
The Evolution of C Programming Practices:
A Study of the Unix Operating System 1973–2015

Diomidis Spinellis
dds@aueb.gr

Panos Louridas
louridas@aueb.gr

Maria Kechagia
mkechagia@aueb.gr

Department of Management Science and Technology
Athens University of Economics and Business

Patision 76, GR-104 34 Athens, Greece

ABSTRACT
Tracking long-term progress in engineering and applied sci-
ence allows us to take stock of things we have achieved, ap-
preciate the factors that led to them, and set realistic goals
for where we want to go. We formulate seven hypotheses as-
sociated with the long term evolution of C programming in
the Unix operating system, and examine them by extracting,
aggregating, and synthesising metrics from 66 snapshots ob-
tained from a synthetic software configuration management
repository covering a period of four decades. We found that
over the years developers of the Unix operating system ap-
pear to have evolved their coding style in tandem with ad-
vancements in hardware technology, promoted modularity
to tame rising complexity, adopted valuable new language
features, allowed compilers to allocate registers on their be-
half, and reached broad agreement regarding code format-
ting. The progress we have observed appears to be slowing
or even reversing prompting the need for new sources of in-
novation to be discovered and followed.

CCS Concepts
•Software and its engineering → Software evolution;
Imperative languages; Software creation and management;
Open source model; •General and reference → Empir-
ical studies; Measurement; •Social and professional
topics → Software maintenance; History of software;

Keywords
C; coding style; coding practices; Unix; BSD; FreeBSD

1. INTRODUCTION
Tracking long-term progress in engineering and applied

science allows us to take stock of things we have achieved,
appreciate the factors that led to them, and set realistic
goals for where we want to go. Progress can be tracked along
two orthogonal axes. We can look at the processes (inputs)

ACM acknowledges that this contribution was authored or co-authored by an em-
ployee, contractor or affiliate of a national government. As such, the Government
retains a nonexclusive, royalty-free right to publish or reproduce this article, or to al-
low others to do so, for Government purposes only.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884799

or at the resulting artefacts (outputs). Furthermore, we can
examine both using either qualitative or quantitative means.

The objective of this work is to study the long term evo-
lution of C programming in the context of the Unix oper-
ating system development. The practice of programming
is affected by tools, languages, ergonomics, guidelines, pro-
cessing power, conventions, as well as business and soci-
etal trends and developments. Specific factors that can
drive long term progress in programming practices include
the affordances and constraints of computer architecture,
programming languages, development frameworks, compiler
technology, the ergonomics of interfacing devices, program-
ming guidelines, processing memory and speed, and social
conventions. These might allow, among other things, the
more liberal use of memory, the improved use of types, the
avoidance of micro-optimisations, the writing of more de-
scriptive code, the choice of appropriate encapsulation mech-
anisms, and the convergence toward a common coding style.

Here are a few examples. The gradual replacement of
clunky teletypewriters with addressable-cursor visual dis-
play terminals in the 1970s may have promoted the use of
longer, more descriptive identifiers and comments. Compil-
ers using sophisticated graph colouring algorithms for regis-
ter allocation and spilling [12] may have made it unnecessary
to allocate registers in the source code by hand. The real-
isation that the overuse of the goto statement can lead to
spaghetti code [13] might have discouraged its use. Simi-
larly, one might hope that the recognition of the complexity
and problems associated with the (mis)use of the C prepro-
cessor [15,34,48,49] may have led to a reduced and more dis-
ciplined application of its facilities. Also, one would expect
that the introduction and standardisation of new language
features [2,23,45] would lead to their adoption by practition-
ers. Finally, the formation of strong developer communities,
the maturing of the field, and improved communication fa-
cilities may lead to a convergence on code style.

In more formal terms, based on a simple-regression ex-
ploratory study [54], we established the following hypothe-
ses, which we then proceeded to test with our data.

H1: Programming practices reflect technology af-
fordances

If screen resolutions rise we expect developers to become
more liberal with their use of screen space, as they are no
longer constrained to use shorter identifiers and shorter lines.
Higher communication bandwidth (think of the progress from
a 110 bps asr-33 teletypewriter, to a 9600 bps vt-100 char-
acter addressable terminal, to a 10mb Ethernet-connected

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UCL Discovery

https://core.ac.uk/display/219541991?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1145/2884781.2884799

bitmap-screen workstation) makes typing more responsive
and the refresh of large code bodies faster. Similarly, if
barriers imposed to compilation unit sizes by the lack of
memory or processing capacity are removed, we expect de-
velopers to abandon artificially-imposed file size limits, and
move towards longer files packed with more functionality.

H2: Modularity increases with code size
As the Unix source code evolves and multiplies in size

and complexity we expect developers to manage this growth
through mechanisms that promote modularity. These in-
clude the use of the static keyword to limit the visibility
of globally visible identifiers, and the pairing of header files
with C implementation into discrete modules.

H3: New language features are increasingly used
to saturation point

The C language has been changing over time with new
features being added, albeit sparingly. We expect them to
be increasingly used after being introduced, up to a point
— certainly, a language feature can only be used a certain
number of times in a program. For example, when the un-

signed keyword was introduced, it could in theory, be used
at most on all integer definitions and declarations of a pro-
gram, and in practice only on those where the underlying
value was indeed non-negative. We call this limit the fea-
ture’s saturation point.

H4: Programmers trust the compiler for register
allocation

In the days of yore, programmers had to deal themselves
with the nitty-gritty details of register allocation by declar-
ing variables with the register keyword. As compiler tech-
nology has improved, compilers have become more adept
at the task. We expect that developers have been noticing
this and have therefore been more and more trusting of the
compilers with handling register allocation optimizations.

H5: Code formatting practices converge to a com-
mon standard

We expect developers working on a single project, such
as Unix, to adopt a common coding standard, making the
code base more homogeneous over time. This can be aided
through the increased availability and use of collaboration
mechanisms such as version control systems and online com-
munities.

H6: Software complexity evolution follows self cor-
rection feedback mechanisms

We expect that as software evolves it becomes more com-
plex, to a degree. A successful project cannot grow in com-
plexity beyond the confines of human comprehension. There-
fore we also expect that beyond a certain point self cor-
rection feedback mechanisms should kick in, bringing code
complexity down.

H7: Code readability increases
As software and its development process and community

evolve, growing in size and in complexity (to a degree), we
expect its readability to increase, in order to make it man-
ageable by its evolving community of developers. In addi-
tion, a long lived project will outlive its original developer
cast and accommodations must be made for new cohorts.

The preceding hypotheses can be tested by examining in-
stances of the code over time. By looking at the long term
evolution of associated metrics we can determine whether

they indeed change over time, as well as the direction and
rate of change.

The results of the study on long term evolution of pro-
gramming practices can be used to allocate the investment
of effort in areas where progress has been efficiently achieved,
and to look for new ways to tackle problems in areas showing
a lack of significant progress. Also, given the hypothesis that
the structure and internal quality attributes of a working,
non-trivial software artefact will represent first and foremost
the engineering requirements of its construction [51], the re-
sults can also indicate areas where developers rationally al-
located improvement effort and areas where developers did
not see a reason to invest.

This paper builds on the earlier short exploratory study [54]
by explicitly stating and testing hypotheses, by using a more
sophisticated statistical method for the analysis, by a de-
tailed explanation of the employed methods, and by present-
ing possible causality links between external changes, the
metrics, and the hypotheses. To formulate the hypotheses
we took into account the general technological trends, such
as improved screen technologies and software techniques,
combined with metrics, which we could measure from our
data and could bear on the trends. In the following sec-
tions we describe the methods of our study (Section 2), we
present and discuss the results we obtained (Section 3), and
outline related work (Section 4). Section 5 summarises our
conclusions and provides directions for further work.

2. METHODS
Our study is based on a synthetic software configuration

management repository tracking the long term evolution of
the Unix operating system. At successive time points of
significant releases we process the C source code files with
a custom-developed tool to extract a variety of metrics for
each file. We then synthesise these metrics into weighted
values that are related to our hypotheses, and analyse the
results over time using established statistical techniques.

2.1 Data Collection and Primary Metrics
The analysis of the Unix source code over the long term

was made possible by the fact that important Unix material
of historical importance has survived and is nowadays openly
available. Although Unix was initially distributed with rel-
atively restrictive licenses, significant parts of its early de-
velopment have been released by one of its rights-holders
(Caldera International) under a liberal license. Additional
parts were developed or released as open source software by
(among others) the University of California, Berkeley and
the Freebsd Project.

The primary sources of the material used in this study
include source code snapshots of early released versions,
which were obtained from the Unix Heritage Society archive,
the cd-rom images containing the full source archives of
Berkeley’s Computer Science Research Group (csrg), the
OldLinux site, and the Freebsd archive. These snapshots
were merged with past and current repositories, namely the
csrg sccs [46] repository, the Freebsd 1 cvs repository,
and the Git mirror of modern Freebsd development. This
material plus results of primary research regarding author-
ship and genealogy formed the basis for constructing a syn-
thetic Git repository, which allows the efficient retrieval and
processing of the Unix source code covering a period of 44
years [52].

Table 1: Analysed Unix Releases
Name Mean File Date LoC
Research-V3 1973-08-30 5,963
Research-V5 1974-11-27 27,429
Research-V6 1975-06-03 49,630
BSD-1 1977-12-09 55,378
Bell-32V 1978-12-13 163,643
Research-V7 1979-01-31 157,003
BSD-2 1979-05-06 88,048
BSD-3 1979-08-18 269,646
BSD-4 1980-06-22 373,881
BSD-4.1 snap 1981-04-09 447,540
BSD-4.1c 2 1989-01-03 564,883
BSD-4.2 1990-06-23 683,428
386BSD-0.0 1991-05-13 655,191
386BSD-0.1 1991-06-08 768,469
BSD-4.3 1991-12-03 1,117,677
BSD-4.3 Tahoe 1992-06-21 1,315,451
BSD-4.3 Net 2 1993-07-02 1,445,124
FreeBSD 1.0 1993-07-02 3,515,680
FreeBSD 1.1 1993-09-17 1,519,925
FreeBSD 1.1.5 1993-11-16 1,698,792
BSD-4.3 Net 1 1993-12-25 179,292
BSD-4.4 Lite1 1994-01-15 2,436,446
BSD-4.4 Lite2 1994-01-20 2,487,503
BSD-4.4 1994-01-27 2,828,398
BSD-4.3 Reno 1994-02-26 1,217,391
FreeBSD 2.0 1994-10-09 6,152,630
FreeBSD 2.0.5 1995-01-12 2,154,728
FreeBSD 2.1.0 1995-02-19 2,204,647
FreeBSD 2.1.5 1995-05-20 2,254,479
FreeBSD 2.1.6 1995-05-31 2,266,688
FreeBSD 2.2.5 1996-05-05 2,615,395
FreeBSD 2.2.6 1996-08-07 2,679,569
FreeBSD 2.2.7 1996-09-16 2,710,214
FreeBSD 3.0.0 1997-07-04 3,371,194
FreeBSD 3.2.0 1997-08-26 3,527,404
FreeBSD 3.3.0 1998-03-19 3,575,250
FreeBSD 3.4.0 1998-04-22 3,656,716
FreeBSD 3.5.0 1998-05-17 3,684,268
FreeBSD 4.0.0 1999-03-29 4,422,666
FreeBSD 4.1.0 1999-05-30 4,632,772
FreeBSD 4.1.1 1999-06-29 4,689,328
FreeBSD 4.2.0 1999-07-16 4,717,764
FreeBSD 4.3.0 1999-09-27 4,786,370
FreeBSD 5.0.0 2001-11-02 5,434,960
FreeBSD 4.4.0 2002-02-03 4,881,244
FreeBSD 5.1.0 2002-03-22 5,490,790
FreeBSD 4.6.0 2002-07-03 5,050,687
FreeBSD 5.2.0 2002-08-23 5,706,097
FreeBSD 4.7.0 2002-10-05 5,184,702
FreeBSD 5.3.0 2004-10-16 6,093,719
FreeBSD 5.4.0 2005-04-20 6,126,108
FreeBSD 6.0.0 2005-10-09 6,330,668
FreeBSD 7.1.0 2005-12-09 7,401,793
FreeBSD 7.2.0 2006-01-19 7,501,567
FreeBSD 6.1.0 2006-04-30 6,424,602
FreeBSD 6.2.0 2006-11-14 6,530,096
FreeBSD 8.0.0 2007-02-21 8,016,942
FreeBSD 8.1.0 2007-05-08 8,152,027
FreeBSD 8.2.0 2007-07-22 8,358,507
FreeBSD 6.3.0 2007-11-24 6,614,077
FreeBSD 7.0.0 2007-12-22 7,231,515
FreeBSD 9.0.0 2008-09-22 9,230,038
FreeBSD 9.1.0 2009-02-01 9,497,551
FreeBSD 9.2.0 2009-06-09 9,674,294
FreeBSD 9.3.0 2009-10-29 10,048,538
FreeBSD 10.0.0 2010-11-09 10,767,581

Due to the fact that early releases are only available as
snapshots, it was decided to study the code at points of
significant software releases, rather than at fixed time inter-
vals. This was done because obtaining code snapshots at
fixed time intervals was only possible after 1990, when all
software began to be tracked through various revision con-
trol systems. The 66 releases examined, the mean date of
the files comprising them, and the size of C-proper source
code files are listed in Table 1. We did not include header
files in our study, to avoid skewing metrics associated with
executable code (such as the number of functions per file)
with results from files that typically do not include any such
code. Interestingly, over the examined period the code body
grew by more than three orders of magnitude, from six thou-
sand to ten million lines. A few earlier revisions that existed
in the repository were not examined, because they did not
contain any C source code files.

We show and use each release’s mean file date — based
on averaging each file’s last modification time — rather than
the release date, because this reflects better the age of the
corresponding code base. This also avoids the distortion that
would be introduced by treating what were sometimes par-
allel lines of development as a linear sequence. Such parallel
development took place during the Berkeley Unix evolution:
over the early years with Research Unix and over the late
years with 386bsd and Freebsd.

Obtaining metrics from large code bodies is difficult for
technical and operational reasons [20, 39]. On the techni-
cal side, code dependencies make it difficult to establish
the full context needed in order to parse and semantically
analyse the code. This is especially true for C code, where
the compilation depends on system header files, compiler-
defined macros, search paths, and compile-time flags passed
through the build process [18, 33, 49]. The operational rea-
sons are associated with the required throughput, though
due to the relatively small number of releases we examined,
this was not a major issue in this study.

We addressed the difficulty of parsing C source code with-
out access to the original compilation environment by ex-
tending and using our cmcalc1 open source tool, which effi-
ciently calculates through static analysis a variety of C code
quality metrics, without requiring full access to the com-
pilation environment’s parameters. The tool’s operation is
based on state machine logic (described in reference [53]),
and will therefore produce reasonably accurate results with-
out requiring access to header files and the like. Extensive
unit tests (48% of the source code is devoted to them) were
used to verify the tool’s operation in diverse corner cases.

The cmcalc tool calculates size, language feature, code
style, and commenting metrics; see references [25], [50, pp.
326–333] for more details. The metrics we used are the fol-
lowing.

Size metrics: number of characters, lines, statements,
functions, identifiers.

Language features: declarations with internal linkage;
number of C preprocessor directives; number of C prepro-
cessor include directives; number of C preprocessor condi-
tional directives (#if, #ifdef, #elif); number of const,
enum, goto, inline, noalias, register, restrict, signed,
struct, union, unsigned, void, and volatile keywords.

Code style: mean identifier length; spaces used for in-

1https://github.com/dspinellis/cqmetrics

https://github.com/dspinellis/cqmetrics

dentation and their standard deviation; mean nesting level;
code style infractions.

Commenting: number of comments and comment char-
acters.

In addition, we derived a sloppiness metric (dkludge)
by using fgrep to count in the code the number of “kludge”
words that may indicate problems in the code (fixme, xxx,
todo, bugbug, and swearwords that cannot be reproduced
in this paper).

The cmcalc tool calculates code style infractions from com-
monly agreed formatting guidelines. As there are a number
of different approaches for formatting C code, cmcalc also
measures the consistency of their application. Specifically,
for each way to format a particular construct (for example
putting a space after the while keyword) cmcalc measures
the times, a, the rule is applied in the one way (e.g., putting
a space) and the times, b, the rule is applied in the other way
(omitting the space). Then, the file’s style inconsistency for
n style rules (19 in our case) as a percentage of possible cases
is defined as follows.

SI =

n∑
i=1

min(ai, bi)

n∑
i=1

ai + bi

(1)

We based the checked style rules on the Google,2 Freebsd,3

gnu,4 and the updated Indian Hill5 guidelines.
We collected the metrics by iterating through the 66 re-

leases listed in Table 1, checking out the code for each one
of them, and running cmcalc on all C files of that release.
Through this process we collected 490 thousand records con-
taining in total 56 million values. The processing took about
five hours on an eight-core server. A considerable speedup
was achieved by parallelising the analysis of each file through
the use of gnu parallel [57].

2.2 Derived Metrics
We aggregated the raw metrics at the level of each release,

and calculated weighted derivative values needed to track
the long term evolution of programming practices. The de-
rived aggregate metrics are listed in Table 2.

Column-wise, the metrics are roughly clustered into those
that are affected () by programming language evolution,
ergonomics (workstation technology and screen resolution),
programming guidelines, processing capacity (cpu perfor-
mance and ram size), conventions, and tools. Further columns
on the right indicate the hypothesis that each derived metric
affects ().

To control for size and thus make metrics comparable
across releases, absolute numbers in the primary collected
metrics were replaced in the derived metrics by correspond-
ing density figures. The denominator for calculating each
density is based on the numerator unit, and can be the cor-
responding number of files, lines, characters, statements, or
identifiers. As an example, the comment character density
is calculated as the fraction of comment characters over the

2http://google-styleguide.googlecode.com/svn/trunk/
cppguide.xml
3http://www.freebsd.org/cgi/man.cgi?query=
style&sektion=9
4https://www.gnu.org/prep/standards/html node/
Formatting.html
5http://www.cs.arizona.edu/%7Emccann/cstyle.html

number of characters across all source code files. We expect
that metrics that are not density figures (filine, fistmt,
lichar, fuline, idchar, stnest, and cmchar) are implic-
itly controlled for size through coding practice and conven-
tion. For example, when a function or a file increases in too
much in size, developers will split it into smaller modules.

The following paragraphs outline how metrics are associ-
ated with the factors that may influence them. The analysis
follows roughly the order in which the metrics are listed in
Table 2.

The length of files and the corresponding functionality
they provide can be decided to promote proper encapsu-
lation and modularity. However, on resource constrained
computers — think of a 128kb pdp-11 — large files could
take overly long to compile, forcing developers to split them
in order to minimise the impact of small changes on build
performance. As an example, the 7th Research Edition im-
plementation of the refer program seems to be arbitrarily
split into nine files named refer0.c . . . refer8.c.

Programming guidelines also typically dictate line length
(lines should not exceed the number of characters that can
fit in a display row), function length (functions should fit
on a screen), identifier length (most names should be de-
scriptive but not overly long [8]), and statement nesting
(deep nesting should be avoided). On the other hand, all
these are also affected by ergonomics. The lengths to which
past developers went to avoid long identifiers survives to
this day through the Unix creat (rather than create) sys-
tem call. Also note that 1970s linkers only recognized the
first six characters of identifiers, thus restricting the length
of globally-visible identifiers. Higher resolution screens can
display more characters per row, more rows on a screen, and
thus allow for deeper nesting, while fast workstations make
it easy to type and display long identifiers. However, long
functions and corresponding deep nesting may be required
on slower cpus in order to avoid the overhead of function
calls and the danger of hitting the limits of a shallow stack
size. Also, ides with code completion can help entering long
identifiers, while optimising compilers can avoid the function
call cost through inlining.

The declaration of identifiers that are only internally vis-
ible within the compilation unit (static), depends on the
existence of the corresponding language feature. The use of
such declarations to limit the identifiers’ global visibility is
prescribed in guidelines, and can be assisted by tools that
identify such problems.

The use of several keywords (const, enum, unsigned, in-
line, noalias, restrict, signed, register, void, volatile)
is made possible through their introduction as language fea-
tures and corresponding compiler support. In addition, the
use of some (const, enum, signed, unsigned) can clarify the
programmer’s intent and avoid some errors. Furthermore,
when these four keywords are used, static analysis methods
can identify common error cases. On the other hand, the
register and inline keywords are there to address defi-
ciencies in the way compilers allocate registers [12] and in-
line functions, so their use should become less common as
technology advances. The noalias keyword was a mistaken
attempt by the ansi c standardization committee to handle
aliasing through pointers. We expect it to make an appear-
ance for a brief (if any) period of time. The volatile and
restrict keywords control the caching of values and ex-
press programmer intent regarding aliasing for cases that

http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://google-styleguide.googlecode.com/svn/trunk/cppguide.xml
http://www.freebsd.org/cgi/man.cgi?query=style&sektion=9
http://www.freebsd.org/cgi/man.cgi?query=style&sektion=9
https://www.gnu.org/prep/standards/html_node/Formatting.html
https://www.gnu.org/prep/standards/html_node/Formatting.html
http://www.cs.arizona.edu/%7Emccann/cstyle.html

Table 2: Derived Aggregate Metrics, Factors Affecting them, and Hypotheses they Affect

Name Description Lan
gu

ag
e

Erg
on

om
ic
s

G
ui

de
lin

es

cp
u
&
St
or
ag
e

C
on

ve
nt

io
ns

Too
ls

H1 H2 H3 H4 H5 H6 H7
filine Mean file length (lines)
fistmt Mean file functionality (statements)
lichar Mean line length (characters)
fuline Mean function length (lines)
idchar Mean identifier length
stnest Mean statement nesting
dstatic Internally visible declaration density
dconst const keyword density
denum enum keyword density
duns unsigned keyword density
dinl inline keyword density
dnoal noalias keyword density
dsign signed keyword density
dreg register keyword density
drest restrict keyword density
dvoid void keyword density
dvol volatile keyword density
dgoto goto keyword density
indev Indentation spaces standard deviation
fminc Formatting inconsistency
inspc Mean indentation spaces
dstmt Statement density
dcmchar Comment character density
cmchar Mean comment size
dcm Comment density
dcpif C preprocessor conditional statement

density
dcpinc C preprocessor include statement den-

sity
dcpstmt C preprocessor non-include statement

density
dkludge Kludge word density

the compiler could not detect. We expect them to be used
sparingly, with volatile used for only a small fixed number
of values. The goto statement has been with us from the
dawn of C and has been“considered harmful” for almost half
a century [13].

The formatting style and the number of spaces used for
indentation are a matter of convention. This can be estab-
lished when code is collaboratively edited through version
control systems and shared through online communities and
as open source software. Consistency in both areas can also
be aided through tools, such as code formatters, editors, and
ides.

Spacing and the density of comments and statements, are
also a matter of guidelines and ergonomics. The level of
nesting and available screen real estate can affect the num-
ber of spaces used for indentation. Comments should be long
and plentiful, while white space among statements should
be used to separate code into logical blocks. Fast high-
resolution workstations make it easy to type in and display
such code.

Research findings regarding spacing and comments present
a mixed picture. According to Miara et. al, the amount of

spacing used for indentation significantly affects program
comprehension: an indentation of six spaces or more can
confuse developers [37]. On the other hand, Posnett et al.
found that indentation measures did not have a significant
impact on their code readability models [42]. Arafat and
Riehle, in an empirical study on 5,229 active open source
projects, found that commenting the source code is a prac-
tice that is consistently followed by successfull projects [3].
However, Buse and Weimer found that even though one
would expect that the presence of comments improves read-
ability, the correlation of comments with readability is mod-
est [7]. In addition, Fluri et al. found that code and com-
ments seldom co-evolve and that new code is often sparsely
commented [16].

The problems associated with the use of the C prepro-
cessor are well known [15, 34, 48, 49], and most guidelines
advocate the avoidance of macro definitions and conditional
compilation. Conversely, guidelines also advocate the use
of header files (and the #include directive) in order to pro-
mote code modularity and portability. According to Steve
Johnson [43, Ch. 17], early versions of Unix did not share
structure definitions through header files.

“Another major change in V7 was that Unix
data structure declarations were now documented
on header files, and included. Previous Unixes
had actually printed the data structures (e.g.,
for directories) in the manual, from which peo-
ple would copy it into their code. Needless to
say, this was a major portability problem.”

C preprocessor macros can often be replaced by exploiting
newer language features, such as enumerations and inlined
functions. However, these features and header file inclusion
require additional processing power and more sophisticated
compiler support.

We end the description of the factors associated with the
metrics we tracked by noting that the annotation of code
through colourful symbols and swearwords (dkludge), is a
matter of convention, which may be fading, being replaced
by comments in issue tracking systems, online forums, and
configuration management tools.

2.3 Statistical Analysis
We subjected the derived aggregate metrics to statistical

analysis in order to discern longitudinal trends. As all the
metrics we collected were ordered by date, we performed re-
gression analysis with the days elapsed since the first release
as the independent variable and each metric as the depen-
dent variable. We used a General Additive Model (gam)
method [62, 63] with cubic splines as our regression model.
We gauged the goodness of fit of each trend by calculating
the adjusted R2 value of each regression.

2.4 Threats to Validity
The internal validity of this study’s findings would be

threatened by inferring causal relationships without actu-
ally demonstrating the mechanism through which the cause
drives the effect. In our study we have identified some factors
that could affect long term programming practices. How-
ever, we have been careful not to draw any conclusions re-
garding causality, using the factors merely as a starting point
for determining and arranging the metrics to examine.

The external validity of any findings is limited by the fact
that only a single large system (Unix) has been studied.
The developers of Unix are not likely to match the general
population of programmers, for they include two winners of
the National Medal of Technology Award and the Turing
Award (Ken Thompson and Dennis Ritchie), two founders
of Fortune 500 companies (Bill Joy and Eric Schmidt), and
many highly accomplished scientists, technology authors,
and practitioners. However, given the system’s continued
prevalence, utility, and importance, the lack of generalis-
ability, is not the fatal problem it could otherwise be.

3. RESULTS AND DISCUSSION
Figure 2 contains the plots of all metrics over time, or-

dered alphabetically. The x axis of all plots is the release
date. In every plot we show the regression line with 95% con-
fidence intervals around it and we include the adjusted R2

value as an indicator of the goodness of fit. In the following
paragraphs we detail our findings regarding each hypothe-
sis and discuss their meaning. Figure 1 shows the timeline
of analyzed revisions and milestones associated with factors
that could influence the evolution of programming practices.
Although we have not explicitly performed regression anal-

ysis against these factors it may be helpful to refer to them
in the discussion of our findings.

H1: Programming practices reflect technology af-
fordances

The metrics filine, mean file length (R2 = 0.91);

fistmt, mean file functionality (R2 = 0.90); lichar,

mean line length (R2 = 0.93); and idchar, mean identi-

fier length (R2 = 0.94), increase steadily over time. This
lends strong support to the H1; as bigger, higher resolu-
tion, and increased bandwidth terminals or workstations be-
came available, Unix developers have been eager to embrace
new capabilities and evolve their programming practices to
take advantage of them. The fuline metric, mean function

length, (R2 = 0.91), is also related to this hypothesis, as
bigger screens and higher resolutions allow longer functions
to fit on screen. This could explain why mean function size
increases steadily to about 60 lines. The drop that follows
may be explained as a reaction to inreased function complex-
ity, which we discuss in H6 (Software complexity evolution
follows self correction feedback mechanisms).

Our findings here lend support to technology and infras-
tructure investments that aid developers in their work. Nowa-
days these can include multiple high-resolution screens, fast
computing clusters for compiling and testing the software,
and a workplace that allows developers to concentrate.

H2: Modularity increases with code size
The metric dstatic, internally visible declaration density

(R2 = 0.97), increased steadily until reaching a peak,
from which it has receded somewhat. Therefore for most
of Unix history there is strong evidence supporting the hy-
pothesis. The recent small decline in the use of the static

keyword may be counterbalanced through the use of extra-
lingual structuring mechanisms, namely the use of kernel
modules and shared libraries.

A different measure of software modularity, the importing
of functionality through header files as witnessed by dcpinc,

C preprocessor include statement density (R2 = 0.37)
has, after an initial bumpy period until the early 1980s, re-
mained remarkably stable over time. A significant rise in
this metric (more imports) would indicate a rising number
of efferent (outward) couplings. This increased number of
dependencies across diverse modules might indicate a lower
quality of modular design.

In general, the findings regarding this hypothesis support
the conjecture that engineering requirements drive an arte-
fact’s quality features [51]. In terms of actions, they also
support investment in modularity mechanisms. In modern
systems the two levels of identifier visibility provided by the
C programming language are showing their limits. (This
might be another explanation for the recent decline in the
static keyword density.) Mechanisms that can handle mul-
tiple levels of module federations from diverse sources, such
as the C++ namespaces and the Java packages, show the
way forward. However, these mechanisms cover only identi-
fiers. Other important modularity issues remain open, and
will become increasingly important as code size and reuse
increase. These include versioning, deployment, (possibly
live) updates, and access to shared resources, such as com-
puting threads, power, the cache, and middleware.

H3: New language features are increasingly used

Figure 1: Timeline of indicative analyzed revisions and milestones in (from top to bottom): C language
evolution, developer interfaces, programming guidelines, processing capacity, collaboration mechanisms, and
tools.

to saturation point

The metrics dconst, const keyword density (R2 =

0.97); denum, enum keyword density (R2 = 0.66); dinl,

inline keyword density (R2 = 0.64); duns, unsigned

keyword density (R2 = 0.89); dvoid, void keyword den-

sity (R2 = 0.93); and dvol, volatile keyword density

(R2 = 0.86), have in general climbed up over time.
The overall upward trend of enum and inline is overlayed

on partial downward trends, resulting in a low R2 figure.
One could hypothesize that developers switch between en-
thusiasm and indifference regarding their use.

The duns metric seems to have retreated over the past few
years. The reduced use could be attributed to two factors.
The first may be the introduction of the size_t keyword
in the 1999 iso c standard [23]. This represents more de-
scriptively the size of memory objects. For example, the
argument to the malloc C library function is unsigned in
4.3bsd but is size_t in 4.4bsd. The second may have to
do with the application of the unsigned keyword on integral
data types to double the range of (positive) numbers they
could hold. The introduction of 64-bit architectures and in-
creases in memory capacity, which provide an integral data
type that can hold numbers of up 1019 and sufficient memory
space for its use, may have obsoleted this practice. Conse-
quently, new code has fewer reasons to use the unsigned

keyword, resulting in a relative decline of it use.

The metrics dnoal, noalias keyword density, (R2 =

0.12) and dsign, signed keyword density, (R2 = 0.04),
seem impervious to time, consistent with a lacklustre adop-
tion. The signed keyword is mostly useful in cases one wants
to store a signed value in a char-typed variable. Given cur-
rent memory alignment restrictions and sizes, such a choice
is nowadays both expensive and unnecessary. The rise of
noalias appearances after the year 2000 is due to the use
of noalias as a plain identifier, after the name had clearly
lost its keyword status.

The metric drest, restrict keyword density, (R2 =
0.39), could have shown an upward trend and a higher R2

were it not for the fact that during the period 1999–2007 it
was defined and used as __restrict so that the code could
easily work with compilers that did not support it.

The hypothesis is therefore validated with the proviso that
the newly introduced language feature is widely useful to

the programming community; if it is, its use will increase
until it plateaus, presumably having reached a saturation
point. The dnoal and dsign metrics provide support to
an alternative hypothesis: that language features are not
adopted, presumably because they do not correspond to an
important need. As Dennis Ritchie wrote to the X3J11 C
standardization committee, language keywords should carry
their weight; it is a mistake having keywords that “what
they add to the cost of learning and using the language is
not repaid in greater expressiveness” [44].

This finding indicates the importance of investing in sound
language evolution. This is something that the C++, For-
tran, and Java communities seem to have handled in a com-
petent way, while the Python and Perl communities have
mismanaged or neglected. Also languages such as C and
Lisp may have reached their limits of significant evolution.
It would therefore be interesting to investigate what effect
the stewardship of language evolution has on a language’s
adoption and use.

H4: Programmers trust the compiler for register
allocation

The metric dreg, register keyword density (R2 =
0.96), has been steadily declining from around 1990. This
may have been the point when compiler technology advanced
sufficiently and developers really started trusting that the
compiler would do a better job at register allocation than
they could. At some point compilers began to ignore reg-
ister declarations, forcibly taking over the task of register
allocation. It seems that programmers are eager to slough
off responsibility when they can afford to.

Actions associated with this hypothesis would be invest-
ment and research in technologies that can assist developers
in a similar way. The characteristics we are looking at are
minimal (ideally zero) involvement of the programmer, at
least modest gains, and a very low downside risk. Obvi-
ous areas for such investment include static analysis to lo-
cate bugs, resource management, the utilization of multiple
computing cores, optimization of cache and memory access
patterns, and reduction of energy use.

H5: Code formatting practices converge to a com-
mon standard

The metrics fminc, formatting inconsistency (R2 =

0.81), and indev, indentation spaces standard deviation

20

40

60

80

100

1980 1990 2000 2010

cmchar 0.48

0.05

0.10

0.15

0.20

1980 1990 2000 2010

dcmchar 0.70

0.04

0.06

0.08

1980 1990 2000 2010

dcm 0.77

0.00

0.01

0.02

0.03

0.04

1980 1990 2000 2010

dconst 0.98

0.000

0.002

0.004

0.006

1980 1990 2000 2010

dcpif 0.92

0.005

0.010

0.015

0.020

0.025

1980 1990 2000 2010

dcpinc 0.37

0.020

0.025

0.030

0.035

0.040

1980 1990 2000 2010

dcpstmt 0.78

-0.001

0.000

0.001

0.002

0.003

0.004

0.005

1980 1990 2000 2010

denum 0.66

0.02

0.03

0.04

0.05

1980 1990 2000 2010

dgoto 0.88

0.0000

0.0005

0.0010

0.0015

0.0020

1980 1990 2000 2010

dinl 0.64

0.0000

0.0005

0.0010

0.0015

0.0020

1980 1990 2000 2010

dkludge 0.97

0.0e+00

2.5e-06

5.0e-06

7.5e-06

1980 1990 2000 2010

dnoal 0.12

0.00

0.02

0.04

0.06

0.08

1980 1990 2000 2010

dreg 0.97

0.00000

0.00004

0.00008

0.00012

1980 1990 2000 2010

drest 0.39

0e+00

1e-04

2e-04

3e-04

4e-04

1980 1990 2000 2010

dsign 0.00

0.00

0.02

0.04

0.06

1980 1990 2000 2010

dstatic 0.97

0.30

0.35

0.40

1980 1990 2000 2010

dstmt 0.84

0.000

0.005

0.010

0.015

1980 1990 2000 2010

duns 0.89

0.00

0.02

0.04

0.06

1980 1990 2000 2010

dvoid 0.92

0e+00

2e-04

4e-04

6e-04

1980 1990 2000 2010

dvol 0.86

200

300

400

500

600

1980 1990 2000 2010

filine 0.91

50

100

150

1980 1990 2000 2010

fistmt 0.90

0.025

0.050

0.075

1980 1990 2000 2010

fminc 0.81

30

40

50

60

1980 1990 2000 2010

fuline 0.91

4

5

6

7

1980 1990 2000 2010

idchar 0.94

0.000

0.005

0.010

0.015

1980 1990 2000 2010

indev 0.89

5

6

7

8

1980 1990 2000 2010

inspc 0.77

15

20

25

1980 1990 2000 2010

lichar 0.93

0.75

1.00

1.25

1.50

1.75

1980 1990 2000 2010

stnest 0.64

Figure 2: Long term evolution of programming practices. (Metrics appear in alphabetical order; the number
following the metric name is adjusted R2.)

(R2 = 0.89), have both been falling over time, providing
strong support to the hypothesis that code formatting prac-
tices do converge, reducing inconsistencies and evolving to-
wards a more homogeneous style.

Our findings seem to show an instance where an online
community has successfully driven consensus and adoption
of common practices. Research could examine drivers for
other desirable trends, such as software security, unit testing,
and operations support.

H6: Software complexity evolution follows self cor-
rection feedback mechanisms

The metrics fuline, mean function length, (R2 =

0.91); stnest, mean statement nesting, (R2 = 0.64);

dcpif, C preprocessor conditional statement density (R2 =
0.92); dcpstmt, C preprocessor non-include statement den-

sity (R2 = 0.87), all seem to follow a pattern where
the metric grows indicating greater complexity, until a re-
verse trend kicks in and complexity starts falling. For ex-
ample, fuline and stnest may have increased due to new
ergonomic affordances (more lines can fit on a display), but
their increase may have overreached regarding the program-
mers’ capacity to comprehend the corresponding code. That
is consistent with a view of software complexity evolution
being guided through self correcting feedback. Perhaps con-
troversially, the same can be argued for the evolution of

dgoto, goto keyword density (R2 = 0.88), whose value
has started increasing after a long declining trend. It seems
that programmers are loath to give up a maligned language
construct, despite half a century of drilling against it. Per-
haps goto is too valuable to let go; or letting it go results in
code that is more complex than simply using it judiciously.

Our findings here are in agreement with several of Lehman’s
laws of software evolution [29], namely: Increasing Com-
plexity, Conservation of Familiarity, Declining Quality, and
Feedback System. The corresponding consequences of these
laws have been investigated for many years [21], so we will
not attempt to expand on this topic here.

H7: Code readability increases
We would expect code readability to increase until reach-

ing a plateau, consistently with all programming advice.
As proxies for code readability we have inspc, mean in-

dentation spaces (R2 = 0.77); dstmt, statement den-

sity (R2 = 0.84); dcmchar, comment character density

(R2 = 0.70); cmchar, mean comment size (R2 =

0.48); dcm, comment density (R2 = 0.77); dkludge,

kludge word density (R2 = 0.97). Taken together, the
metrics present a mixed, though mostly positive, picture.
Comment density and comment character density follow a
pattern where important improvements have started losing
some ground. This could be related to the adoption of longer
identifiers, which may make code more self-documenting.
Statement density followed a consistent downwards trend,
which is good, until well into the 2000s when it started edg-
ing upwards, which is worrying. The density of words in-
dicating substandard code in comments has only recently
started declining. The amount of whitespace used for in-
dentation seems to be converging at or below the six spaces
considered to be the point above which readability suffers.
These metrics show that Unix code readability has improved
significantly over the early years. However, they do not pro-

vide evidence that readability is still increasing. The future
will tell us whether we are currently witnessing a regression
toward the mean that corrects excessibe adherance to read-
ability guidelines, or whether developers have lost interest
in these mechanical aspects of readability.

Our failure to support this hypothesis may well indicate
the limits on how far internal code quality can be improved
through commenting, and, in general, the diminishing re-
turns of investing in the code’s documentary structure [60].
Consequently, research has to be directed into other areas
that can drive internal code quality. Examples include more
powerful programming structures, refactoring, specialized li-
braries, model-driven development, meta-programming, domain-
specific languages, static analysis, and online collaboration
platforms.

4. RELATED WORK
Work related to the study of the long term evolution of

programming practices can be divided into that associated
with software evolution, that looking at the actual program-
ming practices, and that associated with our specific hy-
potheses.

The evolution of software has been the subject of decades
of research [10]. A central theoretical underpinning regard-
ing software’s evolution are Lehman’s eponymous laws as ini-
tially stated [27] and subsequently revised and extended [28–
30]. We will not expand on the topic, because a recent exten-
sive survey of it [21] provides an excellent historical overview
and discusses the current state of the art. Along similar
lines, a number of important studies focus on the stages of
software growth [6,31,59], as well as software ageing [40] or
decay [14].

One study particularly relevant to our work [1] examined
how the vocabulary used in two software projects evolved
over five and eight software versions respectively. The re-
searchers found that identifiers faced the same evolution
pressures as code. A related study [47] examined the changes
in code convention violations in four open source projects.
The authors report that code size and associated violations
appear to grow together in a 100-commit window. Two stud-
ies have looked at the evolution of commenting practices over
time: one [24] examined Prosgresql from 1996 to 2005, and
one [19] Linux from 1994 to 1999. Both studies found com-
ments to have remained roughly constant over time. The
second study [19] also observed an increase in the size of
the files. Compared to the preceding studies, our work ex-
amines a wider variety of metrics over a significantly longer
time scale.

On the subject of programming practices McConnel’s Code
Complete [36] contains a full chapter (11) discussing the
naming of variable names, and one (chapter 31) discussing
code layout and style. Style guidelines can also be found
in references [9, 17, 22, 26, 38, 55, 56, 61]. An interesting the-
oretical contribution on this front has been made by Van
De Vanter [60], who has argued that all extralingual infor-
mation added by programmers for aiding the human reader
forms the code’s documentary structure, which is orthogonal
to the linguistic elements used by the compiler.

A substantial body of work has been performed on the
subject of our hypotheses, though not on the long timescale
we examined. Here we summarize the most important pa-
pers. Regarding H1 (Programming practices reflect technol-
ogy affordances) Leonardi [32] argues that the imbrication

metaphor (between human and material agencies) can help
us to explain how the social and the material become in-
terwoven and continue to produce improved infrastructures
that people use to get their work done. On the subject of H2
(Modularity increases with code size) Capiluppi et al. [11]
found that — as one could expect — modularity is related
to code size. They state that as a project grows, developers
reorganize code adding new modules. Concerning H3 (New
language features are increasingly used to saturation point)
Parnin et al. [41] explored how Java developers use new lan-
guage features regarding generics. Interestingly, they found
that developers may not replace old code with new language
features, meaning that only the introduction of a new lan-
guage feature is not enough to ensure adoption. On the
topic of H4 (Programmers trust the compiler for register
allocation) Arnold [4] also found that the register keyword
quickly became advisory, and that now all C/C++ compil-
ers just ignore it. Regarding H5 (Code formatting practices
converge to a common standard) according to an empirical
study conducted by Bacchelli and Bird at Microsoft [5], one
of the most important tasks of code reviewers is to check
if the code follows the team standards and conventions in
terms of code formatting and in terms of function and vari-
able naming. On the topic of H6 (Software complexity evo-
lution follows self correction feedback mechanisms) Terceiro
et al. [58] also agree that system growth is not necessarily
associated with structural complexity increases. Finally, as
far as H7 (Code readability increases) is concerned Buse
and Weimer [7] propose a learning metric for code readabil-
ity, which correlates strongly with three measures of software
quality: code changes, automated defect reports, and defect
log messages. Their study suggests that comments, in and
of themselves, are less important than simple blank lines to
local judgments of readability.

5. CONCLUSIONS AND FURTHER WORK
We started this paper writing that tracking long-term

progress in a discipline allows us to take stock of things
we have achieved, appreciate the factors that led to them,
and set realistic goals for where we want to go. The re-
sults we obtained by examining the evolution of the Unix
source code over a period of more than four decades paint a
corresponding broad brush picture.

Over the years the developers of the Unix operating sys-
tem appear to have: evolved their code style in tandem with
advancements in hardware technology, promoted modular-
ity to tame rising complexity, adopted valuable new lan-
guage features, allowed compilers to allocate registers on
their behalf, and reached broad agreement regarding code
formatting. Our findings have also shown two other pro-
cesses at play, namely self correcting feedback mechanisms
associated with rising software complexity and documentary
code structure improvements that have reached a ceiling.

The interplay between increased complexity, on the one
hand, and technological affordances, on the other, may ex-
plain some of the inflection points we have witnessed. For
example, technology has allowed developers to work with
longer functions with ease, but longer functions are also
more complex than shorter ones. We can speculate that
when complexity trumped technology developers backed down
and reverted to writing shorter, simpler functions. Time will
show whether there will be another reversal in the future,
with developers opting once more for more complexity. If

so, a mechanism similar to that of other dynamical systems
describing opposing and interactive forces may lurk behind
the phenomenon.

Although we do not claim to have proven a causal relation-
ship, it is plausible that the trends we observed are related
to advances in tools, languages, ergonomics, guidelines, pro-
cessing power, and conventions. So, even though we have
not proposed an underlying model by which such advances
translate to the changes in metrics we have observed, we
believe it is very unlikely that they have not had an impact
on software development.

Further investments in tools, languages, and ergonomics
are likely to be progress drivers. On the other hand, fur-
ther returns on investment in programming guidelines and
conventions are unlikely to match those of the past. The
structure and forces of the IT market guarantee that addi-
tional processing power is likely to reach developers without
requiring significant interventions. The fact that some met-
rics have retreated or reached a plateau indicates that this
is no longer enough to increase quality further. In addition,
the looming end of progress in semiconductor manufactur-
ing driven by Moore’s Law [35] means that corresponding
advancement of software development practices based on its
fruits will also stall; we will need to come up with other,
more frugal or different, sources of innovation.

Social coding, as performed on GitHub, and cloud com-
puting come to mind, but other new ways to drive progress
surely remain to be discovered.

The study of long term programming practice evolution
can be expanded on a number of fronts. An important task,
to which we alluded above, would be to examine and estab-
lish causality regarding the factors affecting the trends. This
could be helped by performing regression with the underly-
ing factor (e.g., screen resolution) rather than time as the
independent variable. Based on these results one could then
perform meaningful cost-benefit analysis regarding invest-
ments in software development infrastructure. Moreover,
the accuracy of the analysis can be improved by studying a
period’s specific code changes, rather than complete snap-
shots, which mostly incorporate legacy code. This could
be done by employing qualitative rather than quantitative
methods. Such a study could also provide insights regard-
ing the various inflection points we observed in the 1990s
and early 2000s. Are these inflections the result of reach-
ing (after several decades) a limit regarding complexity and
therefore regressing to the mean, or did the change involve
a catalyst? Furthermore, in addition to code, it would also
be valuable to perform a quantitative examination of other
process-related inputs, such as configuration management
entries, the issues’ lifecycle, and team collaborations. Fi-
nally, many more systems should be studied in order to val-
idate the generalisability of our results.

Acknowledgements
John Pagonis provided a number of insightful comments on earlier
versions of this document.

This research has been co-financed by the European Union (Eu-
ropean Social Fund — esf) and Greek national funds through
the Operational Program “Education and Lifelong Learning” of
the National Strategic Reference Framework (nsrf) — Research
Funding Program: Thalis — Athens University of Economics and
Business — Software Engineering Research Platform.

6. REFERENCES
[1] S. Abebe, S. Haiduc, A. Marcus, P. Tonella, and

G. Antoniol. Analyzing the evolution of the source
code vocabulary. In CSMR ’09: 13th European
Conference on Software Maintenance and
Reengineering, pages 189–198, March 2009.

[2] American National Standard for Information Systems
— programming language — C: ANSI X3.159–1989,
Dec. 1989. (Also ISO/IEC 9899:1990).

[3] O. Arafat and D. Riehle. The commenting practice of
open source. In OOPSLA ’09: 24th ACM SIGPLAN
Conference Companion on Object Oriented
Programming Systems Languages and Applications,
pages 857–864, New York, NY, USA, 2009. ACM.

[4] K. Arnold. Programmers are people, too. Queue,
3(5):54–59, June 2005.

[5] A. Bacchelli and C. Bird. Expectations, outcomes, and
challenges of modern code review. In ICSE ’13: 35th
International Conference on Software Engineering,
pages 712–721, Piscataway, NJ, USA, 2013. IEEE
Press.

[6] K. H. Bennett and V. T. Rajlich. Software
maintenance and evolution: A roadmap. In
Conference on The Future of Software Engineering,
pages 73–87, New York, NY, USA, 2000. ACM.

[7] R. Buse and W. Weimer. Learning a metric for code
readability. IEEE Transactions on Software
Engineering, 36(4):546–558, July 2010.

[8] S. Butler, M. Wermelinger, Y. Yu, and H. Sharp.
Exploring the influence of identifier names on code
quality: An empirical study. In CSMR ’10: 14th
European Conference on Software Maintenance and
Reengineering, pages 156–165, March 2010.

[9] L. W. Cannon, R. A. Elliott, L. W. Kirchhoff, J. H.
Miller, J. M. Milner, R. W. Mitze, E. P. Schan, N. O.
Whittington, H. Spencer, D. Keppel, and M. Brader.
Recommended C style and coding standards. Available
online http://sunland.gsfc.nasa.gov/info/cstyle.html
(January 2006). Updated version of the Indian Hill C
Style and Coding Standards paper.

[10] A. Capiluppi. Models for the evolution of OS projects.
In ICSM ’03: International Conference on Software
Maintenance, pages 65–74, 2003.

[11] A. Capiluppi, P. Lago, and M. Morisio. Characteristics
of open source projects. In 7th European Conference
on Software Maintenance and Reengineering, pages
317–327, March 2003.

[12] G. J. Chaitin. Register allocation & spilling via graph
coloring. SIGPLAN Notices, 17(6):98–101, June 1982.

[13] E. W. Dijkstra. Go to statement considered harmful.
Communications of the ACM, 11(3):147–148, Mar.
1968.

[14] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus. Does code decay? Assessing the evidence
from change management data. IEEE Transactions on
Software Engineering, 27(1):1–12, Jan. 2001.

[15] M. D. Ernst, G. J. Badros, and D. Notkin. An
empirical analysis of C preprocessor use. IEEE
Transactions on Software Engineering,
28(12):1146–1170, Dec. 2002.

[16] B. Fluri, M. Wursch, and H. Gall. Do code and
comments co-evolve? On the relation between source

code and comment changes. In WCRE 2007: 14th
Working Conference on Reverse Engineering, pages
70–79, Oct 2007.

[17] The FreeBSD Project. Style—Kernel Source File Style
Guide, Dec. 1995. FreeBSD Kernel Developer’s
Manual: style(9). Available online
http://www.freebsd.org/docs.html (January 2006).

[18] P. Gazzillo and R. Grimm. SuperC: Parsing all of C
by taming the preprocessor. In PLDI ’12:
Programming Language Design and Implementation,
pages 323–334, 2012.

[19] M. Godfrey and Q. Tu. Evolution in open source
software: A case study. In CSMR ’00: International
Conference on Software Maintenance, pages 131–142,
2000.

[20] G. Gousios and D. Spinellis. Conducting quantitative
software engineering studies with Alitheia Core.
Empirical Software Engineering, 19(4):885–925, Aug.
2014.

[21] I. Herraiz, D. Rodriguez, G. Robles, and J. M.
González-Barahona. The evolution of the laws of
software evolution: A discussion based on a systematic
literature review. ACM Computing Surveys, 46(2),
Nov. 2013.

[22] G. Holzmann. The power of 10: rules for developing
safety-critical code. Computer, 39(6):95–99, June 2006.

[23] International Organization for Standardization.
Programming Languages — C. ISO, Geneva,
Switzerland, 1999. ISO/IEC 9899:1999.

[24] Z. M. Jiang and A. E. Hassan. Examining the
evolution of code comments in PostgreSQL. In MSR
’06: 2006 International Workshop on Mining Software
Repositories, pages 179–180, New York, NY, USA,
2006. ACM.

[25] S. H. Kan. Metrics and Models in Software Quality
Engineering. Addison-Wesley, Boston, MA, second
edition, 2002.

[26] B. W. Kernighan and P. J. Plauger. The Elements of
Programming Style. McGraw-Hill, New York, second
edition, 1978.

[27] M. Lehman. On understanding laws, evolution, and
conservation in the large-program life cycle. Journal of
Systems and Software, 1:213–221, 1979.

[28] M. M. Lehman and L. A. Belady. Program Evolution:
Processes of Software Change. Academic Press, 1985.

[29] M. M. Lehman and J. F. Ramil. Rules and tools for
software evolution planning and management. Annals
of Software Engineering, 11(1):15–44, 2001.

[30] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E.
Perry, and W. M. Turski. Metrics and laws of software
evolution — the nineties view. In METRICS ’97: 4th
International Symposium on Software Metrics, pages
20–32, Washington, DC, USA, 1997. IEEE Computer
Society.

[31] F. Lehner. Software life cycle management based on a
phase distinction method. Microprocessing and
Microprogramming, 32(1OCo5):603 – 608, 1991.
Euromicro symposium on microprocessing and
microprogramming.

[32] P. M. Leonardi. When flexible routines meet flexible
technologies: Affordance, constraint, and the

http://sunland.gsfc.nasa.gov/info/cstyle.html
http://www.freebsd.org/docs.html

imbrication of human and material agencies. MIS
Quarterly, 35(1):147–168, Mar. 2011.

[33] J. Liebig, C. Kästner, and S. Apel. Analyzing the
discipline of preprocessor annotations in 30 million
lines of C code. In AOSD ’11: 10th International
Conference on Aspect-Oriented Software Development,
pages 191–202, 2011.

[34] P. E. Livadas and D. T. Small. Understanding code
containing preprocessor constructs. In IEEE Third
Workshop on Program Comprehension, pages 89–97,
Nov. 1994.

[35] C. Mack. Fifty years of Moore’s law. IEEE
Transactions on Semiconductor Manufacturing,
24(2):202–207, May 2011.

[36] S. C. McConnell. Code Complete: A Practical
Handbook of Software Construction. Microsoft Press,
Redmond, WA, second edition, 2004.

[37] R. J. Miara, J. A. Musselman, J. A. Navarro, and
B. Shneiderman. Program indentation and
comprehensibility. Communications of the ACM,
26(11):861–867, Nov. 1983.

[38] T. Misfeldt, G. Bumgardner, and A. Gray. The
Elements of C++ Style. Cambridge University Press,
Cambridge, 2004.

[39] A. Mockus. Amassing and indexing a large sample of
version control systems: Towards the census of public
source code history. In MSR ’09: 6th IEEE
International Working Conference on Mining Software
Repositories, pages 11–20, Washington, DC, USA,
2009. IEEE Computer Society.

[40] D. L. Parnas. Software aging. In ICSE ’94: 16th
International Conference on Software Engineering,
pages 279–287, Washington, DC, May 1994. IEEE
Computer Society.

[41] C. Parnin, C. Bird, and E. Murphy-Hill. Java generics
adoption: How new features are introduced,
championed, or ignored. In MSR ’11: 8th Working
Conference on Mining Software Repositories, pages
3–12, New York, NY, USA, 2011. ACM.

[42] D. Posnett, A. Hindle, and P. Devanbu. A simpler
model of software readability. In MSR ’11: 8th
Working Conference on Mining Software Repositories,
pages 73–82, New York, NY, USA, 2011. ACM.

[43] E. S. Raymond. The Art of Unix Programming.
Addison-Wesley, 2003.

[44] D. M. Ritchie. noalias comments to X3J11. Usenet
Newsgroup comp.lang.c, Mar. 1988. Message-ID:
7753@alice.UUCP. Available online
https://groups.google.com/forum/message/raw?msg=
comp.lang.c/K0Cz2s9il3E/YDyo xaRG5kJ.

[45] D. M. Ritchie. The development of the C language.
ACM SIGPLAN Notices, 28(3):201–208, Mar. 1993.
Preprints of the History of Programming Languages
Conference (HOPL-II).

[46] M. J. Rochkind. The source code control system.
IEEE Transactions on Software Engineering,
SE-1(4):255–265, 1975.

[47] M. Smit, B. Gergel, H. Hoover, and E. Stroulia. Code
convention adherence in evolving software. In ICSM
’11: 27th IEEE International Conference on Software
Maintenance, pages 504–507, Sept 2011.

[48] H. Spencer and G. Collyer. #ifdef considered harmful
or portability experience with C news. In R. Adams,
editor, Proceedings of the Summer 1992 USENIX
Conference, pages 185–198, Berkeley, CA, June 1992.
USENIX Association.

[49] D. Spinellis. Global analysis and transformations in
preprocessed languages. IEEE Transactions on
Software Engineering, 29(11):1019–1030, Nov. 2003.

[50] D. Spinellis. Code Quality: The Open Source
Perspective. Addison-Wesley, Boston, MA, 2006.

[51] D. Spinellis. A tale of four kernels. In W. Schäfer,
M. B. Dwyer, and V. Gruhn, editors, ICSE ’08: 30th
International Conference on Software Engineering,
pages 381–390, New York, May 2008. Association for
Computing Machinery.

[52] D. Spinellis. A repository with 44 years of Unix
evolution. In MSR ’15: 12th Working Conference on
Mining Software Repositories, pages 13–16. IEEE,
2015. Best Data Showcase Award.

[53] D. Spinellis. Tools and techniques for analyzing
product and process data. In T. Menzies, C. Bird, and
T. Zimmermann, editors, The Art and Science of
Analyzing Software Data, pages 161–212.
Morgan-Kaufmann, 2015.

[54] D. Spinellis, P. Louridas, and M. Kechagia. An
exploratory study on the evolution of C programming
in the Unix operating system. In Q. Wang and
G. Ruhe, editors, ESEM ’15: 9th International
Symposium on Empirical Software Engineering and
Measurement, pages 54–57. IEEE, Oct. 2015.

[55] R. Stallman et al. GNU coding standards. Available
online http://www.gnu.org/prep/standards/ (January
2006), Dec. 2005.

[56] Sun Microsystems, Inc. Java code conventions.
Available online http://java.sun.com/docs/codeconv/
(January 2006), Sept. 1997.

[57] O. Tange. GNU parallel: The command-line power
tool. ;login:, 36(1):42–47, Feb. 2011.

[58] A. Terceiro, M. Mendonça, C. Chavez, and D. Cruzes.
Understanding structural complexity evolution: A
quantitative analysis. In CSMR ’12: 16th European
Conference on Software Maintenance and
Reengineering, pages 85–94, March 2012.

[59] M. van Genuchten and L. Hatton. Quantifying
software’s impact. Computer, 46(10):66–72, 2013.

[60] M. L. V. D. Vanter. The documentary structure of
source code. Information and Software Technology,
44(13):767–782, 2002. Special Issue on Source Code
Analysis and Manipulation (SCAM).

[61] A. Vermeulen, S. W. Ambler, G. Bumgardner,
E. Metz, T. Misfeldt, J. Shur, and P. Thompson. The
Elements of Java Style. Cambridge University Press,
Cambridge, 2000.

[62] S. Wood. Generalized Additive Models: An
Introduction with R. Chapman and Hall/CRC, 2006.

[63] S. N. Wood. Fast stable restricted maximum
likelihood and marginal likelihood estimation of
semiparametric generalized linear models. Journal of
the Royal Statistical Society (B), 73(1):3–36, 2011.

https://groups.google.com/forum/message/raw?msg=comp.lang.c/K0Cz2s9il3E/YDyo_xaRG5kJ
https://groups.google.com/forum/message/raw?msg=comp.lang.c/K0Cz2s9il3E/YDyo_xaRG5kJ
http://www.gnu.org/prep/standards/
http://java.sun.com/docs/codeconv/

