no atom arrive at the

resonator within a given time step. This low estimate of the error there-

fore justifies the validity of this approach. A more detailed justification
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of this approximation by taking the mean interaction time τ into account

and calculating the probabilty of having N ≤ 5 atoms interacting with the

resonator at any given time can be found in Appendix A.

The probability of an atom exiting the resonator, Pex(τ), is cumulatively

Gaussian distributed, whose mean is given by the average interaction

time, τ̄, and therefore calculated based on the time it has so far been inter-

acting with the resonator,

Pex(τ) =

∫ τ

−∞

1
√

2πσ2
e−

(t−τ̄)2

2σ2 dt. (6.7)

In the case of a coherent beam of atoms, meaning a constant interaction

time for each individual atom, and therefore σ = 0, the distribution of the

interaction time can be modelled by a dirac delta function, which leads to

the probability of an atom exiting the resonator to be

Pex(τ) =

∫ τ

−∞

δ(t − τ̄) dt

=


0, τ < τ̄

1, τ > τ̄
. (6.8)

The description of the atom beam statistics in terms of a random distribu-

tion is based on Monte Carlo simulations, where one numerically simulates

a single random realization, a trajectory, and then in turn averages over

a large number of trajectories to get the expectation values of the random

processes. This approach intrinsically accounts for the Gaussian distribu-

tion of the atoms in the beam and consequently their arrival times at the

microwave resonator, as can be seen in Fig. 6.3.
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Figure 6.3: The probability distribution representing the number of atoms

interacting with a resonator over a time T = 2 µs, with an average inter-

action time of τ̄ = 10 ns and a rate of r = 40 atoms/µs. The simulation

was carried out for 500 trajectories.

6.2 Stochastic Dynamics

The mathematical framework for this approach is based on the theory of

quantum dynamical semigroups [3]. We aim to find a formal solution to

the quantum master equation

∂
∂t
ρ(t) = Lρ(t), (6.9)

a Markov semigroup which is a completely positive dynamical mapφt that

translates an initial density matrix onto a later density matrix within the

same Hilbert space with a time parameter t ≥ 0.
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6.2.1 The stochastic process as a series of time steps

Since the Lindblad master equation is a linear superoperator, defined as

the time derivative of a density matrix,

L[ρ] = lim
∆t→0

φ∆t(ρ) − φ0(ρ)
∆t

, (6.10)

one can use its property

φs(φt(ρ)) = φt+s(ρ), (6.11)

to arrive at a mapping with the formal solution

φt+s(ρ) = eLsφt(ρ). (6.12)

This means going from one point in time t0, to a later point t1 = t0 + ∆t, the

formal solution for the dynamics over the small time step ∆t is

ρ(t1) = eL0∆tρ(t0), (6.13)

which one can in turn take as the initial density matrix to get the formal

solution after another time step ∆t.

ρ(t2) = eL1∆tρ(t1)

= eL1∆t
(
eL0∆tρ(t0)

)
. (6.14)

This method can be applied analogously to any number of time steps until

tN = N · ∆t = T if we define t0 = 0. Thus, this constitutes a Markov chain

of N steps, where given a solution to the density matrix at any time t0

we can extend the solution to any later time t, by solving the dynamics

self-consistently for each individual time step depending on the solution

of the quantum master equation during the previous time step.
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6.2.2 The dynamics for a constant number of atoms

The dynamics during a single time step is governed by the quantum master

equation in the interaction picture,

∂ρ̂

∂t
=i

[
ρ̂, Ĥ(N)

i

]
+

√
γc

2
(n̄ + 1)

(
2âρ̂â† − â†âρ̂ − ρ̂â†â

)
+

√
γc

2
n̄
(
2â†ρ̂â − ââ†ρ̂ − ρ̂ââ†

)
,

(6.15)

where the interaction Hamiltonian,

Ĥ(N)
i = g

N∑
n

(
â†σ̂(n)

−
+ âσ̂(n)

+

)
, (6.16)

depends on the number of atoms N interacting with the microwave res-

onator over that time step ∆t. Here we have assumed that over the small

interaction time τ � 1/γa the atoms do not decay, therefore we only con-

sider the dissipation of the microwave resonator. By defining the density

matrix in vector form1, ~ρ, the quantum master equation (6.9) with the

Liouvillian super operator L can be rewritten as

∂
∂t
~ρ = ig

N∑
n

(
1 ⊗ â†σ̂(n)

−
+ 1 ⊗ âσ̂(n)

+ − â†σ̂(n)
−
⊗ 1 − âσ̂(n)

+ ⊗ 1
)
· ~ρ

+γc(n̄ + 1)
(
a ⊗ a† −

1
2

a†a ⊗ 1 −
1
2
1 ⊗ a†a

)
· ~ρ

+γcn̄
(
a† ⊗ a −

1
2

aa† ⊗ 1 −
1
2
1 ⊗ aa†

)
· ~ρ,

(6.17)

where the product between the atomic and the photonic operators is a

tensor product of each of their Hilbert spaces, and the photonic operator

alone is a tensor product with the identity of (2N × 2N)-dimensions. This

1which can be done computationally by the flatten command in several programming

languages, including Python’s numpy module.
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equation of motion for a constant number of atoms N can be formally

solved for an initial time evolution t = 0 7→ ∆t as

~ρ(∆t) = eL∆t~ρ(0), (6.18)

where ρ(0) is assumed to be the thermal state of the system at a temperature

of the coupled bath. By truncating the bosonic Hilbert space of the photon

operator a in matrix form, which is reasonable for a finite temperature of

the bath where the higher dimension Fock states’ occupation probability

is negligible, the solution for the density matrix ~ρ(∆t) becomes analytically

and computationally feasible. Therefore we solve for the dynamics of the

microwave resonator over the interaction time τ numerically, integrating

the solution over a single time step ∆t� τ, and use the result as the initial

density matrix to solve for the subsequent time step. With this method

the dynamics during an atom-photon interaction for a number of atoms,

n, prepared in their respective ground states, is obtained.

6.2.3 A beam of atoms interacting with the resonator

It is important to note that once an atom leaves the resonator, we no longer

consider it part of the system, having carried away its excitation without

being measured. This means that any correlations between the system

and the departed atom that have built up are being neglected. In order to

mathematically describe this process, we take a partial trace of the complete

system, and atom(s) still interacting with the resonator, labeled ρs, tracing

out the departed atoms’ degrees of freedom,

ρs = Tra
{
ρtot

}
, (6.19)
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Figure 6.4: Schematic diagram of the average photon occupation number

of the microwave resonator with atoms being deterministically moni-

tored for a single realization. The moments atoms enter the resonator are

marked by grey, dashed gridlines. Three atoms enter at a time t = 0, the

state of one of them being displayed by the dashed blue curve. Two atoms

leave and one enters at t = 500. At a time t = 1000, the atom 1 leaves the

resonator, and a different atom 2 enters, whose dynamics are displayed

by green dashed curves, and two additional atoms are introduced. At

t = 1500 the same atom remains and its state is displayed, while 2 new

atoms enter, one of which is being displayed by the red dashed curve.

of the full density matrix ρtot. Thus, any new N atoms arriving at the

resonator lead to a new initial density matrix

ρ0 = ρs ⊗ |ψa〉〈ψa| ⊗ |ψb〉〈ψb| ⊗ · · · ⊗ |ψN〉〈ψN|, (6.20)
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where the atoms arriving are in the ground state |ψa〉 = |g〉. Fig. 6.4 shows

that at any time during the coherent evolution, which follows a Rabi cy-

cle, the resonator’s average number of photons has decreased. Once the

atoms leave the microwave resonator after an average interaction time τ̄,

which can be estimated from the atom beam’s velocity distribution and

is experimentally known, the resonator ends up in a thermal state with a

lower average number of photons than when the atoms began interacting

with the resonator. Therefore, by continuously reintroducing ground state

atoms to the system, the resonator mode can be effectively cooled. Since

the Rabi frequency for a larger number of atoms has a larger amplitude,

this approach leads to a more effective cooling process than when at most

one atom interacting with the resonator is considered. At the point where

the a new atom is introduced to the microwave resonator, an additional

photon is absorbed by the atom within its Rabi cycle, leading to a change

in the state of the microwave resonator and lowering the average number

of microwave photons. Therefore, a successive introduction of atoms into

the resonator leads to an effective cooling of the resonator mode to which

they are coupled.

6.2.4 Ensemble average of the trajectories

To quantify the cooling of the microwave resonator mode, the relevant

experimental parameters are the average interaction time, τ̄ = 50 ns, the

interaction strength, g/(2π) = 4.25 MHz, as well as the dissipation rate of

the microwave resonator, γ/(2π) = 3 kHz, which is derived from the res-
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onator’s Q-factor of Q = 106 for a fundamental frequency of ν = 18.78 GHz.

In this process we take into account many realizations of the possible tra-

jectories of a single experimental run. All possible realizations are then

averaged at each time step, thus giving a quantifiable time-resolved expec-

tation value that would be observable when running the experiment. The

average number of thermal microwave resonator photons, or phonons in

a mechanical oscillator, can be expressed as [75]

〈n〉th =
1

e
~ω

kBT − 1
. (6.21)

In the case of a resonance frequency of ν = 18.78 GHz, the average number

of photons in the environment at a temperature of T = 4 K is 〈n〉th ≈ 3.96.

As can be seen from Fig. 6.5, in the case of a sparse beam of atoms, i.e.,

r = 1 MHz, the numerical calculations reproduce accurately the behavior

obtained with the analytical method. Increasing the rate of atoms cross-

ing the resonator to 15 MHz corresponds to a regime where the analytical

method breaks down. The effective cooling of the fundamental resonator

mode with a dense beam of Rydberg atoms prepared in the lower of two

circular states is illustrated in Fig. 6.6. In this case the probability of more

than one atom interacting with the resonator at a time is not negligible

anymore but the cooling mechanism is more effective. This is due to the

fact that the more atoms cross the resonator per second, more excitations

can be carried away. Therefore, a steady state can be reached where the

average number of photons has been significantly reduced to as low as

〈n〉ss = 0.006 within a time of t ≈ 20 − 25 µs. The parameters considered in

this study are expected to be accessible with current experimental hybrid

architectures [80]. In Fig. 6.7 the effect of individual atomic trajectories on
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Figure 6.5: Comparison of the analytical and numerical method of treating

the coupled atom-resonator system in a parameter regime in which both

approaches are valid. The rate of Rydberg atoms crossing the resonator is

r = 106 s−1, the constant interaction time is τ = 50 ns, and the interaction

strength is g/(2π) = 4.25 MHz.

the resonator photon occupation number are plotted and compared to the

ensemble average of 100 trajectories. The individual trajectories show the

quantum jumps in the average photon number, illustrating the departure

of an excited atom, which effectively lowers the average photon number

in the resonator.

From the results provided here we conclude that significant gains in res-

onator cooling efficiency can be achieved by increasing the flux of atoms

interacting with the resonator such that more than one interacts at a time.

For resonators with dimensions of 10−50 µm, and typical atom beam den-
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Figure 6.6: The effect of a dense beam of atoms prepared in the lower

of two circular Rydberg states on the thermal photon occupation number

in the resonator. The rate of Rydberg atoms crossing the resonator is

r = 15 MHz, the constant interaction time is τ = 50 ns, and the interaction

strength is g/(2π) = 4.25 MHz.

sities of ∼ 108 cm−3, as were measured in Chapter 3, this regime in which a

few (2−5) atoms interact with the resonator at any given time is achievable.

A similar method of using Rydberg atoms to de-excite coplanar waveg-

uide resonators has recently been published by Sarkany et al. [99], where

an ensemble of atoms in the ground state is trapped above the resonator,

which extracts photons by continuous optical pumping. The efficiency of

both methods is compared in Fig. 6.8 for the same experimental param-

eters. The cavity mode resononance frequency is ω/(2π) = 5 GHz and

its quality factor is assumed to be Q = 105, resulting in a decay rate of
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(b) Second calculated trajectory.
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Figure 6.7: Two calculated trajectories for individual atoms compared to

the average of 100 simulated trajectories, displaying the quantum jumps

in the photon field induced by an atom entering the resonator and being

excited.

(a) Method by Sarkany et al. [99]
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(b) Numerical atom beam method.
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Figure 6.8: Comparison of the photon probability distribution of the

method a) studied by Sarkany et al. [99] and b) the method investigated

in this chapter with an atomic rate of r = 145 · 106 s−1 and an average

interaction time of τ̄ = 10 ns. Both concepts lead to a sharp peak around

n = 0 and a significantly lower average effective photon number in the

steady state.
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Figure 6.9: Time-dependence of the average resonator photon number.

An average steady state photon number of 〈n〉ss & 0.1 can be reached

within a time of t ≈ 1 µs, utilizing approximately 150 Rydberg atoms to

effectively cool the resonator.

γ/(2π) ≈ 50 kHz. The coupling strength between resonator and atom is

g/(2π) = 5 MHz. Considering these parameters, and assuming an atomic

beam rate of r = 145 · 106 s−1 with an average interaction time of τ̄ = 10 ns,

the average number of photons achievable in the resonator is 〈n〉ss & 0.1,

compared to 〈n〉ss = 0.5 given in [99]. The time-resolved evolution of the

average photon number in the resonator is displayed in Fig. 6.9, illustrating

the rapid effective cooling. Based on this timescale, the average number

of Rydberg atoms crossing the resonator to achieve this cooling effect is

estimated to be approximately 150 atoms.
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Chapter 7

A Microwave

Resonator-Nanomechanical

Oscillator–System driven by an

Atomic Beam

Recently, one particular focus of hybrid quantum system research has been

the proposal of quantum state preparation of an individual system with

the help of another quantum system. The methods described and ana-

lyzed in Chapters 5 and 6 to cool selected modes of coplanar microwave

resonators are in principle quite general. Because of the wide range of

Rydberg-Rydberg transition frequencies available in any given atom or

molecule they can be implemented over a wide range of resonance fre-

quencies. With this in mind the formalisms developed in Chapter 5 and

Chapter 6 are extended in this chapter to cool selected modes of nanome-
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chanical resonators. The resonators considered have resonance frequencies

in the microwave regime of the electromagnetic spectrum. The types of

nanomechanical resonator devices of interest are therefore those based on

micrometer membrane [107] or toroidal microresonator technologies [112].

7.1 Derivation of the Hamiltonian

To treat the coupled Rydberg-atom–optomechnaical-resonator system, the

starting point considered is represented by the Hamiltonian given and

simplified in [19],

H = H0 + Hac + Hmc + HL, (7.1)

where H0 are the system Hamiltonians of the atoms, photon and phonon

modes involved, Hac is the Hamiltonian describing the coupling between

atoms and cavity, Hmc represents phonon-photon interaction of the nanome-

chanical resonator and the cavity, and HL is the laser drive of the pump

mode of the cavity.

The Hamiltonian (7.1) for the combined Rydberg-atom–optomechanical-

oscillator can be expressed in detail as

H0 = ωmb†b + ω0a†a +
ωa

2

∑
i

σ(i)
z + ωpa†pap, (7.2)

Hac =
∑

i

gi

(
aσ(i)

+ + a†σ(i)
−

)
, (7.3)

Hmc = gm(b + b†)(a†a + a†pap − a†ap − a†pa), (7.4)

HL = Ωpe−iωLta†p + Ω∗peiωLtap. (7.5)

Here, a two mode cavity system with frequencies ω0 and ωp mediates an

excitation transfer between a moving membrane, toroidal microresonator
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or patterned nanobeam (i.e. nanomechanical oscillator) and the atom(s).

In order to enhance the radiation pressure coupling g0 between the me-

chanical oscillator and the resonator, a laser with frequency ωL and Rabi-

frequency Ωp continuously pumps the cavity. This laser-pump frequency

ωL is strongly detuned from the atomic transition frequency ωa, which

is close to or on resonance, respectively, with the second cavity mode ω0.

However, we are ignoring the dipole-dipole interaction between the atoms

itself. Transforming these expressions into a frame of reference rotating

with respect to the laser drive by applying the unitary transformation

U = exp
[
−iωLt

(
a†a + a†pap +

∑
i
σ(i)

z
2

)]
, the time-dependence in the driving

term is removed via the application of a lemma following from the BCH

formula,

esXYe−sX = Y + s[X , Y], (7.6)

if [X , [X , Y]] = [Y , [X , Y]] = 0.

We consider the regime of a strong laser pump of the auxiliary cavity

mode, Ωp � gm, i.e., the coupling of photons of this auxiliary cavity mode

to mechanical resonator phonons is weak. Here the pump mode of the

cavity is close to a coherent steady state α apart from small quantum

fluctuations 〈δa†pδap〉 � |α|2, stemming from nonlinearities introduced by

the nanomechanical resonator [48]. This allows for the replacement of the

operator ap → α+δap, and leads to a linearization of the radiation pressure

coupling in Hmc. The modified equilibrium position of the nanomechanical

oscillator can be expressed as b→ β+b. First the zero point energy is shifted,

which can be done because a global phase shift does not affect the dynamics

of the system. Applying the displacement operator D(α) = exp (αa† − α∗a)
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to the Hamiltonian leads to a unitary transformation of the form

D(α)aD(α) = a + α. (7.7)

Therefore choosing appropriate values for the displacements

α =

√
−
ωm

gm
β, (7.8)

(β + β∗) = −
Ωp + ∆p

gm
, (7.9)

and including only enhanced optomechanical interaction strengths of or-

der |gα| and |gα|2 eliminates the first oder terms in b(†) and δa(†)
p . Hence, we

obtain

H =
(
∆0 + gm(β + β∗)

)
a†a −Ωpδa†pδap + ωmb†b

+
∆a

2

∑
i

σ(i)
z + Hal + gm(b + b†)(α∗δap + αδa†p)

−gm(b + b†)(α∗a + αa†) − gm(β + β∗)(α∗a + αa†). (7.10)

Further transforming the Hamiltonian into a frame of reference rotating

with respect to (Ωpδa†pδap +ωmb†b) and assuming |gmα| � |Ωp −ωm|, which

is self-consistenlty fulfilled due to the strong pump laser drive and a small

single photon-phonon interaction strength, leads to fast oscillating terms

in the coupling strength associated with the b(†)δap interactions. These fast

oscillating terms can be neglected under the rotating wave approximation

(RWA) [4], and doing this leads to the result that

H ≈ ∆̃0a†a + ∆̃pδa†pδap + ωmb†b +
∆a

2

∑
i

σ(i)
z + Hal

−gm(b + b†)(α∗a + αa†) − gm(β + β∗)(α∗a + αa†). (7.11)

The δa†pδap-terms are completely decoupled from the rest of the system,

and are therefore ignored in the following by performing a partial trace of
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the density matrix with respect to the degrees of freedom of the photons

with frequency of the driving field. Thus, the influence on the dynamics

of the entire system will simply be a global phase-shift. Applying another

displacement operator unitary transformation, U = exp(θa − θa†), elimi-

nates the linear terms in a(†) for an appropriate choice of θ =
gm(β+β∗)α

∆̃0
. It also

does not affect Hal because prior to applying the RWA it can be written as

Hal = igac(σ++σ−)(a−a†), which commutes with the unitary transformation.

The resulting linear terms in the b(†)-operators can be absorbed into their

displacement again. This is accomplished analogously to the procedure

above by adjusting the term for the pump mode laser intensity in Eq. (7.8),

|α|2 → 2θ −
ωm

gm
β. (7.12)

By assuming |αgm| � |∆̃0 + ωm|, whereas |∆̃0 − ωm| is of the same order of

magnitude as |αgm|, we can apply a further RWA where we can neglect the

rapidly oscillating counter-rotating terms ba and b†a†, and then transform

back, to obtain

H ≈ ∆̃0a†a + ωmb†b +
∆a

2

∑
i

σ(i)
z + G(a†b + ab†) +

∑
i

gi

(
aσ(i)

+ + a†σ(i)
−

)
, (7.13)

where the photon-enhanced radiation pressure coupling strength is rede-

fined as G = −gmα. Because α ∝
√

Np, and assumed to be real-valued for

convenience but without loss of generality, this means that the interaction

strength between the nanomechanical oscillator and the cavity is propor-

tional to the intensity of the pump laser.

In the calculations and figures in the Chapters 7.2 and 7.3 we assume the

following parameters, unless otherwise stated, in terms of the nanome-

chanical oscillator frequency: a frequency of the microwave resonator of
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ωc/ωm = 2, a single-photon optomechanical coupling strength of gm/ωm =

2.5 · 10−4, that together with a laser-drive generating nd = 1.6 · 105 pho-

tons enables a light-enhanced coupling strength of G/ωm = 0.1, a Rydberg

atom transition frequency of ωa/ωm ≈ 2, and atom-resonator coupling

strength g/ωm = 0.1. Achievable experimental parameters for the individ-

ual quantum systems fall into the same orders of magnitude, as can be

seen in Table 1.2, when a patterned Si nanobeam [25] is considered as the

nanomechanical oscillator. However, a hybrid architecture of a combina-

tion of these three individual quantum systems with the same parameters

as considered here has not yet been developed. The study in this Chapter

therefore serves as a proof of principle.

In the following we aim to diagonalize the photon-phonon–subsystem by

moving to a joint polariton-picture, which allows for the theoretical frame-

work developed in Chapter 5 and Chapter 6 to be applied to the coupling

of this subsystem to an atomic beam.

7.2 Microwave Resonator-Mechanical Oscillator–

Subsystem

To study the photon-phonon–subsystem comprised of an optical cavity

and a nanomechanical resonator, the Hamiltonian H = Hmc + Hac where

Hmc = ∆̃0a†a + ωmb†b + G(a†b + ab†), (7.14)

can be exactly diagonalized within a new basis set of polariton excita-

tions because the total particle number N = a†a + b†b is conserved for this

122



subsystem:

[Hcm , a†a + b†b] = 0 (7.15)

where [a(†), a†a] = (−)a(†) and [b(†), b†a] = (−)b(†). This means that the eigen-

values of the Hamiltonian Hcm can be obtained in terms of Bogoliubov

modes via the canonical transformation
a

b

 =


cosφ sinφ

− sinφ cosφ



α

β

 . (7.16)

The diagonalized Hamiltonian expressed in terms of the new modes is

therefore a† b†



∆̃0 G

G ωm



a

b


!
=

α† β†



ωα 0

0 ωβ



α

β

 , (7.17)

where we need to solve the equation system following from
cosφ − sinφ

sinφ cosφ



∆̃0 G

G ωm




cosφ sinφ

− sinφ cosφ

 =


ωα 0

0 ωβ

 . (7.18)

This equation system has four different sets of solutions. For convinience

the set for which both sinφ, cosφ > 0 is chosen for the canonical trans-

formation. We define the detuning ∆ = ωm − ∆̃0, Rabi frequency Ω =
√

∆2 + 4G2 and average polariton energy E0 = (∆̃0 + ωm)/2 to simplify the
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Figure 7.1: (1) The dependence of the eigenenergies of both polariton-

modes is displayed when the detuning between the microwave resonator

and the laser drive ∆̃0 is decreased from 2ωm to 0ωm by varying the

laser drive frequency. (2a) and (2b) show the relative amplitudes of the

photonic and phononic excitation.
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expressions to

cosφ =

√
Ω + ∆

2Ω
, (7.19)

sinφ =

√
Ω − ∆

2Ω
, (7.20)

ωα = E0 −
Ω

2
, (7.21)

ωβ = E0 +
Ω

2
, (7.22)

where the polaritons are a combination of photons and phonons.

7.3 Microwave Resonator-Mechanical Oscillator-

Atom–System

Rewriting the full Hamiltonian in Eq. (7.13) in terms of the Bogoliubov-

polariton modes, and considering for the sake of simplicity the special case

of only one atom interacting with the resonator,

H = ωαα
†α+ωββ

†β+
∆a

2
σz+g cosφ

(
ασ+ + α†σ−

)
+g sinφ

(
βσ+ + β†σ−

)
(7.23)

It can be seen in Fig. 7.1 that for each atomic (de-)excitation one polariton-

mode is (created) annihilated, but with a different composition of photon-

and phonon-parts. A completely symmetric state would be reached for

∆ = 0, because in that case sinφ = cosφ.

The commutator between the total excitation number (polariton number

and atomic excitation) and the Hamiltonian is

[α†α + β†β +
σz

2
, H] = 0. (7.24)
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Because the particle number is conserved, the full Hamiltonian can be di-

agonalized within this 3-particle-excitation subspace. One point to note in

doing this is the fact that this new quasiparticle, a three-particle-polariton,

is a mixture of two bosonic polaritons and a fermion. Therefore it is first

necessary to transform the problem into an interaction picture according

to

Ĥi = Ûr f (Ĥ − Ĥ0)Û†r f , (7.25)

with a rotating frame at the detuning of the atomic frequency,

Ûr f = exp [i∆atĤ0]

= exp
[
i∆at

(
α̂†α̂ + β̂†β̂ +

σ̂z

2

)]
.

(7.26)

Following this, the interaction Hamiltonian can be written in matrix form

as

Ĥi =

α† β† σ+




∆α 0 g cosφ

0 ∆β g sinφ

g cosφ g sinφ 0





α

β

σ−


, (7.27)

where the detunings ∆α,β = ωα,β−∆a represent the frequency difference be-

tween the polariton modesα(†), β(†) of the microwave resonator-mechanical

oscillator subsystem and the detuning of the atomic transition frequency

from the frequency of the pump laser. The eigenvalues of this Hamiltonian

can be readily calculated and exhibit an avoided crossing for the param-

eters fulfilling all approximations, as seen in Fig. (7.2). By changing to a

basis corresponding to the 3-particle-excitation modes x̂, ŷ, ẑ, which is done
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Figure 7.2: The first 3 eigenenergies of the Hamiltonian Hi depending

on the detuning between the microwave resonator detuning and the me-

chanical oscillator ∆ = ∆̃0 − ωm. The detuning between the microwave

resonator and the laser drive ∆̃0 is decreased from 2ωm to 0ωm.

via the canonical transformation

α̂

β̂

σ̂−


= R̂



x̂

ŷ

ẑ,


(7.28)
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the Hamiltonian can be rewritten. As a result, the eigenvalues of the

polariton-modes are numerically calculated from

ωx 0 0

0 ωy 0

0 0 ωz


= T̂†



∆α 0 g cosφ

0 ∆β g sinφ

g cosφ g sinφ 0


T̂. (7.29)

The results for ω(x,y,z) give the eigenenergies of the Hamiltonian and there-

fore its resonance modes. The transformation matrix T̂, consisting of the

eigenvectors of the Hamiltonian, gives information about their polaritonic

composition, revealing if these energies are mostly dominated by atomic,

phononic or photonic excitations. The rotation matrix mixing the three

particle types is given by the eigenvectors of the Hamiltonian Hi that have

been previously plotted in Fig. 7.2. The composition of the quasiparticles

representing the eigenenergies is displayed in Fig. 7.3. It can be seen that

the first two three-particle-polaritons, graphs (a) and (b), are an antisym-

metric mixture of atomic excitation and either α-polariton, the blue curve

(a), or β-polariton, which is the red curve (b). The third quasiparticle, dis-

played by the green curve (c), shows a transition from being dominantly

a β-polariton, to mostly atomic excitation at zero detuning between the

polaritons, ∆ = 0, This information is crucial as it dictates the parameter

regime in which the polariton modes are mostly phononic. In order to

engineer a cooling mechanism for the phononic mode of the mechanical

oscillator via a beam of atoms, in the next section we exploit the interaction

between the static microwave resonator-mechanical oscillator-subsystem

and the atoms prepared in the lower circular Rydberg state to de-excite
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Figure 7.3: The quasiparticle-composition of the eigenenergies (a) ωx, (b)

ωy and (c) ωz in Equ. (7.29) of the interaction Hamiltonian, Hi, that are

plotted in Fig. 7.2.
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such a mainly phononic polariton mode.

7.4 The Atomic Beam as an engineered environ-

ment

The Hamiltonian of the complete atom-polariton system can be split into

two parts, one with and one without the atomic interaction:

H = H0 + Hi, (7.30)

H0 = ωαα
†α + ωββ

†β +
ωa

2
σz, (7.31)

Hi = g cosφ
(
ασ+ + α†σ−

)
+ g sinφ

(
βσ+ + β†σ−

)
. (7.32)

A necessary prerequisite to apply the theoretical framework established in

Chapter 5 to mathematically describe a switchable interaction is that the

commutator between the system Hamiltonian and the interaction Hamil-

tonian vanishes. This commuter is calulcated to be

[H0,Hi] = g cosφ(ωα−ωa)(α†σ−−ασ+)+ g sinφ(ωβ−ωa)(β†σ−−βσ+). (7.33)

If it is assumed that the atomic transition frequency is resonanct with one

of the two polariton modes, then

• Either ωα − ωa = 0

[H0,Hi] = g

√
Ω2 −Ω∆

2
(β†σ− − βσ+). (7.34)

If ∆ ≈ 0, it follows that [H0,Hi] ≈
gG
√

2
(β†σ−−βσ+). Therefore, an upper

limit can be given in the regime ∆ ≥ 0 for the commutator

[H0,Hi] ≤
gG
√

2
(β†σ− − βσ+). (7.35)
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• Alternatively, forωβ−ωa = 0 and ∆ ≤ 0 a limit is analogously obtained

to be

[H0,Hi] ≤
gG
√

2
(ασ+ − α

†σ−). (7.36)

From this it can be seen that the sign of the detuning determines which

polariton mode is close to resonance with the atomic transition frequency.

Following this, an upper/lower limit can be obtained for the commutator

between the full Hamiltonian and the atomic Hamiltonian. In order to

determine which regime to consider to most effectively cool the phonon-

mode, the combination of the three polariton types in Fig.(7.3) has to be

investigated. This can be done by plotting both regimes considered, the

eigenenergies of the interaction Hamiltonian within these regimes, and

the composition of the excitations of the polariton types following from

the eigenvectors of this calculation. These eigenvectors then need to be

additionally rotated around the atomic-excitation axis with a 3D rotation

matrix, according to their polariton-rotation when diagonalizing the me-

chanical oscillator-resonator subsystem. The result is the mix of photon-,

phonon- and atom-excitations of the eigenstates of this interaction Hamil-

tonian. Whichever eigenenergy contains the highest proportion of phonon-

and atom-excitations then has to be cooled by removing a quasiparticle,

which is achieved by removing the atomic excitation of the polariton via

the beam of atoms. This is going to establish the regime of experimental

parameters leading to the most effective cooling procedure of the mechan-

ical oscillator mode.

Assuming a sufficiently small coarse grained time scale, ∆t, so that√
gGn(α,β)∆t� 1, (7.37)
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the commutator in Eq. (7.33) is negligible and the time evolution operator

can be approximated as

U = e−i∆tH

= e−i∆tH0e−i∆tHaeO2(∆t
√

gG)
· · ·

≈ e−i∆tH0e−i∆tHa .

(7.38)

Thus, the formalism introduced in Chapter 5 can be applied. On a suffi-

ciently small coarse grained time-scale the time-evolution of the density-

matrix of the whole system without an atom present can be written as

ρ̂0(t + ∆t) = e−iĤ0(∆t)ρ̂(t)eiĤ0(∆t), (7.39)

and with an atom present as

ρ̂1(t + ∆t) = e(−iĤ0∆t)
[
e(−iĤaτ)ρ̂(t)e(iĤaτ)

]
e(iĤ0∆t), (7.40)

where τ is the interaction time of a single atom with the mechanical

oscillator-resonator–system. By combining these two equations, consid-

ering the rate of ground state atoms r and excited state atoms R crossing

the resonator per second and transforming to an interaction picture with

respect to H0, we arrive at an equation determining the density matrix at

time t + ∆t given the density matrix at time t, which can be expressed as

ρ̂tot(t + ∆t) = ρ̂tot(t) · (1 − r∆t − R∆t) + r∆t
∫

dτPg(τ) e−iĤaτ/~ρ̂tot(t)eiĤaτ/~

+R∆t
∫

dτPe(τ) e−iĤaτ/~ρ̂tot(t)eiĤaτ/~, (7.41)

where τ is the interaction time of a single atom with the microwave

resonator-mechanical oscillator system and Pg,e(τ) is the distribution of

interaction times for the ground and excited state, respectively. Before an
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atom prepared in the lower circular Rydberg state interacts with the system

the total density matrix can be factorized into a density matrix describing

the state of the system, ρ̂cm and a density matrix |g〉〈g| describing the pure

state of the atom at arrival, as ρ̂tot = ρ̂cm ⊗ |g〉〈g|. In the case of an atom

prepared in the excited circular state, the full density matrix factorizes as

ρ̂tot = ρ̂cm⊗ |e〉〈e| before the interaction. Hence, it is necessary to investigate

the effect of the atomic interaction Hamiltonian on the ground and excited

states, respectively, of a two level system (i.e. atom in a circular Rydberg

state). In the case of atoms prepared in the lower circular state,

e(−igĤaτ)
|g〉 =

∑
k

(−iτg)kĤk
a

k!
|g〉, (7.42)

with

Ha =
(
cosφα + sinφβ

)
σ+ +

(
cosφα† + sinφβ†

)
σ−, (7.43)

H2
a = cosφ sinφ(α†β + αβ†) + cos2 φα†α + sin2 φβ†β + |e〉〈e|, (7.44)

where the substitution Ĥa → gĤa has been made and the interaction

strength between atom and photon-field g has been taken out of the atomic

interaction Hamiltonian. The exponential series in Eq. (7.42) is extended

up to second order in gτ̄ � 1, where τ̄ is the average interaction time

of an atom with the system. This approximation is fulfilled in the weak-

coupling regime where the perturbation of the system due to the interac-

tion with the atom is small. Evaluating the exponentials to second order

and taking the partial trace with respect to the atomic degrees of freedom,

ρ̂cm(t) = Tra{ρ̂tot(t)}, we arrive at an equation giving the change of the re-

duced density matrix of the system due to an interaction with a beam of

atoms (with at most one atom interacting with the system during each time
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step ∆t). Averaging over the distribution, assuming here for simplicity that

we can replace these terms by the average interaction time τ→ τ̄, we can

rewrite the equation of motion for the reduced density matrix so that it

closely resembles the form of the Lindblad quantum master equation, i.e.,

∂ρ̂cm(t)
∂t

∣∣∣∣∣
atom

= +
rg2τ2 cos2 φ

2

(
2αρ̂cm(t)α† − ρ̂cm(t)α†α − α†αρ̂cm(t)

)
+

rg2τ2 sin2 φ

2

(
2βρ̂cm(t)β† − ρ̂cm(t)β†β − β†βρ̂cm(t)

)
+

rg2τ2 sinφ cosφ
2

(
2αρ̂cm(t)β† − ρ̂cm(t)αβ† − αβ†ρ̂cm(t)

)
+

rg2τ2 sinφ cosφ
2

(
2βρ̂cm(t)α† − ρ̂cm(t)α†β − α†βρ̂cm(t)

)
+

Rg2τ2 cos2 φ

2

(
2α†ρ̂cm(t)α − ρ̂cm(t)αα† − αα†ρ̂cm(t)

)
+

Rg2τ2 sin2 φ

2

(
2β†ρ̂cm(t)β − ρ̂cm(t)ββ† − ββ†ρ̂cm(t)

)
+

Rg2τ2 sinφ cosφ
2

(
2α†ρ̂cm(t)β − ρ̂cm(t)α†β − α†βρ̂cm(t)

)
+

Rg2τ2 sinφ cosφ
2

(
2β†ρ̂cm(t)α − ρ̂cm(t)αβ† − αβ†ρ̂cm(t)

)
.

(7.45)

In the context of open quantum systems, the effect of the atom on the

system is treated here as an interaction with the environment. The result is

a quantum master equation in Lindblad form resulting from the interaction

with a continuous beam of atoms. This can be linearly combined with the

coherent evolution of the closed system, H0, given by the van Neumann

equation, where the partial trace has been taken over the atomic degrees

of freedom. In doing this the ωz-part turns into a constant value which

can be absorbed by a shift of the zero-point energy. This leads to a master
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equation of the form

d
dt
ρ̂cm(t) = −i

[
H0, ρ̂cm(t)

]
+
∂ρ̂cm(t)
∂t

∣∣∣∣∣
atom
. (7.46)

An additional possibility is considering other environments for the mi-

crowave resonator or mechanical oscillator, such as for example interacting

with the thermal state of the environment [21].

7.4.1 Steady State of the system interacting with an atomic

beam

As a first step in applying this formalism to the microwave resonator-

mechanical oscillator system interacting with an atomic beam, we inves-

tigate the average polariton numbers that can be calculated. Naturally,

with the master equation derived above, and assuming that the mechan-

ical oscillator and microwave resonator are otherwise closed systems, we

calculate the time-evolution of average values of interest, 〈α̂(†)
〉, 〈β̂(†)

〉 and

especially

d
dt
〈n̂α〉 =

d
dt
〈α̂†α̂〉 =

d
dt

Tr
{
α†α̂ρ̂cm(t)

}
= Tr

{
α†α̂

d
dt
ρ̂cm(t)

}
. (7.47)

This can be done in a straight-forward manner by evaluating the expression

with the time-derivative of the reduced density matrix, exploiting the cyclic

property of the trace operator.
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The set of equations of motion are therefore

d
dt
〈α̂†α̂〉 = g2τ2 cos2 φ(R − r)〈α†α〉

+
g2τ2 sinφ cosφ

2
(R − r)

(
〈α†β〉 + 〈αβ†〉

)
+Rg2τ2 cos2 φ, (7.48)

d
dt
〈β̂†β̂〉 = g2τ2 sin2 φ(R − r)〈β†β〉

+
g2τ2 sinφ cosφ

2
(R − r)

(
〈α†β〉 + 〈αβ†〉

)
+Rg2τ2 sin2 φ, (7.49)

d
dt
〈α̂†β̂〉 =

( (R − r)g2τ2

2
+ i(∆α − ∆β)

)
〈α†β̂〉

+
(R − r)g2τ2 sinφ cosφ

2

(
〈α†α〉 + 〈β†β〉

)
+Rg2τ2 sinφ cosφ, (7.50)

d
dt
〈α̂β̂†〉 =

( (R − r)g2τ2

2
− i(∆α − ∆β)

)
〈αβ̂†〉

+
(R − r)g2τ2 sinφ cosφ

2

(
〈α†α〉 + 〈β†β〉

)
+Rg2τ2 sinφ cosφ. (7.51)

Here, the two competing processes of atoms prepared in the higher circular

Rydberg state introducing excitations into the system and atoms prepared

in the lower circular state extracting excitations lead to a detailed balance

for a non-equilibrium steady state number of polaritons. We calculate the

steady state of the system, d
dt〈O〉

!
= 0, because of d

dt ρ̂
!
= 0. The steady state

is reached after a time t → ∞. For the microwave resonator-mechanical
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Figure 7.4: The effective cooling process for the polariton excitations

〈α†α〉ss + 〈β†β〉ss. Note that the x-axis is inversed in order to illustrate the

effect for an increase in the rate of atoms prepared in the lower circular

Rydberg state. The inset shows the same calculation with a linear y-axis.

oscillator system coupled to a reservoir of atoms via an atomic beam, we

obtain for ∆α , ∆β,

〈α†α〉ss = 〈β†β〉ss =
R

r − R
. (7.52)

In this case, the steady state does not contain any buildup of correlations

between the different types of polariton because 〈α†β〉ss = 0. The number of

polaritons in the steady state thermalizes with respect to the ratio of ground

state and excited state atoms interacting with the microwave resonator-

mechanical oscillator subsystem. From this one can immediately see that

for an atomic beam where R = 0 atoms are prepared in the excited state, a
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steady state of the system is eventually reached which contains neither α-

nor β-polaritons. This therefore represents a possible way to effectively cool

the nanomechanical oscillator. This result is not surprising considering

we did not include the possibility of thermal heating due to the finite

temperature of the environment.

7.4.2 Considering a Thermal Environment

To account for the coupling to a thermal environment it is assumed that the

time of flight of the Rydberg atoms is short compared to their coherence

times. Therefore they arrive at the cavity in their initially prepared state.

The cavity and mechanical resonator however experience thermal heating

due to their environment. We must therefore investigate how their indi-

vidual dissipation rates affect the polariton states within the framework of

the Lindblad master equation. The dissipator for the microwave resonator

can be expressed as

Dr[ρ] =
γr

2
(Nr+1)

(
2aρa† − a†aρ − ρa†a

)
+
γr

2
Nr

(
2a†ρa − aa†ρ − ρaa†

)
, (7.53)

where the operators a(†) are the photon annihilation (creation) operators in

the original Fock basis, γr is the dissipation rate of the resonator following

from its quality factor Qr and Nr is the number of photons in the resonator

at thermal equilibrium with the environment at a temperature T = 4 K.

Analogously, the dissipator for the mechanical oscillator is

Dm[ρ] =
γm

2
(Nm + 1)

(
2bρb† − b†bρ − ρb†b

)
+
γm

2
Nm

(
2b†ρb − bb†ρ − ρbb†

)
.

(7.54)

These dissipators are expressed in terms of the polariton operators α and

β. We can summarize these terms as the internal dissipator Di[ρ] = Dr[ρ] +
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Dm[ρ] such that

Di[ρ] =
(γm

2
(Nm + 1) sin2 φ +

γr

2
(Nr + 1) cos2 φ

)(
2αρα† − α†αρ − ρα†α

)
+
(γm

2
Nm sin2 φ +

γr

2
Nr cos2 φ

)(
2α†ρα − αα†ρ − ραα†

)
+
(γm

2
(Nm + 1) cos2 φ +

γr

2
(Nr + 1) sin2 φ

)(
2βρβ† − β†βρ − ρβ†β

)
+
(γm

2
Nm cos2 φ +

γr

2
Nr sin2 φ

)(
2β†ρβ − ββ†ρ − ρββ†

)
+ sinφ cosφ

(
γr(Nr + 1) − γm(Nm + 1)

)(
αρβ† + βρα†

)
+ sinφ cosφ

(
γrNr − γmNm

)(
α†ρβ + β†ρα

)
(7.55)

− sinφ cosφ
(
γr(Nr +

1
2

) − γm(Nm +
1
2

)
)(
α†βρ + ρα†β + αβ†ρ + ραβ†

)
.

The average thermal number of microwave resonator-photons and me-

chanical oscillator-phonons in the system can be expressed as

〈n〉th =
1

e
~ωr,m

kBT − 1
. (7.56)

Together with the dissipator resulting from the atomic interaction,

Dat[ρ] =
rg2τ2 cos2 φ

2

(
2αρ̂α† − ρ̂α†α − α†αρ̂

)
+

Rg2τ2 cos2 φ

2

(
2α†ρ̂α − ρ̂αα† − αα†ρ̂

)
+

rg2τ2 sin2 φ

2

(
2βρ̂β† − ρ̂β†β − β†βρ̂

)
+

Rg2τ2 sin2 φ

2

(
2β†ρ̂β − ρ̂ββ† − ββ†ρ̂

)
+rg2τ2 sinφ cosφ

(
αρ̂β† + βρ̂α†

)
+Rg2τ2 sinφ cosφ

(
α†ρ̂β + β†ρ̂α

)
−

(r + R)g2τ2 sinφ cosφ
2

(
α†βρ̂ + ρ̂α†β + αβ†ρ̂ + ρ̂αβ†

)
,

(7.57)
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which exhibits a symmetric structure. This leads to competing processes,

the thermal heating of the system due to the environment and the cooling

effect of Rydberg atoms prepared in the circular ground state absorbing

excitations from the system and carrying them away.

Together with the fully diagonalized Hamiltonian for the system in the

polariton basis, H0 = ωαα†α + ωββ†β, we can evaluate the equations of

motion for the average polariton-numbers, which are described by the

master equation

ρ̇ = i[ρ,H0] + Di[ρ] + Dat[ρ], (7.58)

leading to the following set of equations of motion

d
dt
〈α†α̂〉 =

(
γmNm sin2 φ + γrNr cos2 φ + Rg2τ2 cos2 φ

)
−

(
γm sin2 φ + γr cos2 φ + (r − R)g2τ2 cos2 φ

)
〈α†α〉

+ sinφ cosφ
(γm

2
−
γr

2
+

(R − r)g2τ2

2

)(
〈α†β〉 + 〈α̂β†〉

)
, (7.59)

d
dt
〈β†β̂〉 =

(
γmNm cos2 φ + γrNr sin2 φ + Rg2τ2 sin2 φ

)
−

(
γm cos2 φ + γr sin2 φ + (r − R)g2τ2 sin2 φ

)
〈β†β〉

+ sinφ cosφ
(γm

2
−
γr

2
+

(R − r)g2τ2

2

)(
〈α†β〉 + 〈αβ†〉

)
, (7.60)

d
dt
〈α̂†β̂〉 =

( (R − r)g2τ2
− γr − γm

2
+ i(ωα − ωβ)

)
〈α̂†β〉

+ sinφ cosφ
(R − r)g2τ2

− γr + γm

2

(
〈α†α̂〉 + 〈β̂†β〉

)
+ sinφ cosφ

(
γrNr − γmNm + Rg2τ2

)
(7.61)

=

(
d
dt
〈α̂β̂†〉

)†
, (7.62)
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where it can be seen that the interaction between the two different types of

polaritons can be driven, and possibly controlled, by the rate of incoming

atoms prepared in the higher circular Rydberg state, R, and lower circular

Rydberg state, r.

Evaluating this set of equations of motion in the steady state condition,

d
dt〈Â〉ss

!
= 0, assuming the microwave resonator has been prepared in its

vacuum state, Nr ≈ 0, as has been shown in Chapter 6, and assuming

the Rydberg atoms have been prepared in the lower circular state, R = 0,

leads to the steady-state solutions. An analytical solution can be obtained.

However, the solution is too convoluted to be given here and therefore

only the dependence of the analytical steady state solution of the average

polariton number on the flux of atoms has been plotted in Fig. 7.5. The

parameter set for the simulation is γm/ωm = 0.01, γr/ωm = 0.05, g/ωm = 10,

G/ωm = −15τ = 0.05ωm, ∆̃0/ωm = −5, and Nm = 40. A reduction of

the average polariton number can be observed, up to 〈nα〉ss ≈ 0.20 and

〈nα〉ss ≈ 0.45, respectively. The simulation carried out here serves as a

proof of principle that optomechanical polariton modes can be emptied

with an engineered reservoir of a beam of Rydberg atoms.
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Figure 7.5: The dependence of the two polariton branches on the rate of

the atomic beam,r, for Nm = 40. Because γr/γm = 5, the average polariton

numbers of the initial, thermal state are 〈α†α〉th ≈ 4.74 (mainly photonic

mode) and 〈β†β〉th ≈ 9.17 (mainly phononic mode).
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Chapter 8

Conclusions

In this thesis, first the behavior of strongly polarized ensembles of Rydberg

atoms has been studied. Electrostatic dipole-dipole interactions between

Rydberg atoms were investigated to realistically model the energy shifts

within an atomic ensemble. The results of the calculation were compared

to experimental data, yielding good qualitative agreement. This combi-

nation of experiments and calculations allowed the demonstration of a

macroscopic screening of electrical noise that arose as a result of the local

polarization of the Rydberg atoms.

Following this, the possibility to observe trapping states of a supercon-

ducting microwave resonator, and the implementation of quantum state

preparation has been shown by varying controllable experimental param-

eters such as the flux of atoms, their velocity and spatial distribution, or

the detuning of the atomic transition frequency from the fundamental fre-

quency of the resonator. These results have demonstrated, for example,

that it is possible to measure the velocity distribution as well as the spatial

distribution of a gas-phase ensemble of Rydberg atoms by monitoring the
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state of the transmission line resonator interacting with the atomic beam.

However, this formalism is limited to diffuse atomic beams with at most

one atom interacting with the transmission line resonator at any time.

A numerical method was then developed to show that in a realistic exper-

imental setting the average number of thermal photons of the resonator,

〈n〉th ≈ 4, can be significantly reduced to 〈n〉ss = 0.006 with a dense beam

of atoms prepared in circular Rydberg states. This result paves the way for

highly efficient single-photon experiments in hybrid quantum information

processing. This numerical formalism, applied in order to simulate a dense

beam of Rydberg atoms under realistic experimental conditions, allows for

the measurement of correlations between the microwave resonator Fock

states and a chosen number of atoms. This could lead to the realization

of Schrödinger cat or squeezed states in the resonator once the optimal

experimental parameters for the preparation of such quantum states have

been identified.

Finally, an analytical formalism has been derived to engineer a quantum

reservoir of atoms coupled to an optomechanical system. Through this

work, it has been shown that it is possible to empty optomechanical polari-

ton modes with a beam of atoms. However, a more in-depth investigation

needs to be carried out in order to realize the potential of this method.

As a proposed next step in the research presented here, the application of

the numerical formalism derived to describe the photon-phonon system

could be extended to entangle specific states of the mechanical oscillator

and microwave resonator, offering a route to study the implementation of

protocols for quantum state transfer between photons and phonons me-
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diated by Rydberg atoms. Additionally, a formalism could be derived for

QND-measurements of the optomechanical system using Rydberg atoms.

Another direction of interest is to include effects of electric dipole-dipole

interactions between Rydberg atoms in the formalism developed to de-

scribe the coupling of a dense atomic beam to a microwave resonator. In

general it is foreseeable to adapt and apply this numerical formalism to

various hybrid quantum systems where the interaction with an atomic

beam is continuously switched on and off due to the presence, or absence,

of an atom. This atom does not have to be a pure two-level system, but

could also be, e.g., a three-level lambda system. Extending the formalism

in this way might open new possibilities for quantum state preparation,

quantum computation and quantum communication with different hybrid

quantum systems that are coupled to beams of atoms.
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Appendix A

Probability of N Atoms

interacting with the Resonator

In this appendix a validation for the truncation of the numerical approach

in Chapter 6 to at most five atoms interacting with the resonator at any

time is provided. This is done by calulcating the probability of six or more

atoms interacting with the resonator at the same time and showing that this

probability is negligible within the context of the experimental parameters

discussed.

As has been shown in Eq. (6.4), the probabilty of zero atoms entering

the resonator can be calculated as

p0 =
1 − 2r∆t
1 − r∆t

. (A.1)

For any number of atoms n ≥ 1 arriving at the resonator within the same

time step, ∆t, one can write

pn = (r∆t)n. (A.2)
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Considering a time interval on the order of the interaction time, τ = k∆t,

any permutation of n atoms that interact with the resonator during the

interaction time must be calculated. Therefore, the probabilty of zero

atoms interacting with the resonator over the time interval τ is

P0(τ) = (p0)τ/∆t

=
(1 − 2r∆t

1 − r∆t

)k

.
(A.3)

The probability of one atom interacting with the resonator during the time

interval can be expressed as

P1(k∆t) =

(
k
1

)
(p0)k−1 p1

= k
(1 − 2r∆t

1 − r∆t

)k−1

r∆t,

(A.4)

where the binomial coefficient prefactor accounts for the combinatorics,

i.e., the k different time steps in which the atom may enter the resonator.

In order to calculate the probabilities of more than one atom interacting

with the resonator at any given time, the binomial distribution must be

extended to a multinomial distribution. This is due to the fact that, for

example, in the case of n atoms, the probabilities of

• all n atoms beginning to cross the resonator during the same time

step,

• (n − 1) atoms arriving during one time step and one atom arriving

during a different time step

• (n − 2) atoms arriving during one time step and either (i) two atoms

arrive as a pair during a different time step, or (ii) one atom each

arrives at another different time step
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• (n − 3) atoms arriving during one time step and all combinations of

the three other atoms arriving during other time steps

• continuing via (n − 4), (n − 5), . . . that must be extended to all the

atoms arriving each during a different time step one by one

must all be accounted for.

For one realization of these cases, the probability of n atoms being multi-

nomially distributed can be calculated as

Pn(one − realization) =
(i + j + l + · · · + z)!

i! j! l! . . . z!
(p0)i(p1) j(p2)l . . . (pn)z. (A.5)

Here i is the number of time steps during which no atom enters the res-

onator, j is the number of time steps with one atom entering, m with two

atoms entering and so forth, with

i + j + l + · · · + z =
τ
∆t

(A.6)

summing up to the number of time steps the time interval, i.e., the interac-

tion time, is split into. There exists a restriction for the possible values each

number of time steps can take on. For example, the maximum number of

time steps during which a single atom enters the resonator is j ≤ n. The

maximum number of time steps during which two atoms enter is l ≤ n/2.

For three atoms entering, the limit is m ≤ n/3. The limits for four and

more atoms entering are calculated in similar fashion. The number of time

steps during which no atom enters is then self-consistently obtained from

Eq. (A.6) to be

i =
τ
∆t
−

(
j + l + · · · + z

)
. (A.7)
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The probabilities for all possible, unordered combinations of i, j, . . . z ∈ N

for a given number of atoms, n, are calculated in this manner and then

added. The result obtained in this way is the probability, Pn(τ), of n atoms

interacting with the resonator at the same time within the time interval of

the interaction time, τ.

Therefore the probabilities of having 2, 3, 4 or 5 atoms interact with the

resonator at the same time over k time steps are expressed as

P2(τ) =
k(k − 1)

2
(p0)k−2 (p1)2 + k (p0)k−1 p2, (A.8)

P3(τ) =
k(k − 1)(k − 2)

6
(p0)k−3 (p1)3 + k(k − 1) (p0)k−2 p1 p2

+k (p0)k−1 p3, (A.9)

P4(τ) =
k(k − 1)(k − 2)(k − 3)

24
(p0)k−4 (p1)4 +

k(k − 1)(k − 2)
2

(p0)k−3 (p1)2 p2

+k(k − 1) (p0)k−2 p1 p3 +
k(k − 1)

2
(p0)k−2 (p2)2 + k (p0)k−1 p4, (A.10)

P5(τ) =
k(k − 1)(k − 2)(k − 3)(k − 4)

120
(p0)k−5 (p1)5

+
k(k − 1)(k − 2)(k − 3)

6
(p0)k−4 (p1)3 p2 +

k(k − 1)(k − 2)
2

(p0)k−3 (p1)2 p3

+
k(k − 1)(k − 2)

2
(p0)k−3 p1 (p2)2 + k(k − 1) (p0)k−2 p2 p3

+k(k − 1) (p0)k−2 p1 p4 + k (p0)k−1 p5. (A.11)

Assuming coarse-grained timescale in the numerical simulation with a

step size of ∆t = τ/100 and hence k = 100, and a value for the product of

interaction time and atomic rate of rτ = 1.0, the probability of more than
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Figure A.1: The dependence of the probability of more than five atoms

interacting with the resonator at the same time on the product of r ·τ. The

dashed lines indicate the maximum value of the product r · τ for which

the error is ε ≤ 0.5%.

five atoms interacting with the resonator at the same time is

Pn>5 = 1 − Pn≤5, (A.12)

where

Pn≤5 =

5∑
n=0

Pn(τ). (A.13)

This leads to the result that

Pn>5 ≈ 0.07% (A.14)

and validates the assumption to consider at most n = 5 atoms interacting

with the resonator at any given time. It becomes clear that the validity of the

truncation depends on the maximum atomic rate, r, and on the interaction
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time, τ = k∆t. The dependence of the error of the approximation on the

atomic rate, r, is plotted in Fig. A.1, and can be seen to be below ε . 0.5%

for rτ . 1.45, which in theory is the limit for the atom rate of this specific

numerical truncation. For a chosen interaction time of τ = 50 ns, the

maximum atomic rate is calculated to be r = 29 MHz, and for an interaction

time of τ = 10 ns, the maximum atomic would then be r = 145 MHz. Hence,

the parameters for the calculations carried out in Chapter 6 are all within

this limit.
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